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Abstract

Previous studies have indicated that the reliability of test scores composed of testlets is

overestimated by conventional item-based reliability estimation methods (Sireci, Thissen & Wainer,

1991; Wainer, 1995; Wainer & Thissen, 1996; Lee & Frisbie, in press). In light of these previous studies,

it seems reasonable to ask whether the item-based estimation methods for the conditional standard error

of measurement (SEM) would provide underestimates for tests composed of testlets. The primary

purpose of this study was to investigate the appropriateness and implication of incorporating a testlet

definition into the estimation procedures of the conditional SEM for tests composed of testlets. Another

purpose was to investigate the bias in estimates of the conditional SEM when using item-based methods

instead of testlet-based methods. Several estimation procedures were proposed and compared in

estimating conditional SEM for tests composed of testlets.
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Conditional Standard Errors of Measurement
for Tests Composed of Test lets

Test lets, as the name implies, have been defined as small tests (Wainer & Kiely, 1987; Wainer &

Lewis, 1990). Previous studies have indicated that the reliability of test scores composed of testlets is

overestimated by conventional item-based reliability estimation methods (Sireci, Thissen & Wainer,

1991; Wainer, 1995; Wainer & Thissen, 1996; Lee & Frisbie, in press). That is, when subgroups of items

in a test are related to the same passage or other stimulus material, there might be statistical

dependence among those items, causing an item-based reliability estimate to be inflated relative to an

estimate of reliability based on the correlation between equivalent forms (Lawrence, 1995). In light of

these previous studies, it seems reasonable to ask whether the item-based estimation methods for the

conditional standard error of measurement (conditional SEM) would provide underestimates for tests

composed of testlets. This question was the main motivation for doing this study.

When measurement models are applied in practical situations, some statistical assumptions

must be made, such as conditional independence (or uncorrelated errors) and unidimensionality.

Because the unidimensional measurement models based on dichotomously scored items are frequently

used for practical applications, it is important to study the robustness of these models to violation of

their assumptions in various applied contexts. Previous studies have shown that the assumptions for

measurement are frequently violated by tests composed of testlets (Sireci, Thissen & Wainer, 1991;

Wainer, 1995; Wainer & Thissen, 1996; Lee & Frisbie, in press; Lee, Kolen, Frisbie & Ankenmann, 1998).

Therefore, applying unidimensional measurement models based on dichotomously scored items to

estimating conditional SEM for tests composed of testlets might be inappropriate. Because there is little

evidence in the literature about how the violation of assumptions affects estimates of conditional SEM, it

is not clear how serious the degree of distortion of the conditional SEM estimates might be.

The primary purpose of this study was to investigate the appropriateness and implication of

incorporating a testlet definition into the estimation procedures of the conditional SEM for tests

composed of testlets. This study also investigated the bias in the estimates of the conditional SEM based
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on using item-based methods instead of testlet-based methods when the assumptions required by

measurement modeling have been violated.

The objectives of this study were:

1. To investigate the relative appropriateness of each of several methods by making a comparison

between the prespecified true conditional SEM and the estimates obtained from each method.

2. To assess the relative magnitude of bias introduced by using each method in estimating the

conditional SEM for tests composed of testlets.

3. To examine the robustness of the item-based methods with respect to violation of the

conditional independence assumption in estimating the conditional SEM for tests composed of testlets

4. To investigate the relationship between the degree of violation of the conditional independence

assumption and the degree of bias in estimates of the conditional SEM.

Methods of Estimating Conditional SEM

In classical test theory, the standard error of measurement is estimated by ci = S

where Sx is the standard deviation of a set of test scores and f3xv, is the reliability estimate for those

test scores. This formula, which can be viewed as an average standard error of measurement, provides

one estimate for all examinees, regardless of their score level (Qualls-Payne, 1992). However, it is

reasonable to expect that the amount of error associated with individual scores could vary depending on

where the true score is located on the score scale.

Since the first edition of the Test Standards, the American Psychological Association, American

Educational Research Association and National Council on Measurement in Education (1954), have

recommended that test publishers estimate and report the standard error of measurement at several

points on the score scale. The current version, Standards for Educational and Psychological Testing

(American Educational Research Association, American Psychological Association & National Council on

Measurement in Education, 1985), also included this recommendation in Standard 2.10 (p.22).

A number of methods have been developed to estimate the conditional SEM. The earliest

investigators about the conditional SEM were probably Mollenkopf (1949) and Thorndike (1951). Lord

5
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(1955, 1957) developed the best-known conditional SEM estimation formula using binomial error theory.

Fe ldt (1984) provided another estimation method using a compound binomial error model, which

presumes that parallel forms involve stratified random samples of items. An item response theory (IRT)

approach to estimating the conditional SEM was provided by Lord (1980), and recently a generalizability

theory (G-theory) approach was presented by Brennan (1998). These methods can be thought of as the

fundamental frameworks for estimating conditional SEMs, and several variations of these basic

frameworks may be possible. A comprehensive review of most of these and related methods is

summarized in Feldt & Brennan (1989) and Fe ldt & Qualls (1996).

However, the issues related to estimating the conditional SEM for tests composed of testlets have

not been addressed so far. (Brennan, 1998, investigated this issue under a generalizability theory

framework, however, he did not mention the testlet concept explicitly.) The estimation methods for the

conditional SEM were classified in this study as either item-based or testlet-based. The IRT and G-

theory approaches were considered for estimating the conditional SEM for each item-based and testlet-

based method. Because Lord's binomial error model (1955, 1957) and Feldt's compound binomial error

model (1984) are special cases of the G-theory approach for estimating the conditional SEM (Brennan,

1998), the IRT and G-theory approaches together include almost all basic formulas mentioned above,

except variations from Thorndike's (1951) and Mollenkopf s (1949) methods.

Two item-based estimation methods were considered: (a) A G-theory approach with a pxI design

[pxI method], where p represents persons, the object of measurement, and I represents the item facet,

and (b) a dichotomous IRT approach [DIRT method]. A G-theory approach with a px(I:H) design [px(I:H)

method], where p represents persons, H represents the passage facet, and I represents the item facet

within a passage, and polytomous IRT approaches for estimating conditional SEM using both Samejima's

(1969) graded response model [GIRT method] and Bock's (1972) nominal model [NIRT method] were

used as the testlet-based estimation methods.

6
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Item-Based Methods

These methods, which assume that the appropriate measurement unit is an item, have been used

most frequently for estimating the conditional SEM. Here, it is assumed that items are scored

dichotomously, although the underlying methodology per se makes no such assumption (Brennan, 1998).

pxI Method

The pxi G-theory design is appropriate for estimating the conditional SEM where i represents an

item facet composed of an infinite, undifferentiated set of items, and p represents an object of

measurement, a person in this case. Typically, it is assumed that the objects of measurement "facet" is

infinite. Let Xpi denote an observed score for person p on item i. Then, the Xpi can be represented as:

Xpi = P- (grand mean)

+1.1 µ (person effect)

+1-1 (item effect)

+Xpi µ + p. (residual effect).

[1]

In this linear model for a pxi G-study design, the decomposition in Equation [1] is for single personitem

combinations. Therefore, estimated variance components from a G-study are also for single items.

However, decisions are to be based on a total (or mean) score for a set of items. The linear model for such

a mean score is based on a pxI D-study design, and a linear model for a D-study design is the same as in

Equation [1], except for replacing i with I in all terms containing i. So, the variance components in a D-

study are for a set of items and not for a single item.

Two types of decisions can be differentiated in the G-theory framework: relative and absolute

decisions. Corresponding to these two types of decisions, two types of errors can also be differentiated:

relative and absolute errors (Cronbach, Gleser, Nanda & Rajaratnam, 1972; Shavelson & Webb, 1991;

Brennan, 1992). In this study, only absolute errors are considered in comparing various estimation

7



methods because the most other methods are based only on the absolute error definition. The absolute

conditional SEM for person p can be estimated by

EPcp. xpo2

5

[2]

where Xpi is person p's mean score over I items, I is the number of items in the G-Study, and I' is the

number of items in the D-Study (Brennan, 1998).

DIRT Method

This method is based on an item response curve, representing the probability that individual

person k with ability score Ok will answer item i correctly, denoted Pi (Ok ) . In this study, the three

parameter logistic model was used for obtaining the item response curve. To estimate the conditional

SEM using an IRT approach, it is necessary to obtain the distribution of the number-correct raw scores

given IRT ability (0) with estimated item parameters (Kolen, Zeng & Hanson, 1996). The probability of

random variable X representing a certain raw score on a K-item test for ability 0 can be denoted as

P(X = 1l0) , where i ranges from 0 to K. This notation expresses the conditional distribution of the

number-correct raw scores for a given ability level. Lord & Wingersky (1984) provided a recursion

formula to calculate these probabilities:

P(X= 40) = = i10)[1 P(0)] i =0

= P(X._1= P(0)] + =i 110)P(0) 0 <I <r

= i 110)P(0) i =r.

[3]

The variance of the resulting distribution is the conditional error variance of the number - correct raw

scores for ability 0 . Therefore, the conditional SEM for a given 0 can be estimated by taking the square

root of this conditional error variance (Kolen, Zeng & Hanson, 1996).
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Test let-Based Methods

The testlet concept has been recommended as a useful tool for solving the problems arising from

the situations in which the conditional independence assumption among items is violated. (Thissen,

Steinberg & Mooney, 1989; Sireci, Thissen & Wainer, 1991; Wainer, Sireci & Thissen, 1991; Yen, 1993;

Wainer, 1995; Wainer & Thissen, 1996, Lee, Kolen, Frisbie & Ankenmann, 1998). The polytomous IRT

approaches incorporate this recommendation. The G-theory approach, however, can take the passage (or

testlet) facet into account as another source of variation (Lee & Frisbie, in press).

NIRT Method

With respect to testlet applications, Bock's nominal model has been used predominantly (Wainer

& Thissen, 1996; Sireci, Thissen, & Wainer, 1991; Wainer, Sireci, & Thissen, 1991) because "the testlet

scores are nominal (or at most semi-ordered) responses; as we show later, a score of 1 may not always

reflect higher proficiency than a score of 0, due to guessing" (Thissen, Steinberg, & Mooney, 1989). This

could be the reason that Bock's nominal model has been used in this situation: polytomous models other

than Bock's nominal model assume ordered response categories.

Under Bock's (1972) nominal model, the probability that an examinee with a given ability (0 )

responds to category k in passage j is

exp[a ik0 + cjk]
Pik(0) K

Eexp[a + cik]
k=1

[4]

where j=1,2,...,J (passages), k=1,2,...,K (categories). The constraints, E ajk = Ecjk .0, are imposed on
k k

this model. The parameters of this model are resealed by using centered polynomials of the associated
K

scores to represent the category-to-category changes in the ak and ck values: a jk =
2

jp (k --)
P=1

and c = Ey ip (k --2)P , where the parameters, [cc p y p p = 1,2, ..., P for p 5 K, are the free

P=1

parameters to be estimated from the data (Thissen, Steinberg, & Mooney, 1989).

9



The next procedures for estimating the conditional SEM is similar to the application of the

dichotomous IRT models. For this procedure, it is necessary to obtain the distribution of number-correct

raw scores given IRT ability (8 ) under a polytomous model. Hanson (1994) extended the Lord &

Wingersky (1984) algorithm to polytomous items. The recursive algorithm is (Wang, Kolen & Harris,

1996):

For item i,

Pi(X= x10) = P(IJI = x10) x=0, 1, 2,..., n1

For item k=2,3,4,...,K,
nk

Pk(X= X10) = EPk_i(x= x-u)P uk =UIO)
..0

x=0,1,2,..., Enk
k=1

7

[5]

In Equation [5], the Uk represents a random variable for the score on item k with scores from 0

to nk. The appropriate probabilities can be obtained from Equation [4] . The variance of the resulting

distribution is the conditional error variance of the number-correct raw scores for ability 0 , and the

conditional SEM for a given 0 can be estimated by taking the square root of this conditional error

variance.

GIRT Method

In this study, Samejima's (1969) graded response model was used, as well as Bock's (1972)

nominal model, in order to check on the possibility of using polytomous IRT models based on ordered

categories. Samejima's (1969) graded response model seems appropriate for estimating conditional

SEMs. There would be an ordered quality to testlet-based scores if such scores corresponded to the

extent of completeness of the examinee's reasoning process within a specific testlet. This seems to be a

reasonable representation for reading comprehension testlets, where several dichotomous items relate to

a single reading passage. The more of such items within a testlet that an examinee answers correctly,

the more extensive is his or her comprehension. Therefore, in the present study, Samejima's (1969)

graded response model was compared to Bock's (1972) nominal model with respect to performance in

estimating the conditional SEM for tests composed of testlets (Lee, Kolen, Frisbie & Ankenmann, 1998).
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Under Samejima's (1969) graded response model, consider passage j, in which the number-

correct score corresponding to the dichotomous items that constitute the passage can be classified into

one of K categories, numbered 1 through K inclusive with consecutive integers, and "call such a response

a 'graded response'..." (p.20). Then, the probability that a graded response to passage j is classified into

category k or higher, given 0 , is

Pik(e) {1+ exp[aj (0 bj,k--1)]

0

k = 1

25.1cK

k > K

[6]

The parameter ai is the passage discrimination parameter, which is constant across the

response categories of a particular passage (i.e., constant throughout the whole reasoning process). The

is the difficulty parameter of the category boundary k-1 (2 5_ k K) for passage j, and it is free to

vary among the category boundaries of a particular passage such that bi,k_i < bi,k . (Note that bi,k_ i is

the 0 -value at which the probability of the response being classified into category k or higher is 0.5.) The

probability that a graded response is classified in category k, given 0 , is defined by

Pik(0) = Pik (0)

P JO)

Pi j(±1 (0) , which is also written

1

as

1

k = 1

2

k = K

[7]

+ exp[ai (0 bii)]

1

1+ exp[ai (0 bi,k_i)]

1

1 + exp[ai (0 bik)]

+ exp[aj(0

The examinee's number-correct score distribution can be obtained by using Equations [7] and [5]. Then,

the conditional SEM for a given 0 can be estimated by following the same procedures that are used in

the NIRT method.

11
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px(I:H) Method

The univariate px(i:h) design, persons (p) crossed with items (i) nested in passages (h), is

appropriate for estimating the conditional SEM for this situation. The linear model for the response of a

person to an item within a passage treats persons as objects of measurement and items and passages as

random facets. For this model, np persons represent a random sample from a population of interest, and

nh passages represent a random sample from the universe of passages. The ni:h items in a passage are

also considered a random sample from the universe of items related to that passage. This linear model,

referred to as completely random, can be represented as:

Xpih = µ (grand mean)

+1-1 p (person effect)

+µh 11 (passage effect)

+i-ti:h (item within passage effect)

-1-1. ph [ip 1-th +11 (person by passage interaction effect)

+ Xpih 11 ph µ i:h +1-th (residual effect)

where p=1, ,np ; i=1, ; and h=1, ,nh

A linear model for a D-study design is the same as in Equation [8], except for replacing i and h

with I and H, respectively, in all terms containing i and h. Then, as Brennan (1996) has shown, the

absolute conditional SEM can be computed by

(32 (h) 0.2(i:h)
+ , where I = E ,

I±
h

[8]

[9]

where H represents the number of passages (or testlets) in the D-study. The Ih represents the number

of items within the hth passage in the D-study.
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Simulations

Model for simulations

Response data sets of tests composed of stimulus-based testlets (e.g., Reading Comprehension

tests) were simulated. Nandakumar (1991) provided a method of simulating a paragraph comprehension

test data set. According to her method, k items of a paragraph comprehension test are split into h groups

of items. Two abilities are considered to have influence on the examinee's response to each item: one is

common to all items of the test (denoted as 0g in this paper) and the other is unique to each group

(denoted as Oh, h=1, 2, 3, ... , H, where H represents the number of passages in this paper). That is, the

examinee's response to a certain item is influenced by general ability (eg) and passage-specific ability

(Oh). For example, if there are H passages in a test, H+1 ("1" represents a general ability influencing all

items in the test) abilities would be considered. These H+1 abilities are assumed to be independent,

standard normal random variables. She also introduced a bivariate extension of the unidimensional

three-parameter logistic model with compensatory abilities:

1C
P;(0g,Oh)=

Ci + 1+ exp{-1.7[agi(Og bgi) + ahi (Oh bhi)3
[10]

where P;(0g,0h) is the probability that an examinee having 0g and Oh ability scores answers

item i correctly,

agi and ahi are the discrimination parameters of item i for general and passagespecific

ability dimensions, respectively,

bgi and bhi are the difficulty parameters of item i for general and passage-specific ability

dimensions, respectively, and

ci is the lower asymptote parameter of item i.

For simulating the data set for this study, the parameters shown in Equation [10] need to be

selected. The item difficulty parameters bgi and bhi were taken from independent, identical normal

13
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distributions. The item discrimination parameters agj and 4h; were generated using the following

equations from Nandakumar (1991):

agi -N{(1-

ahi -N{ iA,-ga}

agi +ahi -141-107)

where 1.1. and a represent the mean and the standard deviation, respectively, of the discrimination

parameter for a test. The 4 can be interpreted as the degree of influence of each passage-specific ability

relative to the general ability on an item. For example, if 4 is equal to zero, then the examinee's

response depends upon only the level of general ability. As the value of the 4 increases, the influence of

the passage-specific ability increases. Consequently, the conditional dependence among items within

passages would increase. In this way, it is possible to manipulate the level of conditional dependence

among items within passages by specifying different values of 4 .

Procedures for simulating data sets

The model for simulations discussed so far is based on a two-dimensional IRT approach with

compensatory abilities. In this model, passage-specific abilities were considered as one factor influencing

an examinee's response, with general ability being another factor. The conceptualization of this model

treats passages as a fixed facet, not a random one. However, this conceptualization is different from the

one adopted in this paper. Previously in this paper, the passage facet was considered a random facet. In

order to incorporate this different conceptualization about the test into the Nandakumar (1991)

procedures, the data were simulated as follows:

Step 1. Specify a test composed of testlets.

1-1 Fix the total number of items, k (e.g., k=42).

1-2. Split k items into h groups of items (e.g., h1=6, h2=6, h3=6, h4=6, h5=6, h6=6, h 7=6).
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Step 2. Generate a population of persons based on general ability. Select n examinees randomly

from the general ability scale, 0 assuming 0g is distributed as standard normal (e.g.,

n=1000).

Step 3. Specify a test form.

Generate the item parameters from the distributions defined in Equation [11].

Step 4. Generate passage specific abilities for each examinee of the generated population for a

specified test form.

For each selected examinee, generate passage-specific abilities on the scale Oh, h=1, 2, 3,

, H, assuming each 0h being independently distributed standard normal.

Step 5. Generate a response data set.

5-1. Compute the probability of a correct answer to item i for each examinee using

Equation [10]. Then, create a matrix A, which is composed of n rows (representing

examinees) by k columns (representing items) using computed probabilities.

5-2. Generate random numbers from a uniform distribution U(0, 1) and create a matrix B,

which consists of elements with the dimensions of n x k.

5-3. From a comparison of elements between matrices A and B, generate matrix C,

composed of 0 or 1. Assign 1 to cij, if bij is equal to or less than auj, and otherwise,

assign 0 to cij.

From these steps, an examinee's response data set consisting of 0 and 1 can be obtained.

Repeating the procedures from step 3 to step 5 would make another examinee's response data set. In

these procedures, the general ability of each examinee was fixed (not included in the repeated loop), and

the passage specific abilities of each examinee were selected from the specified distributions (included in

the repeated loop). These procedures can be thought of as a modification of the procedures used by

Nandakumar (1991), permitting the passages to be considered a random facet, not fixed. That is, the

examinee's passage-specific abilities were assumed to change across randomly sampled passages. These

data simulation procedures were required for obtaining the true conditional SEM; which was used as a

criterion for comparing various estimation methods for tests composed of testlets.

15
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Preliminary Analyses for Simulations

The purposes of doing the preliminary analyses for sets of simulations were: (1) to make the

simulated data sets as similar as possible to the real data sets and (2) to determine the appropriate 4

values. The need for doing the second preliminary analysis relates to the two dimensional compensatory

model that was used in this study.

The decision between the compensatory and non-compensatory models is a somewhat subjective

one. It seems reasonable to apply the compensatory model to the testlet situations rather than applying

the non-compensatory model within the appropriate range of 4 values. For example, suppose that a

certain student takes a reading comprehension test and the first passage deals with the topic of baseball

games. Also, suppose the value of 4 is in a reasonable range (e.g., about 0.3). If that student's reading

comprehension ability level (general ability in this study) is in the middle score range but passage

specific ability for the first passage (baseball) is in the high score range, then the probability that the

student answers items associated with the first passage would be expected to be slightly higher

compared to the probability when considering reading comprehension ability (general ability) alone. That

is, student's high passagespecific ability could compensate his/her lower general ability on answering a

given item correctly to yield a score somewhat above the middle range.

However, the compensatory model has some limitations. For example, assume the same test

situations and a relatively high 4 value (e.g., about 0.7). Even though the student's reading

comprehension ability is extremely low (e.g., 0 g =-3.0), if the passagespecific ability is extremely high

(e.g., 0h =3.0), a very high probability of correctly answering items belonging to that passage would be

expected. This case seems somewhat unreasonable and unrealistic. Therefore, even though the

compensatory model could be more reasonable than the non-compensatory model, it should be used

under a reasonable range of 4 values. Checking this range was the second reason for doing the

preliminary analyses.

In explaining simulation procedures earlier, the procedures for selecting IA and a for Equation

[11] were not described thoroughly, even though it was mentioned that these values are the mean and

standard deviation of the discrimination parameter. Nandakumar (1991) selected these values from real
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data sources such as the SAT verbal test battery, the ACT mathematics test battery, the Armed Services

Vocational Aptitude Battery for auto shop information, and so forth. So for this study, the means,

standard deviations, and maximum and minimum values of the discrimination, difficulty, and lower

asymptote parameter estimates based on three-parameter logistic model for several Iowa Tests of Basic

Skills (ITBS) tests composed of testlets are reported in Table 1.

Insert Table 1 About Here

The means and standard deviations of item parameter estimates for the grade 7 Reading

Comprehension test were initially selected as inputs to Equations [10] and [11] for the first step of

preliminary analyses. (The c parameter in Equation [10] was fixed to 0.2 for all simulated items.) Then,

the simulation procedures were applied under each 4 value specified in Table 2, and the degree of

dependence measure and general characteristics of simulated data sets are presented in the same table.

Insert Table 2 About Here

The 4 values ranged from 0.1 to 0.6, with an interval of 0.1. For Step 1 in Table 2, the means of

Yen's (1984)% statistics for between- and within-passage item pairs are most similar to those of the

target (between-passage: -0.022, within-passage: 0.027) for the 4 value of 0.5. When the values of 4 are

less than 0.5, the means of between-passage Q3 statistics are similar to each other, but the means of

within-passage Q3 statistics are different from those of the target with the different 4 values. The

positive relationship between the mean of within-passage Q3 statistics and the 4 value can be found in

this table. This result seems to be reasonable, because this positive relationship between conditional

dependence and the 4 value could be explained by the logic embedded in the simulation model used in

this study.

However, one important finding can be observed by examining the general characteristics

between the target and the six simulated data sets. That is, even though the means of the Q3 statistics

for between- and within-passage item pairs for the 4 value of 0.5 are similar to those of the target, the

mean discrimination parameter of the simulated data set is much smaller than that of the target.

17



15

Furthermore, the 's: tendency for the mean discrimination parameter estimates to shrink more,

compared to that target, as the value of E increases. In contrast, the mean of the difficulty

parameter has a much greater value compared to that of the target. The mean of the lower asymptote

parameter estimates is slightly higher than that of the target. In sum, the general characteristics of the

item parameter estimates under the 4 value of 0.5 are very different from those of the target.

Another important check would be to compare the mean and standard deviation of the target and

simulated data sets. Using the mean and standard deviation of proportioncorrect scores would be more

sensible than using raw scores because the grade 7 Reading Comprehension test and the simulated data

sets have different total numbers of items. From this comparison, non-negligible differences can also be

observed. In short, the item parameter estimates and general characteristics of the simulated data set

under the 4 value of 0.5 are too different from those of the target, even though the conditional

dependence measures from both data sources are similar.

Based on these results, inputs to Equations [10] and [11] for simulations were changed by using

a linear estimation. For example, in Step 1, the 11 and a in Equation [11] were assumed as 0.952 and

0.287 which were derived from Table 1, but in Step 2, they were modified to be 1.630 and 0.553,

respectively, by setting linear equations of (0.952:0.556 = ? : 0.952) and (0.287:0.149 = ? :0.287). The other

parameter specifications for simulations were computed by using the same linear estimation method.

The simulation procedures were applied with the new set of parameter specifications. The general

characteristics of the simulated data sets were computed and are presented in Table 2 under the heading

of Step 2.

In contrast to the results from Step 1, the means of the Q3 statistics for between- and within-

passage item pairs under the 4 value of 0.3 are most similar to those of the target. Descriptive statistics

about the item parameter estimates and general characteristics of simulated data set are much more

similar to those of the target than are those from Step 1. Therefore, in this study, 13srameter

specifications under Step 2 were used for the subsequent simulation studies.

The next issue is associated with selecting appropriate specific 4 values. Based on the results

presented in Table 2, it might be reasonable to set 4 values around 0.3 for simulations. The 4 values
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from 0.2 to 0.4 with an interval of 0.025 values of 0.200, 0.225, 0.250,..., 0.350, 0.375, and 0.400) were

examined by investigating the conditional dependence measures and preliminary results by applying

various conditional SEM estimation methods. As a result, 0.275, 0.300, 0.325, and 0.350 were selected for

the 4 values for simulating data responses. The relationship between the specified values and

conditional dependence measures are presented in Table 3.

Insert Table 3 About Here

In order to investigate the relationship between specified 4 values and the degree of conditional

dependence, these measures examining the degree of conditional dependence were applied to each

simulated data set under each specified value of 4 . As anticipated, the degree of conditional dependence

among within-passage items increases, as the 4 value goes up. The interpretation of the results for

these conditional dependence measures is the same as was given earlier for examining the conditional

independence assumption for the real data sets. In general, a 4 value of 0.275 can be understood to

represent somewhat mild violation of the assumptions compared to the real data sets used in this study.

The 4 values of 0.300 and 0.325 provide conditional dependence measures similar to those obtained

from the real data sets. These two 4 values provide for a moderate violation of the assumptions. The 4

value of 0.350 provides conditional dependence measures indicating a severe violation of the

assumptions compared to the real data sets.

Criterion Indexes for Simulations

It would be informative and convenient to formulate overall indexes to representthe degree of

error involved in using each estimation method. First, the error can be conceptualized as the difference

between an estimate of conditional SEM for each examinee from using a particular estimation method

and the true conditional SEM for that examinee:

sem Pr sem [12]

where sem p is a true conditional SEM for a person p and sempr is an estimated conditional SEM for the

same person p on a particular replication r. This error can be divided into two parts: bias induced by a
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particular estimation method and the random error over replications. In this study, 50 replications were

conducted and then these two components were disentangled as:

[sempr semp]+[semp semp] [13]

where semp is the average of the conditional SEMs for person p over replications. (In this study, the

fitted mean, obtained from a polynomial regression, was used for this average value of the conditional

SEMs.) The first part represents random error, and the second part represents bias associated with

using a particular estimation method.

Based on the above conceptualization, three indexes were developed: average rootmean

squared error (ARMSE), average rootmeansquared bias (ARMSB), and average standard error of

estimate (ASEE):

1
ARMSE= semi, )2

PR P

ARMSB. 11-1 E(semp semp
P p

ASEE=
1

L (semi), semp
PR p

[14]

where P represents the total number of simulees and R represents the total number of replications. One

advantage of using these indexes is that the variance of total error can be decomposed into two parts: one

for squared bias and the other for random error variance. That is, the equation ARMSE2 = ARMSB2 +

ASEE2 always holds.

Analysis Strategies

The true conditional SEM was obtained so that it could be compared with estimates using

various estimation methods applied to the simulated data set. In the previous section, the data
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simulation procedures were outlined in five steps. In order to get the true conditional SEM for each

selected examinee, the procedures from Step 3 to Step 5 were repeated the specified number of times.

For each simulated data set, the total score of each examinee was computed, and then the standard

deviation for these r total scores for each examinee was computed. Each standard deviation for total test

scores of each examinee can be thought of as his/her true conditional SEM, if r goes to infinity. In this

study, data generation procedures were replicated 1000 times, and 1000 (assumed) true conditional

SEMs for 1000 examinees selected in Step 2 were computed. These true conditional SEMs served as

criteria for estimates obtained using various item-based or testlet-based estimation methods.

One more data set was generated using the same simulation procedures to obtain an examinee's

response data set. Using this data set, the item-based and testlet-based conditional SEM estimation

methods were applied. For the G-theory approach, a computer application program (Brennan, 1996) was

used to estimate the conditional SEM for each pxI or px(I:H) design. For IRT methods, the BILOG

(Mislevy & Bock, 1990) and MULTILOG (Thissen, 1991) computer programs were used for estimating

item parameters and ability parameters. The numbercorrect raw score distribution for given theta

values was formulated, and the conditional SEM was computed by a FORTRAN90 application program

written for this purpose. The estimate from each method Was then compared with the true conditional

SEM of each examinee. These comparison procedures were repeated 50 times to control the error of

estimates that may influence the magnitude of the estimated conditional SEM. From these results, the

most appropriate method for estimating the conditional SEM for tests composed of testlets was

determined, and also the most robust method among item-based methods was identified.

In order to investigate the relationship between conditional dependence and bias in estimates of

the conditional SEM using item-based methods, the above procedures for comparing various estimation

methods were repeated under certain prespecified values of E (0.275, 0.300, 0.325, and 0.350). To make

the interpretation of 4 more meaningful, the relationship between different values and level of

conditional dependence was investigated. The generalizability of the results from analyzing the

simulated data sets was checked with the real data sets.
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Results

Results from Simulations =0.275)

Figure 1 shows comparisons between the true conditional SEM and the mean of estimated

conditional SEMs over 50 replications of using each estimation method. The horizontal axis in each

graph of the figure represents a true score scale, which was computed by averaging the total test scores

of examinees over 1000 replications, following the steps outlined in previous section. In order to get the

true conditional SEMs, the standard deviation of the total scores of each examinee over 1000 replications

was computed, and a curve was fitted to the SEMs of 1000 examinees to obtain the true conditional

SEM. The mean of the estimated conditional SEMs were obtained by averaging the conditional SEM

estimates over 50 replications for each estimation method. That is, each method was applied to each

replication and repeated 50 times.

Insert Figure 1 About Here

The pxI method provides estimates of conditional SEM that are similar to the true conditional

SEM, even though it slightly overestimates the conditional SEM in the middle score range. The

conditional SEM estimates of the px(I:H) method are similar to the true conditional SEM, but it also

slightly overestimates conditional SEM in the middle score range. This method also has much larger

fluctuations within true scores than do the other estimation methods. The DIRT method provides

smaller estimates of the conditional SEM compared to the true conditional SEM. That is, the DIRT

method underestimates the conditional SEM of test scores based on testlets. The GIRT and NIRT

methods provide estimates of the conditional SEM that are similar to each other. In the middle score

range, the estimates from these two polytomous IRT estimation methods are similar to the true

conditional SEM, but in the lower and higher score ranges, they overestimate the conditional SEM.

To get more general trends, the fitted line of conditional SEM estimates of using each method are

plotted in Figure 2 along with a line for the true conditional SEM. The fitted line of the conditional SEM

estimates of each method was obtained by applying a polynominal regression technique. In the middle

score range, all estimation methods except the DIRT method provide similar estimates of conditional
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SEM. But in the lower and higher score ranges, the GIRT and NIRT methods give higher estimates. This

overestimation is a little bit greater in the GIRT method compared to the NIRT method in the lower

score range. The pxI and px(I:H) methods provide almost the same estimates of conditional SEM along

the true score scale.

Insert Figure 2 About Here

Bias lines, based on the fitted line from each estimation method, and the true conditional SEM as

a baseline are presented in Figure 3. The bias trends are similar for the pxI and px(I:H) methods. That

is, both methods provide slightly positive bias in the middle score range. The DIRT estimation method

gives negatively biased estimates throughout the score scale. Even though the bias lines for both

polytomous IRT models seem to be more dramatic than the one from the DIRT method, the influence of

bias in a practical sense would be much greater with the DIRT method compared to the polytomous IRT

estimation methods. That is, because the distribution of true scores is similar to the normal distribution,

the bias in the middle score range would be more severe and influential than the bias in the extremes

due to the larger number of examinees affected.

Insert Figure 3 About Here

Discussion so far has focused on the bias introduced by each estimation method in terms of a

fitted line and did not consider the error of estimates. Figure 4 shows the standard error of estimate of

using each estimation method. Much larger standard errors of estimate can be found in the px(I:H)

method compared to the other estimation methods. That is, the px(I:H) method provides fitted

conditional SEM estimates that are similar to true conditional SEM, but these estimates contain

relatively large amounts of error.

Insert Figure 4 About Here

Three indexes of error associated with each estimation method under four specified values are

presented in Table 4. Under the value of 0.275, the pxI method provides the smallest ARMSE.
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Therefore, if there is a need to estimate the conditional SEM for each person on one administration of a

test, the pxI method would produce relative small amounts of error. (The GIRT and NIRT methods

would be similar.) However, the ARMSB of the px(I:H) method is the smallest one, which means this

method introduces the least amount of bias in estimating conditional SEM for each person. Even though

this method has the smallest value of ARMSB, it has the biggest value of ASEE. The proportion of

variance of total error explained by the error of estimate is about 99.3% for the px(I:H) estimation

method.

Insert Table 4 About Here

In comparing the DIRT and polytomous IRT methods, the polytomous IRT methods provide smaller

ARMSE and ARMSB values, and they provide ASEE values similar to the DIRT method. The NIRT

estimation method seems to be only slightly better than the GIRT estimation method in the contextof

mild violation of assumptions for measurement modeling.

Results from Simulations (4 =0.300)

Comparisons of the true conditional SEM and mean of the estimated conditional SEMs over 50

replications of using each estimation method are presented in Figure 5. The pxLmethod underestimates

the conditional SEM in the middle of the score range. The underestimation of the DIRT method here is

much more evident compared to the results from the value of 0.275 in Figure 1. Both the GIRT and

NIRT estimation methods provide slightly underestimated conditional SEMs in the middle score range

and overestimated conditional SEMs in the lower and higher score ranges. The px(I:H) method provides

estimates of conditional SEM similar to the true conditional SEM, but it has much greater error of

estimate compared to the other estimation methods.

Insert Figure 5 About Here

Insert Figure 6 About Here
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The fitted line of the true conditional SEM and fitted lines for the estimated conditional SEM using each

method are provided in Figure 6. The pxI, NIRT, and GIRT methods provide similar estimates of the

conditional SEM in the middle score range. The px(I:H) method provides the highest conditional SEM

estimates in the middle score range, while in the lower and higher score ranges, the GIRT and NIRT

estimation methods do.

Insert Figure 7 About Here

Figure 7 shows the bias lines from each estimation method on the true score scale. The px(I:H)

method provides conditional SEM estimates that are quite similar to the true conditional SEM, even

though it overestimates a little in both the lower and higher score ranges. The pxI method

underestimates the conditional SEM in the middle score range (around from 13 to 32). The DIRT method

underestimates the conditional SEM along almost all the score range. The NIRT method underestimates

conditional SEM a little bit more in the middle score range than the GIRT method. Much larger standard

errors of estimate can be identified in the px(I:H) method by comparing the standard error of estimate

plots among estimation methods presented in Figure 8. These results are very similar to those shown in

Figure 4 for 4 .--0.275.

Insert Figure 8 About Here

According to Table 4, the pxI method provides the smallest ARMSE, but the px(I:H) method

provides the smallest ARMSB. Both the GIRT and NIRT estimation methods provide much smaller

ARMSE and ARMSB compared to the DIRT method. The GIRT method provides a little bit smaller

ARMSE and ARMSB compared to the NIRT method, but both methods have similar ASEE values.

Results from Simulations =0.325)

Figure 9 shows comparisons between the true conditional SEM and the mean of estimated

conditional SEMs using each estimation method under the E value of 0.325. Basically, the trends

observed in this figure are similar to those found in Figure 5 from the value of 0.300, except for two

differences. First, the pxI method provides much smaller estimates of conditional SEM compared to the
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true conditional SEM along the true score scale. Second, the discrepancy between the true conditional

SEM and the estimate of conditional SEM from the DIRT method becomes greater when the value

moves from 0.300 to 0.325. The fitted conditional SEM for each method and the true conditional SEM are

presented in Figure 10. The bias lines of the estimation methods and the standard error of estimate plots

are provided in Figure 11 and Figure 12, respectively. Compared to bias lines from the value of 0.300,

the G-theory approaches produce different trends. The IRT approaches yield trends of bias lines that are

similar to those from E =0.300.

Insert Figure 9 About Here

Insert Figure 10 About Here

Insert Figure 11 About Here

Insert Figure 12 About Here

According to Table 4, the px(I:H) method provides a much smaller ARMSB value compared to the

other estimation methods, but it still has the largest ASEE value. Both polytomous IRT methods provide

much smaller ARMSE values compared to the other estimation methods.

Results from Simulations (4 =0.350)

The results from simulations under the value of 0.350 are presented in Figures 13, 14, 15, and

16. Similar trends and interpretations can be observed and made as in investigating the results from

simulations under the value of 0.325. The main difference is that the degree of bias increased as the

value changed from 0.325 to 0.350. According to Table 4, the px(I:H) method provides much smaller

ARMSB than do the other methods. The GIRT method provides the smallest ARMSE value, even though

the NIRT method has the smaller ARMSB value.

Insert Figure 13 About Here

Insert Figure 14 About Here
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Insert Figure 15 About Here

Insert Figure 16 About Here

Relationship between Degree of Violation of Assumptions

and Bias in Estimates of the Conditional SEM

One of the research objectives of this study was to investigate the relationship between the

degree of violation of the assumptions required by measurement modeling and the amount of bias in the

estimates of the conditional SEM using item-based methods instead of testlet-based methods. To address

this objective, bias lines for each of the four specified values of are replotted in the same graph, all

shown in Figure 17, for the purpose of comparison. As discussed in explaining Table 3, the values

have a positive relationship with the degree of conditional dependence.

Insert Figure 17 About Here

According to Figure 17, in top left graph for pxI method, bias increases as the value goes up

(ignoring the value of 0.275). This finding can be confirmed by the overall indexes in Table 4. The

ARMSB of the pxI method changes in accordance with the change of the values: ARMSBs 0.108, 0.217,

0.349 and values of 0.300, 0.325, 0.350, respectively. The reason for excluding the results from the

value of 0.275 is that the pxI method has a tendency to overestimate the conditional SEM for

unidimensional tests (Agresti & Coull, 1998; Lee, Brennan & Kolen, 1998); it overestimates the

conditional SEM under the situation of the value of 0.275. Therefore, the results from the E, value of

0.275 would not be appropriate for investigating bias trends here. By comparing the bias of the DIRT

method for specified values, it is evident that there is a positive relationship between the degree of

bias and the degree of violation of assumptions. The values of ARMSB changes 0.254, 0.394, 0.463, and

0.589 with the change of the E, values, 0.275, 0.300, 0.325, and 0.350, respectively.

Reducing the Standard Error of Estimate in the px(I:H) Method

The px(I:H) estimation method provides the smallest ARMSB and the highest ASEE for all

conditions of the simulations in this study. It provides the highest ARMSE value compared to the other
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estimation methods. Consequently, this method would not be a good choice for estimating the conditional

SEM of each examinee on one test administration, even though it introduces the least bias. However, if it

is possible to reduce the error of estimate of the px(I:H) method, then this method would have an

important advantage over the other methods in estimating conditional SEMs for tests composed of

testlets in practical situations. Two techniques could be considered in the practical use of this method.

One is to .use the fitted estimates of conditional SEMs, and the other is to report conditional SEMs at

only integer score points.

Brennan (1998) indicated that considerable errors were involved in estimates from px(I:H)

method and suggested that the fitted estimates be used rather than the unfitted ones. He also argued

that "this seems especially appropriate when the number of observations within objects of measurement

is small and the number of objects of measurement is large (p.33)." This situation seems to be applied to

each replication of the simulations used in this study. The fitted estimates of conditional SEM using a

quadratic function were computed for each replication for the 4 value of 0.325, and the ARMSE,

ARMSB, and ASEE were calculated.

Figure 18 shows the comparison between the true conditional SEM and the mean of fitted

estimates of conditional SEM (fitted px(I:H) method). The fitted px(I:H) method provides the estimates of

conditional SEM similar to the true conditional SEMs. By comparing this figure with the top-right graph

in Figure 9, much less variation of points can be observed. The bias line for the fitted px(I:H) method is

presented in Figure 19. Based on the comparison with the top-right graph in Figure 11, a little bit larger

bias can be found, which is mainly due to the overestimation compared to the true conditional SEM. The

standard errors of estimate of the fitted px(I:H) method are plotted in Figure 20. Much smaller standard

errors of estimate were obtained by using the fitted estimates of conditional SEMs instead of the unfitted

ones, which can be confirmed by comparing this figure with the top-right graph in Figure 12. According

to Table 4, the fitted px(I:H) method produces much smaller ARMSE and ASEE, but larger ARMSB

values compared to those of the px(I:H) method. Even though the magnitude of ASEE for the px(I:H)

method decreases by using the fitted estimates of conditional SEMs rather than the unfitted ones, it is

still the highest value compared to the other methods. Because, from a practical standpoint, it would be
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sensible to use the fitted estimates of conditional SEMs instead of the unfitted ones, this technique

seems to be a promising one for reducing the standard error of estimate of the px(I:H) estimation

method.

Insert Figure 18 About Here

Insert Figure 19 About Here

Insert Figure 20 About Here

Aggregating the conditional SEM on integer score points is another technique for reducing error

of estimate. According to the Standards for Educational and Psychological Testing (American

Educational Research Association, American Psychological Association & National Council on

Measurement in Education, 1985), conditional SEMs should be reported at appropriate, well-separated

levels or intervals. In this study, the conditional SEM for each integer score point was recalculated by

grouping examinees based on their true scores. For example, in order to get an aggregated estimate of

the conditional SEM for the true score of 18, the average of the conditional SEM estimates over

examinees having true scores between 17.5 and 18.5 was computed. This idea was applied to obtaining

both true conditional SEMs and the estimates of the px(I:H) method on integer score points, which are

reported in Figure 21. In this figure, the data sets from the value of 0.325 were used. The px(I:H)

method provides similar estimates of the conditional SEM on integer score points compared to the true

conditional SEMs.

Insert Figure 21 About Here

Figure 22 shows the bias of the px(I:H) estimation method under these new estimations. This

representation of bias is very similar to the one in Figure 11. The standard error of estimate of the

px(I:H) estimation method for each integer score point is given in Figure 23. Much smaller errors of

estimate are observed compared to those using the conditional SEM estimates of individual examinees,

which are presented in the top-right plot in Figure 12. Comparing both plots, the errors of estimate
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decrease from about 0.9 to 0.2. Because the conditional SEMs are provided for integer score points in

practice by many testing companies, this technique is a promising method for estimating conditional

SEM for tests composed of testlets.

Insert Figure 22 About Here

Insert Figure 23 About Here

Discussion

Based on findings of this study, these conclusions are offered:

First, in general, the item-based estimation methods, both the pxI and DIRT methods,

underestimate the conditional SEM for tests composed of testlets. However, the pxI method provides

good estimates of the conditional SEM under mild violation of the assumptions, and this method is more

robust to the violation of the assumptions compared to the DIRT method. The robustness of the pxI

estimation method might be due to its tendency to overestimate the conditional SEM for a

unidimensional test.

Second, the px(I:H) method introduces the smallest amount of bias, but the largest error of

estimate. This method seems to be the best estimation method for tests composed of testlets in terms of

the magnitude of bias. One way to reduce the error of estimate dramatically is to use a quadratic fit, as

discussed by Brennan (1998). Also, reporting conditional SEMs at well-separated score intervals seems

to be an efficient way of reducing the error of estimate.

Third, the GIRT and NIRT methods provide similar estimates of the conditional SEM. Therefore,

the use of Samejima's graded response model seems to be as appropriate as Bock's nominal model, at

least, with respect to performance in estimating the conditional SEM for tests composed of testlets. Both

methods provide estimates of the conditional SEM that are similar to the true conditional SEM in the

middle score range, but they overestimate the conditional SEM in the lower and higher score ranges.

This overestimation might be caused by loss of information when testlet scores are used as the unit of
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analysis, as indicated by Yen (1993). These methods provide good estimates of the conditional SEMs

under moderate and somewhat severe violation of assumptions.

Fourth, the bias of the item-based estimation methods increases as the degree of conditional

dependence goes up. That is, an increase in the extent of violation of the assumptions required by

measurement modeling leads to a corresponding increase in bias in the estimates of the conditional SEM

for tests composed of testlets.
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Table 1
Descriptive Statistics of Item Parameter Estimates for Several ITBS Tests Composed of Test lets

Reading
Grade 4

Reading
Grade 7

Maps
Grade 4

Maps
Grade 7

Mean ai 0.805 0.952 0.961 0.807

S.D. ai 0.251 0.287 0.330 0.225

Max ai 1.449 1.748 1.673 1.343

Min ai 0.384 0.427 0.499 0.436

Mean bi 0.355 0.342 0.212 0.782

S.D. bi 0.851 0.960 0.824 0.670

Max bi 2.059 2.405 1.635 1.952

Min bi -1.039 -1.776 -1.534 -0.309

Mean ci 0.163 0.202 0.175 0.194

S.D. ci 0.036 0.052 0.055 0.045

Max ci 0.248 0.337 0.282 0.320

Min ci 0.090 0.127 0.094 0.141
Note. Reading = Reading Comprehension, Maps = Maps and Diagrams, Vocab = Vocabulary,
Sim = simulated.
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Table 2
Characteristics of Simulated Data Sets for Specified Values

Criterion Target 4 =0.1 4 =0.2 4 =0.3 =0.4 4 =0.5 4 =0.6

Mean of Q3

Step 1

Between -.022 -.016 -.016 -.019 -.016 -.022 -.020

Within .027 -.018 -.006 .002 .013 .033 .034

S.D. of Q3
Between .044 .033 .034 .033 .034 .033 .035

Within .061 .031 .034 .033 .036 .038 .046

Mean 25.4 20.9 20.9 20.9 21.5 20.7 21.2

S.D. 9.08 7.78 7.83 6.73 5.93 5.51 4.83

Mean of Prop .552 .498 .498 .498 .512 .493 .505

S.D. of Prop .197 .185 .186 .160 .141 .131 .115

Mean of ai's .952 1.068 1.129 .715 .596 .556 .521

S.D. of airs .287 .335 .323 .173 .186 .149 .172

Mean of bi's .342 .784 1.013 .771 1.018 .973 1.399

S.D. of bi's .960 .778 .720 1.135 1.600 1.316 1.836

Mean of ci's .202 .256 .289 .219 .250 .236 .280

S.D. of ci's .052 .061 .085 .041 .053 .030 .059

Step 2

Mean of Q3
Between -.022 -.017 -.019 -.023 -.028 -.032 -.035

Within .027 -.015 -.004 .024 .057 .093 .118

S.D. of Q3
Between .044 .035 .036 .035 .036 .033 .035

Within .061 .047 .038 .048 .044 .064 .063

Mean 25.4 22.5 22.4 22.3 21.9 22.55 21.7

S.D. 9.08 9.71 9.40 8.13 8.12 7.19 6.31

Mean of Prop .552 .536 .533 .531 .521 .536 .517

S.D. of Prop .197 .231 .224 .194 .193 .171 .150

Mean of ai's .952 1.291 1.111 .891 .834 .702 .626

S.D. of ai's .287 .355 .343 .360 .243 .209 .177

Mean of bi's .342 .297 .224 .486 .370 .385 .664

S.D. of bi's .960 .915 .958 1.003 .925 1.206 1.205

Mean of ci's .202 .175 .173 .199 .178 .210 .221

S.D. of ci's .052 .034 .034 .065 .033 .046 .044

Note, Target = graded
scores, S.D. of Prop =

ehension test,7 Reading Compr
standard deviation

Mean of Prop = mean of proportion correct
of proportion correct scores.



Table 3
Descriptive Statistics for Q3 Statistics for Four Specified 4 Values

Q3 Statistics 4=0.275 =0.300 4=0.325
Mean

Between -0.021 -0.022 -0.025 -0.026
Within 0.016 0.022 0.029 0.042

S.D.
Between 0.038 0.042 0.035 0.035
Within 0.053 0.055 0.051 0.049
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Table 4
Average Root Mean Squares of Error (ARMSE), Average Root Mean Square of Bias (ARMSB), and

Average Standard Error of Estimate (ASEE) for Each Estimation Method for Four Values of 4

Method ARMSE

Px1
px(I:H)
DIRT
GIRT.
NIRT

Px1
px(I:H)
DIRT
GIRT
NIRT

ARMSB

4=0.275

ASEE

.219

.832

.289

.227

.222

.096 (19.4%)

.071 (0.7%)

.254 (77.0%)

.183 (65.1%)

.175 (62.5%)

4=0.300

.197 (80.6%)

.829 (99.3%)

.139 (23.0%)

.134 (34.9%)
.136 (37.5%)

.237
.844
.423
.264
.275

Px1
px(I:H)
fitted px(I:H)
DIRT
GIRT
NIRT

.108 (20.7%)

.083 (1.0%)
.394 (86.8%)
.223 (71.4%)
.232 (71.3%)

4=0.325

.211 (79.3%)
.840 (99.0%)
.153 (13.2%)
.141 (28.6%)
.147 (28.7%)

.320
.886
.344
.496
.240
.239

.217 (46.0%)

.040 (0.2%)

.106 (9.6%)

.463 (87.1%)

.173 (52.0%)

.159 (44.2%)

4=0.350

.235 (54.0%)

.885 (99.8%)

.327 (90.4%)

.179 (12.9%)

.167 (48.0%)

.179 (55.8%)

pxI
px(I:H)
DIRT
GIRT
NIRT

Note, pxI=G-theory estimation
px(I:H) design, DIRT=dichoto
method, NIRT=nominal model
percentage of variation of total

.425 .349 (67.4%) .243 (32.6%)

.917 .065 (0.5%) .915 (99.5%)

.618 .589 (90.8%) .188 (9.2%)

.267 .195 (53.2%) .184 (46.8%)
.271 .182 (45.0%) .201 (55.0%)
method with a pxI design, px(I:H)=G-theory estimation method with a

mous IRT estimation method, GIRT=graded response model estimation
estimation method. The number within parenthesis represents the
error explained by bias or error of estimate.
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only integer score points.
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Figure 23. Standard error of estimate of the px(I:H)
estimation method using only integer score points.

62



1.2

E
0.8

w
0
:E2 0.6

P_
as 0.4

al
Cu

(46 0.2

a

M ME
m

ma
MIME ENOMMEMONIMEME

III II I III I I I I' I I I I'
1 I 1 i

l i l i

0 5 10 15 20 25 30 35 40 45

True Score

Figure 23. Standard error of estimate of the px(I:H)
estimation method using only integer score points.



1.2

as

E
17) 0.8w _

"5

:§ 0.6

12
0.4as

_

cu

(7) 0.2:

0

ME MENOMMEMEMMEMEMMEm

1111111111.111 11111,,IIIIII 11111 1 1 1 1 I 1 1 I I I

0 5 10 15 20 25 30 35 40 45
True Score

Figure 23. Standard error of estimate of the px(I:H)
estimation method using only integer score points.

64



1.2

a)

E
4Tii 0.8w -

0
:(72 0.6

-a -

c 0.4
C
cu

cn 0.2:

0

mm
m

mEN MM.%m
111 M

1111111111 I I 111 I 1 I I I I 1111111 l 1 1111 I 1 I i I i 11

0 5 10 15 20 25 30 35 40 45

True Score

Figure 23. Standard error of estimate of the px(I:H)
estimation method using only integer score points.



1.27

1a)
6
E :
17) 0.8-
w -

5 :

:E2 0.6-

al -
'a
as 0.4-
-0 _
c
Cu

(1) 0.2-

0

mm wil m ilmmemommemmemmil
ill

1 IIIIIIIIIIIIIIII,IIIIIIIIIIII I I I
1

1 1 1 I
1

0 5 10 15 20 25 30 35 40 45
True Score

Figure 23. Standard error of estimate of the px(I:H)
estimation method using only integer score points.

' 66



U.S. Department of Education
Office of Educational Research and Improvement (OERI)

National Library of Education (NLE)
Educational Resources Information Center (ERIC)

Reproduction Release
(Specific Document)

I. DOCUMENT IDENTIFICATION:

ERIC
TM030678

,Title:
Conditional Standard Errors of Measurement for Tests Composed of Testlets

Author(s):
Guemin Lee

Corporate Source: NCME annual meeting l!Publication Date: April 20, 1999

II. REPRODUCTION RELEASE:
In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents
announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in
microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is

given to the source of each document, and, if reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and

sign in the indicated space following.
The sample sticker shown below will be affixed to all ;

Level 1 documents .

. . . ........

The sample sticker shown below will be affixed to all 1 The sample sticker shown below will be affixed to all

..... ....
Level 2A documents I Level 2B documents

PliFtMiSt$ ION TO RH ROIWCF ,ANIT'
DISEMINATT:1111.S, MATER IAL.H A.'

MO t RA\ I4'

root itiSlyti TO- REPH,Q IA; cH. AM)
tHISSE!.;1.1NATE yi.it,s NI ArEi3LA:Li.i4

NI kicijoc1;1P. OP if.iiii-FITI,.,'HOSO; MEDIA'
FOR EHICCQLL41.710)4,HUOCf4HHHHONLY;

HAS Hl NTA:111 ) HY

'N..

ipTF4E.P1.H.16TOS At..keseitaXces
iNi.v.R.48iit,)x.(.4.,'ir,i-EK(E100.

. ... .................... ... .. .... ............... ...

PEHMIStil,O.N TOHt:PRQINXI.:: AM)
1)i'tii,M*7.NTE, 11F kliNTHRIAL: iNi.

51g,.10FIV:.14CONI..8';,14/03 n ' ,.N1 CikAtiPi) BY

4.1
,.

Tkic):
...............

. .. . .

I0THET:1)11,CATIQ&All.HESOOHCliS....
INFQHMATIpN;piitgu$



III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source,
please provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is
publicly available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are
significantly more stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and
address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

!Send this form to the following ERIC Clearinghouse:

ERIC Clearinghouse on Assessment and Evaluation
1129 Shriver Laboratory (Bldg 075)

College Park, Maryland 20742

Telephone: 301-405-7449
Toll Free: 800-464-3742

Fax: 301-405-8134
ericae@ericae.net
http://ericae.net

EFF-088 (Rev. 9/97)


