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Abstract

In the current paper six statistical tests of stochastic equality are to be compared by a Monte
Carlo simulation with respect to Type I error and power. Two populations are said to be
stochastically equal with respect to a variable X, if for any two independently and randomly drawn
observations XI and X2 from the two populations P(X) > X2) = P(X( < X2).

In the simulation the skewness and kurtosis levels as well as the extent of variance
heterogeneity of the two parent distributions were varied across a wide range. The sample sizes
applied were either small or moderate, and equal or unequal. The involved tests of stochastic
equality were as follows: rank t test, rank Welch test, Fligner-Policello test, Cliffs modified Fligner-
Policello test as well as two modifications of the last two tests, denoted FPW and FPCW, that
utilized adjusted degrees of freedom.

An interesting result obtained is that the two newly introduced test variants, FPW and
FPCW, proved to be substantially more accurate with regard to their Type I error rates than the
others, whereas they kept a similar power level. Specifically, the estimated Type I error of FPW at
.05 nominal level always fell in the range of .043.063 even if the variance ratio of the two
distributions was as large as 1:16. The same ranges were .049.068 for FPCW, but .029.160 for the
rank t test, .049.096 for the rank Welch test, .035.075 for the Fligner-Policello test, and .040.078
for Cliffs test.

Key words: group comparison, stochastic difference, measure of stochastic superiority,
stochastic equality, Fligner-Policello test, Cliffs modified Fligner-Policello test.
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Suppose that an experimenter wishes to know whether the scores of a variable X are of the
same size in two populations or not. If X is measured on an interval scale, and one has two
independent random samples from the two populations, the most commonly used statistical
techniques for this purpose are Student's t test (Wilcox, 1996, p. 126), and its robust version, the
Welch test (Wilcox, 1996, p. 133). With these procedures, the X-scores in the two populations are
regarded to be "of the same size", if the mean of X is the same in the two populations.

However, the mean does not always characterize appropriately the level of the variable in the
two populations. If the distribution of X is heavily skewed (as is Reaction Time in most cases), the
extreme values "draw the mean towards them". As a result, the proportion of scores below the mean
can differ greatly from the proportion above the mean. As an example, if the parent distribution is
chi-square with 3 degrees of freedom, the probability that a random score will be higher than the
population mean, which itself is 3, is only 39%, and accordingly the probability that a random score
will be smaller than the population mean is as large as 61% (similarly, for the chi-square
distribution with df= 1, 2, 4, and 5, the P(X> µ) probability equals .32, .37, .41, and .42
respectively).

The population median is a measure of location which always divides the scores of X in the
population into two equal parts of 50%, provided that X is continuous (Wilcox, 1996, p. 69).
However, if X is a discrete and asymmetric variable, this nice feature of the median no longer
applies. As an example, if X is a five-point-scale variable, where P(1) = .10, P(2) = .20, P(3) = .55,
P(4) = .10, and P(5) = .05, the median, M, is seemingly 3, and P(X> Al) = .10 + .05 = .15 obviously
does not equal P(X < M) = .10 + .20 = .30. Since the asymmetric discrete distributions play a major
role in psychology and other behavioral and social sciences (see, e.g., Micceri, 1989), this greatly
reduces the attractiveness of the median as a measure of location.

The trimmed mean has been proposed by several authors as an alternative location measure
that is not so sensitive to the occurrence of outliers than the mean is (Wilcox, 1996, p. 15).
However, the great flexibility of its definition may inevitably cause some uncertainty with regard to
its interpretation. As Wilcox writes, "Currently there is no way of being certain how much trimming
should be done in a given situation" (Wilcox, 1996, p. 16).

If there are a large number of competing measures for assessing the magnitude of a variable
in a population, this flexibility may increase the likelihood of misunderstanding among
practitioners. The conclusion that a variable, say a simple RT, has different value levels in
experimental and control treatments may equally be based on a significant difference in the means,
the trimmed means, or the medians. But as these location measures correspond to theoretically
different conditions, their statistical tests can occasionally lead to quite different statistical results
(see Wilcox, 1996, pp. 153-154).

When populations are compared with some measure of location (mean, trimmed mean,
median, etc.), the equality of the populations is often presumed to be equivalent to the equality of
the values of the specific location parameter in the different populations. A single representative
value then is taken to indicate the location of the population in general compared to that of some
other population.

A basic idea of this paper is that two populations can also be compared in a different way, by
a direct comparison of the different pairs of scores (X; Y), where X is any score of the dependent
variable from population 1, and Y is any score from population 2. With this way of comparison
population 1 will be regarded as greater than population 2, if X> Y occurs more frequently than X
< Y. Converting the occurrences into probabilities, the equality/inequality of the two populations
will be determined according to the equality/inequality of the p+ = P(X> Y), p_= P(X < Y)
probabilities. Referring to Agresti (1984), Hettmansperger (1984), Randles and Wolfe (1979), and
Siegel and Castellan (1988), Cliff introduced the
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5 = P(X> Y) P(X < Y) (1)

difference (let us call it stochastic difference) for measuring the extent to which population 1
dominates population 2 with respect to the given dependent variable. He argues that "if one's
primary interest is in a quantification of the statement "Xs tend to be higher than Y's," then 8
provides an unambiguous description of the extent to which this is so" (Cliff, 1993, p. 495).

To assess the difference between two continuous parent distributions McGraw and Wong
used the p+= P(X> Y) probability and called it the common language effect size indicator or
common language statistic (CL) "that is better than the available alternatives for communicating
effect size to audiences untutored in statistics" (McGraw & Wong, 1992, p. 361).

For the same purpose, but for any, not necessarily continuous distribution, Vargha and
Delaney (1998, 2000) introduced the A measure of stochastic superiority, defined as follows:

Al2= P(X> Y)+ .5P(X= Y). (2)

Al2 is clearly a generalization of CL, and it is easy to see that 5 and Al2 are simple linear
transformations of each other in the following way:

A 12 = (8 + 1)/2 and 8 = 2A 12 1. (3)

With these probability based measures, the values in populations 1 and 2 are regarded to be of the
same size if

P(X> Y)= P(X < Y), (4)

which occurs if and only if E. = 0 or Al2 = .5. If identity (4) holds, then we can conclude that
neither population generally has larger values than the other. For this reason Vargha and Delaney
(1998, 2000) referred to this kind of sameness of the two populations as the stochastic equality
(denoted in the following as STE) of them, which is meaningful for any dependent variable that is at
least ordinally scaled.

For the illustration of stochastic ordering we show an example. Suppose we have the
following two independent samples of size three:

X= (0, 1, 8) and Y= (1, 2, 3).

For the stochastic comparison of these two samples one has to make all possible pairs of (X; Y)
couples. The number of different combinations is obviously 3x3 = 9, where X> Y occurs in 3
cases:

and Y > X occurs in 5 cases:

(8; 1), (8; 2), (8; 3),

(0; 1), (0; 2), (0; 3), (1; 2), (1; 3).

Since the proportion of Y > X cases is greater than that of X > Y cases:
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Pr(Y > X) > Pr(X> Y),

we say: for these two samples Y is stochastically greater than X (or X is stochastically smaller
than Y). Analogously, if we define variable X in a population P1 with the distribution

P(0) =

and in a population P2 with the distribution

P(1) = P(8) = 1/3,

P(1) = P(2) = P(3) = 1/3,

we obtain the same type of stochastic relation between populations P1 and P2 that we experienced
with respect to the above two samples.

If the X dependent variable is symmetric in both P1 and P2 then the stochastic equality of
P1 and P2 is equivalent to the equality of expected values (pi = p2) and medians (M1 = M2).
However, if the symmetry assumption does not hold everything can occur. Under the stochastic
equality of P1 and P2 the equality and the inequality of the expected values can equally occur, and
vice versa. The same is true with respect to the medians as well. Just in the above example we find
such an astonishing situation where the mean of the X-scores (.)7 = 3) is larger than the mean of the
Y-scores (y = 2), while the sample of X-scores happens to be stochastically smaller than the sample
of Y-scores, and the same is true with respect to the analogously derived theoretical distributions as
well. Thus in the general case the concept of stochastic equality is different from that of equality of
means or medians.

Now an important question: how to test the STE of two populations? In Vargha and Delaney
(1998) we proved that the STE, defined by identity (4), is equivalent to another identity derived as
follows. Draw two random and independent samples from populations 1 and 2, and rank them as is
done in the well known Mann-Whitney-Wilcoxon test (Wilcox, 1996, pp. 365-369). In the above
mentioned paper of Vargha and Delaney it was proven that the STE of two populations holds if and
only if the rank scores in the two corresponding samples have identical expected values, i.e., if the
expected values of the two rank-means are equal.

This equivalency reveals a way for testing STE since the equality of two expected values is
of course a testable null hypothesis in classical univariate statistics, with the best known procedures
being the two-sample t test (Wilcox, 1996, p. 126), and its robust version, the Welch test (Wilcox,
1996, p. 133). Thus the two-sample t test performed on the rank transforms, the rank t test, is a test
of STE. It must be noted that the rank t test is in principle the same as the large sample version of
the Mann-Whitney-Wilcoxon test (see Conover & Iman, 1981; Zimmerman & Zumbo, 1993a,
1993b; McKean & Vidmar, 1994).

In order to insure the validity of Student's two-sample t test the following three assumptions
should be fulfilled: (1) independence of all individual observations from each other (this implies
also the independence of the two samples), (2) normality of the parent distribution, and (3) variance
homogeneity. If the original observations are independent, the first assumption holds asymptotically
for the rank scores, since there is only one single constraint that makes them slightly correlate
(negatively) with each other: they always sum to N(N+1)/2. The second and third assumption may
frequently be violated in empirical studies (see, e.g., Micceri, 1989; Wilcox, 1996, p. 135), and this
may invalidate the t test (Wilcox, 1996, p. 135), as well as the rank t test. Because one may not have
available a good test for checking variance homogeneity, and because the Welch test generally
improves upon Student's t test under the violation of normality and variance homogeneity (Wilcox,
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1996, p. 135), it seems to be a reasonable choice to perform this robust alternative to t on the rank
scores (rank Welch test).

For testing the 8 = 0 hypothesis, which is equivalent to STE defined by identity (4), Cliff
(1993) mentions a robust method that was originally developed for comparing two medians due to
Fligner and Police llo (1981). The Fligner-Policello test procedure (denoted in the following as FP),
was also suggested by Wilcox (1996, p. 369) for testing the p+ = P(X> Y) = .5 hypothesis, which
again is equivalent to STE in the case of continuous parent distributions. Cliff also suggests (1993,
p. 499) another robust method for testing STE, which is actually a modification of the FP test
(denoted in the following as FPC).

These suggested robust tests seem to make it possible to test the null hypothesis of STE
without severe restrictive conditions such as identical distribution shapes or variance homogeneity.
However, it is not certain that they will completely fulfill this expectation. Simulation results show
that under specific conditions the Welch test may prove unacceptably poor. For example if the
parent distribution is lognormal, the total sample size, N = m+ n = 100, and the variance ratio of the
two populations is 1:3, then the two-tailed Type I error rate for the Welch test at a = .05 level can be
as high as .081 for equal samples (m = n = 50), .101 for m = 65, n = 35, and .117 for m = 75, n = 25
(see Algina, Oshima & Lin, 1994, Table 2).

Fligner and Policello's and Cliffs tests with their approximately normal test statistics are
only approximately valid. Though Fligner and Policello provide exact critical values for small
samples (see Fligner & Policello, 1981, Table 1), these entries were derived under the assumption
that the parent distributions have identical shapes in the two distributions. Thus it is not guaranteed
theoretically that the FP test will be a valid test of STE if the distributions to be compared have
different shapes (say they are oppositely skewed).

The aim of the present paper is to investigate the appropriateness (validity and power) of
these suggested robust tests of STE empirically, by means of a computer simulation.

In the first section of the paper we will provide details concerning the tests used in the
simulation process, suggest another two test variants for testing STE, and overview some earlier
simulation studies made with some of these tests.

In section 2 we will describe the model of simulation, and provide technical details of it.
In section 3 we will discuss the obtained results of the simulation for equal and unequal

sample sizes separately.

1. Details about the tests of STE

For the simulation study for testing STE we selected six statistics, whose computation formulas are
summarized as follows. Let X be a variable that is least ordinally scaled, X1, X2, ..., X,, a random
sample of size m of values of X drawn from population 1 (X-sample), and Y1, Y2, .., lin a random
sample of size n of values of X drawn from population 2 (Y-sample), independently of the first
one. On these date samples we performed the following test procedures.

(1) Rank t test (rt)
Rank the X1, X2, ..., Xm, and the Y1, Y2, Yr, scores in the combined sample of size N= m

+ n as in the Mann-Whitney-Wilcoxon test (see, e.g., Wilcox, 1996, p. 365). Let us denote the
obtained values by r1, r2, r, in the X-sample, and qi, 72, ..., q in the Y-sample. Then compute
Student's two-sample t test (see, e.g., Wilcox, 1996, p. 126) on these rank samples.

(2) Rank Welch test (rW)
Obtain the r1, r2, r,, and qi, q2, qn rank samples the same way as with rt. Then

perform the Welch test (see, e.g., Wilcox, 1996, p. 133) on these rank samples.
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(3) Fligner-Policello test (FP)
For testing the equality of medians of two continuous distributions, Fligner and Policello

(1981) published a modified Mann-Whitney-Wilcoxon test which did not assume the equality of
population variances. The computation of the FP test is as follows. For each score X, (i = 1, , m)

in the X-sample determine the number of Y-scores less than X, and denote it by V,. Likewise, let W.,
(j = 1, n) be the number of X-scores less than Y. The test statistic of FP is based on these V and
ff/J values, the so called placement scores, and is computed as follows:

ZFP = d/Sd.

Here in the numerator d is defined by the following formula:

d = (EiVi 4,Wi)1(mn).

In the denominator sd is an estimate of the SD of d, which, using the notations v = =

EW/n, SS v = 17)2 , and SSw = 4(wi-- W )2, can be written in the following form:

sd = 2(SSv + SSw + 1120m)

(5)

(6)

(7)

(see Wilcox, 1996, p. 369). For small samples (m, n 12) FP can be evaluated using the exact
critical points reported by Fligner and Policello (1981). In other cases it can be evaluated using the
normal approximation method (see Wilcox, 1996, p. 370).

In a simulation study Zumbo and Coulombe (1997) have shown that the FP test is generally
not robust to the assumption of symmetric distributions if the equality of medians is tested.
However, Fligner and Policello (1981, p. 164) assert that if instead of testing the equality of
medians "we were interested in testing Ho: fGdF = .5" (which is equivalent to P(X1 > X2) = .5 and
STE; see Randles & Wolfe, 1979, p. 132), we could use the FP test without the symmetry
assumption. Cliff (1993) suggests that the FP test be used for testing STE without assuming
identical distributions (which implies among others things the equality of variances). The reason for
this is that in the ZFP test statistic the d statistic is an unbiased estimate of the 8 =p+ p_
stochastic difference and sd is a consistent estimator of ad, the SD of d (see Cliff, 1993, p. 499).

(4) Cliffs modified FP test (FPC)
Cliff suggested an alternative to ZFP by replacing sd with Sd, a different estimator of ad,

which is defined by

(Sd)2
n2z(di.d)2 + m2 l(d d)2 + 4(4 d) 2

mn(m 1)(n 1)

(8)

(see Cliff, 1993, identity (9)). Here dy = sign(X, d, = =1,d;;/m, and d, the average
of all ci, values, is the same as in (6) (sign(c) of any number c is defined to be 1, 0, or 1, if c is

negative, zero, or positive, respectively). For evaluating FPC Cliff suggests to use the same normal
approximation method which is used for FP.

These four tests were supplemented with two additional test variants.

(5) FP evaluated via Welch-like df (FPW)
Fligner and Policello noted that their test statistic appears to be very much like the Welch

statistic computed on the placements (see Fligner & Policello, 1981, p. 164). They interpreted this
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fact just as Zumbo and Coulombe (1997, p. 140) as a confirmation of the robustness of their test
against variance heterogeneity. However, the Welch test differs from the two-sample t test not only
in the formula of its test statistic, but also in the formula of its degrees of freedom. This reasoning
leads to the idea to regard the test statistic of FP as t-distributed with a degrees of freedom
computed from the placement scores the same way the degrees of freedom of the Welch test is
computed from the original scores (cf. Wilcox, 1996, p. 133, formula (8.6)). Thus FPW uses the
same Zpp test statistic as FP, but it is evaluated via the t-distribution (regardless of the sample size)
with the following approximate degrees of freedom (df is rounded to the nearest integer):

where

df
(a + b)2

a2 I (m 1) + b2 I (n 1)

a = SS v/[m(m 1)] and b = SSwl[n(n 1)].

(9)

In these formulas SSA and SSW are the same as in (7).

(6) FPC evaluated via Welch-like df (FPCW)
This test is derived from FPC the same way as FPW from FP. Therefore its test statistic

equals to that of FPC, but instead of using the normal approximation method of FPC to evaluate its
significance, this is evaluated via the t-distribution, with the same degrees of freedom as FPW (see
formula (9) above).

So far nobody has published extensive validity results concerning statistical tests of STE for
differing asymmetric distributions, where the equality of location parameters (means or medians)
does not necessarily imply STE, and vice versa. Nevertheless, some evidence has been accumulated
from simulation studies with rW and FP for testing the null hypothesis of means or medians
involving symmetric distributions.

Zimmerman and Zumbo (1993a) showed for example, that for normal distributions "the
Welch t' test protected against changes resulting from unequal variances in combination with
unequal sample sizes, not only when it was performed on the initial scores, but also when it was
performed on the ranks of the scores" (1993a, p. 531). Similar results, with slightly inflated Type I
error rates, were obtained also for some other symmetric distributions involving the mixed normal,
Cauchy, Laplace, uniform, and mixed uniform distributions (Zimmerman & Zumbo, 1992, 1993a).

Fligner and Policello (1981) reported some simulation results concerning the robustness of
FP against variance heterogeneity for several symmetric continuous distributions. They found that
their test "maintained its nominal level well for all situations considered" (1981, p. 167). Zumbo
and Coulombe (1997) also carried out a simulation study with the FP test for testing the equality of
two medians with small samples (m, n 12), with samples drawn from either a symmetric (normal)
or a heavily skewed (ex-Gaussian) parent distribution type. They found that FP performed very
inconsistently for the ex-Gaussian distribution (see Table 2 in Zumbo & Coulombe, 1997), which
may be due to the fact that under variance heterogeneity, equating the medians will generally not
achieve STE, the proper null hypothesis of the FP test for asymmetric distributions (see Fligner &
Policello, 1981, p. 164). In addition, Zumbo and Coulombe (1997) report that for the normal
distribution FP performs quite conservatively even in cases where Fligner and Policello obtained
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close to nominal level coverage. With our simulation study we wanted also to find an explanation to
this obvious inconsistency.

Vargha and Delaney (2000) carried out a small Monte Carlo study with rt, rW, FP, and FPC.
They found that if one compares identical (symmetric or asymmetric) distribution types, but
allowing for differences in variances, then the latter three tests of stochastic equality (rW, FP, and
FPC) prove to be substantially more robust to variance heterogeneity than rt, which is essentially the
same as the Mann-Whitney-Wilcoxon test.

2. The Monte Carlo study

A Monte Carlo study was carried out to obtain some empirical information about the
appropriateness of the above described six test procedures (rt, rW, FP, FPW, FPC, FPCW). With
this study we wanted to obtain some evidence on whether these methods are acceptably robust to
variance heterogeneity when testing the null hypothesis of STE, and to have some empirical
information concerning which of them performs best. In the simulation process we systematically
varied the parent distribution type (skewness-kurtosis combinations), the sample sizes and the
heterogeneity of variance.

2.1 The type of the parent distribution
Random variates were generated from the generalized lambda family of distributions, which offers a
variety of different shapes (Ramberg, Tadikamalla, Dudewicz, & Mykytka, 1979). These
distributions are given in standardized form and can be described in terms of skewness (a3 = p3/a3)
and kurtosis (a4 = p.4/a4), where p.3 and I.J.4 are the third and fourth central moments. The generalized
lambda family covers a wide range of values of skewness and kurtosis so that for any given value of
skewness, several values of kurtosis can be specified (see Table 4 in Ramberg et al., 1979). For the
present study three levels of skewness were applied, and for each level of skewness three levels of
kurtosis were used (see Table 1). The lowest and highest levels of kurtosis always represent the
most extreme levels available in Table 4 of Ramberg et al. (1979). The middle levels correspond to
a medium level of kurtosis, which for a symmetric distribution gives a generalized lambda
distribution having the first four moments equal to those of the standard normal. Note that the range
of the possible kurtosis values depends heavily on the skewness level. At a higher skewness level
both the minimal and maximal kurtosis values are higher than at a lower skewness level.

(Insert Table 1 about here)

The three levels of skewness together with the three levels of kurtosis for each yielded nine
different distribution types. Crossing the distribution types of the two samples yielded 9x9 = 81
different distribution combinations, all of them included in the simulation study. The distributions
listed in Table 1 all have non-negative skewness (a3 0). In order to investigate the appropriateness
of the six tests also for oppositely skewed distribution pairs, the six asymmetric distributions
appearing in Table 1 were crossed with six distributions of the same skewness levels but with an
opposite sign. This yielded 6x6 = 36 more distribution pairs for the two samples.

The lambda distributions were generated in standardized form Oa = 0, a = 1) as is described
in Ramberg et al. (1979). Therefore, the left-skewed distributions could be derived from the right-
skewed distributions with a simple multiplication by 1. In the case of oppositely skewed
distribution pairs, always the first distribution was negatively skewed.

Thus, in the simulation the total number of different distribution pairs was 81 + 36 = 117.
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2.2 Sample sizes
The applied sample sizes were either small (N = m + n = 18) or moderate (N = 36), and equal (m =
n) or unequal (n = 2m). Specifically, the sample sizes used were m = n = 9 and m = n = 18 in the
equal sample sizes case, and m = 6, n = 12, and m = 12, n = 24 in the unequal sample sizes case.

2.3 Extent of variance heterogeneity
In the simulation the following seven SD ratios (ai:a2) of the two populations were used:

4:1, 3:1, 2:1, 1:1,1:2,1:3,1:4.

Thus, in the most extreme case the SD of the dependent variable in population 1 is four times as
large as in population 2. Though this represents a very high level of variance heterogeneity, it can
still occur in social science practice (see, e.g., Wilcox, 1996, p. 131). These SD ratios were created
by multiplying the standardized lambda-variates with the corresponding elements of these SD ratios
for the two samples separately. With these seven SD ratios, in the unequal samples unequal
variances case both the direct and inverse pairing conditions could be investigated at different
levels. In the simulation process all combinations of the 117 distribution pairs, 4 sample size pairs,
and 7 SD ratios were analyzed, yielding a total number of 117x4x7 = 3276 arrangements for the two
samples to be investigated.

2.4 The achievement of stochastic equality
The tested null hypothesis was STE. If the two distributions are symmetric then the equality of
expected values, which obviously holds for the standardized lambda-variates, implies STE, and thus
no further step has to be made. The same is true with respect to the arrangements where identical
asymmetric distributions with equal variances are to be compared. To achieve STE in the
asymmetric distribution and unequal variances case, the second distribution was shifted by an
appropriate positive or negative constant. The shift constants ensuring STE were determined
empirically by a Turbo Pascal program prior to the simulation process, by means of successive
iterations, until STE was fulfilled. The criterion of STE was specified by the satisfaction of identity
(4). A shift value was accepted if the estimated Al2 value differed from .5 by not more than ±0.001
three consecutive times, each time applying 400,000 randomly generated couples of variable values
sampled from the two distributions. For illustration purposes the shift values for some selected
distribution pairs are summarized in Table 2. Note here that the shift value is zero if and only if the
two distributions are symmetric (see line 1) or are identical, implying also identical variances (see
line 3, SD ratio = 1:1).

(Insert Table 2 about here)

2.5 The achievement of stochastic inequality
In order to assess Type I error rates of statistical tests of STE, where A 12 = .5, one has to generate
stochastically equal distribution pairs. However, in order to assess power rates of these tests, one
has to generate stochastically unequal distribution pairs, where Al2 # .5. Because the present
simulation study focused on small and moderate sized samples, a medium and a large effect size
level were employed, by setting Al2 = .64, and Al2 = .71. If the two parent distributions are normal
(where STE is equivalent to the equality of expected values), these effect size values correspond
exactly to the medium (A = .5) and the large (A = .8) effect size levels using Cohen's convention
(see Cohen, 1977, p. 26, or Wilcox, 1996, p. 157). These levels of stochastic inequality for the 3276
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different arrangements have been achieved by appropriate shift constants that have been determined
with the same manner as in the STE case (see section 2.4 above).

2.6 Technical details of the simulation process
The study was conducted on a Pentium 200 MHz IBM PC compatible computer. The generalized
lambda random variates were generated using the method described in Ramberg et al. (1979). In this
generation process, Turbo Pascal's Random function was used to obtain pseudo-random uniform
deviates. This is a linear congruential random-number generator that has turned out to be one of the
most preferable in a recent study (Onghena, 1993), passing successfully ten criterion tests of
randomness. For each choice of the 3276 simulation arrangements 100,000 simulation iterations
were used for assessing Type I error rates, and 20,000 simulation iterations for assessing power
rates. At each iteration, N = m + n random variates of the desired type were generated. All of the six
tests were then performed on the current set of N variates and evaluated in two-tailed form with
significance level .05 and .1. Test statistics rt, rW, FPW, and FPCW were evaluated according to the
usual t percentile values, based on the corresponding df s (see section 1). In the case of FP and FPC,
for small samples (N= 18) we used the exact critical points reported by Fligner and Policello (1981,
Table 1), and for moderately large samples (N = 36) we used the normal approximation method (see
Wilcox, 1996, p. 370). Finally, the proportion of rejections was determined. This was an estimate of
the Type I error rate in the Al2 = .5 case and an estimate of the power rate in the Al2 # .5 case.
With the applied number of replications the standard deviation of an empirical Type I error rate was
[a(1a)/100000]12, which yielded .00069 if the true level was .05, and .00095 if the true level was
.1. The standard deviation of an empirical power rate was always less than or equal to the quantity
[.5(1.5)/20000]12 = .00158 (the maximal SD of a binomial variable, B(n, p), at fixed n is attained
for p = .5).

3. Results

The appropriateness of a statistical test can be judged by evaluating at the same time both its
validity (probability coverage) and efficiency. For this reason we will explain the results concerning
Type I error and power rates together. First, the results concerning equal sample sizes will be
presented (section 3.1). Next, we will present results with respect to unequal sample sizes. The latter
require a special treatment due to the fact that the relationship between sample sizes and variances is
one of the main determinants of the true Type I error rate of Student's two-sample t-test (see
Scheffe, 1959, p. 353, Table 10.4.1), and this relationship can probably exert similar effects on
some of our two-sample tests of STE (such as rt) as well.

3.1 Equal sample sizes
In the simulation 117 different distribution pairs were involved, as a result of a systematic variation
of the skewness and kurtosis levels in the two samples (see section 2.1). Quite interestingly, the
results showed that except for rt, the Type I error rates were not much influenced by either skewness
or kurtosis level. Accordingly, for the sake of the easy inspection of the more important results, the
obtained individual Type I error rate estimates for the 117 distribution pairs have been summarized,
computing their means, minimums, and maximums. These summary statistics are presented for
equal small samples (m = n = 9) in Table 3, and for equal moderate samples (m = n = 18) in Table 4.
Because in the equal sample sizes case the SD ratios 1:2 and 2:1, 1:3 and 3:1, and 1:4 and 4:1 are
equivalent conditions, their results were summarized too. Consequently, in the case of unequal
variances the presented statistics in Table 3 and 4 are based on 2x117 = 234 different distribution
pairs.
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The averages of the power rate estimates corresponding to the same conditions can be seen
in the case of the HI: Al2 = .64 alternative hypothesis in Table 5 and in the case of the HI: Al2 =
.71 alternative hypothesis in Table 6.

(Insert Tables 3 to 6 about here)

The obtained results can be explained as follows:
1. In the case of equal and small samples, at a = .05 there are only two tests, FP and FPW,

for which the Type I error rate averages never deviate from the nominal level by more than 20%,
i.e., they remain between .04 and .06. The inspection of the smallest and largest individual estimates
shows that this nice behavior of FP and FPW is true not only with respect to their averages, but also
with respect to each individual distribution pair as well. FPW seems to be even slightly better than
FP, because its Type I error estimates, which fall in the range .051.058, deviate less from the
nominal level than those of FP. The Type I error estimates of FP fall in the range .050.060, and
show a perceivable rise as the SD ratio increases (see Table 3, Type I error estimates at a = .05).
Since in the case of m = n = 9 the power levels of FP and FPW are practically identical (see the
upper left panel of Table 5 and Table 6), we are justified to claim that under the condition of equal
and small samples FPW seems to work best out of the six tests being compared.

2. Under the same conditions but at the a = .1 level, only FP, FPW, and FPCW have Type I
error rate averages that never deviate from the nominal level by more than 20%, i.e., they remain
between .08 and .12. Among them FPW seems again to be the best. Since its Type I error estimates
fall always in the range .095.106, they never deviate from the nominal level by more than 6%,
whereas the maximal deviation is 13% in the case of FPCW, and 19% in the case of FP (see the
lower part of Table 3). Since the power levels of FP, FPW, and FPCW are practically identical (see
the upper right panel of Table 5 and Table 6), we are justified to claim that under the condition of
equal and small samples FPW seems to perform best.

3. In the case of equal and moderate samples (m = n = 18), at a = .05 there are only two
tests, FPW and FPCW, for which the Type I error rate averages never deviate from the nominal
level by more than 20%. The inspection of the smallest and largest individual estimates shows that
for FPW and FPCW the individual Type I error estimates fall in the range .049.053 and .051.058,
respectively (see the upper part of Table 4). Since in the case of equal sample sizes the power levels
of FPW and FPCW are practically identical (see the lower left panel of Table 5 and Table 6), FPW
seems again to be the best test, though FPCW performs almost as well as FPW.

4. Under the same conditions but at the a = .1 level, four tests (FP, FPW, FPC, and FPCW)
have Type I error rates that never deviate from the nominal level by more than 20%. Among them
the best are FPW and FPCW for which the maximal deviation is not more than .006, and .007
respectively (see the lower part of Table 4). Concerning power, the power rates of FP and FPC are
generally higher than those of the other two tests by 2-3% (see the lower right panel of Table 5 and
Table 6), but this is clearly due to their increased Type I error rates. For this reason in the moderate
sample sizes case at a = .1 level again FPW and FPCW are the tests of choice.

From the above results it is quite obvious that under the condition of equal sample sizes the
best performing test of STE is FPW, the Fligner-Policello test statistic with Welch's like degrees of
freedom. While its power is of the same magnitude as that of its competitors, among 117x2x7
=1638 simulation arrangements the Type I error rates of FPW never exceeds the nominal level by
more than 16%, at a =.05 level falling always in the range .049.058, and at a = .1 level in the
range .095.106.

The performance of FP approaches that of FPW in the case of small sample sizes, when it is
evaluated with the exact critical values, but the probability coverage of FP is somewhat more
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sensitive to variance heterogeneity than that of FPW. However, in the case of larger samples, FP
becomes slightly inflated and therefore no longer competes FPW effectively.

The behavior of FPCW is just the opposite of that of FP. In the small sample case it is often
more inflated than FPW, but with larger samples it offers a real alternative to FPW.

The Type I errors of FPC never deviate dramatically from the nominal level. The maximal
deviations never exceed the extent of 40% (such as .07 at a = .05), but this performance is clearly
weaker than that of the above three tests.

The performance of rW is by and large similar than that of FPC. It has somewhat better Type
I error rates under the condition of variance homogeneity, but if the variances are different, rW
becomes more inflated than FPC.

The rt test seemed to be quite acceptable for testing STE under the condition of variance
homogeneity (just as the t test for comparing two means), but as was expected, it became greatly
inflated when the SD ratio differed from 1:1.

3.2 Unequal sample sizes
The results again showed that the Type I error rates of the robust tests of STE were not much
influenced by the shape of the distribution (depending on skewness and kurtosis). In this case the
summary statistics (averages, minimums, and maximums) are presented for unequal small samples
(m = 6, n = 12) in Table 7, and for unequal moderate samples (m = 12, n = 24) in Table 8. The
averages of the power rate estimates corresponding to the same conditions can be seen in the case of
the H1: Al 2 = .64 alternative hypothesis in Table 9 and in the case of the H1: Al2 = .71 alternative
hypothesis in Table 10.

(Insert Tables 7 to 10 about here)

The obtained results can be explained as follows:
1. In the case of small and unequal sample sizes, at a = .05 FPW is the only test for which

the Type I error rate averages never deviate from the nominal level bymore than 20% for each SD
ratio (see the top panel in Table 7). The inspection of smallest and largest individual estimates
shows that the maximal deviation of the nominal value is .013 since the maximum of the individual
Type I error estimates of FPW is .063. Likewise, the maximal Type Ierror estimate is .068, .070,
.072, and .092 for FPCW, FP, FPC, and rW respectively (see the third panel of Table 7). The power
level of FPW was substantially lower than that of only rt, and then only in the cases where larger
sample sizes were paired with smaller variances (see Table 9). But, of course, in those situations the
empirical Type I error level of rt was extremely high, exceeding the nominal level by more than
40% (see Table 7). Since in this case the power level of FPW is not markedly lower than that of the
other four valid tests, we are justified to claim that under the condition of small and unequal
samples FPW seems to work best.

By examining the individual distribution pairs producing Type I error estimates exceeding
.06 (the number of such pairs was 30) we found the following interesting result. For 27 out of these
30 distribution pairs the second, for which the corresponding sample size was the larger one, had the
lowest kurtosis level at its skewness level (see Table 1), and for the remaining 3 pairs the second
had a medium level of kurtosis. In brief: if the parent distribution of the larger sample has low
kurtosis, and the sample sizes and variances are inversely related, then FPW tends to be slightly
inflated. At the same time the frequencies of the three skewness levels (0, 1, and 2) of the second
distribution was 8, 12, and 10, that is the level of the skewness did not have a perceivable effect on
the Type I error rate.
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2. Under the same conditions but at the a = .1 level, only FPW and FPCW has Type I error
rate averages that never deviate from the nominal level by more than 20%. The largest deviation
occurs with the 4:1 SD ratio. In this case FPW tends to be slightly inflated (for the individual Type I
error estimates: min. = .104, max. = .132), whereas FPCW tends to be slightly conservative (min. =
.067, max. = .090; see the first data column of the two lowest panels of Table 7). The situation is
somewhat similar with the 1:4 SD ratio, but in the opposite direction. Here FPW proves to be
slightly conservative (min. = .083, max. = .092), and FPCW inflated (min. = .100, max. = .110; see
the last data column of the two lowest panels of Table 7). Considering also the obtained power
estimates one can claim that with small and unequal samples, and at a = .1, if the sample sizes and
the variances are inversely related, then FPW is the test of choice, and in other cases (if the sample
sizes and the variances are positively related or the variances are equal) FPCW.

Identifying the distribution pairs producing Type I error estimates exceeding .120 (the
number of such pairs was 12) we found that for 9 out of these 12 distribution pairs the first, for
which the corresponding sample size was the smaller one, was symmetric, and had low kurtosis
level, and for the remaining 3 pairs the first was moderately skewed and had also a low kurtosis
level. This means that the largest Type I error estimates occurred again at the lowest kurtosis levels.

3. In the case of moderate and unequal sample sizes (m = 12, n = 24), at a = .05 two tests,
FPW and FPCW can be characterized by excellent Type I error rates, whereas the probability
coverage of the other four tests happens to be often rather poor (see the upper half of Table 8).
Since in this case the power level of FPW and FPCW is only slightly lower than that of the other
tests (see the third panel of Table 9 and Table 10), under these conditions FPW and FPCW are the
winners with a slight advantage of FPCW.

4. Under the same conditions but at a = .1 the same conclusion can be drawn: the best
performing tests are always FPW and FPCW, with a slight advantage of FPCW (see the lower half
of Table 8 and the fourth panel of Table 9 and Table 10).

Based on the above detailed results one can conclude that in the small and unequal sample
sizes case FPW seems to be the most reliable test of STE. The reason for this is that FPW is never
substantially weaker than any of the other tests, but each of the others produces occasionally a Type
I error rate that is substantially higher than the nominal level. If the unequal sample sizes are larger,
the picture is similar with the difference that in this case FPCW, producing occasionally a somewhat
higher power rate than FPW, becomes a real alternative to FPW.

Disproving prior expectations FP did not prove resistant against variance heterogeneity even
in the small sample case where it can be evaluated by "exact" critical values. As an example, with m
= 6, n = 12 and a = .05, the Type I error rates of FP are all about .065 at the 4:1, 3:1, and 2:1 SD
ratios, but at the 1:4 and 1:3 SD ratios these rates drop to .037 (see the top panel of Table 7).

In all unequal sample settings the performance of FPC is always very similar to that of FP.
The probability coverage of rW is only acceptable where the larger SD is at most twice as

large than the smaller one. If the SD ratio is more extreme, rW becomes unduly inflated.
The probability coverage of rt is only acceptable under the condition of variance

homogeneity. If the larger SD is just twice as large than the smaller one, then the Type I error of rt
will substantially differ from the nominal level.

Discussion

In this study the validity and efficiency of six statistical tests of stochastic equality (STE)
have been compared by means of computer simulation. Contrasted to the equality of means,
medians, or other location parameters, where the two populations are compared by means of two
representative values, STE represents an equality that is based on the direct comparisons of the

14



14

elements of the two populations. Two populations are said to be stochastically equal with respect to
a variable that is at least ordinally scaled, if for any two independently and randomly drawn X and
Y observations from the two populations P(X> Y) = P(X < Y).

For testing STE several robust methods have been suggested by different authors (Fligner
and Policello, 1981; Cliff, 1993; Zumbo & Coulombe, 1997; Vargha & Delaney, 2000). However,
the appropriateness of these procedures have not been proved either theoretically or empirically for
conditions where the shapes (such as variances, skewness levels, kurtosis levels, etc.) of the two
distributions differ. The present study undertook and performed this task.

The simulation varied the skewness and kurtosis levels over broad ranges and there were
compared symmetric, as well as positively and negatively skewed distributions, crossed in all
possible combinations. In the design of simulation we applied seven SD ratios with four levels of
variance heterogeneity (al :c3.2 = 1:1, 1:2, 1:3, 1:4), equal and unequal, and small and moderate sized
samples. In addition to the four rank tests of STE proposed by earlier studies (rt, rW, FP, FPC), we
introduced two other methods based on theoretical considerations (FPW and FPCW). The test
statistics of FP and FPW, and similarly FPC and FPCW, are identical. They only differ in how they
are evaluated. While the evaluation of FP and FPC is based either on exact critical values (m, n
12) or on a normal approximation (large sample case), FPW and FPCW is to be evaluated by the t-
distribution with a degrees of freedom that can be determined analogously to that of the Welch test
(see formula (9) in section 1).

Quite interestingly the results revealed that the newly suggested two tests, FPW and FPCW
could be characterized by substantially better Type I error rates than the others, whereas their power
was not much worse. FPW was clearly the best test in maintaining its Type I error rate very close to
the nominal level. For example, at a = .05 significance level, the Type I error of FPW fell always in
the range .043.063 out of 2x7x117 = 1638 small sample arrangements, and in the range .043.057
out of 2x7x117 = 1638 moderate sized sample arrangements. By contrast, for rW, FP, FPC, and
FPCW, for small samples the same ranges were .049.093, .035.070, .040.072, and .049.068
respectively, and for moderate samples .050.096, .054.080, .061.078, and .049-058 respectively.

This impressive result can be appreciated even more if we mention that the Welch test,
which is known to be a robust method for comparing two means when the population variances
differ, produces occasionally dramatically bad Type I error rates. As we have already mentioned, in
a study Algina et al. (1994) showed that if the parent distribution is lognormal, the SD ratio is 1:3,
the sample size ratio is 13:7, and the total sample size, N = m + n is as large as 100, then the Type I
error rate of the Welch test at a = .05 can be as large as .101, and if N = 500 then the Type I error
rate is still as large as .064 (see Table 2 of Algina et al., 1994). When we carried out the simulation
analysis with the six rank tests (see section 2) using the standardized lognormal as parent
distribution, a = .05, and N = 20 (m = 13, n = 7), then the Type I error rate of FPW was within the
.044.061 range for each of the seven SD ratios applied (even for 1:4 and 4:1). Also, when the total
sample size was as large as 100 (m = 65, n = 35), the Type I error rates of FPW were all within the
.047.053 range.

For moderate samples FPCW seems to be a good alternative to FPW. With regard to FPCW
further simulations are needed in order to clarify the sample size level for which the Type I error
rate does not exceed the nominal level by more than 20%.

In our simulation design, for the sample sizes we only used the 1:1, 1:2 ratios. Since in
social sciences occasionally occur more extreme ratios, further simulations are needed to obtain
empirical evidence of the appropriateness of FPW under these conditions as well.

The family of generalized lambda-distributions covers a really broad range of continuous
distribution types (see Ramberg et al., 1979). However, they do not well represent the bimodal
distributions, which can be generated for example by an appropriate mixture of two normals. Thus
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there is a good reason to extend the simulation study into this direction too, and the same can be
suggested with respect to the discrete distribution types as well, which occur in social science
research very frequently (see, e.g., Micceri, 1989).

As a final conclusion we can claim that we succeeded in modifying a known robust rank test
(Fligner & Police llo, 1981) in such a way that for small and moderate samples this variant (FPW),
became a definitely better test of stochastic equality than any of its several possible alternatives in a
broad range of different distributions. A similar statement can be formulated with respect to FPCW
for moderate sample sizes, where it offers a good alternative to FPW. We note that the FPW and rW
tests along with an interval estimation procedure for the A measure of stochastic superiority, are
now available in the latest version of the Ministat Statistical Program Package (Vargha & Czigler,
1999).

With MiniStat we could also demonstrate that in practice one can really encounter situations
where the comparison of means and stochastic comparison yield inconsistent statistical results. As
an example see in Figure 1 the empirical distribution of the Rorschach variable Anat %' in a sample
of low educated (nL = 103), and in an independent sample of high educated (nH = 114) persons.

Figure 1
The empirical distribution of Anat% in the groups of low educated (n = 103) and high

educated (n = 114) persons. For these samples the means do not differ significantly (p > .50),
whereas the null hypothesis of stochastic equality can be rejected (p < .05).
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Comparing the two means (.XL = 8.2 and Yti= 8.3) via the Welch test the result was far from being
significant (W(163) = .10, p > .50), whereas FPW indicated a significant difference between the
two samples (8 = .19, FPW(162) = 2.21,p < .05). Since in this case

Anat% is the percentage of Rorschach responses in a test protocol that contain an anatomic content.
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Pr(LowEd > High Ed) = .39 and Pr(LowEd < HighEd) = .58,

we can conclude that highly educated persons give relatively more anatomical responses in their
Rorschach test than do undereducated persons.

Another example is shown in Figure 2. Here we compared the same two independent
samples with respect to the Rorschach variable Self-criticism%2. In this case the relatively small
number of very high scores in the LowEd sample caused the Welch test be significant (5e, = 2.7,
.VH= 1.2, W(138) = 2.81, p < .01), while the small extent of stochastic difference between the two
samples (8 = .08) was not significant at all (FPW(181) = .77, p > .40). For this case

Pr(LowEd > HighEd) = .30 and Pr(LowEd < HighEd) = .22,

Figure 2
The empirical distribution of Self-criticism% in the groups of low educated (n = 103) and high
educated (n = 114) persons. For these samples the means differ significantly (p < .01), whereas

the null hypothesis of stochastic equality cannot be rejected (p > .40).

Finally we mention that the concept of stochastic equality can easily be generalized to more
than two independent samples, and to the correlated samples case as well (see Vargha & Delaney,
2000).
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Table 1
Skewness (a3) and kurtosis (a4) values of the lambda-distributions applied in the simulation.

Kurtosis

Skewness Low Moderate High

symmetric a3= 0, a4= 1.8 a3 = 0, a4 = 3.0 a3= 0, a4= 9.0
moderately asymmetric a3= 1, a4= 3.4 a3= 1, a4= 4.6 a3= 1, a4= 10.6

heavily asymmetric a3= 2, a4= 8.6 a3= 2, a4= 9.8 a3= 2, a4= 15.8

Table 2
Shift values ensuring stochastic equality for some couples of lambda distribution types
depending on the ratio of standard deviations of the two distributions to be compared. The
initially standardized X and Y lambda distributions were submitted to the X' = aiX,
Y' = a2Y + C linear transformations, where C is the corresponding tabled shift value.

Distribution 61:a2

Sample 1 Sample 2 4:1 3:1 2:1 1:1 1:2 1:3 1:4

a3 = 0 a3 = 0
a4 =3 a4- 1.8 0 0 0 0 0 0 0

a3 = 0 a3 = 1

a4 = 9 a4 = 1.6 .01 .02 .03 .05 .12 .21 .28

a3 = 1 a3 = 1

a4 = 4.6 a4 = 4.6 -.62 -.43 -.23 0 .23 .43 .62

a3 = -1 a3 = 1
a4 = 4.6 a4 = 4.6 .64 .46 .30 .17 .30 .47 .64

a3 1 a3 = 2
a4 = 4.6 a4= 8.6 -.61 -.42 -.22 .04 .41 .77 1.11

a3 = -1 a3 2

a4 = 4.6 a4 = 8.6 .65 .49 .34 .24 .49 .78 1.11

a3 = 2 a3 = 2

a4 = 8.6 a4 = 15.8 -1.11 -.78 -.43 -.07 .18 .38 .58

a3 = -2 a3 = 2
a4 = 8.6 a4= 15.8 1.13 .83 .52 .26 .35 .49 .64
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Table 3
Summary statistics of empirical Type I error rates of six rank tests for testing the null
hypothesis of stochastic equality against two-sided alternatives at 5% nominal level, with
equal small sample sizes (m = n = 9). These statistics are based on 117 (ai=a2) or 234 (6i#(52)
different pairs of distributions.
Mean of Type I error estimates (a = .05)

(cTi:a2) (1:1) (1:2) (1:3) (1:4)
rt: .052 .060 .069+ .077++
rW: .052 .058 .063+ .066+
FP: .051 .054 .057 .057
FPW: .054 .055 .056 .055
FPC: .059 .061+ .062+ .062+
FPCW: .063+ .062+ .060 .058

Smallest Type I error rate (a = .05)
(ai:c72) (1:1) (1:2) (1:3) (1:4)

rt: .050 .052 . .059 .065
rW: .049 .052 .057 .061

FP: .050 .051 .054 .054
FPW: .053 .053 .053 .051

FPC: .058 .059 .059 .058
FPCW: .061 .058 .055 .052

Largest Type I error rate (a = .05)
(cTI:a2) (1:1) (1:2) (1:3) (1:4)

rt: .057 .074 .086 .096
rW: .056 .067 .069 .069
FP: .054 .059 .059 .060
FPW: .056 .058 .058 .058
FPC: .061 .064 .064 .065
FPCW: .065 .064 .063 .062
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Table 3 (cont.)

3

Mean of Type I error estimates (a = .10)
(ai:a2) (1:1) (1:2) (1:3) (1:4)

rt: .097 .106 .118 .127+
rW: .097 .106 .118 .127+
FP: .101 .103 .105 .108
FPW: .097 .097 .098 .099
FPC: .113 .116 .119 .123+
FPCW: .109 .107 .105 .104

Smallest Type I error rate (a = .10)
(ai:a2) (1:1) (1:2) (1:3) (1:4)

rt: .092 .096 .105 .115
rW: .092 .096 .105 .115
FP: .099 .099 .101 .102
FPW: .095 .095 .096 .096
FPC: .111 .112 .114 .116
FPCW: .106 .102 .102 .101

Largest Type I error rate (a = .10)
(01:c72) (1:1) (1:2) (1:3) (1:4)

rt: .103 .122 .136 .145
rW: .103 .122 .136 .145
FP: .104 .108 .113 .119
FPW: .101 .100 .102 .106
FPC: .117 .121 .128 .135
FPCW: .113 .111 .109 .108

Note: + Denotes mean estimates exceeding nominal level by more than 20%.
++ Denotes mean estimates exceeding nominal level by more than 40%.
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Table 4
Summary statistics of empirical Type I error rates of six rank tests for testing the null
hypothesis of stochastic equality against two-sided alternatives at 5% nominal level, with
equal moderate sample sizes (m = n = 18). These statistics are based on 117 (o.1=a2) or 234
(c71#(32) different pairs of distributions.

Mean of Type I error estimates (a = .05)
(a1:a2) (1:1) (1:2) (1:3) (1:4)

rt: .053 .060 .069+ .076++
rW: .053 .059 .067+ .072++
FP: .060 .061+ .063+ .064+
FPW: .051 .051 .051 .051
FPC: .065+ .066+ .067+ .067+
FPCW: .056 .055 .054 .054

Smallest Type I error rate (a = .05)
(cr1:a2) (1:1) (1:2) (1:3) (1:4)

rt: .050 .053 .060 .067
rW: .050 .053 .059 .065
FP: .058 .059 .061 .062
FPW: .049 .049 .049 .049
FPC: .063 .064 .065 .065
FPCW: .054 .053 .052 .051

Largest Type I error rate (a = .05)
(ai:a2) (1:1) (1:2) (1:3) (1:4)

rt: .059 .073 .083 .088
rW: .059 .071 .078 .083
FP: .062 .065 .067 .068
FPW: .053 .053 .053 .053
FPC: .067 .069 .069 .070
FPCW: .058 .057 .056 .056
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Table 4 (cont.)
Mean of Type I error estimates (a = .10)

(61:a2) (1:1) (1:2) (1:3) (1:4)
rt: .100 .110 .122+ .131+
rW: .100 .110 .122+ .131+
FP: .107 .109 .111 .113

FPW: .097 .097 .097 .098
FPC: .114 .115 .116 .116
FPCW: .104 .103 .102 .101

Smallest Type I error rate (a = .10)
(01:G2) (1:1) (1:2) (1:3) (1:4)

rt: .095 .099 .110 .120
rW: .095 .099 .110 .120
FP: .103 .106 .108 .110
FPW: .094 .095 .095 .095
FPC: .111 .112 .113 .114
FPCW: .102 .100 .099 .099

Largest Type I error rate (a = .10)
(ai:(52) (1:1) (1:2) (1:3) (1:4)

rt: .108 .127 .139 .147
rW: .108 .127 .139 .147
FP: .110 .114 .116 .117
FPW: .100 .100 .100 .101

FPC: .117 .118 .119 .119
FPCW: .107 .106 .104 .104

Note: + Denotes mean estimates exceeding nominal level by more than 20%.
++ Denotes mean estimates exceeding nominal level by more than 40%.
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Table 5
Averaged empirical power rates of six rank tests for testing the null hypothesis of stochastic
equality against the H1: Al2 = .64 alternative at 5% and 10% nominal levels. These statistics
are based on 117 (a 1 =a2) or 234 (cr1 #62) different pairs of distributions. Power rates whose
corresponding mean Type I error rates exceeded the nominal level by more than 20% are in

arentheses.
Power rates with a = .05 and m = n = 9 Power rates with a = .10 and m = n = 9

(51:a2) (1:1) (1:2) (1:3) (1:4) (al:a2) (1:1) (1:2) (1:3) (1:4)

rt: .17 .18 (.19) (.20) rt: .26 .26 .27 (.28)
rW: .17 .18 (.18) (.18) rW: .26 .26 .27 (.28)
FP: .17 .17 .16 .16 FP: .26 .25 .25 .25

FPW: .17 .17 .16 .15 FPW: .25 .25 .24 .23

FPC: .18 (.18) (.17) (.17) FPC: .28 .28 .27 (.27)
FPCW: (.19) (.18) .17 .16 FPCW: .27 .26 .25 .24

Power rates with a = .05 and m = n = 18 Power rates with a = .10 and m = n = 18
(ai:c52) (1:1) (1:2) (1:3) (1:4) (cr1:u2) (1:1) (1:2) (1:3) (1:4)

rt: .31 .31 (.32) (.32) rt: .42 .42 (.42) (.43)
rW: .31 .31 (.31) (.31) rW: .42 .42 (.42) (.43)
FP: (.32) (.31) (.30) (.29) FP: .43 .42 .40 .39
FPW: .30 .28 .27 .26 FPW: .41 .39 .38 .36
FPC: (.34) (.32) (.31) (.30) FPC: .44 .43 .41 .40
FPCW: .31 .29 .28 .26 FPCW: .42 .40 .38 .37
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Table 6
Averaged empirical power rates of six rank tests for testing the null hypothesis of stochastic
equality against the H1: Al2 = .71 alternative at 5% and 10% nominal levels. These statistics
are based on 117 (ai=a2) or 234 (o-i#4:32) different pairs of distributions. Power rates whose
corresponding mean Type I error rates exceeded the nominal level by more than 20% are in

arentheses.
Power rates with a = .05 and m = n= 9 Power rates with a = .10 and m= n= 9

(a1:05 (1:1) (1:2) (1:3) (1:4) (61:a2 ) (1:1) (1:2) (1:3) (1:4)

rt: .33 .34 (.35) (.36) rt: .45 (.45) .45 (.46)
rW: .33 .33 (.33) (.32) rW: .45 .45 .45 (.46)
FP: .32 .32 .31 .30 FP: .45 .44 .42 .42

FPW: .33 .32 .30 .29 FPW: .44 .42 .41 .40

FPC: .35 (.34) (.32) (.31) FPC: .47 (.46) .45 (.45)
FPCW: (.35) (.33) .31 .29 FPCW: (.46) (.44) .42 .41

Power rates with a = .05 and m = n= 18 Power rates with a = .10 and m= n= 18
(at:a (1:1) (1:2) (1:3) (1:4) (ai:a2) (1:1) (1:2) (1:3) (1:4)

rt: .60 .60 (.59) (.59) rt: .71 .71 (.70) (.70)
rW: .60 .60 (.59) (.58) rW: .71 .71 (.70) (.70)
FP: (.62) (.60) (.57) (.56) FP: .72 .70 .68 .66

FPW: .59 .56 .53 .51 FPW: .70 .68 .65 .64
FPC: (.63) (.61) (.58) (.56) FPC: .73 .71 .68 .67
FPCW: .60 .57 .54 .52 FPCW: .71 .69 .66 .64
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Table 7
Summary statistics of empirical Type I error rates of six rank tests for testing the null
hypothesis of stochastic equality against two-sided alternatives at 5% nominal level, with
unequal small sample sizes (m = 6, n = 12). These statistics are based on 117 different pairs of
distributions.

Mean of Type I error estimates (a = .05)
(a1 :a2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .131++ .114++ .090++ .055 .037 .034 .034
rW: .063+ .064+ .064+ .059 .061+ .069+ .077++
FP: .064+ .066+ .065+ .052 .040 .037 .037
FPW: .056 .058 .058 .051 .046 .047 .048
FPC: .061+ .065+ .066+ .056 .045 .042 .042
FPCW: .057 .061+ .063+ .060 .055 .054 .054

Smallest Type I error rate (a = .05)
(cri:a2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .112 .093 .070 .041 .033 .032 .032
rW: .057 .060 .061 .055 .054 .057 .065
FP: .058 .061 .059 .042 .036 .035 .035
FPW: .049 .053 .056 .047 .043 .043 .045
FPC: .052 .057 .063 .048 .041 .040 .040
FPCW: .049 .053 .058 .056 .052 .051 .051

Largest Type I error rate (a = .05)
(cTi:cY2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .160 .144 .120 .078 .045 .038 .038
rW: .068 .069 .069 .066 .073 .085 .093
FP: .069 .070 .069 .062 .045 .041 .040
FPW: .062 .063 .062 .059 .051 .051 .050
FPC: .070 .072 .070 .065 .051 .047 .044
FPCW: .065 .068 .068 .064 .059 .057 .056

26



Table 7 (cont.)

9

Mean of Type I error estimates (a = .10)
(61:62) (4:1) (3:1) (2:1) (1:1)

rt: .192++
rW: .127+
FP: .142++
FPW: .112
FPC: .132+
FPCW: .081

.177++

.118

.131+

.105

.125+

.089

.151++ .105

.110 .104

.119 .101

.100 .092

.119 .110

.098 .102

(1:2)

.079

.111

.087

.086

.100

.102

(1:3)

.075

.122+

.084

.086

.096

.103

(1:4)

.076

.130+

.085

.087

.095

.105

Smallest Type I error rate (a = .10)
(6i:c72) (4:1) (3:1) (2:1) (1:1)

rt: .177 .158 .126 .085
rW: .116 .110 .105 .101

FP: .130 .122 .110 .091

FPW: .104 .100 .096 .087
FPC: .122 .118 .114 .102
FPCW: .067 .075 .087 .097

(1:2) (1:3) (1:4)

.072 .071 .071

.100 .107 .117
.082 .081 .081

.082 .082 .083

.095 .092 .092

.095 .097 .100

Largest Type I
(61:62) (4:1)

rt: .211

rW: .149
FP: .164
FPW: .132
FPC: .151

FPCW: .090

error rate (a = .10)
(3:1) (2:1) (1:1)

.202 .183 .137

.136 .121 .110

.152 .135 .113

.120 .107 .099

.140 .127 .117

.099 .107 .108

(1:2) (1:3) (1:4)

.090 .081 .084

.126 .136 .141

.095 .089 .089

.092 .091 .092

.106 .101 .098

.106 .108 .110

Note: + Denotes mean estimates exceeding nominal level by more than 20%.
++ Denotes mean estimates exceeding nominal level by more than 40%.
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Table 8
Summary statistics of empirical Type I error rates of six rank tests for testing the null
hypothesis of stochastic equality against two-sided alternatives at 5% nominal level, with
unequal small sample sizes (m = 12, n = 24). These statistics are based on 117 different pairs
of distributions.
Mean of Type I error estimates (a = .05)
(6i:62) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .116++ .103++ .083++ .051 .034 .032 .032
rW: .066+ .063+ .058 .054 .060 .071++ .080++
FP: .078++ .077++ .074++ .065+ .058 .056 .056
FPW: .055 .054 .052 .048 .046 .047 .047
FPC: .076++ .076++ .075++ .070+ .065+ .063+ .063+
FPCW: .054 .053 .053 .052 .052 .053 .054

Smallest Type I error rate (a = .05)
(6162) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .103 .087 .065 .037 .030 .029 .030
rW: .062 .059 .054 .050 .053 .060 .069
FP: .075 .074 .070 .060 .055 .054 .054
FPW: .053 .052 .049 .045 .043 .044 .045
FPC: .072 .074 .072 .067 .062 .062 .061

FPCW: .051 .052 .051 .050 .049 .051 .052

Largest Type I error rate (a = .05)
(6i:62) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .135 .125 .108 .072 .041 .035 .036
rW: .069 .069 .065 .058 .074 .087 .096
FP: .080 .079 .079 .072 .062 .059 .058
FPW: .057 .056 .055 .051 .048 .049 .049
FPC: .078 .078 .077 .074 .067 .066 .066
FPCW: .056 .055 .054 .053 .054 .055 .055
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Table 8 (cont.)
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Mean of Type I error estimates (a = .10)
(a1:(52) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .184++ .170++ .145++ .100 .074 .071 .072

rW: .120 .115 .109 .103 .114 .129+ .141++
FP: .129+ .126+ .122+ .113 .104 .102 .102
FPW: .102 .101 .098 .093 .091 .092 .093

FPC: .126+ .125+ .123+ .119 .114 .113 .112
FPCW: .099 .099 .099 .099 .100 .102 .102

Smallest Type I error rate (a = .10)
( (51 : (52) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .169 .151 .121 .081 .068 .067 .068

rW: .114 .108 .103 .098 .102 .114 .127
FP: .124 .122 .117 .107 .101 .100 .100
FPW: .099 .097 .094 .090 .088 .089 .090
FPC: .122 .121 .119 .115 .111 .110 .110
FPCW: .097 .096 .096 .096 .097 .099 .099

Largest Type I error rate (a = .10)
(ai:(52) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: .203 .196 .176 .129 .085 .077 .076
rW: .132 .126 .118 .110 .136 .153 .163

FP: .137 .133 .130 .120 .110 .106 .105

FPW: .110 .106 .102 .097 .095 .095 .095
FPC: .132 .129 .127 .123 .118 .115 .115
FPCW: .105 .102 .101 .101 .103 .104 .105

Note: + Denotes mean estimates exceeding nominal level by more than 20%.
++ Denotes mean estimates exceeding nominal level by more than 40%.
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Table 9
Averaged empirical power rates of six rank tests for testing the null hypothesis of stochastic
equality against the H1: Al2 = .64 alternative at 5% and 10% nominal levels. These statistics
are based on 117 different pairs of distributions. Power rates whose corresponding mean Type
I error rates exceeded the nominal level by more than 20% are in parentheses.
Power rates with a = .05, m = 6 and n = 12

(al:0'2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.24) (.22) (.19) .16 .14 .13 .14
rW: (.13) (.14) (.15) .17 (.20) (.22) (.24)
FP: (.13) (.14) (.15) .15 .14 .14 .14
FPW: .12 .13 .14 .15 .16 .17 .17
FPC: (.13) (.14) (.16) .16 .16 .15 .15

FPCW: .12 (.14) (.15) .17 .18 .18 .18

Power rates with a = .1, m = 6 and n = 12

(al:a2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.32) (.30) (.28) .25 .23 .23 .23
rW: .23 .22 .23 .25 .29 (.31) (.32)
FP: (.25) (.24) .24 .24 .24 .24 .24
FPW: .21 .20 .21 .23 .24 .25 .25
FPC: (.24) (.23) .24 .26 .27 .26 .26
FPCW: .16 .18 .20 .25 .27 .28 .28

Power rates with a = .05, m = 12 and n = 24

(al: a2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.32) (.31) (.29) .27 .25 .25 .25

rW: (.22) (.23) .24 .29 .35 (.38) (.40)
FP: (.25) (.26) (.28) (.31) .33 .33 .33
FPW: .20 .21 .23 .27 .30 .30 .30
FPC: (.24) (.26) (.28) (.32) (.35) (.35) (.34)
FPCW: .20 .21 .23 .28 .32 .32 .32

Power rates with a = .1, m = 12 and n = 24

(TP52) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.41) (.41) (.40) .38 .37 .37 .37
rW: (.33) .33 .35 .40 .46 (.49) (.51)
FP: (.34) (.35) (.37) .41 .44 .44 .43
FPW: .29 .31 .33 .38 .41 .42 .41

FPC: (.33) (.35) (.37) .42 .45 .46 .45
FPCW: .29 .30 .33 .39 .43 .44 .43
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Table 10
Averaged empirical power rates of six rank tests
equality against the H1: Al2 = .71 alternative at
are based on 117 different pairs of distributions.
I error rates exceeded the nominal level by more

13

for testing the null hypothesis of stochastic
5% and 10% nominal levels. These statistics
Power rates whose corresponding mean Type
than 20% are in parentheses.

Power rates with a = .05, m= 6 and n = 12

(a1:(72) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.37) (.35) (.33) .30 .29 .28 .28

rW: (.23) (.24) (.27) .32 (.3 8) (.41) (.43)
FP: (.23) (.25) (.27) .30 .30 .29 .29
FPW: .21 .23 .26 .30 .33 .33 .33

FPC: (.22) (.25) (.28) .31 .32 .31 .31

FPCW: .22 (.24) (.27) .33 .35 .35 .35

Power rates with a = .1, m = 6 and n = 12

(01:452) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.46) (.45) (.44) .43 .42 .42 .42

rW: .36 .36 .37 .43 .50 (.52) (.53)
FP: (.39) (.38) .39 .42 .44 .44 .44
FPW: .33 .33 .35 .41 .44 .44 .45

FPC: (.37) (.37) .39 .44 .46 .46 .46

FPCW: .26 .29 .34 .43 .47 .48 .48

Power rates with a = .05, m = 12 and n = 24

(a1:a2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.54) (.54) (.54) .55 .54 .54 .54
rW: (.42) (.44) .48 .57 .66 (.69) (.70)
FP: (.46) (.48) (.53) (.60) .64 .63 .63

FPW: .40 .42 .46 .54 .60 .61 .60
FPC: (.45) (.48) (.53) (.61) (.66) (.65) (.65)
FPCW: .39 .42 .46 .56 .62 .63 .62

Power rates with a = .1, m= 12 and n = 24

(cr1:a2) (4:1) (3:1) (2:1) (1:1) (1:2) (1:3) (1:4)

rt: (.64) (.65) (.66) .67 .68 .68 .68
rW: (.55) .57 .60 .69 .76 (.79) (.79)
FP: (.57) (.59) (.63) .70 .74 .74 .73
FPW: .52 .54 .58 .67 .72 .72 .71

FPC: (.56) (.58) (.63) .71 .75 .75 .75
FPCW: .51 .54 .58 .68 .73 .74 .73
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