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Abstract

The effectiveness of four methods of handling missing data in reproducing the target sample

covariance matrix and mean vector was tested using three levels of incomplete cases: 30%, 50%,

and 70%. Data was selected from the NELS (National Educational Longitudinal Study) database.

Three levels of sample size (500, 1000, 2000) were used. The assumption of missing completely

at random was violated in all samples. Results indicate listwise deletion was most effective in

replicating the target mean vector and covariance matrix.



Missing Data Method 3

Effectiveness of Four Methods of Handling Missing Data

Using Samples from a National Database

When data is analyzed in survey research, often there are missing values. If the

mechanism causing the missing values is known, the solution to this problem may be incorporated

in the study. Inevitably, however, when data are collected by survey, subjects may fail to answer

some questions for reasons unknown to the researcher. Ignoring this problem may lead to

analysis of data that is of dubious value.

In addition, different methods of handling missing values may produce different results.

When Jackson (1968) entered data on all the available variables in a discriminant analysis, the

significance of the regression coefficients of individual variables, as well as the interpretation of

the importance of these variables, changed with the missing value method used. Witta and Kaiser

(1991) also reported that the regression coefficients and total variance accounted for by the

variables changed depending on the method used to handle missing values. After re-analyzing

three studies of private/public school achievement, Ward and Clark III (1991) concluded that the

method used to handle missing data influenced the outcome of these studies.

In using the National Educational Longitudinal Study of 1988 database to investigate the

effects of part-time work on school outcomes Singh and Ozturk (1999) eliminated more than half

of the selected cases by listwise deletion of the incomplete data. Which leads to the question, was

listwise deletion an appropriate method of for handling the missing data or, would another method

be more effective?
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Statement of the Problem

The purpose of the current study was to investigate the effectiveness of four methods of

handling missing data using the 26 variables in the Singh and Ozturk study. Effectiveness was

defined as the probability of accurately reproducing the true covariance matrix and mean vector.

Effectiveness of the missing data methods was assessed by manipulating the proportion of cases

containing missing values and the sample size. The missing data methods studied were listwise

deletion, pairwise deletion, regression and expectation maximization. Sample sizes investigated

were 500, 1000, and 2000. The proportion of incomplete cases in each sample were 30%, 50%,

and 70%.

Until recently, the only methods available with popular statistical computer software

focused on handling the missing data problem by deleting subjects with incomplete information,

deleting the missing values, or replacing the missing value with some reasonable estimate. Now,

however, new subroutines are available to provide more assistance in handling missing data and

providing analysis choices using iterative regression or expectation maximization (EM)

procedures. These relative new methods (in current software) also provide the possibility of

specifying the model to be used (i.e., multivariate normality, adding a randomly selected error).

Methods Studied

Listwise Deletion

Listwise deletion is probably the most frequently used method of handling missing data

and is available as a default option in several statistical software programs including. This method

discards cases with a missing value on any variable and thus is very wasteful of data. Listwise

deletion, however, has been shown to be effective with low average intercorrelation, less than
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four variables and a small proportion of missing values (Chan, et.al., 1976; Haitovsky, 1968;

Timm, 1970). The assumption of missing completely at random is crucial to the use of this

method. It is more likely, however, to find the complete sample different in important ways from

the incomplete sample (Little & Rubin, 1987). Problems for a researcher using this method

include a reduction in power and an increase in standard error due to reduced sample size and the

possible elimination of sub-populations.

Pairwise Deletion

When using pairwise deletion, covariances are computed between all pairs of variables

having both observations, eliminating those that have a missing value for one of the two variables

(Glasser, 1964). Means and variances are computed on all available observations. The

assumption made is that the use of the maximum number of pairs and all the individual

observations yield more valid estimates of the relationship between the variables. It is assumed

that when two variables are correlated, information on one improves the estimates of the other

variable. It is also assumed that the pairs are a random subset of the sample pairs. If these

assumptions are true, pairwise deletion produces unbiased estimates of the variable means and

variances (Hertel, 1976). When missing data are not missing completely at random, however, the

correlation matrix produced by pairwise deletion may not be Gramian (Norusis, 1988b).

Marsh (1998) investigated the estimates produced when using pairwise deletion for

randomly missing data. From this study, which included five levels of missing data and three

sample sizes, Marsh concluded parameter variability was explained, parameter estimates were

unbiased, and only one covariance matrix was nonpositive definite.

Regression
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Regression as an imputation method has many variations. The regression methods rely on

information contained in non-missing values of other variables to provide estimates of missing

values. As the average intercorrelation and the number of variables from which these methods

can obtain information increases, the regression methods, theoretically, perform better. Too many

variables, however, can cause problems with over prediction (Kaiser & Tracy, 1988) and too high

an average intercorrelation can result in a singular matrix. In these cases, regression does-not

perform well.

Variations in the regression methods include differences in methods of developing the

initial correlation matrix (listwise deletion, pairwise deletion, and mean substitution) and the

presence or absence of iteration procedures. Differences in regression methods also include the

use of randomly selected residuals for iterations and assumptions of a normatdistribution.

Theoretically, the more variables considered that provide additional information, the better the

estimate. Mundfrom and Whitcomb (1998) investigated the effects of using mean substitution,

hot-deck imputation, and regression imputation on classification of cardiac patients. Mean

substitution and hot-deck imputation correctly classified patients more frequently than regression

imputation.

Expectation Maximization

Dempster, Laird, and Rubin (1977) recommended the use of the EM algorithm which

imputes estimates simultaneously in an iterative procedure. The E step of this algorithm finds the

conditional expectation of the missing values. The M step performs maximum likelihood

estimation as if there were no missing data. The primary difference between this procedure and

the regression procedure is that the values for the missing data are not imputed and then iterated.

BEST COPY AVAILABLE
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The missing values are functions based on the conditional expectation (Little & Rubin, 1987).

This method of handling missing data represents a fundamental shift in the way of thinking

about missing data (Schafer & Olsen, 1998).

Pattern of Missing Values

All of the missing data handling procedures discussed require data missing at random

(MAR) or missing completely at random (MCAR). Yet Cohen and Cohen (1983) suggested that

in survey research the absence of data on one variable may be related to another variable and may

be due to the value of the variable itself. When investigating simultaneously missing values, Witta

(1996/97) found concurrently missing values (p<.001) in three of four samples using data from a

national database.

Schafer and Olsen (1998), however, argue convincingly that "every missing-data method

must make some largely untestable statistical assumptions about the manner in which the missing

values were lost" (p551). Consequently, when analyzing real data, researchers typically assume

missing at random.

Procedure

All high school seniors who had reported working during their senior year of high school

and for whom base-year and first follow-up data were available were included in this study. The

initial sample contained the 26 variables used in the Singh and Ozturk study for 4664 subjects.

These subjects were split into three populations: those containing one or more missing values but

less than 14 (n=1542), those containing more than 13 missing values (n=19), and those containing

no missing values on any variable (n=3103). The 19 subjects having missing values for more than

half the variables were eliminated from further analysis. The remaining two populations (n=4645)
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were used to create samples for analysis.

Creating Test Samples

A sample consisting of 2000 cases was randomly selected from the non-missing

population. This sample was duplicated twice resulting in three identical samples of 2000 cases

containing no missing values. These samples were used to provide estimates of the target (true)

covariance matrices and mean vectors.

A sample of 1400 cases was randomly select from the missing population. These cases

were used to replace an equal number of randomly selected cases from one of the target samples.

This provided a test sample of 2000 with 70% of the cases containing missing values. It was

assumed that the replacement incomplete cases were similar to the complete cases that were

removed. This process was repeated with.the second target sample to provide a test sample with

50% (1000) of the cases containing missing values. The process was repeated again with the third

target sample to provide a test sample with 30% (600) of the cases containing missing values.

This entire procedure was repeated twice to provide test samples with 30%, 50%, and

70% of the cases containing missing values in test samples of 1000 and 500 cases. Thus, 9 test

samples were created.

Analysis

Covariance matrices and mean vectors for the missing data handling methods were

produced by the missing data subroutine in SPSS. The test for missing completely at random and

pattern of missing data was also produced by this subroutine. The variable means produced by

each method were compared with the corresponding mean values of the target sample using the

MANOVA (multivariate analysis of variance) subroutine in SPSS for every method except
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pairwise deletion.

Because the MANOVA subroutine does not accept pairwise deletion, the vector of

variable means produced by pairwise deletion was compared to that of the target sample using

Quattro Pro. The mean vector tested for pairwise deletion was the mean given for all values of

each variable. Multi-sample analysis in LISREL (Joreskog & Sorbom, 1989, chap. 9) was used

to test the equality of the covariance matrices produced by various missing data handling methods

to the covariance matrix of the target sample.

Results

Randomness of Missing Values

When variables from the total sample were tested for no difference in variable based upon

missingness of another variable, results suggested the missing data may not be missing at random

and is not missing completely at random. For example, cases not missing a standardized test (n>

3344) had average reported grades ranging from 6.4 to 7.2 (high=low grade). The average

reported grades for cases missing a standardized test (n>698) ranged from 7.0 to 7.5. The average

grade reported for a given missing standardized test was always at least 0.2 points higher (lower

grade) than the non-missing equivalent.

In addition, none of the nine samples used in the current study contained data missing

completely at random. The frequency of simultaneously missing variables for each sample is

depicted in Figure 1. The category of 'Std Test' consists of four simultaneously missing

standardized test variables (History, Math, Reading, and Science). The standardized test variables

were also missing in conjunction with missing values for grades which is depicted in Figure 1 as

`Grd & Test'. The four grade variables were also missing simultaneously. If a variable did not

10
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contain a missing value for 10% of the sample cases, it was included in the 'Other' category. In

each sample, the majority of the cases containing missing values consisted of concurrently missing

values for standardized tests (the categories 'Std Test' and `Grd & Test').

Insert Figure 1 About Here

Covariance Matrix Reproduction

Surprisingly, all four missing data methods adequately reproduced (x2 p>.05) the target

sample covariance matrix when 30% or 50% of the cases contained missing values regardless of

'sample size'. In addition, as depicted in Table 1, the goodness of fit index in all cases was above

0.98 and the root mean square residual was less than 1 except for two cases.

When 70% of the cases contained missing values, however, only the covariance matrix

produced by the EM algorithm passably reproduced the target sample matrix when the sample

size was 500. When the sample size was 1000 or 2000 with 70% of the cases containing missing

values, no method adequately reproduced the target sample covariance matrix as measured by chi-

square (x2, R<.05). The goodness of fit index for these conditions remained at an acceptable level

of 0.96 or higher. The root mean square residual also remained relatively small as shown in Table

1.

'To prevent discrepancies in sample size comparison, the n for testing the covariance
matrices produced by Listwise and Pairwise deletion was enter in LISREL as the target n (i.e. if
the target sample contained 500 cases, the n entered for the listwise deletion covariance matrix
was 500).
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Insert Table 1 About Here

Mean Vector Tests

When 30% of the cases contained missing values, all missing data methods adequately

reproduced the target sample mean vector as measured by F (p<.05) regardless of sample size2 as

depicted in Table 2. In addition, less than 2% of the difference in mean vectors could be explained

by missing data method group as measured by eta square.

When 50% of the cases contained missing values and the sample size was 500, all missing

data methods adequately reproduced the target sample mean vector again. However, the variance

accounted for by missing data method had increased to approximately 3% when the target sample

mean vector was contrasted to the vector produced by the EM algorithm or the vector produced

by regression. When the sample size increased to 1000, all methods except the EM algorithm

adequately reproduced the target sample mean vector (p<.05). The variance accounted for by

missing data method was again 2% or less. When the sample size increased to 2000, only listwise

deletion adequately reproduced the target sample mean vector. The variance in mean vectors

accounted for by group was again 2% or less.

When the proportion of cases containing missing values increased to 70%, only listwise

deletion adequately reproduced the target sample mean vector in all conditions. When the sample

2Because sample size varies by variable when pairwise deletion is used, the pairwise
deletion n was set to the n of listwise deletion for all calculations.
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size was 500 or 1000, neither the EM algorithm nor the regression procedure effectively

reproduced the target mean vector (p <.01). When the sample size increased. to 2000, only

listwise deletion was effective. In addition, the variance in mean vectors accounted for by group

differences had increased to 5% in some instances as presented in Table 2.

Insert Table 2 About Here

Discussion and Conclusions

When 30% of the cases in a sample were incomplete, all missing data methods tested

adequately reproduced the target sample covariance matrix and mean vector regardless of sample

size. This would imply that if only a few cases were incomplete in a sample, the choice of method

used to handle missing data could be made based upon considerations of loss of data (in the

deletion methods) or other substantive reasons. When, however, 50% of the cases were

incomplete, only listwise and pairwise deletion were effective under all conditions. While this

could be attributed to reduction in sample size, only 1% of the variance between mean vectors

could be explained by the listwise deletion method, 1-2% by pairwise deletion, and 2-3% by the

other methods. This finding suggests that listwise deletion would be the method of choice

regardless of reduction in sample size.

Although no method adequately reproduced the target sample covariance matrix when

70% of the cases were incomplete as measured by 2c2, the goodness of fit index was adequate for

all methods. The root mean square residual results indicated an adequate fit for the listwise

deletion and regression methods and a tolerable fit for pairwise deletion and the EM algorithm.

13



Missing Data Method 13

Listwise deletion, however, consistently reproduced the mean vector across all conditions. Thus,

this finding would also suggest that listwise deletion would be the method of choice.

This study was limited to one sample size and proportion of incomplete cases for each

test. Consequently, results may be specific to these samples. In addition, it was assumed the

replacement incomplete cases were similar to the complete cases they replaced. If this assumption

was not valid, these results may change with the next sample. These limitations, however, did not

influence the pattern of missing values. In all instances the missing data were not missing

completely at random. Because there is no specific test for missing at random (Hill, 1997), no

conclusion concerning it can be made. However, examination of the data provided suggests that

this assumption is also violated.

The most prevalent missingness pattern existed in the concurrently missing values for

standardized tests and grades. This pattern may explain why listwise deletion fared better than

other methods. If the most highly related variables (standardized test scores) contain concurrently

missing values, any method relying on other variables to estimate a variable suffers. If, in addition,

these concurrently missing values are also missing simultaneously with another variable (grades)

that should be related, the situation becomes even worse. Thus, an assumption for use of each

missing data method test was violated in each sample.

The most surprising result of this study was the relatively effective performance of each

missing data method when considering the violation of the missing completely at random and

missing at random assumptions. The failure to satisfy the randomness assumption, however, is the

primary finding of importance in this study. This finding suggests that other samples selected from

the NELS database would also contain non-randomly missing values. In light of this finding it

14
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would be suggested that future missing data research focus on methods to overcome the

randomness limitation. Researchers in all areas are cautioned to examine the data prior to any

analysis. Before making any decisions concerning method of handling missing data, the pattern of

missingness must be scrutinized.

15
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