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Abstract
In this paper, active learning models are applied to computer graphics. Lectures are augmented in real time
with student activities, inquiry-based reasoning, and other methods of initiating student contribution to the
learning experience. This approach promotes a more comprehensive, deeper, and more memorable
understanding of the theory, principles, and methodologies of computer graphics. A progression of such
activities is presented as they are applied in the course.
Introduction
The classical model of lecture-homework-exam does not meet the challenge of contemporary students. When
competing with mass media and other forms of information delivery, a verbal lecture does not leave enough
sensory impression. Likewise, even what students read in a passive framework is barely remembered, less so
in pre-examination cramming. Weaker students have difficulties in reading, most notably with abstract and
mathematical concepts. These problems are magnified in computer graphics, where mathematical
expressions/structures and programming projects may prove too formidable.
The solution to these problems requires a radically different approach to lectures, homework, and projects.
Lectures should involve periodic breaks in which students perform activities that reinforce the concepts
being inculcated. The activities should be simple at first and based upon student experience or a familiar
context. In the beginning, this may mean giving the students programs with which to experiment rather than
oy expecting that they write the code.
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Foundations and Aesthetics

At the earliest stages, students need to understand the concepts of color and resolution, especially
appreciating their effect on the images generated. To achieve that, a useful exercise is to have students
download sample GIF or JPEG images and view them in a standard imaging package such as Photoshop® or
LView®. There are many such packages in the public domain. Next, have the students magnify the images to
see the inherent pixel nature of the image. Another useful exercise is to have them view the photograph at 4,
16, 256, ~65,000, and 16 million colors. They quickly recognize the associated information content. Have
them save the files at each step. They directly see the “space complexity” measure by looking at the file sizes.
To demonstrate the effects of compression, have students save an image as a bitmap (such as uncompressed

TIFF).

These activities also prove useful when preceding a lecture on the hardware and history of computer graphics.
Most students have little idea that the era of mainframe and minicomputer dominance involved little
graphics beyond character-mode printed posters. Some may remember low-resolution four-color
applications of the early 1980s. To best contrast this evolution, have them compare small, simple overview-
perspective games with textured-bitmapped first-person three-dimensional games. Restrict this time period
to at most five minutes, the goal being discernment, not frivolity. This can be followed by a discussion of the
historical trends of graphics hardware during the 1980s and 1990s. The need for increasing memory model
size, graphics memory, display resolution, CPU speed, and for coprocessors takes on a greater reality. The
importance of the transition from two dimensions to three becomes apparent. Another useful exercise in
hardware appreciation is to run several graphical programs (from the student assignments) with specialized
graphic-instructional primitives utilizing the coprocessor, and then run those programs without them. A
graphical simulation of raster scan operations would be useful but none are available.

To facilitate this initial experience-orientation, a textbook should introduce colorful samples of computer
graphics early. Hearn and Baker (1997 the primary text used in this course) and Firebaugh (1993) provide
numerous illustrations at this stage.

Graphic Primitive Programming

Programming in computer graphics often begins with designing a line-draw function from a single-pixel dot
function. One useful exercise is to hand out graph paper and have students “x"-out boxes to draw lines. They
easily accomplish this for drawing y=x and y=0. At y=(3/7)*x and y=(1/4)*x, serious problems become
evident. At this point, they are ready to code a simple incremental algorithm (such as digital differential
analyzer—DDA). After several runs, have students try their algorithm with y=100*x. Students arrive on their
own at the conclusion to switch the looping dimension depending on slope.

Bresenham’s line algorithm requires even more preparation. One activity students enjoy is calculating. Using
a spreadsheet package, have students compute intermediate numerical values that Bresenham requires and
then use the chart facility to view the results. After this prototyping activity, students are generally more
confident in proceeding to the program design stage.

Another useful exercise is for students to form teams, each responsible for a distinct algorithm for solving the
same problem. In the circle-generating problem, each team has a different algorithm to program and they
post their timing results on the board. This is also a good time to compare their results with those produced
by a coprocessor’s routine.
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Two-Dimensional Programming

The next exercise is to design a plotting routine for an arbitrary parametric curve in the plane (see Figures 1
and 2 for examples of parametric curves). A good first step is to have students research on the Web or in the
library about particular parametric curves, such as hypotrochoids. After studying the curves and getting
formulas for them, students insert those formulas in the plotter routine. This routine (only 25-30 lines of
code) generates 1,000 points of that curve, computes the maximum and minimum values, and then scales
and plots all points based on those maximum and minimum values.

Figure 1. Standard parametric curve.

A bountiful source of several major families of parametric curves is Lawrence (1972). Introducing
parametrics is important because of the decline in their coverage in a significant portion of modern calculus
texts, despite their central role in several areas of computer graphics. They serve as a useful introduction to
multivalued functions, broaden student understanding of piecewise linear graphics in the plane, and have
applications in simulation.

Figure 2. Nonstandard parametric curves.

The team approach works well with fill algorithms. In each team, one person supervises the trial drawings
and the key logic therein. The second person converts the samples and reasoning into a program. A third
person constructs test inputs; these inputs should adequately address problem situations and thoroughly test
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the code. Finally, the fourth person is responsible for debugging and testing. The debug phase often produces
surprising results, the most amusing being fills that go beyond boundaries and inundate the screen.

Anti-aliasing models can be tested by editing an enlarged image and then reducing it to see the actual results
at the normal scale. This is best accomplished with line segments since this activity requires some effort even
for small segments; that segment can then be duplicated and concatenated to see the final results.

Transformations are easily experimented with; most image-processing packages have such options. At the
stage of students programming transformations, the situation has some interesting side effects. When
working with line segments defined by endpoints, the matrix transformations work well. However, when
students run their transformation procedures on images, the side effects from rotations and scaling are quite
shocking. The need for interpolation becomes acute.

Clipping algorithms can be covered by first providing some examples for the whole class to solve by hand on
paper, providing the solutions when errors are encountered, and then forming teams for the actual
programming. The problem in programming is that students often “visualize” the solution before applying
the algorithms in the class problem-solving efforts. During the programming, no such global intuitions are
available during execution. Teams of at least four are needed here; at least one student should concentrate
just on the algorithm's steps, not the coding issues, to guarantee adherence to the method assigned. Roles of
students in each team should be based on their decisions; to impose a rotation of functions on students often
irritates them by blocking their opportunity to contribute in areas of their strengths.

Three-Dimensional Wiring

The introduction to three dimensions requires an extensive review of vector and matrix operations. Intermix
lecturing with student calculation exercises (see Figure 3).

S O =

igure 3. Early exercise in wire-frame, three-dimensional perspective calculation, depth cues, and

random-image generation (desert scene).

It is beneficial to have students verify their results on a simple wire-frame modeling program. As they
progress from the basics to the three-dimensional transformations, this visual verification becomes
indispensable. Students should program short routines to read/construct and display polygon tables and
quadrilateral meshes. They can then modify their two-dimensional transformation procedures to three
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dimensions (a short activity). At this point, have the students modify their 1,000-point plotter in two
dimensions to three dimensions and apply transformations to give perspective. The resultant surface plotter
is quite an accomplishment.

Students consistently dread the spline representation. Having students generate sample cubics with their
two-dimensional plotter routine helps them understand the versatility of this curve. A formal discussion of
curvature and quadratic limitations will give some background but rarely convinces them as well. A
computer-aided design (CAD) or drawing package with splines built-in is an effective way for students to
visualize the effects of control points. After several proofs and many numerical examples, assign a different
spline algorithm to each team. After computing coefficients, have students test their results by running the
plotter routine on the spline and also plotting the data points.

Solid Phase: Ray Tracing

Introducing a public domain ray tracer such as a Persistence of Vision™ Ray Tracer (POV-Ray) is an effective
way to approach constructive solid geometry (see Figure 4). Students find the programming less pressured,
can concentrate on concepts, and produce results too time-consuming to completely program otherwise.
This approach was presented in Owen, Larrondo-Petrie, and Laxer (1994) and Schweitzer (1990). POV-Ray
includes online interactive tutorials. POV-Ray code samples on the Web are abundant. Students develop a
solid appreciation of three-dimensional positioning, perspective, lighting, color, and texture as they construct
several scenes. Several books by Waite Group Press are complete introductions to ray tracing and animation
with POV-Ray, most notably Young and Wells (1994) and Bowermaster (1994). Unfortunately, all of them are
out of print but are worth borrowing through interlibrary loan with their CDs. The C/C++ code can interact
with the user and then call POV-Ray routines to accomplish the task. One popular activity is to write recursive
C code for a Lindenmayer system. This generates point and arc information, which is then rendered using
POV-Ray. This may be a student’s best opportunity to see the inherent power of recursion.

Figure 4. POV-Ray generated scene.

Ray tracing prepares students for actual C/C++ programming with depth, shadows, reflections, and other
three-dimensional characteristics. Pedagogical exercises with folded paper models can serve as a prelude to
algorithm design for binary space-partitioning (BSP) trees and hidden line removal. Bringing a flashlight and
metal objects to class will illuminate during a lecture on normals, lighting, and reflection. By turning off the
overhead lights and closing the shades, students can get a more dramatic and realistic view than any ray
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tracer could produce. This serves as an effective lab exercise. The mathematical model and subsequent
C/C++ code follows.

One of the benefits of using C/C++ is that scene generation occurs in real time, so that if a bug occurs,
students can predict and observe when the scene went bad. It is also more amusing watching objects and
shadows get generated.

Fractals and Randomized Models

The simplest exercise in randomization (Monte Carlo methods) in computer graphics is to have students
write a C/C++ program to generate a wire-frame grid and then use a random-number generator to raise or
depress grid-points on that surface a random but carefully bounded amount (like wrinkling). This is an easy
and short program, described in Pokorny (1994). Going a step further, have students use nonuniform
random-number generators to produce different textures. As a final step, apply color variations depending
on surface height. Applying colors carefully, one can achieve the effect of geological strata.

Another application of random numbers and colors is in producing cloud formations (see Figure 5). Using a
random-number generator with a Gaussian distribution and applying shades of white on a blue background
in cluster patterns, students can produce impressive results.

As an independent but not mutually exclusive methodology, fractals and space-filling curve generation also
gives students an occasion to write functions in class that generate complex natural objects and scenes (see
Figure 6). By putting more parameters in to this function (such as angles and length ratios), broad categories
of fractals can be generated.

gure 5. Cloud formation uéing random-number generators (compare with Figure 6).
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Figure 6. Space-filling recursive functions.

As an exercise prior to coding, students can download sample fractal programs, some quite professional,
such as Fractint, from the Web and generate fractals with which to compare their own results. Hand drawing
Koch curves also serves to motivate students.

Animation

The greatest obstacle to animation is student anticipation of greater effort being required. The idea of
physical trajectories and producing frames/time-parametrized functions induces anxiety. To alleviate it, start
with a programming exercise to draw a short horizontal line segment and then to erase the segment. Add a
loop to the code to draw the segment farther to the right each time. To give an apparent smoothness of
motion, have the loop not redraw the line segment but just delete one pixel on the left and add one on the
right. This incremental approach “slides’, the image.

The second animation exercise would be to write a function to draw a small car or, if students have learned
file formats already, redraw a small scanned bitmap of a car. Combine this code with the previous
nonincremental animation.

Another source of simple animations to demonstrate is the Web with its numerous animated GIF files. A
frame-by-frame display of these can be accomplished by using any of several GIF-animation utilities (also on
the Web). Students should be cautioned that these are often hand-drawn and are more akin to the mechanical
cartoon arcades of the previous century or flip books than to computer graphics.

For nonlinear motion, a simplified solar system is an excellent programming exercise. One option is the
practice in shading the planets as they move. Another optional modification is to add random periodic
bumps on the surface and shaded boundaries to give the appearance of rotation and bumpiness.

At this stage, students are ready for the final project in animation. To encourage originality and imagination,
several inspiring animations are demonstrated from the CDs of Bowermaster (1994) and Shatz (1993).
SIGGRAPH also publishes CDs with exceptional animations but those are of higher caliber and often involve
hardware and software that are not available to students.
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Other Resources and Issues

Books by Clifford A. Pickover (1990, 1991) provide very readable and well-illustrated expositions on topics
including computer graphics. Unlike other popularizations, Pickover’s include programming code. The
Graphics Gems multivolume book series also provides short expositions that could be converted into
exercises or projects.

Implementation support is always a consideration, but more so in computer graphics. Without 24-bit color,
these activities would suffer; other less-pressing necessities are a robust combination of memory (more than
32 MB), graphics memory (more than 4 MB), and operating system (such as UNIX, Linux, or NT).

Since students are concerned about applicability of knowledge, we have recently shifted toward OpenGL as a
standard. Since NT platforms are the student preference, a second text we require for the course is Wright
and Sweet (1996). If NT is not a concern, a single compact text covering both computer graphics principles
and OpenGL is Angel (1997). Finally, for those not using OpenGL but using X-Windows, Pavlidis's 1982

classic has been modernized (in 1996) and expanded with exercises concentrating on interactive, event-
driven programming.
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