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Abstract

As the automated scoring of constructed responses reaches operational status (e.g.

Kenney, 1997) the issue of monitoring the scoring process becomes a primary concern,
particularly when the goal is to have automated scoring operate completely unassisted by
humans. Using é vignette from the Architectural Registration Examination (ARE) this
study reports on the utility of an approach based on classification trees (Breiman, ’
Fﬁedman, Oshen, & Stone, 1984) as a means of quality control. Five studies were
carried'out analyzing different aspects of the “training set” and making efforts to cross-
validate the results of the analysis by applying the resulting classification trees to data
that had not been used in the development of the tree. The application of classification
trees led to valuable insights with implications for operational quality control processes.
Furthermore, classification tree methods were shown to be able to accurately and
efficiently select cases for future quzility control processes, thereby suggesting that future
quality control selection procedures may be completély automated. However, further
analyses ﬁre needed tE) establish whether classification trees can be relied upon to identify
cases that are the most likely to require some adjustment without incurring the potentially

costly error of ignoring solutions that are likely to require adjustment.
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Classification Trees for Quality Control Processes in Automated

Constructed Response Scoring

As the automated scoring of constructed responses reaches operational status
(e.g., Kenney, 1997 in architecture) the issue of monitoring the scoring process becomes
a primary concern. Initially, as an automated scoring system becomes operational,
éxperts closely monitor the scoring process, thus providing an opportunity to gather data
upon which to base statistical processes that may automate aspects of the quality control
process itself. For example, if experts have a tendency to judge the automated scores
unsatisfactory for specific classes of solutions then by identifying those classes it may be
possible to make the quality control process more effeétive and efficient. Of course, the
aim of automated scoring is not to emulate human scores. Human scorers typically
operate uﬁder a svet of scoﬁng rules that are tailored to the characteristics of humans as
graders. The aim of autom'ate_d scoring is to emulate the best aspects of human graders
but also to make it pc;ésible to consistently and fairly evaluate aspects of performance that
human graders would find difficult, time consuming or imposgible to analyze.
Nevertheless, during the transitjon to Operationai status certain aspects of the automated
scoring process may not function entirely satisfactoﬁly and experienced human graders
can provide valuable information to contraét w1th automated scoring. That is,
disagreements between experienced graders and automated scoring are to be expected

and may be the source of valuable information about both automated and human scoring

"processes. A study by Williamson, Bej ar and Hone (1997) analyzed such differences for

the constructed response portions of the Architect Registration Examination (ARE)
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(Kenney, 1997). That study concluded that while the scoring policies implemented in the
automated scoring are consistent with the scoring practices of independent groups of
experienced graders of ARE solutions, automated scoring was able to extraet far more
detail from performances and to score with greater consistency than human scoring.
Moreover, in the majority of cases humans were willing to aceept the computer score
once the details of computer evaluation and the rationale behind the computer score were
presented to them. The present study uses human and computer grading data for one
vignette (ARE constructed response task) from the Williamson et al. (1997) study.

The present study investigates the operating characteristics of automated scoring
at the feat"urellevel.(the_ﬁnesfT level of ARE solution evaluatien) and the score level (the
coarsest level of ARE solution evaluation), both with regard to the integrity of the
automated scoring engines and with an emphasis on examining the scoring engines for
the potential of future development.! The emphasis on the immediate integrity of the
automated scoring is referred to as first-order quality control. Processes of first-order
quality contro] are focused on the immediate performance of the automated scoring
procedures and the results they produce as compared to the intent of their design. A
distinguishing feature of first-order quality control is that it concerns aspects of scoring
that have the potential to adversely impact the accuracy or validity of resultant scores if
some aspects of scoring are not operating in the intended way. By implication any impact
on resultant scores could demand intervention in the form of adjustments er corrections
to automated scorlng nrecedures te make them .consistent nvith fhe intent of fheir design.
Tnis priority makes the identification of any such malfunctions a primary concern of

first-order quality control processes. Clearly, when a scoring feature that is not
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functioning in the intended way is identified it should be fixed as soon as pdssible. In
practice, it may not be possible to immediately institute the correction for a variety of
reasons. In such events, there is significant value in efficiently identifying cases that may
be affected by any malfunction.

In contrast, the term second-order quality control processes indicates
investigations whose focus is on the long-term precision and evolution of autornafed
scoring of complex constructed responses. Issues identified in second-order quality
control procedures are those in which automated scoring is performing as it was intended
to perform but a particular group of experts may feel that sor‘n_e ‘tweaks’ would be
appropriate to better reflect their opinions (or biases) on particular issues. Examples of
these types of issues may include different recommended weightings of criteria, different
tolerance for less-than-perfect implementations of criteria, and inclusion or exclusion of
criteria that may be marginally or tangentially related to the purpose of the examination.
Of course, any two groups of experts will disagree on certain points of practice so tjhe
findings from second-order quality control processes can only be co‘ns.idered as
‘suggestions’ rather than as ‘problems’ with automated scoring, which would be the '
domain of first-order quality control. The nature of constructed response problems (e. g
allowing the candidate the ‘free'dorn to irnplernen!t a variety of complex solutions, or
complex errors) in an automated examination prevents the accommodation of every '
possible solution a candidate may create; though every reasonable solution may be
accommodated. .Tl.lis I)Ird-ce:;s of .sécbnd-order-quality coﬂtrdl c‘an -hel};as‘sure that all

reasonable criteria are included and aré evaluated appropriately by the automated scoring
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as well as providing possibilities for the future evolution of the constructed response

examination.

Overview of the method

The intent of the present study is to evaluate the utility of classiﬁcatioﬁ trees
(Breiman, Friedman, Oshen, Stone, 1984) for performing first-order and second-order
quality control processes. A specific goal is to automate the identification of cases where
experienced graders and automated scoring can be expected to disagree as a result of
automated scoring malfunction (first-order quality control). ‘The availability of
experienced graders makes it possible to train a classification tree system to identify such
cases so that the system can then be used once the experienced graders are no longer
available. Specifically, given a training set of soluﬁons for which we have available a
measure of the computer-human agreement the aim is to identify which solutions would
exhibit a disagreement in order AtoAaccur_ately and efficiently identify future cases. An
expert would, of course, need to review the solutions identified in this manner but there
would be substantial %avings of time, effort and cost by limiting this examination process
to those cases th;1t are most likély to have exhibited a scoring disagreement. Such a
targeted selection of solutions to review would seem to be moé effective than random
sampling techniques commonl‘.y used in quality control procedures and more efficient
than a 100% quality control review proces‘s'.w |

The use. of classification and regreséioﬁ trees is.an ihcreasingly popular method in
psychometric applications. Sheehan (1996) describes the application of tree-based
_ methods for proficiency scaling and diagnostic assessment. Bejar, Yepes-Baraya and

Miller (1997) discuss an application for modeling rater cognition. Holland, Ponte, Crane,
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Malberg (1998) discuss an application in computerized adaptive testing. Although firmly
groﬁnded in statistical theory (Breiman et al, 1984), classification trees share elements of
techniques related to machine learning emerging from the artificial intelligence literature
(e.g., Quinlan, 1979; Hunt, Marine, Stone, 1966). As a classification methodology it is a
competitor of classical statistical methods, such as discriminan‘t analysis, as well as more
recent methods, such as neural ne—tworks. When compared with these techniques
(Michie, Spigelhaulter, Taylor, 1994) classification trees were found to perform well with
specific data sets. The methodology is claimed to possess many advantages, including
the following:
| ¢ [tis a nonparametric technique, and as such does nc.)t require distributional
assumptions.
¢ It1s suitable for both exploratory and confirmatory analyses.
¢ The method excels with data sets that are complex in nature.
¢ Itis robust with respect to outliers and can handle cases with missing
independent variables.
Several commercial implementations of classification and regression trees are available,
including those by Salford Systems, SPSS, and S-Pius. The analyses in this péper wer‘ze
conducted using the program CART (Classiﬁca;ion and Regression Trees) published by

Salford Systems.

Description of the Method

Before considering the application of CART to the quality control of automated

scoring it is useful to illustrate the method in the context of a small and familiar data set.
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As in linear regression and discriminant function analyses, the analysis requires data
(often called a training dataset) on the attributes (or independent variables) and the
classification outcome (or dependent variable). Unlike linear regression analysis, where

- the outcome is a prediction equation, the outcome of CART is a tree, specifically a binary
tree. A binary tree consists of a set of sequential binary decisions, applied to each case,
that lead to further binary decisions or to a final classification of a that case. The
independent variables can be numeric or nominal variables, which provides great
flexibility for possible analyses.

Figure 1 shows a classification tree from the CART manual (Steinberg and Colla,
1992), based on a classic data set (Iris flower species) used by R.A. Fisher to illustrate
discriminant analysis’. The same data were analyzed with CART, yielding a
classification tree shown in Figure 1.

Thé CART procedure actually computes many competing trees and then selects
an optimal one as the ﬁna] tree. This is done, optionally, in the context of a "10-fold
cross-validation" procedure (see Breiman et al. 1984, Chapter 11) whereby 1/10 of the
data is held back and a classification tree grown. The procedure is repeated nine times
and the final tree obtained by taking into consideration the ten different trees. The fit of
the tree to the data, that is, how well it classifies cases, is measured by a misclassification
table for the chosen tree.

A resultant tree can be used to classify new cases where the dependent van'abie is
not available. Given a. classification tféé,'new cases are “filtered down” thé tree to a final
classification. In this example using Iris data, there are 3 classes of final classification

(Iris species), represented by the rectangles, and two classification decision nodes,
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represented by the diamonds. Decisions about which direction the data goes within the
tree structure are based upon whether cases meet the specific criterion of the node. The
first decision at Node 1 is based upon petal length (PETALLEN). The question, “Is petal
length less than or equal to 24.5?” is posed. Those cases with a PETALLEN value of
24.5 or less (a “yes” answer) are deposited into Terminal Node 1, that is, they are
cl\assiﬁied in class 1 (Setosa species), while cases with a PETALLEN value greater than
24.5 (a “no” answer) continue through the decision tree. The Node 2question, “Is petal
width less than or equal to 17.5?” is asked of those, as yet, unclassified cases. Cases
where pétal width (PET:‘XLWID) Ais less than 6r equal tc; 17.5 (a “yes” énswef) end up ét
’ferminal Node 2, with a classification of 2 (Versicolor specie.s.). Cases where
PETALWID .is greater than 17.5 (a “no” answer) end up at Terminal Node 3, with a
classification of 3 (Verginica species). These terminal classification nodes may be
charac.:terized in table format by decision vectors that represent the decision sequence and
outcome of the classification tree. The decision vectors corresponding to the Iris
classification tree in Figure 1 are presented as Table 1. The fit of the model may be
evaluated by examihing the cross-validated misclassification table (which is different
from, and typically léss accurate than, the learning sample classification to prevent
overfitting), which is included as Table 2 for theE Iris data example. The table shows the
joint occurrence of actual and predicted classification and probability. In this example
the classification accuracy is high with 140 out 150 cases correctly classified.

The prdductib}i of classification trees requires intense corhputa'tibr.ls.i The process
can be conceptualized as splitting the data matrix into contiguous sets of rows that have

been sorted on the variable that is being considered as the splitting variable (decision
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node vgﬁable). The two sets of rows that result are then dealt with recursively in the
same fashion. If one of the dependent variab.le sets achieves a sufficiently high
classification rate, those rows are not analyzed further. The remaining set is recursively
analyzed until all rows are classified. A key aspect of this process is the selection of a

splitting value. Several criteria are possible (see Ripley 1996, p. 217). The general idea

Entropy = ij log pjz.
J

is to compare whether the two sets resulting from a given split are “purer” than the parent

set. A possible measure of purity is entropy and is given by

where pj is the proportion of cases in category j.

However, in this study the Gini index, as suggested by Breiman et al. (1984), was used as

the measure of purity and is given by

i1y
-3

The Gini index is 0 vs;hen the set contains all cases in a single dependent variable
category and is largest when the set contains the same number of cases in each dependent
variable category. ”

Figure 2 is a graphical representation of the Iris data set illustrating the concepts
described above. The figure shows the cases (i)y' dependent variable) on the x-axis and
their independent variable measurements on the y-axis, and are'sorted on petal length
(PETALLEN) as can be seen by the monotonically increasing plot corresponding to that
- variable. The chart also displays the actual classification (vériablé Speno) of each case,

which have been arbitrarily coded as 1 (Setosa), 2 (Versicolor), and 3 (Verginica).

47

11



Classification Trees 11

Nétice that the cases to the left of a split on PETALLEN at around 24 are all category 1.
This is why in Figure 1 above those cases appear in a “terminal node” without further
decision nodes. The remaining cases, to the right of the split, are then analyzed and all
variables are considered as the next splitting variable. The process is repeated recursively
until all cases have been classified.

A useful aspect of CART is that it characterizes variables in terms of their
importance. Importance refefs to the contribution a variable can make in classification
accuracy , based on how well it can split the data as measured by the purity of the
resulting .sets. A variable’s importance is based on potentialﬁand actual splitting behavior.
Thus, a variable may Be highly important even if it nevér appee;rs as a primary node
splitter in a specific tree. To allow comparison of the importance of different variables
importance is normalized relative to the variable with highest importance. Thus the most
important variable in given tree always has importance of 100. In the Iris data set, for
example, the most important variable is PETALWID, followed by PETALLEN. Thus,

Pl

order of appearance in the tree and importance are not necessarily the same.
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Overview of the Studies

We present five separate studies. Study 1 is concerned with an analysis of the importance
of evaluated automated scoring features in predicting or classifying cases according to the
level and dirt_action of human-computer disagreement. The difference between human
and computer scores is régressed on the feature scores that are extracted as part of the
automated scoring process. The human scores were obtained as part of a previous study
(see Williamson, Bejar, & Hone, 1997). The present study focuses on a single ARE
vignette. There were 326 cases for which both human and computer scores were
available, which we refer to as the training set. The plirpose‘ of Study 1 is to see if the
importance of the features in predicting differences from the CART analysis corresponds
to what was previously known as a source of disagreement from the actual 100% quality
control process that took place with these data. Because the focus is on the identiﬁcation
of features that may not be functioning correctly and which may require inte;ygntig_n this
stﬁdy is an instance of first-order quality control analysis, though additional second-order
quality control elements were also identified. The second study is based on the same data
and tree as .in Study 1 but the focus of analysis is specifically on the second-order quality
control process. The third study regresses the human scores én the feature scores anq
aims to determine if human graders are scoring on the basis of criteria other than those
represented in the automat;ad scoring features. ‘The fourth study extends results from the
first three studies as a means of determining whether, practically speaking, CART results
can be relied upbn.{o'ideﬁt.ify.caséé whose score may need to be adjuétéd as .part of first-

order quality control intervention. The fifth study examines the use of CART

13
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classification trees, regressing the adjudicated scores on features, for the specific purpose
of identifying cases requiring first-order quality control intervention.

For a description of the procedures used to obtain the training dataset the reader is
refered to Williamson, Bejar & Hone (1997). The human scores were produced by a
"Grading Committee" (GC) consisting of six human graders experienced in the holistic
grading of candidate submissions for the ARE. The committee was divided into two
groups so that three' graders examined each solution. Three hundred and twenty-six
actual candidate solutions for an actual ARE v.ignette were considered in these studies.
These solutions are evaluated on a featuie by feature basis, v;/ith each feature receiving an
evaluation of A (acceptable), I (indeterminate), or U (unaccept.;.lble). Thes.e.feature
evaluations are the independent variables in the CART analyses. These feature

evaluations are aggregated to produce a final solution score of A, I, or U. It should be
| noted that the I evaluation represents a borderline 1mplementat10n For more information
on the scoring of this examinatiop see Bejar (1991), Bejar and Braun (1994), and Kenney

(1997).
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Study 1
Method

Design and Procedure

The initial study investigated the utility of CART for first-order quality control
processes. Specifically, this study focused on the identification of featurés evaluated by
the automated sqoring engines that may be sources of disagreement between human
holistic evaluations and automated scoring evaluations of candidate submissions. The
primary purpose of this investigation is to provide an additiqnal method for ensuﬁng that
the evaluation of features 1n automated scoring is functidning as intended.

In this evaluation each of the 326 actual candidate s_olutions for an ARE vignette
were scored holistically by the GC in addition to thé scores provided by the automated
scoring engine. The resultant scores of A (acceptable), I (indeterminate) and U
(unacceptable) were then converted into numeric representations of 3, 2 and 1,
respectively. A difference score was computed by subtracting the numeric value of the
automated score fron'; the numeric value of the human holistic score. The possible
resultant values of this procedure for configurations of human and automated scores are
presented in Table 3. These resultant differencg scores were ﬁéed as the dependent
variable for the CART procedure. This CART proc'edu_fe assigned relative importance
values to the features used in the automated scoring according to .each feature’s ability to
predict the resultant difference score.. The variations in 4relative importance values were
evaluated with regard to. their ability to suggest specific automated features likely to be. a

source of disagreement between human holistic and automated scoring.

15 .
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Results

In order to permit a detailed discussion of the findings of this research the results
section of this and subsequent studies will reference a hypothetical “exemplar” vignette
which has instructions, features, and characteristics which have been altered considerably
and is which not actually used in the ARE This exemplar vignette, and the architectural
program requirements associated with it, are constructed to permit a faithful
representation of the characteristics of relevant features and'requirements of the actual
ARE vignette which was the subject of these studies. For this exemplar vignette the
candidate would be given a floor plan for an office and would be required to make
modifications according to specific requirements from a hypothetical client.

A line graph of the relative importance of the features, ordered from most
important to least important, is presented as Figure 3. The relative importance values
suggest that feature F2 (skylight location) is the major contributing factor to
discfepancies between human and automated scoring. Other features that may be
contributing to discrepancies include F3 (flashing), F9 (eave height), F15 (water flow),
and F1 (gutters). |

These results prompted an architectural review of vignétte solutions for which |
there were discrepant scores (those for which thia difference score was not equal to zéro)

with particular attention to the features identified as possible sources of discrepancy.

This review observed a high frequency of solutions with an additional skylight

- (represented by a square with an X) indicated by the arrow in Fi gure 4.

In this exemplar vignette the candidate would begin with the floor plan showing

an open office area, a cubicle within the open office area, and toilet facilities. The

16
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candidate would then be required to complete the Floor and Roof plans according to
specified client requirements. The building section portion of Figure 4 was not available
to the candidate or tﬁe GC but is included here for the benefit of the reader.

One of the requirements of this vignette is that “all rooms must receive natural
light”, the intention of which is to have the candidate place a skylight in the roof over the
toilet facilities, as this is the only room without windows. An examination of feature F2
(skylight location) for the solutions identified as receiving discrepant scores revealed that
in these cases there were actually two skylights; one in the fequired location for the toilet
and the other pl.ac.ed over the cubicle area (indicated by the arrow in Figure 4).. For each
ékylight the candidate would typically place flashing (F3) around the skylight and a
cricket to prevent water from l_eak.ing into the building (F15). The placement of an
additional skylight over the cubicle area, and the accompanying flashing and cricket
would be consi@er_ed _ex_cessiye use of skylights and flashing, and__i_r}app_rggf_i;gt_nggtgr‘
flow control and would cause automated scdring to provide an unfavorable evaluation of
these features.

From this observation and the fact that human holistic evaluations tend to give
credit to candidates proViding the extra skylight 6ver the cubicle (but not for placement
over other areas of the roorr;) it 1s possible to infer that the GC made allowances in
scoring for the possibility 1;hat candidates were‘interpreting the partitioned cubiclé in the
floor plan as a room (keeping in mind that_neithgr the candidate nor the GC had the |
building section view in Figufe 4) Wie this discovery is.hot é c.leﬁc‘:ienc;/ in thé

automated evaluation of particular features, it did reveal a potential ambiguity for

~ candidates in fulfilling the requirements of the vignette. On the basis of this possibility
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steps were taken to eliminate this potential for misinterpretation. Specifically, as shown
in Figure 5, the floor plan was changed to include pre-existing windows for the cubicle |
(indicated by the arrow) so that there would be no confusion about the correct
implementation of skylights.

Architectural examination of eave height (feature F9) in the solutions with
discrepant scores revealed that the GC was at times overlooking this element in their
evaluation process, despite the fact that it was included in tHeir written criteria. An
example of the type of situations in which the automated scoring was providing an
unfavorable evaluation of eave height whil'e the GC was considering solutions to be
acceptable is presented in Figure 6. Since the GC would often rely on “eyeballing” to
judge the correctness of the .roof héights at various points, they at times missed the fact
that given a specific ridge height é.nd slopé, the eave height would not be a practical

solution. Figure 6 shows an exaggerated representation of the findings. In Figure 6 we

have two roof i)lans, which are visible to the candidate and the GC, and their associated

building section view‘_s, which are not available to the candidate or GC. Both'p'lans in

Figure 6 ﬁave aridge height of 18’-0”. The plan in Figure 6 (a) shows a slope ratio of
6:12 while the plan in figure 6 (b) shows a ratio of 12:12. It is readily apparent from the
building section views associated with the roof };lans that given the different candidate-
defined slopes and ridge h;:ights, the two roof profiles would be quite different. Based on
the requirements for the vignette, the solution in Figure 6 (a) would be a correct solution
while the solution Iin figure 6 (b) Qouid be incorfect. “Therefore; if thé GC neglected to
calculate the slopes in their holistic scoring they would have missed the fact that the

solution in Figure 6 (b) was incorrect. Examination of solutions with discrepant scores

18
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revealed that in these cases the holistic scoring process failed to completely evaluate eave
height (F9).

The examination of discrepant solutions with emphasis on the gutter (F1) feature
revealed an apparent difference in the relative tolerance of less-than-perfect
implementation and weighting of this particular feature as it is aggregated with other
features to produce the final vignette score. Specifically, the GC appeared to have less
tolerance of less-than-perfect implementation than was implemented in the automated
scoring and the GC appeared to weight this feature more heavily than the automated
scoring in the deterrnination of overall score. The differences attributable to this featnre
Were found to be relatively minor and were documented as second-order quality control

L[4

issues for future consideration.

Discussion

Tnitial examination of the relative importance of features evaluated in the
automated scoring suggested that feature F2 (skylight location) is tne primary contributor
to the discrepancies between human holistic scoring and automated scoring.
Investigation of this issue led tb the understanding of features F3 (flashing) and F15
(water flow) as factors relatéd to the primary cause. This app}nach dernonétrated the
ability nf this method to ident{fy first-order quality control cases where there may be a
problem with the scoring implementati‘on of otl'her vignette nharacteristics. The
identification of this potential .ambiguity. resulted in a policy.of performing an
architectural review of 100% of candidate solutions until the new base floor plan could be

~ implemented.
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Investigation of features with relative importance values similar to those of F3
(flashing) and F15 (water flow) also revealed one of the advantages of automated scoring
1n its ability fo precisely evaluate every aspect of a candidate solution, as exemplified in
feature F9 (eave height). This CART procedure, then, seems capable not only of first-
order quality control proceéses but also of documenting situatfons in which one scoring
methodology may be more precise th?.n another, thus helping to evaluate competing
scoring procedq.res. *

An unanticipated result of this investigation 1s the ability of relative importance
output of the CART procedure to identify issues of second-order quality control
processes. Specifically, this procedure was able to identify feature F1 (gutter) as a
feature for which the GC utilized ; somewhat different standard of tolerance for less-
than-perfect implementations 6r somewhat different weighting in aggregation to the final
solutioﬁ score. As a result this investigation also identified a second-order quality control

issue of overall criteria and content which can be examined by architectural test

development committees in the continued evolution of ARE automated scoring.
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Study 2

Method

Design and Procedure.

The participants and materials for Study 2 are identical to those for Study 1. This
second study investigates the utility of CART specifically for second-order quality
control processes. The investigation of features identified through Study 1 was .shown to
be a fruitful process. The results of Study 1, However, do n.ot address the question of
whether the hol\istic scoring of the GC might implicitly include criteria which are not
cuﬁently evaluated by the automated scoring but which would improve fhe quality of the
scoring if these features were inclyded.

In addition to the relative importance values for each feature CART pfoduces a
classiﬁcatién tree as described above. The classification accuracy rate for the.

‘classification tree produced using these difference Scores is pfesente.d-ei‘s Table 4. This
second study seeks to determine whether this classification tree can be a useful tool in the
identification of .speciﬂﬁc differences in criteria or tolerances and weighting between the
GC and the automated scoring as part of second-order quality control. This was
investigated by identifying feature vectors leadipg to the term-i.r-l-al nodes (final nodes |
indicating the resultant differénce score). These feature vectors (labeled A through N)
and their résultant difference score are presented in TaBle 5.

Feature vectors.A, B, and C are all associated with the terminal node value of -2,
in which the automated scoring result'was A (acceptable) and the human holistic scoring

~ result was U (unacceptable). These feature vectors are suggestive of solutions for which

the GC is using additional criteria not assessed by the automated procedure, allowing less
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tolerance for less-than-perfect feature implementation, or utilizing greater feature
weighting for inadequate features in the solution. Solutions with feature vectors of A, B,
and C were selected and examined for any coherent architectural trends among the
sélected solutions which would suggest a difference in tolerance, weighting, or criteria
implemented by the GC.

At the opposite pole of the difference score spectrum feature vector M is
associated with difference scores indicating that the human holistic scoring provides a
higher overall score than the automated scoring. Since the only feature with a U in this
vector is the eave height feature (F9); and based on the knowledge gleaned from Study 1
it expected that feature vector M is indicative of cases where the human holistic scoring
is overlooking the eave height feafllre (F9) as discussed above. Solutions with this vector
of feature scores were selected to examine this hypothesis. |

Feature vector N is also associated with difference scores that indicate the human
holistic scoring provides a slightly higher overall score than the automated scoring. Since
the two critical negati_'ye features in this vector are skylight location (F2) and flashing
(F3), and based on the knowledge gleanedﬁofn Study 1 it is expected that feature vector
N is indicative of cases §vhere the GC made exceptions regarding the skylight location'as
discussed above. This possibility was eval'uatedi.through architectural examination of
solutioﬁs with this vector c;f feature scores. .

Results
Thirty of th‘e' 326 solutions were found to have feature vector A, of which 13 have

human holistic scores identical to the automated scores (due to classification error in the

tree). Architectural examination of these 30 solutions led to the identification of two
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features which may be criteria that were not specified by the GC lin their documented
cﬁteﬁa but were implicitly used in evaluating the solutions. Remaining consistent with
the hypothetical ARE vignette discussed previously, for discussion purposes these criteria
will be termed roof material and parapet walls.. The implicit feature of inappropriate roof
material was observed in 11 of the 30 solutions (4 of the 17 with discrepant scores) and
inappropriate use of parapét walls was observed in 16 of the 30 solutions (7 of the 17
with discrepant scores). Neither roof material nor parapet are evaluated in the automated
scoring routines of this vignette.

Additionally, the architectural review identified 14 of the 30 cases (10 of the 17
§vith discrepant scores) for which the GC appeared to be weighting feature F2 (skylight
location) more heavily than the; automated procedures. A noteworthy aspect of this
finding is that while this feature is the same feature which Was the focus of attention for
Study 1, the relevant aspects of this feature receive a different interpretation when

examined in the context of solutions with feature vector A. It would appear that this

- distinction in interpretation of the F2 (skylight location) feature from Study 1 to Study 2

is a result of the restricted body of solutions being examined and the criterion value being
considered. The architectural review of the large number of solutions in Study 1
identified the candidate interpretation issue as the primary conclusion based on the fact

that it was a curiosity and it occurred with some frequency in the general set of solutions.

‘By restricting the focus of architectural review through the selection of feature vector A

solutions, the Viewing”o”f a subset of 30 solutions identified a trend which was masked in
the Study 1 review of solutions. This identification was facilitated by the fact that the |

feature vector A solutions are solutions for which the criterion is that GC scores are lower
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than automated scores—a criterion different from expectations based on Study 1, in
which GC exceptions for candidate interpretation would result in higher scores than the
automated score.

It initially seemed curious that the use of CART methodology is capable of
simultaneously identifying two potential points of investigation for a single automated
feature. In an effort to obtain additional empirical support for the belief thatlthese
architectural observations of feature vector A solutions were not imaginary trends, an
additional analysis was conducted controlling for the effects of candidate
misinterpretation. This was conducted by examining each of the 326 solutions and
correcting for instances of candidate misinterpretation described in Study 1 by altering
the feature scores of candidates to accept the skylight implementation resulting from this
misinterpretation. A new CART analilsis was run using as the dependent variable the
difference score between the human holistic score and this adjudicated automated score.
The classification rate resulting from this analysis is presented as Table 6. A line graph
of the resultant values'of relative importance for each. of the features, ordered from most
important to least important, is presented as Figure 7. This analysis identified feature E9
(eave height) as the most important feature, which is consistent with the findings of Study
1 regarding this feature. The second most important feature is F2 (skylight location)
despite the fact that the car;didate interpretatiog of requirements is controlled. This
provides some additional support for the conclusion about the GC weighting of F2
(skylight location) conuibuting fo discrepant scores.in the feature vecfér A solutions as

well as offering some additional explanation for the dramatic difference between the

~
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relative importance of F2 (skylight location) and F3 (flashing) in Figure 3, despite the
fact that these two features are conceptually and architecturally related.

Seven of the 326 solutions were found to have feature vector B, one of which had
a GC holistic score identical to the automated score. Architectural examination of these
solutions revealed that all are the result of a single difference in feature evaluation. In
each case the GC was weighting a single feature, F5 (downspout/portal conflict), more
heavily than the automated scoring engine.

Twenty-five solutions were identified as having feature vector C, all but 8 of
which have GC holistic scores identical to the automated scores due to a higher rate of
classification error for this partipular terminal node. Architectural examination of these
solutions identified feature F3 (flashing) as a feature that the GC was weighting more
heavily than the automated routine. This feature was identified as a factor in 25 of the 30
solutions and in all 8 of the solutions for which resultant scores were discrepant.

Architectural examination of the 15 solutions with feature vector M, 14 of which
are discrepant scores,.supported the hypothesis that this f/ector was a representation of
cases in which the GC appeared to overlook the measurement of the eave height feature
(F9). This provides an additional corroborating source of evidence about the significance
of this feature from Study 1.

Thirty solutions; were identified as having feature vector N, 22 of which are
discrepant scores. Architectural examination revealed that 17 of the 22 disgrepant
solutions are cases 1n w-i'ﬁchvthé cé.ndidate appeared tb misiﬁterpfét.fhéh'ﬂobr plén as
described above. This result supports the hypothesis that feature vector N is a

representation of cases where candidates are likely to be misinterpreting the floor plan.
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Discussion

The architectural examination of solutions with feature vector A was successful in
the identification of two features which the GC appeared to consider in their holistic
scoring but which are not evaluated as part of the automated scoring. As a result these
tWo features were documented for future consideration. In addition, the review of feature
vector A solutions was able to identify an additional nuance of difference in scoring by
the GC and automated procedures for a feature (F2) already identified as an important
feature to be reviewed, but on a very different basis. The feature vectors were also able
to contribute to the identiﬁcatipn of two additional features whose weightings are worthy
of review by architectural test development commiftees, though from the number of
solutions selected these appear to occur infrequently. These results suggest that
classification trees can be effective tools for second-order quality control processes.

The qrchitéctural examination of solutions with response vectors M and N
confirmed that these vectors are indicative of cases for which issues identified in Study 1
are relevant. In this réspect this constitutes additional evidence concerning the utility of
CART prbcedures for first-order quality control processes as the results of Study 2

support conclusions from Study 1.
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Study 3

Method

Design and Procedure.

Whereas the second studyl examined the utility of feature vectors using difference
scores as the dependent variable, this study uses only the human holistic scores as the
dependent variable. Thus, a classification tree was grown by regressing the human
holistic scores onto the automated feature scores. The intent is to determine if the
utilization of human holistic scores as the dependent variable results in any of the
classification tree vectors being architecturally illogical. If a feature vector follows a
pattern of entirely, or predominantly, acceptable automated features but results in a
terminal node of unacceptable (as the human holistic score) this suggests that the GC is
evaluating some additional features or implementing different tolerances or feature
weighting. Subsequently, it may be fruitful to review these solutions as part of the
second-order quality control process.

The feature véctors (designated O through Z) for the CART procedure using
human holistic score as the dependent variable are presented as Table 7. The feature
vectors Y aﬁd Z are architecturally surprising feature vectors for the overall score of U on
the vignette. Feature vector Z contains predominantly A’s as feature evaluations with
one feature (F6) as I or U and resulting in a ﬁn:al GC vignette score of U. Since the
feature F6 is a relatively.minor feature it is.curious that this would have enough influence
to result in a human holistic score of U, particularly when feature vector Z is so similar to

feature vector P, for which the GC holistic score is A for the vignette.
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Similarly, feature vector Y also has predominantly A’s for the individual features
wjth one relatively minor feature, F5 (downspout/portal conflict), receiving a U and
resulting in an overall vignette GC evaluation of U. The minor feature, F5
(downspout/portal conflict), is the primary distinguishing feature between feature vector
S, for which the GC typically evaluated the solution as an I, and feature vector Y. To
investigate this use of classification trees solutions with feature score vectors Y and Z
were selected and examined for architectural trends.

Results

Five of the 326 solutions were found to have response vector Y (two of which had
been previously identified frorﬁ feature vector A). Each of these had GC holistic scores
that were discrepant from the automated scores. An architectural examination of these
solutions concluded that the discrepancy in scores was the result of a consistent
difference between the GC and the automated scoring in the weighting of two features;
F2 (skylight location) and F5 (downspout/portal conflict). Each of the 5 solutions were
inadequate implemenf'ations of both of these features. The feature F2 (skylight location)
was previously identified as the cause of the discrepancies from feature vector B. The

direction of score discrepancies from feature vector Y is consistent with the interpretation

~ from Study 2. The feature F5 (downspout/portal conflict) was also previously identified

in Study 2 as the feature weighting discfepancy from analysis of solutions with feature
vector A. It is interesting that examination of feature vector A identiﬁed feature F2 (and
additional GC cntena), ”fea't-ilre- véétéf B- idéntiﬁed caseé discrepaﬁt Iﬁﬁxély on the basis-of
feature F5, and feature vector Y isolated cases with discrepant scores resulting from the

combination differential weightings of Both features F2 and FS5.
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Thirteen solutions were identified as fitting response vector Z (of which 9 had
been previously identified as part of feature vector A). Architectural examination of
these solutions again revealed a difference in the weighting of the feature F2 (skylight
location) originally identified from feature vector A in Study 2. This not unexpected
when it is recognized that 9 of the 13 solutions were part of the feature vector A solution
set. What is more relevant is that the evaluation of the set of 13 solutions for response
vector Z resulted in the identification of an additional feature, F6, which appears to be
receiving differential weighting between the GC and the automated procedures. This
feature was identified in 8 of the 13 solutions as a potential source of differential
Weighting. It seems that this feature weighting difference was not apparent in the larger
set of 30 solutions from vector A but when the restricted set of 13 solutions from vector Z

was 1solated the pattern of weighting feature F6 became more obvious.

Discussion

The i1dentification of illogian feature vectors and the architectural examination of
solutions with these féature vectors corroborated the results of previous studies in
identification of two features that may be receiving different feature weighting between
the GC and the automated scoring. This examination also identified a feature (F6) which
appears to be receiving different weighting but which was not previously identified.
However, since the number of occurrences of thls feature as a factor in discrepant scores
is relatively small.it would appear to.be.less of a priority for examination by architectural

test development committees responsible for continued test development.
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Study 4

Method

Design and Procedure.

This study builds on the results of the past 3 studies and evaluates the utility of
knowledge gleaned for the operational selection of cases for human intervention to
resolve first-order quality control issues. Specifically, given the previous finding that
some candidates may be misinterpreting the cubicle as a room requiring a skylight would
the CART results provide a means for identification of instances where this
misinterpretation would result in a different vignette score.

This interpretation issue was identified at the outset of operational testing through
a policy of performing architectural examinations of 100% of solutions, with each
solution examined by several architects. As a result it was determined that candidates
who misinterpreted the cubicle as a separate room as described above would have the
automated scoring evaluations adjudicated to accommodate this misinterpretation.
Subsequently, there were a nmﬁber of candidates whose overall vignette score was
changed as a result of this adjudication. This process of examining 100% of solutions
and making interventions where appropriate was relatively time consuming and
expensive. |

Since the results of Study 2 suggest theit feature vector N indicates cases for which
candidates misinterpret the.cubicle,.the possibility that use of this feature vgctorAis a
sufficient method for identifying cases of candidate misinterpretation which would result
in a difference in vignette score was investigated. To evaluate this possibility an

additional sample of 1117 candidate solutions which had been subjected to the process
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.described above, but which did not receive scores from the GC, were analyzed. Cases

which had feature vectors matching vector N were identified and the resultant accuracy
of identification of cases resulting in a change in vignette score was evaluated. _

Study 1 suggests .a single feature, F2 (skylight location), is the primary feature
that accounts for score discrepancies. Since this feature is related to the issue of
candidate misintei’pretétion the possibility that selection on this single feature would be a
sufficient technique for identiﬁcafion of cases of candidate misinterpretation which
would result in a difference in vignette score was examined. This possibility was
investigated through the selection of solutions ffom the extended sample of 1117
solutions described above for which this feature score, F2 (skylight location), was other
than A (acceptable). The resultant accuracy of identification of cases resulting in a
change in vignette scdre was evaluated.

Results

The results of utilizing feature vector N for the identification of cases for which
intervention is requiréd is presented in Table 8. The overall predictive error rate of using
vector N for the identification of cases to receive a change in solution score is low, with
only 69 (1%) misclassifications. The use of feature vector N for the selection of cases
would certainly reduce the burden of reviewing solutions as only 114 (10%) of solutions
would be selected for architectural examination. However, this reduction in solutions
reviewed would have come at the cost of 40 (32%) of the solutions which required a
change in solutio.nnécc;ré .as .a“resull.tv c;f the caﬁdidate;s mis.interpr-e.tatigri ferﬁéining
unidentified. For first-order quality control such as this, in which actions are being takén

on candidate scores as a result of the selection process, this error rate is unacceptable.

A
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For cases of second-order quality control, in which the intent is not to take actions on
candidate scores but to investigate the occurrence or tendencies toward certain actions
this may prove to be a useful technique of selecting cases for architectural examination.
The results of utilizing the single feature (F2) for the selection of solutions to be
reviewed are presented in Table 9. The overall classification error rate of this technique
is higher than for the feature vector N selection with 229 (21%) misclassifications. The

use of the feature F2 as the selection criteria for solutions to be examined also reduces the

‘burden and expense of the review process, though not to the extent of the feature vector

N method, as 354 (32%) of all cases were selected for review. An advantage of this

method for the example in question is that all of the solutions for which a change in score

was warranted were selected for examination.

Discussion

These results suggest that selection of solutions for architectural examination
based solely on the feature vecfors resulting from the CART procedures (using the
difference between human holistic scores and automated scores as the dependept
variable) would not be a prudent method for first-order quality control interventions.
This methodology however, may be a fruitful technique for second-order quality control
processes of an investigati\;e nature. The use of empirical and logical architectural
knowledge gleaned from the previous studies, however, appears to be an effective
method for selecting.a reduced number of solutions for architectural examination with
very little error. In such cases this methodology may make the quality control process .

more efficient and less expensive than the policy of reviewing 100% of cases.
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Study 5

Method

Design and Procedure.

The results of Study 4 suggest that while the knowledge gleaned from
classification tree quality control processes can inform effective selection procedures for
case examination, the actual feature vectors (using the difference between human holistic
scores and automated scores as the dependent variable) cannot be relied upon. However,
the classification tree utilized in Study 4 was not produced for the purpose of identifying
cases of score intervention; only for differences between human and automated scores.
Therefore, it may be unrealistic to expect ?he resultant feature vector to be able to identify
cases requiring a score change: a criterion for which the classification treé was not
specifically trained. This study examines the question of whether an appropriately
trained classification tree (usihg the criterion of interest—score interventions) is able to

- produce a feature vector which may be relied upon to select future cases for architectural
examination and ﬁrstilﬁrder quality control interventions.

The determination that score interventions would be implemented for candidates
who misinterpreted the cubicle as a room resulted in 29 of the 326 solutions for which
vignette scores were changed. From this training set of 326 solutions a classification tree
was produced using as the dependent variable i:vhether or not there was a difference in
score between the automated score and. the adjudicated score. The subsequent feature
vector for classifying scores requiring an intervention was then used as a selection

criterion for identifying cases for architectural review in the extended sample of 1117
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solutions described above in Study 4. The resultant accuracy for identification of cases |
requiring a change in vignette score was evaluated.
Results

The CART analysis utilizing discrepancy between automated score and
adjudicated score as the dependent variable identified a single feature, F2 (skylight
location), as the predictive feature vector for changes in the automated score.
Specifically, solutions with an A for F2 (skylight location) were classified as not
predicting a change in score while solutions with an I or U for F2 (skylight location) were
predictive of solutions with a score change. The resultant cross-validation results for the
difference score between the automated and adjudicated scores are pfesented_ in Téble 10.

This procedure empirically identified the same feature and criterion for selection of cases

_ requiring review that the architectural-logical procedures identified in Study 4. The

resultant accuracy in the extended sample of 1117 solutions described above is identical
to the results from Study 4 presented as Table 9. That is, this procedure resulted in the
identification of 100%&" of the solutions that required a change in the automated score

while requiring the review of only 32% of the solutions.

Discussion

The results of Study 5 suggest that classification tree vectors can be utilized to
accurately and efficiently identify cases requiring score intervention as part of first-order

quality control processes when these classification trees are produced for this purpose.

The accuracy of the cross-validation classification for the training set held for the

extended set of additional solutions. As these results mirror the results from the

architectural—logical analysis in Study 4 this suggests that both purely empirical and
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empirical—logical classification tree analyses can provide evidence about criteria for
efficient and accurate future case selection. Since the relative cost of error types—can be
specified in producing a classification tree differences in importance of classification
error can be controlled when the initial tree is produced from the training set. An
examination of the resultant cross-validation classification accuracy can help the user
determine if the classification tree is sufficiently accurate to rely on for the selection of

future cases for review.
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Conclusion

This series of investigations has examined the utility of classification trees for
several aspects of quality control processes associated with automated scoring of open-
ended responses. Generally these methods have proven to be fruitful approaches to both
first-order and second-order quality control. In applications directed at first-order quality
control these methods indicated specific features which required intervention and
suggested others which upon investigation provided evidence about the advantage of
specificity and thoroughness provided by automated scoring systems. Examinations with
respect to second-order quality control processes reveraledrasp écts which may be worthy
6f consideration for the continued evolution of automated scoring of constructed
responses as well as giving some indication of the frequency and conditions for which
these possibilities may be relevant. The use of feature vectors from classification trees
for the selection of solutions for first-order quality control interventions was shown to be
inadequate when the classification trees were not produced expressly for this purpose.
When the classjﬁcaticgh trees were produced for this purpose, however, they were shown
to be effective in the selection of future cases for first-order quality control intervention
while reducing 'the burdén of the review process by 68%. The architectural evaluation of
solutions identified by feature vectors from human/automated classification trees was
also shown to be fruitful fc;r determining and/qr‘ confirming criteria for the selection of
future cases for first-order quality control intervention. With further investigation and

refinements of the fit parameters used to grow these classification trees these feature

- vectors may be proven to be an efficient and accurate way to completely automate the

selection of solutions for quality control purposes. Further studies are needed to
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sufficiently evaluate and determine the extent to which the results of these analyses can

be relied upon for such an automated quality control process.
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Footnotes
!This and other historical datasets can be found at

http://www.comcat.com/~hutch/DASI /overview htm.
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Table 1

Decision Vectors Corresponding to the Iris Classification Tree

N1 : N2
Classification PETALLEN PETALWID
1 <=2.45
2 >2.45 <=1.75
3 >2.45 >1.75

41
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Table 2

~

Cross-Validation for Iris Example

Classification Trees 41

Actual Classification Classification Probability Predicted Classification Predicted
1 2 3 1 2 3
1 1.00 0.00 0.00 50 0 0
2 0.00 0.90 0.10 - 0 45 5 o
3 0.00 0.10 0.90 0 5 45
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Table 3

Possible Difference Score Values (Human-Automated)

Automated Score
Human Score A I U
A 0 1 2
I -1 0 1
U 2 -1 0

43
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Table 4

Cross-Validation for Difference Score (Human Minus Automated)

" CART Cross-Validation Classification Probabilifv Predicted Classification Predicted

Actual Class -2 -1 0 1 -2 -1 0 1

-2 0.412 0.000 0.588 0.000 = 21 0 30 0

-1 0.186 0237 0288 028 11 14 17 17
0 0205 0031 0697 0067 40 6 136 13 .

1 0.000 0.238 0.000 0.762 0 5 0 16
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Table 6

i’ Cross-Validation for Difference Score (Human Minus Adjudicated)

"

\

e CART Cross-Validation Classification Probability Predicted Classification Predicted

Actual Class -2 o-1 0 1 2 -1 0 1
2 0.386  0.088 0509 0.018 22 5 29 1
71 i 0.127  0.365 0365‘ 7(‘).143 8 23 23 9
0 0.119 0.124 0.743 0.015 24 25 150 3
1 ~0.000 0.000 0.000 1.000 0 O 0 4
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Table 8

Solution Identification Accuracy of Feature Vector N

Solution Score Not Vector N Feature Vector N Row Totals
Changed '- 40 - 85 125
Unchanged 963 - 29 992
Column Totals 1003 o 114 A

1117
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Table 9

- Solution Identification Accuracy of Feature F2

Classification Trees 48

Solution Score F2 of A F2oflorU Row Totals
Changed ' 0 125 125
Unchanged 763 229 992
Column Totals 763 354 1117
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Table 10

Cross-Validation for Difference Score (Automated and Adjudicated)

CART Cross-Validation Classification Probability Predicted Classification Predicted

Actual Class No Change Change No Change  Change
No Change 0.771 0.229 229 68
Change 0.000 1.000 0 29
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Figure Captions

Figure 1. Sample CART analysis classification tree for the Iris data. .

Figure 2. Line graph of the four rﬁeasurements representing independent variables and
the resultant classification for the Iris data

Figure 3. Line graph of the relative importance of automated scoring features using the
difference score as the dependent variable.

Figure 4. Floor plan, roof plan, and section view of the exemplar vignette showing the
location of additional skylight as a result of candidate misinterpretdtion of the floor plan.
Figure 5. Floor plan, roof plan, and section view of the exemplar vignette showing the
correct implementation of the skylight feature and the windows added to prevent
candidafe misinterpretation of the floor plan.

Figure 6a. Roof plén and section view of the exemplar vignette showing the correct
implementaﬁon of eave height.

Figure 6b. Roof plan.and section view of the exemplar vignette showing the incorrect
implementation of eave height.

Figure 7. Line graph of the relative importance of automated scoring features using the
difference score as the depc?ndent variable and controlling for instances of candidate |

misinterpretation of skylight location.
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Figure 2

Iris dataset sorted by petal legth
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Figure 3
Relative Importance Using Difference Score Criterion
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Figure 4
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Figure 5
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Figure 6 (a) and (b)
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Figure 7

Relative importance of Features Controlling for Skylight Feature
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