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Abstract
This paper reviews graphical and non-graphical procedures for evaluating multivariate normality by
guiding the reader through univariate and bivariate procedures that are necessary, but insufficient,
indications of a multivariate normal distribution. A data set utilizing three dependent variables for
two groups provided by George and Mallery (1999) is used to analyze histograms, stem-and-leaf
plots, box-and-whisker plots, kurtosis and skewness coefficients, Q-Q plots, the Shapiro-Wilk or
Kolmogorov-Smirnov statistic, and bivariate scatterplots. A procedure programmed by Thompson
(1990, 1997) is used to explore multivariate normality by plotting Mahalanobis distances against

derived chi-square values in a scatterplot.
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Evaluating Univariate, Bivariate, and Multivariate Normality
Using Graphical Procedures

Reality is complex. Over time, researchers in the social sciences have become increasingly
aware that simple univariate methods comparing an experimental group with a control group on a
single dependent variable are inadequate to meet the needs of the complex phenomena that dominate
educational and psychological research. In the majority of social science research, two or more
dependent variables are necessary, because nearly every effect has multiple causes and nearly every
cause has multiple effects. Even when studying a single construct, such as self-concept, it is often
helpful to use multiple tools to measure elusive constructs (called "multi-operationalizing").

In a methodological shift that increasingly emphasizes honoring the complexity of reality,
Grimm and Yarnold (1995) reported that the use of multivariate statistics in research has accelerated
in the last 20 years and that it is difficult to find empirically based research articles that do not
employ one or more multivariate analyses. In a comparison of the 1976 and 1992 volumes of the
Journal of Consulting and Clinical Psychology (JCCP) and the Journal of Personality and Social
Psychology (JPSP), Grimm and Yarnold found that the use of multivariate statistics in JCCP
increased from 9% to 67% in that 16 year period. For JPSP, the use of multivariate statistics
increased from 16% to 57% in the same time frame.

In an exhaustive study of statistical methods used in studies published in three major social
science journals during a 16-year period, Emmons, Stallings, and Lane (1990) found increases for
MANOVA, MANCOVA, multiple regression, and multiple correlation methods. For example, the
use of MANOVA increased from 44% of the studies published from 1977 to 1981 to 54% of the

studies published from 1982 to 1987. Emmons, Stallings, and Lane (1990, p. 14) concluded that “the
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results of this research project indicate that empirical research studies across the three social science
disciplines of education, psychology, and sociology have begun to realize that the world is
multiplicative, multivariate, and curvilinear.” Undoubtedly, another major factor contributing to the
widespread use of multivariate statistics is the proliferation of computer software packages that
reduce complex processes that took years to complete in the pre-microcomputer age (like factor
rotation in factor analysis) to a simple “point and click.”

Daniel (1990) noted that multivariate methods usually best honor the reality about which the
researcher wishes to generalize. McMillan and Schumacher (1984) compellingly argued against the
limitations of viewing the world through an overly- simplified univariate lens:

Social scientists have realized for many years that human behavior‘can be
understood only be examining many variables at the same time, not by dealing
with one variable in one study, another variable in a second study, and so forth ...
These [univariate] procedures have failed to reflect our current emphasis on the
multiplicity of factors in human behavior ... In the reality of complex social
situations the researcher needs to examine many variables simultaneously. (pp.
269-270)

Thompson (1994) elaborated on the need for epistemological and analytic consistency by
pointing out that all researchers have a presumptive model for the nature of reality and that it is
critical for presumptive and analytic models to closely align because analytic models are used as
tools to test assumptions and draw conclusions about the preconceived (albeit not always conscious)
model. Earlier Thompson (1986, p. 9), stated that the reality about which most researchers strive to

generalize is usually one “in which the researcher cares about multiple outcomes, in which most
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outcomes have multiple causes, and in which most causes have multiple effects.” Given this
conception of reality, only multivariate methods honor the full constellation of inter-relating
variables simultaneously.

Experimentwise Error Rates

Whereas "testwise" error rates refer to the probability of making a Type | error for a given
hypothesis test, "experimentwise" error rates refer to the probability of having made a Type I error
anywhere within the study. Inflation of "experimentwise" error rates can be attributed to two factors:
(a) the number of dependent variables in the study; and (b) the amount of correlation between the
factors--if two factors are perfectly correlated there is no inflation. On the other extreme, very low
correlations produce highly inflated "experimentwise" error rates. The Bonferroni inequality can be
used to calculate the "experimentwise" error rate when the hypotheses or variables tested using a
single sample are perfectly uncorrelated:

ew = 1-(1- ¥
As noted by Thompson (1994):
... if three perfectly uncorrelated hypotheses (or dependent variables) are tested
using a single sample, each at the ,, = .05 level of statistical significance, the
"experimentwise" Type I error rate will be:
ew=1- (1- )
=1-(1- .05y
=1-(95)
=1- (.95)(.95) (.95)

=1-(.9025 (.95))



Evaluating Normality 6

=1- .857375

ew = -142625
Thus, for a study testing three perfectly uncorrelated dependent variables, each at
the ;w = .05 level of statistical significance, the probability is .142625 (or
14.265%) that one or more null hypotheses will be incorrectly rejected within the
study. Mos unfortunately, knowing this will not inform the researcher as to which
one or more of the statistically significant hypotheses is, in fact, a Type I error.
(p- 10)

As illustrated by Fish (1988) and Maxwell (1992) using heuristic examples, invoking
multiple univariate tests instead of multivariate tests can also lead unwary researchers to fail to
identify statistically significant results. The wrong-headed use of the so-called "Bonferroni
correction” coupled with use of univariate tests is also inappropriate, because the application (a)
severely attenuates power and (b) still does not honor a multivariate reality. Multivariate analyses
can detect interaction effects between independent variables that would go undetected if multiple
univariate measures were used in place of multivariate measures. Independent variables may have
small, but noteworthy effects on multiple dependent variables that add up to an important pattern
when examined as a composite, but otherwise appear meaningless in a univariate test (or series of
tests) of a single dependent variable.

Assumptions of Multivariate Statistics

Because use of multivariate statistics has become commonplace, it is imperative that
researchers understand the assumptions that underlie their use. There are several central assumptions

of multivariate statistics. The first assumption of most multivariate statistics is that the
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variance/covariance matrices across the £ groups must be homogeneous (equal); and the second
assumption, which is the focus of this paper, is that the interval respoﬁse variables across the &
groups must be multivariate normally distributed. The test for homogeneity of variance in
multivariate statistics is Box’s M (Box, 1949; 1954), which is a statistically powerful test of bivariate
correlations (unstandardized r) that is analogous to the Levene test in univariate analyses. If Box’s
M is favorable, you do not reject the homogeneity of variance assumption, which means that you
have met the first assumption of multivariate analyses. Box’s M tests the first assumption, but it is
also sensitive to the second assumption of multivariate normality. In other words, if you don’t reject
the homogeneity of variance assumption, you may have a problem with multivariate normality (see
Tabachnick & Fidell, 1983; 1989; 1996 for a detailed elaboration of the homogeneity of covariance
assumption).

Univariate Normality

Determining univariate normality is helpful when assessing multivariate normality, because
one can do so even with a small sample size (n <25) and because univariate normality is a necessary
precondition for multivariate normality (Gnanadesikan, 1977; Johnson & Wichern, 1992). The
advantage of proceeding from a univariate to bivariate to multivariate examination of the data is that
such a procedure provides useful information on which dependent variables to use before conducting
a multivariate analysis. In order to build a foundation for a complete understanding of multivariate
normality, a review of univariate normality is in order.

Parametric tests require that the sample data be drawn from a population with a known form,
most typically the normal distribution, so that at least one population parameter can be estimated

from the sample (Munro & Page, 1993). As noted by Bump (1991), the normal curve is determined
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by a mathematical equation that uses the mean and standard deviation values to determine two
additional statistics--skewness and kurtosis. Both statistics are used to assess the normality of a
univariate distribution. Skewness refers to the degree of symmetry of the distribution, which is
determined by calculating the third-order moment of the score deviations from the mean, formulated
by Glass and Stanley (1970, p. 89) as:

S, = (SumofZ’)/n.

A perfectly symmetrical distribution has a skewness coefficient of zero. Negative
coefficients indicate a negative skew (tail to the left) and positive coefficients indicate a positive
skew (tail to the right), However, a distribution can be completely symmetrical (as in the case of a
bimodal distribution), but not normal. Therefore, it is essential to also examine the kurtosis, which
refers to the shape of the distribution against the normal distribution, by comparing relative height
to width. The mean and standard deviation are used to convert the measured scores to z-scores,
which are then used to compute the kurotosis, as explained by Glass and Stanley (1970, p. 91): "K,
= ((Sum of Z;*) / n), most researchers and statistical packages, however, apply an additive constant
of (-3) so that the kurtosis will be equal to O in a univariate normal distribution."

Contrary to popular misunderstanding, there are infinitely many normal distributions
(Henson, 1999) and it is impossible to know for certain whether a distribution is normal or not by
“eyeballing” the shape of the distribution since kurtosis is mathematically derived (Bump, 1991).
The standard normal distribution is the classic bell-shaped curve featured in countless statistics
books which is really a special case of the more general case of all normal distributions (including
both z- and non-z score forms) in which the skewness, kurtosis and mean equal zero and the standard

deviation is one. While it is true that all normal univariate distributions are bell-shaped, the bells can
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take an infinite variety of shapes--many textbook authors erroneously imply that the classic bell-
shaped curve (standard normal distribution using z-scores) is the only normal distribution.

The normal curve has the following properties:

1. The curve is symmetrical. The mean, median, and mode coincide.

2. The maximum ordinate of the curve occurs at the mean, that is, where z=
0, and in the unit normal curve is equal to .3989.

3. The curve is asymptotic. It approaches but does not meet the horizontal
axis and extends from minus infinity to plus infinity.

4. The points of inflection of the curve occur at points +/- 1 standard
deviation unit above and below the mean. Thus, the curve changes from
convex to concave in relation to the horizontal axis at these points.

5. Roughly 68 per cent of the area of the curve falls within the limits +/- 1
standard deviation unit from the mean.

6. In the unit normal curve the limits z= +/- 1.96 include 95 per cent and the
limits Z=+/- 2.58 include 99 per cent of the total area of the curve, 5 per cent
and | per cent of the area, respectively, falling beyond these limits (Ferguson,
1971, pp. 93-94).

However, Glass and Stanley (1970) noted that in a univariate distribution, skewness has a
very minor effect on alpha or power in ANOVA if the design is balanced (i.e. there are an equal
number of observations in each cell) and kurtosis also has a very slight effect on alpha levels and
only effects the power of a test when the distribution is platykurtic (flattened as compared to the

normal distribution). The severity of the effect of kurtosis on power increases proportionately with
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the presence of kurtosis in more than one variable.
Q-Q Plots

According to Stevens (1996), one of the most popular graphical methods for testing
univariate normality is the normal probability plot or Q-Q Plot (quantile-versus-quantile) in which
observations are ordered in increasing degree of magnitude and then plotted against expected normal
distribution values. The closer the line is to a straight line, the more correlated the observed score
is with the expected score and the more normal the distribution. In these plots, the scores are ranked
and sorted from lowest to highest. Then an expected normal value is computed and compared with
the actual normal value for each case. The expected normal value is the z-score that a case with that
rank holds in a normal distribution. The normal value is the z.-score it has in the actual distribution.
[f the actual distribution is normal, then the points for the cases fall along the diagonal running from
lower left to upper right, with some minor deviations due to random distribution of scores.
Deviations from normality shift the points away from the diagonal processes (see Tabachnick &
Fidell, 1996, for examples of interpreting Q-Q plots).

Additional Univariate Graphics

Three additional graphical tests are the box-and-whisker plot, stem-and-leaf plot, and a
histogram of the dependent variables. These tests allow a quick and simple means of evaluating the
shape of the univariate distribution for each dependent variable. You can think about the box-and-
whisker plot as though you are looking down at the distribution from above with the median as the
line in the middle of the box. The box itself defines the width of the interquartile range, the thin line
represents the range of scores that fall within two standard deviations (95%) and outliers appear

beyond the extreme ends of the range on both the positive and negative sides of the distribution. The
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stem-and-leaf plot has the advantage of identifying the specific values of each observation and how
the shape of the distribution compares roughly to a normal distribution. The histogram is very easy
to read and interpret and can compare the shape of a distribution to a normal distribution
superimposed on it. It is very helpful with quickly identifying outliers and skewness ina distribution.

However, Stevens (1996 cautions that “eyeballing” the shape of the distribution can be
misleading with small to moderate sample sizes due to sampling error that increases as sample size
gets smaller. With samples of less than 50 cases, he recommends that prudent researchers use non-
graphical tests such as the chi-square goodness of fit, Kolmogorov-Smirnov, the Shapiro-Wilk test,
and an evaluation of the skewness and kurtosis of the distribution to make an evaluation about
univariate normality. The Shapiro-Wilk test (Wilk, Shapiro, & Chen, 1968) was developed to detect
a wide variety of variations from a normal univariate distribution. The smaller the W value, the
greater the departure from normality. As a guideline, Gnandesikan (1977) stated that for pe,icuiated
values of .1 or higher, normality is a reasonable assumption.

Statistical Tests of Univariate Normality

Wilk, Shapiro, and Chen (1968) conducted an extensive Monte Carlo study of statistical tests
for normality and determined that the Kolmogorov-Smirnov test was not as powerful as either the
Shapiro-Wilk or the combination of using the skewness and kurtosis coefficients and that the chi-
square is limited because it depends on the number of intervals used for each grouping. They
concluded that for sample sizes under 20, the combination of the skewness and kurtosis coefficients
or the Shapiro-Wilk method were most sensitive to detecting extreme non-normality. Stevens (1996)
recommended that researchers evaluate unvariate normality by examining the Shapiro-Wilk statistic

and examining the kurtosis and skewness coefficients (along with their standard errors) because
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Shapiro-Wilk has the most power and a review of the skewness and kurtosis can help determine the

.cause of non-normality whenever it is present. The Shapiro-Wilk test is recommended for samples
of less than 25 and the Kolmogorov-Smirnov test is recommended for samples greater than 25. As
a default, SPSS 8.0 performs a Lilliefors correction with the Kolmogorov-Smirnov test. Both the
Shapiro-Wilk and the Kolmogorov-Smirnov tests perform an aggregate test of skewness and kurtosis
in the univariate case. You do not want to find statistical significance because the null says the
distribution is normal and you do not want to reject the assumption of normality.

Univariate Normality Compromised by Outliers

According to Tabachnick and Fidell (1983, 1989, 1996) one of the most serious limitations
of MANOVA is its sensitivity to outliers which can make the statistical test uninterpretable because
outliers in MANOVA can lead to both Type I and Type II errors in the analysis. Therefore, Frane
(1977) recommended that researchers test for outliers whenever conducting a MANOVA or
MANCOVA analysis. Tabachnick énd Fidell (1983) recommended that researchers remove or
transform univariate and multivariate outliers before conducting a MANOVA or MANCOVA and
report this in any subsequent written analysis of the data:

Although univariate normality does not guarantee multivariate normality, the
probability of multivariate normality for most real variables in social science is
increased if all the variables have normal distributions. Univariate normality is
desirable, anyway, because of the known and deleterious consequences of
skewness and outliers on robustness of many significance tests. Therefore it is
probably a good idea to transform variables to achieve normality ... unless there

are good reasons not to (e.g., the variables were measured in meaningful units).
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(p- 79)

Statistical procedures in general, and multivariate procedures in particular, can be very
sensitive to outliers. It is very important to identify them and decide what to do with them because
we want the results of our analyses to reflect the data as a whole and not the disproportionate
influence of one or two deviant scores. Outliers are not inherently "bad." In fact, persons with
extremely high or low scores on a variable can provide an exceptional opportunity for further study
of a particular construct, skill, or ability. Generally, itis not wise to eliminate a person's scores from
the data set just because their scores on one or more variables are anomalous.

There are several steps that can be taken to help support the decision to eliminate an outlier.
If you talk to the individual about their unusually low score, you may find out that he or she did not
want to take the test or complete the instrument, but chose to stay in the testing situation and half-
heartedly complete the instrument rather than face the embarrassment of getting up and leaving. In
addition, the researcher can review the raw data and look for clues as to why the person's
performance was anomalous--perhaps the bubble sheet was filled out in_ the pattern of a Christmas
tree by a disinterested participant or the errant score was due to instrumentation error or a difference
in how an individual's score was derived. In cases such as these where justification can be given,
removal of an outlier is acceptable.

Stevens (1996) noted that if an investigation suggests that the extreme scores are due to
recording or entry error, the analysis can be redone. If no reasonable explanation can be found,
Stevens (1996) suggested that researchers consider reporting two analyses of the data--one with the
outlier and one without it. In lieu of any form of justification for the aberrant score, transforming the

score is more prudent than deleting the score. If there are just one or two outliers in an otherwise
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normal distribution, Tabachnick and Fide!l (1996) suggested that researchers change the scores on
the outlying variables so that they remain deviant, but not as deviant as they were originally:
For instance, assign the outlying case(s) a raw score on the offending variable that
is one unit larger (or smaller) than the next most extreme score in the distribution.
Because measurement of variables is somewhat arbitrary anyway, this is often an
attractive alternative to reduce the impact of a univariate outlier. (p. 69)

Tabachnick and Fidell (1996) offered several common procedures for transforming variables
due to a non-normal distribution or numerous outliers, but cautioned that even if one or more
variables are transformed to become univariate normal, there is no guaranteee that bivariate
relationships between variables will become normal or that multivariate normality will be obtained.
Also, transforming a variable in a set of variables that are all moderately skewed in the same
direction is unlikely to help. A square root transformation is tried first if the distribution differs
moderately from normal. If the distribution differs considerably, a log transformation (logarithim)
is tried and if the distribution differs severely, the inverse is tried.

According to Bradley (1982) the inverse is the best course with J-shaped or L-shaped
distributions. Often, a researcher needs to try one transformation and then another until finding a
transformed set of scores that produces a near zero skewness and kurtosis and the fewest outliers.
If departure from normality is severe and no transformation seems to help, Tabachnick and Fidell
(1996) recommended considering dichotomizing the variable. The major disadvantage to
transforming a variable is that it may become difficult for the researcher to relate to what he or she
is analyzing--the distribution may become more normal, but it is hard to assess exactly what you are

working with. The interested reader is referred to Box and Cox (1964) or Mosteller and Tukey
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(1977) for a more detailed elaboration on transforming variables.

Bivariate Normality

As noted by Stevens (1996), in addition to establishing univariate normality, two additional
characteristics of a normal multivariate distribution are that the linear relationship of any
combination of variables is distributed normally, and that all possible subsets of the sets of variables
are normally distributed. The relationship between bivariate and multivariate normality is complex.
Statistical significance tests like those used in MANOVA require that the distribution of each
dependent variable are normally distributed about each of the other dependent variables in any “X,
and X,” comparison.

Two distributions that are univariate normal might also be bivariate normal, but just because
two distributions afe univariate normal does not mean that they will be bivariate normal. For
bivariate normality, univariate normality is a necessary but insufficient condition. In a bivariate
comparison, we compare each person's score on two measures, so we are thinking in three
dimensions--the X-axis, Y-axis and a third axis to demonstrate frequency of scores. This requirement
means that a circular or elliptical pattern will emerge in a scatterplot when examining the correlation
of any two dependent variables in a bivariate normal distribution. The narrower the ellipse in the
bivariate scatterplot, the greater the correlation between the dependent variables, and subsequently,
the greater the likelihood that the assumption of multivariate normality will hold.

Figure 1 is a graphical representation of a bivariate frequency distribution in two-dimensional
form. In this drawing, the viewer is looking down at the distribution from above. The largest
concentric circle is the footprint or floor of the bell or mound. The footprint of the bell is not a circle

in this example, because the standard deviation for each person on the X-axis is roughly twice as
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large as the standard deviation on the Y- axis. A series of "contour" lines is used to demonstrate a
series of ellipses with varying amounts of distance from the common center, called the "centroid."
The advantage of drawing the centroid with contour lines is that you can graphically demonstrate the
probability that a random bivariate observation (plotted on the X, X, plane) will lie within the
elliptical region, which is equivalent to the area under a portion of the normal curve in a univariate

distribution of scores (Neter, Kutner, Nachtsheim, & Wasserman, 1996).

INSERT FIGURE 1 ABOUT HERE

Statistical significance testing applies to the bivariate case in terms of the distance from the
centroid or Cartesian coordinate for each person on the X and Y axes. The closer the scores
aggregate toward the centroid, the greater the chance of being included in the sample because of
nearness to the Cartesian coordinate. The first contoured line shows a value of .8 meaning there is
an 80% chance of being included in the sample. The last contoured line has a value of .2 meaning
that there is only a 20% chance of being included in the sample.

If a group of 400 people is measured in two ways--for example, each person's composite
(Verbal + Quantitative) GRE score (X) and self-esteem (Y)--the data can be represented in a
bivariate frequency relationship as shown in Figure 2. If we had bivariate normality, the circles
would be concentric in a sense. We are comparing two variables, but have three axes. The third axis
is height which graphically shows the frequency of the bivariate scores. In this example, height is
a measure of frequency and not a third variable. For each person, there is a pair of scores, a score on
X and a score on Y. A bivariate frequency distribution is a picture of the frequency with which

different pairs of X and Y scores occur in a group of persons. In Figure 2, a bivariate frequency
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distribution is displayed for about 400 people on GRE Composite (Verbal + Quantitative) Score (X-
axis) and self-esteem (Y-axis). In this example, the highest frequency of scores is a GRE Composite
Score of 1000 and a self-esteem score of 30. This point is the Cartesian coordinate for the two sets
of scores and also forms the highest point of the distribution of scores. When the height of the line
is compared to the vertical scale of frequency, we can determine that approximately 20 persons had

a composite GRE score of 1000 and a self-esteem score of 30.

INSERT FIGURE 2 ABOUT HERE

A surface or "roof" drawn on the top of a large number of scores in a bivariate frequency
distribution takes the shape of a three-dimensional bell or hat as demonstrated in Figure 3. The shape
is formed by conceptualizing the one-dimensional bell-shaped normal distribution and stretching it
in the X and Y directions and rotating it around its center (i.e. the cartesian coordinate) in the XY
plane. All bivariate normal distributions have the following characteristics:

(a) For each value of X, the distribution of its associated Y value is a normal
distribution and vice-versa.

(b) The Y means for each value of X are linear (i.e., they fall on a straight line)
and the same is true for the X means for each value of Y.

(c) The scatterplots demonstrate homoscedasticity--the variance in the Y values
is uniform across all values of X and the variance in X values is constant for all

values of Y,

INSERT FIGURE 3 ABOUT HERE
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If you were to multiply all of the z-scores on the X axis by 2 in Figure 3 and place those
scores on the Y axis, the base of the three-dimensional bell will be an ellipse instead of a circle
because the Y scores will be twice as spread out as the X scores. However, a non-circular base can
still be normal because a multiplicative constant of two will not change the skewness, kurtosis, or
mean of zero.

If we sliced through the mean intercept along the axis of Figure 3 and then took that slice and
laid it down on the table, it would be wide, but symmetrical and univariate normal. If you took a slice
through.the mean of the Y-axis, and laid it down on the table, the distribution would be\narrower
than the first slice, but it would still be univariate normal. If the scores were z-scores, the first slice
would have a skewness, kurtosis, and mean of zero (i.e., a normal distribution) and a standard
deviation of one. The second slice would also be normal, but it would be wider and appear twice as
long if the variable's z-scores were multiplied by 2, but the mean, skewness, and kurtosis would
remain zero.

We could cut a sliceT through every other location along the centroid (intersection of means
for X and Y) because there are infinitely many choices and every univariate slice would be normal
even though some of the slices would be narrower or wider than others. In a normal bivariate
distribution, the footprint for the distribution is only circular when the standard deviation for the
variable on the X-axis and the variable on the Y-axis are exactly the same.

The shape of the mound or hat is determined by the amount of correlation between the two
variables. If both dependent variables are expressed in standard deviation units, the more correlated
the variables, the narrower the mound or hat because correlation causes the probability to concentrate

along a line (see Figure 4; r = .8). In the extreme case that dependent variable X, is completely
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correlated with dependent variable X,, all points would be exactly on the regression equation, the
standard deviation for X, and X, would be equal to zero and the "contour" would all be straight lines

with no areas.

INSERT FIGURE 4 ABOUT HERE

Furthermore, if the distribution is bivariate normal, any plane perpendicular to the X, X, plane
will cut the surface into a normal curve and a plane parallel to the X, X, plane will cut in an ellipse.
The bivariate normal distribution has the property that the regression of X, on X, s linear. Therefore,
if we have a bivariate normal distribution, we know that if we trace the means of X, for each X, the
result will be a straight line. It does not necessarily follow, however, that if the regression is linear,
the joint distribution is bivariate normal.

Multivariate Normality

For a data set of two or more dependent variables, all of the variables must be univariate
normal and all possible pairs of the variables must also be normal as necessary but insufficient
conditions for multivariate normality. The mathematical model that serves as the basis for
MANOVA and other multivariate techniques is based on the multivariate normal distribution. This
means that both the sampling distributions of the means of dependent variables in each cell are
normally distributed as are the linear combinations of dependent variables. The central limit theorem
states that for large samples, the sampling distribution of means in the univariate case will approach
normality. Mardia (1971) demonstrated that MANOV A is robust to modest violation of normality
if the violation is caused by skewness rather than outliers. According to Tabachnick and Fidell

(1983),
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A sample size that would produce 20 degrees of freedom for error in the
univariate case should ensure robustness of the test, as long as sample sizes are
equal and two-tailed tests are used. Even with unequal n, a sample size of about
20 in the smallest group should ensure robustness with a few DVs. (p. 232)

In some instances, researchers can examine multivariate outliers by simply examining z-
scores and looking for extreme scores on each dependent variable. However, this technique does not
identify a set of scores for a person that are slightly deviant on several variables. Fortunately, a
statistic called Mahalanobis distance (D?) can be used to detect scores that deviate from the mean
(above or below) for a group of dependent variables as a set. Detecting multivariate outliers from
a set of dependent variables is a much subtler process than detecting univariate or bivariate outliers.

The Mahalanobis distance is the distance of a case from the centroid where the centroid is
the point defined by the means of all the variables taken as a whole. The Mahalanobis distance
demonstrates how far an individual case is from the centroid of all the cases for the predictor
variables. When the distance is great, the observation is an outlier. According to Krzanowski (1988)
and Stevens (1996), the Mahalabonis distance is accepted by researchers as the measure of distance
between two multivariate populations and it is independent of sample size. The Mahalanobis
distance can be written in terms of the covariance matrix S as:

D?=(x;-x)"'S-1(x;-x),
where D;? is the Mahalanobis distance for a given individual, S is the covariance matrix with
variances on the diagonal and covariances off the diagonal. The rank for S is the number of rows and
columns for the covariance matrix, which is 3 x 3, if there are three dependent variables.

The assumption of MANOVA, for example, is that in each group, multivariate normality
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holds regarding the dependent variables, so if there are a total of 105 cases (as in the heuristic
example below) with 64 cases in the female group and 41 cases in the male, both have to have
multivariate normality. In group 1, there are three interval variables and the rank of the correlation
matrix is 3 x 3. X, is the composite of three scores of a given individual with a rank of 3 x 1. Person
#1 has three scores with one column. The matrix of means also has a rank of 3 x 1 (three means with
one column) which yields a product of 3 x 1 and is not conformable to 3 x 3. The transpose (')
notation means you flip the 3 x 1 and it becomes 1 x 3. The right most part of the matrix is also a 3
x 1 but it does not have a transpose symbol, so it is not flipped on its side.

From the formula, the Mahalanobis distance is descriptive of how far each case's set of scores
is from the group means adjusting for correlation of the variables (in the example, a measure of the

distance of the each person from the group means adjusted by how correlated the three variables are).

In Figure 5, the smallest Mahalanobis distance is for participant #32 because each of the three scores
(3.0, 6.1, and 9.8, respectively) is closest to the mean for each variable (2.89; 6.23; and 10.3,

respectively).

INSERT FIGURE 5 ABOUT HERE

Having correlated dependent variables is commonplace in social science research. The
correlation of dependent variables must be taken into account when calculating the Mahalanobis
distance because deviations from the means of two highly correlated dependent variables are
partially redundant whereas the deviations from the mean for two highly uncorrelated dependent
variables are not redundant. More concretely, say in a set of three dependent variables all with a
standard deviation of 5, that the mean of X, is 10, the mean of X, is 11 and the mean of X is 2, X,

is highly correlated with X, but X, is highly uncorrelated with X; and X, is highly uncorrelated with
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X,. If person #1 has a score one standard deviation above the mean on X, (X,=15) and X, (X,=16)
and scores at the mean of X, (X,=7), that person will have a smaller D? than person #2 who scores
at the mean on X, (X,=7) and one standard deviation above the mean on X, (X,=16) and X; (X;=7).
The D? for person #1 includes redundant distance from the means because the scores on X, of 15 and
X, of 16 are very similar. In a sense, X, and X, are measuring the same thing, so the deviation from
the means is due in part to similarity in the variables. Person #1 will have a lower D? because the
deviation from the means is redundant whereas the D? for person #2 will be much greater because
the Mahalanobis distance is not due to distance from similar means of the variables but rather to
substantial distance from dissimilar means (X,=10; X,=16; X;=7).

There are two evaluations to be done when examining the Mahalanobis distance by chi-
square scatterplot--the first is whether or not the points form a straight line or not. If the points on
the scatterplot form a straight line, you have multivariate normality. The second consideration is
whether or not there are anomalous persons with scores on the scatterplot that are a noteworthy
distance from the centroids. You can have a perfectly straight line and still have outliers in the data
set, but it is rare to have a person whose scores are outlying on all of the dependent variables in a
data set. Before eliminating outliers, a prudent researcher will examine whether or not the extreme
score on the multivariate scatterplot is due to an anomalous score on one dependent variable by
examining each univariate distribution before eliminating the person from the data set. If only one
score is anomalous, it is more prudent to transform the score on that variable rather than eliminate
valuable information from the analysis, or to eliminate that variable from the data set.

Evaluating Univariate Normality: a Heuristic Example
To make the discussion about testing univariate, bivariate, and multivariate normality more

concrete, a data set developed by George and Mallery (1999) will be analyzed using SPSS version

23



Evaluating Normality 23

8.0 to test the assumption of univariate, bivariate, and multivariate normality for 64 female and 41
male students taught by the same professor in three sections of a course. The three dependent
variables in this analysis are each student’s GPA previous to taking the course (PREVGPA), final
exam grade (FINAL) and total points for the course (TOTAL). In such a data set, it might be
interesting to examine the differences between males and females (an independent variable with two
levels) on all three dependent variables--previous GPA, final exam grade, and total points in the
course. Thé SPSS syntax for the female group (n = 64) appears in Appendix A and the syntax for
the male group (n = 41) appears in Appendix B. For the sake of brevity and clarity, only the output
from the female group will be analyzed in detail in this paper.

Before conducting a MANOVA on this data, it is necessary to examine the univariate,
bivariate, and multivariate distribution of the dependent variables for each group. As noted by
Marascuilo and Levin (1983), multivariate normality is a requirement for utilizing the statistical
inference procedure that is the basis of all “OVA” designs. As noted earlier, a preliminary analysis
of two or dependent variables for normality begins with an evaluation of univariate normality for
each of the variables. The test for univariate normality for the grades data for the female group was
done by using the MULTINOR program developed by Thompson (1990, 1997) on SPSS 8.0
(Appendix A). The MULTINOR program generates graphical and non-graphical analyses of the
distribution of each dependent variable separately.

Univariate Normality

When examining histograms for the female group in Figure 5 (n = 64) PREVGPA appears
relatively normal, but has high number of scores on the positive end, so a cursory examination does
not determine normality. FINAL appears more normal with better prospects for univariate normality.

TOTAL does not appear to be normal because the distribution is negatively skewed. In Figure 7, we
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can review the box-and-whisker plots for these three dependent variables. For univariate normality,
we would expect the box (interquartile range) to be centered between the ends of the whiskers and
the line representing the median to be in the middle of the box. The boxes in the box-and-whisker
plots for PREVGPA and FINAL are towards the positive end indicating that both are positively
skewed. The box for TOTAL sits right in the middle of the distribution, but two persons (case 62 and
case 64) are outside the 95th percentile and appear to be outliers. In Figure 8, the stem-and-leaf plot
provides both a visual distribution of scores and the precise values of the score taken to one decimal

point.

INSERT FIGURES 6, 7, AND 8 ABOUT HERE

In Figure 9 we see the Q-Q plots which plot the observed scores with the expected scores
ranked from low to high so you expect a line from lower left to the upper right--the straighter the
line, the more correlated the observed scores are with the expected scores. For PREVGPA, FINAL,
and TOTAL we have a fairly straight line but there are outliers off the line at both ends of the
scatterplot for all three distributions, particularly with lower observed values for TOTAL, so

univariate normality is inconclusive.

INSERT FIGURE 9 ABOUT HERE

Moving on to a descriptive evaluation of univariate normality, the skewness and kurtosis
statistics along with their standard errors are shown in Table 1. According to Stevens (1996), we can
divide the skewness and kurtosis for each DV by its standard error and if that value is greater or less
than roughly 2.0 we have statistical significance for skewness or kurtosis for that variable. Since the
null hypothesis is the assumption of normality, we cannot reject the null for PREVGPA or FINAL

for skewness or kurtosis because the computed statistics fall within the desired normal range. For
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TOTAL, however, both skewness (-3.09) and skewness (3.32) are outside the normal range and we

have statistical significance for non-normality.

INSERT TABLE 1 ABOUT HERE

An aggregate test for skewness and kurtosis for samples of 50 cases or more is the
Kolmogorov-Smirnov test performed by SPSS 8.0 using the Lilliefors Significance Correction.
While p values of .5 or greater are preferred, Table 2 shows that the p values for all three DVs are
.2 and all three distributions are not statistically significant for non-normality at the .05 alpha level.
In this example, for the TOTAL dependent variable, the skewness and kurtosis values are fairiy
extreme, but the univariate normality is not bad when consulting the Kolmogorov-Smirnov statistic.
At the close of the univariate analysis of variables, wé cannot rule out the tenability of multivariate

normality.

INSERT TABLE 2 ABOUT HERE

Bivariate Normality

If the three dependent variables displayed univariate normality (bearing in mind that
univariate normality is a necessary, but insufficient foundation for multivariate normality), the next
step would be to examine the bivariate correlations between each of the dependent variables. You
canattain univariate normality, but fail to demonstrate bivariate normality, which examines each pair
of variables--PREVGPA with FINAL, PREVGPA with TOTAL and FINAL with TOTAL. This was
done in this example by using the MULTINOR program (Appendix B) by requesting scatterplots and
noting elliptical patterns for the three possible combinations of variables. In Figure 10, the scatterplot
for each possible pair reveals a clear ellipitical pattern between FINAL and TOTAL, but the scores

in the scatterplots for PREVGPA with FINAL and PREVGPA with TOTAL are widely scattered and
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are thus not bivariate normal. When the pattern of the scores in a bivariate plot are less clear,
researchers can examine the percentage of scores that converge around the centroid (e.g., 80%, 60%,

40%, 20%, 10%) as a guide to deciding whether or not an elliptical pattern is displayed.

INSERT FIGURE 10 ABOUT HERE

At this stage of the analysis, a prudent researcher might stop and consider replacing
PREVGPA with another dependent variable or go back and transform the scores in each of the
univariate distributions to make them more normal. As noted earlier, Tabachnick and Fidell (1996)
recommended that researchers start by taking the square root of the scores, but the scores can also
be squared, or the natural log or log-ten (LG10) can be used:

... transformations may improve the analysis, and may have the further advantage
of reducing the impact of outliers. Our recommendation, then, is to consider
transformation of variables in all situations unless there is some reason not to. If
you decide to transform, it is important to check that the variable is normally or
near-normally distributed after transformation. Often you need to try one
transformation and then another until you find the transformation that produces
the skewness and kurtosis values nearest zero, the prettiest picture, and/or the
fewest outliers. (p. 82)

After transforming the univariate distributions, the bivariate distributions could be examined
again to determine if the three pairs of variables have become bivariate normal due to the univariate
transformation of scores. For this set of scores, four data transformations were conducted: (a) square
root of scores (Figure 11), (b) squared scores (Figure 12) (c) natural log (Figure 13), and (d) log-10

(Figure 14).
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INSERT FIGURES 11, 12, 13 AND 14 ABOUT HERE

In none of these transformations did the bivariate relationships between PREVGPA and
TOTAL or PREVGPA and FINAL become bivariate normal. Because PREVGPA appeared to be
the problematic DV, a decision was made to create a new DV that was comprised of the sum of the
quiz grades in the course. This new DV was named QUIZTOT and a new evaluation of unvariate,
bivariate, and multivariate normality was conducted as before. The syntax commands for the new
variable are shown in Appendix D. Figure 15 shows that the variable QUIZTOT has a bivariate
normal relationship with both FINAL and TOTAL and is a big improvement over the variable

PREVGPA.

INSERT FIGURE 15 ABOUT HERE

Multivariate Normality

Assuming that both univariate and bivariate normality are attained after transforming the
univariate scores or replacing a dependent variable (as done in this example), the third level of
assessment is to examine the Mahalanobis Distance by chi-square scatterplot to assess multivariate
normality. As noted earlier, the Mahalabonis distance is accepted by researchers as the measure of
distance between two multivariate populations and it is independent of sample size (Krzanowski,
1988; Stevens, 1996). If we examine the scatterplot of Mahalanobis Distance (D?) values with chi-
squares (Thompson, 1990) for this data set in Figure 16 we can see that we have a fairly straight line,
which suggests multivariate normality. The second issue is the presence of outliers. This scatterplot
has one extreme score in the upper right hand corner that is well off the line with an approximate D?

score of 62 and a chi-square score of 12. If we look at the listing of Mahalanobis distances which are
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ranked from lowest to highest in Figure 16, we can determine that the outlier is case 61 and the D?
is more than four times larger than the next largest D* (case #36). Because case #36 in turn is twice

as large as the next largest D? (case #45), both case #61 and #36 can be considered outliers.

INSERT FIGURE 16 ABOUT HERE

Again, assuming univariate and bivariate normality has been demonstrated, because we have
multivariate normality except for two outliers, we can remové or transform the outliers and then look
at the univariate and bivariate relationships again because removal of the extreme scores will change
the means for both variable X and variable Y, which means that the Mahalanobis distance for each
variable will change. If after examining the raw data for cases #61 and #36 we discover that they
both had very high quiz scores (QUIZTOT) and very low scores on the FINAL, we might call these
two students and ask why they did so poorly on the final exam. If we learn that they both had the flu
the day of the exam, the scores for these two individuals can be deleted from the data set because this
event produced "flukey" or abnormal scores (i.e. high quiz scores and low final exam scores). Figure
17 shows the Mahalanobis distance and chi square values for this data set after the outliers are
removed. Note that while the line appears to become less straight, in actuality the scale for the
Mahalanobis distance is being reduced from 70 units to 12 units, thus showing more precisely the

linear relationships between the two variables

INSERT FIGURE 17 ABOUT HERE

An alternative to the stair-step approach of examining the univariate, bivariate, and
multivariate normality of the proposed dependent variables in sequence for the multivariate analysis

is to plot the Mahalanobis distance against the chi-square values straight away--if you get a straight
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line, you can stop there because multivariate normality subsumes univariate and bivariate normality.
However, plotting Mahalanobis distance against chi-square is only useful with samples greater than
25. If you fail to obtain a straight line, you can remove scores when you can justify doing so, or

transform an individual's scores or a set of scores.
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Appendix A
SPSS Commands for Female Group (n=64)

SET BLANKS=SYSMIS UNDEFINED=WARN printback=list.
TITLE '"MULTINOR.SPS tests multivar normality graphically****',
COMMEN’r *******************************************************.
COMMENT The original MULTINOR computer program was presented,
COMMENT with examples, in:
COMMENT  Thompson, B. (1990). MULTINOR: A FORTRAN program that
COMMENT assists in evaluating multivariate normality.
COMMENT _Educational and Psychological Measurement_, 50,
COMMENT  845-848.
COMMENT
COMMENT The data source for the example are from:
COMMENT  George, D. J., and Mallery, P. (1999). _SPSS
COMMENT for Windows step by step_.
COMMENT  Boston: Allyn & Bacon.
COMMENT
***********************************************************.
COMMENT Here there are 3 variables for which multivariate
COMMENT normality is being confirmed.
DATA LIST

Fll.E='a:normgrad.dat’' FIXED RECORDS=I TABLE

/1 gender 1 ethnicit 3 year 5 lowup 7 section 9 prevgpa 11-14
(1) final 16-17 (1) total 19-21 (1) .
list variables=all/cases=9999/format=numbered .
COMMENT 'y is a variable automatically created by the program,
COMMENT and does not have to modified for different data sets.
select if (gendereq 1) .
compute y=$casenum .
print formats y(F5) .
regression variables=y prevgpa to total/

descriptive=mean stddev corr/

dependent=y/enter prevgpa to total/

save=mahal(mahal) .
sort cases by mahal(a) .
execute .
list variables=y prevgpa to total mahal/cases=9999/format=numbered .
COMMENT In the next TWO lines, for a given data set put the
COMMENT actual n in place of the number '64' used for the
COMMENT example data set.
loop #i=1to 64 .
compute p=($casenum - .5)/ 64.
COMMENT In the next line, change '3' to whatever is the number
COMMENT of variables.
COMMENT The p critical value of chi square for a given case
COMMENT is set as |the case number (after sorting) - .5] / the
COMMENT sample size].
it (gender eq 1) chisq=idf.chisq(p,3) .
end loop .
print formats p chisq (F8.5) .
list variables=y p mahal chisq/cases=9999/format=numbered .
plot

vertical="chi square'/

horizontal='"Mahalanobis distance'/

plot=chisq with mahal
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Appendix B
SPSS Commands for Male Group

SET BLANKS=SYSMIS UNDEFINED=WARN printback=list.
TITLE 'MULTINOR.SPS tests multivar normality graphically****',
COMMENT *******************************************************.
COMMENT The original MULTINOR computer program was presented,
COMMENT with examples, in:
COMMENT  Thompson, B. (1990). MULTINOR: A FORTRAN program that
COMMENT assists in evaluating multivariate normality.
COMMENT _Educational and Psychological Measurement_, 50,
COMMENT  845-848.
COMMENT
COMMENT The data source for the example are from:
COMMENT  George, D. J., and Mallery, P. (1999). _SPSS
COMMENT  for Windows step by step_.
COMMENT  Boston: Allyn & Bacon.
COMMENT
***********************************************************.
COMMENT Here there are 3 variables for which multivariate
COMMENT normality is being confirmed.
DATA LIST

FILE="a:normgrad.dat' FIXED RECORDS=1 TABLE

/1 gender 1 ethnicit 3 year 5 lowup 7 section 9 prevgpa 11-14 (1) final 16-17 (1)

total 19-21 (1) .
list variables=all/cases=9999/format=numbered .
COMMENT 'y' is a variable automatically created by the program,
COMMENT and does not have to modified for different data sets.
select if (gendereq 2) .
compute y=$casenum .
print formats y(F35) .
regression variables=y prevgpa to total/

descriptive=mean stddev corr/

dependent=vy/enter prevgpa to total/

save=mahal(mahal) .
sort cases by mahal(a) .
execute .
list variables=y prevgpa to total mahal/cases=9999/format=numbered .
COMMENT In the next TWO lines, for a given data set put the
COMMENT actual n in place of the number '41' used for the
COMMENT example data set.
loop #i=1to 41 .
compute p=($casenum - .5) / 41.
COMMENT In the next line, change '3' to whatever is the number
COMMENT of variables.
COMMENT  The p critical value of chi square for a given case
COMMENT is set as [the case number (after sorting) - .5] / the
COMMENT sample size].
if (gender eq 2) chisg=idf.chisq(p,3) .
end loop .
print formats p chisq (F8.5) .
list variables=y p mahal chisq/cases=9999/format=numbered .
plot

vertical="chi square'/

horizontal='Mahalanobis distance'/

plot=chisq with mahal .
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SPSS Syntax for Evaluating Univariate and Bivariate Normality

PPLOT
/VARIABLES=prevgpa
/NOLOG
/NOSTANDARDIZE
ITYPE=Q-Q
/TIESSMEAN
/DIST=NORMAL. .

GRAPH
/HISTOGRAM=prevgpa .

EXAMINE
VARIABLES=prevgpa final total
/PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT
/COMPARE GROUP
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL .

GRAPH
/ISCATTERPLOT (BIVAR)=prevgpa WITH total
/MISSING=LISTWISE .

PLOT
/VERTICAL="prevgpa' REFERENCE (6,4)
/HORIZONTAL="total' REFERENCE (6,7)
/PLOT=prevgpa WITH total .

GRAPH
/SCATTERPLOT (BIVAR)=prevgpa with final
/MISSING=LISTWISE .

PLOT
/VERTICAL="prevgpa' REFERENCE (6,4)
/HORIZONTAL="final' REFERENCE (6.9)
/PLOT=prevgpa WITH final .

GRAPH
/SCATTERPLOT (BIVAR)=final with total
/MISSING=LISTWISE .

PLOT
/VERTICAL="final' REFERENCE (6,9)
/HORIZONTAL="total' REFERENCE (6,7)
/PLOT=final WITH total .
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Appendix D

SPSS Commands for New Dependent Variable

SET BLANKS=SYSMIS UNDEFINED=WARN printback=list.
TITLE 'MULTINOR.SPS tests multivar normality graphically****',

COMMEN’I FEEEEF R R R R AR R R R F R R R R E R R R E R R RS EEF

COMMENT The original MULTINOR computer program was presented,
COMMENT with examples, in:

COMMENT  Thompson, B. (1990). MULTINOR: A FORTRAN program that

COMMENT assists in evaluating multivariate normality.
COMMENT _Educational and Psychological Measurement_, 50,
COMMENT  845-848.
COMMENT
COMMENT The data source for the example are from:
COMMENT  George, D. J., and Mallery, P. (1999). _SPSS
COMMENT  for Windows step by step_.
COMMENT Boston: Allyn & Bacon.
COMMENT
***********************************************************.
COMMENT Here there are 3 variables for which multivariate
COMMENT normality is being confirmed.
DATA LIST

FILE="a:norgrades.txt' FIXED RECORDS=1 TABLE

/1 quiztot 1-2 (1) final 4-5 (1) total 7-9 (1) .
list variables=all/cases=9999/format=numbcred .
COMMENT 'y is a variable automatically created by the program,
COMMENT and does not have to modified for different data sets .
compute y=$cascnum .
execute .
print formats y(F5) .
regression variables=y quiztot to total/

descriptive=mean stddev corr/

dependent=y/enter quiztot to total/

save=mahal (mahal) .
sort cases by mahal(a) .
execute .
list variables=y quiztot to total mahal/cases=9999/format=numbered .
COMMENT In the next TWO lines, for a given data set put the
COMMENT actual n in place of the number '62' used for the
COMMENT example data set.
loop #i=l 10 62 .
COMMENT In the next line, change '3' to whatever is the number
COMMENT of variables.
COMMENT The p critical value of chi square for a given case
COMMENT is set as [the case number (after sorting) - .5] / the
COMMENT sample size].
compute p=($casenum - .5)/62 .
compute chisq=idf.chisq(p.3) .
end loop .
print formats p chisq (F8.5) .
list variables=y p mahal chisq/cases=9999/format=numbered .
plot

vertical='chi square'/

horizontal='Mahalanobis distance'/

plot=chisq with mahal .
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Skewness and Kurtosis for Variables PREVGPA. FINAL., and TOTAL

Statisti Std.
[+ Error
Mean 2.898 9.350E-02
Lower Bound 2.711
95% Confidence
Interval for
Mean Upper Bound 3.085
5% Trimmed Mean 2.922
Median 2.910
PREVGPA Variance .559
Std. Deviation .748
Minimum 1.2
Maximum 4.0
Range 2.8
Interquartile Range 1.235
Skewness -.155 .299
Kurtosis -.926 .590
Mean 6.233 9.439E-02
Lower Bound 6.044
95% Confidence
Interval for
Mean Upper Bound 6.421
5% Trimmed Mean 6.253
Median 6.250
FINAL Variance .570
- Std. Deviation .755
Minimum 4.2
Maximum 7.5
Range 3.3
Interquartile Range 1.100
Skewness -.272 .299 .
Kurtosis -.499 .590
Mean 10.203 .174
Lower Bound 9.856
95% Confidence
Interval for .
Mean Upper Bound 10,550
5% Trimmed Mean 10.287
Median 10.300
TOTAL Variance 1.931
Std. Deviation 1.390
Minimum 5.1
Maximum 12.4
Range 7.3
Interdquartile Range 1.625
Skewness -.925 .299
Kurtosis 1.958 .590
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Kolmogorov-Smirnov Test with Variables PREVGPA, FINAL, and TOTAL

Tests of Normality

Kolmogorov-Smirnov®

Statisti
c df Sig.
PREVGPA .098 64 .200*
- FINAL .093 64 .200*
TOTAL .081 64 .200*

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

ERIC | 41
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Figure Captions
Figure 1. Contour diagram for a bivariate normal surface
Figure 2. Bivariate frequency distribution for a large group of persons measured on total GRE scores (X)
with self-esteem scores (Y)
Figure 3. Example of a bivariate normal distribution
Figure 4. Example of an elliptical bivariate normal distribution for two variables with dissimilar standard
deviations and means
Figure 5. Scatterplot of chi-square with Mahalanobis distance for 64 females without transforming or
deleting scores
Figure 6. Histogram of female scores on PREVGPA, FINAL, and TOTAL
Figure 7. Box-and-whisker plots of female scores on PREVGPA, FINAL, and TOTAL
Figure 8. Stem-and-leaf plots of female scores on PREVGPA, FINAL, and TOTAL
Figure 9. Quantile vs. Quantile plots for variables PREVGPA, FINAL, and TOTAL
Figure 10.Bivariate scatterplot of FINAL with TOTAL, PREVGPA with TOTAL, and PREVGPA with
FINAL
Figure 11. Bivariate scatterplot of PREVGPA with TOTAL and PREVGPA with FINAL using a square
roiot transformation
Figure 12. Bivariate scatterplot of PREVGPA with TOTAL and PREVGPA with FINAL using a squared
score transformation
Figure 13. Bivariate scatterplot of PREVGPA with TOTAL and PREVGPA with FINAL using a natural
log transformation
Figure 14. Bivariate scatterplot of PREVGPA with TOTAL and PREVGPA with FINAL using a

log-10 transformation

42
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Figure 15. Bivariate scatterplot of QUIZTOT with TOTAL and QUIZTOT with FINAL and FINAL with
TOTAL demonstrating bivariate normal distributions

Figure 16. Scatterplot of chi-square with Mahalanobis distance for 64 females after replacing PREVGPA
with QUIZTOT

Figure 17. Scatterplot of chi-square with Mahalanobis distance for 62 females after replacing PREVGPA -

with QUIZTOT and deleting two outliers (case # 61 and case #36)
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Figure 4.
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Figure 5.

Y PREVGPA FINAL TOTAL

1 32 3.0 6.1
2 37 3.1 6.5

3 62 3.2 6.5
4 23 2.7 6.0
5 43 3.1 6.6

6 24 2.8 6.3
7 50 2.6 5.7
8 7 2.3 5.9
9 26 2.3 5.9
10 28 2.7 6.0
11 35 3.5 6.8
12 1 2.5 5.7
13 51 2.9 6.8
14 64 3.1 6.8
15 18 2.3 6.1
16 27 3.2 7.0
17 9 2.5 6.1
18 63 2.4 6.3
19 15 2.3 6.3
20 34 3.4 6.9
21 55 3.5 7.1
22 60 2.3 6.0
23 56 3.3 7.2
24 58 3.5 7.2
25 40 2.6 5.8
26 47 2.2 6.2
27 5 3.6 7.1
28 8 2.9 5.5
29 13 2.5 6.8
30 11 3.9 6.8
31 61 2.4 5.3
32 49 3.9 6.6
33 25 2.4 5.6
34 42 3.9 6.7
35 39 3.6 7.2
16 30 3.9 6.3
37 54 1.9 5.7
38 52 3.9 1.3
39 46 4.0 7.0
40 31 3.9 7.4
41 59 3.9 6.7
42 6 3.5 7.5
43 2 4.0 6.8
44 4 4.0 7.4
45 33 3.9 1.5
46 20 1.9 6.6
47 17 2.8 5.7
48 3 1.8 6.6
49 41 1.5 5.7
50 48 2.0 5.3
51 21 3.5 5.4
52 57 2.0 5.2
53 38 1.2 5.3
54 14 2.1 6.2
55 12 2.2 5.2
56 16 2.0 7.1
57 19 3.0 5.5
58 44 3.9 5.7
59 10 3.7 5.5
60 29 1.3 5.8
61 22 2.6 5.3
62 45 3.0 4.9
63 53 2.3 4.7
64 36 3.6 4.2

Number of cases read: 64
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MAHAL

.12894
.19202
.20924
.27020
.31206
.47757
.55113
.60748
.60807
.76627
.80149
.94261
.97197
.98038
.06917
.09685
.11502
.12942
.13850
.45279
.52051
.64273
.77941
.80680
.86005
.88054

.92325
.93248
.97093
.18579
.23487
27174

.28717

.30406
.36403

.44809

.48116
.56152

.63689

.87585

.87749

.88134

.04228

.13920

.22701

.40986
.76446
.87187

.19712

.23244

.23439
.68805
.98346
.01279
.08212
.23050
.33996
.43204
.31631
.57535
.12962
.29773
.40548
.84009

chi square
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Plot of CHISQ with MAHAL
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Figure 6.
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Mean = 2.90
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PREVGPA

PREVGPA Stem-and-Leaf Plot

Frequency Stem & Leaf
2.00 1 23
5.00 1 58899
16.00 2 0002223333333444
11.00 2 55566778999
12.00 3 000011123444
17.00 3 55556799999999999
1.00 4 0

Stem width: 1.0

Each leaf: 1 case(s)

FINAL

FINAL Stem-and-Leaf Plot

Frequency Stem & Leaf
1.00 4 . 2
2.00 4 . 79
7.00 S . 2233334
14.00 S . 55367777778899
12.00 6 . 000111223333
15.00 6 . 55£666778888889
11.00 7 . 00111222344
2.00 7. 55
Stem width: 1.
Each leaf: 1 case(s)
TOTAL

TOTAL Stem-and-Leaf Plot

Evaluating Normality 50

Frequency Stem & Leaf
2.00 Extremes (=<6.6)
1.00 7 8
6.00 8 144788
20.00 9 00023345667778888899
19.00 10 133346£€777888899999
8.00 11 13345788
8.00 12 00012234
i : .0
g;g‘]‘ Y(lecanf:h . 1 case(s) BEST COPY AVA' LABLE
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Figure 9.
Normal Q-Q Plot of PREVGPA

5.0

45 .
40
as sad
30 &

25 .a:'“: -

20 &

1.5

Expected Normal Value

10 >
10 15 20 25 30 35 40 45 50

Observed Value

Normal Q-Q Plot of FINAL

Expected Normali
)

Observed Value

Normal Q-Q Plot of TOTAL

Expected Normal
[ ]

E ‘I‘C Observed Value

53



O

ERIC

Aruitoxt provided by Eic:

Figure 10.

14

12

101

TOTAL

FINAL

14

5.5

6.0

6.5

70

75

8.0

12

10

TOTAL

4

1.0 1.5

PREVGPA

20

25

3.0

a5

40

4.5

80
7.5,
7.0

65
6.0
5.51
5.0

451

FINAL

4.0

o
o

oG
1

1.0 1.5

PREVGPA

20

25

3.0

as

40

o4

4.5

Evaluating Normality 52



Evaluating Normality 53

Figure 11.
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Figure 12.
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Figure 13.
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Figure 14.
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Figure 15.
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Figure 16.

Y P
1 60  .00806
2 36  .02419
3 32 .04032
q 3 .05645
5 20  .07258
6 42  .08871
7 7 .10484
8 18 .12097
9 26  .13710

10 23 .15323
11 24 .16935
12 48 .18548
13 15 .20161
14 13 .21774
15 35 .23387
16 30 .25000
17 41 .26613
18 49 .28226
19 50 .29839
20 11 .31452
21 61 .33065
22 28 .34677
23 62 .36290
24 9 .37903
25 1 .39516
26 27 .41129
27 40 .42742
28 53 .44355
29 43 .45968
30 45 .47581
31 46 .49194
32 59 .50806
33 34 .52419
34 54 .54032
35 21 .55645
36 57 .57258
37 S .58871
38 16 .60484
39 29 .62097
40 55 .63710
41 37 .65323
42 2 .66935
43 58 .68548
44 51 .70161
45 39 .71774
46 38 .73387

47 8 .75000
48 o031 .76613
49 ] .78226

50 25 .79839
51 14 .78906
52 33 .80469
53 6 .82031
54 17 .83594
55 10 .85156
56 48 .86719
57 19 .88281
58 57 .89844
59 12 .91406
60 53 .92969
61 22 .94531
62 45 .96094
63 36 .97656
64 61 .99218

Q er of cases read:
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MAHAL CHISQ

.10744  .09918

.16680  .21093

.18702  .30186

.20321  .38390

.23811  .46078

.27738  .53432 -

.29880  .60555

.31775  .67515

.33262  .74360

.33964  .81125

.43263  .87837

.45189 .94517

.54342 1.01184

.61544 1.07854

.61544 1.14539

.66028 1.21253

.68158 1.28007

.70489 1.34811 Plot of CHISQ with MAHAL

.72545 1.41675

.78527 1.48609 12

.79569 1.55623

.83328 1.62726

.88345 1.69927 10.

.99789 1.77236 ° )
1.03819 1.84664 “
1.05224 1.92220 .

1.10923 1.99916 8

1.10923 2.07763 A

1.24528 2.15773 o

1.28034 2.23958 64 o

1.28117 2.32334 £

1.43661 2.40914 &

1.44174 2.49715 4 : E

1.51824 2.58754 1 g

1.71069 2.68052 H

1.77663 2.77628 g

1.87132 2.87507 2

1.87132 2.97715 o ]

1.89396 3.08281 G

1.93711 3.19239 3 9. i

1.95679 3.30625 g

1.99538 3.42481 —

1.99608 3.54858 5 -2

2.08945 3.67810 v — . . . . .
2.28725 3.81403 -10 0 10 20 30 40 50 60 . 70
2.33725 3.95715

2.47385 4.10834

2.54928 4.26872 Mahalanobis distance

2.62843 4.43960

2.75111 4.62259

2.81123 4.51521

2.87295 4.69778

2.91365 4.89450

3.78978 5.10793

4.12775 5.34141

4.45766 5.59941

4.75461 5.88801

5.14311 6.21598

5.68402 6.59639

6.94300 7.05027 Ei
7.45882 7.61453

7.68039 8.36377 BEST COPY AVA\LABL
14.50223 9.49005
62.01562 11.87813

64 Number of cases listed: 64
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Figure 17.
Y P MAHAL CHISQ
1 60 .00806 .10744 .09918
2 36 .02419 .16680 .21093
3 32 .04032 .18702 .30186
4 3 .05645 .20321 .38390
5 20 .07258 .23811 .46078
6 42 .08871 .27738 .53432
7 7 .10484 .29880 .60555
8 18 .12097 .31775 .67515
9 26 .13710 .33262 .74360
10 23 .15323 .33964 .81125
11 24 .16935 .43263 .87837
12 48 .18548 .45189 .94517
13 15 .20161 .54342 1.01184
14 13 .21774 .61544 1.07854
15 35 .23387 .61544 1.14539
16 30 .25000 .66028 1.21253
17 41 .26613 .68158 1.28007
18 49 .28226 .70489 1.34811
19 50 .29839 .72545 1.41675
20 11 .31452 .78527 1.48609
21 61 .33065 .79569 1.55623
22 28 .34677 .83328 1.62726
23 62 .36290 .88345 1.69927
24 9 .37903 .99789 1.77236
25 1 .39516 1.03819 1.84664
26 27 .41129 1.05224 1.92220
27 40 .42742 1.10923 1.99916
28 53 .44355 1.10923 2.07763
29 43 .45968 1.24528 2.15773
30 45 .47581 1.28034 2.23958
31 46 .49194 1.28117 2.32334
32 59 .50806 1.43661 2.40914
33 34 .52419 1.44174 2.49715
34 54 .54032 1.51824 2.58754
35 21 .55645 1.71069 2.68052
36 57 .57258 1.77663 2.77628
37 5 .58871 1.87132 2.87507
38 16 .60484 1.87132 2.97715
39 29 .62097 1.89396 3.08281
40 55 .63710 1.93711 3.19239
41 37 .65323 1.95679 3.30625 @
42 2 .66935 1.99538 3.42481 b
43 58 .68548 1.99608 3.54858 g
44 51 .70161 2.08945 3.67810 o
45 39 .71774 2.28725 3.81403 w
46 38 .73387 2.33725 3.95715 c
47 8 .75000 2.47385 4.10834 O
48 31 .76613 2.54928 4.26872
49 4 .78226 2.62843 4.43960
50 25 .79839 2.75111 4.62259
51 33 .81452 3.05342 4.81972
52 6 .83065 3.15610 5.03358
53 14 .84677 3.31802 5.26749
54 47 .86290 4.28631 5.52592
55 19 . .87903 4.60254 5.81497
56 17 .89516 4.86054 6.14339
57 56 .91129 4.95149 6.52428
58 10 .92742 5.40105 6.97867
59 12 .94355 5.47286 7.54348
60 52 .95968 6.71760 8.29335
61 22 .97581 7.25077 9.42039
62 44 .99194 10.09578 11.80964
Number of cases read: 62 Number of cases listed:
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Plot of CHISQ with MAHAL
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