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MATHEMATICS
Section Editor:
Michael L. Connell, University of Houston

In examining this year's set of papers for the mathemat-
ics section I cannot help but be impressed by the growth
which this area has seen over the past 10 years. Initially, we
were lucky to have papers which showed competence in the
use of technology and which tended to be written from a
"Golly-Gee-Whiz! It actually worked" perspective. The
mathematics in many cases was at a rudimentary level, and
often came in second to the computer itself.

We have indeed progressed far since those days. As
you are aware, to even get consideration in this year's
section you had to be able to submit your papers in elec-
tronic form via the Internet. This marks a major transition
period for SITE. To this writer it marks the end of the early
exploratory era where "Golly-Gee, it works" was good
enough. Today you have to be a relatively savvy user of
technology to even participate in the discussion. In many
ways this is unfortunate, as it means that there will be some
voices left out of the dialog. I raise this as an issue because
to even enter the SITE discourse from this point on you
must already be a fairly high end user.

Although this will certainly raise the bar on the techno-
logical sophistication that one might expect within the
papers, I will miss the diversity. Part of the excitement of
SITE has always been the mix of talents and abilities that it
drew. It was common to find novice classroom teachers
rubbing shoulders with professional instructional designers
and I feel that as an organization we were richer for it Let's
make sure we continue the long-standing SITE tradition of
making the "newbies" feel welcome.

As you shall see, we have indeed progressed to the point
where we are now getting an abundance of extremely strong
papers. In this new wave not only is "Golly-Gee" not good
enough, but the papers are written within well-developed
and articulated theoretical frameworks for what is being
done, a high-end use of technology in some very innovative
and creative fashions, and the creation of some new and
powerful mathematical tools with which to teach and think
All of these serve as strong indications that this is truly a
fruitful area and one in which should see much growth and
research over the next few years.
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The Papers
This years mathematics papers tended to cluster around

three major themes. The first of these themes might be
thought of as Why do we do things we do? Papers that
were classified in this area tended to feature the psychologi-
cal and pedagogical implications of technology. They often
were concerned with how we might take advantage of what
we know concerning how best one can teach, how best
students can learn, and how the technology can be used to
enhance existing construction.

The second major theme concerned more content
specific issues and might be thought of as What should we
teach? These papers were often very specific regarding
their mathematical content, occasionally to the extent of
limiting their generalizability to other instructional settings.
The central focus of these papers is what is it that we are
going to teach. However, they serve as lovely reminders of
the extent to which mathematics instruction can be en-
hanced via technology and a reminder of the growing
maturity of the field. In reading this set it is fascinating to
see the various pedagogical methods that were adopted.

The third theme was that of tool construction for
instruction. This area might be thought of as What do we
have to teach with? These papers describe some truly
cutting edge and innovative efforts of interest to all math-
ematics educators. As I reflect upon the new methods and
opportunities for instruction represented in this section I am
convinced that a careful reading would make a technology
using teacher educator out of the most die-hard critic.

Why do we do things we do?
These papers contained many important philosophical

and logistical concerns. Common to nearly all of them,
however, is the question of why should we teach in a
technologically enhanced fashion and what does this change
mean to our teacher candidates and to their eventual
students. In Connell and Harnisch we read of the need for
strong conceptualization within technology enhanced
mathematics instruction - one could easily extend the
argument to mathematics instruction in general. This paper
describes why it is important that we do not abandon
personalized individual understanding of concepts. Upon
first exposure to educational computing many teachers
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candidates comment that they no longer need to understand
the concepts as the computer will bail them out. This is a
dangerous perception and is addressed head-on in this paper

The model for interdisciplinary collaboration put forth
by La Rose and McDonald reflects awareness of this
concern. This paper describes a well-developed effort in
using the World Wide Web as a method of instruction.
Their rich descriptions of both the day-to-day usage and the
manner in which they evaluated and assessed their project
reflect a nicely developed set of ideas. In particular, there
was an attempt to match the technological method to
appropriate methodological approaches. As published here,
this particular paper is a work in progress. I would encour-
age interested readers to attend their session at the confer-
ence. It will be exciting to see how their Fall and Spring
semester turn out! It should be noted that this paper
attempts to meet both the more rigid instructional design
requirements and capture the fluidity and dynamic aspects
of constructivism and social interaction.

Our next look at why we teach the way we teach is by
Charnitski and Croop and offers beautifully developed
discussion Vygotskian notions relative to computer
enhanced mathematics instruction. Given the tendency of
many technologically intensive courses to become deper-
sonalized and machine-centered I feel that this is a very
important paper. It describes in easy to understand terms
some of the key issues of Vygotsky and his psychological
theories. The notion of creating a collaborative learning
space within a computer-enhanced environment should be
must reading for all teacher educators. This important paper
raises issues that we need to be looking at very carefully lest
we find ourselves trapped with content delivery systems in
lieu of interactive learning environments.

In Slough and Chamblee's paper we read their approach
toward implementation of technology in math and science
at the secondary level. For those readers who are not
familiar with CBAM, or the Concerns-Based Adoption
Model, it would be well worth the time necessary for
reading their theoretical framework section. The variation
of CBAM used in this paper involves the five major stages
and reflects the dynamic nature of the changeprocess. A
major finding from this paper is that CBAM model does
address the perceived concerns of the teachers. We also find
further examples of the use of technology to enhance and
transdisciplinary work across content areas.

The last paper in this section comes from Pianfetti and
Pianfetti and illustrates some absolutely beautiful work
using the World Wide Web to teach in a new fashion. The
study itself can serve as a template for other researchers and
I was particularly impressed by their use of actual students
in actual classrooms schools throughout the creation,
design, and evaluation of their project. This paper could
serve as a model for researchers wishing to field based their
work.
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What should we teach?
In the paper concerning Actions on Objects, Connell

describes a methodological framework for the technological
enhancement of mathematics education. In this paper we
see examples showing the essential parallelism of this
approach, together with the expressed notion that good
thinking is good thinking regardless of what tools or
developmental level might be used in its' generation.

Bounieav deals with some of the psychological aspects
of using information technologies in the second paper
within this subsection. In this case to teach a very specific
set of concepts from linear algebra. For past readers of the
SITE mathematics section you are probably aware of
Mikhail's work - Step-by-Step Development of Mental .

activities (SSDMA). A major strength of this paper lies in
its' carefully delineated set of actions which derived from
the mathematics itself. The instructions his examples are
based upon are quite well worked out, in each case showing
the operations underlying the mental activities that will later
be built. This paper builds a strong case for the importance
of doing some type of structural analysis concerning each
new action that is to be developed. I find is to be a healthy
suggestion. In some constructivist classrooms there
occasionally exists the notion that every construction of
meaning is of equal worth.

The next view of why we do the things we do in
teaching comes to us from Coffland and Strickland. They
report the results of a survey of variables related teacher
technology and geometry. In reading this report a notewor-
thy point is that one's attitude towards use of computers
appeared to be independent of other types of characteristics
such as a technology awareness, attitude, training or usage.
Perhaps it is the case that one becomes an adopter of
technology in the mathematics classroom because of other
factors not related to formal instruction in educational
technology. We also find evidence supporting a reluctance
toward use. In particular, almost every respondent stated
that technology required more time to learn and implement.
Although the field has come a long ways, as we will later
see in the tools to teach with section, there is still a need for
streamlining the technology preparation process.

A further examination of how technology can be used to
deliver course material is offered in Weston's paper. The
content in this case is a finite mathematics course and the
technological tool was WebCT an extensive set of tools
created by faculty at the University of British Columbia. As
we take a look at the types of tools contained within
Weber we see a rich set of communication tools, study
tools, evaluation tools and management tools. I would
encourage people planning on designing their own online
course to take a careful look at this selection. The paper
provides important details regarding the nature and organi-
zation of these tools well worth examining



In Galminas and Autrey's paper we read of issues that
emerge in the conversion of existing courses into a technol-
ogy-based or technology enhanced course. The content in
this case is that of College Algebra. Given College
Algebra's place in nearly every curriculum it is clear that
this paper should be read with great care. They correctly
point out that technology comes in many different forms
and one can be skilled in one form and not another. In
planning such conversions it is likewise important to
remember the differences in classroom interactions and the
impact this plays on the mathematical cultures which is
created.

The final paper in this section serves as a true bridge
between the content and tools subsections. Knudsen' s
discussion of the issues dealt with in developing online
learning for middle school teachers serves as both a
carefully written justification piece for reform based
instruction and as a rich description of a potentially
powerful resource for mathematics education. In this paper
we see a notable example of interactive Web pages that
serve dual roles as both manipulative and as resource
textbook. It is also possible to observe a keen sensitivity
between the mathematics content and the manner in which
the technology is used to enhance its instruction.

Together, these papers each have a well-developed
reason for teaching in the way in which they do. Technol-
ogy clearly not just slapped on as an afterthought but is an
integral part of the instruction. They serve as evidence to a
growing maturation in terms of creating interactive learning
environments for both student, teacher candidate, and
practicing teacher / teacher educator.

What tools do we have to teach with?
The third and final group of papers deals with the tools

which are now available and which technology enables for
us to use in both teaching and learning. It is at this level that
we often see the true power of the computer in terms of
both representation and instruction most fully utilized.
Connell begins with two parallel examples showing the
student creation of a personally meaningful, computer-
enabled, referent for their mathematics. These examples
show that the objects we can create to think with signifi-
cantly impact thinking This influence is felt not only in
what the content is about but also in terms of what might be
done in teaching and learning. The concept that these
objects can themselves have built-in intelligence is some-
thing that should not be lost upon the mathematics educator.

In Campbell and Fonthal' s paper we can read how a
specific tool was created for use to explore whole and
rational number concepts. As examine how this was done it
seems to have resulted in a good match between the need of
the content and the pedagogical and teacher requirements.
Indeed, what sets this paper apart is that the program that
was created as a thinking tool was very carefully aligned
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with what is technologically possible and pedagogically
important. I find the recommendations for designing future
software packages to be quite informative and helpful.

In the Cannon, Heal and Wellman's paper we see the
fruition of a longtime dream which I sure many mathemat-
ics educators have shared in the creation of the library of
virtual electronic manipulatives on the World Wide Web.
These interactive web-based manipulatives are well worth
the time it takes to visit. Needless to say
www.matti.usu.edu has been bookmarked on my browser
and I imagine that it soon will be on yours as well. It's
amazing to think that this is just a preliminary paper. I look
forward to following this work as it grows over the next few
years.

In Ostler and Grandgennett's paper we see how Web
pages can be used to teach mathematical modeling. In
particular there some nice observations and suggestions in
terms of instructional considerations. I find it very helpful
to see that care was taken in terms of not only how we can
use the computer to teach mathematical modeling, but also
how do we teach the students. I heartily recommend this
paper for anyone who is considering expanding their own
mathematical models and representations as well as those
considering the use of Web pages in the mathematics
classroom.

In Bernard and Ramirez paper we see a beautifully
expanded problem, The biker and the nearby town, as it is
worked out with three different technological tools Cabris
Geometry, a spreadsheet, and a TI 83 calculator. It's
fascinating to observe how each of the tools to think with
subtly and some cases quite blatantly influenced the
problem solving approach which was taken. This paper
offers a rare insight into the manner in which technology
influences student thought and problem solving.

The final paper in this section by Katkov concerns a
new tool currently under development for the graphing of
functions. Although not immediate related to teacher
education, per se, it appears to be a powerful tool that looks
to be quite extensible. The screen shots and a list of the
permitted actions serve to remind us that even at a highly
abstract level in the technologically enhanced mathematics
classroom it is possible to see a series of well-defined
actions taken upon objects of well defined properties. This
tool appears to be currently under development and not
having had the opportunity of using the tool myself, I would
do like to examine its' robustness in an actual classroom
setting.

Concluding Remarks
This year's crop of paper serves to illustrate how far we

have come in this interesting intersection of mathematics,
educational technology, learning theory, psychology, and
pedagogy. We are far beyond the early days of `let's plug it
in and see what is can do" and are well into integrating the
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computer in the mathematics classroom. Furthermore,
applications and methods are emerging which are not only
pedagogically meaningful but also powerful from a
mathematics perspective.

As we look to the future it is easy to envision class-
rooms where Internet connectivity is taken for granted,
where every student has the expertise which was only held
by experts in the previous year, and hardware and raw
computational ability rivaling those of many research
institutions of only five years ago. From this vision it is
clear that we are in for some very exciting times ahead.
However, despite whatever educational hardware and
software we might have at our disposal we must bear in
mind that in order for teachers to use these tools effectively
they must understand the underlying mathematics.
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Abstract. It is extremely important for students to develop strong concepts regarding the
nature of the objects they are manipulating and how these objects are to be used
mathematically. This is increasingly important when the objects with which one is
thinking are themselves active as is the case within a technologically enhanced
mathematics classroom. This serves to further underscore the need for increased
mathematical conceptual awareness on the part of our teacher candidates.

Introduction

Mathematics educators have long espoused the use of hands-on manipulative objects as being
essential for children's creation of meaningful mathematical concepts. As a result of this long-standing
commitment to their use many of these manipulative objects have become widespread and nearly universal
in mathematics classrooms around the world. Through the years educators everywhere have come to
understand many of the properties of these powerful objects to think with together with many strategies for
their effective use and cautions for their abuse.

Today we are seeing the growing awareness and use of technology enhanced mathematical
objects, many of which possess considerable "awareness" of their function and capable of offering
suggestions to the learner concerning their own use. Little is known, however, of the emerging technology
enhanced environment, where the very tools with which one thinks are active as well as interactive. This
paper attempts to describe some of the potential difficulties I have observed over the years. I will further
argue for the creation of a strong set of mathematically relevant understandings on the part of both teacher
candidates and their eventual students in order to be effective learners within this new technologically
enhanced mathematical culture.

Two types of mathematical objects'

One of the first things which many teachers notice when using manipulatives is that they appeal to
the children across a broad sensory army. A set of Dienes' Basew blocks, for example, will simultaneously
present to the student experiences with mass, density, smell, color, texture and so forth. And, although this
is a part of the manipulatives appeal to the student, not all of these sensory experiences are beneficial to the
construction of the eventual concept for which they were selected. Furthermore, traditional manipulatives -
such as the Basel° blocks will also serve to illustrate many other concepts than that for which they were
originally created and in a similar fashion not all of these will be of benefit to the mathematics classroom.

[1] For a further discussion of this viewpoint see Symbolic Computers and Mathematical Objects by Michael L
Connell within these proceedings.
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This is typically viewed as strength of the material and as an asset to the teacher. In this scenario,
we have the potential to generate more than just the mathematical topic of the day. This is a generally a
very good situation to have as it provides much flexibility and great linking power in a given manipulative.

Of course this multifaceted presentation of a broad array of experience to the senses is not always
a good thing. It is possible that these additional added features are actually seductive details that distract
from the core mathematical concepts that we would hope are being developed. This leads to the
observation that the narrowing of focus brought about via a sketch is the first step toward the later highly
abstracted representations such as those utilized in the algebra Remember Whitehead in "Process and
Reality" when he states that "...every advance in human understanding is brought about via an advance in
the symbol systems used to think with" (Whitehead, 1929).

The technology enabled manipulatives and sketches lack many of the multi-faceted features of the
traditional manipulative and serve as an important step in such a concentration of focus. For example, I
have long suggested that an excellent use of a computer based manipulative is as a Visual Representation of
a previously encountered physical manipulative which had been used to teach an earlier concept (see
Connell, 1988). In particular, one of the key differences between a computer manipulative and the real
world manipulative upon which is based lies in the degree of abstraction that occurs due to the use of the
computer to generate the object of thought.

This is not such a strange idea for most teachers and teacher educators. In the case of mathematics
quite often we are trying to teach a specific representation as opposed to a broad multiple uses of the
manipulative. Thus as a domain we utilize standard representations such as Dienes blocks which are
specifically constructed to carry a single meaning at the expensive other potential meanings which the
material might be used for.

A Case for Strong Conceptualization

Due in part to this increased abstraction inherent in many computer enabled objects it is extremely
important for children to develop strong concepts. There should be well developed understandings
regarding what the objects they are manipulating are to be used for mathematically and how these objects
are appropriately and inappropriately use. One analogy comes immediately to my mind is the smart
wizards we see more and more of in Microsoft applications. I can envision a case where the
technologically enabled objects that we provide for the children think with become more andmore self
aware.

To see how this might play out, let's imagine that we have identified two quantifiable sets that we
wish to begin working on. Let us further imagine that we have identified various operations which it is
possible to use on these two sets of objects and that they are of the same class such that the operations
identified are appropriate. So the student selects a set addition object using the operating software and
passes to it the instruction to it to combine these two sets.

The set addition object which has more then a bit of intelli-sense and wizardry (to use Microsoft
terminology for a moment) - does the cybernetic equivalent of looking at the task ahead of it and then
responds back to the student, "Are you sure that you really want to do this?" In order to be successful in
this new environment the child has to know whether or not this really is an appropriate operation to
perform upon these objects, whether or not he's asked the right object to do the job, and how to interpret the
results that he or she will eventually receive.

This is not a fanciful example. Such scenarios are becoming all to common and indeed are more
than a bit of a nuisance showing up all the time in intelli -sense technologies. For example, you can be
writing a letter and before you can even finish the first paragraph the Wizard de jour will pop-up. "Hi
there! It looks like your trying to write a letter. How about I help you?" Typically I really don't want or
need the help because it doesn't fit with either my writing style or the way I want to put this on paper. After
all let's face it as an academician things are written differently all the time. For whatever reason, however,
it's important to note that in this scenario I am the expert. I can override the suggestions of any object or
Wizard when it's not inline with the tasks that I need to have done.

In this New World I'm envisioning, however, of computer enhanced mathematics and mathematics
instruction via active objects this may not always be the case. Let's imagine that we are doing some
integration and a wizard makes a suggestion on the boundary conditions over which to integrate which nine
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times out of ten would be right. If your problem happens to fit the tenth condition and you succumb to the
wizards' advice in the face of your own lack of concept you are in major troubles.

This is problem occurs on a daily basis in computer programs commonly used in the statistical
analyses of data. A very real problem has occurred as more and more researchers are getting access to
higher and higher levels of statistical programs. In many cases programs such as SPSS and SAS will
enable processing beyond the interpretive levels of the users. It is very common to find data sets that are
spherical and never checked for, and post-op comparisons that are performed correctly but selected
inappropriately. All of this because the tools given for the individual to think with were, in many ways,
smarter than the people thinking with them. This trend is one that shows every tendency of continuing and
accelerating.

This plays out with a vengeance in the educational arena We are already able to design and
implement intelligent objects with more "number-sense" than the beginning students who will be utilizing
them will have. We are very close to being able to come up with objects to think with which are more
intelligent then the people who working with them. This is not intended as a callused or a mean comment.
We don't expect a tremendously high level of mathematical metacognitive knowledge at the first grade
level. After all, the learner is just putting all this stuff together in many cases for the very first time. So
to return to our earlier example, it would be very easy to imagine a set addition object that basically says, "I
will take any two numbers you give me and combine them using the operation of addition". In terms of
sheer processing power this could easily be at a higher skill level then the child using the object.

If we are to be effective teachers in this new technology enhanced environment we need to make
sure that our students truly understand the concepts. If this is not done, all of our lovely correct answers are
meaningless. This was a major concern in the calculator based reform effort of 15 years ago, it is even
more crucial in the computer environment. Let us see why this should be the case. Using a traditional
calculator you still had to plug everything in yourself much like the old command line DOS interfaces or
line-by-line BASIC compilers. The new computer environments and many of the newer calculators are
becoming increasingly object-oriented. Therefore, it is entirely possible that we may end of having the
terminal smarter than the user. I have always thought we were better off having dumb terminals and smart
users in computing without extreme care we will soon be facing the reverse.

Examining the Tools to Think With

The creation of new objects of thought or tools to think with can become very powerful
pedagogical tooli assuming we understand the concepts underlying them. The hidden danger surfaces
when we cannot understand the underlying mathematical concepts upon which the active objects are
operating on and we simply take them for granted, follow their recommendations blindly, and accept their
results at face value.

This would be analogous to letting your writing be totally edited by wizards in your word
processor. The following poem, which has enjoyed wide popularity among information technology faculty
through the years, will serve to illustrate the dangers of such an approach.

SPELL BOUND

I have a spelling checker,
It came with my PC.

It plainly marks four my revue
Mistakes I cannot sea.

I've run this poem threw it
I'm sure your pleased too no,
Its letter perfect in it's weigh,
My checker tolled me sew.

Because of our in-depth knowledge of words and word usage it is easy to see the humor in this
piece of writing. The errors are obvious and mostly harmless. If, however, we are looking at a
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computational object which was created with a flaw in the underlying logic the errors are not nearly so
obvious, harmless, or humorous.

Consider the following:

Depth
The Total
Relation Diff. From 1 Radical Portion Diff. From .5

1 2.00000000000 - 1.000000000001.00000000000 -0.50000000000
2 0.00000000000 1.000000000000.00000000000 0.50000000000
3 1.08239220029 -0.08239220029 0.54119610015 -0.04119610015
4 0.99401088611 0.00598911389 0.49700544305 0.00299455695
5 1.00019859327 -0.00019859327 0.50009929664 -0.00009929664
6 0.99999679901 0.00000320099 0.49999839950 0.00000160050
7 1.00000002540 -0.00000002540 0.50000001270 -0.00000001270
8 0.99999999990 0.000000000100.49999999995 0.00000000005

In this example it may not even be possible to identify the purpose for which the "object" was
created, the assumptions that underlay it's creation, or the use to which it's results might be applied. The
calculations are done correctly, of that we have no doubt, but to what use are they to be put? I am
reminded of Douglas Adams Science Fiction classic "Life, the Universe, and Everything". In this classic
text we learn that the answer to all of the truly deep problems of philosophy, metaphysics, etc., is actually
42. The difficulty is we do not know precisely what these questions are and in what form this answer fits.

Conclusion

In conclusion, the mathematics classroom of today is a far cry from that of 15 years ago. The
technological objects upon which we act now routinely have intelligence built into them. Ifyou made an
error in using a slide rule, as was quite common when I was in school, all that would happen is that your
result would be inaccurate. Today's intelligent objects have the potential notifying you of the error,
suggest new options for you consider, and quite possibly lead you astray through giving information at a
level which does not match with your understanding.

Ironically, the importance for understanding the underlying mathematical concepts in this scenario
is significantly stronger than during the previous introduction of technology the calculator. The
calculator, despite the vast hue and cry of the time, proved to be a relatively benign intervention. Helping,
as it were, with the numeric processing of skills and procedures that the child would have to construct,
apply, and evaluate. The computer with its increasingly powerful objects of thought is a much more
insidious problem.

On one hand* allows us to leverage our thinking tremendously forward through interaction with
tools which themselves have rudimentary problem solving abilities. Furthermore, thenatures of the data
organization made possible through using technology lend themselves to types of approaches with known
mathematical pay -off. On the other hand, however, we are in a very real danger of having our tools
become more intelligent than the people using them. It is the responsibility of mathematics educators
everywhere to ensure that our teacher candidates, teachers, and studentsare able to use the tools and not be
used by them.
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Abstract: In this paper we describe a model for interdisciplinary collaboration between
students interested in teaching and faculty teaching courses in the students' area of study
math and education. This collaboration involves the education students in the development
of Web materials, video recording of classroom activities, and development of rubric for
pedagogy effectiveness. It has as its objectives: the enhancement of the education students
understanding and development of effective teaching strategies, including knowledge and
application of instructional technology skills; the improvement of student learning in an
existing course being taught by one of the collaborating faculty; and the enhancement of the
teaching expertise for the faculty member teaching the course. These goals are
accomplished through the use of the Web to provide immediate feedback to students in the
class on topics that they find difficult, and through the faculty and education students'
reflection on classroom dynamics through the use of digital video.

Introduction

The World Wide Web (or, more simply, Web) is rapidly becoming a ubiquitous feature of all aspects of
society, including higher education. However, in the collegiate setting it is all-too-frequently used only to
reproduce information that is available in other formats or media. Thus while it provides a new and effective
vehicle for the dissemination of course information, it is difficult to determine whether its use is improving student
learning. This is of increasing concern given the continual expansion of responsibilities felt by many university
faculty, for whom adding Web page development to their repertoire may be part of a zero-sum game the loser in
which is sleep. We are interested in the synergy afforded by the collaboration of faculty and students, especially
those students interested in education, and the manners in which this cooperation may be used to enhance teaching
and learning at the interrelated levels of the faculty member's course, the students learning in the course, and the
education students' development as effective teachers. The involvement of the education students allows the
distribution of the workload associated with the use of the Web and results in the students applying instructional
technology skills acquired fioin a required education course, "Instructional Technology," which introduces them to
a variety of educational software applications.

The use of the Web in this model has two interrelated parts, which are carried out with differing
frequencies throughout the semester. First, it is used by the faculty member(s) teaching the course as a vehicle to
respond to student confusion as expressed in specific classes through the use of a classroom assessment technique
similar to the "Minute Paper" and "Muddiest Point" methods of Angelo & Cross (Angelo & Cross 1993). Second,
it is used in conjunction with videotaped classroom sessions, taped by the education students, to similarly address
students' misperceptions and confusion. The videotaped sessions are discussed by the faculty and education
students using a rubric on pedagogy (developed by both the math education students and both faculty members) to
isolate areas of confusion, and the education students then develop Web materials to address these. In either part,
the Web provides a unique and valuable vehicle for the dissemination of the information to be conveyed: it allows
for a dynamic information base that may change on a more-or-less daily basis, and provides a universally
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accessible resource for the information. Its use in this manner also allows these confusions to be addressed
simultaneously with the usual progression of the course, thus avoiding the loss of the time in the classroom which
is so often already in short supply. Finally, there are multiple levels of learning occurring as a result of the second
component, as the students in the class are learning through the Web materials being developed and the education
students are also learning through the discussions of pedagogy and development of these materials.

In the remainder of this paper we explain how we implemented this model, describe in greater detail the
different components indicated above, describe the manners in which we assessed the success of the model, and
draw conclusions as based on the results of the assessment in the Fall Semester.

Implementation

All of the activities described in this paper were implemented in the environment of a small (about 1500
full-time students), somewhat selective, liberal arts based university. Upper-level courses in both mathematics and
education, the two subjects studied, are small (10-15 students large), as are even lower-level courses offered out-of-
sequence. This has clear advantages in teaching, as well as disadvantages when it comes to assessing the impact
that the methods we discuss here actually have.

We are implementing these uses of the Web in the Fall semester 1999 in a second semester calculus
course in the mathematics department. In the Spring semester 2000, we apply the same methods to the "Secondary
Methods" education course.

Day-to-Day Web Use

The "day-to-day" use of the Web to respond to students' confusion regarding the material covered in class
was accomplished through a classroom exercise resembling the "Minute Paper" or "Muddiest Point" techniques in
"Classroom Assessment Techniques" (Angelo & Cross, 1993). At the end of each class period, approximately five
minutes were reserved for student consideration of the material covered during the preceding hour. In this time,
students answered the questions "what was the central theme of this course period?" and "what about this was least
clear?" in a couple of sentences each. These were collected by the instructor, who then reviewed the comments
and, if appropriate, articulated a response. Appropriateness in this case was defined by whether a significant
number of the students in the class expressed confusion on the same topic or posed questions that were of
sufficiently general application as to merit a response.

The response articulated was implemented as a Web page designed to elucidate the material and resolve
questions and confusions. The materials developed were limited to a single Web page per day.

Videotaping and Web Materials

Three classroom sessions were selected in advance of the commencement of the semester as being on
topics that would prove especially difficult for the students taking the course. These class periods were videotaped
by the education students involved in the project using a digital video camera. The faculty and education students
then watched the video later in the day and assessed the effectiveness of the class presentation, degree to which the
instructor accurately adjusted to the classroom dynamics, and areas that were particularly confusing to the students
in the class. As a vehicle for this assessment, a rubric was cooperatively developed by the students and faculty to
evaluate the instructor's teaching method, effectiveness of questioning, assessment of students' understanding, and
class organization. This rubric appears in an appendix.

Following this discussion and assessment, the faculty and education students determined what type of
Web-based materials would be appropriate to resolve those issues left 'hanging' by the classroom presentation.
These include demonstrations, excerpted sections of the videotape with further explanation and references, text and
graphical instructional pages, and links to other on-line resources providing background information for the topic
being covered. The outline of the mathematics and substance for the materials was determined in advance by the
faculty and education students, collaboratively, and the actual pages were then developed independently by the
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education students. Excerpts from the video were obtained through video editing Final Cut, MotoDV and included
in the resulting Web pages, and the resulting materials reviewed and posted by the faculty member on a class
website.

The technology skills of math education students were gained in Education 187 "Instructional
Technology" and the development of this project allowed these students to apply these skills. In addition, these
students were able to analyze the role and impact of interactive video and website development. This approach
supports the Davis' (1999) principles for technology in teacher education including "...students should experience
innovative technology-supported learning environments in their teacher education programmes" (p.9).
Assessment

This project has three primary goals, namely, 1. the promotion of the education students' awareness of
effective teaching strategies and the use of reflection and assessment in the development of the same, 2. the
improvement of student learning in the courses involved with the project as a result of the use of the Web to
provide "immediate" feedback on difficulties encountered with specific course topics, and 3. the enhancement of
faculty teaching expertise. In order to determine the degree to which these were accomplished in thecourse of our
work, several assessment instruments were employed. However, the assessment of any of these objectives is
constrained by their inherently qualitative nature and by the small size of the classes and small numbers of
education students involved, and we are therefore constrained to use generally indirect measures to determine our
success in accomplishing them.

To assess the first objective, the education students each developed in the course of the semester a
portfolio describing their thought processes at the beginning and end of the program, as well as their reflections on
the nature and success of each of the videotaping sessions. They were provided with a number of prompts to which
to respond, as described in the appendix. Samples of the students' entries are also included in the appendix. The
reflections in these by the students and the assessment of the cooperating faculty members of the students'
portfolios and their overall development were used to obtain a picture of the effectiveness of the project in
accomplishing this goal.

The second objective is assessed through three different measures. First, we surveyed the students in the
course at the beginning, middle, and end of the semester to determine their perception of the effectiveness of the
course and usefulness of the Web materials produced. Second, the quality and relevance of the materials were
evaluated by the faculty in the program at the end of the semester, taking advantage of knowledge of the difficulties
students experienced on homework and exams. And third, we monitored the number of "hits" on the course Web
throughout the semester, assuming that a continued or increased number of hits as the semester wears on is
indicative of perceived value by the students. It is worth observing that while we would prefer to have more direct
measures of the success of this objective it is difficult to obtain them in the face of the size and number of courses
taught at a small university. We have therefore instead used these measures of effectiveness of the materials rather
than try to directly assess the improvement of student learning.

The third objective suffers from the same difficulty in assessment as the second, for the "faculty teaching
expertise" that we seek to enhance should be measured in improved student learning. As noted above, this is
notoriously difficult to determine, and we therefore used subjective assessment measures to determine its success,
having the education students and faculty member who was not teaching the course evaluate the instructor's
effectiveness using the rubric developed for the examination of the videotapes and through general reflection

While it is not within the scope of this paper, the most significant assessment of the impact the program
had on the education students involved in it would be an examination of those students' teaching (ideally, as
compared with the teaching of students who did not participate in the project). This is again complicated by the
small numbers of students in the program, but we look forward to being able to evaluate this as the education
students do begin their student teaching, at the end of their university experience.

Results

Because we are still in the process of the first semester in which this program has been implemented, final
results of the assessment program described above are not available here and will be presented in the conference
presentation. In particular, the portfolios and faculty teaching assessments require the comparison of results from
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the beginning and end of the semester, the latter of which are not available at this time. Similarly, complete results
from the surveys of the students in the class are unavailable. We are, however, able to provide the preliminary
results from the midterm surveys, which are positive.

In the midterm survey given in the Fall, students in the calculus class indicated that they were using the
Web materials (with a majority indicating periodic or regular use, and 100% using it when an assignment referring
to the materials was given). When asked to rate the usefulness of the materials on a four point scale (0 not useful,
4immensely useful), they gave an average score of 3.13 (with some students simply responding "yes," it was
useful; no students gave the materials less than a 2 in their rating). In addition, the number of hits on the Web
pages did increase in successive months of the semester, from an approximate rate of 3 hits per student in the class
in the first two months to approximately twice that in the last two. This provides some material evidence that the
Web pages were perceived as useful by the students in the class. Further results will be presented at the SITE
Conference on 1999 Fall Semester work as well as initial research in 2000 Spring Semester.

Conclusions

We have discussed an innovative, collaborative method of using the Web to respond directly to students'
misperceptions and confusions as they take a class. The course primarily discussed here was second-semester
calculus, but the method is applicable to courses in any area, and will be implemented for a course in secondary
education methods in the Spring semester. In this method, we have involved faculty from our education and
mathematics departments, as well as students who are studying mathematics education, to promote
interedisicplinary learning at multiple levelsin the classroom, by the education students involved in the program,
and by the faculty teaching and observing the class. Results from assessment of the method provide evidence that
these goals are accomplished. The use of the Web is in integral to the project, as it provides a universally accessible
medium that admits frequent addition of material on a regular basis and is an instructional technology to which the
education students will both have access and be expected to use as they begin their careers.

Appendix

Assessment rubrics and materials are included in this appendix. The assessment rubric used to evaluate
the videotaped class sessions is shown in figure 1, below. Note that the columns 3-5 headed in the second row
should follow to the right of the first row in the table.

2
Teaching Method
Appropriate to Material

No method, or no formal
connection between
teaching material being
covered

One evident tie of teaching
method with content

Demonstrated Effective
Use of Basic Questioning

No questions asked of
students

Few questions asked of
25% of students or topics

Effective Assessment of
Students' Understanding
of Class Material

No method of assessment Limited assessment of
limited number of students

Effective Class
Organization
(Intro /Overview,
Sequence of
Instruction. Closure)

No effective organization A minority of the lesson
structure is present: one
element present and good,
or more present but all
abysmal

3 4 5

Two evident ties of
teaching method with
content

Three evident ties of
teaching method with
content

Several (four) evident ties
of teaching method with
content

Some questions asked of Similar, 75% Questions asked of all
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50% of students or topics students and topics
Some assessment of a
select few students

Many assessments of a
majority of students

Many assessments of all
students

Mixed or muddled lesson
organization: all three
elements present but
ineffective

Majority of lesson
structure is present and
effective: at least two
elements present and
good, or three present but
not fully effective

Effective organization
including clear
intro/overview, good
sequence of instruction and
effective closure.

Figure 1: Class assessment rubric.
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The prompts given to the education students at the beginning and end of the semester, and following each of the
videotape discussion sessions, are shown in figure 2.

At the beginning and end of the semester.
1. Outline a classroom lesson on a topic that you would expect to

teach following your graduation or when you student teach.
2. Comment on the terms "assessment" and "feedback." In

particular, what do you think about when you hear them? And
how do you think they are related to teaching and the classroom.

After each videotape session:
3. Comment on what happened in the classroom and in the

development of the supporting materials.
4. What key ideas or issues relating to teaching did you encounter in

the course of working on this part of the project?

Figure 2: Portfolio prompt questions.

Samples of student responses to these prompts (prompt #2) are shown in figure 3.

Student response one"When somebody uses the terms assessment and feedback, the
first thing that comes to mind is tests! However, there are many other things that are
involved with assessment and feedback besides just testing. First of all, assessment

Student response two"Feedback The information students give to their teachers
that convey confusion, also not always verbal. Things as simple as seating
arrangements or eye contact can be considered a type of feedback for a
teacher...Assessment and feedback work together in a well-organized classroom".

Everyone was really well engaged in the discussion and
development of the rubric. It looked like everyone had fun with it, too".

Figure 3: Sample portfolio responses.
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Abstract. Many elementary teachers lack the conceptual knowledge needed to teach even basic
mathematics and thus create a weak link in the chain of mathematical learning for students. The socio-
cultural theory of L. S. Vygotsky may offer direction for the design ofa concept-building mathematics
experience for elementary education majors. Computer supported collaborative workspaces havethe

potential to support and enhance a Vygotskian approach to mathematics learning for the preservice teacher.

Introduction
According to Rech, Hartzell and Stephens (1993), the quality of teaching at the elementary level is a

critical factor in the future mathematical success of the student. High quality teaching is heavily dependent
upon the teacher's conceptual knowledge of the subject matter. Yet, when questioned, many elementary
teachers communicated a sense of personal inadequacy in mathematics anda lack of confidence in teaching
mathematics (National Science Board, 1998; Stepans et al., 1986). Simon (1993) demonstrated that
teachers who do not possess solid understanding of mathematics principles are unable to teach mathematics
in a conceptual manner. Simply stated, teachers cannot teach what they do not know.

The competency of those who are teaching elementary level mathematics has long been questioned
(e.g., Ball, 1990; Glennon, 1949; Zaslaysky & Peled 1996). Research conducted by Zazkis and Campbell
(1994) supported the general claim that elementary teachers often possess weak content knowledge and
insufficient conceptual understanding to teach mathematics. Rech, et al. (1993) found that "...the
elementary education majors possessed deficits in almost all knowledge and content areas in mathematics
when compared with the established norms of a general college population" (p.144)

Assuring that prospective teachers possess adequate mathematical content knowledge should be a
primary concern in the preparation of elementary teachers; however, it is an area that continues to be
neglected. Monroe (1984) stated that the mathematics education of elementary level teachers was less than
adequate "by whatever standards are used" (p.23). Leitzel (1991) contended that the weakest link in the
nation's system of mathematical education is the mathematical preparation of elementary teachers.
According to Hungerford (1994) colleges and universities have done little to remedy the weak backgrounds
of pre-service elementary teachers; "...the lack of attention being paid to mathematics courses for
prospective elementary teachers is astounding" (p.16).

Teachers' mathematics backgrounds are particularly relevant in light of the research that suggests that
a teacher's academic background (i.e., both level of courses and grades earned) may be related to student
outcomes (Chaney, 1994). In 1985 Galambos et al. documented a pattern that reflected the absence of
college-level mathematics requirements in teacher education. There is no indication that this pattern has
changed.

Courses in pedagogy influence how preservice teachers think about teaching and learning
mathematics. Yet, merely training teachers in mathematics pedagogy appears to be insufficient. Chaney
(1994) demonstrated that mathematics pedagogy provided added benefit for teachers only if they possessed
adequate mathematical concepts. Attending to mathematics teachers' beliefs about teaching and learning is
unproductive when content knowledge is absent (Brown, Cooney, & Jones, 1990).
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Advocacy for a combined content-methods mathematics course in teacher education is not new (Berg
et al., 1993; Glennon, 1949; Heddens & Speer, 1997; Reisman, 1981). The combined content-methods
approach recognizes that pre-service teachers may not possess the content knowledge and understanding
needed to competently teach elementary mathematics. This curriculum emphasizes: (a) building a strong
background understanding of mathematics concepts that are taught in elementary programs; (b) addressing
and replacing misconceptions with conceptually sound knowledge; (c) reducing teacher anxiety and
increasing teachers' self efficacy relative to doing mathematics; (d) demonstrating appropriate mathematics
strategies and methodologies.

Conceptual learning differs from the rote memorization of facts and procedures (Bruner, 1963, 1971;
Piaget, 1971; Vygotsky, 1986, 1997) that have historically characterized most mathematics classrooms
(Cuban, 1984). Assuring conceptual knowledge' of mathematics in preservice teachers will require change
in both the learning environment and the emphasis of instruction. The socio-cultural-historical theory of
learning proposed by Vygotsky (1986) may offer guidance in creating such an environment.

Vygtosky's Theory of Socio-Cultural Learning
Vygotsky's sociocultural theory of mind serves as a middle ground between formalism and

constructivism (Kozulin, 1990; Minick, 1987; Moll, 1990; Vygotsky, 1986; Wertsch, 1985). According to
his theory, concept formation is a dynamic interaction between the concrete and the abstract; neither
requiring the learner to reinvent information, nor expecting the learner to conceptualize abstractions
without first engaging in concrete activities that support the formation of mental models. Vygotsky
proposed several key ideas relative to the levels and types of concept formation, the role of language and
collaborative interchange in concept development, and the characteristics of an instructional environment
that guide and promote mature concept development Vygotsky viewed the ultimate goal of the learning
process as the development of mature concepts which are characterized by the learner's ability to: (a)
synthesize abstracted traits; (b) use the resulting abstract synthesis as his or her main instrument of thought
without any reference to the related concrete situation or impression; and (c) use the concept in the
formation of judgments and new concepts.

Language.
Language, and its relationship to thinking, is at the foundation of Vygotsky's theory (Vygotsky,

1986). Vygotsky regarded language as an indispensable requisite for all intellectual growth. He asserted
that the merging of practical intelligence with a system of symbolic tepivsentation (i.e., speech) is the
essence of complex behavior (Vygotsky,1978). According to Vygotsky ( 1978), speech has a particular
organizing function that when combined with tool use produces fundamentally new forms of behavior.
"...the most significant moment in the course of intellectual development... occurs when speech and
practical activity, two previously completely independent lines of development, converge" (p. 24).

Two critical observations Vygotsky (1986) made were that (1) the role of speech is equally as
important as the role of action in attaining a solution to a problem; and (2) as situations demand more
complex and indirect actions in finding a solution to a problem, speech plays a more important role in the
solution process as a whole. Speech acts to organize, unify, and integrate the many aspects of the learner's
behavior including perception, memory, and problem solving (Vygotsky, 1978).

According to Vygotsky (1986), individuals negotiate meaning and form concepts through verbal
interactions with more knowledgeable others and by sensory interaction with their culture. Vygotsky noted
that the mere association of words with objects does not imply concept formation and suggested that
concept formation begins with a problem that cannot be solved other than through the formation of new
concepts. The attainment of a true concept results in a qualitatively new type of thinking, therefore, merely
quantitatively increasing associations of words with physical objects would never culminate in the higher
intellectual activity that is characteristic of mature concepts (Markova, 1979; Moll, 1990; Ratner, 1991,
1997; Vygotsky, 1986; Wersch, 1985). Vygotsky considered the defining moment in concept formation to
be the point at which the learner is able to use words as functional tools to facilitate communication,
understanding, and problem-solving.

Spontaneous and Scientific Concepts
According to Vygotsky (1978, 1986), conceptual development does not occur in a vacuum, nor does

it develop in a one dimensional, linear fashion. Vygotsky viewed concept formation as a multidimensional
interaction of the child's social, historical, and cultural development This view of concept development
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considers the concept itself as being qualitatively more than the sum of its individual parts (Davydov, 1990;
Forman, Minick, & Stone, 1993; Ratner, 1991; Vygotsky, 1986; Wersch, 1985).

Vygotsky identified two different types of concepts; spontaneous concepts and scientific concepts.
Spontaneous concepts are those concepts that result from an individual's everyday exposure to his or her
social and cultural environment. Typically, spontaneous concepts are unsystematic and highly
contextualized. Scientific concepts are grounded in mediated instruction and are characterized by
hierarchical, logical organization. Vygotsky (1986) proposed that spontaneous and scientific concepts differ
in their development as well as their functioning, yet these two variants of the concept formation process
influence each other's evolution.

Zone of Proximal Development
Vygotsky (1978) identified a construct that he called the Zone of Proximal Development (ZPD)

which he defined as: "...the distance between the actual developmental level as determined by independent
problem solving and the level of potential development as determined through problem solving under adult
guidance or in collaboration with more capable peers" (p.86). An individual's movement through his or
her ZPD requires a mediated environment that is rich in verbal communication and collaborative exchange
(Forman, Minick, & Stone, 1993; Vygotsky, 1997; Wersch, 1985). Vygotsky (1986) stated that an
individual's progression through his or her ZPD involves intelligent, conscious imitation, which requires an
understanding of the field structure and the relationship between objects. Vygotsky and Luria (1993)
cautioned that imitative behavior that is characteristic of movement through the ZPD should not be
confused with automatic imitative behavior that shows no signs of conscious understanding.

Implications for Instruction
Vygotsky's theory clearly supports a mediated, collaborative classroom environment. He asserted that

every function in cultural development appears twice "...first on a social, and later on the psychological
level; first between people as a interpsychological category, and then inside [the learner] as an
intrapsychological category" (Vygotsky, 1978, p. 128). According to John-Steiner and Souberman
(afterward in Vygotsky, 1978) teaching represents "...the socially elaborated contents of human knowledge
and the cognitive strategies necessary for their internalization" (p. 131). In the socio-cultural context,
instruction should be configured not so "...that the student is educated, but that the student educates
himself' (Vygotsky, 1997, p. 48) through the social negotiation of meaning.

Socio-cultural learning environments stand in contrast to traditional classrooms that historically have
made little use of socially shared tacks (e g , Cuban, 1984; Ferraro, Rogers, & Geisler, 1995; Wilson,
Teslow, & Taylor, 1993). Learning environments consonant with Vygotsky's theories facilitate
collaborative student engagement in: (a) the active process of sense-making through meaning negotiation;
(b) the use of shared signs (i.e., speech) and symbols (i.e., objects of meaning iepesentation) as cognitive
tools for concept development; and (c) multidisciplinary approaches to learning that reflect the learners'
social, cultural, and historical context.

As an instructional tool, computer-mediated-communications (CMC) have the potential to support the
learning outcomes, orientation of instruction, and underlying pedagogical beliefs espoused by Vygotsky.
Jonassen (1996) classified CMC as a knowledge representation tool that may engage learners in critical
thinking activities. He contended that CMC has the potential to involve students in active learning that is
built on cumulative (i.e., prior) knowledge, and supports integrative, reflective, goal-directed and
intentional learning. Current technologies, particularly functions of computer networking, provide a
mechanism for developing collaborative environments that transcend the constraints of time and place, thus
increasing students' opportunity for socially supported engagement (Laffey, Tupper, Musser, & Wedman,
1998; Reeves & Reeves, 1997; Riel, 1996; Romiszawski, 1997).

Computer Supported Collaborative Learning Space Environments
Computer -mediated communications (CMC) is a general term used to define any form of organized

interaction between individuals or groups of individuals that facilitates and/or mediates communication
utilizing computers or computer networks as the medium of communication (Hawisher, 1995; Kahn, 1997;
Jonassen, 1996). CMC includes both synchronous and asynchronous communications. Synchronous
communications are those that take place when two or more individuals communicate simultaneously over
a network (real time), while asynchronous communications are those that do not require concurrent
communication (delayed).
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. CMC is a medium that can be used to more closely link collaborative classroom experiences with
formal instruction to create a highly student-centered learning environment (Jonassen ,1997; Riel 1996).
Results from studies suggest that teachers in a traditional classroom contribute up to 80% of the total in-
class verbal interaction, whereas the total verbal contribution of teachers using CMC conferencing
techniques is between 10-15% (Reil & Harisim, 1994). Curtis and Reynolds (1997) found that CMC-based
interchanges resulted in more frequent exchanges between students and Scott (1993) demonstrated that
students working within groups via CMC participated more evenly, and accomplished more task objectives
than students not using CMC. CMC mediated environments often decrease the students' inhibitions to
participate, while increasing student opportunity for reflection and knowledge accommodation
(Romiszowski, 1997). This medium also offers a high degree of learner control, a wide range of
environmental flexibility, and global connective capablities (Kahn , 1997; Relan, & Ciillani, 1997) that
support both formal and informal learning environments at various interactivity levels (Hiltz, 1994;
McLellan, 1997).

Groupware
Groupware is any type of software designed for group work or group communication. Organizational

and educational trends toward increased teamwork along with the availability of networked computing has
stimulated the development of computer supported collaborative workspaces (CSCW) as a means of
supporting tasks carried out by participants who are physically or temporally removed from one another
(Brinck, 1998; ter Hofte, 1998). Ter Hofte (1998) used the term "working apart together" to describe the
essential nature and function of groupware systems. The types of groupware that may prove beneficial to
preservice mathematics learning include: (a) computer conferencing systems; (b) chat systems; (c)
workflow management systems; (d) shared whiteboards; and (e) coauthoring systems.

Computer conferencing systems (also known as bulletin boards) can be regarded as a variation of
electronic mail (e-mail) systems. E-mail systems support interpersonal communication by sending
computer mediated messages to one or more persons, while computer conferencing systems facilitate the
transference of messages to a uniquely identified address or location on the Internet (URL) that is devoted
to discussion about a particular topic. Conference areas allow individuals to post and to retrieve
information just like they might do on a physical bulletin board. Early conferencing systems supported only
textual messages, but more current systems support the posting of other types of documents, such as word
processor documents, spreadsheets, graphics, etc.

Chat systems provide synchronous text-based computer-mediated discussions between and among
users. Discussions take place through rapid turn-taking entries by the participants. These systems provide
"live" interpersonal communication for an arbitrary number of users who are connected via personal
computers.

Workflow management systems have embedded workflow cooperative tasks models that coordinate
actions by users by prompting the appropriate contributions at the right time by the right users. These
systems can also track the progress of the workflow, provide relevant information required for particular
actions, and block information entries that contradict the model.

Shared whiteboard. systems are designed to support text, drawings, and sketches that are often shared
at formal and informal meetings to point out particular items, clarify relations, or illustrate complex
materials. Objects drawn in the shared workspace. are immediately visible for all other users. These
systems allow all participants to simultaneously refer to such illustrations, propose modifications by
altering the drawing, or add textual comments. Entries can be saved and distributed.

Co-authoring systems are designed to support multiple users in creating a collaborative document.
Classes of co-authoring systems support diverse phases of the writing process such as brainstorming,
researching, planning, writing, reviewing, editing, and revising. These systems facilitate communication
between authors and assist the coordination of the authoring process.

Conclusions
There is a documented need for mathematics reform in preservice teacher education. A long history

of research suggests that preservice mathematics methods courses must play a dual role of delivering
content in the form of reeducating students in basic mathematical concepts, and instructing students in
pedagogy that supports concept development. Vygotsky's theory appears to offer guidance for structuring a
learning environment that facilitates conceptual learning and promotes sound methodological strategies.
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Among the roadblocks that may hinder change in preservice mathematics reform are internal
institutional issues such as curriculum reform and time limitations imposed by course instructional hours,
scheduling conflicts, required field work, and the length of school terms. Applying Vygotsky's theories to
the application of computer-mediated collaborative workspace may help ameliorate problems associated
with these issues. Computer supported collaborative work-spaces have the potential to add dimension to an
existing course by extending facilitated collaboration beyond the limited classroom hours. The
combination of synchronous and asynchronous communication options opens the possibility for student
engagement in collaborative enterprises that otherwise may have been impossible because of distance and
scheduling conflicts.

Networked technology and various categories of groupware systems offer a new spectrum of tools
that, with proper implementation, may prove useful in preservice mathematics experiences. The inherent
communicative nature of these tools is compatible with the underlying tenets of both Vygotsky's theories
and the goals of the content/methods curriculum. As a tool, computer supported collaborative workspace
has the potential to incorporate the extended boundaries of the student's social and educational milieu, thus
providing an environment conducive to the application and generalization of knowledge.
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Implementing Technology in Secondary Science and Mathematics
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Abstract: The purpose of this paper is to examine and describe the change process as
technology is implemented in secondary science and mathematics classrooms. This paper
synthesizes the results from two studies, a qualitative study on implementation concerns of
secondary science teachers resulting from the use telecommunications (Slough, 1998) and a
quantitative study on technology implementation concerns of middle and secondary
mathematics teachers and potential teachers of first-year algebra in North Carolina (Chamblee,
1996). The Concerns Based Adoption Model (CBAM) provided a theoretical framework for
both studies.

This paper synthesizes the findings from two studies, a qualitative study on implementation concerns of
secondary science teachers resulting from the use telecommunications (Slough, 1998) and a quantitative study on
technology implementation concerns of middle and secondary mathematics teachers and potential teachers of
first-year algebra in North Carolina (Chamblee, 1996). Both studies used a Concerns-Based Adoption Model
approach to frame data collection and analysis. Commonalties and differences from separate content areas
math and scienceand separate methodologiesqualitative and quantitative, were analyzed in an effort to
triangulate data and findings. Prom this approach, commonalties that exist across content and methodologies are
strengthened and differences that exist point to possible content specific idocentricities or need for additional
corroboration. Thus, by comparing and contrasting the findings from the two studies, a more complete picture on
implementation concerns for math and science teachers with respect to technology emerges, including a more
holistic picture of the technology-based change process.

Theoretical Framework

The implementation of technology will require change in the classroom. One model that has been utilized to
inform the decision-making process when innovations are introduced is the Concerns-Based Adoption Model
(CBAM). CBAM states that successful implementation of an innovation is a process not an event (Hall & Hord,
1987; Fullan, 1991; Friel & Gann, 1993), developmental in nature (Hall & Hord, 1987), and a highly personal
experience for each teacher (Hall & Hord, 1987). Thus, for any change to be successful the concerns of each
individual teacher must be considered as important and their individual needs must be met.

Hall, George & Rutherford (1986) define concerns as the feelings, thoughts, and reactions that individuals have
about an innovation or a new program that touches their lives. To measure these concerns, Hall, Wallace &
Dossett (1973) developed the Stages of Concern Questionnaire (SoCQ). Initial research on the instrument
construction verified the existence of seven stages in the concerns process: awareness, informational, personal,
management, collaboration, and refocusing, with internal reliability for individual scales ranging from r-3.64 to
r.-3.83 (Hall, George & Rutherford, 1986).

Bailey and Palsha (1992) proposed a modification of the CBAM model to include only five stages: awareness,
personal, management, impact, and collaboration. The awareness stage is characterized by teachers having little
knowledge about the innovation but interested in learning more about it. The personal stage is characterized by
teachers who are primarily concerned with how the innovation will affect them, with a specific focus on required
changes in roles and tasks. The management stage is characterized by teachers who are primarily concerned with
time management, organization, and prioritization of responsibilities. The impact stage is characterized by
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teachers who focus on the effects of the innovation on learners and how this innovation can be used to change or
improve learning. The collaboration stage is characterized by teachers who focus on working with others to
implement the innovation as well as sharing information about the innovation with other teachers.

Data Sources

Data for the qualitative study (Slough, 1998) of secondary science teachers' concerns was collected through
open-ended ethnographic interviews of twenty-four high school science teachers who had been in an emerging
telecommunications-rich environment for at least two and one-half years as of the Fall Semester, 1997. The
Bailey and Palsha (1992) five stage model was utilized to frame the analysis. The emerging telecommunications-
rich environment was defined as including a district-wide infrastructure that had been in place for two and one-
half years that included 24 network connections in each classroom, full Internet access from the network, four
computers per classroom (teachers were required to attend training before receiving), and a variety of mandated
and optional professional development opportunities within and outside the district. The teachers were from a
single, large, suburban school district with five high schools. Teachers in the study were well distributed across
each of the five high schools, across typical high school science courses, across all levels of educational
attainment, and included fairly new to veteran teachers. Research questions focused on teacher and students' use
of telecommunications, barriers and supporting conditions to telecommunications implementation, and the effect
of telecommunications on the teaching and learning of science.

Data for the quantitative study (Chamblee, 1996) on first-year algebra teachers' concerns was collected using the
Stages of Concern Questionnaire (SoCQ) by Hall, Wallace & Dossett (1973). A total of 132 middle and
secondary mathematics faculties from 72 North Carolina school districts were mailed the Stages of Concern
Questionnaire (SoCQ) and a teacher demographic data questionnaire during March, 1995. The SoCQ is a 35
item Likert -scale instrument that contains seven levels of responses. The teacher demographic data questionnaire
consisted of 19 questions designed to obtain information in three areas: (1) standard demographic data such as
age, gender, degree, years of experience, (2) teachers' school experiences such as current teaching load, and (3)
teachers' technological experiences such as computer workshop experience, graphing calculator workshop
experience, and in-class technology teaching experience. A total of six hundred and sixty surveys were mailed.
Two hundred and sixty-six surveys were returned, with one hundred and fifty-one surveys from current teachers
of first-year algebra.

Initially, SoCQ mean stage scores and total concerns score were calculated for each respective subgroup. To
determine overall concerns, two analyses were performed. First, mean stage scores were converted to percentile
ranks based on the norms presented by Hall, George & Rutherford (1986). Second, a peak stage score analysis
was calculated. Peak stage scores are defined as the stage at which an individual has his or her highest percentile
rank score on the seven concern stages (Hall, George & Rutherford, 1986). Analysis of variance (ANOVA) was
utilized to determine differences for each mean stage score and overall total concern scores. Step-wise regression
analysis was utilized to determine possible predictors for each of the seven stage scores and total concerns score.

Results

Results of the qualitative study (Slough, 1998) of secondary science teachers' concerns are summarized in Table
1. The data were analyzed vertically and horizontally; more succinctly, each interview was read in its entirety
and then across each individual question. The data were grouped into CBAM stages by specifically looking for
particularly enlightening themes, recurring ideas or language, and tacit descriptions of the social culture of the
emerging telecommunications-rich high school science classroom. These themes evolved into the unique
descriptors found in the summative descriptors.

Summative Five Stages of Concerns Descriptors

Stage

wareness
=4)

Descriptor

'tile knowledge of telecommunications beyond its existence
naware of how to use telecommunications
naware of barriers and supporting conditions for implementation
naware of the tential for telecommunications to change science teaching and
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ersonal

earmn

ome knowledge of telecommunications, mostly of others' use
ome knowledge of the mechanics of telecommunications use

concerns dealt with how telecommunications would affect them-their time, their
nergy, their curriculum
aguely aware that telecommunications could change science teaching and learning, just

of sure of the mechanism
anagement ome, if not frequent, personal use of telecommunications

'ttle student use, often restricted
sed designated local resources to learn telecommunications
oncerns dealt with how telecommunications would affect their system of management
ver time, students, and curriculum

1' concerns dealt with students access to inappropriate material and support from
'i'stration

naware of the potential of telecommunications to change science teaching and learning,
ple6mes in open opposition to it

II

'pact
=4)

ent personal/professional use of telecommunications
equired/allowed some student use in and out of class

telecommunications learning resource was local teachers and occasionally
nts

concerns involved how telecommunications would impact student learning
ware of potential for telecommunications to change science teaching and leaning and
ad o nl embraced it

ollaboration rue inventors with telecommunications
=4) up use of telecommunications

equired and independent student use of telecommunications
sed students, local resources, and "off-site" professionals as resources

ed as resource for local and "off-site" teachers
concerns were not with mechanics of telecommunications, but with how to

the momentum
ware of the potential of telecommunications to change science teaching and learning
d spreading the message to all who will listen
*o ed the challen e that change brin s

Table 1: Summative Five Stages of Concerns Descriptors

Results of the quantitative study (Chamblee, 1996) of secondary mathematics teachers also generally supported
the CBAM model. Teachers had their highest concerns at the lowest developmental levels (awareness and
information) and their lowest concerns at the higher developmental levels (consequence and collaboration).
Several reported teacher characteristics portrayed teachers of first-year algebra as very involved with integrating
graphing calculator technology into first-year algebra. First, over 50% of the teachers rated themselves as better
than novices at using the graphing calculator. Second, most teachers stated that they have been using graphing
calculators in their classrooms for several years. Third, approximately 81% said that they had been exposed to
some in-service training. But when teachers' SoCQ concerns profile was compared with the self-reported teacher
characteristics, there was a contradiction between self-perceptions and actuality. Teachers considered
themselves to be competent users of the graphing calculator. The overall concerns profile analysis generated a
non-user profile. Only 52% had progressed beyond the awareness and information concerns stage (considered
awareness stage in the Bailey and Palsha Model), which are the lowest developmental implementation stages.

ANOVA results demonstrated that female teachers of first-year algebra had lower overall concerns than male
teachers of first-year algebra, which means female teachers were more likely to implement graphing calculators
than male teachers. Personal concerns differed according to age. Specifically, teachers in their twenties and
forties had lower concerns related to graphing calculator proficiency for the lowest stages. Gender, age, graphing
calculator expertise rating and graphing calculator training had a significant relationship to teacher concerns. All
significant relationships were at the lower stages, awareness, information, and personal (awareness and personal
stages for the Bailey and Palsha Model). No significant characteristics for higher level concerns were found.
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Stepwise multiple regression analysis found few predictions of the seven stage scores and total concerns score.
At the awareness stage, graphing calculator training, graphing calculator expertise rating, gender and years of
teaching experience were significant predictors. At the information stage, graphing calculator expertise rating,
number of years using microcomputers in mathematics teaching and years of teaching experience, were
significant predictors. For the personal stage, graphing calculator expertise rating was the only significant
predictor. For the refocusing stage, graphing calculator access was the only significant predictor. Finally, for
total concerns score, only graphing calculator expertise rating was a significant predictor.

Finally, the results of the study indicate that teachers of first-year algebra were beginning to focus more on the
universal consequences of graphing calculators in the classroom. Many teachers reported that they are becoming
proficient at using graphing calculators on their own and not through in-service. But, in actuality, all of the
teachers in this study were still focused on the lowest levels of concern (awareness, information, and personal).

Conclusions

These studies show that: (a) math and science teachers can implement technology if they are given adequate
resources, including copious access to the technology and a variety of formal and informal professional
development; (b) even with access to the new technology and a variety of formal and informal professional
development, most math and science teachers had not progressed to adoption; (c) the Concerns-Based Adoption
Model (CBAM) addresses many of the perceived concerns of the teachers; (d) gender, age, and technology
experience/expertise were not generally found to be adoption determinants; (e) the non-static nature of
technology adds to teacher concerns; (f) teachers can and do decide not to implement technology in their
classroom; and (g) a new change model that incorporates changing innovations and non-progress to adoption
needs to be explored (Slough, 1999).

Science teachers were able to implement telecommunications at the two highest stages. They were able to
accomplish this in a relatively short period of time when the combination of available technology, formal, and
informal professional development were all in place. Of these three, the formal professional development was
considered least important to teachers who had begun to successfully implement telecommunications. To a lesser
degree, math teachers were able to implement graphing calculators at the highest levels (a smaller percentage of
math teachers reached these stages). This is possibly due to the fact that less informal professional development
opportunities were present. Regrettably, the majority of math and science teachers had not begun to implement
technology after several years. According to the concerns-based approach, this is due to the fact that their
individual concerns had not been met. But, both studies identified individuals who had made the decision not to
adopt. This is significant because, CBAM does not factor in an individual's decision to not adopt.

Although age, gender, and technological proficiency were found to be statistically significant for mathematics
teachers when using graphing calculators, the significance was only found at lower stages and were not found to
be predictors at higher stages (Chamblee, 1996). In other words, males and females, young and old, and novice
and expert alike were able to implement technology in both studies. In fact, Slough (1998) reported that female
teachers comprised half of the teachers at the highest stages of adoption and that all of the teachers at the highest
stages had taught at least six years. Technological proficiency was over reported by mathematics teachers based
upon the CBAM model (Chamblee, 1996) and at least two of the four science teachers at the impact stage were
relative newcomers to technology who had found telecommunications to be worth the effort to learn.

In general, the basic assumptions of CBAM were supported by both studies (Chamblee, 1996; Slough, 1998).
Teachers at different stages of the implementation of technology did have different concerns; and further,
teachers at similar stages of implementations did have similar concerns. Two observed shortcoming of CBAM as
a theoretical framework for each study were CBAM assumes a static innovation and all individuals progress to
adoption. Technology is not a static innovation. Teachers at all levels reported that one of the difficulties with
implementing technology was that it was always changing, in effect constantly creating a new innovation. Also,
CBAM assumes a general linear model where teachers go though each successive stage. There are no
accommodations for individuals who reject an innovation. Both studies identified individuals who had, or
appeared to have, rejected technology and were not progressing to adoption. The need for a change model that
addresses the challenge of implementing changing innovations and non-progression to adoption must be
explored.
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Significant findings found in the study of science teachers (Slough, 1998) not found in the study of math teachers
include: (a) administrative support, particularly from the building principal, is perceived by teachers to be a
critical factor; (b) safety concerns, particularly related to wires and cables in and around sinks in science labs
presents an additional safety concern in science classrooms that may not be present in other classrooms; and (c)
loss of precious laboratory space, particularly related to loss of bench top space presents an additional concern
in science classrooms that may not be present in other classrooms. Teachers perceived the support by the
principal to be a primary concern. Where teachers perceived the principal to be supportive of
telecommunications, teachers were more likely to adopt. Where perceived support was lacking, teachers were
less likely to adopt. Lack of corroboration in the math teachers and graphing calculators (Chamblee, 1996) is
primarily an artifact of methodology. The interview protocol (Slough, 1998) allowed teachers to express
concerns about the principal that were not available on the quantitative SoCQ Instrument. But, when fourth and
fifth grade mathematics teachers were interviewed about technology implementation concerns using a interview
protocol modified from Slough (1998), they did perceive the principal as the primary change agent (Slough it
Chamblee, in press)

Bringing telecommunications into the science classroom creates special problems dealing with loss of laboratory
space and safety concerns. The science classrooms in this study, and in many other schools, typically had a
lecture area and a lab area. Computers were typically placed in the laboratory area. Teachers in this study who
were implementing telecommunications had done so at the expense of laboratory space and/or laboratory
efficiency. Computers were either taking up permanent bench space or, where computer carts were used, they
were constantly being moved for labs to occur. Neither situation is satisfactory in the long-term. Also related are
the safety concerns associated with running electric wires in and around sinks and gas jets. If
telecommunications are to become integral parts of the science classroom, long-term planning needs to address
the potential need for lecture space, laboratory space, and computer space in a safe environment.

Significant findings found in the study of math teachers (Chamblee, 1996) not found in the study of science
teachers include: (a) technology training needs to be matched to immediate teacher concerns; (b)some teacher
characteristics were effective predictors of teacher concerns level, but only at the lowest stages; and (c) teachers
self-rated themselves higher than the SoCQ rated them for graphing calculator expertise. Whileconcerns models
differ in the number and description of individual stages, researchers (Hall & Hord, 1987; Bailey & Palsha,
1992; Chamblee, 1996) conclude that technology training needs to be matched to the needs and concerns of
individual teachers at appropriate times. Currently, many staff development models lack this feature. Integration
of this feature will require more time pre-assessing teacher needs and personalizing instruction. It will also
require having more content specific technology experts available in the schools and creating more specialized
staff development opportunities with follow-ups throughout the year.

At the present time, much in-service is based on introducing teachers to new classroom innovations only at the
awareness level. If studies continue to support the predictive validity of these teacher characteristics and more
characteristics can be found that predict awareness concerns then selective screening can be used to place
teachers with higher developmental level concerns (consequence and collaboration) in more appropriate in-
service programs. For example, teachers who rated their expertise as intermediate vs. those who rated
themselves novices differed on three concern stages: awareness, information and personal and overall concerns
intensity. This implies that teachers who rated their expertise as intermediate have already began the process of
gathering, synthesizing and personalizing the uses of graphing calculators in their everyday classroom
instruction. Yet, the finding that these two groups of teachers did not differ at the other levels of concerns needs
to be further explored. According to the model, to reach higher developmental levels of concern these teachers
should begin to go through a refocusing phase in the near future. These data do not support this premise for
these teachers. However, since neither non-users nor expert teachers were included in this analysis, further
conclusions regarding any substantial differences in the groups is not possible at this time. The inability of
teacher characteristics to predict higher developmental levels of concern (consequence and collaboration) was
both discouraging and intriguing. One explanation of this lack of prediction is that as a teacher moves from a
non-user (high awareness and information concerns) to an experienced user (high collaboration and consequence
concerns) the more internal the innovational adaptation process becomes. Awareness and information about an
innovation are externally controlled.

Overall, these studies demonstrate that commonalties and differences do exist between mathematics and science
teachers going through the process of adopting technological change in their classrooms. These commonalties
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provide opportunities for non-content specific professional development. Differences provide opportunities for
content specific professional development. To become an experienced user of an innovation means a teacher has
made a conscious and subconscious effort to' focus on integrating the innovation into their everyday classroom
activities and feels very comfortable with using the innovation as a tool for learning. If this is true then more
emphasis has to be placed on being able to define the process teachers go through as they progress along the
developmental continuum. Until we are able to do this, professional development opportunities which attempt to
focus only on helping teachers meet low level concerns (awareness, personal, and management) are less likely to
be successful.
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Abstract: In a recent report commissioned by the Milken Exchange through Education
Week, Zehr (1999) suggests that although schools have invested billions of dollars on
computer hardware, the challenge now facing educators is in selecting appropriate
software for use in their curriculum. The concern is that despite an emphasis on
technology integration in the classroom, the use of computers fail to promote creativity,
problem-solving and life-long learning unless the applications encourage these skills.
The purpose of this paper is twofold: 1) to introduce educators to the Motion Media
Grapher (MMG), a Web-based software utility designed by the authors of this paper in
response to this growing need for effective classroom applications; and, 2) to share with
educators the lessons learned when 9-12m grade mathematics students interacted with this
utility.

Introduction

In a recent report commissioned by the Milken Exchange through Education Week, Zehr (1999)
suggests that although schools have invested billions of dollars on computer hardware, the challenge now
facing educators is in selecting appropriate software for use in their curriculum. The concern is that despite
an emphasis on technology integration in the classroom, the use of computers fail to promote creativity,
problem-solving and life-long learning unless the applications encourage these skills. The purpose of this
paper is twofold: 1) to introduce educators to the Motion Media Grapher (MMG), a Web-based software
utility designed by the authors of this paper in response to this growing need for effective classroom
applications; and, 2) to share with educators the lessons learned when 9-12th grade mathematics students
interacted with this utility. Additionally, this paper will show how the MMG can help teachers meet
standards currently employed by the National Council for Teachers of Mathematics (NMI, 1989) and the
National Science Education Standards (NSES, 1996).

Based on a year-long research study (Pianfetti, 1998), this paper begins with a detailed description
of the MMG and its convergence with mathematics and science standards. The next section presents a
discussion of the research conducted on the efficacy of the MMG as a classroom resource. The last section
examines three lessons learned emerging from the data. This paper concludes with insight from one
mathematics teacher and her perspective on how this software utility could easily be adopted into her
existing curriculum.

The Motion Media Grapher (MMG)

The impetus for developing the Motion Media Grapher was a result of observations made by one
of the authors in a high school mathematics classroom of students using technology as an integral part of the
curriculum. The students were effortlessly using such technologies as 11-82 graphing calculators to solve
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algebraic expressions. In most instances, the technology was giving the students correct answers, but the
students were failing to ascertain whether or not the answer was reasonable given the context of the problem
they were trying to solve. The idea behind the MMG is that three networked-based interconnected
components would give students multiple and situated representations of a single concept while they engage
in authentic learning activities. Hence, the MMG would encourage the students to think critically about the
answers that they were receiving because the answers would be presented to them through three different
representations. These three interconnected components are a digital video component, a graph component
and a table component. Students have the option of plotting points either by clicking on the graph or the
digital video or setting points in the table. The other two perspectives are automatically updated to match
the point initially plotted by the student. The digital video component allows the concept to be situated in an
actual event and not just an abstract representation. Furthermore, this component contextualized the concept
taught by the teacher. For example, in learning about nonlinear functions, such as acceleration, the digital
video could be illustrating a car stopping and proceeding through a stop sign. The students could then plot a
points directly on the video clip. This way, students see the concept in terms of real world events. The
graph component permits the visual display of data and through its connection with the digital video
component may help students better interpret what the points on the graph represent in more concrete terms.
The numeric representation in the table component with its connection to the other two components may
help the students understand what numbers mean and how they are portrayed in actual events. The MMG's
emphasis on multiple perspectives reaches students with varying learning abilities and learning strengths
while adhering to mathematics and science standards.

The NCTM Standards include among other things: 1) the use of problems representing applied
settings to motivate and apply theory; 2) the use of computer utilities to develop conceptual understanding;
and, 3) the use of computer-based methods for learning. Decreased attention will be given to word
problems, simplification of radical expressions and pencil and paper graphing equations (NCTM, 1989, p.
125-9). Furthermore, the NSE Standards have stated that beyond basic skills and understanding, students in
the middle schools should have heightened sense of inquiry that would help them understand the relationship
between a concept and its explanation. By so doing, students become better problem solvers and are better
able to communicate their reasoning. Students easily interact with the MMG. They may capture their own
video, develop problem sets to accompany the video and by making two changes in the "html" source code
of the MMG, they become creative and critical thinkers while engaged in authentic learning activities.

Moreover, there is growing concern that in introductory math and science classrooms, teachers
have a tendency to oversimplify abstract and complex concepts (Kaput, 1994). This oversimplification may
prevent mastery and create difficulty for the transfer of knowledge in advanced level courses (Feltovich,
Spiro, & Coulson,1989; Chi, Glaser, & Farr (Eds.), 1988). The challenge becomes finding a way for
students to learn knowledge flexibly so that they may situate it into a variety of unique contexts and not
simply those in which they were learned (De Groot, 1978; Lave,1988; Lave & Wenger, 1991). The MMG
attempts to bridge all these issues by providing multiple and situated representations of an abstract concept
and by permitting hands-on engagement with this network-based learning tool.
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Figure 1: Screen capture of the Motion Media Grapher (MMG)'

The Study

This year-long study consisted of three phases. Phase 1: The Developers' Phase involved four
high school upperclassmen who were primarily responsible for collecting and digitizing video, creating
problem sets and building Web pages. These upperclassmen eventually developed the MathNet Web site
that consists of several pages that incorporate the MMG and ask students to solve mathematical problem
sets regarding linear and non-linear functions. Phase 2: The Evaluators' Phase involved four teams of high
school sophomores who conducted a formative evaluation of the MathNet Web site three times throughout
its development. The sophomores' evaluations were subsequently reported back to the upperclassmen and
systematic changes were made to the MathNet Web site in response to the evaluators' comments. Phase 3:
The End-users' phase involved twelve high school freshmen in an introductory-level algebra class. The
freshmen used the MathNet Web site as part of their mathematics class while they were learning about
functions. A situated evaluation was employed as the main methodology (Bruce & Rubin, 1994).
Additional measures used in the data collection included: 1) audio and videotaped interviews, 2) field
notes, 3) an analysis of artifacts such as the Web pages created by the students, 4) an analysis of the

http://www.cyber-joe.com/education/Motion_Media_Grapher.html.
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answers given by the freshmen to determine if they were using the multiple representations to answer the
problem sets, and 5) pre and post surveys.

There were three core research issues that guided this research study. The questions addressed
were built upon these core issues: 1) Technical: How can technology, specifically digital video and the
Internet, be used to help students understand and interpret functions in applied settings?; 2) Cognitive:
What impact does technology have on the way students learn to understand and to interpret functions in
applied settings ?; and, 3) Instructional: How can technology, specifically the Math Net Web site that
incorporates the MMG, be integrated within a high school mathematics classroom?

Lesson learned from the data collected include: 1) The selection of visuals is important because
misleading visuals may obscure the learning. The technology should not transcend the learning; 2)
Collaboration is a key factor is the transfer of knowledge. Students can exchange their ideas and discuss
concepts in terms that they know and they understand; 3) Digital video is a good tool that permits an
abstract concept to appear more concrete in the learner's mind. The use of digital video because it can
show a variety of contexts helps students better articulate their understanding. What was learned from this
study will be briefly examined in the remainder of this paper?.

Lessons Learned #1: Learning transcends the technology

The high school senior described in this mini-case study showed significant growth in her
understanding of functions as well as in her understanding of how visuals can empower students by
authenticating what they are learning. Conversely, she came to understand that the inappropriate selection
of visuals could in fact misrepresent the content. She learned that technology should not transcend
learning. In her own words,

I think hie we almost have to pump them up with math. You know take it a little away
from the focus of 'wow, look at the graph, look at the movie' and say, 'okay so why does
this work' ... we [shouldn't] take away from the purpose of the page - learning math.

Katina was working on a problem set that centered on the descent of a fire escape. She wanted the
students to determine if the fire escape descended in a linear or non-linear path. In shooting the video, the
upperclassmen were limited in where they could position the camera. Consequently, when the video was
digitized, Katina realized that in considering the Cartesian plane, the fire escape moved solely within the
second quadrant. Hence the corresponding plots on the graph would have negative numbers for the 'x' and
the 'y' axes, but a positive slope. Katina believed that this perspective would confuse the freshmen who had
only completed one semester of algebra; therefore, she attempted to horizontally flip the video.

The freshmen students might think that the slope was negative because of the negative 'x'
and 'y' values and because visually the students would see the fires escape moving
downwards. [The freshmen] may associate the downward movement with negative
numbers and forget that a negative divided by a negative number is positive. They might
think it had a negative slope.

Katina was considering the larger impact the video might have on the students. Katina did not
want to confound the understanding of math by misrepresenting the mathematical concept because of a
limitation of the video. Katina knew that the video she collected was misleading. She did not want the
visuals to "obscure the math" and subsequently obscure the learning.

Lesson Learned #2: Collaboration is key

2 This paper is based three in-depth case studies. For more detail on these case studies, contact
esecaras@uiuc.edu.
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In reviewing the three evaluation phases and tracing the trends of comments that were made, it
appears that there was significant growth made over the duration of the evaluation phase. For the first
evaluation, these sophomores primarily submitted individual evaluation forms with aesthetic
recommendations. By the second and third evaluations, however, the sophomores were more critical in
their comments as they considered the overall operation of the Web site and worked together to give
comprehensive feedback. As one evaluator stated:

We were never asked to evaluate something before ... and now when we do [the
upperclassmen] listen to us. It's a great feeling. It's forcing me to really think about the
math and think about these pages. We're working more as a team because a lot of the
uhm ideas we have we can talk about and see if we are on the right track. It's good to
work with [our teammates] because I'm learning a lot from them about the math and
about Web pages.

Comments such as the one above were echoed in many of the evaluators' comments. Other
tangible evidence included the extensive recommendations that they made on their final evaluation forms.
For example, one team of evaluators gave illustrated suggestions for how better to layout the three
components so that the end users would be able to utilize more efficiently the multiple representations.
They wanted the digital video clip to appear in the upper left-hand corner while the graph would cover a
larger portion on the bottom of the screen. They included with this illustration a justification for why they
wanted the layout changed.

If you put the video at the top, then you can look at the video and work your way over to the table
and the graph. The video is what draws your attention first, but the graph and the table are
important, too. And for the graph you need more space to really spread out the [plots].

Lessons learned #3: Digital video as a situating medium

From the data collected, it was apparent that the freshmen end-users had a more concrete
understanding of function. They were able to articulate their ideas about functions more directly than
before their interaction with the MMG.

A linear function is where you put something in and get the same thing out Like when you talk
on the phone and someone talks back ... and like gas, the more miles you go, the more gas you
need.

Or like when you are reading and fall asleep. You're taking your time, then you slow down and
then you fall asleep ..

... and the line on the graph continues going, but the number of pages your read stay the same.

Although the pre and post survey results indicated that the freshmen still had difficulty understanding
functions, dialog exchanges such as the one above suggest that the students are able to transfer the
knowledge to familiar events when they are asked to make the association.

Conclusion:

One of the major findings of this study suggests that proper integration of the MMG is
instrumental for its functionality as an effective learning tool. Its placement in the curriculum should
reflect what the teacher is currently teaching. The teacher in this study considered how it could be used
within a mathematics class.

Oh, now this is interesting. I could definitely see myself using this problem in my class.
... do you remember that worksheet I gave [the class] - the one the students had to draw
graphs on different functions based on what they thought the graph would look like?
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Well, they had trouble drawing the graphs ... so now see here with this problem, I could
have the students draw the graph and then have a student make a graph using the Web
page. Yes, I think that the video would really add to the instruction ... you know, it
might not even be a bad idea to have video that represents all the graphs [the students] are
asked to draw.

In this teacher's opinion, the strength of the MMG was that the Internet could now be used for more
than just browsing or research. Her students could be 'constructors of knowledge'. In terms of engaged
learning, they were learning by doing. In addition, this software utility could, with minor adaptations, be
used in a variety of classrooms and in a variety of disciplines, including science. Since conducting this
research, the MMG has been modified for use in middle school science classrooms.

In essence, the MMG is geared towards the shifts in learning and instruction that are stated in the
NCTM and NSE standards. The use of the Internet to support multiple media as a means to present
interconnected multiple representations of a single concept is a key feature. The network-based
interconnected components encourage the students to see how the different representations of a single event
each reflect a perspective of the same underlying concept. Ideally, these different perspectives would foster
problem solving and inquiry because the students would have to learn to negotiate the different
representations and the meanings of the variables. Moreover, the digital video component offers a concrete
representation of a natural event and as such can encourage the use of contextual problems to motivate and
apply theory.
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Abstract When one thinks of reasoning, problem solving, communication and
connecting related ideas the tool of choice in nearly every discipline is the
microcomputer. Furthermore, unlike the traditional calculator, the modern classroom
computer has an unparalleled ability to implement both graphical and procedural
components of mathematics understanding in a single unified object.

Through creation and utilization of mathematically relevant computer-based objects
this dual encapsulation enables the students a unique opportunity to see both the form of
representation and their actions utilizing this representation simultaneously. For this
reason alone it would be a natural tool for both classroom use and theoretical musings.
This paper explores the potential for classroom uses that blend learning theory and
practical realities of student actions. It addresses the extent to which the object orientation
metaphor, found in the modern windowed operating systems and programs, transfers to
the "tools to think with" notions of current action upon objects models of mathematics
teaching and learning.

In particular, we will suggest that the object-oriented environments which modern
technology has created are ideally suited to parallel and facilitate the ability of students to
take a broader variety of action upon objects of a nature and kind hitherto unknown.

Technologically Enhanced Mathematics Learning.

Over the past ten years I have noticed that a major theme that has been emerging in my research
and writings has been that of action upon objects. This has in turn lead to some foundational questions
surrounding the nature of the objects and the types of actions that one might be expected to perform upon
them. I have found this framework of actions upon objects to be very powerful in both the laboratory as
well as in the predictive power they enable in the minds of the students. I feel that they also capture quite a
bit of current interest in the field as evidenced by recent thinking on object reification (Sfard, 1994).

What I am trying to add to the mix is the notion of a firmly developed and articulated way of
looking at what these objects might be and in particular how we might utilize them to develop
mathematical thinking In particular, I have developed an approach that results in students developing
mathematical thinking regardless of the developmental level and nature of the object. When this method is
followed we repeatedly observe markedly similar patterns of thought on the part of the students. This is all
the more significant when we consider that this parallelism shows itself in the same type of thinking taking
place at each developmental level.

I am taking this opportunity to share some of my notions concerning the action upon objects
models I have been using in my university classes and in my own personal thinking As we will see, my
approach toward addressing these questions has been very heavily influenced by readings of and work with
Mikhail Bounieav and Sergei Abramovich (Abramovich, 1998; Abramovich, 1995). Together with
Mikhail Bounieav, we have been developing a way of thinking about step-by-step development of mental
activities as enhanced by technology (Bounieav & Connell, 1999; Connell & Bounieav, 1997). With
Sergei Abramovich we have been looking at the nature of the new tools to think with which technology
provides (Connell & Abramovich, 1999). The development of this theme includes developing concepts
through mental picturing, and the notions I've been developing over the last 20 years or so regarding
actions upon objects of various types.

BEST COPY AVAILABLE
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Background examples.

At the elementary level, the objects the children are capable of thinking with (or acting upon) is
influenced by both their developmental level and their prior experience. In particular, we find that young
children are not able to think with formalized abstracted mathematical objects. This should not be a major
surprise, as it has been part of our understandings of human growth and development for some time. This
limitation, however, at first glance would appear to limit the degree of mathematics which might be made.

As Whitehead (1978) correctly noted, it is only when one reaches the abstracted levels of
mathematical formalism that we can really leverage forward our thinking. It is at that point that the
tremendous growth in the intellectual potential of the individual might happen. This has led many to
speculate and even to promote the notion that young child is incapable of rigorous mathematical thinking,
and in fact that much of what we do that young childhood level is basically preparatory for the real
mathematics which they'll be developing later.

Based upon my experiences in the classroom and my own theoretical musings I have taken a very
contrary position to this. As I have stated in many different venues the young child is capable of very well
developed mathematical thinking if the objects with which they think and questions upon which they think
are of an appropriate level and type for their developmental abilities. I will be the first to acknowledge that
this is a different type of mathematics content than we often see in more formal mathematics, but the
thinking strategies is in direct parallel to that exhibited in the higher levels.

Let us work through a few examples to see how this might play out. For a preschooler working
with pattern blocks we can ask questions concerning these blocks that require acting upon these blocks and
the use of some quite elaborated thinking. This thinking is to a large degree rooted in the physical actions
the child is taking upon the physical object presented to them for their use.

Suppose, for example, the child creates a base pattern composed of a square followed by a triangle
and then a parallelogram.

Figure 1: Pattern block base.

The child can easily and correctly predict what would come next from extensions to this pattern
based upon this starting sequence as it is continued and repeated. Indeed, for any given starting sequence
the children will quickly learn how to extend that pattern and to create their own patterns from bases of
their ownchoice.

Figure 2: Extended pattern derived from the earlier base.

Now some might suggest that this type of thinking is more replication them prediction. However,
we commonly see the same type of thinking occur when we observe algebra students using a guess and
check strategy to fill in values in a function like the following:

3!
1035



1

2 6
9

4
5 15
6
7 21

8
9 27

30
11 33

Table 1: Function illustrating a guess and check solution strategy.

I really believe that we are not just laying a foundation for later mathematical thinking but that we
are actually seeing mathematical thinking which is appropriate for the objects which the student is able to
think with.

A model for use.

It is clear, however, that if this approach is to be effective that the objects to think with must be
developmentally appropriate for the student. For the past 15 years I have been researching and writing
about one such model which has proven to be very helpful in identifying the level of objects to think with
and some of their properties (Connell, 1998; Connell & Ravlin, 1988; Connell, 1986). Figure 3 serves to
illustrate these developmental levels.

Manipulatives

Sketch

Mental Picture

Abstraction

Memory/Recall Teacher Posed Problems Self Posed Problems

Activity

Recrtinanization
Aciron

A

Activity

Reer Organization
Ac?:roa''

A

ROAD
A

r
Ro.A 0

A

taA u

A
r

Ro.A 0
A

RoA,O

Figare3. Model illustrating the type of actions as performed upon the objects of thought.

Let me provide a quick general overview of this approach. The instructional goal is to enable
gradual student construction of meaning through the use of manipulatives through abstraction via four
transitional object types. Within each problem type three types of activities will typically be encountered
by the student: 1) memory/recall - often of terminology; 2) teacher posed problems - related toward student
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construction of concepts; and 3) student posed problems - based upon developing understanding of the
problem space presented and it's relations to other problem types. These activities will be experienced by
the student in the form of related problems requiring the use of the developmentally appropriate object to
think with: manipulatives, sketches, mental pictures, and abstractions.

Furthermore, at each location in the model where a student will encounter a problem either
teacher or self-posed the student will solve this problem via activities which are then organized and
recorded for later reference.

An extremely elementary example of this model showing actions upon all of the object types
might include initial actions upon a manipulative - such as a pile of counters used to develop elementary
addition. A sketch might then be drawn recording the actual counters, which in turn would serve as an
object of thought for further construction of meaning. Mental pictures, in addition to serving as a further
representation of the problem space, provide natural entry points for technology which will be utilized in
technology-aligned classrooms. Abstraction would occur when it is no longer necessary for the student to
use countable counters but is capable of reflecting upon the constructed tcpiesentations in the construction
of new knowledge, a process that Piaget referred to as "reflective abstraction". As we thus expand our
earlier notions of action upon object we can see that we are working with a carefully selected set of
developmentally appropriate primitive objects' and experiences with these objects to build up a working
vocabulary and subsequent conceptualization.

What should occur next, regardless of the students' developmental level, would be for a skilled
teacher or instructor to pose follow-up problems or questions relating to the newly instantiated and defined
object of thought. This would again hold true whether we're talking about a physical manipulative object,
a sketch object of predictive power such as an interactive fractions object, or a mental picture object such
as a comparison of mass based upon remembrances of experience, or a formal and logically abstracted
object such as function or some other mathematical construct In each case we observe a skilled teacher
using newly developed objects as a venue within which questions are to be asked and problem situations
explored via student actions upon these very same objects of thought

Good Thinking is Good Thinking, At Every Level at Which it Occurs

It should also be noted that the nature and form of the thinking and reasoning strategies runs
parallel across each of these developmental levels. We can easily observe the young child reasoning with
the manipulative objects, communicating their findings with others using the manipulative objects,
connecting their most recent experiences with previous experiences with the manipulative objects and using
these same manipulative objects in making quality judgments regarding their work. We can likewise easily
observe the same strategies being used at each of the other developmental levels of objects within
classrooms utilizing this approach.

If the question that has been posed relies upon action upon objects that the child is capable of
manipulating and has developed personally meaningful understandings for, then the child is typically
successful in their problem solving efforts. This holds true whether the form of the action upon the object
is via a physical manipulation, a symbolic manipulation, or a more abstracted application of logical
formalisms. It is important to note that I am not suggesting that we are necessarily observing extreme
mathematical sophistication. However, what I am arguing for is that it is possible to observe a parallel
form of mathematical thinking as students perform their respective actions upon their understood objects at
each of these developmental levels. Thus I am quite comfortable making the claim that we can observe
quality mathematical thinking at the preschool level as well as at the graduate level.

Furthermore, as we extend this model the children are given the opportunity to develop problems
of their own based upon the objects that they recently defined, worked with, and developed problem
solving skills and schemata for. This is an important part of the instructional strategy, for without this
piece of the puzzle the children will always look to someone else to serve as the source of their problems
and as final judge as the answers to the problems they face. This ability, topose one's own problems and to

I am using the term primitive to refer to a foundational material from which later concepts will be
built not necessarily as referring to simple or unsophisticated. This is in keeping with the use of
primitive in computer systems. Thus, Dienes Basel() blocks might well be considered as an
experiential primitive upon which later conceptualizations would be built
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then successfully solve these problems, provides further opportunity for growth in mathematical thinking
and problem solving. In this, we also see once again the direct parallelism between each of these
developmental stages.

Conclusion

Since their inception in 1989 the NCTM Standards for Curriculum and Evaluation have been
changing the face of what constitutes mathematics and how we think about its teaching and learning.
Consider the following: Mathematics is communication; Mathematics is reasoning; Mathematics is
problem solving; and Mathematics is connections. These statements are drawn directly from the process
strands of the 1989 standards document and constituted a major revision as to what counts in mathematical
thinking.

These process strands have become the de facto class of acceptable actions that are to be
performed in mathematics education. These actions are much different in both form and substance than
earlier procedural and content driven actions of the past. And it is in this very difference that we see that it
is possible to perform these actions - to reason, problem solve, connect, and communicate mathematically -
at every developmental age provided that an appropriate object for this action to act upon is present.

With the addition of the technology enhanced object there is tremendous evening of the playing
field in terms of what counts as mathematical thinking. With this addition we can observe that the both the
thinking processes and sophistication as shown by students of various ages begins to parallel each other.
The technology serves an important role in this process. In particular, the computer can serve as a tool to
record the information that has been generated by the students' activities. It can then capture the essence of
the activity by allowing the students to organize their work in powerful structures. For example, a table
might be built using developed data in a row and column structure, or an organizing graphic might be
constructed reflecting the series of activities the children have performed. The technology can then be used
to create formal records of action that may be shared or used in later problem solving endeavors. These
records of action can even be shared with others outside the immediate sociocultural milieu within which
the student is working via the World Wide Web.

The computer, with its object oriented interfaces and tools geared specifically to enable the user to
perform specific actions upon specific objects, lends itself perfectly to an action upon object model of
learning and instruction. Some of these include Step-by-Step Development of Mental Activities (Galperin
& Talizyna, 1979; Leontiev, 1972), Action Reification (Sfard, 1994), and Emergent Structural Theory
(Connell, 1996) to name a few. This linkage between suggestions from learning theory and the object
classes engendered by the technology is far too priceless to allow going to waste.
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Some Psychological Aspects of Using Information Technologies in
Teaching Linear Algebra
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Abstract Despite the indisputable advantages of using information technologies in teaching
mathematics in general and linear algebra in particular certain problems related to
technology-oriented education have become quite evident now. The presentation reviews and
analyses efficiency and expediency of using information technologies at different stages of
teaching linear algebra. Our research is based on the results of the experiment conducted
during the last five years in teaching linear algebra with MATLAB and modem calculators.
This paper is a follow up of an earlier article "Linear Algebra With MATLAB Package In
Preservice Teacher Education" (Bouniaev, 1997).

Introduction. Basics of DMA Theory

Our analysis of using information technologies in teaching linear algebra is based on
the theory of stage-by-stage development of mental actions (DMA theory) developed by. the
Russian school of psychology (Galperin 1960, Leontyev 1975, Talizina 1975) as applied by
the author in teaching mathematics (Bouniaev 1991, Bouniaev 1996, Bouniaev &Connell
1996). Without going into a detailed description of this theory we will outline some of its
basic concepts that are essential for this paper. We also assume that in a linear algebra
course an instructor can use various technologies at different stages of instruction, such as
modern calculators and software packages like MATLAB or Derive. So we are not going to
specify what software or a calculator should be used in the course of instruction . In most
cases this problem of choice may be solved by different means and depends on their
availability. According to the DMA theory the major goal of instruction is developing mental
actions with objects of the studied field. Finding a solution of a system of linear equations,
proving that systems of vectors is linear independent (dependent), reducing matrices to the
reduced row echelon form, finding eigenvalues or eigenvectors are examples of the actions to
be developed in a college linear algebra course.

Instruction is viewed as organizing and controlling students' activities and hence
organizing and controlling the process of development. Thus, instruction efficiency is
determined to a great extent by a well developed system of control and management.

Analysis of component operations of any action shows that they perform different
functions. A part of performing an action is taken up by some preliminary work, a
preparation for an action in a certain sense. This preparatory part is called orientation part
of an action. The performance itself is called executive part of an action. Analysis of an
action and experiments carried out in this respect show that there also exists a control part
which takes place after the executive part, when an individual compares the results achieved
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in the executive part of an action with the goals of an action and the draft plan of the
execution planned in the orientation part.

As a rule, the performed actions consist of other, more primitive actions and in their
turn can be part of other actions. Actions that are part of a given whole, are called
operations. That is, operations are also actions; hence the term emphasizes only a
hierarchical subordination among actions. The DMA theory specifies four independent
characteristics of any action used to determine the level of development of an action. The
first characteristic is a form of action. An action can be in a materialized (material), speech
or mental form. The materialized form of action is connected with manual activities
(manipulation, hand-on activities, etc.); objects of action (or their models) are presented in a
material form; results of action should be real transformations of these objects or of their
models. For example, entering an equation into a graphic calculator could be considered as
an action in materialized form.

There is no need to discuss the speech form of an action. It should be noted that
according to the DMA, writing belongs to the same form, i.e. the speech form. If we
consider an example of solving a system of linear equation then the speech form will mean
articulation of the performed actions. There is no need for these objects to be present in the
material form. For example, in the process of instruction a student may be asked to comment
on all the operations of entering an equation into the calculator. The action can be an answer
in the form of oral speech or a note in a workbook.

The mental form of action is the highest form of action development. An action in
this form is imperceptible for one's associates and its results are recorded in an imperceptible
for others form also. This form of action means that its objects are representations, notions
and concepts. All operations are performed to oneself. The ability to perform a whole action
in the mental form indicates that it has gone through all the stages of development and
interiorization.

Structure of the actions to be developed in a linear algebra course

The primary goal of the first linear algebra course is introduction of basic concepts of
the subject such as systems of linear equations and their solutions, the concept of a matrix,
linear space and linear operator. Activities-oriented learning theories claim that development
of concepts takes place through development of actions aimed at the objects that fall under
these concepts as well as at the objects that fall under the concepts immediately connected
with the developed one.

All actions can be referred to two categories: general logic actions and specific
actions. The characteristic general logic action for a linear algebra course is that of
recognition. For example recognize if a matrix in the reduced row echelon form is an
augmented matrix of the inconsistent system of linear equations. Another example of a
general logic action is an action of classification, for of matrices into subclasses of singular
and nonsingular matrices. We will demonstrate that developing general actions is crucial in
the course of linear algebra study.

Specific actions are basically inherent to a given subject field. For example, in linear
algebra they are: reducing a matrix to the reduced row echelon form, matrix multiplication,
finding determinant of a given matrix, etc. We will show that in developing basic concepts
of linear algebra most specific actions can be performed with the help of technologies.
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Let us consider the structural composition of some actions aimed at developing the
basic concepts of a linear algebra course. Naturally, if we consider the development of the
systems of linear equations concept, then the basic action to be developed is that of finding a
solution of systems of linear equations. This action is not homogeneous, it consists of a
sequence of certain operations.

Example 1 Action of solving a system of linear equations_
- Operation 1. Recognizing the system as a linear system (general logic action).
- Operation 2. Recognizing variables, coefficients, constant terms (general logic

action).
- Operation 3. Rewriting the system in the standard form (specific action).
- Operation 4. Finding a method of solution (general logic action).
- Operation 5. Creating a matrix A augmented matrix of the system (specific

action).
- Operation 6. Reducing matrix A to the reduced row echelon form (specific action).
- Operation 7. Making a conclusion based on the form of rrefA (general logic action).
- Operation 8. Determining the method of solution that depends on the results of

performing operation.
- Operation 9. Solving the system given in the reduced row echelon form.
In developing the concept of vector space an important role belongs to developing such actions as

recognizing linear independent (dependent) system of vectors; determining whether this particular vector is a
linear combination of vectors of the given system and recognizing the basis of a vector space. Let us consider
the operational composition of these actions.

Example2 Action of recognition of linear independent (dependent) system of vectors=
Assume we have a system of vectors a1 --(all, an=(ani, am,) in m-

dimensial eucledian vector space Rm. The problem is to determine whether this system is
linear independent or dependent.

- Operation 1. Designing a master plan for solution (general logic action).
- Operation 2. Creating the system of linear equations xiaiT +...+ xnan = 0 (specific

action)
- Operation 3. Creating the matrix A = [air ...anr 0] (specific action).
- Operation 4. Reducing the matrix A to the reduced row echelon form (specific

action).
- Operation 5. Making a conclusion based on the form of rrefA (general logic action).
Example3 Action of representing a vector as a linear combination of the system of

vectors..
Assume we have a system of vectors ai=(aii,

vector b=(bi, ..., b.) in m-dimensial eucledian vector space Rm. The problem
whether the vector b is a linear combination of vectors at , i=1...n.

- Operation 1. Designing a master plan for solution (general logic actio
- Operation 2. Creating the system of linear equations xi atT +:

(specific action)
- Operation 3. Creating the matrix A = a[j...anr T

D (specific action
- Operation 4. Reducing the matrix A to the reduced row echelon

action).
- Operation 5. Making a conclusion based on the form of rrefA (general logic action).
Example 4 Action of basis recognition,.

, anm) and the
is to determine

n).
.+ xnanT = b

).
form (specific
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Assume we have a system of vectors ai =(aii, atm), , an=(ant, anm) in m-
dimensional eucledian vector space Rm. The problem is to determine whether this system is a
basis for Rm or not

- Operation 1. Designing a master plan for solution (general logic action).
- Operation 2-5 as in example 2.
Then we have to check whether any vector in Rm is a linear combination of vectors

an It may be done in different ways. Usually we choose the method that assumes the
use of technologies, but not symbolic computation systems. So the idea is to check whether
the vectors of standard basis en are linear combinations of vectors . This
problem can be substituted by the problem of determining whether n systems of linear
equations are consistent or not. Fortunately all these systems have the same matrices of
coefficients, so it makes sense to determine their consistency simultaneously.

eiT en-r- (specific- Operation 6. Creating the matrix A = [ail. a ecific action).
- Operation 7. Reducing the matrix A to the reduced row echelon form (specific

action).
- Operation 8. Making a conclusion based on the form of rrefA (general logic

action).
From the point of view of our analysis it is instructive to compare the operational

composition of the action of the previous example with the action of finding a matrix that is
inverse to the given one.

Example 5 Action of finding matrix inverse .

Assume we have matrix A= [aiT . The problem is to find its inverse.
- Operation 1. Designing a master plan for solution (general logic action).

enT,Operation 2. Creating the matrix A = ... a j (specific action).
- Operation 3. Reducing the matrix A to the reduced row echelon form (specific

action).
- Operation 8. Making a conclusion based on the form of rrefA (general logic

action).

Developing Actions In A Linear Algebra Course

Comparison of the operational composition of actions of the above examples shows
that actually the only "transformational" operation in all of these actions is that of reduction
of the matrix to the reduced row echelon form. Analyzing the actions to be developed in a
linear algebra course one may come to the conclusion that the majority of actions to be
mastered by students in this course can be presented as a sequence of three absolutely
identical operations. The first operation is construction of a certain matrix, second reducing
this matrix to the reduced row echelon form, the third is interpretation of results, i.e.
comparison of the original matrix with the one in the reduced row echelon form.

It is easy to see that the above problems require practically identical treatment not due
to the limited number of concepts we operate with in linear algebra but because these
operations form only the executive part of action. The executive part of action in many
linear algebra problems comes down to construction of a matrix and its reduction to the
reduced row echelon form.

45
1043



hi real life situation (not in class) that require performing any of the above described
actions it would be natural to perform explicitly only the executive part of the action. An
engineer or a mathematician would enter the matrix into the computer or the calculator and
then push the button controlling "rref' command irrespective of the fact whether one is
looking for the solution of the system of linear equations or proving that system of vectors is
linearly independent. The situation is completely different in class since all students actions
are not aimed necessarily at getting the right answer for the given problem but more at
acquiring skills to solve problems of this category.

In the course of the experiment while studying the linear independence and the
concept of basis in the experimental group we allowed the students to start the solution of
problems right from the executive part of the action. Thus, for example, in developing the
action of recognizing the linear independent system (example2) students were not required
to start with the system of linear equations but with operations 2 3 ( entering the matrix in a
computer or a calculator and finding its reduced row echelon form). In the control group the
students were required to start with the system of linear equations and write down an
explanation how this system is related to the problem in question. Thus the experimental
group in the course of study was able to solve almost twice as many problems as the control
group but 60% of the students experienced considerable difficulities substantiating their
actions, and they also provided substantiation that could be related to a different class of
problems. They could not extend the same idea to a similar class of problems.

While determining the fact that given vectors generate the entire space (example 4) the students of the
experimental group were allowed to perform all operations (except 6 and 7) mentally. The students in the
control group were required to write down all operations with detailed substitution. The day before we
discussed these topics we found an excuse to remind the students how to find an inverse matrix, i.e. actually
reviewed the operational composition of the action of example 5.

Proceeding from the assumption that the executive operations of example 4
(operations 6 and 7) and example 5 (operations 2 and 3) are absolutely identical the students
from the experimental group came to the independent conclusion that actions of examples 4
and 5 are based on the same idea (which is a misconception). All the attempts to provoke
students in the control group to come to the same conclusion failed. The control group
students were fully aware of the fact that despite the superficial similarity of the execution
parts of these actions their orientation parts are absolutely different and thus these actions
cannot be similar.

According to the DMA theory, besides the form any action has another three
independent characteristics:

- degree of generalization;
- degree of completeness;
- degree of assimilation.
Generalization of an action means the ability to determine and discriminate essential

for performing an action properties as well as the ability to apply them to objects of
different nature . For example, if the action of solving systems of equations is developed at a
high enough level of generalization the student does not find it difficult to progress from
solving the system of three equations with three unknowns to solving any system. It also does
not matter how the unknowns are designated. The degree of completeness indicates whether
all the operations that were to be performed in the process of performing an action have been
actually completed. If the action is already developed, then the subject of the action (the
student who performs it) practically does not discriminate operations from each other, i.e.
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the action takes place in the compressed form. If we assume that the previous learning was
successful, then failure to perform an action (without any time limits) often indicates that a
student can not present the action in operation-by-operation form when all the operations
are present and are clearly identifiable. This indicates that performance of the action is not
completed. The ability of the student to perform an action in the operation-by-operation
mode giving justification for their performance shows that the action was developed at the
sufficient degree of completeness.

Going back to discussing different approaches to organizing the learning process in
the experimental and control groups we can come to the conclusion that in the experimental
group the development of actions did not reach the required level of completeness which in
its turn affected negatively the degree of generalization of the developed action. On the other
hand, the degree of assimilation was higher in the experimental group.

In the experimental group we had to spend additional time to develop the actions at
the required level of generalization. For this purpose we created a class of exercises that we
called inverse problems. The students were given only the executive part of the action of the
problem to be solved. The task was to restore the full operational composition of the action.

This experiment as well as other experiments conducted in the course of teaching
linear algebra with information technologies demonstrated that each part of the action should
be singled out and developed separately. In the process of instruction the executive part of an
action should be performed by a computer or a calculator.

The executive part usually is a specific action for the subject. The orientation part as a
rule is a general logic action aimed at the objects of the studied field. The orientation part of
an action includes intermediate goals, reducing a problem to the already familiar ones,
selection of definitions and theorems related to the performed actions.Thus in the above
examples the problem is reduced to determining the consistency of the sysem of linear
equations. The expediency of this problem substitution is determined by the corresponding
definitions and theorems.

In developing any new action in the course of linear algebra its orientation part should go through all
the forms of development starting at least with written speech. For the above discussed examples 2-4 it means
that at the initial stage of development a plan of action should be written downas well as all necessary theorems
and definitions on which this plan is based. The system of linear equations should be presented in a written
form. Only after completing all these actions a student can use a computer or a calculator to perform the
corresponding operations. Thus major problems in teaching linear algebra arise not in developing specific
actions of the course but in developing general logic actions aimed at the objects of the studied field.

The DMA theory presupposes five stages in organization ofinstruction. At the first
stage the instructor presents new material Taking into account a relatively abstract nature of
the linear algebra course it is expedient in presenting a new material to illustrate it with
practical problems and to create computer models of these problems. Thus in teaching the
theme Least Squares Solutions it is worth starting with the discussion of linear regression and
demonstration of vivid programs modeling linear regression. In teaching the projections it is
hard to overestimate the value of visually enhanced programs illustrating the geometry of the
performed actions. At the second stage the actions are developed in the materialized form.
At this stage of instruction it is expedient to organize the work with blocks of texts and
illustrations and move these blocks to different parts of the screen.

The third stage is development of actions in the external speech form. At this stage it
is important for students to articulate their thoughts out loud and write down necessary
comments. As experience showed at this stage traditional pencil and paper are hard to
substitute. Group work is also very useful. Computers can be used for conducting different
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experiments requiring discussions with other students. And only the fourth and the fifth
stages are developing actions in the form of internal speech and mental form.

In developing every new action the executive part can be delegated to a computer. Thus for example in
developing an action of reducing matrix to the reduced row echelon form it is expedient to use programs like
MATLAB m-file "RREF', providing executions of elementary row operations at students instructions. At
further stages of instruction it is expedient to delegate this action fully to a computer or calculator. In finding
eigenvectors and eigenvalues computers can solve the systems of linear equations and characteristic equations.
At the same time development of the orientation part of this action should go through all the stages and forms.

Conclusion

In the course of study of linear algebra it is expedient to carry out the structural analysis of
every new action to be developed. It is preferable to present the orientation part with all the
necessary operations to be performed and to develop it going through all the stages starting
with the material form of an action. The executive part of an operation can be given over to
computers or calculators. At further stages the orientation part can become an operation of
the executive part of an action and be performed by a computer. It is worth pointing out that
in developing the orientation part of an action the use of computers can be highly efficient in
creating visual models and a bank of basic concepts, definitions and theorems.
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Factors Related to Teacher Use of Technology in Secondary Geometry
Instruction

David A. Coffland
Idaho State University

Albert W. Strickland
Idaho State University

Abstract: This survey sought to identify variables related to teacher use of technology in
secondary level geometry classrooms in southeastern Idaho. The primary variables examined
in the study were teacher technology awareness, teacher attitude toward technology, teacher
technology training, and teacher computer use for instruction. This study also tested for
associations between these primary variables and principal attitude toward technology and a
selected group of demographic variables: geometry teaching experience, number of sections of
geometry taught, college mathematics major, and computer lab access. Four significant
relationships were found. An inverse relationship was found between teacher computer use
and the number of geometry sections taught Direct relationships were found between teacher
attitude and both teacher technology awareness and principal attitude. Finally, a direct
relationship between type of teacher training and teacher instructional computer use was
reported.

Introduction

The use of technology in education, especially mathematics instruction, has been recommended on
multiple occasions by the National Council of Teachers of Mathematics (NCTM, 1996, 1998). In the state of
Idaho, technology use has even been mandated (Watson, 1996). At the secondary level, many articles have
recommended the use of computer technologies in geometry classes; however, few studies have been published
on the factors which relate to teacher use of technology within geometry classrooms.

The purpose of this study was to discover relationships of teacher technology awareness, teacher
technology training, teacher and principal attitude toward technology, and teacher computer use among
secondary, geometry teachers in the southeastern region of the state of Idaho. This study was broken into three
groups of research questions. The first set of research questions sought to discover associations between
selected demographics variables (experience, number of sections taught, mathematics major, and hardware
availability) and the primary variables of teacher technology awareness, teacher technology training, teacher
attitude toward technology, and teacher technology use. The second research question examined relationships
between the primary variables and principal attitude toward technology use in geometry Finally, the last three
research questions sought to determine associations between the four primary variables of the study.

Methods

Description of the Population

Idaho teachers and principals were considered in this study for several reasons. Since 1994, Idaho has
invested heavily in technology for schools (Idaho Council on Technology in Learning, 1998). The State of
Idaho has provided, and is still providing, monies earmarked for technology directly to school districts,
requiring a plan for integrating technology into instruction from school districts as a condition of receiving that
money. In addition, a private foundation has provided large dollar amounts for Idaho schools which incorporate
technology into instruction. Finally, the state of Idaho has mandated the appropriate use of technology in
instructional settings (Watson, 1996). Therefore, Idaho teachers were considered because Idaho schools have
had both the money and the incentive to incorporate technology into the classroom for the last five years.
Geometry teachers were examined in this study because dynamic geometry environment software offers
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opportunities for students to interact with the constructs of a field which has been described as a hurdle for high
school mathematics students (National Research Council, 1989).

Data Collection Techniques

The data were collected via a mail survey instrument. The surveys consisted of both closed and open
response items. The surveys were sent in packets to high schools and junior highs in southeast Idaho school
districts during the latter part of the school year. Each packet contained a principal survey and teacher surveys
for each geometry teacher in the school building.

After allowing several weeks for the return of the instruments, it was noted that some districts had not
returned the superintendent permission form for using their districts data as required by the Human Subjects
Committee. The superintendents of these districts were contacted again and asked to return a faxed copy of the
permission form. The data from those districts were then added to the total data list.

Participants

The study participants were restricted to secondary school geometry teachers and their principals in
southeastern Idaho. All junior and senior high schools which offered at least one section of geometry were
invited to participate in the study. The principals of each of the selected schools made up the principal section
of the sample. If more than one teacher from a given school was in charge of at least one geometry class, then
all such teachers from that school were asked to participate in the study.

There were 75 secondary schools from 52 school districts in the three southeastern Idaho regions
which fit the criteria for this study. The number of geometry teachers in each school was determined by calling
all secondary schools in southeastern Idaho. A representative of each school was asked if geometry was taught
in the building and, if so, how many teachers were assigned at least one section. From this initial phone survey,
it was found that 75 secondary schools in 52 school districts located in southeastern Idaho offered at least one
section of geometry. Each of the school districts was asked to participate in the study. One district refused to
participate and two districts closed prior to being contacted. This meant that the potential sample consisted of
136 teachers in 72 schools from 49 districts across southeastern Idaho.

Completed surveys were received from 52 teachers and 33 principals from 26 school districts. This
resulted in a return rate of 38% for teachers and 46% for principals. The demographic data obtained from the
teachers and the principals are reported in the tables below.

Table 1: Teacher Demographic Data

Description Responding Teachers
Gender

Male 34 65
Female 18 35

Geometry Teaching Experience
1 to 5 years 17 33
6 to 15 years 19 37
16 or more years 16 31

Number of Geometry Sections Taught
1 22 42
2 to 3 26 50
4 or more 3 6

Mathematics Major
Yes 33 63
No 19 37

Table 2: Principal Demographic Data

Description Number of Principals
Gender

Male 29 88
Female 4 12

51
1049



Experience as a Principal
1 to 5 years 14 42
6 to 15 years 12 36
16 or more years 7 21

Mathematics Teacher Background
Yes 1 3
No 32 97

Summary of Findings

The research questions for this study were divided into three sections. The first section, of four
research questions, examined the relationships between the primary variables listed above and the selected
demographic variables. The next research question sought associations between the primary variables and
principal attitude toward technology. The final section, comprised of the last three research questions, tested for
relationships between each of the different pairs of primary variables. For each of the research questions, the
critical alpha value was set equal to .05.

Relationships Between the Primary Variables and Demographic Variables

The first set of research questions sought to discover associations between selected demographic
variables (geometry teaching experience, number of geometry sections taught, mathematics major, and
hardware availability as measured by computer lab access) and the primary variables of teacher technology
awareness, teacher technology training, teacher attitude toward technology, and teacher technology use. Chi-
square procedures were used to test for associations. The findings for each of the first four research questions
are summarized below.

The first research question examined relationships between teacher technology awareness and the
selected demographics variables. For each of the demographic variables, no significant relationship was found.

Research question two tested for relationships between teacher technology training and the selected
demographic variables. Once again, no significant relationships were found for the demographic variables.

The third research question looked for associations between teacher attitude toward technology and the
selected demographics variables. The results indicated that no significant relationships were found in these
tests.

Research question four sought to discover associations between teacher computer use and the selected
demographic variables. No relationships were found between computer use and geometry teaching experience,
mathematics major, and computer lab access. However, teacher computer use was found to be significantly
related to the number of geometry sections taught. The chi-square value for the comparison between number of
geometry sections taught and teacher technology use was x2=9.776, df=4, p=.044. The strength of the
association, as measure by Cramer's V, was V=.31. Examination of the data revealed that the more sections of
geometry which a teacher was assigned, the less likely that teacher was to make use of technology in teaching
geometry.

Relationships Between the Primary Variables and Principal Attitude

The fifth research question examined relationships between the primary variables and principal attitude
toward technology use in geometry. In three cases: teacher technology awareness, teacher technology training,
and teacher computer use, no significant associations were found. However, principal attitude toward
technology was found to be significantly related to teacher attitude toward technology. The chi-square test for
the comparison between principal attitude towards technology use and teacher attitude towards technology use
was statistically significant, x2.297, df=1, p =.012. The strength of the association was measured using
Cramer's (1) as (1)=.351. It was found that those teachers with high attitudes toward technology use tended to
work for principals with high attitudes toward technology use.

Relationships Among the Primary Variables

The last three research questions sought associations among the four primary variables of the study:
teacher technology awareness, teacher technology attitude, teacher technology training, and teacher computer
use. For these comparisons, correlation statistics were used
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The sixth research question tested for relationships between teacher attitude toward technology and the
other three primary variables. No significant relationships were found between teacher attitude and teacher
technology training or teacher computer use. However, a significant association was found between teacher
attitude and teacher technology awareness. The Pearson product-moment correlation value was r-=.30. Those
teachers with higher awareness of the capabilities of computers tended to have higher attitudes toward
technology.

The seventh research question examined relationships between teacher technology awareness and
teacher technology training or teacher computer use. The results of this study indicated that teacher technology
awareness is significantly associated with neither teacher technology training nor teacher computer use.

The eighth and final research question looked for a relationship between teacher technology training
and teacher computer use. The results of this study indicated that there was a significant relationship between
these two variables. The Kendall tau value was T=.34. Those teachers who were trained in the integration of
subject specific software into their geometry classes were more likely to make use of technology when teaching
geometry.

Conclusions

Relationships Between the Primary Variables and Demographic Variables

Three of the four demographic variables tested in this study showed no significant relationship to
the primary variables. From these findings, it may be concluded that years of geometry teaching
experience, college mathematics major, and access to a computer lab were not related to teacher technology
awareness, technology attitude, technology training, or teacher computer use. This is in keeping with
Dupagne & Krendel's (1992) finding that attitude towards computers was independent of personal
characteristics.

The fourth demographic variable, number of sections of geometry, was not significantly related to
technology awareness, attitude, or training. Therefore, the results of this study lend evidence to the
conclusion that no such relationships exist in the general population of secondary geometry teachers.

The only significant finding involving a demographic variable developed in this study was the
relationship between the number of sections of geometry which a teacher was assigned and the use of
computer technology in the classroom. It is interesting to note, however, that none of the high users taught
more than three sections of geometry per day. Further, the majority of those teachers in the medium use
group only teach one section of geometry. This may be a result of the large number of small schools in the
sample which can only offer one geometry section per year. However, if these results are indicative of a
more general population, it may represent a trend of those teachers which have a larger number of
geometry classes proving to be less willing to experiment on a new teaching technique. Additionally, it
may be that unequal access to computer technology may lead teachers to adopt a least common
denominator strategy: if it isn't available for all students, it won't be used by any students. Several teachers
specifically mentioned the lack of time as a factor in their decision not to use technology. As one teacher
put it, "We don't have time to teach the current curriculum; much less add time with technology." Many of
the respondents stated that technology required more time to learn and implement than they had available
or were willing to give. This is in agreement with findings from previous studies on both principals
(MacNeil & Delafield, 1998) and teachers (Cooper, 1998).

Relationships Between the Primary Variables and Principal Attitude

This study found no significant relationships between principal attitude toward technology and the
variables of teacher technology awareness, technology training, and teacher computer use. The lack of a
significant relationship between principal attitude and teacher computer use is in contrast to Stegall's
(1998) finding that enthusiastic principal leadership was related to high technology use. This discrepancy
may be explained by Stegall's definition of enthusiastic leadership. That term encompassed actions as well
as attitudes. This study examined only the principals' attitude. In order to effect classroom practice, it may
be necessary for the principals to act upon their beliefs about the usefulness of technology. In other words,
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principal attitude may be a necessary but not sufficient condition for changing teachers' technology
practices.

The interpretation of the significant relationship between teacher and principal attitudes towards
the use of technology is straightforward. As the principals' attitudes goes up, so do the teachers' attitudes.
These findings are consistent with Drake & Roe's (1994) assertion that the principal should be able to
foster change in teacher attitudes. It should be noted, however, the results of this study could also be
explained as teachers effecting a change on their principals' attitudes.

An examination of the open response items indicated a potential problem. In both the teacher and
the principal samples, approximately one third of the respondents indicated that the amount of use was their
primary gauge of appropriate technology use in the classroom. Since Roberts & Stephens (1999) found
that merely increasing the amount of time students spend at the computer does not increase achievement in
geometry, those who advocate simply more technology access or higher usage levels in secondary
geometry classrooms have no current research to support their position.

Relationships Among the Primary Variables

This study found that teacher attitude was not significantly related to technology training or
teacher computer use. These findings are in contrast to Okinaka's (1992) results. One possible reason for
the difference is that Okinaka surveyed pre-service teachers' interest in taking more computer courses and
their intent to use computers after being hired. It may be that inservice teachers have enough demands on
their time that their attitude toward technology does not always lead to training on technology and use of
technology in the classroom.

The variable of teacher technology awareness was not significantly related to teacher technology
training or teacher computer use. This is somewhat in opposition to the conclusions of Okinaka (1992)
and Sheingold & Hadley (1990), that awareness is necessary for technology implementation. It may be that
mere awareness of the capabilities of technology is insufficient to guarantee technology training or use.

In spite of their non-significant associations with technology training and teacher computer use,
teacher attitude toward technology and teacher technology awareness were significantly related to each
other. This finding does not contradict Okinaka's (1992) conclusion that teacher attitude toward
technology can be positively affected by making teachers aware of the capabilities of technology.

Several papers have recommended additional training for teachers in order to increase their level
of technology use (Cooper, 1998; NCTM, 1998; Mathews et al., 1996). Yet none of these studies have
shown that technology training and teacher computer use are related. Therefore, the significant association
between teacher technology training and classroom technology use found in this study is a step toward
justifying the recommendations for teacher technology training.

Recommendations

Recommendations for Future Research

This study found a relationship between teacher and principal attitudes. A portion of the
relationship was based on the attitude that appropriate computer use could be described as an amount of
time or level of access. Since merely increasing the amount of time spent in geometry class on a computer
has been shown to be unrelated to achievement (Roberts & Stephens, 1999), the shared attitude has no
supporting evidence. Therefore, it is recommended that one topic for future research should be an
investigation of how teacher and principal attitudes towards the use of technology can be changed.

The relationship between type of technology training and teacher computer use also has more
room for exploration. This study did not determine any causal relationship between these two variables. If
a specific type of training is found to cause a higher level of computer use, that type of training should
become standard. Therefore, it is recommended that the relationship between type of technology training
and teacher computer use be a topic of future study.

Since the use of technology is both recommended (NCTM, 1998) and mandated (Watson, 1996),
the inverse relationship between computer use and the number of sections of geometry taught becomes
important. If it is a goal to use technology, the teachers who teach the most students should be using
technology. Discovering the reasons behind this lack of technology use by these teachers should also be a
topic for future research.
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Recommendations for Practice

The results of this study can provide school districts with several recommendations forpractice.
The inverse relationship between technology use and the number of sections of geometry taught provides
one such recommendation. School administrators need to be aware of this relationship and take steps to
discover if it holds true in their district. If those administrators should find the inverse relationship among
the geometry teachers in their district, an attempt should be made to determine the reasons behind the lack
of technology use. At that point, the administration could seek to alter the factors which lead to low
technology use among teachers with the most sections of geometry.

The teachers in this study were asked to report on the type of training they have received in the use
of geometry specific software. Of the 52 teachers who responded, 25 (48%) indicated that they have
received no training in the use of geometry specific software. Another 9 (17%) reported that they had
undergone training only in how to use geometry software. Since the use of technology has been both
recommended and mandated, another recommendation for school districts is to even out the levels of
training received by providing integration training to all geometry teachers.

The results of this study indicate that 26 of 51 (51%) of the respondents indicated that they had
low or medium levels of awareness of the capabilities of technology in geometry classrooms. It is
recommended that school districts make an effort to assure that their teachers are kept up to date with the
latest products available in their field. Since it is not possible to use technology that the teacher isunaware
of, this will remove a potential impediment to technology use.

Finally, this study offers recommendations for current practice in teacher education. Schools of
education should provide opportunities for pre-service teachers to become aware of the capabilities of
technology in the teaching of geometry. Pre-service teachers should also be trained in the integration of
technology into their specific subject areas. In this way, colleges of education will assist school districts in
accomplishing the previous two recommendations.
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Using WebCT to Deliver a Finite Mathematics Course
to Preservice Teachers.

J. Harley Weston
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Abstract In the spring of 1998 five faculty members at the University of Regina in
Saskatchewan, Canada received funding to implement an online version of an introductory
mathematics course. This course, Math 101, was designed to meet the needs of students in the
elementary education program in the Faculty of Education and to satisfy the "critical thinking"
requirement in the Faculty of Arts. This paper chronicles the development of Math 101 Online
from the initial conception through the first full offering of the course in the Fall of 1999. It
includes an overview of the tools that are available in WebCT. Strengths and weaknesses of
WebCT are addressed from the course developer, instructor and student points of view. The
paper also addresses the difficulties in online communication with students when such
communication involves diagrams and mathematical notation.

Introduction

Math 101 is an introduction to finite mathematics which is delivered through a standard
lecture format to 500-600 students per year on campus, and through regional and
community colleges at various locations in Saskatchewan. The content contains
arithmetic and numeration systems; problem solving; number theory; rationals,
irrationals, ratios and percent; sets; and logic. In the spring of 1998 funding to implement
an online version of Math 101 became available from the provincial government which
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has a desire to expand the number of university level courses that are accessible to
learners in remote communities. Our motivation was to use this opportunity to tailor the
course more closely to the needs of Saskatchewan learners and to improve accessibility
for students who, .for whatever reason, find it difficult to attend lectures. The proposal
was made by five faculty members, four in the Department of Mathematics and Statistics
and one from Mathematics Education.

Once the approval for funding was received a variety of possible software platforms were
considered and a decision was made to use WebCT, a collection of course tools created by academics at the
University of British Columbia. A number of factors influenced this decision. Software features that were
required for delivery of the course were used to narrow the range of possible platforms and then versatility
of the tools available and cost were the final determining factors. An added bonus was that WebCT was
being used at the University of Regina to deliver a non-credit course in genealogy and thus there were
people on campus with experience using the software. In the intervening eighteen months Weber has
been used to deliver and supplement other courses at the University of Regina (Maeers, SITE 2000).

Content Creation and Organization

Two undergraduate students were hired in the spring of 1998 to begin collecting, organizing and inputting
the content. Both students were familiar with the content of the course and one of them, a geography major,
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had experience the previous summer creating web pages. The second student, an elementary education
major, had only minimal experience with HTML.

During the summer of 1998 the students took course notes and problem sets from three of the
faculty members involved and began to design the course around this material. Each of the six units in the
course was assigned to a faculty member who wrote the first draft which was then formatted for web
delivery by the students and uploaded to the WebCT server. Each unit went through several iterations as all
the participants read, edited and reread the material.

The content was prepared for WebCT delivery using a text editor and most of the
HTML coded from scratch. Adobe Photoshop was used to draw the diagrams and
MathType for construction of the mathematical symbols. Creating the HTML from
scratch is certainly not necessary as any page creation software that produces HTML
could be used. The File Manager in WebCT was used to easily move the content pages
from the local computer to the server. Collections of files were zipped together, moved to
the server as one file and then unzipped. The course material was organized on the server
into units and sections using the Path Editor and problem sets were collected into the quiz
database.

Pilot, Revisions and Delivery

In the fall of 1998 a pilot section of Math 101 Online was offered to five volunteer
students. These students met with the instructor in a laboratory setting, three hours per
week for the semester and worked online. The students, for the most part, communicated
with the instructor through the Bulletin Board and the Private Mail Tools in WebCT. The
scheduling of the class at a particular time and place was to observe the students and
identify any problems they might have with the technology as well as allow for the class
to be continued in a lecture format should some major problem develop. The class was
completed without incident and the students performed well on the common final
examination. The students had some constructive criticisms of the course layout and the
number of worked examples but there were no serious criticisms of the technology or
format of the class.

In the summer of 1999 revisions were made to the course material based on the
comments from the students in the pilot section. The page layout was changed to improve
the readability. The material was expanded in areas where the students found to be thin,
more worked examples and practice questions were added and the quiz database was
expanded. Work also began on translation the course into French.

Math 101 was scheduled in an online format for the first time in the fall of 1999.
Twelve student registered and subsequently three dropped. Of the nine remaining
students four live in Regina where the university is located, four live in other locations in
Saskatchewan and one lives out of the province. At the time of writing this paper the
students are completing the sixth quiz in the course and the final examination is
scheduled in three weeks. The quizzes are written online but the final examination, which
is common for all students in all sections, will be written with pen and paper.

WebCT Tools
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The tools in WebCT can be roughly categorized into four sets, communication tools,
study tools, evaluation tools and management tools. The specific tools used in Math 101
Online are outlined below.

Communication Tools

Bulletin Board
This is the main tool for communication among the students and the instructor. Messages
posted to the Bulletin Board are viewable by everyone in the class. Messages are
threaded and can be organized into fora by the instructor. The Bulletin Board is hypertext
based which allows graphics, mathematical symbols and hypertext links to be included in
posted messages.

Private Mail
The Private Mail Tool is used by the students and the instructor for private
communications. Private mail between students or between students and the instructor is
visible only to the individuals involved. In many instances students asked the instructor
questions about the course material using Private Mail Tool. In these situations response
were posted to the Bulletin Board without identifying the student. This helped to open up
the discussion and show individual students that they are not alone with their difficulties.

Calendar
Important dates were posted on the Calendar, dates of quizzes, the final exam and
university holidays when it might take the instructor longer to respond to questions. The
instructor can post to the Calendar for everyone to see and the students can post notes to
the Calendar which they alone can see.

Chat Room
The Chat Room was made available to the students in the course although the instructor
had no plans to use it.

Study Tools

Compile notes for printing
Using this tool a student can collect pages into one file for printing. Since the course is
organized into units and sections, with each section being an individual file, this tool
make it very convenient for students to print individual sections, collections of sections or
whole chapters.

Resume Reading Notes Where You Left Off
This tool, which uses the WebCT Path facility, allows students when they log on to return
to the last page they were previously reading.

Glossary
A glossary of important terms used in the course.
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Search Content
Students can search the course material for a particular word or phrase.

Evaluation tool

Quiz tool
Quiz problems and solutions are organized in a database. The questions can be multiple
choice, matching, short answer, paragraph answer or calculated answer. All except
paragraph answer can be graded automatically. In Math 101 the Quiz Tool was used for
six quizzes given throughout the semester, one at the end of each unit Students had a
forty-eight hour window in which to write each quiz, but once a student began a quiz
there were sixty minutes to complete it. One additional practice quiz was given in the first
week to allow students to become familiar with the Quiz Tool. All questions were graded
by the instructor. After each quiz was graded the student was able to see the questions,
their responses, the correct solutions from the quiz database, their grade and any
comments from the instructor.

Student management

The instructor is able to create and delete student accounts and manage the student
password file. Students are able to change their own passwords. Grades on quizzes are
automatically stored in a spreadsheet-like format which can be used to manipulate grades
and compute averages. The instructor is able to view tracking information on each
student which shows the distribution of hits on each page and tool in the course. The only
time this facility was used in Math 101 was to ensure, in the first few days of the class,
that each student was able to successfully log on.

WebCT: Strengths and Weaknesses

Weber has strengths and weaknesses that need to be considered by anyone considering it as a delivery
platform. From the designer's perspective it has a rich array of tools which can be used in a variety of ways
to present course material. The course material is created using standard HTML with no special of custom
code creation software required. The ability to structure the material using Path Editor was extremely
valuable in making Math 101 function as desired. This reliance on standard HTML does however have its
drawbacks. A designer can use a WYSIWYG editor to produce the HTML code but in the author's
experience there are times when the HTML code has to be edited directly to get the page to perform exactly
as desired. Also the fact that the Weber File Manager is used over the web to manipulate the files means
that it is slower than if you could manipulate the files on your own computer. The main means of support
for a designer is the WebCF mailing lists, and this support is excellent. Replies to questions posted to the
mailing list is very quick and helpful, both from the employees of WebCT and other subscribers to the list.

As the instructor in Math 101 one of the most useful features was the Bulletin Board. Since the
Bulletin Board is a hypertext environment it allows the instructor to respond to students' questions using
diagrams and mathematical notation when required. This however requires that the instructor have a
knowledge of HTML or create the reply using a WYSIWYG editor and upload it to the server. The Private
Mail Tool has also proved to be valuable. The instructor found it very helpful that the private
correspondence with students in the class stays within the WebCF environment. The course record facility
which keeps the grades on quizzes in a spreadsheet-like format was found to be limited and slow since it
has to be accessed over the web. It is, however, easy to download the grades from this facility to a
spreadsheet on the instructor's local computer.
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Each student in the class is being asked to complete a course evaluation form but at the time this
paper is being written these forms are unavailable. The students have used the Bulletin Board, the Private
Mail Tool, the Quiz Tool and the ability to compile and print the notes but their reaction to these and other
tools, and to the course in general is not available at this time.

Concluding Remarks

There are no easy solutions to many of the problems that arise in designing,
implementing and teaching an online class. One of the first problems to face is the choice
of software. The author has been satisfied with the selection of WebCT despite the
weaknesses mentioned. No other course delivery software has been found which contains
its versatility and array of tools. The requirement of mathematical notation and diagrams
adds an additional level of complexity to a mathematics course. For Math 101 the
requirements of mathematical notation are minimal and the use of MathType by the
designers and instructor met these requirements. The students however have difficulty
with mathematical notation when posting to the Bulletin Board or answering quiz
questions. There are also times when a student asks a question that would be easier to
articulate if a diagram were possible. The White Board, which is available in WebCT
and in other web delivery software, may help to fill this need but its synchronous nature
made it unsuitable for Math 101.

On reflection the author has misgivings about the choice of Math 101 as a first attempt in creating
an online course. Many of the students who register in Math 101 have a fear of mathematics and would not
be expected to enroll in a web based class. The participants, however, have learned from this experience
and have produced a version of this existing course that complements the lecture format and expands the
options for students wishing to enroll in Math 101.

A version of Math 101 can be seen at http://online.math.uregina.caJoublic/mathl 01 samnler/. This
sampler version of the course contains all the structure of Math 101 and a sample quiz but most of the
content has been removed.
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Abstract: The aim of this paper is to report on the authors' experience in designing and implementing an online
version of a technology (graphing calculator) based "college algebra" course. College algebra is one of several courses
mandated by the State of Louisiana as a component of the core curriculum requirements for undergraduate students.
This is a course, which many K-12 educators will go on to teach in their classrooms. We identify some of the problems
we encountered and the solutions we employed in order to resolve them. In particular, we discuss the unique challenges
we faced in communicating mathematics online and utilizing the graphing calculator technology. Finally, we examine
the compatibility of the standards advocated by the National Council for Teachers of Mathematics (NCTM) with the
online paradigm, and we describe what we believe to be strengths and weaknesses of online learning models for college
algebra.

Introduction

"College Algebra", a course offered by every university in the State of Louisiana and by many universities
around the country, contains material which should have been covered in the K-12 curriculum completed
by many of our incoming students. Nonetheless, few Louisiana students (less than 2%) place out of this
course. Thus, it appears that many students are not learning this material before entering college. Eight
years ago, the Department of Mathematics at NSU was motivated to "reform" the course. A major
component of our reform effort involved making the course technology-based. Namely, graphing
calculator technology was heavily integrated into the course.

Several considerations led to the development of an online version of the course. NSU has a large
proportion of nontraditional students (i.e. students who work full time and/or commute). For many of these
students, the online alternative is not only more convenient, but may also be the only alternative. A second
reason is the university's current mission of making it possible for a student to complete an associate
degree program completely online by the year 2005; it will be necessary to have this course in place if the
university is to achieve its mission. A third consideration for the authors was the compatibility of the course
goals and objectives of our reform based college algebra course with the online paradigm. At first, we
were cautiously optimistic that we would be able to provide a "reasonable" alternative to the traditional on-
ground class for nontraditional students who were sufficiently motivated. As the development of the
course progressed, we knew that we could do much better than simply provide a "reasonable" alternative.
After only a minimal amount of training, it seemed apparent to us that the principles which guide current
reform efforts in undergraduate mathematics education went hand and hand with those which tend to guide
the design of online learning models. We began to think that perhaps the online learning environment was
more conducive to achieving some of these "reform" goals than the "on-ground" one was.

Section 1: Challenges/Problems Encountered Some Resolutions and Advice.

In this section we discuss some of the challenges we faced and some methods we used to resolve (or at
least attempt to resolve) the problems we encountered. Some informal advice and recommendations are
offered.
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Training & Non-technical Support

We knew that the project could not even get off the ground without certain preliminary resources, as well
as general support from our institution both departmental and administrative. We needed time to develop
the course, new personal computers, and professional training. We obtained these through a grant from our
state Board of Regents (with matching support from the university). The grant provided us with course
release time, money to take training courses in the design and delivery of online courses from the UCLA
Online Extension Program, and new computers. We strongly encourage anyone developing an online
course or program to get some training. Only a very short time into our own training process, we were
amazed at our initial naiveté and at some of the misconceptions we had held. The online experience is
inherently different than the on-ground one, especially when the online mode is asynchronous. Bedore
(1997) maintains that online experience and training, as well as content expertise, are necessary
prerequisites to a successful online curriculum conversion. This is particularly important for those who are
facilitating more interactive learning models. Bedore also recommends having a "champion" in your
corner, someone dedicated to the success of your project who will do what it takes to keep development
and support for the project on track. In our case, we had this from the dean of our college and our
departmental coordinator. Finally, for the purposes of doing justice to your course and preserving your
sanity, we recommend against developing an online course for the first time without release time and/or
help from a graduate assistant (both would be preferable).

Technical Support

As concerns technical support, we did run into some problems. Use of the course management system
TopClass was mandated by the university; a lack of training in its use, and a lack of support when things
went wrong were major stumbling blocks. We strongly recommend that, before jumping in, you find out
about the existing technological infrastructure at your institution and the level of technical support you can
expect it to deliver. Unreliable or difficult to use technology and poor support services could doom a
program to failure and put a permanent dent in your market. Fortunately, NSU has been a Louisiana leader
in distance learning. There were many people around for us to talk to during the process of developing our
course. We strongly recommend actively seeking the advice and expertise of people who have experience
with whatever technology you are using.

Course Management Systems

We found Top Class, the course management software, to be somewhat inflexible (especially in terms of
our need for graphical representations). As it turns out, that problem may be resolved as the university is
switching to a system called Blackboard (which appears to be more user friendly). For anyone in the
position of being able to choose a course management system, we would recommend giving this careful
consideration. Learn something about the different alternatives and make an informed choice rather than
just choosing one randomly. They really do differ, and it doesn't seem to be the case that the more
expensive options are necessarily the better ones.

Accomplishing Learning Objectives & Choosing Technologies

We wanted to accommodate different learning styles, yet at the same time keep it simple. We didnot want
to burden students with complicated technological demands or overwhelm them with distracting state-of-
the-art "bells and whistles." We were especially concerned about the availability and quality of technical
support services. We felt there was no reason to use a given technology unless it would clearly
support/enhance the learning objectives for the course. We did know that something beyond plaintext and
"lecture" was needed to convey problem solving techniques and develop problem solving skills. One
develops problem solving skills by solving lots of problems. Some mechanism needed to be in place to
provide students with an opportunity to attempt problems and get immediate feedback. While we would be
available to answer students' questions via email, we did not feel this would be sufficient to provide
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students with an appropriate level of guidance and feedback. Initially, we considered requiring students to
purchase an interactive CD ROM device (such as Math Systems' Mathpert Assistant, Quant Systems'
Adventures in Algebra, or Academic Systems' Mediated Learning software). But we decided against this
for two reasons. We wanted to keep student costs at a reasonable level and we discovered that there were
already wonderful free resources available on the Internet. In addition to the text and 11-83 graphing
calculator which we also require for our on-ground class, we required students to purchase one additional
piece of software called Graph Link that allows communication between calculator and computer.

The course was structured as follows: students received weekly assignments that included readings from
the text, problems to solve, and discussion question(s) requiring responses in our class "discussion" area
Each assignment was accompanied by a "lesson enhancement." The lesson enhancements were Web pages
(written by us) containing summaries of key concepts, examples, suggested interactive activities, and links
to interactive tutorials and self-quizzes Many of the tutorials offered multi-layered dynamic presentations
of concepts with visual/graphic explanations, opportunity for experimentation, and self-quizzes with instant
grading and feedback. Weekly quizzes were given for credit. (We provided solutions to assigned problems
before posting quizzes-for-credit) Another integral component of the course was the use of both group and
individual projects. These provided students with an opportunity to apply the concepts learned in the
assignment to "real world" situations (i.e., choosing the best cell phone plan from options offered or
predicting market value of property for a given geographic location). Finally, we gave midterm and final
examinations (administered online via the TopClass testing feature).

Graphing Calculator Technology

Research has suggested that use of graphing calculators enhances students conceptual understanding of
mathematics and tends to foster a more positive attitude toward mathematics in general among both
students and faculty (Hubbard, 1998). One of the major issues involves the need to effectively use the
graphing calculator within the academic setting and its incorporation in the solution of real-world problems
(Testone, 1998). Based upon our own experiences and that of others (Hollar, 1999), students using
graphing calculators tend to have a better understanding of functions than those who do not use this
technology and, therefore, have a better grasp of the implications in problem solving. The calculator allows
students to easily view problems and principles from multiple perspectives, including visual or graphic,
numerical, and symbolic, and it allows them to see the relationships between them. It also makes it feasible
for students to attack "real world" problems without losing the forest for the trees.

As we mentioned, the graphing calculator is an essential component of our current on-ground course; also
our text is intended to be used in conjunction with the graphing calculator. Knowledge of the graphing
calculator is assumed in all courses for which "college algebra" is a prerequisite; it was essential that we
find a way to incorporate this technology into our online course. That is where the Graph Link software
came into play; this software allows the user to send images generated by the calculator to the computer for
inclusion in documents. We used this technology to send graphical representations, tables, instructions, etc.
to our students and the students were able to send graphs to us. The biggest problem was the way that must
be done; check your course management software. Graph Link saves images as .tif files but the software
would only accept .gif files; the conversion was time-consuming but not impossible (you need good
technical support here to find out exactly what is required). In addition, we created a "Calculator Corner"
where students could go for help in using both the. Graph Link and their calculator. In some cases they
were referred to various sites for assistance; in others, we wrote simple instructions and provided images
from the graphing calculator using Graph Link. Other than that, the students used an ordinary keyboard for
most of their work, using the same symbol conventions as they do with the graphing calculator. There are
nice websites out there that explain "how to type mathematics" on an ordinary keyboard.

Students' Computer Literacy

We did encounter some problems with computer literacy on the part of students. The university does not
officially require a computer literacy prerequisite. We strongly encouraged literacy in a course
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"disclaimer;" nonetheless, we did end up with some students who had very little or no computer
experience. In the future, we would like to see a computer literacy requirement for incoming freshmen.

Other Considerations

We had high hopes about the discussion component of our course. Based on our experience with online
learning, we imagined an active and stimulating "virtual classroom" where we as facilitators would ask
leading questions, steer the conversation in the appropriate direction and bring about understanding of the
key concepts. We have since reconsidered our assessment of the potential value of the class discussion.
Many of the learning objectives for our algebra course involve specific "skills" which must be mastered.
These are probably best demonstrated through an interactive component that can provide meaningful
feedback We still have hopes that discussion of the class projects can be fruitful. We intend to make the
projects our main vehicle for assessing the achievement of learning objectives centering upon "real world"
application of mathematical knowledge, critical thinking and communication skills, and building cross-
disciplinary knowledge.

Section 2: Compatibility of Online Paradigm with NCTM Standards.

In 1989, the National Council of Teachers of Mathematics (NCTM) published standards for mathematics
education. The document provides general guiding principles for mathematics instructional programs and
specific standards about mathematical content and processes students should know and use as they progress
through school. The chief premise is that the underpinnings of everyday life are increasingly mathematical
and technological; students will live in a world where intelligent decisions often require quantitative
understandings. Just as the level of mathematics needed for intelligent citizenship has increased
dramatically, so too has the level of mathematical thinking and problem solving needed in the workplace.
The guiding principles for instructional programs include promotion of the learning of mathematics by all
students and the use of technology to help students understand mathematics and to prepare them to use
mathematics in an increasingly technological world. We believe that the online paradigm is particularly
compatible with these basic principles. The abundance of Internet resources and emergence of new
technologies are creating opportunities to accommodate a wider variety of learning styles. Concepts can
easily be presented from many points of view. Mathematical software, computer algebra systems such as
MAPLE, and graphing technology are being integrated ever more seamlessly online.

The Standards are divided into two categories those which focus on content and those which focus on
process. Embedded in the standards we found many of the learning objectives for our college algebra
course, as well as other lower level math courses offered here at NSU. One of the content standards
includes a recommendation that attention be given to patterns and models so that students acquire the
ability to "use mathematical models and analyze change in both real and abstract contexts." Another is that
attention be given to data analysis and statistics so that students learn to "pose questions and collect,
organize, and represent data to answer those questions," "interpret data using methods of exploratory data
analysis," and "develop and evaluate inferences, predictions, and arguments that are based on data" We
believe that the combination of graphing calculator technology with Internet resources offers outstanding
potential in these content areas. Numerous Internet resources are available for data gathering and
experimentation with patterns and models. The n-83 graphing calculator is particularly well suited for
statistics and data analysis. Students can readily test predictions of models by collecting information from
the Internet or by running simulations on their calculator.

The process-oriented standards focus on problem solving capabilities, reasoning abilities, communication
skills, making connections, and mathematical representation. It is not only recommended that students
learn to express mathematical ideas coherently and clearly to others, but also that they extend their
mathematical knowledge by considering the thinking and strategies of others. It is also recommended that
students develop a repertoire of mathematical representations and learn how to use them to "model and
interpret physical, social, and mathematical phenomena" We believe that the process-oriented standards
can be met most effectively through interactive discovery-oriented learning models in which the student is
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expected to actively assume responsibility for his/her learning process. The capability of the online learning
model to accommodate asynchronous interactions allows much greater opportunity for students to learn by
drawing on their own experiences and the experiences of others to apply knowledge in a real world context,
and to make connections between math and other disciplines. It is worth noting that asynchrony, as well as
being a convenience is what makes the high level of interaction possible. Internet resources further
facilitate the goal of having students draw on a number of resources to answer questions and solve
problems. Internet resources also facilitate multiple representations of phenomenon and the illustration of
ideas from different points of view (e.g. graphic, numerical, and symbolic).

It struck us from the beginning that the guiding principles advocated by proponents of online learning
models tend to be similar, if not identical, to those which continually pop up in the undergraduate
mathematics reform literature. For example, Berge (1996) recommends avoiding lecturing, encouraging
group interaction , and intentionally giving students little direction. De-emphasis on lectures, cooperative
learning, and student-centered learning are all cornerstones of the current reform efforts and appear to have
positive effects on student learning (Reynolds, 1995, Rogers, 1988). Other "reform" goals include emphasis
on concepts and the "big picture and de-emphasis of rote memorization (particularly of isolated facts and
techniques for which no context is provided). Research supports the contention that students learning
objectives are better achieved when "teachers regularly utilize the computational, graphic, or symbolic
capabilities of technological tools to develop mathematical ideas. (Carpenter 1998, Heid 1988, Hiebert &
Wearne 1996).

Section 3: Strengths and Weaknesses.

Strengths of an Online Program

Offering college algebra online accommodates both "distance-free" and "time-free learning." The
asynchronous element of the program opens educational opportunities for students with varying
backgrounds and experiences. Each brings a unique mathematical perspective to the "class" which
promotes interest and may provide each with a better understanding of why mathematics is so important.
Furthermore, the online environment is especially suited for fostering the development of critical thinking
skills as a vehicle for students to apply course content in a "real world" context. Not only does the online
discussion encourage students to draw upon their own experiences to tie theory to practice, it also provides
an environment conducive to cooperative learning activities. In addition, the lack of time constraints gave
students an opportunity to digest the material and relate it to their own experiences.

Conversion of traditional algebra courses to online courses will vary but utilizing grant resources, as we
did, can provide some budgetary relief. Naturally, as faculty experience grows and technology changes,
these costs can be expected to decline. According to Bedore (1997), curriculum conversion costs should be
about $500 per course with setup and technology costs ranging from $0 to $1,000. Complete course
development costs would be substantially more (about $2,000).

Weaknesses of an online program

With the need for major modifications to the existing infrastructure, the cost of implementing an online
program could be prohibitive. Without the kind of support we had for this project in terms of equipment,
release time, and faculty education, this project would have been doomed from the start. In addition, poor
promotion of the course could lead to frustration on the part of both faculty and students. We had problems
with students who were registered for the course but really had no desire to participate in an online course
(their advisors put them in the section because it was the only one open at the time).

Research suggests that the dropout rate for online courses may be higher than that of traditional courses
(Sherry, 1996; Starr, 1995). Students taking a college algebra course online (or any other online course)
must be sufficiently motivated, self-directed and dedicated to the task. They must understand that they
share a somewhat greater responsibility for their learning than might be expected in a traditional class. One
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of our main concerns was student interaction; the students were reluctant to "discuss" mathematical
concepts with each other for a variety of reasons. The lack of face-to-face contact was a real problem for
some; this may have been due, in part, to the novelty of the situation since these students bad limited online
experiences.
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Issues in developing an on-line mathematics learning series for middle
school teachers

Jennifer Knudsen, Institute for Research on Learning, USA, Jennifer Knudsen@irl.org

Abstract: Online learning could be an important resource in meeting the need for helping
teachers learn more mathematics, which is critical to the success of long-term change in
mathematics instruction. We report on a pilot of an online learning series for middle-
school mathematics teachers. An existing Web-based professional development center
was utilized together with specially designed interactive web pages to structure and
support six weekly synchronous meetings. The mathematical content of the series was
proportions. The pilot yielded initial success in fostering mathematical discourse among
participants and raised issues, technological and other, for the future.

As a decade of reform work in mathematics education based on the National Council of Teachers of
Mathematics' Curriculum Standards (NCTM, 1989)comes to a close, reformers are looking to
technological solutions for the problem of delivering high-quality professional development to teachers
nationwide. Subject-matter expertise is of particular importance as recent research (Ball, 1989; Schiffer,
1997; Darling-Hammond, 1998; Ma, 1999; Sowder et al, 1996) highlights the mismatch between teachers'
knowledge of mathematics and what and how they are expected to teach. Neither simply exploring student
activities nor taking traditional college-level mathematics courses will help teachers develop the
mathematical practices they need. Reformers are designing new programs focusing on developing content
knowledge in support of change. Online learning communities hold promise for providing professional
development that is convenient to schedule; can be offered to urban, suburban and rural teachers; can fit in
with ongoing reform programs rather than be simply "another inservice." The question of how well subject
matter learning can be supported online is an open one.

This fall, we at IRL developed and offered a pilot version of an online seminar for teachers, designed to
contribute to this reform work The pilot, Brush up on Proportions, is part of our WebMath online math
learning community for middle schdol teachers, which will expand into a larger program next year. The
intended audience includes teachers who are already engaged in implementing a Standards-based math
program or are at least using some materials or processes recommended by the Standards. The seminar
consisted of six hour-long sessions, offered as a series. Each session was devoted to exploring and
deepening teachers' proportional reasoninga central topic in Standards-based middle school programs
through activities and discussion. Conceptual and procedural knowledge were both emphasized, as well as
the relations between them. We also aimed to establish norms of discourse that will encourage teachers to
develop mathematical practices such as making conjectures and constructing mathematical explanations.

This paper describes features of our online seminar environment and issues that arose during the pilot.

Features
A suite in TAPPED IN. Rather than build and support our own interactive web infrastructure, we
contracted with TAPPED IN to house the virtual classroom in which Brush up on Proportions took place.
TAPPED IN is a virtual professional development center designed to house activities for teachers
throughout their career. The classroom is part of a suite where various middle-school math-related events
sponsored by IRL take place. Organized as a campus, with building, suites and offices occupied by tenants
who provide professional development services for teachers, TAPPED IN provides an infrastructure with a
graphical interface in addition to a text window through which participants can communicate with each
other and use objects in the environment. Participants' main venue for participation in class is a text
window in which their comments, "emotings" and interactions with objects are seen by others, and they can
see what others say and do. Objects and occupants of the classroom appear in a graphics window too. The
graphics window gives participants a sense of location through maps, floor plans, and sometimes, a 3/4
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view into a room. One room in our suite is portrayed visually as a corner of a classroom with objects on the
walls, through which teachers can view the course syllabus, get more information about IRL and access the
web pages that form the text for our seminar.

Web pages and other tools. One of our initial questions was how to build a discussion of mathematics in the
relatively thin online medium of text exchange. Current math teaching and professional mathematicians'
practices include the use of many different materials and representations. In teaching, handouts, texts,
manipulatives or other curriculum materials are resources for mathematical thinking and discourse Also,
there is some medium for whole class display of ideas: a white board or overhead projector. The overhead
can display pre-made representations or spontaneous ones. The practices of working mathematicians often
include discussion centered around a just-in-time scribbled diagram, sketch or equation.

The current TAPPED IN tools that provide similar capabilities are text-only whiteboards, which we
determined to be of limited use in displaying mathematical ideas. The whiteboard did begin to serve an
agenda structuring purpose, though. In future iterations, we plan to design, with TAPPED IN staff, and use
a graphics-capable whiteboard and a special mathematics notation tool. In addition we are looking at
inexpensive commercial devices for bringing scribbles to the digital environment. In this first pilot,
however, we worked with software and capabilities we had already to create web pages.

We created interactive web pages that play the roles of both manipulatives and textbook in our virtual
classroom. These pages are textbook-like in that they structure the course content; they serve as
manipulatives in that their interactivity allows users to have experiences on which to base mathematical
conjectures. The facilitator, or anyone in the mom, may project the pages for all to see and work with. Four
of these web pages were used in Brush up on Proportions:

Page one shows the iconic proportional man by Leonardo DaVinci, where a circle is inscribed around
his armspan and height and a square is constructed around him in another way. There is no interactivity
to this page. Text asks users to consider what is commonly meant by the term "in proportion", using
the picture as a springboard for discussion.
Page two shows a floorplan of a room with some furniture in it. When users type in a scale for the
room, the resulting width and length of a rectangular table appear. Text asks users to set the scale so
that the floorplan rectangle represents a table that is 130 cm wide.
Page three presents a more complicated floorplan problem: selecting a table from one scaled diagram
to insert in a floorplan with another scale. The ratio between the sides of the table is the first
determiner of which table is a good choice.

a c
Page four shows a proportion form,

b d
= .Ina set of challenges, numbers replace a, b, c and d to

make a false proportion and users must change one number to make a true proportion. The proportion
form is tied to a picture of two rectanglesa by b and c by d-- superimposed on a grid, so users can
note how the rectangles compare visually when the proportions are true or not. They are asked to use
this experience to help them think about why the cross-multiplication algorithm works. They are
encouraged to use other representations or arguments based on arithmetic, too. In other words, they are
to explain why if a/b=c/d, then ad=bc, without resorting to algebra.

These experiences are designed to help teachers develop their proportional reasoning and connect it to
formal representations. The problems on pages. two and three are not difficult for many mathematics
teachers to solve; however, we have found that their connection to proportion and the relationship among
all the multiplicative relationships in the pictures are not always explicit. For example, one participant said,
"we don't need proportions" to solve the problem on page two, indicating that dividing 130 by the width of
the rectangle in floorplan units would suffice. This is certainly a correct procedure for solving the problem,
based on an intuitive understanding of its underlying multiplicative structure. However, this solution to the
problem does not help teachers help students develop their own multiplicative sense. In discussion of the
problem together in seminar, we asked ourselves to justify each stage of the answer and to connect the
work to the proportion a:1--c:d.
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The web pages worked well as a resource for mathematical discussion. Participants actively engaged in
trying out solutions in the interactive structure. The discussion was anchored in the particulars of the
representation but also led to more general mathematical insights. We will improve the representations
based on insights we gained through using them. For example, setting the scale may not be the most helpful
interaction to offer in solving the problem presented on page three. We will also build new sequences of
web pages that follow other learning trajectories through proportional reasoning: for example, supporting
the connection between the proportion form and linear variation.

Oliects The TAPPED IN environment, in true "moo" fashion, includes a number of objects with which
users can interact. A few of these have been used as instructional devices. As a simple example of
proportionality, we created a virtual pet, Shrinky, who responds to the text command, " shirnk by 50%" by
shrinking from 100 to 50 centimeters. This prompted others to display two cows, drawn in the text window
in ASCII symbols. The cows then became the topic of discussion: what percent of the first's length was the
second? Conjectures were made and the facilitator was able to model mathematical questioning and
justifying in a non-threatening way around objects that were displayed with humor.

In the future, we hope to have objects that can accept more flexible commands than "upon text x, print text
y." For example, Shrinky Jr. might be able to know her current length and calculate her new length based
on the percent she was commanded to shrink. Participants could try to get Shrinky to shirnk from 160 to 25
feet in exactly three shrinks and learn about the concatenation of percents, part of multiplicative and
proportional reasoning.

Using research findings. We are building on existing insights into cultivating and growing Web-based
communities (Reingold, 1993; Rochelle and Pea, 1999). From this research and reflection, we know, for
one thing, that attention must be paid to norm setting. Our facilitators set the tone of discussion in the
community and establish mathematical norms. Essential to this tone setting are both providing and
requesting mathematical explanations. We have also encouraged a sense of play with the TAPPED IN
objects and with light banter in between and throughout the mathematical insights.

The literature also informed us that personalities can be an important factor, and that social events and
personal talk help bind people together to do the more content oriented work. In the future, we plan to focus
on these aspects of community building: We will encourage participants to create profiles and use pictorial
"avatars" when they are online. We will host online social events and encourage "idle chatter" as a way of
establishing commonalties We will tirtili7P TAPPED IN's resources and existing culture to help
"enculturate" course participants.

Issues
Mathematical discourse. We aim to help teachers connect their mathematical intuitions with standard forms
through discourse. This is a two-way street teachers can use standard forms such as proportions to
construct mathematical explanations of numerical insights they have; they can also use the situation
presented in the interactive web pages to help support explanations of their use of the standard forms. In
Brush up, this meant that we helped teachers connect the proportion form, a:1-c:d, to their own
multiplicative reasoning. Figure one shows one of the interactive web pages that sets up a simple scale
problem: to set the scale of the floorplan so that the rectangle represents a 130 cm long table. For adults
fluent in intuitive proportional reasoning, it is not too difficult to divide the 130 cm by 5 squares of the
rectangle's length to get 26 as number to put into the scale. But our participants did not immediately
construct explanations for why division was the operation to use and why those two numbers were
involved. Through discussion together, we came up with two explanations: that the 130 cm of the real-
world length needed to be distributed across the 5 units of length of the rectangle, and that this distribution
called for division. We also saw that we could set up the proportion 1 unit? cm = 5 units:130 cm. The
proportion related the scale to the paper and real tables. Building these kinds of multiplicative connections
is facilitated by use of the proportion form, The result of all this should be more conceptual
resources for teachers to draw on as they help students reason about and solve similar problems.

1068



1069

Jerre
1 unit on the screen =PT cm in the real world

ehle

113. cm

Figure one: an interactive web page to support mathematiCi learning

Pace of interaction. As compared with a face-to-face discussion in a classroom, the pace of conversation is
slow in our online course. One hour was not sufficient time to do an activity, discuss it, and summarize the
important mathematics in the activity and discussion. The initial course outline covered the material in
three weeks; our just-prior-to launch outline was stretched to six sessions, and we ended up covering about
two thirds of the outlined material. This phenomenon is, of course, not restricted to syllabi of online
courses, but it is our sense that the problem was exacerbated by the slow rate of conversation online. The
next seminar will have ninety-minute sessions. We will also institute two leaders: a facilitator, keeping the
discussion flowing and helping everyone participate, and a recorder, keeping track of insights on the white
board.

There are some benefits to the slowed pace of idea exchange in the online classroom, however. The pace of
the overall discussion leaves room for side conversations to emerge. And obviously, these are not
disruptive the way two people whispering to each other in class can be. Two staff members participated in
Brush Up from computers that were housed side by side. They were able to carry on a face-to-face
exchange about a mathematical topic related to that week's seminar: they were trying to informally prove
or disprove that "three points determines a circle." Scratch paper and white boards were involved. They
made a fair amount of progress while still participating seamlessly in the discussion of Leonardo DaVinci's
iconic proportional man.

This interaction and, additionally, phone calls to solve technical problems during the class, has led to the
plan to encourage participants to pair off into "buddies", between whom some kind of communication
outside but during the seminar is encouraged. Online, phone and face-to face communications are three
means for this. The online environment allows participants to whisper to each other: in other words, to type
comments that only the two in the exchange can see on their screens. Phone conversations are possible if
long-distance phone bills are not a problem and if the Internet connection does not take up the phone line.
Alternatively, participants from the same school could participate together from their school's computer
lab.

Abandoning linearity. Giving up conventions of linearity that apply to oral conversation seems to be key to
becoming adept at online, text-based discussion. In oral conversation, we allow parenthetic remarks, but
they have some labeling, and they are limited in scope and frequency (depending on the speakers, of
course). Online, two or more conversational topics can become quite interleaved. Online participants
develop conventions for marking this, too, if the comments in the same conversation become widely spaced
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in the text. For example, a participant might preface her comment with "re table size" if table size had been
the topic several lines earlier.

Our preliminary experiences suggest that the non-linearity of online, text-based conversation can allow for
greater access to participation. Though new users sometimes say that the moment for their comment was
lost so they kept quiet, in fact, they probably could insert their comment way down the line, with a marker,
and make a meaningful contribution to the conversation. We will track data on this hypothesis in the next
pilot, and we will seed, by example, appropriate markers.

Attracting participants and supporting change. We had no idea how many participants to expect at our first
series. We announced the series on our Middle-school Math through Applications Web site and related
Web sites visited by teachers and curriculum decision makers. We sent email to teachers with whom we
had worked in the past and also announced the series on TAPPED IN's calendar and newsletter. Seven was
our highest attendance. Additionally, no one teacher attended all six sessions. These numbers were
adequate for our pilot purposes. We didn't want to have a crowd in our initial pilot, where our intention was
to try out the new environment and course materials.

Our initial pilot confirmed one of our starting premises: that this online subject-matter learning series needs
to be linked to ongoing professional development programs for teachers. We believe that this is important
not only for attracting participants, but also for making the experience effective in supporting long-term
change. We already have in place connections for the future. Connections can be made through curriculum
adoption or through state and district programs. For example, our next seminar series will be offered to 20
teachers who are piloting a unit from a new Standards-based comprehensive math curriculum. They will be
teaching a unit focused on scale factors and proportions, and the Brush up seminar will directly support
their teaching. We have developed interactive web pages that present problems similar to those found in
current Standards-based texts. We have also connected with state and district leaders to see how Brush up
can be of service to their programs.

Divergence vs. convergence. We experienced the tension true of all problem-centered, conceptual-
understanding-oriented teaching: constraining the conversation to keep the participants' discussion and
insights in the range of the mathematics topics defined in the lesson plan, as opposed to encouraging
divergence to capture the range of mathematical insights possible based on a given situation.

For example, one week, the entire session's discussion focused on page one of the "web text", displaying a
man with arms stretched and figures circumscribed about it. The depth and breadth of the conversation
around this image surpassed our initial planning expectations. The page was designed simply to ground
proportion in a familiar image, helping us tease out the meaning in everyday usage. But the discussion went
beyond that: Questions were asked and conjectures made about the relationship between the circle and the
square. The connection to ratio and proportion was made. Someone raised the question, "What was he
trying to tell us with this image?" We agreed upon a relation among the geometric figures and the body
parts in the image and, finally, shared insights about the meaning of "proportional" in common usage.

As we plan for balancing convergence and divergence in the next iteration, we are structuring the session
so that time is left at the end for the facilitator, and others, to mount a virtual soapbox in order to
summarize the mathematical territory covered and make connections that might have otherwise remained
implicit.

Technological capacity. We did not want to limit teachers' access to the series with high-tech demands. Yet
we wanted to provide a rich online learning experience. This led to tensions. Web pages with text and
graphics, like the DaVinci activity, work for any teacher with an Internet connection and a browser. The
TAPPED IN environment offered both Java-based and Web-based versions of the classroom. In order to
create a more interactive experience, we decided to use JavaScript. JavaScript does not take significantly
longer to download than a traditional web page, but requires a Java-enabled browser. This did not seem too
limiting since Java-enabled browsers are quite common. In order to support the majority of these browsers,
we limited ourselves to JavaScript 1.0, the earliest incarnation of the scripting language.
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In this pilot we also required participants to get the Shockwave plug-in and provided a link to acquire it.
Java applets will run without a plug-in, but would take longer to download and were more difficult for us to
develop. When we combined these different technologies (particularly the Java TAPPED IN window and
the Shockwave activities), we found that the browser could run into memory problems. The teachers
needed to be able to allocate more memory to their browser if they had enough RAM to do so. This was too
difficult for some participants to do while maintaining their role in the discussion.

Conclusion
Online learning environments hold promise for providing professional development opportunities for
teachers. Our initial pilot showed that a focus on subject matter, as called for in recent research on teaching,
can be accomplished through discourse centered on interactive web displays. Issues of problem-centered
instruction are mirrored on line and new issues arise due to text-based pacing. Additionally, online learning
programs can be "just another workshop" unless integrated into ongoing professional development
programs. Balancing the need for rich representational tools for math learning with low-tech user
limitations is a constant challenge.
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Abstract: Technology is best utilized as a tool for exploring the foundational objects and
exploring and varying the underlying nature of the object upon which the abstracted
mathematical symbol is constructed. When this is done appropriately it can serve to elicit the
formation of selected concepts. This paper will serve to illustrate how the symbolic computer
can serve to create psychologically foundational mathematical objects of thought for the
learning.

Introduction

The potential inherent in the modem microcomputer to serve as a bridge between and among
instructional theories has not been lost upon many researchers in mathematics education and curriculum theory
(Brownell & Brownell, 1998; Garofalo, Shockey & Drier, 1998). The computer easily enables a dynamic and
active learning environment within which each of the process strands of the National Council of Teachers of
Mathematics (NCTM) standards might find a home (NCTM, 1989). After all, when one thinks of reasoning,
problem solving, communication and connecting related ideas the tool of choice in nearly every discipline is the
microcomputer.

Furthermore, unlike the traditional calculator, the modern classroom computer has an unparalleled
ability to implement both graphical and procedural components of mathematics understanding in a single
unified object. By their creation and utilization of mathematically relevant computer-based objects this dual
encapsulation enables the students a unique opportunity to see both the form of representation and their actions
utilizing this uepresentation simultaneously. For this reason alone it would be a natural tool for both classroom
use and theoretical musings 1.

This has not been lost upon teachers and despite those who would use the computer solely for the
presentation of pre-packaged instructional units, there is a growing consensus that the computer can be an ideal
tool for knowledge construction at an individual or group level (Harvey & Chamitski, 1998). As we explore
the potential for classroom uses of computer technologies we have a once-in-a-lifetime opportunity to blend the
best of learning theory and the practical realities of student actions.

Creating a New Class of Mathematical Object

Let me address for a moment the extent to which the object orientation metaphor, found in the modern
windowed operating systems and programs, transfers to the "tools to think with" notions of current action upon
objects models of mathematics teaching and learning. In particular, the object-oriented environments which
modern technology has created are ideally suited to parallel and facilitate the ability of students to take a
broader variety of action upon objects of a nature and kind hitherto unknown. These student controlled actions
upon these mathematically powerful and computer enabled objects have the potential for creating classroom
environments which both surpass the pale hopes of the integrated learning system and would surprise those
wedded to a conservative view of Piagetian developmental levels.

Given the long history of cognitive science of borrowing the most current metaphors from computer
science it should come as small surprise to see the applicability of many of the object oriented programming
strategies to reflect aspects of human cognition (DuPlessis, 1995). And, indeed this new metaphor plays out
very well for the case of mathematics education. The tools supported by the modem computer enable a new
class of objects with which to think.

[1] For further background on the importance of what I am calling dual encapsulation Sfard offers a highly
informative account of the intertwined roles of process and objects in mathematics (Sfard, 1991).
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In order for this to happen, however, we must attempt to leave behind any preconceived notions about
the role of the technology as being most useful for information presentation and delivery. A much healthier
perspective, at least in terms of understanding this new approach, would be to envision the technology as being
used to providing a milieu within which knowledge construction can occur (Connell & Abramovich, 1999). To
see what this might entail, let me begin by telling a brief story from a very early research study using the
Windows based authoring program ToolBook.

I had created a ToolBook program that I called a "Cognitive Playspace" for children to explore various
foundational notions of mathematics. My goal at the time was to examine the extent to which traditional
physical manipulatives might be augmented by technology. One activity, in particular, involved the use of
various geometric shapes. I had intended these to be analogous to the traditional pattern blocks with which the
children were already familiar, but to not be identical to them. In this activity, the children were presented with
a variety of the puzzles to solve.

In the puzzle set for this particular day one of the tasks was for the child to reconstruct a pattern made
using the provided shapes through manipulation of the geometric forms on the computer's screen. I had
developed some fairly simple tools that would enable the geometric shapes to be rotated, translated, and
generally moved about the screen.

Of particular interest for the notion of object creation is an event took place when I brought a group of
Kindergarten and First-grade students to the University to work with this exploration package. By this time
they had had other experiences in both using ToolBook and the relatively primitive Windows machines. By the
time of this incident the children typically had very little difficulty relating to the computer itself. In looking
into their level of expertise I would say there were easily the equal of a computer savvy kindergarten student of
today. If this is somewhat surprising given the fairly primitive state of technology at the time I should mention
that these were 386 and 486 computers running Windows for workgroups. At the time of this study they
represented an extremely high end product. Furthermore, for the type of software that we were running, these
were more than adequate to give reasonable performances even by today's standards.

As an aside, the notion of using the most powerful technology and authoring system then available to
work with kindergarten students struck many as being amazing. I made the point then, which I still believe,
that in order for the computer (of that day) to be meaningful it required the highest end product. One of the
major pleasant surprises of the last nine years is how well these earlier findings hold up. Indeed, the off-the-
shelf machines of today are quite comparable (in terms of the visualization and manipulability of objects they
engender) with these early efforts. Not only was this work ahead of the curve, it was outside the box totally.

But what I remember most, relative to the notion of object reification, came from the experiences of
one young man who in his manipulation of the graphic objects managed to drag all of them off of the computer
screen. This was a bit more of a problematic than it might at first appear for in the nature of "it's not a bug it's a
feature" I had not created a simple button to return objects to the screen once they had been dragged off the
working area.

I must confess that this was a complete oversight on my part. The program was under development
and I had not yet thought as to what would happen if objects were to be dragged off the screen. In the course of
developing the activities I had always just clicked to the next screen and then back to reset the screen this had
become so much a habit that I had taken it for granted at the time work with the children began. Of course, this
child was blissfully unaware of that strategy. When he dragged them off of the screen for all he knew they were
gone forever.

I'll never forget his eyes looking up to me as they swelled with tears as he said, "Help me, Dr. Connell!
I have lost all of my toys."

His painfully sincere statement serves as a powerful reminder that in the mind of this child these
computer images represented real objects upon which he was carrying out real operations. Furthermore, these
operations carried with them a heavy kinesthetic component that was totally unexpected at the time.
Subsequent observations and interviews illustrated that the physical manipulation of his eyes and hands with the
motions of the mouse as translated to the computers screen translated to his mind as a series of actual actions
upon real objects.

To put it in more poignant terms, this was no virtual reality to this child. These were his real toys and
they were really lost. I'll never forget his joy as I showed him how to get his toys back.

The experiences of this child that the technology had engendered were extremely powerful for him.
Furthermore, they proved to be similar to the real world pattern blocks from which the geometric shapes had
been designed. The combination of kinesthetic motion required manipulating the objects with the mouse and
the geometric shapes on the computer screen appeared to provide a direct analog to the kinesthetic motion
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required to move the pattern blocks on the desktop. To these children differences between moving the virtual
object on the computer screen and moving the physical object of the pattern walks on the desktop were so small
as to be indistinguishable.

For this child this represented a valid action upon a real object. To that mathematics does represent a
series of action upon reified objects of growing complexity and abstraction, then this provides an excellent clue
in terms of starting place for effective technology use.

Two Parallel Examples.

Let us see how this model plays out for the case of a young child who is just beginning the process of
acquiring basic number concepts. The initial task for the young child is to perform sufficient actions upon a
foundational set of manipulative objects to develop a working vocabulary for later use. This vocabulary must
include the terminology used for the manipulative itself, relevant properties of the manipulative, and the
canonic problems to which the manipulative is used to explore.

Consider the Dienes Basel° blocks as an example. Typically a child begins by using the blocks to
build with just as with any other set of building blocks. Through carefully guided activities the young child
will come to explore more of the mathematically relevant properties of the blocks and begin to assign the
appropriate terminology to them.

Thus, the smallest block is soon recognized as a unit. Building from this basic foundation they learn
that it is this unit that we count when using the Basel() blocks. This is the set of primitive objects serving as the
source for later min esentations within this system of modeling. From this beginning other vocabulary relating
to the blocks is carefully developed, such as Hundreds Flat , Tens Rod , and Thousands Cube .

NEN dmom so

Alaillmr........
A/ "MIA ,11,4M,

Me IN ,111,/1111.11.411111,M,II,41 111d==.01111

211rlsw.., ro
Am, 111,1, AP, AI 4111, mr4 0/11111,0,111r/r, p, ...............

p0 0 p.
1111.111.11111111111.°0 0 0 00

Figure 1: Traditional manipulative - Units, tens, hundreds and thousands Dienes Base10 blocks.

With this vocabulary in place, experiences are designed to explore the relationships between the
numbers represented in these objects to think with and problems are posed which require the child to
consciously and strategically act upon these objects in order to solve. The child will then pose problems of their
own, which will end up involving further actions that the child will perform upon the primitive objects that they
have been working with.

To see the parallelism of approach this method incorporates, let us contrast this example from early
elementary mathematics with one from introductory trigonometry2. First of all, the objects these students are
thinking with are quite a bit more abstract. Let us look at a technology-enhanced Sketch object designed to
allow exploration of the sine and cosine function via the unit circle. Just as was done with the young child we
begin by developing a working vocabulary relevant to a developmentally appropriate object in this case
derived from examining selected points along a unit circle.

This Sketch object is indeed more sophisticated and is best thought of as a dynamic sketch, due to the
changing nature of it's constituent parts. Despite this increased sophistication, however, we can observe the
same pattern of thinking as the student uses it in exploration of their developing notions on trigonometric
functions. The student must first acquire a working vocabulary regarding the object and some of its properties
prior to any meaningful questioning or problem solving to take place. Careful examination of the unit circle

[2] Thanks to Mr. Robert Crone= for permission to include these figures.
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shows that there are two colored lines that are formed each time a ray crosses the unit circle at any particular
angle, their lengths corresponding to the sine (shown in green) and cosine (shown in red) of the angle which is
used As the student explores various angle combinations the associated sine and cosine are displayed in both
numeric and graphic form providing multiple representations for the same concept.

I Theta
45

Theta Theta
0 7071 ri 7071

Figure 2: Technology Enhanced Sketch An active unit circle object from trigonometry.

Just as was done with the Basel 0 blocks, once this vocabulary is in place experiences are designed to
explore the relationships between the functions rep esented in this technology-enabled object to think with and
problems are posed which require the student to consciously and strategically select actions using this object in
order to solve. The child will then pose problems of their own, which will end up involving further actions that
the child will perform upon the objects in order to solve. This same sequencemay be likewise followed for the
sketch and mental picture levels of the model.

What should occur next, regardless of the students' developmental level, would be for a skilled teacher
or instructor to pose follow-up problems or questions relating to the newly instantiated and defined object of
thought. This would again hold true whether we're talking about a physical manipulative object, a sketch object
of predictive power such as an interactive fractions object, or a mental picture object suchas a comparison of
mass based upon remembrances of experience, or a formal and logically abstracted object such as function or
some other mathematical construct. In each case we observe a skilled teacher using newly developed objects as
a venue within which questions are to be asked and problem situations explored via student actions upon these
very same objects of thought. As these examples serve to illustrate, these objects of thought become the basis
upon which later mathematical thinking occurs.

Summary

The type of technology enhancement illustrated within this paper has the potential to significantly alter
the nature of the mathematics classroom. This goes far beyond simple changes in content scope and sequence.
The very nature of what counts as a mathematical thought must be examined when technologically enhanced
active objects are a part of the learning environment. If we are to successfully prepare teachers to be
comfortable within this new environment it strikes me as essential that we go beyond typical preparation
programs, which for the most part use technology to present information. We must model the creation of
active objects in our own methods classrooms if we expect to see them in those of our teacher candidates.

I have found that this is nowhere near the ordeal that many would suggest. What it requires, however,
is a willingness to experiment with foundational representations to identify those which best benefit from
technological enhancement. Although much more research needs to be done concerning such objects of
thought might play it is increasingly clear that if we are to be successful in the mathematics reform effort they
must find a home in our methods courses and in the classrooms of our teacher candidates.
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Abstract In this preliminary report of work in progress we discuss a prototype computer-
generated conceptual domain designed to enable learners to explore various visual and
symbolic zepiesentations of whole number, fractions, and decimals, and other fundamental
differences pertaining to division with regard to whole number and rational number arithmetic.
Feedback from prospective teachers were included as an integral part of the design process.
Other instructional design considerations regarding developmental methods, platform
limitations and constraints, and future directions for improvement are discussed.

Introduction

The difficulties learners have in understanding procedural and conceptual connections and differences between
whole numbers, fractions, and rational numbers is well known (e.g., Mack, 1995; Markovits & Sowder, 1991;
Resnick et al., 1989; Silver, 1988). Potential causes and solutions to these difficulties usually focus on the
semantic or informal experiential, concrete, contexts in which arithmetical equationscan be more meaningfully
formulated as opposed to focusing on the purely formal conceptual relationships expressed in arithmetical
equations with respect to the particular numerical domains involved. Previous work researching preservice
teachers understanding of divisibility and multiplicative structure, however, found that many students do not
have a meaningful conceptual grasp of the formal differences between either whole and rational numbers, or
between whole and rational number arithmetic (Zazkis & Campbell, 1996). These difficulties where particularly
evident with respect to understanding whole number division with remainder (Campbell, 1996).

In this paper, we draw on Green's notion of number sense as situated knowing in a conceptual domain
(Green, 1991). The basic idea is to construct a spatially-oriented environment using computer graphics that
presents the learner with a variety of inter-related visual and symbolic representations of whole numbers,
fractions, and decimals, along with some interactive tools for working with those representations that
collectively serve to accentuate connections and differences between them. The central thematic of the
environment was to render visible the division algorithm a fundamental theorem of elementary number theory
that provides the formal basis for whole number division (as most mathematics educators tend to think of the
"division algorithm" as referring to an algorithm for long division, we will henceforth refer to this theorem as
the "division theorem" in order to avoid any confusion). As will be illustrated below, the environment we are
designing is intended to take advantage of the division theorem's potential for illustrating procedural and
conceptual differences between whole number and rational number arithmetic (Campbell, 1997).

This is a work in progress. Here we offer a preliminary report on design criteria, with particular emphasis given
to the guiding design thematic of a transition model between whole number and rational number arithmetic that
is based on the division theorem defining whole number division. We will then briefly discuss constraining
features of the development platform, some aspects of the development process and the role of learners in that
process and some ideas on how that role can be optimized. We will conclude with a critical assessment of the
prototype, and our ideas for future directions with this environment.

The prototype software, developed on a Macintosh platform using Real Basic, can be downloaded at

http://www.gse.uciedu/doehome/Deptinfo/Faculty/Campbell/divfacthtml
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Guiding Thematic: A "Transition" Model for Whole and Rational Number Arithmetic

It often comes as a surprise to learners and teachers alike to realize that whole number arithmetic is
fundamentally different from rational number arithmetic. This is principally due to the fact that division is not
closed over the whole numbers. That is to say, there are cases, such as 10+3, where there is no whole number
solution. The surprising part is that this entails completely different definitions of division for whole number
and rational number arithmetic. The part that is not so surprising is that if one is not clear about these
differences, many problems relating to the conflation of whole and rational numbers, between whole number
and rational number arithmetic can result (Campbell, 1996, July). This prototype has been developed to help
learners explore, discover, and make procedural and conceptual connections regarding these fundamental
differences. To avoid ambiguity in what follows, capital letters are used to designate whole, non-negative
integer, number variables and small letters will be used to designate non-negative rational number variables

The formal basis for whole number division is a fundamental theorem of number theory is the division theorem.
According to this theorem, for any whole numbers, A and (non-zero) D, referred to as the dividend and divisor
respectively, there exists unique whole number quotient, Q, and remainder, R, where (R<D, such that
Ar,;ND+R. Most learners are implicitly familiar with the division theorem, in so far as it is used iteratively in
long division and as a means of "checking" the results thereof

Rational number division, when thought of solely in fractional terms, may be more intuitive than whole number
division, but conceptually it is much more involved. Formally, rational number division depends on the fact that
for any (non-zero) rational number, d, there exists a unique multiplicative inverse, or reciprocal, tri. In dividing
a dividend, a, by a divisor, d, the quotient, q, is defined as the product, ad-I. The quotient can be expressed in a
number of equivalent ways: ad"' = a/d = a+d = or implicitly, in an equation more closely related to the
division theorem and divisibility, a = qd. There is no such thing as a remainder in rational number division.
Instead, as is characteristic of rational numbers, the quotient has a decimal, or fractional component (possibly
zero) in addition to a whole number, or integral component. The relationship between remainders and fractional
components is not always evident to learners (Campbell, 1997).

The division theorem offers an effective starting point from which to illustrate the transition from whole
numbers to fractions to decimals. Consider the following derivation:

A = QD+R whole number division: where (R <D (1)

= QINR(D/D) where D/D =1 (2)

D(Q+R/D) distributivity (3)

where Q+R/D = q (4)

A(1/D) = Dq(1/D) where X=Y 4:* X(1/D) = Y(1/D) (5)

A/D = q rational number division where 13-1 = 1/D (6).

This derivation highlights the central role of arithmetic division in making some of the fundamental procedural
and conceptual shifts involved in numerical transitions from whole numbers to fractions to rational numbers.
More specifically, step (1) is essentially the division theorem defining whole number division. By definition it
serves to exemplify the fact that whole number units cannot be divided. Step (2) remains implicit in the
prototype as it currently stands, and yet it is both subtle and important to consider in understanding the
transition from whole numbers to decimals. Here is an example of where learners' familiarity with whole
numbers may be brought to bear on understanding fractions and rational numbers more generally. Conceptually,
it seems to be much easier to go from whole numbers to fractions than it is to go from whole numbers to
decimals. This is because the representational differences between the former are more intuitive than the
icpesentational differences between the latter. Consider, for instance, the difference between "1/8" and ".125".
Moreover, the transition from fractions to decimals is much easier to make than it would be to jump straight
from whole numbers to decimals. Consider, for instance, that ".125" is readily interpretable as "125/1000".
Placing initial pedagogical emphasis on D/D, say in contrast so something like 1/D, helps to place emphasis on
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the division of a whole number unit, rather than on a previously divided part of that unit. That is to say, there is
an important way in which D/D is both logically and intuitively prior to 1/D. Step (2) is also important in that it
is a necessary precondition to the distributive step (3). It has been shown that distributivity can be problematic
in a wide variety of ways for prospective teachers (Campbell & Zazkis, 1994, November). Nevertheless, the
importance of this step in the transition model is crucial, in that it results in a form from which the integral and
fractional components of the rational quotient of step (4) is readily identifiable. The transition from step (3) to
step (4) marks a clear transition from the concept of fractions to rational numbers. Of course, one could resist,
or postpone, this step and consider the rational quotient as the improper fraction (QD+R)/D. One way of so
doing would be to apply steps (2) and (3) once again, only this time applying the identity (D/D) to the whole
number quotient Q and then distribute out (1/D). Either way, the next step would be to isolate the rational
quotient, and this would require multiplying both sides of the equation by the proper fraction, 1/D, in step (5).
Finally, the crucial property of every whole number except zero having a multiplicative inverse in the domain of
rational numbers, and the product of a whole number and its multiplicative inverse being unity, is exemplified
in step (6). For the sake of expedience, other important relations such as commutativity and the more general
concept of a multiplicative inverses of arbitrary non-zero rational numbers have either been left implicit in this
analysis or simply fall outside the scope of the transition model. Also note that one can move logically either
forwards from whole number division to rational number division or backwards from rational number division
to whole number division. Pedagogically however, moving forwards through the transition model, as illustrated
here, may be the preferable approach. Be this as it may, the transition model offers a rich venue for unpackinga
wide variety of procedural and conceptual differences between whole numbers, fractions, decimals, and
between whole number and rational number division. It is this characteristic that makes it such a rich thematic
guide for designing a computer-generated conceptual domain for learners to explore.

Guiding Thematic: Visual and Symbolic Aspects and Related Factors

Using the transition model as a guiding thematic for the development of a computer-generated conceptual
environment provided part of the original motivation of this project. Another guiding thematic of this project
has been to provide an environment whereby learners are provided with a number of tools for exploring
relations between the visual and symbolic representations. What exactly is involved in this and how to do it
effectively is a deeply problematic. A number of factors pertaining to the relationship between visual and
symbolic aspects of mathematics and mathematical cognition have been implicated from a wide variety of
disciplines ranging from philosophy (e.g., particular and general), mathematics (e.g., geometry and. arithmetic),
logic (e.g., sense and reference), computational theory (e.g., procedural and declarative), psychology (e.g.,
concrete and abstract), and linguistics (e.g., object and attribute) (Campbell, forthcoming). These factors pertain
directly to the learners' understandings of the relations between visual and symbolic aspects of mathematics and
mathematical cognition. There are, however, many other design factors involved regarding the environment in
and of itself. Particularly regarding the very idea of a computer-generated conceptual environment. To what
extent should one attempt to anticipate the kinds of things that learners might or might not do when they are
actually engaged within such an environment? To what extent is it even possible? Such design issues are
intimately bound up with assessment issues which will discuss in more detail below. We will now say a words
regarding design with respect to the development platform and the developmental process.

Development and Delivery Platforms: Design Constraints

Instructional design is always going to be expedited or limited by what is possible with the hardware and
software constituting the development and delivery platforms. Fortunately, as computer technology is rapidly
evolving, these factors are placing fewer and fewer constraints on instructional design while opening up more
and more possibilities. It is unlikely that one can ever be completely free of such constraints. We will discuss
some factors that have limited our design. Predominantly due to the existing Apple cultural environment that we
are in, the development and testing of the prototype software developed on and geared toward that delivery
platform. Unfortunately, however, we have yet to find a robust programming language for Rapid Application
Development (RAD) with the possibility to develop a Graphic User Interface (GUI) in the Macintosh
environment. The only high level object-oriented programming language with the characteristics mentioned
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above.that we have found is Real Basic (RB). This is a relatively new implementation still in development with
many similarities to Visual Basic from Microsoft in the Widows environment which constitutes [the latest] a
more robust programming language. However, the alternative to use an object-oriented language was very
attractive because we included in our design objectives the possibility to construct a virtual scenario in the
computer where the students have an interactive and visual environment to represent whole numbers. Numbers
can be manipulated using scroll bars and can be represented in spatio-geometric form as unitary squares (area)
and as non-unitary rectangular products. Using the visual characteristics of the environment the learners can
make changes in the dividend or the divisor and then see instantly their graphical representation (of these two
values) and also the values of quotient and remainder not only as numerical representation but also graphically.

There are, however, ways in which RB is limited with respect to VB. These limitations are particularly evident
with the inflexibility of RB in the handling of the screen. We will discuss one particularly bothersome example:
refreshing of the screen after it has been hidden by other windows and in the handling of the z-order of
graphics i.e., the order in which several graphics appear one on top of the other. In other words, if the screen
is in the x-y plane, several graphics can be represented as occupying layers in the z-axis.

We developed a "trace" function that requires overlapping windows, so that the effect of different divisors with
respect to a given dividend can be explored. The dividends and divisors are constrained, by design, as whole
numbers, and the divisor is constrained to be less than or equal to the dividend. When a given divisor divides
the dividend exactly we have used an areal graph one that displays the product of the divisor and the resulting
(whole number) quotient that is colored blue. When the divisor does not divide the dividend exactly, then the
areal graph that displays the product of the divisor and the resulting (rational number) quotient is colored red.
When using the Trace function over several such configurations, the areal graphs, to some extent, overlap upon
one another. We can easily trace either by increasing the value of the divisor or by decreasing it. The order (z-
order) in which they appear, unfortunately in this particular case, affects the way the resulting information is
displayed on the screen to the learner. For the case in point, if one uses the trace function when decreasing the
divisors, then the overlapping areal graphs indicate which values of the divisors that divide evenly into the
dividend very well. Unfortunately, they are not so clearly indicated when tracing proceeds using an increasing
divisor. If we could manipulate this order (which in RB is not possible) we could provide much more consistent
picture of the configurations, irrespective of the particular order in which they are explored by the learner.

Development Process: Learner Interaction, Assessment, and Feedback

All these design factors, whether they are originate in the minds of the designer, the learner, or the computer
system, will always be, to one extent or another, bound up with what learners do within the environment. Prima
facie, there are a number of different ways of assessing this. For instance, designers can rely on occasional
verbal or written feedback from learners regarding their experiences or from teachers reporting on their
observations regarding their students experiences. Other approaches involve various ways of having the
computer keep track of how students use the environment, or to use audio-video equipment to record learners'
interactions, possibly in tandem with various kinds of "talking aloud" protocols. We are currently developing
more rigorous approaches along these lines (see Campbell, forthcoming). If all goes well, we will be able to
report in more detail on our data and methods when we present this paper. Here, we will just say a few words
about how we have developed the prototype as it currently stands.

The authors have brought complementary backgrounds, interests, and skills into this project which has proved
beneficial to this collaborative effort. The first author conceptualized the guiding thematics of the transition
model with an eye toward developing an environment suitable for both teaching and learning arithmetic and for
further research into the relation between visual and symbolic aspects of mathematics and mathematical
cognition. The second author has a strong background in educational software design and development. These
complementary orientations regarding design and development gave rise to a important synergy that led to rapid
implementation of an initial prototype suitable for classroom use.

This prototype was then introduced in undergraduate mathematics education course called "Thinking
Mathematically. Learning and Teaching Mathematics" an undergraduate course designed by the first author
for prospective teachers in mathematics. The guiding thematic of the course was essentially the same as for the
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prototype: to explore ways of visualizing elementary arithmetic in ways that were conceptually meaningful.
Around the middle of the quarter, the students worked with the software for about an hour and half, while
remaining focused on how the environment was contributing to their conceptual understanding of whole
number and rational number division. The students reported on their insights and difficulties in using the
environment, and the software was adapted and refined wherever possible in accord with those reports for the
next class. The students were then able to use the environment again and explore first-hand the impact of their
feedback. In this way, they were able to contribute to the evaluation and design process. In what follows we will
discuss a few of those contributions.

In the original prototype, there were two symbolic equation schemas that allowed for numerical instantiations
immediately beneath them depending on the values selected for the dividend and the divisor:

A=Q*D+R

A/D = Q + R/D

Many students experienced significant difficulties in relating these values to the visual graphic representations.
Particularly the one based on the product of the quotient and divisor. The revised prototype included the
following equation schemas, again with numerical instantiations included immediately beneath each one:

A= Q * D + R (with the explicitly noted constraint that 0 R < D)

A = D(Q + R/D)

A/D = Q + R/D

With the revised prototype students were more successful in linking visual with symbolic representations. Other
factors likely implicated with this success may have related to greater familiarity and overall involvement with
the environment. In the upper right of the revised (and as of this writing, the current) prototype is a bar graph of
each of the values of the division theorem from left to right. In the original prototype the bar graph was "top-
down" in scale rather than the more usual "bottom-up" bar graph iep,esentation. Some students found the "top-
down" graph distracting or disconcerting. They felt much more comfortable with the standard "bottom-up"
representation.

In the original prototype, only changes in the divisor were possible for a given dividend. Some students felt
unduly constrained by this, so the prototype was revised so that the dividend could be changed for a given fixed
divisor, thus adding greater user-flexibility to the system.

In the revised version the remainder was also represented as small blue dots in the Quotient-Divisor graph.
These dots provided a good focus task for the students. Many of them worked individually or in pairs, trying to
see some connection. Gradually, the connections were made. Two students finally conceded that they could not
figure it out and asked their neighbors. Once they were informed that they related to the remainders, they
instantly made the connection. It seems that they had not expected yet another representation of that value, and
thus were blocking themselves, a priori, from considering it as a possibility.

Overall, the students' first exposure to the original prototype allowed them to feel as though they were actively
participating in beta-testing and de-bugging. Surprisingly, the students seemed to enjoy this role, rather than be
dismayed by it, especially when they were able to see that many of the problems that they pointed out had been
fixed in the revised version. Some of these bugs and suggestions for improvement included things like:

a) No windows refresh after hidden by another window.
b) No Restart function after closing the main window of the program
c) Suggestion to include up to 100 numbers in the dividend
d) Introduce cross hairs or some form of indicator as to the current operation in the graph
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Critique and Future Directions

We think that the prototype it is still unclear the transition from whole numbers to real numbers (with decimals).
There is much more that can be done to help bring out visual meanings that remain implicit within the symbolic
representations, as evidenced by the analysis above. Perhaps a graphical representation of those decimals could
be more appropriate adding a new window (floating) to illustrate that. In this window a magnified unitary
square could be depicted to show fractions of it.

Other improvements can be made regarding more familiar representations of division with remainder. In
particular, whole number division is often expressed as A÷D=QremR. Some caution must be exercised here.
Note that this "equation" is imprecisely formulated and does not conform with standard arithmetic meaning and
use. Some learners may be prone to operating on this common expression of whole number division as if it were
a well formed arithmetic formula

The software could be refined (despite current limitations of Real Basic) in the following ways:

a) Including the floating window mentioned above to enhance the "vision" of decimals
b) Shows in a notorious way the presence of prime numbers
c) Increase numbers up to 100
d) Redesign of the color bar graph for more meaningful information
e) Define three independent levels of difficulty for the division theorem: (1) including only whole numbers; (2)
including real numbers; (3) including prime numbers.
f) Include a "help" service in the main menu for some directions
g) Include a "print" service for hard copies
h) Possibility to include a "freeze" function to insolate desired configurations
i) Work on the suggestions and difficulties (above) manifested by the students.

We will be running additional tests with the current prototype with preservice teachers and making further
refinements prior to presenting this paper at the conference and hope to have a fuller report available then. One
of the areas that we hope to gain much greater insight into between now and then is in how preservice teachers
navigate their attention within the environment. Toward this end, we will be videotaping the screen during some
of their sessions using talk-aloud and cursor-pointing protocols and analyzing the results using video-processing
software. We will be presenting some of the preliminary results of these experiments at the meeting.
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Abstract: The authors are co-principal investigators for a National Science Foundation
project to create a web-based National Library of Virtual Manipulatives for learning
mathematics in the elementary grades (K-8 emphasis). Many of our virtual manipulatives
are based on physical manipulatives commonly in use in the schools (i.e. geoboards,
tangrams, pattern blocks, fraction bars, etc.); others are concept manipulatives especially
designed to teach or reinforce basic mathematical concepts. Our emphasis is on
interactivity for the user, so the learner controls the variable aspects of the manipulative and
is not only free, but encouraged, to explore and discover important mathematical principles
and relationships. Teachers or parents can provide direction, but control of the activity
remains with the user. This paper is preliminary and descriptive only, but it describes
aspects of our experience in the design of manipulatives and some of the delightfully
unexpected advantages of interactive technology for discovery learning.

Introduction and History

This paper must partake of some aspects of self-contradiction, intended as it is to describe in
words some of the advantages of not using words. Our goal is to convey some of the unexpected, or at
least unanticipated, consequences of interactive software in the educational experiences of both elementary
school children and their teachers, both pre- and in-service. Since we have no choice but to rely on words
in proceedings such as these, we will do what we can using verbal descriptions, supplemented by static
figures. At the same time, however, we invite readers to visit our web site (www.matti.usu.edu), where it is
our hope that they may experience for themselves some of the things we describe.

The authors of this paper have a history of working with interactive computer-aided mathematics
instruction that predates their current National Science Foundation funded National Library project. The
first two authors earlier received funding from the state of Utah to develop an interactive pre-calculus
project for use in the state system. We learned early on, however, that despite rather extravagant claims to
the contrary, there were no commercially available tools adequate to support the kind of interactive
mathematical experience of the sort we envisioned. It was our extreme good fortune to add to our design
team a colleague (Dr. Wellman, also in mathematics), whose interest in computer programming led him
into the creation of a mathematics editor and related tools sufficient for our purposes.

With the completion of our pre-calculus project, we recognized the potential ofour approach for
both elementary students and for pre-service and in-service elementary teachers. That potential was
magnificid by the growing possibilities of a new programming language, Java. It was the Java language that
has really made web-based instruction possible.

Java has many advantages over other object-oriented programming languages, especially C-14.
One of the most obviousand criticaladvantages is multi-platform and web accessibility. But while
Java improves on a number of features of C++, it does not have the maturity of some of the older
programming languages or the extensive libraries of built-in functions readily at hand. It has been
necessary to build many of our own fundamental classes and our own mathematics editor to accomplish
some of the things we considered essential to our long-term goals.
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Our Utah State University team, in collaboration with a colleague from Fayetteville State
University (North Carolina), proposed to the National Science Foundation that we build a National Library
of Virtual Manipulatives, interactive applets for learning and reinforcing concepts in elementary
mathematics. We intended our applets for the use of elementary (primarily K-8) students, but recognized
that the same instructional tools could also serve to strengthen the mathematical preparation of pre-service
and in-service teachers.

In the process of our negotiations with the National Science Foundation, it was suggested that we
communicate with people working on the new Principles and Standards for School Mathematics
("Standards 2000") for the National Council of Teachers of Mathematics (NCTM). The NCTM had
released their original Standards document in 1989 and recognized the need to update their national
guidelines for the teaching of K-12 mathematics. As part of the planned publication of the new standards
(which also address changes in technology) an Electronic Format Group was established to create a web-
version of Standards 2000, including a new approach, "E-examples," to suggest and illustrate ways to
incorporate technological resources into the mathematics classroom.

At the 1998 International Conference on Technology in Collegiate Mathematics, we demonstrated
to some members of the NCTM Electronic Format Group some prototypes of the kind of virtual manipula-
tives we had developed for our proposal to the National Science Foundation. The upshot of that meeting
has been a very productive collaboration. We are now working very closely with the Electronic Format
Group and the writers of the new Principles and Standards to provide appropriate E-examples for all four
grade bands. The majority of E-examples that will appear with the web version of the Standards, to be
released at the annual national meeting of NCTM in April of 2000, will be our interactive applets.

In addition to productive exchanges with writers and teachers associated with NCTM, we have
had the opportunity to work with several groups of in-service elementary teachers. In both web-based
distance instruction (in Utah and in North Carolina) and in on-site classes (in North Carolina and Ohio), we
have used our virtual manipulatives as part of our technology-supported mathematics courses.
Participating elementary teachers in our current North Carolina project are designing ways to incorporate
our materials into their curriculum and will conduct in-service efforts in their home school districts to make
these resources available to elementary students throughout their districts.

Design Philosophy

Initially, as we contemplated constructing electronic manipulatives that could be used by children,
we were guided by existing physical manipulatives. We were confident that we could make electronic
versions that, because of their residence on the Internet, could be made available to students, teachers, and
parents, at any time and in any location having a web-connection.

One of our first creations was a virtual geoboard, mimicking the common "nails in a board"
version using rubber bands. As we shared an early version with teachers and asked for suggestions, several
teachers said how nice it would be to be able to color the regions inside the rubber bands. So we did it.
Later reviewers wondered if it would be possible to translate an elaborate construction around the board
without having to shift the band from every vertex. We are now working on incorporating both translations
and rotations, illustrating the mathematical concepts of "slides" and "turns."

Building such features into a virtual manipulative allows users to do things that aren't
conveniently possible with corresponding physical manipulatives. We constructed a circular geoboard and
another one using "nails" spaced to form an equilateral triangular grid instead of squares. The circular
board has immediate applications as diverse as creating pie-chart fractions and illustrating trigonometric
functions. But in the design of all of our virtual manipulatives, we try strenuously to avoid doing too much.
We would rather have five manipulatives, each doing a well-defined task, than a single applet that requires
more complicated operations to accomplish the same five tasks. Each applet has a tightly designed focus
and the simplest interface we can create. The mathematics underlying the functionality is often very
sophisticated; what the user sees and does is very simple.

Another principle that guides all of our design is that the student must interact with the applet to
accomplish something. There is never simply a "watch this clever animation" or "see what happens when
we do this" attitude. Mathematics, perhaps more than any other discipline, cannot be learned by watching
someone else do it, no matter how elegantly. Any student, to be successful, must be involved, engaged in
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the activity. And thoughtful engagement requires participation. Interactivity is thus essential to the design
of every one of our applets, the one feature that we absolutely require.

The kind of interactivity we have in mind requires the user to think about a specific task, to
formulate strategy to achieve a specific goal (almost always informally, and seldom articulated), to engage
in some physical action (clicking to select something, dragging an object, or moving a slider), and to
observe (and perhaps, describe) consequences of the action. The goal is to allow students to control events
and to discover relationships. Differences between coincidence and causal relationships become clearer
when we allow the user to repeat an activity as many times as desired. We can ask questions to direct
explorations and, we hope, guide meaningful discovery, but control remains in the hands of the user.
Nothing happens until the user takes action, and an activity can be repeated until there is satisfaction; the
computer never tires of repetition.

Unexpected Consequences

With NSF support for our three -year project to build a National Library of Virtual Manipulatives,
we could begin to focus our effort to accomplish some of our objectives. But even with early prototypical
examples, before we had any formal structure to our project, we were learning something of both the
limitations and advantages of working in an electronic environment and more specifically within the virtual
machine of Java programming.

It is impossible to convey in words an accurate picture of what can be done on-screen with our
interactive applets, so we compromise by giving a few pictures of some of our applets, simple snapshots of
the kinds of screens produced by students actually working with these manipulatives. We will accompany
each figure by a description of some of the functionality of the applet and some of the dynamic features
available to the user. We hope thereby to communicate at least a little of what we have discovered in both
the design and implementation of some of the virtual manipulatives.

Again, we invite interested readers to visit our web site (www.matti.usu.edu) and to explore freely.
Everything is, of course, in a state of continual flux as we get feedback and suggestions from teachers,
students, and evaluators. Applets already on the site are also changed as we build tools to supportone
particular concept applet and learn that such a tool would add value to another.

The serendipity to which we refer in the title of this paper is of two varieties. One is unexpected
responses or capabilities that an electronic manipulative possesses in contrast to the physical model that
inspired the computer implementation; the second occurs when we are led to unanticipated design changes
that enhance the educational value of a virtual manipulative. We will try to illustrate both.

Figures 1 and 2 show two screen shots of a virtual manipulative on the Platonic solids. To help
develop spatial visualization, we wanted students to be able to see all sides of a solid object. What neither
figure can show is that by moving the mouse the student can rotate the given object freely in space. In
future variations of this applet, we will paste different images onto the sides of a cube and ask questions
about, say opposite faces. But as we worked with this applet, we realized that there was an opportunity to
let students discover Euler's relationship among vertices, faces, edges (V F + E = 2). As the user rotates
the solid in space, a Shift-Click changes the color of a face, an edge, or a vertex. In Figure 1, we have
changed the color of five faces with their surrounding edges and comers. The color changes make it easy
to determine when you have counted everything. In the implementation shown, there is a running tally of
the numbers, which the teacher can either choose to show or not.

One of our most exciting experiences with this applet took place during a visit to several inner-city
schools in Cleveland. The settings and circumstances were less than ideal, but we took CDs containing
some of our materials to leave with the teachers, some of whom we had worked with in an earlier NASA
project. We took a projector and a lap top computer into the classroom and let the children (first, second,
fourth and fifth graders) take turns with the mouse, rotating objects, selecting and changing colors while the
entire class kept a (collective verbal) running count. The sense of ownershipand excitementfelt by the
children as they controlled the magic of rotating the image and changing colors was palpable.

Figure 2 illustrates both kinds of serendipity we mention above. In the original discussions we
had not thought of illustrating the idea of a dual of a solid (taking as vertices the mid-points of each face),
but after seeing the solids in space, we serendipitously realized that we had another teaching opportunity.
And, as may be seen from Figure 2, the electronic setting (using some fairly sophisticated mathematics)
allowed us to show something that would probably never be constructed physically.

0
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Figures 3 and 4 together also demonstrate both kinds of serendipity. The virtual geoboard in
Figure 3 is "standard" in the sense that the nails or pegs form a square grid, as do most physical geoboards,
although few boards have as many nails as ours. With the added size, the electronic version makes it much
easier to explore such concepts as similarity, transformations, or symmetry. The smaller physical
geoboards have that built in limitation. As mentioned above, it was teachers with whom we were working
who suggested the addition of color to geoboard regions. We thought it a nice idea, but we did not
anticipate some of the advantages we have since observed. With color, the comparison of sizes of regions
or geometric figures is much more natural. When we ask students to use their rubber bands to divide a
square region into halves, challenging them to find ways that are different from the obvious one in the
upper left of Figure 3, the color stimulates choices. In particular, it seems less likely that the solution in the
lower right of Figure 3 would be as apparent without the use of color to put together the two outside bands
to form a region matching the central band.

Having the standard spacing of nails with our first implementation of geoboard, we realized that a
very minor change would allow us to keep all the functionality while illustrating a number of different
mathematical concepts.. Thus we constructed a geoboard with a triangular grid, leading to a natural tiling of
the plane with equilateral triangles or regular hexagons, and we have two different geoboards making use
of circular symmetry. Now, taken together, our set of geoboards permit a completely unanticipated
flexibility and versatility. Figure 4 shows how one student constructed a pie chart to answer the question,
"What is 1/3 of 1/47' Again, the ability to add color greatly aids the visualization of the answer.

Figure 3. A "standard' geoboard illustrating different student pictures of "one-half."
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Figure 4. A circular geoboard, with a student's rendering of "1/3 of 1/4."

Conclusions

As is obvious at this point, we are submitting here only a preliminary report. This paper is
intended to be neither technical nor definitive. In the future there will be a number of evaluation studies of
the virtual manipulatives in our National Library. The summative evaluation for our project will be
handled by Douglas Clements and Julie Sarama of the University of Buffalo. Given the direction of their
previous educational research, Professors Cements and Sarama are uniquely qualified to assess the
effectiveness of computer technology in early childhood education. Other teacher educators, including
another of our co-principal investigators, James Dorward, will be examining the use of our materials in
public school settings and plan comparative studies.

What we describe in this paper is purely descriptive, based on our own observations and
information passed along to us from in-service teachers who are learning with and using our materials.
However limited our observations, we have been delighted by the response of students actually using our
manipulatives. The measurement of learning of specific mathematical content at different grade levels over
an extended period of time is an important task that will extend into the future. But in our own
development work, as we try to better understand, and address, the needs of various groups of students, the
reactions have been wonderfully heartening. As typified by our visit to the Cleveland inner-city schools,
the level of engagement, the enthusiasm, excitement, and participation of children will not soon be
forgotten.
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Abstract: Mathematical modeling can perhaps be best defined as "the process of scientific
inquiry" for mathematics. This is obviously a comfortable mode for teachers of science, but is
rarely seen in the mathematics classrooms of today. This paper explores the possibilities of using
interactive web pages to help facilitate an understanding of practical applications based
mathematics. Because the scientific process is emphasized as the general operating framework,
situations where students can hypothesize and experiment, and create data tables are most
valuable. Special emphasis is placed on the fact that students and teachers both need to re-
conceptualize effective mathematics instruction in order to really embrace a modeling approach.

Introduction

An important aspect of the continually changing reform movement in secondary level mathematics is
that teachers are able to absorb and integrate what they have learned from both the classroom dynamics and
from new research. It is perhaps most important that teachers of mathematics continue to grow with respect
to the pedagogical techniques that have the greatest classroom potential. Although finding these techniques
requires a great deal of effort, good teachers would certainly agree that the resources they bring to bear on
behalf of their students set a foundation of success or failure for those students from both a competence
standpoint and from a motivational standpoint as well.

The reform efforts of the past decade have resulted in a mass of professional documents, curriculum
standards, and reports, all of which are intended to strengthen a teacher's profile of techniques. Yet with all
of the various forms of assistance, the mathematics classrooms of the 21st century will probably look very
similar to those that have been so common for the past 50 years. The fact that we know so much more now
than we did 50 years ago, at least from a scientific standpoint, has appeared to have very little impact on what
is taught or how things are taught in the secondary math classroom. Agreed, technology has brought flavor to
the mathematics classroom, but the textbooks along with their very familiar format still seem to be the
preferred method of instruction. Although there are instructional perks to this classroom format, the fact that
students aren't internalizing the information would suggest that other formats merit exploration.

Instructional activities using a mathematical modeling approach have proven to be both effective and
engaging for students. Additionally, some of the most valuable curriculum-application considerations in
today's mathematics classrooms can be revisited in the context of an interactive web based format that
preempts the "what do we need this for" question. The mathematical modeling approach to instruction is
indeed a "front heavy" technique for teachers, but allows for the kind of valuable exploration in mathematics
that has been absent to date.

Classroom Considerations for Mathematical Modeling
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Mathematical modeling can perhaps be best defined as "the process of scientific inquiry" for
mathematics. This is obviously a comfortable mode for teachers of science, but is rarely seen in mathematics
classrooms. Students engaging in mathematical modeling activities would spend the majority of time
experimenting in applied physical situations in an attempt to find patterns and consistencies in sets of data
Data sets could already exist in a number of different forms, or they could be collected as part of a classroom
activity. Part of the impetus for mathematical modeling activities in the classroom is to help students
understand that mathematics is not a discipline where complex solutions to problems are innately obvious or
solvable in a matter of just a few minutes. In fact, any good mathematical modeling activity should be
appropriately vague so that the students don't get the impression that the activity is just another textbook
assignment The teacher designing the activity has the difficult task of articulating the problem in such a way
as to provide clarity without being too prescriptive. This is done to emphasize that mathematical modeling is
a process of continual refinement and modification. In most cases, this process of refinement serves two
distinct tacks. First, the refinements are intended to create a working model that is more efficient, faster, or
more accurate in some way than any previous model. Secondly, refinement and modification are natural
processes of building any axiomatic system of notation. Students in essence build their own mathematical
system of notation and in turn, greater mathematical understanding Some instructional considerations related
to the use of mathematical modeling activities in the classroom are as follows:

1. Students have some control over how they approach a problem. This is not typically the
case with most textbook problems.

2. Good modeling activities are adaptable to many different ability levels.
3. Good modeling activities are easily scalable to different grade levels.
4. Problem solving and mathematical modeling are different processes. Problem solving

typically acts as a process oriented approach whereby students find a specific solution to
a specific problem. Mathematical modeling is an experimental approach where a
problem is solved and continually refined over time in order to be more efficient, faster,
or more accurate. Problem solving in many cases has a solution that is either correct or
incorrect Mathematical modeling is a process where few answers are incorrect, they just
require continual revision.

5. Mathematical modeling focuses primarily on the "general case." Students must at least
generally understand the concept of a variable, which is why modeling activities below
the fifth grade are difficult for teachers to construct.

6. Mathematical modeling activities are difficult to assess. An elegant solution may be an
approach that works in a way that appears to be coincidental, but a student can justify
why. Another solution to the same problem may utilize some specific procedure from the
textbook, yet the student has no understanding of why they chose that method nor why it
works.

The premise of the mathematical modeling concept is not that the traditional courses in the
curriculum need to be replaced, but rather accented in the appropriate spots to better emphasize the practical
use of the concepts we do teach. Because mathematical models can take on many forms, the processes by
which problems are approached are numerous and varied. Some of the more basic modeling structures lend
themselves very well to established secondary level curriculum (i.e. numerical tables and patterns, graphs,
systems of equations, etc.). Others may be more algorithm-based problems that require a computer or
graphing calculator as an extension. Although no one set of rules is inherent to all mathematical modeling
activities, the following set of steps can act as general guidelines for students engaged in mathematical
modeling activities:

1. Identify what the problem and resulting model should look like
2. Establish the factors that affect the outcome
3. Define which of the factors are parameters and which are outcome variables
4. Establish a relationship between the parameters and the variables to derive a formula or

alternately defined model or algorithm
5. Test the model with known values from previously collected data
6. Refine the model for accuracy and efficiency
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Using Web Pages for Modeling Activities

Although modeling activities in the mathematics classroom don't have to be technology driven, the
interactive nature of Java applications on many web pages can provide a physical context which students can
use to test conjectures and build generalizations. Because the scientific process is emphasized as the general
operating framework, situations where students can hypothesize, experiment, and create data tables are most
valuable. Well designed web pages using Java allow for the kind of interactive experiments needed for
success without the hassle of setting up a physical lab situation. The following example illustrates a possible
modeling problem that could be practically used on the web:

Problem

Suppose we wanted to find the time of day without using a clock. In ancient times, sundials were
used for this purpose, and were fairly accurate. The first step in finding the time without using a clock is to
use the relative movement of the sun and earth to predict how shadows might fall at different times of the day.
Assuming that the meridian line (or noontime mark) has been established and the gnomon has been angled,
we must find a way to mark the hour lines on the dial plate. Create a mathematical model that uses the angle
of the sun on the style (top of the gnomon that creates the shadow) to mark hour lines on the dial plate of the
sundial. Using angle A as the base angle of the gnomon, and angle t as the angle of the arc the sun passes
through in a given time frame, we should be able to calculate angle h by using the length of the resulting
shadow. This is illustrated in figure 1.

Figure 1: Shadow used to mark the dial plate

One Possible Solution

Angle t is perhaps the first angle that needs to be defined. Because the earth rotates through a central
angle of 360° in 24 hours, we can assume that each hour is defined by a 15° arc of the sun's apparent
movement over the surface of the earth. This is true at any longitude. Angle t then measures 15° for each
hour away from the noon hour.

1. If the length of the style on the gnomon is known, the vertical side of the gnomon can be
calculated as follows: Height = sin A (S) ; where S is the length of the style.

2. At 11:00, eagle t = 15°. So, if we want to mark the 11:00 hour on the dial plate, angle h
can be calculated by measuring the length of the shadow from the noon mark and
subsequently estimating the length of the adjacent side as equal to the length of the style,
so that the tangent ratio can be used The side of the shadow opposite angle h = (tan
t)(sin A)S.
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3. Also, tan h = [(tan t)(sin A)S]/S since the tangent ratio is opp/adj and S is being substituted for
the adjacent side in this ratio.

4. Therefore, our model could be as follows: tan h = (tan t)(sin A).

Because we know the longitude of our specific location, we also know the measure of angle A. Let
us assume for the sake of easy calculations that we are at a 30° longitude, and that our style length is 8 inches.
Because we are marking the 11:00 hour line, angle t = 15°. We need to find angle h for several different hours
in order to mark the dial plate appropriately. The following is a test calculation:

1. tan h = tan 15°(sin 30°)
2. tan h = (.268)(.5)
3. tan h = (.268)(.5)
4. h = tan-I(.134) = 7.63°

Therefore the 11:00 hour line would lie at an angle of 7.63° to the left of the meridian mark. Also, since the
hour marks are symmetrical with respect to the noon mark, it is an angle of 7.63° to the right of noon for 1:00.
We could continue in this fashion to mark the rest of the dial plate for each hour of daylight.

Other modeling activities would be used as primers to get the students to the point where they could
successfully manipulate the web experiment in such a way as to define an answer. Because students and
teachers both like self contained educational packages, much of what is provided on the web page can really
help smooth out problems that might arise during the course of the activities. Other hints that create
successful web experiments are as follows:

1. Help students define and modeling heuristic similar to that found on page 2 of this paper,
and have this listed on the page as they progress through the activity.

2. Create an on-line hint button that directs students when they are off track. This may even
be a step by step derivation of a sample approach to the problem.

3. Use data tables on the web page where students can enter the data from their experiments.
4. Provide a virtual notepad where their models can be entered.
5. Have specific objectives that the activity will highlight, but don't be afraid to deviate.

Modeling activities sometimes lead us in directions we may not think of, but turn out to
be valid solutions.

As in any educational activity, good planning and lesson design are key to successful implementation. It is
important to remember that for every minute of planning on the front end, we save ourselves headaches
during the activities themselves.

Conclusion

Of course the models being presented here take some time to develop and even more time for the
students to research. Workload is perhaps the biggest obstacle when it comes to developing on-line math
modeling activities. In addition, students and teachers both need to reconceptualize effective mathematics
instruction in order to really embrace a modeling approach. Those students who are comfortable in an
environment where a math problem can be done in a matter of a few seconds will need to embrace a more
realistic view of "scientific" mathematics. In some cases, the students may not come up with the models that
we have intended even after hours of work; however, through careful investigation, and with some guidance,
students can learn many things that we haven't even thought about. Yet, it is important to remember that
many of the greatest inventions of our times have been accidents. Mathematical modeling though provoking
problems appears to be a great way to pave the road to accidental learning, and history has taught us that
accidents can sometimes be good!
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Abstract: Problem-solving processes should extend beyond mere working problems by type where students are provided
algorithmic approaches to fit situations (e.g., rate, mixture, coin, investment, work) since reducing these typical problem
situations to "algorithmic processing" is counter-productive relative to higher-level problem-solving goals(NCTM, 1989,1991,
1996). By incorporating technological tools (CABRI Geometry II, spreadsheets, and graphing calculators) coupled with the
problem solving principles espoused by George Polya (famous mathematician and teacher of mathematics and mathematics
teachers), secondary school algebra problems can be taught as recommended by the NCTM curriculum standards to
appropriately meet recommended problem-solving goals. Even typical problems can therefore be used to expose students to
multiple problem-solving approaches that extend understanding and meta-cognitive abilities.

In the quest to teach Atype® problems as genuine problems versus exercises as defined by Baroody (1993),
technological tools, when appropriately used, bolster opportunities for students to think mathematically. For example,
using computer and graphing calculator simulations and spreadsheets, even with typical problems one can expose students
to multiple approaches that extend cognitive abilities to learn mathematics concepts, discover patterns, detect relationships
between variables, and to apply processes and strategies to explore systems and structures of mathematics. Byspecifically
utilizing George Polya= s (1957) four-step problem solving model and appropriate technological tools, typical Mate@
problems can be explored and solved so that students further their intuitions and knowledge about theinterrelationships
between mathematical ideas, thereby fostering the learning of problem-solving skills in a responsible and enriching
manner.

Paraphrased, in the problem to be solved, entitled AThe Biker and the Nearby Town Problem® shown on the next
page the goal is to find how many kilometers it is to the town from where Bill started. By utilizing three technological
settings: (1) a simulation model programmed in Cabri Geometry II; (2) a trial and error simulation model programmed
in Microsoft ExCEL; and (3) an algebraic and related geometry representation shown in a TI-133 Graphing Calculator
setting, the traditional Aratee word problem selected which normally provides a context for using particular formulas
or algorithms will be re-visited in such a way that critical thinking will be encouraged In each setting, the aim besides
solving the problem, as per Polya=s Problem Solving Model, is to promote better understanding of what problem solving
is while concurrently enhancing the learner =s problem solving ability. In the AUnderstanding the ProblemA phase of
Polya= s model, the problem solver is encouraged to spend time and effort developing an understanding of the problem.
Prominent in this, is to identify that which is the goal, what it is that is to be found, proved, accomplished, or whatever.
Also among the essentials is to obtain a clear understanding of the given(s) and requirements or conditions of the problem.
In the ADevising the Plane phase, it is common that a plan or at least a part ofa plan evolves from an understanding of
the problem. This may involve knowing relevant definitions (concepts), non-definitional generalizations (axioms,
postulates, formulas), principles (generalizations, theorems), skills (operations, processes, algorithms, prescriptions),
logical reasoning, and problem solving strategies (heuristic or otherwise) that might be applied, and in what order. Often
plans change as steps are carried out (see the next phase) and/or new understanding arises. Thus, one should not restrict
this phase to a lock-step position that keeps one from moving on if a complete plan is not known, nor should one
erroneously keep from returning to a search for understanding after embarking on this phase. In the ACarrying Out the
Plane phase, a systematic, step-by-step guided "straight-line" sequence of operations, deductions, and processes is ideal,
but often unrealistic when one is working on a REAL problem. Expect some blockage, some dead-ends, some back-
tracking, and so on. Persistence (related to motivation) may be one of the most essential qualities of a problem solver.
There is a need to be tolerant of confusion, uncertainty, frustration, errors, and the like. Expect also that new insights and
understanding may lead to changes in plans. Assuredly, REAL problem solving is oftena dynamic situation. In the last
phase, the ALooking Backe phase, is the idea of CHECKING a possible solution to see if it really satisfies the requirements
of the problem, has the problem really been solved? But, there is more beyond mere checking. Here, one should be
encouraged to check if there are other solutions, other strategies for solving the problem,or if applicable, whether there
is an extension to the problem. Looking back should not be a mere review of what has occurred to arrive at a solution,
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but rather, looking back should allow for additional thought-provoking stimulation about the problem-solving process
undertaken. Po lya, in his model, views the looking back phase as an opportunity to have the student rise to a higher level
of metacognition relative to the problem-solving process in general, as well as to the local subject-specific matter.

The Problem

Bill bikes to a nearby town at 12 kilometers per hour and returns at 10 kilometers per hour. How far away is the town
if the entire trip took 3 and 2/3 hours?

A. The Cabri Geometry II Setting
Figure 1

Rate going: 12 Km/Hr Rate returning: 10 Km/Hr

Starting
P lace

"--- Grab this point Nearby
Town

Distance Traveled: 6.82 Km

Experimental Travel Time: 0.57 or non-existent Hrs

Allowed Target Total Time: 3 plus 2 13 Hours

albern10149131Biker1fig
By Dr. Bernard April 1999

"Back at
Starting
Place"

Experiment HERE:

Adjust for Distance to the town: 25 Km

Check against the Allowed Total Time Target

Figure 1, programmed using Cabri Geometry II (see Keyton, 1996, Laborder et al., 1994-1997, Vonder Embse, et
al. 1994-1997, Vonder Embse et al., 1996) suggests the use of a simulation to depict how Bill, in the problem, might
be traveling to the nearby town. The figure makes a major adjustment from reality in laying the trip out linearly and
consecutively without overlap. It explicitly shows the two parts, first the part going to the town, then the part returning
from the town to the starting point Other things "fall into place" once viewers have made this adjustment. The model
provides for experimenting (guessing) with the distance to the town. Following a given guess, one can then act the trip
out using the Grab point, a built-in feature in Cabri Geometry II. Readouts of the distance traveled and the lapsed
travel time (Experimental Travel Time) enable one to evaluate what is happening as the bicycle moves from the starting
point to the town and from the town back to the starting point; i.e., over the course of the entire trip. If the distance
guess is correct, the dependent total trip time (when the Grab point is at the right "starting Point") will match the target
total time. Experimenters can distinguish when the dependent time does not match the target total time and separate such
into two cases; those when the dependent time is too large, and those when it is too small. One compensates for the
former by reducing the distance setting and for the latter by increasing the experimental distance setting (guess).

B. The Spreadsheet Setting

In the first spreadsheet setting (see Spreadsheet #1), AA = the distance to town traveled at 12 km/hr and B =
the distance to town traveled at 10 km/hret. Once students understand that the distance to and from town Amust@
be equal they can be encouraged to Aguess and check@ which time to town and from town, at the rates given, yield the
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closest distance between A and B. This can occur by having students guess, as shown below, in the column denoted
by the variable x for the "lime in hours it takes Bill to bicycle into Town" and the other information calculated on
the basis of this guess. Students and teacher can develop the spreadsheet together, in parts, until Adiscovery@ of the need
to approximate the difference between A and B to zero is developed.

Spreadsheet #1
Rate Time Rate Time Distance Time Distance Distance
12 Fixed Total

Hours
10 x A = x/12 (3+2/3)-x B = x/10 A - B

Bicycle Speed
To Town in

Km/hr

Total Time
Held Constant

Bicycle
Speed From

Town in
Km/hr

Time in hours it
takes Bill to
bicycle into

Town

Distance in miles
to Town at 12

km/hr

Time in hours it
takes Bill to bicycle

from town at 10
km/hr

Distance in
miles to Town
at 10 km/hr

Difference
Closest To

Zero

12 3 2/3 10 1.0000000 12.0000000 2.6666667 26.6666667 -14.6666667
12 3 2/3 10 1.3333333 16.0000000 2.3333333 23.3333333 -7.3333333
12 3 2/3 10 1.6666667 20.0000000 2.0000000 20.0000000 0.0000000
12 3 2/3 10 2.0000000 24.0000000 1.6666667 16.6666667 7.3333333
12 3 2/3 10 2.3333333 28.0000000 1.3333333 13.3333333 14.6666667

In the second spreadsheet (see Spreadsheet #2) that follows, a different approach to Aguessing and checking® occurs.
The guess is for distance to the town being varied until the total time given, 3 and 2/3, is reached after multiple guesses
at the rates provided. This approach coincides with the Cabri Geometry II simulation shown previously.

Spreadsheet #2
Distance Rate Rate Time Time Total Time

X 12 10 x/12 x/10 x/12 + x/10
Guess (distance
in Km to town)

Bicycle Speed
To Town in

Km/hr

Bicycle Speed
From Town in

Km/hr

Time in hours It takes
Bill to bicycle into Town

Time in hours it takes
Bill to bicycle back

from Town

Time in hours it takes Bill
to bicycle to and from

Town
1 12 10 1/12 1/10 11/60
2 12 10 1/6 1/5 11/30
3 12 10 1/4 3/10 11/20
4 12 10 1/3 2/5 11/15
5 12 10 5/12 2 11/12

10 12 10 1 5/6
12 12 10 1 1 1/5 2 1/5

15 12 10 1 1/4 1 2 2 3/4
20 12 10 1 2/3 2 32/3

C. The 11-83 Graphing Calculator Setting

Using a 11-83 Graphing Calculator (see Texas Instruments Guidebook, 1996), techniques that are similat
to the spreadsheet methods shown above can be used. In this case, a method referred to as the AIntersection Method®
for solving a system of equations has been utilized. The equations Y1= 3 + (2/3) and Y2 = X/12 + X/10 (where Xis
the varying guesses for distance) shown in Figure 2 represent the target total time to and from the town and the partial
times necessary to travel to town and back, respectively. After graphing the equations (see Figure 3), the intersection
point (20, 3.6666667) indicates that when the distance is 20 miles to and from the town, the exact total time traveling
to and from town is 3.6667 hours (an approximation to 3 and 2/3). Using the TRACE feature of the 11-83 Graphing
Calculator to Atravel@ along the linear graph of Y2 toward the horizontal line Y1 helps to visualize the relationship
between the total time and the partial times, as X or distance varies, to and from town. Figure 4 obtained using the
TABLE feature of the 11-83 Graphing Calculator captures this same relationship by denoting the incremental
changes between total time and partial times as distance varies. This is a powerful way to bridge algebra and geometry
to solve problems!
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Figure 2.

P1ot1 P1 ot2 P1ot3
\W1 E3 +(2'3)
\YAX/12+X/10
\Y3=-
\ Y4=
Ws=
\ Y6=
\ I'? 7 =

Figure 3.

Intersection
X=20 Y=3.6666667

Regarding The Problem-Solving Phase

Figure 4.

X Yi Y2
15 3.6667 2.75
16 3.6667 2.9333
17 3.6667 3.1167
1B 3.6667 3.3

3.6667 3.4E133
3.6667 3.6667

21 3.6667 3.135

X=20

In either setting, or cumulatively, understanding began as a result of a diagram, table of data, graph, and or
probes, and continues throughout. What can we say about the nature of the answer? We can say that it is a number.
Moreover, it cannot be negative and is unlikely to be zero; so it must be some non-negative real number (imaginary
numbers would not make sense in this situation). Distance is a kind of measure and non-negative real numbers are the
kind of numbers used for measures. More understanding; but first a devising a plan idea - That algebra can be used
to solve this problem; specifically, this is a place where a letter may be used to represent the unknown. The letter, in
this case, serves as a "pronumeral," that is, a symbol representing a number. Here the interpretation may be that of a
fixed unknown number rather than a variable, per se. Let d correspond to the number of kilometers measured from Bill's
starting point to the town.Thus, d 0 {x 0 Y I x > 0 }, where Y represents the set of real numbers. More understanding
(real-world knowledge): The problem mentions the entire trip, this includes Bill's traveling to the town and the return
trip from the town to where Bill started. From the fact is that the distance for the return trip is the same as that for initial
trip, we can conclude that the return trip was d kilometers as well, and that the distance measure for the entire trip was
d + d or 2d kilometers. More understanding (more real-world knowledge): We should not only think about kilometers

of distance since the problems, in addition, also mentions time/hours of travel - "the entire trip took 3 3 hours." Our

real-world knowledge tells us that this is made up of the time it took to travel from the starting place to the town, plus

the time for the return trip; the 3 3 is the sum of two other numbers/times. More understanding: Reflecting on the

information generated thus far, we seem to have two disconnected pieces/ideas. The first part talks about three related
distances. The second part talks about three related times. What we seem to need is some connection between these
two things (some way to "bridge the gap", this is a problem-solving meta-level notion or heuristic. The solver "sees"
that this problem has a "missing link" or "gap to be filled" quality to it and brings into play problem-solving
organizational and planning strategies to make the connection/fill the gap.). More Understanding (prior knowledge):
Prompting recall, we need to "hit" on a relationship that involves distance and time. This relationship need not be to
the exclusion of other entities/concepts; we just need one or more relationships whose ingredients include distance and
time. This need (sub-goal) identified may be enough to activate the solver's memory, bring to mind some such
relationship as "distance is equal to rate times time." Should this not naturally occur, perhaps that potential solver never
learned the principle or temporarily experiences recall difficulties at a particular point in time, more consciously
controlled or directed mental processing activities may be generated. This is a carrying out the plan item for the
particular sub-goal, within the activities for solving the problem as a whole. However memory is activated or even
if the solver gets help or looks up/fmds the relationship in a book (on the intemet, br whatever) is not of concern for this
discussion, only that it (the relationship "rate times time equals distance") does surface. Variations are acceptable,
from nit Time Distance . whatever equivalent forms one might generate (restricted to avoid division by zero- Rate

and negative numbers for measures). The formula/relationship Time = DisRtence provides a mental frame or "template"

that can and should be applied in at least two ways in this problem, for the time traveling from the starting place to the
town and for the time of the return trip; measured in hours. Thus, we have the following execution (carrying out the
plan) activity.
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More understanding coupled with carrying out part of a plan:

The distance to the town d and The time returning The distance from the town dThe time going
The rate traveled going 12 returningThe rate traveled retu 10

More understanding, "seeing" mental connections and acting to integrate the "pieces of the puzzle" that fit together
(carrying out the plan):

The latter two specific instances of the time and distance relationship connect to the real-world knowledge mentioned
earlier citing that the total time is equal to the time going plus the time returning (which itself is semantically equivalent
to the equation: The time going + the time returning = the total time). Instantiating more concretely, we have

d d
=

2
12 +10

At this point in time, a major problem sub-goal has been attained. Whether stated explicitly or left implicit, producing
a model equation involving the unknown and givens in a valid solvable relationship is part of the algebraic problems
solving method/strategy. In essence, this "translates" the problem from one expressed in words (in this case) to one
expressed in the "realm" of algebra. Solving the problem is thereby reduced to solving an equation (here, a linear
equation in one unknown) which is a skill that is an object of learning in the algebra curriculum.

Carrying out the plan has been going on already. At this point in time, however, an appropriately educated/trained
solver might exhibit relatively routine activity in a relative short time. Say.
d d

= 3 -3-
2+ >[Multiplying through by the LCM 6014 5d + 6d = 220 >[Adding like termsl4

11 d = 220 and 1 ld = 220 >[dividing by 1114 d = 20. Here again, a sub-goal has been reached within this
problem-solving episode. Interpretation mental activity takes over noting that unknown value d stood (stands for)
20 has been revealed. Thus, 20 is the number of kilometers distance from the starting place to the town.

Looking Back: Looking back includes, but is not limited to checking. Checking will be followed by additional
Looking Back ideas.

Checking: Here, checking might take the form of critically re-reading the problem in "light" of now knowing that
the town is 20 kilometers from the starting point. In the critical re-reading process, one might do associated
computations that reveal the specific values of other conceptually defined and formerly not known values. To
illustrate: Bill bikes to a nearby town >[now becomes] -4 Bill biked 20 kilometers. He did this at 12 km/hr.

d 20 2Hence, it took him 1-2- = T2- = = 1-3- hours to bike to the town.

Bill returns by bike from the nearby town >--[now becomes1-4 Bill biked 20 kilometers, this time at 10 km/hr.

Hence, it took him
1 0

d 20 = 2 hours to return from the town.10

Our real-world knowledge directs us to add these two amounts, giving us 2 + 13 = 3i- hours; which is consistent with

the given total time. Observe that revealing 20 as the value of d is consistent with the understanding the d be an positive
real number. Checking may take or include other forms such as checking the steps in the algebraic solution of the
equation, but consider checking for this presentation to now be completed. Looking Back includes seeing the solving
of this problem in the bigger context of solving problems. One can sub-categorize this problem as one which can make
efficacious use of elementary algebraic structures (a model equation) and processes. It demonstrates the value of the
"try using algebra" problem-solving heuristic. Looking Back includes transfer, both near and far. The following item
might seem routine (near transfer) for someone who was able to develop the above solution.

An airline flight to a certain airport travels 500 kilometers per hour and returns at 550 kilometers per hour. How
far is the airport if the entire trip took 11 hours?

To add some transfer distance, consider the item and comments that follow.

Bill bikes to a nearby town at 12 kilometers per hour and returns at 10 kilometers per hour. If the town is 20
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kilometers away, how long did the entire trip take? [Like the variation before this, roles are switched. Here, the
formerly unknown distance is now given, and the formerly known time is now unknown.

Overall, what= s important in promoting NCTM=s problem-solving goal is not that technology has been used,
but that it has been used appropriately. As in the activities suggested by this paper, sufficient and appropriate
utilization of technology ought to be the norm rather than the exception if one is to meet the goal proposed.
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Abstract: The system Graph intended for drawing of the function graphs is described. The
general algorithm of the graph drawing is described. The function can be set in an explicit,
implicit, parametric form and as a sequence of the more simple formulas. With drawing the
asymptotes of graph and the limits of function in points specified by the user are calculated.
For the analysis of the graph (allocation of maximums, minimums and inflections) derivatives
of function can be calculated in an analytical form. The allowable elementary transformations
above the constructed graph are listed. The resulting figure can be made out as the appropriate
file for the most popular textual and graphic editors. The fimction and its derivative can
automatically be presented as the descriptions in languages C-H-, Fortran and Pascal. In
system there will be a library of frequently used fractions, set of the helps and
recommendations, and also mode of examples demonstration. The system Graph is realized in
language C++ under Windows 95/97/98.

Introduction

The function graph is powerful and convenient tool for research of functional dependencies in
mathematics and applications. The graph drawing is widely used in various activities at schools, colleges,
universities, R&D institutes, in business, in a science, industry etc. This activity is realized in many applied
programs, for example, in (Baiakovski et al., 1985), and also in a number of universal systems of numerical and
analytical manipulations (Mathematica, 1989, MATLAB, 1979). The universality and the multipurpose of such
systems results that the user is compelled in the beginning honesty them to study, and only after that he/she be
able to modest solve the simple task - to draw the graph of interesting his/her function. (For example, the
Mathematica user's guide occupies 1400 pages).

The purpose of our work - to create the simple and effective system for graph drawing not requiring any
appreciable efforts to its mastering by the novice. At the same time for the experienced user a lot of additional
possibilities allowing to build and to analyze the complex graphs of functions and to represent result in a
convenient form is offered. It is permitted to make some transformations over graph for reception of the required
image or analysis of function. The system will be realized in two variants: school, destined for the beginners, and
basic, in which all opportunities of system will be accessible. The Graph system will work in a semi-automatic
mode and addresses to the user in inconvenient situations at the help. Basically it occurs with updating of the
singular points and work to infinity.

The system will have the built-in library of the most widespread functions, in which for each function
will be given its formula, graph with some typical values of parameters and brief explanation. The library will
consist of two parts: libraries of school functions (algebraic functions, trigonometrical functions and inverse to
them, exponent, logarithm, power, hyperbolic and other functions) and basic library (special functions).

The Graph system will have the interconnected set of the helps and demonstration examples. There will
be rich means of polygraph representation of the graphs for the most popular textual and graphic editors.

Construction of Function Graph

The process of graph drawing consists from the following steps:
1) To determine domain of function definition.

0
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2) To calculate the singular points, points of maximum and minimum, points of inflection and points of
function discontinuity.

3) To calculate asymptotes vertical, horizontal and sloping. To find limits of function in the chosen points,

including indefinitesses of a kind 0/0, 00/00, 0 eo, C.3 C.Q, 1-, e,
4) To set the sizes of the graphs, to draw axes to put inscriptions.
5) To draw the graph of function.
6) To edit a figure before printing or insert in the document.

The domain of definition. The Graph system calculates the domain of definition for what writes out
restrictions on argument of function: the denominator is not equal to zero, the argument of the "log" function is
positive, the subradical expression for a root of an even degree is non-negative etc. For example, for function y =
[(2x x4)1/2 x113] / log(1- x3/4) the Graph system will give out inequalities 2x x4 Z 0, log(1 x3/4)* 0, 1 X3/4 >

0 and also will ask the user to refine domain of function definition. By solving inequalities, the user can receive
restrictions on allowable values of argument, i.e. the segment [a, b], on which the function is given, can appear
broken on smaller segments [al, b1], [a2, b2], [a,,, b], on which the function is meaningful and can be
calculated.

The singular points and function breaks points, points of maximum and minimum, points of inflection
and points of function discontinuity are defined The points of a maximum and minimum, and also point of
inflection are calculated with use of the first and second derivatives.

The calculation of asymptotes vertical, horizontal and sloping. The parameters k and b of sloping
asymptote y = kx + b calculated on formulas

k = lim j(x)/x, b = lim [11x) - kx].

The uncovering of indefinitesses 0/0, ../00 and others with use of l'Hospitale's rule is made up in a semi-
automatic mode, when the user can see intermediate result and to operate the analytical calculations.

The setting of the graph sizes, drawing of coordinate axes and inscriptions. Before drawing of the graph
it is necessary to specify its sizes, to draw axes of coordinates, to choose types of scales for axes of coordinates
(usual, logarithmic, half-logarithmic), to superscribe numbers on them, to set drawing a coordinate grid, if it is
necessary. The graph can be supplied with inscriptions and explanatory text.

Drawing of the graphs. The Graph system works in a dialogue mode and can simultaneously build the
graphs of two functions j(x) and g(x) in two different windows or in one window by superposition. The graphs
are drawn in Cartesian coordinates.

The function can contain no more than one parameter. The Graph system can build family of the graphs
with various values of parameters. Each graph is represented by a curve, at which the color, thickness and type
of a line (from an offered set) are easy selected.

The system updates simultaneously two functions, which graphs can be imposed one on other. It is
convenient for the various purposes, for example, for the approached definition of roots of the equation f(x) =
g(x)

The function is set analytically in one of the following forms:
1) Explicitly, as y =j(x), a 5 x 5 b.
2) Parametric, as x X(t), y= Y(t), a 5 t 5 b.
3) Implicitly, as f(x, y)= 0, a 5 x b or c y d.
4) It is possible to set function as consecutive of formulas. For example, the function f(x) can be set as u(x) =

(x-1)/(x+1), v(x) = exp(2*u-x*d),f(x) = u^2-3*sin(v)+4 where p is a parameter.
Edition of a figure for printing or insert in the document. The user can transform a figure to a textual or

graphic file of the appropriate textual or graphic editor. It is supposed to use such formats, as .doc, .rtf, .pdf,
.bmp, .html, .pcx, .gif, jpg. It is possible also to convert symbolic expression for function and its derivatives into
a textual file of WinWord, Word Perfect, Latex, Adobe Acrobat etc. The Graph system can translate the function
definition and its derivatives in languages C, Fortran, Pascal.

We will demonstrate an example of work of Graph system. Let user needs to select parameters a and b
by such, that the equation a/(1+x2) = b sin(x) had two positive roots on [-3, 3]. With the help of an input field
"f = " in the bottom part of a window (see Fig. 1) user sets the first function "f = a/(1+x^2)" and in a field "[f] = "
specifies its limits of change " 0, 4". The trial value of parameter a, equal "4", is set in an input field "prm = ".
The second function "g(x) = b*sin(x)" and corresponding parameters is similarly given. In a field "[x] = " the
segment, interesting for the user, [-3, 3] is set, in which the limits of fractions f (x) and g(x) are analyzed. Then
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the graphs of these functions are drawn: _Az) in left window, g(x) in the right one. Finally after pressing a key
"g>f" the graph of function g(x) is lain on the graph Ax). Resulting picture is shown on Fig. 1. It is obviously,
that with values of parameters a = 4 and b = 2 there are two positive roots of the analyzed equation on a segment
[-3, 3]. (Note: In an input field "dFdx = " the symbolic record of derivative gx), received by the user on one of
stages of processing gx), was stored).

Figure No..1
f(30=4/(1+x"2) g(x)=29Esin(x):

4
,1g(x)=2-x-sin(x)

4

XI

4

Figure No_ 3 - El

df/dx = 2!`aN/(14)(2

04-

IQ) a _2`2

[x] -3, 3
1 4

df/dx I bm f I Tor f I Nun ( I Den f I a

t'a I t/a I f a I- flx+al I ffeal
I

f(x/a)

t4.9 I I.g I rg
I

f/g I flg) I -> I.. .1 ih

Insect I Delete I Reset I Help I Demo I Swap I Exit I

Fig. 1: The example of work of Graph system

Transformations of Functions and Graphs

It is possible to execute simple transformations above function and its graph with help of the fiintrol
menu (see Table 1). Such transformations are necessary in themselves, and also for the purposes of training of
pupils and students at schools, colleges and universities. All transformations are carried out above function fix).
However, by changing f(x) and g(x) by button "Swap", it is possible to execute necessary transformations above
function g (x).
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Button Action (a is given value) Button Action (a is given value)
df/dx To differentiate function j(x) f(x / a) To replace on f(x / a)
lira f To calculate a limit off (x) at 5 --> it 1 / f - " - f(x) on 1/f(x)
Taylor f To expand out f(x) in Taylor's series f + g - ,, - f+
Num
Den

To extract from j(x) numerator and
denominator of rational expression

f g - ,, -

f + a To replace f(x) on f(x) + a f * g ,, f *_g.

f * a - " - Ax) * a f / g ,, fi
f / a - " - f(x) / a f(g)

,, AO
f A a - " - j(x) A a g > f To lay g(x) on f(x)
gx + a) - " - f(x + a) Swap To swap the functions g(x) andf(x)
f(x * a) - " - f(x * a)

Table 1: The list of transformations over functions and its graphs

The Graph system stores in inner list (with name f list) the restricted set of functions and their graphs,
with which the user worked earlier and has stored for future use. The set of actions above this list is given in
table 2.

Button Action Button Action
Insert To insert current function in f list Show To show selected function from f list
Delete To delete selected function from f list Reset To set f, g and f list in an initial state
Help To give out the help or explanatory Demo To rim a demonstration example
Exit To finish work and to exit from system

Table 2: The set of actions over f list

Debugging of the Graph system nowadays is completed. The system is designed on language Visual
C++ and will work on IBM PCs under Windows 95/97/98.
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Abstract: SATEC seeks to connect student learning to concrete experiences through the
seamless and appropriate integration of technology into instruction. A training and
application model is being piloted in the coalition's critical need area of mathematics
through a bands-on, data-driven approach to the learning of mathematical concepts using
such tools as computer-interfaced probes, image analysis software, and spreadsheet based
simulation activities. While radically changing the environment of the teaching/learning
process for mathematics, these tools are allowing teachers to introduce students to
concepts by permitting them to discover patterns in their own collected data The
previous focus on skills has shifted to a focus on concepts and connections to the real
world.

Introduction

Many adults who took high school algebra remember calculating the slope of a line from a memorized
equation: m=" x. Unfortunately, few learned the applications of m or understood the concept of slope. Though this
abstract approach was deemed adequate for some children, most of today's students are not responding to this approach,
and they are not learning. For example, only 17% of students taking Algebra I in the San Antonio Technology in
Education Coalition (SATEC) target schools passed the state mandated End-of-Course Algebra I Exam in 1996. We
believe that sound teaching begins with questions about real events that are interesting and familiar, not with
abstractions out of context. Students cannot learn to think critically, analyze information, make logical arguments,
explain natural phenomena, or work as part of a team unless they are often permitted and encouraged to do so. When
students connect their learning to concrete experiences, they develop a foundation for understanding more complex
ideas. Because computers help to rapidly collect, organize, and analyze data, technology enables students to quickly
and easily replicate time consuming and laborious experiments. Inductive reasoning is used more frequently when
students collect their own data and make generalizations about properties and events in the natural world. This
approach allows students to grow in their ability to make observations and generalizations, reason logically, manipulate
symbols, and derive formulas. The ability to communicate abstractions and to connect that kind of reasoning with the
world around them makes students more likely to succeed in a society that demands problem solving rather than
repetitious tasks.

Over the past twenty years educational institutions have embraced technology as a means to improve school and
student performance with a major emphasis on hardware acquisition and on building a sophisticated network
infrastructure. Only recently has there been a realization that staff development and quality curriculum modules are
important components of successful technology curriculum projects. We cannot expect technology alone to impact
student performance. Knowledgeable, well-trained teachers must participate in the development of rich curriculum that
incorporates technology where it is appropriate to do so. Fatting computers in the classroom of an unmotivated and
untrained teacher may do more harm than good. It is certainly not cost effective. While our project is in the
preliminary stages of data collection, we are able to suggest several outcomes from our study.
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Suggested Outcomes

First, technology training for the teachers out of the context of curriculum content does not transfer in to
appropriate integration of technology tools into teaching. Many teachers do not see the relevance of the tools to their
instruction unless they are given sample lessons to work through as the venue in which the technology tool is taught.
Second, since most teachers have been trained in presenting pencil and paper algorithms, the transition into conceptual
learning in very difficult for them. We are also seeing that when faced with a concept to explore and no exploration
lesson readily available, the teacher will abandon conceptual learning aided by technology and return to the comfort
wire of teaching a pencil and paper process. Third, many teachers are deficient in mathematical content. Asking
teachers to let students explore the bigger picture of how all the concepts fit together is not part of their comfort level.
Usually this is due to the fact that mathematics teachers have traditionally asked students to imitate and memorize
procedures to accomplish disconnected tasks. Our staff development always includes the "bigger picture." Fourth,
teachers are limited in their understanding of mathematical application to the real world. We feel this is primarily due
to the fact that teachers have been trained to use procedures to produce solutions to abstract mathematical problems.
Consequently, all of our training is done with respect to a real world application. Fifth, professional development must
model the methods the teacher is expected to reproduce in the classroom. Teachers must experience the training in the
same way with the same materials that we expect them to use with the students. Finally, teachers must be held
accountable to implement what they have learned in the classroom. We are attempting to accomplish this with actions
plans and with commitments to use the things learned in professional development in an actual lesson with in the
month of attending training.

Sample Activities

The following activities are two of the units we use to work with teachers. They are expected to then use
these materials with the students in their classroom. The teacher is actively engaged in using the tools the student will
be using to complete the lesson. The activity called "Letter of the Law" provides teachers with training and experience
in the use of a motion detector. During the training, the trainer uses questioning techniques that mirror those the
teacher will be expected to use in the classroom. The central concept covered in the lesson is mathematical fimctions.
The second activity, "Life Expectancy," incorporates the use of a software piece called Graphical Analysis. With this
software the teacher is expected to create a scatter plot with a given set of data. Next the teacher will work with
creating an equation that best models the data Central to the lesson is the concept of correlation.

As you examine the activities, you will notice that our training models the points we have mentioned above. We
mention them again for reinforcement

> Teachers learn to use the technology tools in the context of a lesson they will use.
> Mathematical concepts are stressed throughout the lessons.
> The rich discussion by the trainer during the training session improves teacher content knowledge.
> The lessons are drawn from real world experiences.

The training experienced by the teacher models the way the lesson should be presented to children.
The teacher will be expected to present the lesson in a class.

Conclusion

We believe that training accomplished in this way will improve teacher self-confidence and content
knowledge. Teacher growth in these areas will improve their ability to provide instruction in the classroom that
engages the students. Improved instruction in which the students are working instead of watching will result in
improved student achievement.
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Letter of the Law

Objective

In this activity, you will

Use the motion detector to create graphs that resemble letters of the alphabet.
Predict which letters of the alphabet you can make using the motion detector.
Analyze why you can do some but not other letters.

Setting up your experiment
Logger Pro Program
ULI with Motion Detector connected.

Instructions:
1. Launch Logger Pro on the computer ( Make sure the ULI is properly connected)
2. Open the Motion Detector file.
3. From the Window menu, select New Graph.
4. Stand about five feet from the motion detector.
5. Start collecting data
6. Move in the appropriate directions to make the letter V on the data collection screen

(This may take several attempts).
7. What direction(s) did you move in order to create the letter V?

8. Repeat Steps 1- 3 to create an M.
9. What direction(s) did you move in order to create the letter M?

10. Predict what direction(s) you should move in order to create the letter W?

11. Try out your suggestion to see if the letter W is drawn.

12. Make a sketch in the empty space at the right of what
graph appeared whei you followed your instructions.

13. Predict what actions would you have to take to make a P.

14. Try out these actions to determine if you were correct. Were you?

15. What are some other letters you could make?

16. What are some other letters you could not make?

17. Describe why you could not make the P but you could make the V, M and W.
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Correlation Study: Life Expectancy

Data from
Parade Magazine,
"Must We Age?"

Hugh Downs, 1994
Used by Permission

1.Double click on the icon for Graphical Analysis on your desktop.

2. Label the axes appropriately. To do this, click once on the blue X in the Data Table window. A Column Options
window will appear. Type the word YEAR and hit the Return key on your keyboard. Repeat the procedure for the Y-
axis Label but use the words LIFE EXPECTANCY.

Which is the independent variable? Explain.

Which is the dependent variable? Explain.

3. Input data for either gender on the x-y table. To do this, click once in the first cell of the left-hand column of data
This is cell X 1. Type in the number for the first year reported in your data set, 1900. You may use left and right arrow
keys to move from cell to cell or you may use the Return or Enter keys to move from cell to cell. Experiment with
these keys to find a method that works well for you. Enter the rest of the data - year in the X column and life
expectancy (either male or female) in the Y column. The points will automatically be plotted on the graph.

Looking at the data table, what do you notice about the life expectancy as the years increase from 1900 to
1990?

4. When examining how variables relate to each other in a scatter plot, you are studying CORRELATIONS. There are
three types of CORRELATIONS (relationships between variables): positive correlation, negative correlation, or no
correlation.

Positive Correlation As the values of one variable increase, the values of the
other variable also increase.
Negative Correlation As the values of one variable increase, the values of the
other variable decrease.
No Correlation As the values of one variable increase, you cannot tell if the
values of the other variable are increasing or decreasing.

Identify the type of correlation illustrated in your scatter plot.
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5. Give two Other examples from your experiences of this type of correlation.

6. Identify the domain and range for the data displayed in the scatter plot.

DOMAIN
RANGE

Change the scale for your "x-values" by clicking on the last value at the right. Replace this value with 2050. Repeat this
procedure for the "y-values" and replace the value with 110.
Title the mph. To do this, select Double click on the title. After the current title, type the gender you selected (male or
female) and then type a dash followed by your initials.
From the File menu, Click on Print and choose Selected Display.

Using a straight edge, draw a Line of Best Fit on your graph and use it to answer the following questions.

7. According to this information, what is the best prediction of the Life Expectancy for your gender in the

year 2000?

8. According to this information, what is the best prediction of the Life Expectancy for your gender in the

year 1958?

9. What is the best prediction of the Life Expectancy for your gender in the year 4 B.C.?

Double click on your Data table window. Click Edit and choose Select All. Now hit the icon containing at the top of the
screen. Notice how the computer creates a Line of Best fit. Now select Analyze. and click Interpolate. Using your cursor, scroll
up and down the line of best re With the aide of this feature, answer the following questions:

1.

10. What is the best prediction of the Life Expectancy for your gender in the year 2000? How does this compare to

your previous answer?

11. What is the best prediction of the Life Expectancy for your gender in the year 1958? How does this compare

to your previous answer?

Click File menu. Select Exit. DO NOT SAVE ANY PREVIOUS DATA.
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