
DOCUMENT RESUME

ED 436 403 SE 062 978

AUTHOR Zaslaysky, Orit, Ed.
TITLE Proceedings of the Conference of the International Group for

the Psychology of Mathematics Education (23rd, Haifa,
Israel, July 25-30, 1999). Volumes 1-4.

INSTITUTION International Group for the Psychology of Mathematics
Education.

ISSN ISSN-0771-100X
PUB DATE 1999-00-00
NOTE 1526p.
PUB TYPE Collected Works - Proceedings (021)
EDRS PRICE MF12/PC62 Plus Postage.
DESCRIPTORS Cognitive Processes; Cultural Influences; Educational

Technology; Elementary Secondary Education; Evaluation;
Foreign Countries; Higher Education; *Mathematics
Curriculum; *Mathematics Education; Mathematics Instruction;
Number Concepts; Problem Solving; Professional Development;
Social Influences; *Teacher Education; Visualization

ABSTRACT
This conference proceedings contains 135 research reports,

73 short oral reports, 30 poster session reports, 4 plenary addresses, 3
research forums, 6 project groups, and 5 discussion group reports. Only the
research reports, research forums, and plenary addresses are full reports;
the others are generally one-page abstracts. The first volume includes: (1)

"Where in shared knowledge is the individual knowledge hidden?" (R.
Hershkowitz); (2) "Professional development, classroom practices, and
students' mathematics learning. A cultural perspective" (G. B. Saxe); (3)

"One theoretical perspective in undergraduate mathematics education research"
(B. Czarnocha, E. Dubinsky, V. Prabhu, and D. Vidakovic); (4) "Cultural
aspects in the learning of mathematics" (N. Presmeg and P. Clarckson); (5)

"Developing skills of advanced mathematical thinking" (P. E. Kahn). The
second volume includes: (1) "Teacher profile in the geometry curriculum based
on the Van Hiele theory" (M. D. Afonso, M. Camacho, and M. M. Socas); (2)

"Pupils' images of teachers' representations" (C. Bills and E. Gray); (3)

"What kind of mathematical knowledge supports teaching for 'conceptual
understanding'? Preservice teachers and the solving of equations" (D. Chazan,

C. Larriva, and D. Sandow); (4) "Argumentative aspects of proving: Analysis
of some undergraduate mathematics students' performances" (N. Douek); (5) "A

numeracy assessment framework for the international life skills survey" (I.

Gal). The third volume includes: (1) "'What Can We All Say?' Dynamic geometry
in a whole-class zone of proximal development" (J. Gardiner, B. Hudson, and
H. Povey); (2) "Pedagogy and the role of context in the development of an
instrumental disposition towards mathematics (S. Goodchild); (3) "Alternative
assessment for student teachers in a geometry and teaching of geometry
course" (B-S. Ilany and N. Shmueli); (4) "Learning pre-calculus with complex
calculators: Mediation and instrumental genesis" (J. B. Lagrange); (5) "This

patient should be dead! Or: How can the study of mathematics in work advance
our understanding of mathematical meaning-making in general?" (R. Noss, C.
Hoyles, and S. Pozzi). The fourth volume includes: (1) "The research of ideas
of probability in the elementary level of education" (A.-M. Ojeda); (2)

"Monitoring of dynamics of students' intellectual growth in MPI-Project" (S.
Rososhek); (3) "Conceptual understanding of conventional signs: A study

Reproductions supplied by EDRS are the best that can be made
from the original document.



without manipulatives" (C. Silveira); (4) "Does the understanding of variable
evolve through schooling?" (M. Trigueros and S. Ursini); (5) "Boys,

mathematics and classroom interactions: The construction of masculinity in
working-class mathematics classrooms" (R. Zevenbergen). (ASK)

Reproductions supplied by EDRS are the best that can be made
from the original document.



Proceedings
of the

23rd Conference

of the International Group for the

Psycholo of athe ati

Editor:
Orit laysl

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEE GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

11

BB

Edu tion

U S DEPARTMENT OF EDUCATIONOffice of Education& Research and improvement
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
This document has been reproduced as

Red from the person or organization
originating it

Minor changes have been made to
improve reproduction quality

o Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy

COPY AVALABLE

2



Proceedings
of the

23rd Conference

of the International Group for the

Psychology of Mathematics Education

Israel Institute of Technology

Editor:

Orit Zaslaysky

Volume 1



Proceedings of the 23rd Conference of the International
Group for the Psychology of Mathematics Education

Volume 1

Editor:
Orit Zaslaysky
Department of Education in Technology and Science
Technion - Israel Institute of Technology
Haifa 32000
Israel

Fax: +972 4 832 5445
E-mail: orit tx.technion.ac.il

Copyright © 1999 left to the authors

ISSN 0771-100X

Printed by the Technion Printing Center
Haifa, Israel

4



PREFACE

It is an honor and pleasure for me to chair the 23rd PME conference in Haifa. This
conference has a special meaning to all ofus. It marks a year since Efraim Fischbein,
the founder president of PME, left us. In his plenary address at the 20th anniversary of
PME, Efraim Fischbein expressed his hope that every year we will meet and pass the
message of goodwill, of cooperation, of love for mathematics and reason, the love for
our students coping with the difficulties and fascination of learning mathematics. We
share this hope and look forward to a meeting that - in addition to its scientific merit -
conveys this message.

The papers in the four volumes of the proceedings are grouped according to types of
presentations: Plenary Addresses, Plenary Panel, Research Forums, Project Groups,
Discussion Groups, Short Oral Communications, Posters, and Research Reports. The
plenary addresses and the research forum papers appear according to the order of
presentation. The Groups are sequenced according to their numbers. For the other
types of presentations, within each group, papers are sequenced alphabetically by the
name of the first author, with the name(s) of the presenting author(s) underlined.

There are two cross-references to help readers identify papers of interest to them:
by research domain, according to the first author (p. 1-xxvii)
by author, in the list of authors (p. 1-369).

I wish to extend my appreciation to all the people who took part in the production of
these proceedings. I am particularly indebted to Joop van Dormolen, Lea Keinan, and
Doron Zur for their dedication, cooperation and endless amount of work devoted to
the preparation of the proceedings.

This conference received support from many sources, without which we could not
have organized it to meet PME standards. We are grateful to the sponsors, especially
to the hosting institute, the Technion Israel Institute of Technology, for the support
and facilities provided to the conference organizers.

Last, but not least, many thanks to the members of the Program Committee and the
Local Organizing Committee for sharing with me so willingly the responsibilities
involved in this enterprise.

Orit Zaslaysky
Haifa, July 1999
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THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY
OF MATHEMATICS EDUCATION (PME)

History and Aims of PME

PME came into existence at the Third International Congress on Mathematics
Education (ICME3) held in Karlsruhe, Germany in 1976. Its past presidents have
been Efraim Fischbein (Israel), Richard R. Skemp (UK), Gerard Vergnaud (France),
Kevin F. Collis (Australia), Pear la Nesher (Israel), Nicolas Balacheff (France),
Kathleen Hart (UK), Carolyn Kieran (Canada) and Stephen Lerman (UK).

The major goals of the Group are:

To promote international contacts and the exchange of scientific
information in the psychology of mathematics education;

To promote and stimulate interdisciplinary research in the aforesaid area
with the cooperation of psychologists, mathematicians and mathematics
educators;

To further a deeper understanding into the psychological aspects of
teaching and learning mathematics and the implications thereof.

PME Membership and other Information

Membership is open to people involved in active research consistent with the
Group's goals, or professionally interested in the results of such research.
Membership is on an annual basis and requires payment of the membership fees
(US$30 or the equivalent in local currency) per year (January to December). For
participants of PME 23 Conference, the membership fee is included in the
Conference Deposit. Others are requested to contact their Regional Contact, or the
Executive Secretary.
More information about PME as an association can be obtained trough its home
page at: http://members.tripod.com/AGPME (case sensitive) or through the
Executive Secretary.

Honorary Members of PME
Hans Freudenthal (The Netherlands, deceased)
Efraim Fischbein (Israel, deceased)

Present Officers of PME
President: Gilah Leder (Australia)
Vice-president: Judith Mousley (Australia)
Secretary: Joao Filipe Matos (Portugal)
Treasurer: Gard Brekke (Norway)
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PROCEEDINGS OF PREVIOUS PME CONFERENCES

Copies of some previous PME Conferences are still available for sale. For
information, see the PME home page at
http:/members.tripod.comiIGPME/procee.html (case sensitive!) or contact the
Executive Secretary Joop van Dormolen, Rehov Harofeh 48A, 34367 Haifa, Israel;
email: joop @tx.technion.ac.il; fax: +972 4 8258071.

All proceedings, except PME 1, are included in ERIC. Below is a list of the
proceedings with their corresponding ERIC codes.

PME International

No. Year Place ERIC number
1 1977 Utrecht, The Netherlands not available in ERIC
2 1978 Osnabruck, Germany ED 226 945
3 1979 Warwick, United Kingdom ED 226 956
4 1980 Berkeley, USA ED 250 186
5 1981 Grenoble, France ED 225 809
6 1982 Antwerpen, Belgium ED 226 943
7 1983 Shoresh, Israel ED 241 295
8 1984 Sydney, Australia ED 306 127
9 1985 Noordwijkerhout,

The Netherlands
ED 411130 (Vol. 1), ED 411131 (Vol. 2)

10 1986 London, United Kingdom ED 287 715
11 1987 Montreal, Canada ED 383 532
12 1988 Veszprem, Hungary ED 411128 (Vol. 1), ED 411129 (Vol. 2)
13 1989 Paris, France ED 411140 (Vol. 1), ED 411141 (Vol. 2),

ED 411142 (Vol. 3)
14 1990 Oaxtepex, Mexico ED 411137 (Vol. 1), ED 411138 (Vol. 2),

ED 411139 (Vol. 3)
15 1991 Assisi, Italy ED 413 162 (Vol . 1), ED 413 163, (Vol. 2),

ED 413 164 (Vol . 3)
16 1992 Durham, USA ED 383 538
17 1993 Tsukuba, Japan ED 383 536
18 1994 Lisbon, Portugal ED 383 537
19 1995 Recife, Brazil ED 411134 (Vol. 1), ED 411135 (Vol. 2),

ED 411136 (Vol. 3)
20 1996 Valencia, Spain being processed
21 1997 Lahti,Finland being processed
22 1998 Stellenbosch, South Africa being processed



PME North American Chapter

No. Year Place ERIC number
2 1980 Berkeley, California (with ED 250 186

PME2)
3 1981 Minnesota ED 223 449
4 1982 Georgia ED 226 957
5 1983 Montreal, Canada ED 289 688
6 1984 Wisconsin ED 253 432
7 1985 Ohio SE 056 279

8 1986 Michigan ED 301 443
9 1987 Montreal, Canada (with ED 383 532

PME11)
10 1988 Illinois ED 411 126

11 1989 New Jersey ED 411 132 (Vol. 1), ED 411 133 (Vol.2)

12 1990 Oaxtepex, Mexico (with
PME14)

ED 411137 (Vol. 1), ED 411138 (Vol. 2),
ED 411139 (Vol. 3)

13 1991 Virginia (with PME16) ED 352 274
14 1992 Durham,

New Hampshire
ED 383 538

15 1993 California ED 372 91

16 1994 Louisiana ED 383 533 (Vol.!), ED 383 534 (Vol. 2)

17 1995 Ohio ED 398 534

18 1996 Panama City, Florida ED 400 178

19 1997 Normal, Illinois being processed
20 1998 Raleigh, North Carolina being processed

The ERIC abstracts can be read on the Internet site of AskEric

(http://wwvv/askeric.org).
Micro fiches with the content of the proceedings may be available for inspection at

university libraries.
You can also inquire about it by contacting:
ERIC/CSMEE, 1929 Kenny Road,
Columbus, OH 43210-1080
Tel: (614) 292-6717
Fax: (614) 292-0263
e-mail: ericse@osu.edu



THE REVIEW PROCESS OF PME23

Research Forum

Four themes had been suggested by the Program Committee as research forum
themes for PME23: Learning and Teaching Undergraduate Mathematics;
Becoming a Mathematics Teacher educator; Visual Thinking in Mathematics; and
Assessment, Learning and Mathematics. The Program Committee received 12
research forum proposals for these themes (4 for the first theme, 3 for each of the
second and third themes, and 2 for the latter). For each theme, all the proposals
were reviewed and ranked by three reputable scholars with expertise ii the
respective fields. The Program Committee considered and generally accepted the
research forum coordinators' evaluations of the reviews and their ranking of the
proposals. Consequently, 2 proposals were selected for each of the first three
themes. The two proposals of the latter theme did not seem to provide a rich and
wide enough scope of the field, thus, it was decided to cancel this forum.

Research Reports

The Program Committee received 202 research report proposals. Each proposal
was sent for blind review to three reviewers. As a rule, proposals with at least two
recommendations for acceptance were accepted. The reviews of proposals with
only one recommendation for acceptance were carefully read by at least two
members of the Program Committee. When necessary, the Program Committee
members read the full proposal and formally reviewed it. Proposals with 3
recommendations for rejection were not considered for presentation as research
reports. Altogether, 136 research report proposals were accepted. When
appropriate, authors of proposals that were not accepted as research reports were
invited to re- submit their work -- some in the form of a short oral communication
and some as a poster presentation.

Early Bird Proposals

The Program Committee received 21 early bird research report proposals. Each
proposal was sent to 3 reviewers who were asked to suggest ways to improve the
proposal for resubmission as a research report. Of the early bird proposals 18 were
re-submitted as research reports and one re-submitted as a short oral. Altogether, of
the 21 early bird proposals 16 were finally accepted as research reports and 3 were
accepted as short oral communications.

Short Oral Communications and Poster Presentations

The Program Committee received 72 short oral communication proposals and 17
poster proposals. Each proposal was reviewed by at least two Program COmmittee
members. Altogether, 59 short oral proposals and 12 poster proposals were
accepted. There were cases in which the program committee did not accept a
proposal in the form that it was intended but invited the author(s) to present it in a
different form.
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A TRIBUTE TO EFRAIM FISCHBEIN



Efraim Fischbein, 1920-1998, Founder President of PME
A Tribute

David Tall

The 23rd meeting of the International Group for the Psychology of
Learning Mathematics in Israel is touchingly the first in which we
cannot be joined by our Founder President, Professor Efraim
Fischbein, who left us on July 22nd 1998. It is a time of sadness,
yes, but it is also a time for celebrating the achievements of this
gentle man who is responsible for the existence of our organisation.
In particular, it is to him that we owe our focus on the psychology
of learning mathematics.

Efraim Fischbein was born in Bucharest on January 20th, 1920.
He was a precocious child who learned to read Hebrew from the
old testament at the age of three. He spent his formative years in
Romania where he had to cope with the hardship of living in a rising fascist state. When
World War II broke out he was forced into hard labour with other Jewish youths. His
sight was seriously damaged and at the end of the war he prepared for his university
examinations by listening to the reading of friends and conversation with his fellow
students. He graduated at the Bucharest University in 1947 with an MA in Psychology
and the qualification to teach mathematics in high school.

His first activity was to travel to Transylvania to care for a hundred orphans who were
survivors of death camps. In 1948 he returned to Bucharest as a high school teacher and
then, in parallel, as a lecturer in developmental psychology at the university. His long
association with the University of Bucharest culminated as head of the Department of
Educational Psychology from 1959 to 1975.

He was a prolific author of articles and books during this time, including the first
original Romanian text-book on Psychology (How do we know the world, 1958). His
monograph The Figural Concepts: the nature of geometric entities and their development
in children was published in 1963 and accepted for his PhD. Other titles published in
Romanian include: The Man, Master of His Habits (1955), Concept and Image in
Mathematics Thinking (1965), The Art of Thinking (1968), Hazard and Probability in
Children's Thinking (1974).

He caught the eye of the international mathematics community and was invited to
address the first International Congress in Mathematics Education in 1969. His
outstanding presentation on "Enseignement mathemathique et developpement intellectuel"
and his rising eminence led to his invitation to chair the Working Group on the
Psychology of Mathematics Education at the second ICME conference in 1972. This
highly successful working group continued under his chairmanship at the third Congress in
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Karlsruhe in 1976 where the participants voted to continue with conferences every year as
"The International Group for the Psychology of Mathematics Education". Efraim
Fischbein was elected its founder president and served in this role from 1976 to 1980.
Meanwhile he was appointed Professor of Psychology and founder chairman of the
School of Education in Tel-Aviv University in 1975. He remained here for the rest of his
life, with many visiting positions abroad, at Nottingham, UK, Montreal, Canada, Pisa,
Italy, Georgia, USA, Heidelberg, Germany, and Granada & Valencia in Spain.

He continued to publish prolifically throughout his working life, including books in
English on The Intuitive Source of Probabilistic Thinking (1975) and Intuition in Science
and Mathematics (1987). His articles are a model of carefully designed research
methodology and generative theory. Although well-versed in the methods of psychology,
he was critical of its limited application to mathematics and saw that the psychology of
mathematics education must develop its own theoretical perspectives.

His greatest creation is surely the organisation to which we belong. Following the
decision to meet annually at Karlsruhe in 1976, the first meeting occurred the following

year at Utrecht, organised by Hans Freudenthal. At Osnabriich in 1978 the organisation
was formally constituted under the title "International Group for the Psychology of
Mathematics Education", subsequently shortened from IGPME to PME.

I remember vividly the talk he gave at PME in 1978, for it was to change my whole
professional life. He presented his empirical and theoretical ideas on individual
conceptions of infinity. His slim, wiry frame resonated with vigour and emotion as he
passionately advocated the theoretical implications of his empirical findings. His
enthusiasm had a profound effect on me personally. My own, previously solitary studies in
undergraduate thinking suddenly began to take their place in the wider picture that he
painted. It inspired me to make the study of limits and infinity and broader research in
undergraduate mathematicsas the focal point of my studies at that time. By 1985 a
growing interest in this area led to the formation of the Advanced Mathematical Thinking
group. Thus it was that Efraim's interest in the psychology of school mathematics
penneated through to mathematics education at all levels.

He had a salutary wisdom that challenged those who professed to wear Emperor's
clothes. I remember explaining to him that I could "see" an infinitesimal as a graph that

tended to zero. He challenged me forcefully, saying: "Show me an infinitesimal". I was
taken aback. I could not do it. Though I could formulate the formal mathematical
framework, I had never analysed what it was that made the ideas work cognitively. It took

a perceptive genius to ask the right question that cause a new theory to blossom. In my
own case, this question from Fischbein spurred the journey of a life-time as I struggled to
understand the relationship between conceptions to think about mathematics and
processes that allow us to do it.

It is a salutary thought that he continued in vigour in his sixties and seventies,
producing books and research articles of great quality at a time when many others have
taken a well-earned retirement. At almost every conference of PME it has been my
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privilege and delight to take my turn amongst his many friends and colleagues who sought
his wisdom and advice.

His research has a subtle balance between theory and empirical evidence that has
always been the hallmark of his scholarship. It is these qualities which should continue to
mark our present and future work in PME.

His work on primary and secondary intuitions, on children's probabilistic thinking, on
the complex meaning of infinite concepts and on intuition in both mathematics and science
have been seminal. They provide us with fundamental notions on which we can continue
to build into the future. While we lament his passing, we therefore rightly celebrate his
achievement and his legacy:the gift of "PME" which draws us together every year to
pursue our continuing quest to understand the subtleties of psychological studies in
mathematics education.

Farewell dear friend, our journeys continue in your footsteps.

A selection of publications by Efraim Fischbein in the last decade:
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E. Fischbein, R. Stavy and H. Ha-Naim (1989). The Psychological Structure in Naive Impetus

Conceptions. The International Journal of Science Education, 11(1).
E. Fischbein & J. Engel (1989). Difficolta psicologiche nella compresione del principio di induzione

matematica. La Matematica ed la suo didactica, 3 (1).
E. Fischbein (1990). Intuition and information processing in mathematical activity. International Journal

of Educational Research, 14 (1).
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Learning of Mathematics, 10 (1).
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WHERE IN SHARED KNOWLEDGE

IS THE INDIVIDUAL KNOWLEDGE HIDDEN?

Rin a Hershkowitz

The Weizmann Institute of Science, Israel

In more and more research and development projects, it is rightly assumed that
"multiple interaction learning environments" (among students, between students
and teacher, with the tool or with the task, etc.) are desirable for a meaningful
construction of knowledge. It is titen natural that social interaction within the
classroom community is currently the object of intensive investigation. However,
the individual as the one who uses the constructed knowledge, and shares it with
others in various communities, has been neglected in these investigations. The
relationships between construction of shared knowledge within a community and
the individual construction of knowledge, are discussed and exemplified. Related
issues concerning research paradigms and methodologies are also raised.

Background

Coming from the field of curriculum development, I view research questions from
within a very comprehensive setting, which includes:

(1) Design considerations before starting the actual development and research work;

(2) Implementation of activities in a few classrooms, accompanied with observations of
learning and teaching practices;

(3) Analysis of the data collected in order to redesign sequences of activities towards
the creation of a complete curriculum (compatible with an official syllabus);

(4) Dissemination of the curricular aims and "spirit" on a national scale;

(5) Initiation of a new cycle of curriculum development (i.e. back to (1)).

About 6 years ago, we began a new cycle of such a curriculum development and
research program at the Weizmann Institute, the CompuMath Project learning
mathematics with computerized tools. Like others (e.g., Balacheff, & Kaput, 1996;
Roth & Bowen, 1995), I believed that "multiple interaction learning environments", in
the form of activities among students and/or between students and teacher through the
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mediation of (computerized) tools, are desirable for a meaningful construction of
individual student knowledge. Computerized tools were chosen and used because of
their amplifying and reorganization capabilities, as mediators in meaningful learning of
mathematics (Dorfier, 1993; Kaput, 1992; Pea, 1985). Activities were designed as
multi-phased open-ended problem situations. For a detailed description of the
CompuMath project, see Hershkowitz and Schwarz (1999). Experienced teachers, who
usually belonged to the project team, first implemented activities in a few classrooms.

We were carried away by the overwhelming and surprising processes we observed in
these classrooms, which differed from what we had observed in the last two decades of
development and research. We confess that our excitement was not only due to the
new activities and environment we created, but also because we decided to see the
reality through new lenses. The need to describe, understand, explain (to ourselves as
well as to others) and analyze what was going on in the classroom, naturally pushed us
closer to the concerns of socio-cultural psychology. Like many others (el Perret-
Clermont, 1993; Yackel & Cobb, 1996), we felt the shortcomings of the cognitive
theories, methodologies and tools we had at our disposal to describe and interpret
learning and teaching processes in the classroom. We needed different kinds of units of
analysis by which we would be able to describe meaningfully learning practices
(Kuutti, 1996) and an appropriate "zoom of the lens" (Lerman, 1998) to observe,

document, analyze and explain.

The research, which is an integral part of our work, is mostly from an interactionist
perspective: the construction of knowledge is analyzed while students are investigating
problem situations in different contexts. For example, we studied pairs of students in
peer work during classroom activity or in an interview situation (Hadas &
Hershkowitz, 1998, 1999), collaboration of a small group of students to solve a
problem followed by a whole classroom discussion (Hershkowitz & Schwarz, 1997;

1999; Schwarz & Hershkowitz, 1995), or individual students interacting with a
researcher during an interview at the end of a course (Dolev, 1997; Hershkowitz,
Schwarz & Dreyfus, submitted).

The dilemma I would like to raise and discuss here arose and took hold during the
research I have already done, and becomes clearer as I plan my further research
program. My research is embedded in comprehensive socio-cultural paradigms of
current cognitive research, therefore the controversies and questions I would like to
discuss, are in a way derived from, and relevant to, these kinds of research as a whole.

The dilemma focuses on the individual construction of knowledge within the different
"ensembles" of which he or she is part. (I prefer to use the term "ensemble" rather
than the general term "community". This term, defined by Granot (1998), designates
"the smallest group of individuals who directly interact with one another during
developmental processes related to a specific activity context"). It raises questions
about the difficulties in "zooming with our lens" on the individual's development as
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he/she participates in the collective construction of shared cognition, in an ensemble (a
couple of students or a small group), or in the whole classroom community.

In the following I will attempt to detail the dilemma through considerations and
questions related to theory, research and methodology. The different questions will
emerge from, and be demonstrated by, the presentation and analysis of a few
examples.

Theoretical Considerations

Following Vygotsky, I consider the psychological development and learning of the
individual as participation in the social activity of his/her own community. For
Vygotsky the relationships between the two poles the individual and the social are
asymmetrical. In an article in which he argued and criticized Piaget's theory of the
child's speech and thought, he expressed his principle concerning the development of
thinking:

In our conception, the true direction of the development of thinking is not from the
individual to the socialized, but from the social to the individual (Vygotsky, 1986. p. 36).

Vygotsky's research concerning the ways in which social communicative speech
becomes "inner speech" -- a mental function of the individual, was the basis of the
above theoretical claim, as well as additional theoretical claims of his colleagues and
successors. The influence of these theories on socio-cognitive research in the last
decade is expressed in more symmetrical perspectives.

For example, in a chapter entitled "The zone of proximal development: Where culture
and cognition create each other", Cole (1985) expresses what he calls "culturally
grounded theory of cognition", and explains the incorporation of the "activity" as a
unit in which the study of "both systems of social relations and of internal (cognitive)
activity" can be done (p. 159). Cobb, (1998) in his plenary lecture, claimed that the
relationships, between the two perspectives, are reflexive, in the sense that one does
not exist without the other. This means that the psychological perspective implies that
"one analyzes individual students' reasoning as they participate in the practices of the
classroom community" and the social perspective implies that "communal practices are
continually generated by, and do not exist apart from the activities of the participating
individuals" (p. 44).

Pontecorvo (1993) in her opening paper to the special issue of Cognition and
Instruction, which aimed "to identify and describe the socio-cognitive mechanisms
through which thinking and learning are developed in different types of socially
interactive settings" (p. 192-193), summarizes some "general presuppositions"
common to research in such settings:



1. The attempt to look at the interactive situation from the Participant's perspective
which is expressed in questioning "the meaning that participants attribute to the
interactional setting".

2. The assumption that "there is a continuous interchange between the interactional
event and the context, where the context is considered as the "cultural frame that
surrounds the specific interactional event and provides resources for its enactment and
interpretation".

3. The relevant role-played by the Other - who is assumed to be "an active co-
participant in speech and in action, who gives support for acting, understanding, and
reasoning through both agreement and opposition".

The above three points represent a modern perspective of socio-cognitive studies (see,

for example, some studies in the above special issue of Cognition and Instruction,
1993, as well as some of our papers mentioned above). These studies focus mostly on
the interaction or the interactional event itself. The individual student is mostly an
anonymous participant (even when he/she is named) in classroom episodes, which are
selected and analyzed with the intention of highlighting the social context in which
some cognitive processes take place. But, as "short stories" of quite complex situations,
these episodes do not have the potential to focus on one student's cognitive changes
while participating in such episodes. Cobb, in a joint paper on "learning mathematics
through conversation" (Sfard, Nesher, Streefland, Cobb & Mason, 1988), criticizes the
kind of instruction done in order "to shape classroom discourse", where "the issue of
whether students might be learning any mathematics that is worth knowing is not a
focus of investigation" (p. 46).

I would like to stress that, on the one hand, I consider the interactional processes and
the "shared construction of knowledge" within the classroom community, that may be
grasped at least partially in such episodes, as very important, and justifies the heavy
research that has been done lately. On the other hand, I cannot ignore the fact that, in
the end, the individual is the smallest autonomist "unit" that can carry his/her
constructed knowledge to different communities even simultaneously (the pair, the
small group, the whole classroom community), and share it with other individuals in
various communities during a lifetime. One way is to investigate the individual actual
knowledge at the end of an interactive learning process (Perret-Clermount, 1993;
Schwartz & Hershkowitz, in press). But, this will tell us mainly about "end-products",
and very little about the interactive processes of constructing this knowledge. The
individual's work takes place in the work of teams, so I believe that we need, in
addition, to investigate the developmental processes of his/her knowledge while
participating in team work. These teams tend to have a short life, meaning that the
individual belongs to numerous teams in different communities in her/his productive
years. In a study on collaborative problem solving, Granot (1998) showed that
ensembles formed, separated, and reformed naturally among participants within the
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same class activity. In this sense learning can be seen as "a changing membership of
communities of practice" (Lave & Wenger, 1991, p. 54). And therefore, as noted by
Pontecorvo (1993), the question of the "types of knowledge or of socio-cognitive tools
that can be accessed, built, and changed through collective discourse can be
subsequently used in other settings, including individual problem solving, writing tasks,
and answers to an interview", becomes very important.

The Dilemma through Empirical and Methodological Eyes

As can be concluded from the above, a central goal in empirical studies of socio-
cognitive development is an empirical investigation of the individual development
(learning) within the socio-cultural context of which he or she is part. I would like to
use Lerman's metaphor (1998) about the zoom of a lens, and to raise the following
question: If we put our lens on a socio-cognitive activity, can we, at the same time,
zoom on the individual, and if yes, what we might see? I would like to discuss this
issue through a presentation and analysis of some examples. The first example is
borrowed from "Alice's Adventures in Wonderland" (Carroll, 1865/1965). The second
stems from the investigative work done by Michal Tabach, a member of our team. The
other two, which will be discussed briefly, derive from two studies that have already
been completed and reported (Hershkowitz & Schwarz, 1999, and Hershkowitz,
Schwarz, & Dreyfus, submitted).

The King and the Hatter Example

I have chosen a short dialogue between the king and the hatter from Lewis Carroll's
book, as a parable to demonstrate the complexity of describing and interpreting
individual cognitive behavior (in this case, without any evidence of learning or
cognitive change) in an interactive situation. This episode is taken from the beginning
of the trial in chapter 11 (see the following figure). The sharpness of Carroll's logic, the
brevity of the episode, and the fact that there are only two "players", make it easy to
follow and analyze the argumentation between the two figures.

I use different sets of arrows to show different kinds of links between the utterances of
the king and the hatter. If we read along the arrows of the first set (dotted lines), we
have the parts of the episode in their chronological order. In the second set (bold lines),
I have tried to demonstrate the logical structure which underlies these utterances. For
example "I keep them to sell", said the hatter to contradict the king's claim: "Stolen!",
as well as to explain his utterance "It is not mine" to the public at the trial, including the
jury, etc. We focus here on arguments of contradiction, explanation, etc., which are
relations between an utterance and previous utterances or gestures. Therefore, the
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arrows, in the second chain, are mostly in the opposite direction to the arrows in the
first.

If a Sal on

persons Seal

does no! &long

lo Sim, gen Se

dole 11"

(From Lewis Carroll, Illustration John Tenniel)
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The main frame is embedded in a sequence of other frames: First, our immediate
interpretation (as notes within "clouds") of this episode and the roles of the two players
in it. For example, for the king, a hat on a person's head can be interpreted as either
belonging to this person, or stolen. The "hatter definition", given by the hatter himself,
includes a third possibility: a hat can be kept by a person "to sell". This way of
presentation and analysis of interactive episodes, which we will call "the hatter
method", is quite close to other analysis methods used in various studies on interaction
(e. g., Resnick, Salmon, Zeitz, Wathen, & Holowchak, 1993).

If we wanted to come closer to these two figures, and be able to grasp their different
character and their different ways of behavior and thinking, we would need to know
more about the contextual frames of the king and the hatter - their history, culture, etc.
This could be discovered, at least partially, from other episodes in which the king and
the hatter interact with other figures. Fortunately, Lewis Carroll was kind to us and left
us the whole book on Alice's adventures.

If we leave our fable, and come back to learning situations in an interactive
environment, we have to face questions such as: What kind of book do we need in
order to be able to trace the development of an individual in interactive situations? Do
we have proper methodologies with the help of which this book can be written and
interpreted? Do we have proper psychological tools to follow and analyze the
individual cognitive behavior, while observing it? It is more realistic to relate to the
above questions in the context of a real classroom situation.

The example of the pocket-money activity

The pocket-money activity is part of the year-long algebra course for seventh
graders, which we have developed in the CompuMath project. The course
consists of a sequence of multiphase problem situations and the use of a multi-
representational tool (a spreadsheet). In the "pocket-money" activity, which was
given about two months after the beginning of the year, students first investigated
the weekly pocket-money savings of three children governed by different linear
rules. After a few days, a new rule was proposed:

Sharon receives pocket-money each week as follows: At the end of the first week she
received 2ag ( 0.02 shekel). Each week she receives a sum equal to what she already
has in her pocket. Sharon does not spend any money.

Students were asked to hypothesize the rate of growth of Sharon's savings as
compared to other children's savings, before obtaining the exact data from the
generalized rule found through the mediation of the spreadsheet (Excel). The
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investigation was done in peer collaboration. It had two steps. First students were
asked to hypothesize numerically the growth of Sharon's savings. After a "symbolic
negotiation" with the Excel program (in order to write the savings rule in Excel
symbols) and dragging down to get the weekly totals of Sharon's savings, they could
compare the totals with their hypothesis. In a second step, they were asked to
hypothesize the shape of the graph of Sharon's saving from the numerical data they
had. Finally, after a "graphic negotiation" with the tool, they were asked to compare
the graph they sketched with the graph they drew by the tool. Michal Tabach,
investigated the construction of knowledge of few pairs of students working on such
activities through the year. As a silent observer, she documented the work of two
boys, Avi and Ben, on the above activity.

The figure on the next page is a presentation and analysis of one episode, in which the
two students are involved in the "symbolic negotiation" with the Excel program to
obtain the numerical data of the weekly sums of money.

In the analysis of this episode I have used "the hatter method" two sets of arrows in
the main frame, and interpretations "around" it. The chronological set of arrows
seems to indicate a symmetric interaction between the two; each utterance is

immediately followed by an utterance by the interlocutor. A deeper analysis, expressed

by the second set of arrows (in bold), and the interpretations inserted outside the main
frame, presents a more complicated situation. The episode starts from Avi's claim: 1A:
"We are supposed to start from 2". It is impossible to know whether he meant that the
amount of money in the first week is 2 ag., or that the savings column has to start
from B2, or something else. He then explains to Ben (who asks "why ?" (2B)) his idea
(3A): "1 times 1, 1 times 1, we should start from 2". We interpreted this (see the "balloon"
interpretations) as first evidence that Avi sees the growth, at least implicitly, as
"repeated doubling", and if expressed as a power with "base" 1, there is no growth.
From here until the end of this episode, the discourse between the boys does not seem

to evidence a significant cognitive interaction. Avi ignores Ben's need for
understanding (expressed in 6B), and continues telling him what should be done (7A).
The two, work on the formula to be inserted in the weekly savings column, along

separate lines as expressed by the fact that most of the bold arrows connect
utterances said by the same boy. Avi (11A) looks for a formula based on a power
operation, while Ben immediately translates the saving rule "verbatim" into Excel
symbols B2 + B2 (10B), drags to obtain the whole picture numerically, and shows it

to Avi (12B). The two boys share the surprise caused by the numerical representation
of the exponential growth.



Avi Ben

Understands
the problem as
repeated

multiplications

lA : No! We are supposed to
start from 2.

2B : Whv?

3A : Because she started
from 2. HM, 1 times 1, 1
times 1, 1 times 1, hm,
we should start from 2. 4B : We were

supposed to start from 2
5A : Yes! We shoUld
start, like 0.02

7A : We should write a
formula

8B : O.K.
exactly, ah, so
I'll do.

A repeated
multiplications

is expressed a
power

Translates

the
problem
verbatim

11A: No! No! No! Wait a
second. If we have here

power it will be nice
(points to the screen)

13A : To 20. Whaw.

12B : No! No!
Look! ah! No!
To what
number9

Ben trusts
his

translation

and the Excei's

potential



Many things can be learned and many questions can be asked on this episode:

We have some information on the kind of interaction between the two boys, and
what each of them contributed (did not contribute) to the "interactive/non-
interactive" character of their work in this episode. Kieran & Dreyfus (1998), who
analyzed types of interaction between two boys solving problems together,
observed that moments when one boy participates in the "universe of thought"
(Trognon, 1993, p. 341) of the other, were quite rare. The episode above is similar,
in the sense that the universes of thought of Avi and Ben intersect only towards the
end, where they realize together the rate of growth.

It seems that both of them constructed some knowledge. Is this knowledge
"shared"? NO! Because each of them has his own pace, and YES! Because both of
them got some feeling of exponential growth, through the same activity in the same

time.

We can also explain the mediation role of the spreadsheet, where a combination
of a "local symbolization" -- B2 + B2 and the dragging operation, provide Ben
with a sort of a global rule of the growth, and because it is so simple and so fast, it
has a convincing potential that attracts both students.

But, there is not much information on the individual construction of knowledge. Does
Avi grasp a more mathematical construct of an exponential growth? If yes, how come
that Ben was the first one to put his hands on the numerical data which express this
growth? And does this numerical representation of the exponential growth prevent
Avi from further development of an exponential construct? We can make some
hypotheses and interpretations inspired by what was observed, but cannot be
considered as resulting from the observations. Fortunately, in this activity, we have
more data on the actions of the boys, which give us one more clue: --Students were
asked to hypothesize the growth graph, and each boy proposed his own graph (see the

following figure).

Avi
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Ben's graph looks like a half of parabola, whereas Avi's graph is close to the
exponential. While sketching his graph, Avi added verbally: "at the beginning it grows
slowly and slowly and then it grows faster and faster".

But we still do not know much about whether each one of them constructed
knowledge about the exponential change, and if this knowledge was consolidated, in
the sense that each boy could use it as an artifact in further construction of knowledge.
To be able to answer this experimentally means to write a book for each boy working
on further activities, in different ensembles or individually. Suppose we do just that,
and that we had more data, do we have a proper methodology to analyze it? Is a
methodology like that used in the hatter model useful when we pass from one episode
in one activity, into a sequence of episodes in sequence of activities? How can we
follow the individual when we have more than two participants in small group
teamwork, or in a whole class interactive discourse? I shall try to come closer to the
last question in the third example.

Where in the "Overseas Activity" is the individual knowledge hidden?

In a study on reflective processes in an interactive mathematics classroom
(Hershkowitz & Schwarz, 1999), we followed a group of four girls through the phases
of the Overseas Activity. A class of 40 students worked first individually during a
preparatory phase (phase 0). Then they collaborated to investigate and solve a problem
in small groups (phase 1), and subsequently wrote group reports (phase 2). Finally they
engaged in a teacher led discussion, in which different groups verbally reflected on the
processes they underwent, as well as on their learning styles (phase 3). I went back to
the protocols of our target group, while investigating and solving the problem (phase
1), and while reporting to the class community their investigating processes (phase 3),
and to the analysis and interpretations we did of these protocols. We claimed there that
"we juxtapose the cognitive-individual and the discursive-interactional perspectives,
without suggesting priority for either" (p. 78). Looking back, through the dilemma
eyes, it might be concluded that the cognitive-individual perspective meant for us the
presentation and explanation of the girls' cognitive contribution as individuals to the
"shared cognitive process" of the group. This process was expressed in actions aimed
to obtain the most appropriate hypothesis about the right solution, and at the end to
elaborate the solution itself. This time I tried to go in the opposite direction, from the
social to the individual. I tried to re-analyze the data by zooming on one individual girl,
and to see what can be said about the contribution of the group interactive discourse
to her learning. I found only a few clues and identified the following difficulties:

As in the previous example, I felt that one episode (which in this case was quite
long) is too narrow. We need a kind of book with more chapters on this girl, before
and after this episode. Can we write such a book for one girl? For all four?
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The documentation of this episode was meant to show the whole group
investigation process, so the camera changed its focus from one dominant
participant to the other, and the documentation of each individual was incomplete.
In spite of our desire to see both directions within the same activity, it seems that
we have to document and analyze data in two different ways within the same
situation.

I have not (yet!) found a proper methodology to analyze and interpret one girl's
cognition within the interactive discourse of the four girls. The "hatter method", or
other similar methods, become very heavy when applied to four participants, even
in only one episode.

We can learn about the cognitive development of the group through verbal
utterances and gestures. The individual development is dependent or expressed in
cognitive mental functions which, by their nature, are more hidden. It seems that
research should be done on "translating" these mental functions to actions that can
be observed, analyzed and interpreted. At this point we can rely and come back, in
a way, to the research and theoretical work done in classic cognitive research. The
question whether this kind of research can be incorporated in investigations done
within the "interactionist perspective", and in what ways, becomes quite crucial. I
discuss this briefly in the next example.

Investigating Abstraction in Context

We undertook a sequence of studies (of which only the first one has recently been
completed) to investigate the mental activity of abstraction as embedded in its socio-
cultural mathematical context. In this first study (Hershkowitz, Schwarz & Dreyfus,
submitted), which is based on an interview of a Grade 9 student, we elaborated a
special approach to abstraction, as an activity of reorganizing previously constructed
structures into a new structure (see the introduction to the paper). Thus, the interview
was designed to enable and to observe the emergence of new knowledge constructed
out of already acquired knowledge. In the analysis_ of the interview we accounted for
the available tools (a grapher and a calculator), the social dimension of the interaction
between interviewer and student and the history of the student. This analysis led us to

propose a model for the genesis of abstraction on experimental grounds. At the center
of the model, we identified three epistemic actions, which are dynamically nested in
each other within the flow of the student's actions. The action of Constructing a new
mathematical construct, in which actions of Recognizing and Building with already

constructed knowledge, are nested. Constructing is an action of reorganization of
knowledge to a new construct. By Recognizing we meant the action in which the
student makes use of a construct or structure which has been constructed earlier.
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Building with is an action performed by the student to combine structural elements in
order to achieve a given goal.

We also suggested a longitudinal dimension to the above model, which takes into
consideration the history, as well as future activity, as part of the proposed model. This
means that artifacts that result from earlier constructions mediate the three epistemic
actions, and the Constructing action leads to artifacts available for later epistemic
actions. This longitudinal part of the proposed model, especially the use of outcor--:s of
the epistemic actions in further activities, has been hypothesized only and needs
experimental confirmation. At this point, we feel that a further experimental study of
abstraction depends on the existence of a book containing the (hi)stories of students
along their engagement in activities in different groups during the year.

Concluding Remarks

Through the examples considered, I have tried to discuss our ability and maturity to
trace the development of individuals while participating in interactive processes in
classroom activities. I described the topic as a dilemma, because it either raises
questions for which we have mostly "wishful thinking" answers, rather than
experimental answers, or questions for which answers go in contradicting directions.

Research from an interactionist perspective seems to be developing dynamically, from
investigations of the interactive processes of learning per-se and the contributions of
the individuals participating to these processes, towards the investigation of the
contribution of the interactions within the ensemble to each individual. I have tried to
indicate some limitations and difficulties of the latter direction of research as illustrated
by the examples, which were taken from studies I share with my colleagues in the
CompuMath project.

I have tried to show that, as the number of the participants in the ensemble grows, it
becomes more complicated to focus on the individual. There is a need for different
kinds of documentation within the same episode, and more longitudinal methods of
documentation, where the individual is observed in different contexts. The analysis of
these kinds of longitudinal data raises the need for new methodology. The question
whether longitudinal description and analysis may distort the analysis of the single
episode has also to be taken into consideration.

In addition, the analysis of the intra-cognitive processes within the inter-cognitive
processes raises the need to investigate the individual's mental cognitive functions. In
such investigations the accumulated research findings, which we inherited from classic
cognitive research, should be incorporated into the global frame of research and
theory, enlarged, and continued.
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PROFESSIONAL DEVELOPMENT, CLASSROOM PRACTICES, AND
STUDENTS' MATHEMATICS LEARNING: A CULTURAL
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Abstract

I present two studies designed to illuminate ways that ongoing reform efforts
in mathematics education are becoming interwoven with teachers'
classroom practices and children's developing mathematics. The first study

examines patterns of K-12 mathematics teachers' changing assessment

practices. The second examines the classroom practices of upper elementary
teachers participating in two professional development programs, each

designed to support implementation of a reform-oriented curriculum. Both
studies show the utility of a focus on practice for understanding teachers'
professional development and students' developing mathematical
understandings in the context of ongoing reforms.

My purpose in this paper is to sketch a cultural-developmental

framework for the analysis of conceptual change (broadly defined), using

two recent studies to illustrate the framework. In the first study, I present an
analysis of the shifting assessment practices of K-12 teachers in the context

of ongoing reforms in mathematics education. In the second, I present an
analysis of upper elementary classroom practices in our era of reform, with a

particular focus on students' developing understanding of fractions linked to
classroom practices.

A CULTURAL-DEVELOPMENTAL APPROACH TO THE ANALYSIS
OF LEARNING IN PRACTICES

The research approach provides a cultural-developmental frame for
the analysis of learning in practices. The orientation is cultural insofar as

practices are analyzed as recurrent socially organized activities that permeate
daily life. A key assumption is that there is a reflexive relation between
individual activities and practices individuals' activities are constitutive of
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practices and at the same time practices give form and social meaning to

individuals' activities. The orientation is developmental insofar as the focus

is on cognitive developments that emerge in individuals' efforts to structure

and accomplish goals in practices. At core of the developmental perspective

is a concern with the interplay in development between culturalforms

artifacts that have emerged over social history (such as forms of

assessment) and cognitive functions, the purposes for which forms are used

(such as to gain insight into student understanding).

Study 1: Teachers' Shifting Assessment Practices'

The field of mathematics education has experienced waves of reform

throughout its history, and each wave has been marked by challenges to

teachers (Tyack & Cuban, 1995). In the recent climate of reform, particular

value is placed on problem solving and conceptual understanding, a marked
departure from the more traditional focus on accuracy and procedural skills
(California State Department of Education, 1992; NCTM, 1989, 1993). New
mathematics curriculum has been developed to engage students in problem
solving, and new methods of assessment have been developed to evaluate

the ways that students interpret problems and construct strategies for their
solution. Mathematics teachers are pressed to implement these new

approaches or to adapt their existing practices to fit the reform
recommendations. We know that they are challenged, but to date we
understand little of the pathways by which they develop competence with

the new forms and functions of practice.

The purpose of the first study was to explore how mathematics
teachers' assessment practices shift over time in relation to the presses to

change. The practice of assessment is conceptualized broadly (see Figure 1).
Assessment practices involve multiple stakeholder groups, including
students, teachers, parents, principals who vary in their relation to students'

performances. Stakeholders have different relations to the performances that

are the targets of assessment as represented by the double arrows between

I Maryl Gearhart, Megan Franke, Sharon Howard, and Michele Crockett were collaborators in
this study
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each stakeholder group and student performance. Stakeholders may
communicate with one another about assessments as represented by the

double arrows between groups. Further, assessment also involves the
production of multiple artifacts, including primary artifacts (students' class

work that may involve solutions to exercises and open ended problems),

evaluations of those artifacts (number correct, scores, rubric levels),
secondary artifacts, including composite scores (e.g., report cards, portfolio

evaluations), and "high stakes" scores (e.g., SAT, CTBS scores). Such
artifacts are often the foci of stakeholder reflection, evaluation, and

communication.

elicit

evaluate

Figure 1: A sketch of stakeholder groups and principal artifacts in typical
assessment practices.

I limit my focus in this talk to teachers' engagement with three forms
of assessment and the functions that these forms serve in their practices.
These included forms for eliciting student performances in class work such

as exercises or open-ended problems as well as forms for evaluating student
performances such as rubrics. While exercises are associated with traditional

practices, open-ended problems and rubrics are associated with reform
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practices. A focus on shifts over time in both teachers' differential

frequency of use of these assessment forms and the different functions that

these forms serve in assessment activities provides a window into the

changing practices of teachers in this era of reform.'

Methods

In the first phase of the study, colleagues and I fielded surveys to two

cohorts of K-12 teachers participating in a voluntary long-term professional

development program (N=59). To capture the patterns of change, we asked

the teachers to report on the frequency with which they were currently using

the three assessment forms. In addition, to gain insight into trajectories of

change. Therefore, we asked teachers to compare their current uses with

their uses in the past and their anticipated uses in the future of the targeted

forms.

We conducted a second phase of the study to shed light on the

functions that these forms of assessment were serving in teachers' practices.

We interviewed teachers, eliciting narrative descriptions of how they used

targeted forms, the purposes that they served in their assessment practices,

and whether and /or in what way these purposes might be changing.

Frequency of Use of Assessment Forms and Shifts in Use over Time

We analyzed the frequency with which teachers used particular

assessment forms and the shifts in frequency (and projected frequency) over

time. Our findings point to changing patterns of use linked to the current

climate of reform and presses for change.

Though all teachers reported that they were implementing reforms,

most reported using exercises frequently for purposes of assessment.

Indeed, 75% of the teachers reported using exercises at least 2-3 times a

week for assessment. The same was not true for open-ended problems and
rubrics: Teachers reported using open-ended problems at more moderate

'The way stakeholders pressures are manifest in teachers practices is also critical to
understanding shifting forms and functions of assessment, but will not be discussed in this paper
due to time and space constraints.
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levels, the majority reporting at least weekly use. The variability in use of

rubrics was quite pronounced. Indeed, 50% of the sample reported uses of
rubrics in the range between rare (once or twice a year) and relatively
frequently (weekly).

By comparing teachers' reported uses of assessment forms last year,

this year, and next year, we were able to identify patterns of change. For

exercises, most teachers reported little change in frequency of use. Indeed,
more than 75% of the teachers reported stable (and high) use over past

through prospective practice. In contrast to the results for exercises, most

teachers showed shifts towards greater frequency of use for open-ended
problems and rubrics. Between 60% and 70% of the teachers' profiles
indicated increases in frequency of use either from past to current and
current to projected practice.

Shifts in Functions of Assessment

Our interviews were designed to explore continuities and
discontinuities in functions of assessment forms in practices. In assessment
practices, continuity is manifested in a teacher's decision to continue using
either an 'old' assessment form over time, or, a new form to serve an 'old'
function. Discontinuity is manifested in a teacher's decision to use a new
assessment form, or, to use an 'old' form for a new function. Core to our
approach is the assumption that continuity and discontinuity are inherently
related to one another in the process of development continuity preserves
the coherence or integrity of practice while discontinuity allows for
adjustment to presses and organizational change.

We explored shifts in the purposes for which teachers used exercises,
open-ended problems, and rubrics with 12 teachers. We documented several
patterns of development. None of the patterns represents a radical re-
organization of practice. Rather, for each pattern, shifts over time were
marked by both continuity and discontinuity.

One pattern captures the ways that teachers may implement a new
form of assessment in a way that served 'old' functions. For example, some



teachers used a 'new' form of assessment, open-ended problems, in ways
that served instructional function. They engaged children with the open-

ended problems to provide them the opportunity to invent strategies; for this

pattern, they did not examine students' responses to open-ended problems to

gain insight into the character of their mathematical thinking, a function

linked to student inquiry promoted by reform documents.

A second pattern captures the ways that new forms of assessment may

be implemented in pro forma ways. Some teachers used rubrics developed

by others that focused on the completeness of students' written explanations.
Teachers exemplifying this pattern did not revise such rubrics to capture

students' mathematics.

A third pattern illustrates the ways that teachers may fashion or re-

fashion forms of assessment in order to assess students' mathematical

thinking, the function of assessment recommended by reform. Some
teachers re-purposed an 'old' form of assessment, such as an exercise, to

serve a new function, supplementing the old form as necessary with new

forms (written explanations) that support the new function. In addition,

some appropriated a colleague's rubric for evaluating students' responses to

the open-ended problems, re-designing it to suit their curriculum and their

goals for her students' mathematical learning.

A fourth pattern illustrates how teachers' concerns for efficiency may
work against the quality of their assessments. Some teachers were
considering strategies for more frequent and more rapid rubric scoring.

Some as yet had no specific strategy for increasing the speed of scoring; at
least one was considering replacing her analytic rubric with a holistic
approach, expressing worries about tradeoffs between frequency of scoring

and quality of the evaluation.

This study provides a preliminary frame for analyzing the dynamics of
change in the professional development of teachers. A key notion here is
that in order to understand why 'change takes time,' we need to identify

developmental patterns in the ways that teachers construct goals in their
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practices, goals that interweave the presses upon them, the resources
available to them, and their current knowledge and patterns of practice.

Study 2: Relations between Teachers' Shifting Classroom Practices and
Student Learning in the Domain of Fractions'

In the second study, colleagues and I produced an analysis of

teachers' changing classroom practices linked to ongoing reforms and the
relation of such change to student learning. To this end, we observed 23

upper elementary teachers implementing units on fractions, and assessed the
learning of their students. We sampled teachers who were committed to

traditional instructional approaches as well as teachers who were committed
to reform. The latter group was implementing a new unit on fractions
[Seeing Fractions (Corwin, Russell, & Tierney, 1990)].4 In analyzing the

relation between classroom practices and student learning, we compared the
progress of two groups of students those who began instruction with a
rudimentary understanding of fractions vs. those without a rudimentary
understanding of fractions. We assumed that these two groups of children
might be forming different goals related to fractions in classroom practices.

Further, we assumed that children's progress would be related to the extent
to which classroom practices were aligned with reform frameworks. Thus,
our focus was the relation between (a) the alignment of classroom practices

with reform principles (b) students' prior knowledge and (c) the developing
mathematics of each of these two groups of students.

Analyzing and Rating Classroom Practices

To evaluate the extent to which classroom practices were aligned with

reform principles, we developed rating scales and applied them both to
videotape and fieldnote records of whole class lessons (cf. Gearhart, Saxe,

Ching, Fall, Nasir, Schlackman, Bennett, Rhine, & Sloan. (in press)). The
scales were used to evaluate core instructional principles espoused in reform

3 Maryl Gearhart and Michael Seltzer were collaborators in this study

Teachers implementing the reform curriculum were participating in one of two professional
development programs colleagues and I organized.
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documents (a) the degree to which classroom practices elicit and build

upon students' thinking (Integrated Assessment) and (b) the extent to which

conceptual issues are addressed in treatments of problem solving
(Conceptual Issues). To apply the Integrated Assessment scale, raters were

instructed to attend to teacher questioning and public problem solving and

the ways that these did or did not elicit and address students' mathematical
understandings. To apply the Conceptual Issues scale, raters focused on the

ways that methods for solving fractions problems were linked to core

fractions concepts part-whole relations, part-part relations, and

equivalence relations. Parallel scales were developed for videotape and for

fieldnotes, resulting in four scales in all. We then aggregated these measures

in order to produce a single index of alignment.

Assessing Students' Rudimentary Understanding of Fractions

To partition students into those who demonstrated a rudimentary

understanding of fractions and those who did not, we coded students'

performance on an additional set of elementary items that were included as

part of the pretest. These additional items were elementary fractions

problems depicted in Figure 2, one subset involving discontinuous quantity

(items in Figure 2A) and the other subset involved a continuous quantity
(items in Figure 2B). Consistency of adequate performance on at least one
subset was required for children to be regarded as displaying a rudimentary

understanding of fractions (see Methods section).

Figure 2. Elementary fractions problems.

A.

What fraction of the cards is gray?

What fraction of the marbles is gray?

B.

For each picture below, write a fraction to show what part is gray:
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Analyzing Shifts in Students' Problem Solving and Computation with

Fractions as a Function of Instruction

Our assessments of student achievement in the domain of fraction:-

were designed to measure both students' computational skills and their

competence with problem solving. The distinction between computation
and problem solving is captured in similar ways by other researchers using
such constructs as procedural versus conceptual knowledge (Greeno, Riley,

& Gelman, 1984; Hiebert & Lefevre, 1986), the syntax versus semantics of
mathematics (Resnick, 1982), and skills versus principles (Gelman &

Gallistel, 1978). We recognized that the distinction between computation
and problem solving would become problematic when we operationalized it
as distinctive sets of items. Indeed, a child might solve what we regarded as
a computation task using an invented problem solving strategy, or might

solve what we classify as a problem using a memorized procedure.

Nonetheless, the items that we constructed provided a heuristically useful

way to measure students' skills with fractions and problem solving with
fractions. The computation items could be solved using routine algorithmic
procedures or commonly memorized facts. The problem solving items could
not easily be solved by standard computational approaches, and were more
likely to require insight into the concepts underlying representations of

fractions. In addition to the face validity of the distinction, we validated the

distinction between computations and problem solving through confirmatory
factor analytic techniques (Saxe & Gearhart, 1998).

Expected Relations between Practice and Achievement

We expected students' performances on the problem solving and
computation scales to vary as a function of students' prior understandings

and alignment of classroom practices with reform principles. For the
problem solving scale, we expected that students without rudimentary

understandings of fractions would be at risk for not learning from instruction
if there were little classroom support for children's conceptual engagement



with the subject matter (as indexed by a low level of support on our
classroom alignment ratings). These students should be prone to interpret

classroom activities involving fractions (e.g., representational forms

presented in lessons, small group work) in whole number terms. Thus,
classroom activities at lower levels of support should either be very
confusing or systematically misunderstood in terms of whole numbers.

However, if these students participated in classroom practices involving

fractions that were geared for building on their understandings (as indexed

by at least a moderate level of support on our classroom alignment ratings),
we might expect to see growth in students fractions concepts, and even

greater growth at high levels of support.

In contrast, we expected that students with rudimentary
understandings at the start of instruction would show a different profile of
learning as a function of alignment. These students should be more able to
make sense of representational forms presented in lessons in terms of part-
whole relations even if engagement with fractions concepts was not a focus
of instruction (i.e., at low levels of alignment). Further, with greater support
for conceptual engagement (increasing levels of alignment on our scale), we

expected that these students would show greater gains in their

understandings.

For the computation scale, we did not expect to find the same pattern

of relations between alignment of practices with reform principles and

student performance. Indeed, there is little reason to expect that reform

practices would influence directly students' developing competence with
computation tasks that are often readily solved through memorization of
routine facts and algorithms. Thus, we expected at best a weak relation
between alignment of whole class lessons with reform principles and
students' computation achievement, regardless of students' prior
understanding of fractions.

Relations between Alignment and Problem Solving Scale

Figures 3 and 4 contain plots of posttest performances on the problem

solving scale as a function of our measure of the alignment of classroom
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7'

6'

5'

4'

practices with reform principles (standard scores). The posttest means are
statistically adjusted for language background and pretest performance.

Visual inspection of the plots for students with and without a rudimentary

understanding reveals that both slopes show a positive relation between
posttest performance and classroom alignment. However, the character of
the slopes differs.

For students with a rudimentary understanding, the relation between

posttest performance and our measure of alignment appears linear (Figure
3). Our HLM analyses confirm this. For every unit increase in the
classroom practice scale (a 1-4 point scale), there is a .87 increase in

classroom posttest performance (a 13-point scale); the t statistic shows that
the effect is significant (019)=4.91, p=.0000). We interpret this pattern as
evidence that these students' rudimentary understandings of fractions
allowed them to make sense of fraction problems in part-whole terms even
when classroom practices were relatively inconsistent with the principles of
reform.

Figure 3. Adjusted classroom posttest means on the problem solving scale
for students with rudimentary understanding as a function of classroom
alignment measure.

A

A

A

we

3'

2
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CURRICULUM

Traditional
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-1.5 -1.0 -.5 0.0 .5 1.0 1.5 2 0

Alignment
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For students without a rudimentary understanding, the relation
between posttest performance and our measure of alignment does not appear

linear (Figure 4). Indeed, for classrooms in which alignment with reform
principles was below the mean, the plot appears to show no relation between

posttest performance and alignment. In contrast, for classrooms in which

alignment with reform principles was above the mean, the plot appears to

show a linear relation between alignment and posttest performance. To

confirm the visual analysis of the plot in Figure 5, we fit a two-relation HLM

to the data. Our model allows for the possibility that the relationship

between class mean posttest scores and classroom practices may differ for

those classes in which alignment is below average and those classes in
which alignment is above average. The results of our HLM analyses
supported the "two-relation" model. When alignment of classroom practices

with reform principles is below average, we find no relation between

posttest score and alignment (t(16)=.81, p=.433). In contrast, when

alignment is above average, we find a significant effect. For every point
increase in classroom alignment, there is an expected posttest score increase
of 2.07 points (t(16)=2.48, p=.025). This is a significant relation that is

almost five times the magnitude of the estimated effect for the relation for
below average alignment classrooms. We interpret this finding as evidence

that, in classrooms judged low on alignment (whether using traditional or
reform curricula), students without a rudimentary understanding had little

basis on which to structure mathematical goals in other than whole number

or procedural terms. In contrast, at higher levels of alignment, posttest

scores for students without rudimentary understandings were related to

alignment, and, indeed, those scores increased sharply. We interpret this

pattern as evidence of a threshold of support needed by such children. With

such support, students may become engaged with mathematical goals

involving fractions, leading to gains in their understanding of fractions.

Figure 4. Adjusted classroom posttest means on the problem solving scale

for students without rudimentary understanding as a function of classroom

alignment measure.
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Together, the considerations above point to the importance of the
coordinated analysis of students' rudimentary understandings, curriculum,

and classroom practices in student achievement on the problem solving
scale.

Relations between Alignment and Computation

In contrast to the problem solving items, the slopes for students with a
rudimentary understanding and without a rudimentary understanding reveal

no relation between posttest performance and alignment of classroom
practice with reform principles. Our HLM analyses show that for students
with a rudimentary understanding, the estimated effect was -.26 (1(19)=-.70,
p=.49), and for students without a rudimentary understanding, the estimated
effect was also -.26 (t(19)=-.57,

The lack of relation between student performance on the computation

scale and alignment of classroom practice with reform principles was
expected. In the short term, neither support for students' conceptual

engagement with mathematics nor efforts to build on student understanding
are likely to enhance students' memorization of arithmetical procedures.

Although some students may be able to extend their developing
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understandings of fractions to computational items, it may well be that

rehearsal of computational procedures under direct instructional methods is

more successful in enhancing computational skills. This latter conjecture

was beyond the purpose and scope of our analyses.

CONCLUDING REMARKS

Investigating relations between the shifting organization of classroom

practices and student learning related to reform efforts is a complex analytic

task. The cultural-developmental framework that I've sketched provides an

initial foothold into this complex arena of study. Through a focus on practice

and the way individuals' are structuring and accomplishing goals in

classroom life, we gain insight into historical change in practice and shifts in

patterns of learning and development. My hope is that greater understanding

of the relations between development and practice will provide new insights

about how to usefully support the professional development of teachers and

mathematical understandings of students.
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RECONSTRUCTING THE MATHEMATICAL IN SOCIAL DISCOURSE

ASPECTS OF AN EPISTEMOLOGY-BASED INTERACTION RESEARCH

Heinz Steinbring, Universitat Dortmund, Germany

Abstract. Mathematical knowledge depends on human thinking and social interaction.
Neither symbols nor contexts alone provide the objective basic substance for mathemati-
cal existence. Mathematical knowledge is created by (mental and interactive) inter-
pretation of signs with regard to possible reference contexts. With this theoretical
perspective on knowledge in mind, mathematical interaction research is faced by a
complementary difficulty: The object of research mathematical communication as
well as its observation and scientific analysis are both "sign-interpreting-processes"
that are constituted in social interaction. The analysing reconstruction of mathematical
discourses requires the revelation of possible interactive interpretations of communicated
signs and in this way the analysis reflects; its "own" understanding of mathematical
knowledge as a result of a social construction processes. This article presents crucial
components of the epistemology-based research of mathematical interaction by using
exemplary teaching episodes from an ongoing research project on "Social and epi-
stemological constraints of constructing new knowledge in the mathematics classroom".

1. Introduction
The social construction of new mathematical knowledge in teaching and learning
processes depends on two important conditions: The special character of instructional
communication and the specific epistemological nature of mathematical knowledge. In
mathematics teaching at the primary level new knowledge cannot be constructed in a
formal manner by a kind of preview technique, i.e. using algebra or formulas, but this
construction is linked with the children's situated contexts of learning and of experience
in a characteristic way. The young students have to learn and they are able to do so by
their personal means to see the general in the particular. To better understand this
problem is an important inquiry of the research project "Social and epistemological
constraints of constructing new knowledge in the mathematics classroom" (funded by
the German Research Society, DFG; see Steinbring et al. 1998). How are students of
elementary grades able to grasp the new, general mathematical knowledge with their
own conceptions and to describe it with their own words? And what factors support or
hinder this generalising interactive knowledge construction?

2. What is the Specific Nature of Mathematical Concepts?
Mathematical concepts and mathematical knowledge are not given a priori in the
"external" reality, neither as concrete, material objects, nor as independently existing
(platonic) ideas. For the individual cognitive agent mathematical concepts are "mental
objects" (Changeux & Connes 1995; Dehaene 1997); in the course of communication
mathematical concepts are constituted as "social facts" (Searle 1997) or as "cultural
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objects" (Hersh 1997). From an evolutionary point of view mathematical concepts
develop as cognitive and as social theoretical knowledge objects in confrontation with
the material and social environment.
In contrast to objects constructed by humans as for instance a chair, a table, a knife or a
screw-driver one cannot deduce the meaning of social facts, as for instance money, time
or the number concept neither from their form nor from their material. There are no
direct insights into the corresponding mathematical object when inspecting the "material"
or the functional form of number signs as 4-2-, -3.17 or n. The meaning of these theoretical,
social respectively mental objects has to be constructed by the individual in int-raction
with experience based and abstract referential contexts. In a general way, mathematical
concepts can be conceived as "symbolised, operational relations" between their formal
codings and certain socially intended interpretation.

Mathematical knowledge can be looked at in two complementary ways: On the one
side, each mathematical knowledge domain represents a consistent structural wickerwork,
in which all elements are linked in an equivalent logical manner. On the other side, new
concepts posing new questions and problems can be constructed in every mathematical
knowledge structure, concepts that are not yet imbedded in the actual logical structure,
and in this way producing new insights.

This distinction between the logical structure and the mathematical objects is in
accordance with the distinction made in philosophy between a subjective ontology of
reality and the subject independent structure of the world. "... the ontology of the world
is created by the cognitive agent, the structure of the world depends on the mind-inde-
pendent external reality. In this way, the experiential world can be seen as both created
and mind-independent at once. As there cannot be a structure without an ontology, it is
the cognitive agent's act of creating an ontology that endows external reality with a
structure" (Indurkhya 1994, p. 106).

The "logical coherence" and consequently the "unique generativity" of mathematical
knowledge often is taken as an irrefutable "proof" for the objective existence of
mathematical knowledge independent of any cognitive agent (Changeux & Connes 1995,
p. 12); but also this property a specific, epistemological mechanism for the autopoietic
development of mathematical knowledge needs the cognitive as well as the social
environment of the cognitive agent for its unfolding.

3. The Epistemological and Communicative Function of Signs
3.1 The Epistemological Dimension
The peculiar interrelation between "Signs / Symbols" and "Objects / Reference contexts"
is central for the description and analysis of mathematical teaching as a specific culture.
This relation also represents a basic item of the epistemologically based interaction
analysis. All mathematical knowledge needs certain systems of signs or symbols for
grasping and coding the knowledge in question. These signs themselves do not have an
isolated meaning; their meaning must be constructed by the learning child. In a general



sense, to endow mathematical signs with meaning, one needs an adequate reference
context. Meanings of mathematical concepts emerge in the interplay between sign/symbol
systems and objects/reference contexts (Steinbring 1993; or Maier & Steinbring 1998).

The interrelation between coding signs of know- Object /refe- Sign /
ledge and reference contexts can be structured in rence context ~ symbol
the epistemological triangle (cf. Steinbring 1989;
1991; 1998). The links between the corners in this
epistemological triangle are not defined explicitly
and invariably, they rather form a mutually sup- Concept
ported and balanced system. In the course of furt- Fig. 1:

her developing knowledge the interpretation of The epistemological triangle

signs systems and their accompanying reference contexts will be modified and
generalised.

Similar triangular schemes have been introduced in the philosophy of mathematics, in
linguistics and the philosophy of language for analysing the semiotic problem of the
relation between symbol and referent (Frege 1969; Ogden & Richards 1923).

Mathematical concepts are constructed as symbolic relational structures and are coded
by means of signs and symbols, that can be combined logically in mathematical
operations. With regard to the analysis of conditions for the construction of new
mathematical knowledge in classroom interaction, mathematical signs and symbols are
the central connecting links between the epistemological and the communicative
dimension of interactive construction processes; on the one hand, signs and symbols
are the carriers of mathematical knowledge, and on the other hand, they contain at the
same time the information of the mathematical communication.

3.2 The Communicative Dimension
The sociologist Niklas Luhmann characterises »communication« as the constitutive
concept of sociology: "... when communication shall come about, ... an autopoietic
system has to be activated, that is a social system, that reproduces communications by
communications and makes nothing else but this" ( Luhmann 1996, p. 279).

The concept of "autopoietic system" has been introduced by Maturana and Varela (cf. i.
e. 1987); it characterises self-referential systems, that exist and develop autonomously
on the basis of this self-referential relation. These systems consist of components that
are permanently re-produced within the system for its maintenance. With the concept of
"autopoietic system" not only biologic processes are investigated but it is also applied
to social and psychic processes.

What is the essential difference between a social and a psychic process? The psychic
process is based on consciousness and the social system is based on communication. "A
social system cannot think, a psychological system cannot communicate. Nevertheless,
from a causal view there are immense, highly complex interdependencies" ( Luhmann
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1997, p. 28). How these interdependencies can be understood? "Communication systems
and psychic systems (or consciousness) form two clearly separated autopoietic dom-
ains; ... But these two kinds of systems are linked in a special narrow relation and they
form reciprocally a »portion of necessary environmentc Without the participation of
consciousness systems there is no communication, and without the participation of
communication there is no development of consciousness" (Baraldi, Corsi & Esposito
1997, p. 86).

Language is a central "linking mean" between communication and consciousness. Within
language one has to distinguish between »sound« and »senseo; accordingly within written
language one has to distinguish between »signo (more exactly »signifier«) and »sense«.
This distinction between sign and intended meaning is the starting point the take off
(Luhmann, 1997, p. 208) for the autopoiesis of communicative systems.

For the analysis of the conditions of the auto-poie- signified signifier
sis Luhmann refers among others to the work of
de Saussure, who made the following distinction
between signifier (signifiant), signified (signifie)
and sign (signe). Luhmann writes: "Signs are also
forms, that means marked distinctions. They di-
stinguish, following Saussure, the signified (si-
gnifiant) from the signifier (signifie). In the form
of the sign, that means in the relation between
signifier and signified, there are referents: The signifier signifies the signified. But the
form itself (and only this should be named sign) has no reference; it functions only as a
distinction, and that only when it is actually used as such" (Luhmann 1997, p. 208f.).
How the autopoiesis of the social, of communication, is possible? According to Luhmann,
in the course of interaction or in the communication system the participants provide
with their "conveyances" (or communicative actions) mutually "signifiers" which may
signify certain "information" (signifieds). "Decisive might be..., that speaking (and
this imitating gestures) elucidates an intention of the speaker, hence forces a distinction
between information and conveyance with likewise linguistic means" (Luhmann 1997,
p. 85).

The conveyor only can convey a signifier, but the signified intended by the conveyor,
which alone could lead to an understandable sign, remains open and relatively uncertain;
in principle, it can be constructed only by the receiver of the conveyance, in a way that
he himself articulates a new signified. Luhmann explains this in the following way:
"We do not start with the speech action, which will happen only when one expects, that
it is expected and understood, but we start with the situation of the receiver of the
conveyance, hence the person who observes the conveyor and who ascribes to him the
conveyance, but not the information. The receiver of the conveyance has to observe the
conveyance as the designation of an information, hence both together as a sign (as a

signifie signifiant

sign
signe

Fig. 2: The semiotic triangle
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form of the distinction between signifier and signified) ...." (Luhmann 1997, p. 210).
The receiver must not ascribe the possible signified strictly to the conveyor of the
conveyance but he/she has to construct the signified himself/herself; the signified and
hence the sign is constituted within the process of communication.

The possible detachment of the information belonging to the conveyance from the
conveyor is the starting point of the autopoiesis of the communicative system. By this
"mechanism" that describes the autopoietic functioning of the communicative system
as an ongoing conveyance of signifiers which are simultaneously transformed into signs
by the contrasting conveyance of other, new signifiers, general properties of the
functioning of mathematical communication are explained, too. In a first approximation,
the epistemological triangle can be seen as analogue to the semiotic triangle (according
to de Saussure); in addition, the epistemological triangle contains very specific features
with regard to the particularities of mathematical communication.

4. Open and Superimposed Discourses in Mathematics Teaching
Analysis of Exemplary Teaching Episodes

In the following, interactive patterns in two different teaching episodes are analysed in
the course of constructing and justifying new mathematical knowledge. In the first episode
students work within a learning environment about figurative numbers, where geometric
reference contexts are offered for the interpretation of mathematical signs. The second
episode is part of a teaching unit about special number squares, where the new
mathematical signs have to be interpreted with the help of structured arithmetical
reference contexts.

4.1 What is the "Correct" Representation of the Third Triangular Number?

The content of the observed lesson in a 4th grade can be summarised in the following
way. The teacher has placed a pattern of magnetic chips (little disks with one red and
one blue side) on the black board. This pattern obviously should show the first two
triangular numbers. The children are asked to construct the next pattern in this sequence.
They offer different interesting proposals. The teacher guides the interactive construction
process, and she asks for a justification of the last pattern she had accepted.

4.1.1 The Children's Proposals for Continuing the Pattern
The teacher places two patterns on the blackboard. How to continue? She emphasises
that special numbers are involved having to do with the chips. Dennis continues the
pattern in the following way. His proposal can be seen indeed as a possible correct con-
tinuation, in which the hook is extended by placing down
left and right above one chip each time. The teacher 0 00
comments this proposal: "Is this already correct? ... One
could have the impression, but it is not yet quite right"(5).
She refers to the shape and draws rectangular triangles te
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around the two first patterns. Then the teacher points
to Dennis' pattern and she says that one could not draw
such an triangle around it: "This could not yet be made

*
here."(7). With her finger she goes around his pattern
and in this way she outlines the shape of a hook or an angle. The teacher seems to have
in mind that only one chip is still missing at the correct place and she tries to focus the
children's attention to this fact. By asking the question: "Who could place this now, or
use something else?" (7), the teacher expects that the one missing chip will be inserted
now. But Lisa answers by making a completely dif-
ferent proposal and constructs the following pattern.
She seems to take the initial patterns as one single
figure and looks for a possible continuation. Her
proposal is a plausible continuation in which to each part of the complete initial figure
each time one chip is added, once in the horizontal line, and once in the vertical line.
The teacher refuses Lisa's proposal by referring to the shape of the triangles. She points
to the base line and to the inclined line of the triangle.
Kai takes away all new chips from the blackboard and A

00000
starts to place his configuration. With the help of his
classmates he inserts the last missing chip. He has produced an isosceles triangle, as the
teacher then accentuates: "Well, first I have to look here. We have had such a form there
but now we have seemingly this [she draws an isosceles
triangle above the constructed configuration]" (14).
The teacher poses the question whether this is the same
(16); in this way refutes Kai's proposal. Kai takes
his chips off from the blackboard. Once again the
teacher tries to focus his attention to the drawn shape
of the two first patterns and she says that the new figure

only with more chips (18). First Kai places exactly the ®®
should look the same as the two already existing figures,

same pattern as the second one. Then he adds two chips

is very close!" (22). Also Kai's classmates make 899
in the following way. The teacher confirms: "Ooh, he

supporting comments that only one chip is still mis-
sing. But Kai is not able to finish the proposal. Tugba 9
places the missing chip on the left side in the base row.

s.?1, ; 0::
4.1.2 An Empirical Justification for the Correctness of the Third Pattern
Let us look more closely at the following short interaction phase wherein the justifica-
tion of the correctness for the third pattern is negotiated.
24 T ... Who could now explain why this is correct now? That is

correct, you must know. Rabea.
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25 R Because it is again the same pattern.

26 L Mhm. Could you come and draw the pattern around it?

[Tugba goes to her place and Rabea comes to the
blackboard] ... Draw first the pattern! Go once around
it! [Rabea draws with chalk a triangle around the third

configuration] Aha.

In principle, this justification consists of one statement:
"Because it is again the same pattern.", which then is
illustrated by Rabea as the "same pattern". How could
this short statement gain the status of a justification? This justification function is only
possible on the basis of the earlier interaction process. We have seen that the continuations
of the teacher's two initial patterns as proposed by the students could have been possible
and reasonable. But the teacher refused them one after the other and at the same time
she explicated the conditions of "similarity" in the patterns. The children's proposed
continuations are excluded until in the end the teacher's intended unique, correct third
pattern is produced.

With the scheme of the communicative analysis the final interactive justification with
Kai and Tugba can be described in the following manner. The teacher emphasises the
rectangular property of the figures and as a contrast she draws the isosceles triangle
according to Kai's proposal.

signifier
signifiant

sign
signe

signified
signifie

signifier
signifiant

sign
signe

signified
signifie

signifier
signifiant

Kai changes his signifier, and after Tugba has completed the pattern, the teacher accepts
this continuation of the series of patterns. By drawing the triangular shape of the pattern
Rabea makes the "similarity" between the different shapes more explicit and in this
way the "conformity" of the patterns becomes the justifying argument and this is
legitimised and agreed upon interactively.

The functioning of the autopoiesis of the communication system requires that a given
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signifier is not directly linked with the signified intended by the conveyor of the message.
This openness is essential for the communicative process. During the analysed episode
one can observe that the teacher's denials of the children's proposed signifiers aim at
identifying a definite relation between the given signifier (the two first triangular patterns)
and a fixed signified (the rectangular shaped pattern). The elaboration of this definite
third pattern takes place by a kind of negative delimitation in the course of this interaction.

This mathematical interaction is dominated by the idea that there exists one single correct
third pattern, and this idea is made explicit step by step. The teacher stresses this point
at different occasions: "Is this already correct? ... One could have the impression, but it
is not yet quite right"(5); "... mh, this is not yet quite correct." (10); "... he is very
close!" (22); "... why this is correct now? That is correct, you must know." (24).
The communication analysis shows that the interaction is used to point out the teacher's
a priori correct relation between the presented signifier (the two patterns) and the
appropriate fixed signified (the shape of a rectangular triangle). To give an acceptable
justification in this situation means to identify the correct relationbetween signifier and
signified. The basis is the dogma that in mathematics there always exists one single
correct relation between signi-
fiers and signifieds. From an
epistemological point of view,
the new sign "third pattern" is
interpreted with regard to a re-
ference context of fixed rectan-
gular shapes for triangles all
other possible shapes are exclu-
ded. News signs / symbols and
corresponding elements in the
reference context are strictly fi-
xed with one another; the signs
become names for observed em-
pirical objects (in this case for
chip configurations).

The justification of the correctness for the third pattern can be characterised in this way:
The proposed patterns are compared with one invisible fixed pattern and differences or
similarities are remarked until the new pattern is in agreement with the teacher's intended
pattern. The last pattern is an admissible one, but it is accentuated in a special social
manner as the only correct pattern. No specific reasons are provided for the choice of
this pattern; the sole basis is the teacher's authority.

4.2 How is it Possible to Recover a Lost Number in the Number Square?
During this lesson in a mixed class of grade 3 and 4 the children had to work on the
following problem: How could one recover a lost number in a certain number square,

Object /refe-
rence context Sign /

symbol

triangular number
special numbers

Concept

Fig. 3: The epistemological triangle
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in such a way that this number reproduces the former arithmetical structure? (cf. Fig.
4).The special number squares as used in this class can be constructed in the following

way: First one adds some given numbers in the border row and border column of a table
(cf. Fig. 5). The squares thus created have the following property: You can choose(circle)

in a (3 3) number square three numbers arbitrarily such that in every row and in every
column there is one and only one circled number. The sum of three numbers chosen is

always constant independent of its choice (cf. Fig. 6). Such squares are called "cros-
sing out number squares", because when circling a certain number in the square, all

15 16 17

14 15 16

13 14

Fig. 4
other numbers in the same row and in the same column have to be crossed out. The
children called such a square »magical square« and the constant sum the mnagical num-
bero. In this episode, the children reproduced the lost number with three different stra-
tegies.

÷ 5 6 7

10 15 16 17

9 14 15 16

8 13 14 Fig. 5
14

Fig. 6

4.2.1 First Strategy: Using Structures in the Arithmetical Pattern
By using the arithmetical pattern of the given numbers in the square, Kevin argues that
15 is the missing number: "... because here is the fifteen, sixteen, seventeen [points at
the first row of the magical square]. There is the fif-, fourteen, fifteen, sixteen [points at
the second row of the magical square]. And here is the thirteen, fourteen [points at the
two numbers in the third row of the magical square]. And then comes there the fifteen
[points at the empty field in the third row]" (12). Kevin completes his argument by
refering to the arithmetical regularities in the columns, too.

4.2.2 Second Strategy: Reconstructing the Missing Number with
Numbers in the Border Lines

Some students reconstruct possible numbers in the border column and border row from
which the magical square could have been built up. They start with the additive
decomposition of 15 = 10 + 5 (cf. Fig. 7) and they calculate further numbers in the
border row (cf. Fig. 8) and finally in the border column (cf. Fig. 9). On this basis the
children determine 15 as the missing number; this is justified by checking all calculations.

+ 5

10 15 16 17

14 15 16

13 14 Fig. 7

+ 5 6 7

10 15 16 17

14 15 16

13 14
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4.2.3 Third Strategy: Reconstructing the Missing Number by Using the
Magical Number

Already earlier in the course of this lesson Kim has sketched her idea. Later she explains
her plan in detail. First she calculates the magical number 45 by adding the numbers 13,.
15 and 17 in the diagonal. With this proposal she expresses that one can determine the
magical number in an incomplete magical square. Then her argumentation starts.
147 K And then one could already make it this way. One circles

the fifteen [points at 15 in the first row] and this
fifteen [points at 15 in the second row] and adds it up.
And then one still calculates, how much there must be up
to forty-five.

The signifier "One circles the fifteen and this fifteen and adds it up." denotes the intention
to apply the known procedure for calculating the magical number to two numbers in the
diagonal. The second signifier "And then one still calculates, how much there must be
up to forty-five." could be understood in this way: One has to calculate how much is left
from the sum of 15 + 15 up to 45 (one has to calculate the difference); seemingly, this
number has to be placed into the empty field.

At this moment, several classmates object that nothing could be really calculated here.
"Well, that really leads nowhere ... Where you would like calculate up to? ... Exactly.
After all, you do not at all know which number is the result here!" (152, 153).

Kim formulates further explanations.

161 K First one calculates, one first calculates these numbers,

that I have, which are there, what is their result. And

then -, and then one calculates -
165 K These three, oh, yes, this, this and then afterwards one

calculates fifteen [circles 15 in the second row], one
takes this way. Cross out that, and that. And cross
out that and that [crosses the other numbers in the same
column and the same row]. Then one also takes the fifteen
[circles 15 in the first row]. Crosses out then the
seventeen and the thirteen [crosses out the still
uncrossed numbers in the same column and the same row].
And then one circles this here, this here [circles the
empty field]. And then one has to calculate, fifteen and
fifteen this makes thirty, how much is left up to
forty-five.

The signifier "And then one circles this here, this here." indicates the application of the
crossing algorithm for calculating the magical number to a missing third number to
the empty field. On the onehand, the second signifier "...one has to calculate, fifteen
and fifteen this makes thirty, how much is left up to forty-five." intends the calculation
of the magical number from three circled positions: 15 and 15 makes 30. But with the
third circled position one cannot calculate in the known standard way. On the other
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hand, one should now calculate in a "reversal manner" with the empty field: Here one

has to place the number that represents the difference between
thirty and forty-five (the magical number). Later, the addition
task is written as a complementary task "15 + 15 + = 45".
This task displays the form of an addition task with three terms,
but in an unusual way. It reflects a generalised structure allowing
to express the calculation with a partially unknown number. In
this way, new mathematical signs or symbols are created. By
applying the calculation scheme for the magical number to the
empty field and by writing the complementary task with an
unknown term, new mathematical signs are expressed and are
represented as abstract icons.
The epistemological analysis verifies that Kim constructs genuine new knowledge when
including the empty field into the mathematical operation to determine the magical
number. She argues that one cannot calculate with concrete numbers only, but the
algorithm for the magical number can be extended also to arbitrary fields with or

without numbers. The new mathe-
matical knowledge constructed in
Kim's argumentation can be descri-
bed with the help of the episte-
mological triangle. The new relati-
on (resp. "unknown number" or
"variable") is symbolised in two
ways; once as a "circled number"
and then as a missing term in the
addition task. In this domain of re-
presentation and of mathematical
operation we can observe how Kim
works with the "unknown number"
in a specific situated manner. Kim
places the unknown number into a
new mathematical relation with Concept

other numbers and in this way she Fig. 11: The epistemological triangle
constructs new knowledge; the new
mathematical object is created as a relation in the extended and generalised operational
structure of the number square.

4.2.4 Eva Repeats the Strategy Using the Magical Number
During the discussion of Kim's strategy, the teacher encourages other children to explain
how this "trick" works. Eva argues in the following way.
193 E Well. Ohm, one has to take three numbers out of the

magical square. Add them up. But not the empty field,

O
13 + 15 + 17 = 45

15+ 15 + = 45

Fig. 10

Object /refe-
rence context

15 16 17

14 15 16

13 14

Sign /
symbol

O
13 + 15 + 17 =45
15 + 15 =45z

[arithmetical
relations in the
number square
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there is not much to calculate, all right?
196 E Yes. And then you get the magical number. Then one must,

ohm, that, ohm take again three numbers, but now also the
empty field must be therein. And then you have to from
this number, you get then from these two, one has still
to go to forty-five.

With the first signifier, Eva intends the calculation of the magical number taking three
concrete arbitrary numbers from the square. She adds: "But not the empty field, there is
not much to calculate, all right?". One cannot and should not use this field for the
calculation of the magical number.

The second signifier indicates that the scheme of the algorithm for the magical number
shall be transferred to three other numbers: "... take again three numbers, but now also
the empty field must be therein." Here, the empty field is identified in a way with a
number; Eva characterises a mathematical unknown in a situation specific manner. When
transferring the algorithm the following calculation cannot be done in the usual direct
manner, because the third term is missing; consequently Eva modifies the calculation
procedure: "And then ...from these two, one has still to go to forty-five".
In her description, Eva makes the distinction between the impossibility to calculate a
sum by using the empty field as one of the three terms and the possibility to operate with
the empty field (as a kind of pre-variable) in the same way as with a known concrete
number, provided that the result of the operation is already known. Her argument
expresses a fundamental epistemological dialectic between old and new mathematical
knowledge. In the frame of understanding subtraction as »taking away<< an example
for old knowledge the task "5 7" cannot be calculated; later, with a relational
understanding of the number concept an example for new knowledge the same task
can be calculated by developing and using the new concept of "negative numbers".

5. Interrelations between the Epistemological and Communicative
Dimension of Mathematical Signs

Mathematical interactions are social systems, being at the same time characterised by
very specific intentions. On the one hand they are educational or instructional
communications, on the other hand mathematical knowledge is in some special way the
object of these communication processes.

Interactions between teacher and students are pedagogically intended social
communications with the aim to mediate knowledge. This implies a superposition in
the autopoietic development of the social communication with an "additional sense",
which is the result of the teacher's intention linked with his teaching and instruction.
This intention dominates the educational communication for all participants (teacher
and students). When trying to realise their instructional intentions teachers often
unconsciously make the assumption that the separation between the social and the psychic
system could be bridged directly and the meaning conveyed in the communicative process
could be transported instantly and unchanged into the student's consciousness (as it is



tried with the well known interactive funnel patterns; cf. i. e. Bauersfeld 1978; Krumm-

heuer & Voigt 1991, p. 18; Wood 1994, pp. 153ff.; 1998).
Mathematical communication copes with mathematical knowledge; this implies for

the (external) observer (the researcher) to analyse the knowledge which is generated in

the course of communication interactively from an epistemological perspective. The
analysis of the specific status of school mathematics and its interactively constituted
meaning shows that it can be interpreted as a "symbolically generalised communication
medium" (Luhmann 1997, p. 316ff.); in analogy to "scientific truth" (Baraldi, Corsi &
Esposito 1997, p. 190) one can speak here of "school mathematical correctness".

In the course of the first episode on "triangular numbers", one can observe a kind of
"compensating communicative strategy". During the interactive process of constructing
new knowledge up to the short phase of the accepted justification, the teacher assists,
comments and refutes the children's proposals. She uses a number of similar key words:
46

. . trying to place the next ..." (1); "Is this already correct? ... One could have the
impression, but it is not yet quite right" (5); "...this is not yet the right." (10); "Is this

the same?" (16); "Ooh, he is very close!" (22); "... Who could now explain why this is
correct now? That is correct, you must know." (24). With these descriptions, the teacher
indicates that she starts from a very definite idea about the third pattern. In the course of
the episode, the students are led to find out what, according to the teacher's opinion, is

the only correct pattern. After having given their own, correct proposals for continuing
the pattern, now the students do no longer interpret the conveyed signifiers with reference
to other mathematical signifiers for constructing in this way new epistemological
mathematical relations, but they start to seek for the intended signified belonging to the
teacher's signifier for attaining in this way the correct solution.

This episode shows in an exemplary manner that the necessary condition for starting
the autopoietic behaviour of the mathematical communication is "destroyed". First of
all, the receiver of the conveyance (a student) can ascribe the given conveyance only to
the conveyor (the teacher or another student). The possibility to detach the information
of the conveyance that the conveyor "attached" to his conveyance implies the possibility
of the autopoiesis of the social system. The students are more and more urged to deduce
directly from the teacher's signifiers the intended signified. Such a type of communication
takes place with the tacit assumption that mathematical conveyances (the signifiers; or
the mathematical signs) possess unequivocal information (definite referential signifieds),
which can be derived in a communication about the conveyances. In this way, the
referential links of the signifiers are shifted. The new signifiers no longer refer to
mathematical referential contexts immediately but they refer to the interpretation that is
postulated by the teacher in the existing reference context. The conveyances become
the new, proper object of communication. The signifiers are no longer conveyed in
communication for relating them to other mathematical signifiers or mathematical signs
mediated in interaction and thus constituting an interpretation.
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During the second episode, the communication has a different character. The attempts
to reconstruct the missing number are not dominated by explicit aims of the teacher.
Different proposed strategies are allowed: Kevin uses the number pattern of the given
number square; then several children reconstruct the missing number by reproducing
possible numbers in the border row and border column. Subsequently, Kim presents her
ideas to calculate the missing number with the help of the magical number; moreover,
three children explain this strategy with their own descriptions. The teacher does not
confront these proposals with her own fixed ideas about the correct solution; she mode-
rates and supports the children's construction of new knowledge that develops in the
course of interaction. Instead of pushing ahead her own ideas, the teacher places the
students' solution strategies into the foreground of the communication process, and this
makes possible to maintain a "true" mathematical discourse in this classroom.

The autopoiesis of the communication system is possible only if the signifiers are not
connected with the intention of the conveyor strictly but always have to be interpreted
in the course of communication in a new manner. For a given signifier there is no
definite, fixed signified in communication, and therefore there is no unique universal
sign, but different interactively evolving interpretations. Accordingly, a successful
authentic mathematical interaction requires that a communicated (new) mathematical
sign is not fixed a priori by a given referential object, but the participants have to develop
their own different and multiple readings of the communicated sign. Such multiple,
evolving interpretations of mathematical signs are possible only if these signs are not
explained by linking them with concrete properties of pre given empirical objects but if
the referents of mathematical signs are seen as relational structures.

An open referential interpretation of communicated signifiers or of mathematical signs
is indispensable for the progression of a mathematical communication process. A
successful mathematical discourse requires not to fix the mathematical signs definitely
and once for all, but to respect a rather open relation between mathematical signs and
referential contexts the learner permanently has to establish in new ways in interaction.
The realization of an open interpretation of mathematical signs strongly depends on the
acceptance of mathematical objects as »symbolic relational structures« in interaction.
When mathematical knowledge is reduced to its formal terminology and its logical
consistency with reference to fixed referents then the mathematicaldiscourse is in danger
to turn into a communication about the definte "correct" interpretation of mathematical
signs what in the end is decided by the teacher's authority.

The successful functioning of authentic mathematical interaction requires "open"
mathematical objects. A central implication is that every theoretical analysis of possible
reasons for the success or the failure of everyday mathematical interaction has to take
into account the very specific epistemological nature of mathematical knowledge as
"symbolised relations" and it has to reconstruct the social epistemology of mathematics
in interaction, i.e. the characteristic forms and situated descriptions for this knowledge.
The particularity of the mathematical in classroom interaction and also in any
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reconstructing analysis of such interaction is basically established by the, symbolic,
relational character of mathematical concepts; these concepts represent open
interrelations between formal sign systems and situated referential structures that have
to be negotiated in mathematical interaction.
Consequently, the manner of interpreting mathematical knowledge influences the
mathematical communication process essentially: Strictly fixed readings of mathematical
signs may cause a paralysis of mathematical communication and they also may lead to
a transformed, a ritualised communication. Open readings of mathematical signs with
regard to multi relational, structural reference contexts are preconditions for any authentic
mathematical interaction. The development of a successful mathematical communication
requires to take into account the epistemological particularities of mathematical
knowledge and at the same time the specificity of instructional interactions between
teacher and students. Direct, intentional teaching and interactive construction of new
mathematical knowledge often constitute a fundamental dilemma that cannot be dis-
solved easily in mathematical discourse.
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Constructing a calculator-aware number curriculum:
the challenges of systematic design and systemic reform

Kenneth Ruthven, University of Cambridge School of Education

Abstract: In England, the idea of developing a 'calculator-aware' number
curriculum for the primary school has been pursued over a lengthy period. Initial
explorations within a government-supported curriculum development project
proved a significant influence on the design of a national curriculum for
mathematics. Hence, the English experience provides an unusual case in which the
attempt to frame and implement a calculator-aware number curriculum has moved
beyond localised innovation to an attempt at national institutionalisation.

This paper will examine this experience, and some important emergent issues of
wide interest. First, it will outline the approach of the pioneering Calculator-Aware
Number (CAN) project, and its influence on the design of the national curriculum
for mathematics. Second, it will investigate the continuing experience of CAN
schools after the end of the project, coinciding with the introduction of the national
curriculum. Third, it will examine the progress of the cohort of pupils who entered
these schools at the start of this period. Fourth, it will relate pupils' mathematical
strategies to aspects of the curriculum framework. Finally, it will suggest some
lessons to be learned from this experience.

The development of calculator use in English primary education
The Calculator Aware Number project
The Calculator-Aware Number (CAN) project (Shuard et al., 1991) was a
component of the Primary Initiatives in Mathematics Education (PrIME)
programme, sponsored by the government curriculum agency. Before recruiting
schools and teachers, the project team formulated a set of basic working principles:

classroom activities would be practical and investigational, emphasising language
and ranging across the whole curriculum;
exploring and investigating 'how numbers work' would be encouraged;
children would always have a calculator available; the choice as to whether to use
it would be the child's not the teacher's;
the importance of mental calculation would be emphasised; children would be
encouraged to share their methods with others;
traditional pencil-and-paper methods of column addition, subtraction,
multiplication and division would not be taught; children would use a calculator
for those calculations which they could not do mentally.

Between 1986 and 1989, the project team worked collaboratively with several
clusters of primary schools and teachers. The tangible outcomes of the project were
these curriculum principles, illustrated through a range of classroom activities and
accounts, rather than a structured curriculum plan. This reflected the pedagogical
approach adopted by the project teachers:

The teachers began to develop an exploratory and investigative style of
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working, which allowed the children freedom to take responsibility for their
own learning. Topics for exploration took the place of practice exercises as the
prevailing classroom activities. Because the number sections of the
mathematics schemes used in the schools had been discarded, the teachers were
able to move towards a different style of working. No longer did they have to`cover' set topics in a set order. They began to notice that children's
mathematics learning did not seem to progress in the ordered linear way in
which it was traditionally structured. Individual children seemed to be putting
together the network of mathematical concepts in their own individual ways
(Shuard et al., 1991, 44).

The project team reported favourable findings from a participating local authorityin which the mathematical achievements of first cohort of project pupils were
compared with those of peers in other schools (Shuard et al., 1991). The following
year, the second cohort was involved in a similar comparison. The comparison was
still favourable, but less strongly so (Foxman, 1996).

Framing the National Curriculum
When the decision was made to introduce a national curriculum, it was not
surprising that the CAN project and its personnel should influence the proposals of
the working group charged with devising the programme of study in mathematics:

The universal availability of electronic calculators is changing our views about
the kinds of facility in computation which are needed of pupils ... Along with
the ability to use and interpret the results obtained from calculators there is
general agreement that a greater facility in mental arithmetic should be
encouraged (National Curriculum Mathematics Working Group, 1997: 8).

The rejoinder of the then minister of education was that:
it must be important that pupils themselves understand and are proficient in the
various mathematical operations that can now be done electronically
(Department of Education and Science, 1988: 100).

Later, he asked still more more pointedly:
Is it justifiable to exclude the pencil and paper methods for long ,division and
long multiplication from the attainment targets for mathematics, as themathematics working group have recommended? (National CurriculumCouncil, 1988: 92).

The final programme of study achieved a superficial resolution of this conflict
through the deliberate ambiguity of its references to 'non-calculator' methods of
computation, with a more explicit account of the approach favoured by the working
group confined to the accompanying pedagogical guidance which suggested that:

For most practical purposes, pupils will use mental methods or a calculator to
tackle problems involving calculations. Thus the heavy emphasis placed onteaching standard written methods for calculations in the past needs to be re-examined. Mental methods have assumed a greater importance through theintroduction of calculators, and the use of mental methods as a first resort in
tackling calculations should be encouraged. Work should be based in a firmunderstanding of number operations, applied to problems in a variety of
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contexts, and encourage pupils to select from different methods with
confidence depending on the nature of the problem and the suitability of the
method. (National Curriculum Council, 1989, E6).

Discussing the new national curriculum, the CAN project team wrote:
The CAN project has been very fortunate that National Curriculum
mathematics is much in line with the thinking the project has developed.
Teachers who work in the project have welcomed the emphasis in the National
Curriculum on a broad curriculum in mathematics, on using and applying
mathematics, on the encouragement for children to use their own methods of
calculation, and on the possibility of using calculators for much of the work.
Teachers in project schools have commented on a number of occasions that
they need to make many fewer changes to their curriculum than other teachers
(Shuard et al., 1991, 71).

Calculators in the National Curriculum
The programme of study was designed within a levelled framework intended to
prescribe progression within teaching programmes and to describe the resulting
development of pupil capabilities. The expectation was that pupils in the lower
primary (infant) phase (known as Key Stage 1) would cover the material of levels 1
to 3, and that by the end of that phase (at age 7), the great majority would be
assessed as attaining a level between 1 and 3, with the average pupil at level 2.
Similarly, during the upper primary (junior) phase (known as Key Stage 2), it was
anticipated that, by the close of the phase (at age 11), the great majority of pupils
would achieve a level between 3 and 5, with the typical pupil at level 4, having
covered the programme of study to level 5; with level 6 'intended for only the most
able children performing significantly above the normal range' (School Curriculum
and Assessment Authority, 1995).
Table 1 abstracts, from the mathematics programme of study, those references to

calculators relevant to the primary school (excluding levels 1 and 6 which make no
references of this type). This is certainly a curriculum which acknowledges the
calculator; but is it a calculator-aware curriculum? References to 'using a
calculator' start warily. At levels 2 and 3, this is to be for checking or 'where
necessary'. Half of the examples concern money calculations. At levels 4 and 5,
cautiously affirmative references to 'using a calculator where necessary', working
`with the aid of a calculator' and `check[ing] using a calculator' are easily
outnumbered by prohibitive references to working 'without a calculator' or 'using
non-calculator methods'. A product of the fudged compromise over the relative
emphasis to be given to mental and written, standard and nonstandard methods, this
negative phraseology comes over as subversive of calculator use.

While there is an emphasis on interpreting results 'on a calculator' and 'reading
calculator displays', there is only one reference to the need to 'translate the
problem...in order to use a calculator'. However, there is one important innovation,
in the form of 'trial and improvement' as a solution strategy. Clearly dependent on
calculator availability, although avoiding reference to it, this is the sole recognition
of the possibility of distinctive calculator methods.
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Table 1: Calculator references in National Curriculum mathematics
programme of study (1989 & 1991)

Level Programme of Study Example

2 Describe current work, record findings
and check results.

3 Solving problems involving multiplication
or division of whole numbers or money,
using a calculator where necessary.
Using decimal notation in recording
money.

Appreciating the meaning of negative
whole numbers in familiar contexts.

4 Adding and subtracting two 3-digit
numbers, without a calculator.

Devise stories for adding and subtracting
numbers up to 10 and check with calculator
or apparatus. [1989]
Find the cost of four calculators at
£2.45 each. [1989, 1991]

Know that three £1 coins plus six 1p coins
is written as £3.06, and that 3.6 on a
calculator means £3.60 in the context
of money. [ 1989, 1991]
Understand a negative output on a calculator.
[1989, 1991]
Work out without a calculator how much
longer 834 mm is than 688 mm. [1989]

Multiplying and dividing 2-digit numbers by
a single-digit number, without a calculator.
Solving addition and subtraction problems
using numbers with no more than two
decimal places, and multiplication and
division problems starting with whole
numbers.

Reading calculator displays to the nearest
whole number and knowing how to inter-
pret results which have rounding errors.
Recording findings and presenting them
in oral, written or visual form.

5 Understanding and using non-calculator
methods by which a 3-digit number is
multiplied/divided by a 2-digit number

Calculating fractions and % of quantities
using a calculator where necessary.
Using 'trial and improvement' methods
and refining.

Approximating, using significant figures
or decimal places.

Make and test simple statements.

Work out how many chocolate bars can be
bought for £5 if each costs 19p, and how
much change there will be. [1989, 1991
without the aid of a calculator]
Find out how many 47-seater coaches will
be needed for a school trip for a party of
352. [1991 with the aid of a
calculator, interpreting the display]
Interpret 7 ÷ 3 x 3 = 6.9999999 if it occurs
on a calculator. [1989]

Translate the problem of finding the number
of 28p packets of crisps that can be bought
for £5 into 500 ÷ 28 = in order to use a
calculator; record the result as 17.857142
and thus decide that the result is 17. [1991]
Use any pencil-and-paper method to find the
number of coaches needed to take 165 Year 7
pupils on an outing if each coach has 42 seats

Calculate 15% of 320; 315 of 170 m;
37% of £234; lito of 2 m. [1989]
Estimate the square root of 10 and refine
to 3 decimal places. [1991]

Read a calculator display, approximating to
3 significant figures. [1989)
Explore the results of multiplying together
the house numbers of adjacent houses, make
a statement about the results, and check using
a calculator. [1989]
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Calculators and national testing
As the first pupils completed each Key Stage, a national programme of assessment
was introduced, incorporating external testing. Again, at first sight, the place of
calculators is acknowledged. To take the example of the 1995 Key Stage 2
mathematics tests, the opening instructions explain the use of icons to indicate where
the use of a calculator is stipulated or prohibited, and state that its use is permitted
on items without an icon. Of the 40 items across the two test papers, 14 prohibit use
of a calculator. A number of these items took the form of missing digit problems
presented in the vertical format of standard written methods, rather than in a more
methodically neutral, horizontal format. Such presentational features, combined
with concern about the acceptability of nonstandard approaches when meeting
requirements that pupils should show their working, led many teachers to conclude
that the testing process entailed a preference towards standard written methods. Use
of a calculator is stipulated on only one item within the two test papers. Only one
further item might be regarded as calculator affirmative both uses the machine as
its setting, and permits its use.

Beyond the optimistic speculation, then, and beneath the veneer of calculator
recognition, both national curriculum and national testing emerge as more
`calculator-beware' in spirit than 'calculator-aware'.

Impact of the reforms on professional practice
The official evaluation of the implementation of the new curriculum found that
teachers made little reference to the non-statutory guidance, and were already
confident of their teaching of number (Brown et al., 1993). Combine these factors
with the tone of the curriculum document and national testing, and it is not startling
to find school inspections reporting a largely unchanged pattern of professional
practice:

In all the schools visited the teachers placed a strong emphasis on the written
practice of the basic operations of addition, subtraction, multiplication and
division. This dominated the work in half the schools ... For many schools
there was an imbalance between the written practice of basic number skills and
mental, oral and practical work involving number...The skills of using a
calculator were neglected in a high percentage of the schools; in only a tenth of
the lessons seen were calculators used ... Only in the most successful schools
was a policy of calculator use thought out in relation to the acquisition of
mental and 'pencil-and-paper' skills (Office for Standards in Education, 1993:
9-11).

However, let us now turn to examine a group of schools which had been involved
in the CAN project.

The evolution and long-term impact of CAN in project schools
As the CAN project drew to a close in the summer of 1989, the National
Curriculum came into force. A Cambridge research study examined the
mathematical experience of a cohort of pupils who entered reception class during
the 1989/90 school year, progressing to the final year of primary education in
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1995/96. Data was gathered in six neighbouring primary schools, all covering the
full primary phase. Three of these schools participated in the CAN project between
1986 and 1989, and in the much smaller-scale continuation project to 1992.
The influence of national reforms
The accounts of teachers in the post-project schools indicate how their practice wasinfluenced by the national reforms. The general tenor was of seeking to retain
valued principles and activities from CAN; to establish the legitimacy of these
principles and activities within the new order; and to tighten aspects of their
implementation.

It's made very little difference in the way I taught maths personally. Verylittle. The other thing it had done in this school - it would have happened
without the National Curriculum anyway it refocused people's ideas on the
structure that was needed right through the year groups. [Richard]
I don't think the delivery has done anything except become a little cleaner. It's
forced me to sharpen up my act. I think if we want to hold on to this we've got
to really be able to...justify it. We've got to show that it can be done in thisway...It's not that we're being subversive. It's there in the NationalCurriculum. It's that it's not terribly common what we do. I feel we have to
justify it. [Stephanie]

The substantive influence of these external pressures had been threefold. First,
some of the expansiveness of investigative work had gone, with a stronger
tendency to structure and foreclose an activity than in the past.

I think what's altered is that pre National Curriculum I would have had a muchbroader, less clear picture of what I wanted to get out of a session, and
therefore I would have been more open to other things that came up, andwould have been able to pick up on those other things and delve a bit deeperwith the children. I think what its forced me to do is to keep on a much
narrower pathway. [Stephanie]
I would probably [have done] more longer investigations. Now, I do a lot more
shorter activities, to get the coverage in a year. [Tracy]

Second, although calculators continued to be readily available in the classroom,there were occasions when their use was challenged or proscribed.
There might be some negative reference: 'How are you going to do that, to usethe calculator?' ... So there might be some kind of sideways swipe at it.
[Stephanie]
The policy is that they are there all the time, but [sometimes we say] 'Actuallyfor this activity I don't want you to use a calculator'. [Tracy]

Third, standard written methods of recording and calculating were now taught. AtKey Stage 1, teachers felt obliged to introduce pupils to vertical methods ofrecording, and to ',SUM' presented in this way.
[Tests] brought back more formal work. Having been through the first mathstest it was formal sums set out, which the children were not used to seeing.That's when we decided that we were going to have to introduce formal sumsset out ready for them. They'd set them out any way they wanted. [Rachel]
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The first [tests] affected [the Key Stage 1 teachers]. After being used to CAN
and recording in their own way, after the first [tests] they were suddenly
putting everything in columns. Worried children wouldn't understand. [Tracy]

At Key Stage 2, standard written methods were more prominent, although the
expectations of secondary schools were often cited as the direct reason for this.

Conceptually they had a pretty good insight of number, but on paper, when
they were presented with any kind of traditional sum on paper, which they
would be at the high school, the children were worried and the parents were
worried. We just felt we had to teach it them. [Richard]
[Emphasis on pupils' own strategies] has caused some difficulty on transfer. If
they don't use a traditional method, it is considered that they can't do it. So
even if it is not their preferred option, they have been taught a traditional
method so they know how to use it, for that reason. [Stephanie]

Awareness of tensions within the CAN model
Teachers had developed a more subtle view of the complexities of supporting
pupils' development of methods of calculation. They were conscious of having to
manage an important tension between personal insight and authenticity on the one
hand, and accuracy and efficiency on the other.

We've built on what the children have actually used... try out the different
methods and encourage them to find the one they feel most happy with... There
is one child I did change ... because he was not accurate, and he was slow. His
methods were so long-winded ... It is important that children do have quick
accurate methods. One of the things which is really important is ... that the
children have conceptual awareness of what's happening with the numbers. If
they know that then they are secure. But some of the children are going
through the motions with methods they don't understand. [Richard]
We put [pupils' strategies] very high up [but] the older a child is the more
likely I am to say 'That's fine but it takes twice as long as this one'...There is
kind of a seductiveness in working investigatively...and they forget that there
can be a directness that is important as well. [Stephanie]

Another issue which emerged from teachers' accounts related to the
systematisation of CAN within schools. Salient themes here were of the uncertainty
and effort arising from the abandonment of a conventional mathematics scheme,
with limited alternative means of support.

I came to this school having a fairly sketchy knowledge of CAN, having seen it
in operation, but having a sketchy knowledge about how to proceed, and
finding no resources. The resources there were were photocopiable resources
and packs. There would be one copy so you had to have copies made. It was
incredibly hard work preparing lessons each day. [Richard]
We more or less abandoned schemes and went in at the deep end with CAN.
Two members of staff in particular were heavily involved with it and went to
meetings and then fed back to staff. But, as I remember, you were left floating
about a bit and not knowing what was right or what was wrong to do. I
remember thinking if I just give them investigations and problems and help
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them to solve them, that's how I'll survive this. You felt as thought there wasnothing to support you...When you have a scheme, you don't use it rigidly, butyou know it is there as a support for you if you need it...The two who went tothe meetings seemed to be more capable at it. You needed to go to themeetings. They got the ideas from the meetings. We just got the 'trickle down'.[Tricia]
In these circumstances, it was difficult to plan for continuity and progression inchildren's learning, both from lesson to lesson and from year to year.
In CAN it was difficult to know how to progress. After an exciting lesson youthought 'Where do I go now? Where do I take them next?' You'd be ro:.',`:ingaround for ideas. [Tricia]
There was no structure through the school...I noticed in my first year thatteachers were photocopying an investigation for Year 3 children and the sameone was being used for Year 6 children, and nobody knowing what thechildren had covered at all. [Richard]

One important effect of the national curriculum and assessment reforms had beento press schools to develop a more systematic approach to number, building on thenational frameworks. Indeed, this was an important strand of the 'focusing' and`sharpening up' attributed to the reforms in the opening quotations of the previoussubsection.

The long-term influence of CAN on pupil attitude and attainment
The Cambridge study compared the progress of pupils in the post-project schoolswith that of their peers in the non-project schools (Ruthven, Rousham & Chaplin,1997). National assessment levels awarded at the end of Key Stage 1 (aged 7) and ofKey Stage 2 (aged 11) were analysed, to determine whether the odds of high or lowattainment in mathematics differed between schools, after taking account of thegeneral scholastic attainment of pupils.
At Key Stage 1, the odds of high mathematics attainment (level 3) were found tobe significantly greater in the post-project schools, as were the odds of lowmathematics attainment (level 1), with no individual school in either groupdiverging from this pattern. In the post project schools, then, pupils were morelikely to be found at either extreme of the attainment distribution. Comments fromthe teachers of the CAN cohort suggest that a plausible explanation is that theemphasis on investigative and problem-solving tasks within CAN produced agreater differentiation of experience between pupils, creating higher expectationsof, and greater challenges for, successful pupils, but providing less systematicstructure and support for the learning of pupils who were making poor progress.One of the things that keeps me working in this way is that low ability childrendon't get so complexed about it...I think the weak ones do benefit from a lot oftalk and being involved in things. They are not excluded because they didn'tmanage to get quite as much done. And for the high flyers, I think it is abrilliant way of working because they can go as far as they want; there is noceiling on them. They can take off and go a long way with things and the talkis good for them at that end. [Stella]

1- 63 1 0 3,



You always thought 'Do children really understand - particularly the less able
children? Do they really understand what it is they are doing? I think it showed
up with more able children, if they got an answer which was clearly wrong,
they knew it was wrong. But that estimating thing was not there with less able.
You'd have outrageous answers and they wouldn't have a clue it was not
right...I didn't ensure that, like I do now, that children could add up quickly,
mentally in their head...Looking back I think I should have done that. That
would have helped the less able with their estimating...Some children
struggled, but the children who had a gift for maths did very well. If they had
a good understanding of the structure of numbers and estimating skills, then
they went quite far. [Tricia]

However, this differential pattern did not persist through to the Key Stage 2
results, where no significant group differences were found between non-project and
post-project schools, although in one non-project school the odds of low
mathematics attainment (level 2 or 3) were significantly greater.

Pupils were also tested on a range of concepts related to place-value, using five
blocks of items involving larger whole numbers and numbers with decimal parts.
Relative to overall mathematical attainment (as assessed by national test levels),
patterns of achievement on these blocks of items did not produce any significant
effects interpretable as differences between the groups of schools.

Pupils also completed an attitude questionnaire. No significant differences between
schools were found on the constructs Enjoyment of number work, Reluctance to use
a calculator and Calculator use as a support for number learning. However, on the
construct Preference for mental over machine calculation, there was a discernible,
but non-significant, trend for pupils in the post-project schools to be more positive.
And on the construct Mental calculation as a support for number learning, pupils in
the post-project schools were significantly more positive.
A further study strengthened these findings (Ruthven, 1998). It examined the

strategies used by a structured subsample of pupils -excluding those at the extremes
of attainment- in tackling a set of number problems. Whereas 38% of pupils from
post-project schools tackled all problems mentally, without any use of written or
calculator computation, and only 24% had recourse to these supports on more than
one occasion, the corresponding proportions for non-project schools were 19% and
52% respectively. Pupils from post-project schools were not only more prone to
calculate mentally, but also more liable to adopt relatively powerful and efficient
strategies for doing so.

These outcomes seem to reflect contrasting numeracy cultures in the two groups of
schools. In the post-project schools, pupils had been encouraged to develop and
refine informal methods of mental calculation from an early age; they had been
explicitly taught mental methods based on 'smashing up' or 'breaking down'
numbers; and they had been expected to behave responsibly in regulating their use
of calculators to complement these mental methods. In the non-project schools,
daily experience of `quickfire calculation' had offered pupils a model of mental
calculation as something to be done quickly or abandoned; explicit teaching of
calculation had emphasised approved written methods; and pupils had little
experience of regulating their own use of calculators.
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Pupils' computational strategies and the curriculum frameworkWe now return to consider the programme of study which guided the primaryschooling of these pupils, in the light of further evidence from the Cambridgestudy. At level 4, pupils are expected to be able to 'Find out how many 47-seatercoaches will be needed for a school trip for a party of 352', 'with the aid of acalculator, interpreting the display'; and at level 5, to 'Use any pencil-and-papermethod to find the number of coaches needed to take 165 Year 7 pupils on anouting if each coach has 42 seats'.
In the Cambridge study, then, pupils in the structured subsample were presentedwith a version of the 'coach problem': 313 people are going on a coach trip. Eachcoach can carry up to 42 passengers. How many coaches will be needed? How manyspare places will be left on the coaches? (Ruthven & Chaplin, 1997) Pupils hadbeen told that they could work out the problem however they liked; using theirhead, pen and paper, or calculator, or a mixture of these. Drawn from across thesix schools, their attainment distribution corresponded very closely to that whichwould have been found in a similarly truncated national sample.

Direct strategies for the coach problem
The first strategic idea used by most pupils was some form of direct division. Someattempted to use a non-calculator method of computation (typically a standardwritten method). None was able to accomplish the computation successfully.Around a third proposed, nonetheless, an incorrect solution; around a thirdswitched to use a calculator to carry out the division; and around a third abandonedthe problem, or changed approach.
Many pupils appeared surprised by the result of the calculator division.Karen keys [313][÷][42][=]7.452380952
Karen: Whoopsee!
Interviewer: What have you got?
Karen: I've got loads of numbers.
Interviewer: Are they any good to you?
Karen: No
Interviewer: Why?
Karen: I don't know
Interviewer: Can you understand what they say?
Karen shakes her head
Interviewer: Okay.
[pause]
Rekeys [313]H[42][.]7.452380952
[pause]
Keys [42][÷][313][.]0.134185303

Karen's initial interpretation of the string of digits on the calculator display wasthat she has miskeyed; and when rekeying produced the same result, she thensupposed that she must have reversed numbers within the calculation. Behind suchresponses lay an expectation -or perhaps an aspiration- that the result of a divisionshould be a whole number. Certainly, the 'commonsense' of this problem points inthis direction, as in Tom's initial reaction: 'You can't split a coach up'. But other
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factors are also in play. For these pupils, from their experience of mental and
written calculation, division was a process yielding whole numbers as quotient and
remainder. By contrast, the calculator provides a (not necessarily whole) ratio. The
results of the two processes are the same only for 'exact' division. Karen did not
recognise the string of digits as incorporating a decimal resulting from a division.
Yet -on the evidence of testing a few weeks earlier- she was capable of working
successfully with the one- and two-digit decimals specified by the curriculum.
Although Damon did recognise the result as that of a division, his response

illustrates a common difficulty: that of confusing decimal part with remainder.
Damon keys [313][÷][42]H7.452380952
Interviewer: What have you got? Any good?
Damon: About seven coaches.
Interviewer: About seven coaches.
[pause]
Damon: I think it's four.
Interviewer: Four.
Damon: Yeah.
Interviewer: Spare places?
Damon: Yeah.
Interviewer: How did you work that bit out?
Damon: Because it's seven point four.

None of the pupils attempting this calculator division proceeded successfully to
interpret the calculated result as implying 8 coaches. Around a quarter carried
forward an estimate of 7 into a further strategy.
Vera shows how the calculator itself could be deployed to make sense of the result.

Vera keys [313][4-][42]H7.452380952
Interviewer: What does it say?
Vera: I don't know
Interviewer: Okay, so that's not helpful. What else could you do?
[pause]
Keys [313][÷][14]H22.35714285
Interviewer: Oh there's another one.
[pause]
Interviewer: What do you think you could do?
Keys [42][-:-][10][=]4.2
Vera: Four point two.
[pause]
Interviewer: Any ideas?
Keys [42][x][7][=]294
Interviewer: Why did you try that?
Vera: I don't know really

Vera gave little away, and any interpretation of her intermediate moves must be
speculative. One conjecture is that they enabled Vera to build a bridge between
incongruous digits and familiar decimals. The division of 313 by another number
resembling 42 confirmed the 'appropriateness' of the original result. By then
dividing 42 by 10, Vera produced a simple decimal, completing the process of
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anchoring the unexpected result in a familiar category, and supporting the idea ofcarrying forward 7 to the next move. In this interpretation, then, these movesbecome transitional ones of sense-making.
Kylie, too, carried forward 7, to the written multiplication 7 x 42 = 294, followedby the written subtraction, 313 - 294 = 19, in effect translating the ratio result ofthe calculator division into quotient and remainder form, although she then fell forthe tempting interpretation that this implied 7 coaches and 19 spare places.
These episodes highlight the special character of calculator division and thedemands that it makes on pupils' mathematical understanding. Carrying out thisapparently simple computation proved to be anything but the mindless, au:,,maticprocess that using a calculator is commonly reputed to be.

Indirect strategies for the coach problem
Less direct strategies were also used to tackle the problem. Two pupils adoptedforms of trial and improvement as their opening strategy, using a calculator tocarry out the trial computations. Both solved the problem successfully in this way.Joanne employed trial multiplication.

Joanne keys [42][x][12]H504
Interviewer: Why did you do that?
Joanne: Forty two times any number, but it was a bit too high.
Keys [42][x][10][=]420
Joanne: Forty two times ten, that's too high so..
Keys [42][x][8][=]336
[pause]
Joanne: They'd need eight coaches, and they'd have..
[pause]
Joanne: Twenty three places left over.

Note Joanne's use of the calculator to multiply 42 by 10. Using the machine to carryout computations in a predictably routinised way, Joanne freed her attention tomonitor her strategy and interpret results. She was very capable of doing such acalculation mentally; a few minutes earlier she had successfully multiplied 24 by 10in her head, answering within one second.
Around 30% of pupils employed some form of repeated addition as their openingstrategy, and a further 16% took up this type of strategy at a later stage. Around aquarter of such attempts used the calculator for computation. Liam's experience wastypical.
Liam: So you need to add up how many forty twos go into. I'll do that. I'msure you could do it a quicker way but, well.
Keys [42][+] [42][+] [42][+] [42][+] [42][+] [42][+] monitoring intermediatetotals
Keys [252][+]
Liam: Oh no!
Interviewer: Where have you got to? What's happened?
Liam: Hmmm. Don't know.

The calculator leaves no trace of intermediate results, making any extendedcalculation incorporating a parallel mental computation extremely vulnerable to
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failure through miskeying or losing track of where the calculation has reached. All
calculator attempts of this type broke down in this way. Pupils who tried to
compute mentally without recording had similar difficulties.

Reviewing the curriculum framework
These pupil responses to the coach problem can be related to characteristics of the
National Curriculum under which their primary schooling had been conducted;
notably, to features of the progression implied within the levelled framework.
First, pupils such as Karen and Damon had difficulties in making sense of the

result of the calculator division. Interpretation of division calculations certainly
features explicitly in the curriculum framework in the form of 'understanding
remainders in the context of calculation and knowing whether to round up or down'
at level 3; and 'reading calculator displays to the nearest whole number' at level 4.
For this problem, however, pupils needed not so much to read the display to the
nearest whole number, but to recognise it as a number lying between 7 and 8.
Equally, they needed not so much to understand remainders, but to distinguish
them from decimal parts. This highlights the importance of seeing curricular
objectives as embedded in a wider conceptual system.
Decimals appear in the curriculum framework for the first time at level 3:

explicitly in 'using decimal notation in recording money', and (hence) implicitly in
`solving problems involving multiplication or division of whole numbers or money,
using a calculator where necessary'; then at level 4 in the form of 'using, with
understanding, decimal notation to two decimal places in the context of
measurement' exemplified as 'read scales marked in hundredths and numbered in
tenths (1.89m)', and 'solving addition and subtraction problems using numbers with
no more than two decimal places'. Gaining familiarity with these monetary and
measurement contexts and the corresponding calculation schemes is undoubtedly
important, but too literal a treatment risks encouraging a view of the decimal point
as a 'separator' within a system of super- and sub-ordinate units such as pounds-
and-pence or metres-and-centimetres. Not until level 6, is there explicit reference to
underlying relationships between division, fractions and decimals in the form of
`understanding and using equivalent fractions and equivalent ratios and relating
these to deeimals'.
A similar issue arises in relation to checking. Repeating the original computation,

as illustrated by Karen, appeared to be the major strategy employed by pupils to
check their calculations and solutions. There was no evidence, in particular, of
pupils mentally calculating an approximate value for 313+42, either as a rough
check on a non-calculator or calculator division, or as the basis of some further
strategy. The pedagogical guidance certainly emphasises this issue.

Whether using mental, pencil and paper or calculator methods, pupils must be
able to estimate, approximate, interpret answers and check for reasonableness.
The development of these skills is crucial to pupils becoming effective and
confident in performing calculations, and should match the development of
methods and techniques for calculating. (National Curriculum Council, 1989).

However, closer analysis suggests that the curriculum framework does not actually
make provision for suitable methods of checking. The type of approximate mental
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calculation appropriate for estimating the result of this level 4 calculator division orlevel 5 written division does not feature until level 6, in the form of 'using
estimation and approximation to check that answers to multiplication and divisionproblems involving whole numbers are of the right order', exemplified by`Estimate that 278 39 is about 7'. And no explicit reference is made within the
framework to the more viable alternative of checking the solution through workingback to the original data.
A third issue is the assumption that such checks should be mental; related to the

wider assertion -prominent within the pedagogical guidance- that pupils should beencouraged to view mental methods as a first resort. Clearly, developing pupils'expertise in mental calculation is an important curricular goal, not least because
components of this expertise underpin estimation through approximate calculationas well as written methods of calculation. But an overgeneralised insistence onprioritising mental calculation can impede pupils' thinking and inhibit their learningof other aspects of mathematics. We have already seen how, while focusing on ahigher level solution strategy, Joanne employed a calculator to execute acomputation which, under other circumstances, she had shown herself perfectlycapable of carrying out mentally. Equally, the reluctance of some pupils to makeuse of a calculator to implement a direct division led them to adopt alternativestrategies based on addition, which they felt better able to compute mentally, butwhich often proved unreliable.
Again, the programme of study largely ignores such issues. In particular, there isno explicit reference to the importance of developing effective use of the calculatorconstant. This reflects a more general lack of vision. With the exception of trial-

and-improvement, there is no recognition of the possibility of distinctive calculatormethods to parallel those of written computation.
Here, Kylie's approach points the way to a distinctive calculator-based method of`quotient and remainder' division. Figure 1 shows a systematic version, capable of

incorporating a range of checks. The scheme incorporates two parallel numberlines, spatially encoding the relationships between different elements of the record.Might such a calculator method serve to cap the calculator-aware number
curriculum, drawing together and integrating important strands, in much the sameway as the proponents of the written long division method see it as capping thetraditional number curriculum?

Lessons of the English experience
There are two important lessons to be learned from the English experience. Thefirst is that the design of a calculator-aware number curriculum calls for morethoroughgoing analysis -both of content and progression- than it has received todate. This emerges both from the accounts of the teachers involved in CAN, andfrom the analysis of pupils' performance in terms of the National Curriculum
framework. This is an important issue which deserves attention from researchers;they should aim to develop and evaluate both a systematic design for a calculator-aware curriculum and an appropriate pedagogy of calculator use (Ruthven,forthcoming).
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The second lesson is that, however well designed such a curriculum, its successful
implementation is likely to depend on it being treated as part of a coherent and
committed process of school development -and ultimately of systemic reform-
rather than as the isolated responsibility of individual teachers. This can be seen
both in the problems of coordination which emerged within the CAN schools, and
in the limited impact of the National Curriculum reforms on the teaching of
number across the system. These organisational issues are often neglected by
mathematics educators, but they emerge as critical to the successful
institutionalisation of change.

One and a half of these lessons have now been learned in England. A National
Numeracy Project has piloted and refined a more systematic programme for the
primary number curriculum; and its implementation has been treated as an aspect of
school improvement, calling for sustained commitment and support from school
managers, as well as the involvement and professional development of all teachers.
This will form the basis of a forthcoming national programme (Department for
Education and Employment, 1998).

And the missing half? The new programme of study will be systematic, but far
from calculator-aware. In the moral panic over standards of numeracy in English
primary schools, the calculator has been cast as scapegoat, despite evidence that it
was little used; and that, where it was used, this was not to the detriment of pupils'
achievement (School Curriculum and Assessment Authority, 1997a; 1997b). The
political compromise that has emerged confines use of calculators to the last two
years of primary education, treated as a relatively isolated element of the number
curriculum, concerned with teaching children 'when it is, and is not, appropriate to
use a calculator' and 'the technical skills needed to use it constructively and
efficiently' (Department for Education and Employment, 1998: 53).

Figure 1:Calculator-based method for 'quotient and remainder' division

30 ÷ 42 =

8 336

23
7.4523809 313

19

7 294
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Plenary panel:
Doing research in mathematics education in time of paradigm wars

Coordinator: Anna Sfard, The University of Haifa, Israel

Panelists: Pear la Nesher, The University of Haifa, Israel
Stephen Lerman, South Bank University, London, UK
Ellice Forman, University of Pittsburgh, USA

1. Panel overview

These days we are witnessing an unprecedented proliferation of research frameworks
in human studies at large, and in the field of mathematics education in particular.
Along with the wide range of traditional cognitive approaches and their updated
current versions, there is a steadily intensifying socio-cultural trend including a whole
spectrum of research frameworks, from situated cognition through distributed
cognition to a number of schools that include the term 'discourse' in their name. This
unusual situation provides researchers with many exciting possibilities, but at the
same time creates communication problems and leads to partitioning of the
community into a growing number of 'camps', only too likely to argue against each
other (see, e.g. Anderson et al., 1996; Greeno, 1997). The aim of the panel is to raise
and discuss some questions about research, which in these circumstances must
urgently be answered. This will be done by considering a research proposal of a
Ph.D. candidate who wants to devote her dissertation to mapping student's
difficulties with negative numbers. The panel members will act as a Ph.D. committee,
which has to decide whether to accept the proposal. Each of the panelists will review
and evaluate the proposal from the vantage point of a certain well-defined research
framework: Pearla Nesher will take a cognitive approach, with its roots in Piagetian
theory, Steve Lerman will speak from a strong sociological/postmodern position, and
Ellice Forman will try to present a more moderate vision by taking a developmental
social constructivist stance. Discussion will then be opened to the audience who, by
the end of the session, will be required to decide whether the proposal should be
accepted, substantially modified, or simply rejected.
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2. Research proposal by Ph.D. candidate Angelica L. Pabst:
Investigating and informing middle school students' conceptions

of the negative numbers

I. The theme of the study and its rationale. Negative number is one of the most
fundamental, and at the same time most problematic mathematical concepts taught
today in our middle schools. Its central role in modern mathematics can hardly be
overestimated. The appearance of negative numbers in Medieval Indian mathematics
and then through Arab texts in Renaissance Europe (see e.g. Boyer, 1985; Kline,
1980) was as a groundbreaking event, which led to important developments in
algebra and beyond. One can hardly envision the impressive mathematical advances
of the last three centuries without it. Neither can one imagine an educated citizen of
the third millenium society who is not familiar with the notion.

In spite of the retroactive obviousness of their usefulness and indispensability, the
negative numbers had a difficult and prolonged birth. The doubts and mistrust with
which Renaissance mathematicians greeted this important notion had been
obstructing their progress for centuries. Today these difficulties should be of special
interest for the mathematics education researcher. The historical phenomena may be
indicative of an inherent difficulty of the concept a difficulty that is only too likely
to hinder its learning in our schools today. There is much evidence that, indeed, the
idea of negative number is a major challenge to many learners. To illustrate the
nature of the most common difficulties, let me use the personal testimony of the
French writer Stendhal who, after stating his inability to cope with the concept on his
own, issues the following complaint about his teachers: "Imagine how I felt when I
realized that no one could explain to me why minus times minus yields plus!"
(Stendhal, quoted in Hefendehl- Hebeker, 1991). That Stendhal's case is not
exceptional is evidenced, among others, by a number of studies (see e.g. Hart, 1981).

In spite of the importance of the concept, the issue of its difficulty and, more
generally, the question of how it is being acquired by the learner has not been given
the due attention by the mathematics education community. When surveying the
work done during the last few decades one cannot help being surprised by the striking
difference between the abundance of studies devoted to basic arithmetic and algebraic
concepts, to the concept of function and to rational numbers on the one hand, and the
scarcity of research on negative numbers, on the other hand. Thus, considering the
fact that our knowledge and understanding of the topic are still fragmentary, there a
study such as the one to be presented in this proposal seems to be urgently needed.

114 1-76



2. The purpose of the study. The study has a double goal. First, it aims at enhancing
our knowledge of the processes underlying the acquisition of the concept of negative
number and our understanding of the difficulties which obstruct this process. Second,
it is expected to lead to operative implications about the ways in which teaching and
learning of the subject may be improved.

With respect to the first, more theoretical, goal, the intention is to get to know types
of misconceptions about negative numbers and kinds of repetitive procedural errors
that commonly appear in the middle school population. The study will suggest a
categorization of students' mistakes and will attempt an explanation of their deeper
cognitive roots.

The second goal is to formulate and to test some operative didactic ideas based on the
findings on students' misconceptions and procedural errors. In the most extreme
case, if the results of our investigations show a definite prevalence of faulty
conceptions and procedural difficulties in the middle school population, we may
conclude that the children of this age are not yet developmentally ready for this
intricate topic. In this case, we shall recommend delaying it to later grades. With the
intention to improve the learning of the subject we will then develop a new teaching
unit on negative numbers aimed at students of the proposed age.

3. Theoretical framework Thanks to a few generations of cognitive psychologists,
but mainly to Piaget, the human mind is no longer conceptualized as a mere reservoir
of accidental concepts, facts, and procedures but rather as a well organized structure,
composed of ever growing mental schemata. Thus, once a person learns a
mathematical concept, this concept becomes a part of a web-like cognitive system
that connects it to other mathematical and non-mathematical notions. This is what
keeps this new concept conveniently in the student's long term memory, and this is
what makes it meaningful in his or her eyes. Cognitive schemata, and thus individual
understanding of concepts, may change from person to person, and in any given
person all these cognitive entities may vary considerably over time; nevertheless, at
any given moment any given notion is conceived by a person in a specific, rather well
defined way. It is this private conception which is responsible for the way its owner
acts whenever application of the given notion becomes appropriate. Thus, the
researcher or teacher endowed with the knowledge of a learner's understanding of
negative number has a reliable basis for predicting this student's behavior in
situations involving negative numbers.

Within this theoretical framework, learning is defined as an ongoing process of
construction and modification of mental schemata. It is the basic tenet of this theory
that rather than being a passive recipient of knowledge, the student is the builder of
his or her own cognitive structures. Sometimes, the individual constructions resulting
from school learning are incorrect and must therefore be termed misconceptions.
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Misconceptions are faulty understandings resulting from inadequate cognitive
schemata. These inadequacies may be an outcome of an inappropriate former learning
that failed to prepare the necessary foundations. They may also stem from the lack of
developmental readiness on the part of the learner. For example, there is little doubt
that such an advanced and overly abstract mathematical idea as negative number
requires fully fledged formal thinking, whereas there is no guarantee that the target
population of twelve and thirteen year olds has, indeed, the required cognitive
maturity.

According to another basic assumption of this study, an appropriate instructional
strategy may greatly reduce the occurrence of misconceptions and procedural
difficulties related to such concepts as negative number. Documentation of common
mistakes and underlying cognitive schemata may be expected to help in finding an
appropriate teaching approach. It is also believed that computers, with their power of
turning abstract mathematical ideas into perceptually accessible objects, are a highly
desirable ingredient of the learning environment. Finally, it is assumed that team
learning should be promoted as an instructional approach, which greatly increase the
chances for effective learning and diminishes the danger of misconceptions.

4. Design and method of the study. The study will be performed in two steps. First,
an investigation of students' conceptions of negative numbers will be conducted
among seventh and eighth graders in a number of middle school classes. At the
second stage, the implications of this investigation will be translated into a teaching
unit on negative numbers. The unit will subsequently be experimentally taught in one

or two classrooms.

Part 1: Study of students' conceptions of the negative number. The population in this
part of the study will be 12 to 14 year old middle school students, all of whom have
learned the concept of negative numbers according to the obligatory curriculum and
in the ways implied by the regular curriculum. This means that their first formal
encounter with the subject was at the beginning of the seventh grade, just before an
introduction to algebra, and that ever since they are supposed to use the concept of
negative number and to be able to perform computations involving these numbers.
The study will include at least 300 students of varying age and ability.

Within this population a comprehensive survey will be conducted with the help of a
specially designed questionnaire. The written responses will be followed by in-depths
interviews with a representative sample of the respondents. The questionnaire will be
built according to a prognosis on possible learning difficulties and resulting
misconceptions designed on the basis of historical investigations, subject matter
analysis, and findings of the few former studies reported in the literature. A few
examples of questions to be included in such questionnaire are shown in the box
below (cf. Hart, 1981).
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QUESTION 1: Calculate:
-8+4= 2+(-2)= -6-(-8)= -5+(-6)= (-3)2= 5(-7)= (-11) -(-3)=
QUESTION 2: Order the following numbers in a line, according to their
magnitude (from small to large): 45.3, -11, 0.2, -1/2, -18.1, 18, 3, 2, -2, -3
QUESTION 3: For each of the following calculations, write a word problem
which would lead to this calculation:

a. 13+(-3)
b. 18.5 (-5)
c. (-6) 12
d. (-5) -(-4) (-5) (-4)

Data analysis will be carried out in a number of steps. First, students' written
responses will be scrutinized for errors and inaccuracies, which will subsequently be
systematized and divided into categories. With the help of the in-depth interviews we
will then try to formulate some conjectures as to the nature of the cognitive schemata
underlying different types of students' mistakes.

Part 2: Curriculum development and formative evaluation. The curriculum
development part of the study will begin with an examination of the existing
textbooks with an intention to identify those aspects of the current teaching methods
that may be held responsible for the students' misconceptions and common
computational errors found in the first part of the study. On the basis of our findings
we will then propose an alternative approach, in which a special care will be taken of
the problematic aspect of the traditional instruction. Eventually, we will produce new
technology intensive teaching materials, aimed at students learning in pairs in a
computer laboratory. While developing the teaching unit, we will try to remain within
the boundaries of the obligatory curriculum. The proposed teaching sequence will
subsequently be run experimentally in two or three classes. To assess the
effectiveness of the method, the students will undergo a series of interviews and will
eventually be administered the same questionnaire which had been used in the survey
part of the study.

5. The importance of the study. We believe that the proposed study has the potential
to make significant contribution both to educational theory and teaching practice. Its
theoretical importance expresses itself in the way the powerful conception of
cognitive schema is applied to the investigation of the learning of a particular topic.
This investigation promises to bring new knowledge on the hitherto unstudied subject
and, at the same time, to put to the test the theory of cognitive schemata itself. The
practical importance of the study is in the explanatory and predictive power of the
theoretical model that will be built, and in the improvements of teaching it is
expected to bring.



3. Reviews of the proposal

Review 1
by Peoria Nesher, The University of Haifa, Israel

In the review that follows I would like to draw a distinction among the historical,
cognitive (psychological), and didactical paradigms for research, each of them
mentioned in Ms. Pabst's proposal. Each one of the above paradigms formulates
differently the research questions and employs different methodologies. Each one of
them is a legitimate research framework, but they should not be confused since this
can lead to confounded results.

I see serious problems with the Ph.D. proposal. I could not find the research question.
Among the five sections of the proposal I miss even the title of a section named "the
research question". There is a section "Themes and rationale". There are sections
dealing with the "Purpose of the study", "Theoretical framework"; "Design and
method" and the "Importance of the study". But nowhere do I find a clear research
question based on the theoretical framework, from which methodology and design
are derived. It could be framed within the section of "purpose". Unfortunately I
missed it even there.

Since I should be constructive with my review I will try to help the candidate in this
most difficult part of planning Ph. D. research: formulating and selecting a research
question. If I read carefully the content of the various chapters of the proposal we
have here more than one possible proposal.

First, there is an introduction where students' difficulties in learning negative
numbers are related to the historical perspective, that is to the question how negative
numbers have evolved through ages. The second deals with the cognitive aspects of
the issue and connects cognitive theories (in particular about cognitive schemata) to
students' misconceptions. The third is of a completely different nature. It deals with
pedagogy. Though Ms. Pabst speaks about "translation", there is no direct (and
maybe even non-direct) translation from answering a cognitive theoretical question
and writing a learning unit. Preparing a learning unit calls for much more than
cognitive theoretical implications. It calls for other theories about classroom
interactions, the role of the teacher, etc. Understanding the underlying cognitive
schema is just a part of the story.

Each of the above three main parts (or perspectives) calls for a completely different
methodology. The historical approach will require making comparisons and finding
parallels between certain difficulties occurring now in learning negative numbers and
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their historical evolution. Actually, the relation between the historical dilemmas and
present learning difficulties is a very interesting question. We should note that in
dealing with practical instances of debt, temperature, etc. one can operate merely with
natural numbers (or positive integers), avoiding negative numbers. When one speaks
about a debt of $100, he speaks in terms of positive numbers: "a debt of $100" and
not "a debt of -$100". One speaks about "5 degrees below zero", and not "-5 below
zero", which is redundant. It is only when we move to a uniform scale of money at
the bank or temperature that we need the zero point of departure and the negative
numbers.

Those who point to the usefulness of negative numbers in the context of the
simplistic everyday applications, as it is done usually in schools to justify their
introduction, do not tell the whole story. The real historical reasons for the
introduction of negative numbers as objects in mathematics were different. These
numbers were recognized as proper numbers only when they became legitimate
members of the number system within an algebraic framework. The algebraic notions
of groups as mathematical objects helped to define rigorously the operations with
negative numbers. The everyday applications could not serve this purpose. Whether
all this is related to the difficulties encountered by students of middle school is an
interesting question. In order to answer it, one has to delve into historical research,
asking about stages in the evolution of negative numbers into the mathematical
structure and investigating the reasons for their gradual acceptance by the
mathematical community. Following that, the researcher might ask whether his
findings bring any support to what can be found in the textbooks used today to teach
negative numbers. However, none of these were mentioned in the proposal. The
nomenclature is also changing along the proposal: "students' difficulties" become
"misconceptions" in the second part, even though the notion of misconceptions is
taken from a completely different paradigm, one that belongs to a psychological
perspective rather than historical.

The second part of the proposal suggests a cognitive perspective. According to my
reading of the candidate's proposal, the purpose of the study is "... understanding
difficulties which obstruct the process of acquisition of the concept of negative
numbers... (I omit purposely the didactic goal). Since I am supporting the cognitivist
approach, I will invest most of my comments here.

As Ms. Pabst already pointed out, the cognitivist research that started with Piaget has
demonstrated the fruitfulness of this paradigm. Indeed, during the last three decades it
spurred much insightful studies on learning of mathematics. Findings about early
counting, addition and subtraction at the primary level, multiplication, estimation,
algebra concepts, etc. have changed completely our notions about the process of
learning. The constructivist approach dominating now in many schools have emerged



as a pedagogical outcome of the findings of the research from the cognitivist point of
view, although not by a direct translation.

Ms. Pabst is right to point out that cognitive research on negative numbers is scarce.
However, what is suggested by the candidate, cannot qualify as a typical cognitive

study.

First, there is some confusion about the notion of schema. Referring to this notion is
important. Lets remember Rumelhart's very useful formulation: "..schemata truly are
the building blocks of cognition" (Rumelhart, 1980). The emphasis in the candidate's
proposal, however, is on a schema as an individual understanding. This is a partial
and narrow interpretation of Piaget's and others notion of schema. Piaget himself
wrote that:

A schema of an action consists in those aspects which are repeatable,
transposable or generelisable, i.e. the structure of the form in distinction to the
object which represent its variable content. (Piaget, 1950).

Fischbein (1997) in his last year worked on the notion of schema. He writes:

The term schema covers a large variety of psychological phenomena and for
that reason it is difficult to express its meaning in commonly accepted
definition.

According to him:

Schemata play in the adaptive process of human beings, a role which is
similar to that of instincts at lower level ....Schemata which develop after the
child is born may also be based on some innate structures. They also are
complex programs for interpreting information and adequate reactivity ...they
develop with age by maturation and exercise.

True, every aspect of development leaves much room for individual differences. Not
every child starts to walk or speak at the same time. Every individual behaves
according to his available schemata at any given time. Yet, there is also a general
notion of schema typical of mature (or expert, if you wish) mental structures that
enables the shared cognition of human beings. The notion of schema includes the
tension between the individual development and the shared cognition. Schema is very
important in the process of assimilation and accommodation (which are the
mechanism of development). These are schemata, rather than isolated pieces of
events, which are taking part in that process.
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I do not want to continue this already too long list of characteristics of the notion of
schema, or speak of its categorization either according to Piaget (into Presentative,
Procedural and Operative), or according to Fischbein (into Specific and Structural). I
would like to see how all this is connected to the issue of mathematical learning, in
general, and to the learning of negative numbers, in particular.

First, the question is what constitutes the presentative, procedural and operative
schemata for the domain of negative numbers. Unfortunately, whilst there are
abundance of studies describing procedural errors students tend to commit while
working with negative numbers, and equally many studies describing linguistic
difficulty connected to the pejorative connotations of the word "negative", I cannot
recall, in the field of mathematical education or psychology, a study of negative
numbers that rely on schemata and structures. This is surprising because, as
mentioned before, the essence of mathematical operations with negative numbers was
born within the structure of a group.

Past research shows that examining procedural and algorithmic errors proved to be
very illuminating only when done from the "schematic" point of view. All the
difficulties in learning decimal numbers could be explained via the existence of the
whole number schema and the fraction schema that could not be structurally
integrated into the decimal schema. A program like "Buggy", that detailed all
possible errors existing in students' performance, cannot help us. It is the presentative
and procedural schemata the student already constructed, and the ones that he did not
yet construct that can help us understand his behavior and predict his future cognitive
growth.

While proposing to employ the cognitive notion of schema Ms. Pabst should be more
specific and say explicitly what kinds of schemata related to negative numbers she is
going to deal with. It is our understanding of the particular schemata underlying the
notion of negative numbers that will allow us to understand better what is going on in
the process of developing and building up these schemata.

Here are the possible research questions she could focus on in her research:

a) Where in the hierarchy of schemata of the number system can one expect to build
up a schema for negative numbers? What are the necessary sub-ordinate
schemata? How is the newly built schema different from previous number system
schemata (already constructed by the student)?

b) Where can we expect the learner of negative numbers to be misguided by his old
numeric schemata? Does the hypothetical schema model suggested in (a) enable
the interpretation of observed behaviors, erroneous as well as correct ones?



Such questions are derived from the theoretical review Ms. Pabst has written. Note,
that I do not include direct implications for pedagogy among the above research
questions. Possible implications could be mentioned at the end of the dissertation,
but should better be left for a separate research. The proposal intends to enrich our
knowledge about schemata underlying negative numbers. Better understanding,
which will be attained in this way, is important for teachers. Yet, none of the
methods used in this research are directly transferable to schools. The empirical part
of the study will include individual open-ended interviews with students, the aim of
which is to reveal various aspects of the negative number schemata and their
sub-ordinate schemata, as they occur within individuals at a certain level. These
interviews are not units of learning, despite the fact that students might learn a lot
from them.

I come now to the third point in the proposal, the pedagogical one. I think it would
be too hasty to conclude on the basis of one cognitive study about the proper ways to
teach the subject matter. First, before running with the results to the classroom, I
would expect to see more studies replicating or elaborating on the finding of the first
study. I would like to remind us how many studies were performed on elementary
addition and subtraction word problems, before 'combine', 'change' and 'compare'
could be introduced to the classroom teachers.

I also want to mention, in brief, that the methodology of research which aims at the
question what works at school is completely different from the methods one employs
when trying to understand a cognitive schema. Research that aims at testing a
teaching approach must include many classes rather than a single group and one
teacher; it must involve a long term teaching, because we cannot expect the student
to construct a schema in just two or three weeks; and, of course, it must include a
comparison to other approaches. If we do not do it in the proper way, we end up with
systems of beliefs rather than with scientifically sound findings.

To sum up, the issue of learning negative numbers is important. Yet, the proposal, as
it is, includes too many questions and I cannot support it. I suggest that Ms. Pabst
defines better the paradigm within which she would like to investigate the learning of
negative numbers.

122 1 -84



3. Reviews of the proposal (cont.)

Review 2
by Stephen Lerman, Centre for Mathematics Education, South Bank University,

London, UK.

The candidate has chosen a most important topic for her study. There are certainly a
great many confusions and difficulties around the teaching and learning of negative
numbers. However, I fear that the candidate will not resolve any of these problems if
she pursues the perspective outlined in the proposal. I will indicate some concerns
and then I will make some suggestions below for what I consider a more appropriate
study.

Understanding. First, it is high time we abandoned words and phrases such as
'understanding', 'misconceptions', and 'acquisition of concepts' in mathematics
education. They are useless from a teacher's and a researcher's point of view, since
they are in essence totally unobservable, and are effectively tools of regulation, since
we take it upon ourselves to be the only ones qualified to identify when
understanding has taken place. They are predicated upon a notion of the gaining of
knowledge as an individual cognitive process. 'Real understanding', with the
associated ideas of its non-occurrence, is interpreted as the construction of
context-free mental schemata. These schemata, when properly formed, ought to be
available for operationalisation and application whenever the 'situation', which is
interpreted unambiguously, requires it. We tend to be very isolationist in
mathematics education research, relying on psychology as an explanatory domain
long after socio-linguistics and cultural studies, to name just two domains, have
altered all other fields of social and intellectual inquiry.

A far more useful notion than 'understanding' is that of the forming of identity in the
mathematics classroom (Lave, 1996; Winbourne and Watson, 1998). To know
something is to use that something in an appropriate way, at appropriate times, these
being judged by those who are already initiated. Identity is constituted in discursive
practices, which carry what constitutes knowledge in that practice. That approach
directs us to study what it is to become a person who functions knowingly in
particular social, historical and cultural situations, and how one will be apprenticed
into that practice (following Bernstein's (1996) use of the term apprentice, rather than
Lave's (1988), although there are similarities between them). One will need to focus
on conscious desires and goals but identity will also be conceptualised through the
unconscious (Evans & Tsatsaroni, 1993; Pimm, 1994). One needs to be acutely
aware of the regulative practices of initiation and to view the task of teaching
mathematics as initiation into a hierarchical knowledge structure, with boundaries
between school mathematics and everyday knowledge which must be recognised if

231 -85 ,



they are to be traversed in any way.

In relation to the classroom, and to school mathematics in particular, the research
focus must be on: the regulating structures of society and the classroom through the
pedagogic mode; the changing identities, goals and needs of the pupils; and the
modification and adaptation of their language and behaviour, and the development of
meanings, towards those of the teacher. There is a danger in using 'behaviour' as
contrasted against 'cognition', since these are usually presented as bipolar alternatives,
the former being 'bad' and the latter 'good' in popular discourse of course. What I am
referring to here is neither, it is rather a social epistemology, which is materialist
whilst not merely behaviourist. Knowledge is what the various social formations in
which we live deem to be knowledgeable ways of being, with the multiplicity and
fragmentation of identity that this implies.

It will be clear that I am proposing a deconstruction of 'individual' in the often used
duality of social/individual but I want also to deconstruct the notion of 'social'. Any
situation, including particular activities in the mathematics classroom, is experienced
differently by the pupils, and the teacher as a matter of fact, according to their
positioning in overlapping social and cultural histories, such as gender, ethnicity,
class.

Mathematical meanings. The proposed study falls into following the nineteenth
century reductionist theory of ontogeny replicating phylogeny, suggesting the need to
find, through historical studies, the obstacles to the development of the currently
accepted concept of negative numbers, as these are "only too likely to hinder its
learning in our schools today". Such an approach has been .a self-fulfilling prophecy
in mathematics education in recent decades. We teach to a curriculum constructed
around proposed epistemological obstacles, thus ensuring that they will become
learning obstacles. I would suggest that we must see mathematical concepts as
cultural tools, through which thinking in society is transformed, for all time. The
number line, infinitely extensible in both directions, has transformed the discourse of
number, but whilst its emergence in history is important, there is no reason to assume
that pupils must proceed through the same steps to construct the number line. Today,
we can recognise the integers as forming a group under addition, and that can offer us
ways of teaching negative numbers, even to young children (Lerman, 1996), by
fore-grounding sign-sign connections.

Models of negative numbers and their operations are just that: bank debt or credit,
sub-zero temperatures or whatever, are not the 'meaning' of negative numbers. All
such metaphors bring with them inevitable limitations (Linn, 1994). That is not to
deny the role of models in mathematics, nor their usefulness in teaching, but to
question the ubiquity of such approaches which only contribute to what the candidate
calls misconceptions. It makes the mistake of confusing metaphor, the link into other
systems of meaning, with metonym, where meanings are internal to the system. I
was asked, some years ago, by a group of primary teachers on an inservice course, to
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explain why (-1)x(-1) = +1. They expected an explanation based on such metaphors.
My reply was "What else could it be?"

Readiness. I am convinced that ages and stages, or its consequent notion of readiness,
is not a useful way to think about children's development. Indeed the notion of
'development' retains the modernist themes of universality and naturalness and
obscures the ideological intent. Notions of normality, which enable teachers to speak
of a particular child being ready, pathologises other children as not ready and
therefore somehow deficient. The alternative I am proposing, namely a focus on the
ways that children form their identities in the practices of school mathematics, admits
to the regulating function of teaching. At the same time the teacher and researcher
are forced to acknowledge the multiple practices in which each child is already
situated, and enable them to bring those identities, gendered, ethnic, class-based etc.,
into the learning situation (Ellsworth, 1989). The notion of the zone of proximal
development, seen as a product of the moment, of the teacher, the pupils, the texts
and all the other available resources (Meira & Lerman, forthcoming), is the focus I
would recommend for thinking about the problem of when to teach anything. Thus,
in the paper I mentioned earlier (Lerman, 1996) the need for negative numbers arose
in a problem on which I was working with a group of 9/10 year olds, adding two
numbers to make a third, and in that context it presented no difficulties for them.

The study. I would suggest that you abandon the programme of pre-test, investigating
existing texts, designing new ones, and testing their efficacy. In its place, you and
your teacher(s), should immerse yourselves in the body of literature to which I have
referred above, in order to theorise the notion of pupils becoming mathematical
actors, in the specific context of negative numbers. You should then design
activities, both with and without technological tools, which elicit the need for
negative numbers in the solution of those problems. As with all tools, the various
forms of IT have specific features that structure and transform the world for the
student. I am sure the number line extended infinitely in both directions from zero is
analogous. You should pay attention to the role of metaphor and its limitations,
enabling a shift of signification towards sign-sign foregrounding (Vile & Lerman,
1996), or metonymic links, in the tasks you devise. You should then undertake
ethnographic studies of the students' discussions, actions, reactions to questions, and
their other productions, as well as those of the teacher(s) and yourself You should
design tasks that require writing, both to elicit descriptions of meanings and to
encourage the development of those meanings. The aim of the study would be to
investigate the internalisation of the cultural tools that mediate the appropriate actions
of operations with the integers.

Following this programme,, you should have something to say about this important
problem, through a focus on the ways that pupils' ideas and actions become orientated
to working with negative numbers, by the teacher, other students, the tasks and the
texts.
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3. Reviews of the proposal (cont.)

Review 3
by Ellice Forman, Department of Psychology in Education, University of

Pittsburgh, Pittsburgh, USA

Teaching and learning about negative numbers is clearly an important and
under-investigated topic. Unfortunately, Ms. Pabst has not explicitly chosen a
consistent theoretical approach to this topic. In her review, Pear la finds at least three
paradigms in the proposal (historical, psychological, pedagogical) and each requires a
different methodology. Using three different paradigms in a study can also create
purely theoretical problems. Each paradigm may depend upon different (and perhaps
contradictory) assumptions about learning (such as an active versus a passive
learner). For example, it seems that Ms. Pabst assumes an active learner when she
refers to the psychological paradigm but implies a passive learner when she discusses
instruction.

Both Pear la and Steve propose different theoretical frameworks, each of which are
internally consistent, instead of the inconsistent paradigm of the original proposal. It
seems to me that another way to think about paradigms is to consider the two broad
theoretical frameworks currently in use in mathematics education. These frameworks
have been called a variety of names (e.g., cognitive science vs. situated cognition;
radical constructivism vs. social constructivism; acquisition metaphor vs.
participation metaphor; cognitive vs. situated social practice) and their strengths and
weaknesses are currently being debated in the education literature (Ernest, 1996;
Greeno et al., 1998; Sfard, 1998). In the interests of consistency, I suggest that Ms.
Pabst consider selecting one of the above frameworks to guide her research study.

Supporters of either framework are unlikely to admit that their theory is incapable of
addressing important practical questions in mathematics education. To the contrary,
adherents of both positions claim to provide the most comprehensive, and useful set of
concepts needed to address any meaningful basic or applied question. Each
perspective, however, begins its analysis with a set of assumptions and concepts that
take us only so far. For example, Greeno and his colleagues note that the cognitive
science approach begins with the analysis of individual cognition and gradually
works outward to incorporate individuals learning in social contexts whereas situated
cognition begins with complex activity settings and works inward to individuals.
Yet, it is unlikely that either one position will be able to realize its ambition to be
everything for everyone (Sfard, 1998). In education, we can't afford to be doctrinaire
in our research or practices. Nevertheless, eclecticism can be confusing. One way
out of this relativist dilemma is to let our practical concerns guide our theoretical
choices. I suggest that Ms. Pabst clarify the practical aims of her research and then
select one of the two theoretical frameworks that is most likely to help her attain her
goals.
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The first choice: A study of the acquisition of negative numbers. As Pear la has
argued in her review, a cognitive approach would be the best way to investigate the
acquisition of negative numbers by middle school students. The term, acquisition, as
a synonym for learning, implies that the individual student is expected to gain some
mental entity (concepts, representations, schemas, rules, etc.) as a result of prior
knowledge and particular experiences (Sfard, 1998). Moreover, as Pear la has noted,
schemes do not exist in isolation but in hierarchies or complex structures. These
mental entities, in Steve's view, are "context-free", in the sense that they would be
available for use in situations other than those in which they were first encountered
(i.e., transfer of knowledge from one context to another would be possible, at least in
principle). The unit of analysis for this type of investigation would be the individual
learner who is presumed to change (at least mentally) as a result of experiences with
material and symbolic objects. The nature of this change can be quantitative (e.g.,
enriched domain-specific knowledge) or qualitative (e.g., stage-like transformations
of schemes as in Piagetian theory).

If Ms. Pabst's goals are to expand our notions about the nature of students'
knowledge base in the area of negative numbers, then she should go with the
cognitive science position. From this perspective, she would be able to focus on the
contents and organization of an individual's mental structures. Although this position
is closest to the one in her original proposal, I want her to rid herself of this deficit
model of students' understanding that is inherent in constructs such as
misconceptions and developmental readiness. We have characterized students'
thinking for too long in terms of what it lacks (as a result of no instruction or poor
instruction). The notion of "misconception", for example, is theoreticallymisguided,
from a cognitive developmental point of view. As Siegler (1976) has shown us in his
investigations of children's scientific concepts, many mature conceptions, such as
torque, arise when children are able to revise and integrate their previous notions of
distance and weight in increasingly sophisticated ways. That is, children initially
predict that a balance beam will tip in the direction of the greater amount of weight
(and ignore the relative distances of the weights from the fulcrum). Older children
take distance as well as weight into account but in an unsystematic fashion.
Adolescents and adults use a mathematical formula to compute the relative
contributions of both weight and distance. Thus, development does not involve the
replacement of misconceptions with correct conceptions but, instead, involves the
improved ability to encode or understand more relevant features and to quantify the
relationships between those features. A similar issue may occur in the domain of
negative numbers. '

The second choice: A study of situated social practice in a mathematics classroom.
I agree with Steve that if one is primarily interested in understanding the complex
social, institutional, personal, and discursive dynamics of the classroom, then one
should abandon notions of learning as acquisition of decontextualized mental schema.
This Platonic view of mathematics learning is inconsistent with a focus on situated
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social practice. If one were primarily interested in understanding how mathematics is
practiced by mathematicians and by students of mathematics, then one needs to
change one's views of both mathematics and learning. In this alternative approach,
mathematics is defined by what mathematicians docommunicate with other
members of the professional community, explicate their arguments through the use of
cultural tools (graphs, symbols and operators), make conjectures, pose puzzles, etc.
(Rotman, 1993). Likewise, learning mathematics should resemble, to some extent, an
apprenticeship in thinking, speaking, and acting mathematically (Lampert, 1990;
Rogoff, 1990).

Returning to Ms. Pabst's research proposal, if she is truly interested in understanding
teaching and learning activities in a classroom community, then she would need to
reconceptualize her study from a situated social practice perspective. Like Steve, I
feel that Vygotsky's writings about the zone of proximal development would help her
articulate a dynamic perspective to understanding teaching and learning. Vygotsky
argued that we must study not just the fruits of intellectual development but the
process by which the fruits are created (1978). Thus, he proposed the integration of
teaching and learning in his famous concept of the zone of proximal development
the difference between assisted and unassisted performance on a task. The notion of
developmental readiness has no real validity from this perspective. As Bruner noted,
"we begin with the hypothesis that any subject can be taught effectively in some
intellectually honest form to any child at any stage of development" (1960, p. 33).

The unit of analysis for this investigation would have to be larger than the
individualit could be a dyad, small group, classroom, etc. This is because learning
is no longer viewed as an individual accomplishment or possession. In contrast,
indices of learning would involve analyses of group participation patterns. Also, the
design of the study should include evidence of change over time: the genetic analysis
that is a key component of a Vygotskian approach. For example, changes over time
in teachers' and students' involvement in posing problems, arguing solution
strategies, orchestrating discussions, integrating alternative explanations, and
inscribing justifications would indicate how expertise was socially created in this
community. In addition to examining expertise as an emergent phenomenon, this
study could focus on affective issues. How do students' and teachers' motives for
participating in mathematical activities change over time? Who is seen as resistant to
learning about negative numbers? Who is viewed as eager to master the cultural
tools necessary for effectively communicating about negative numbers? How are
those notions of resistance or eagerness to learn socially constructed?

Summary. Ms. Pabst's topic of interest allows one to conduct at least two quite
different types of studies, employing two distinctly different theoretical frameworks.
The choice of one approach over the other should be done for pragmatic reasons.
Once a choice is made, however, it is essential that the concepts employed and the
methods used to investigate those concepts be convincing and coherent (Sfard, 1998).
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ONE THEORETICAL PERSPECTIVE IN UNDERGRADUATE
MATHEMATICS EDUCATION RESEARCH
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Ed Dubinsky, Georgia State University

Vrunda Prabhu, William Woods University,
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This presentation is based on three principles. First, research in
undergraduate mathematics education (RUMP should be closely connected with,
if not embedded in, and at least potentially applicable to, curriculum development
and teaching practice. Second, a theoretical perspective involving one or more
theories of learning, should play a major role in any research project; this role
should be explicit and chosen at the beginning of the research so as to provide
direction for the investigation and analysis of results. Finally, empirical data is
also important and the best research synthesizes theoretical analysis, pedagogical
applications, and the gathering and analysis of data.

We begin, in Section 1, with a discussion of how we go about conducting
research that is both theoretical and empirical and relates to teaching practice. In
Section 2 we give a very brief discussion (with references to more extensive
descriptions) of APOS Theory which is the main theoretical perspective used in
the program. This is followed in Section 3 by examples in which our approach is
used --- both by its developers and others and for both postsecondary mathematics
for which it was designed and for K-12 levels from which it came. In Section 4
we describe the pedagogical component of some projects that use our approach.
Next, in Section 5 we describe our methods of analyzing and gathering data with
some
indications (together with references) of the results. Finally, in Section 6, we
consider approaches that are alternatives to our use of APOS Theory.

1 An approach to research and curriculum development in undergraduate
mathematics education

As Alan Schoenfeld argues (Schoenfeld, 1998), models and theories should
support prediction, have explanatory power, and be applicable to broad ranges of
phenomena. To this we have added ( Dubinsky & McDonald, 1999) that a theory
should help organize one's thinking about complex, interrelated phenomena, serve
as a tool for analyzing data, and provide a language for communication of ideas
about learning that go beyond superficial descriptions.

We have tried to develop APOS Theory so as to meet these criteria and
combine with teaching practice and empirical data to form a paradigm consisting
in a repeated traversal of a circle of the following activities: theoretical analysis,
empirical data, and design and implement instruction.
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In this paradigm, investigation of a particular topic begins with a theoretical

analysis based on APOS Theory, the researchers' own knowledge of the
mathematics involved, and any informal observations ofstudents, for example, in

teaching the material in a traditional way. The purpose of this analysis is to

propose, in a preliminary and tentative manner, what we call a genetic
decomposition of the concept in question. That amounts to suggesting specific
mental constructions which a student can make in order to learn the concept. The

next step is to design and implement instruction aimed at getting students to make
the proposed mental constructions. As the students are experiencing this
instruction, data is collected in several different ways, using both quantitative and
qualitative methods of gathering information.

The final step in the traversal is to coordinate the empirical data obtained
with the theoretical analysis. This means, on one hand, that the theoretical
analysis suggests questions to ask of the data: to wit, does it appear that the
proposed mental constructions were made by students? Focusing the analysis of
data in this way can help the researcher deal with a huge amount of information
meaningfully, but far from exhaustively. Indeed we have very often used the same
data more than once in studies differentiated by the questions to which a
theoretical analysis points us. On the other hand, it sometimes occurs that the
mental constructions students appear to be making are different from what has
been proposed. One possible response to this is to reconsider one or more aspects
of the particular theoretical analysis of the concepts in question. Another response
which we have been forced to make, albeit rarely, is to reconsider the theory itself

and make appropriate revisions.

It is important to note that it is here that APOS theory exhibits yet another
important feature. There is contained within its use the potential for completely
rejecting it, which would happen if it had to be revised too often in order to fit

with the data.

To summarize, the theoretical analysis drives the instruction which creates

the data. The theoretical analysis directs the analysis of data and is simultaneously
subject to revision as a result of this data analysis. This circle of activity is then

repeated with the (possibly new) theoretical analysis. It is repeated as often as

appears necessary to understand the epistemology of the particular topic.

If things work properly, then learning should improve in a natural way as a
result of instruction that relates to how the students can learn the concept or

concepts. For a more detailed discussion of this approach, see Asiala et al. (1996).

133 1 -96



2 APOS Theory
In this section we will sketch the general theory in its present stage of

development and describe the nature of mental constructions that the theory
proposes along with some examples.

The original source of APOS theory was Piaget's epistemology of
mathematics learned from infancy through adolescence (see, for example, Beth &
Piaget, (1966)) and an attempt to apply his mechanism of reflective abstraction to
learning post secondary mathematics. For more details on the relation between
Piaget's ideas and APOS Theory, see Dubinsky (1991). The fact that the
development of a theory for advanced mathematical thinking is based on a theory
for thinking about elementary mathematics raises the question of the applicability
of APOS theory to elementary concepts. We will return to this question in Section
3.

APOS theory begins with a statement of what it means to learn and know
something in mathematics.

An individual's mathematical knowledge is her or his tendency to respond to
mathematical problem situations by reflecting on them in a social context and
constructing or reconstructing mathematical actions, processes and objects and
organizing these in schemas to use in dealing with the situations.

There are, in this statement, references to a number of aspects of learning and
knowing. For one thing, the statement acknowledges that what a person knows
and is capable of doing is not necessarily available to her or him at a given
moment and in a given situation. All of us who have taught (or studied) are
familiar with the phenomenon of a student missing a question completely on an
exam and then really knowing the answer right after, without looking it up. A
related phenomenon is to be unable to deal with a mathematical situation but,
after the slightest suggestion from a colleague or teacher, it all comes running
back to your
consciousness. Thus, in the problem of knowing, there are two issues: learning a
concept and accessing it when needed.

Reflection is an important part of both learning and knowing. Mathematics
in particular is full of techniques and algorithms to use in dealing with situations.
Many people can learn these quite well and use them to do things in mathematics.
But understanding mathematics goes beyond the ability to perform calculations,
no
matter how sophisticated. It is necessary to be aware of how these procedures go,
to get a feel for the result without actually performing all the calculations, to be
able to work with variations of a single algorithm and to understand relationships
among algorithms.
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It is a controversial point, but this theory takes the position that reflection is

best performed in a social context. There is evidence in the literature (see
Vidakovic (1993), for example) of the value to students of social interaction and

there is also the cultural fact that almost all research mathematicians feel very

strongly the need for interactions with colleagues before, during, and after

creative.work in mathematics.

APOS theory asserts that "possessing" knowledge consists in a tendency to

make mental constructions that are used in dealing with a problem situation.

Often the construction amounts to reconstructing (or remembering) something
previously built so as to repeat a previous method. But progress in the

development of
mathematical knowledge comes from making a reconstruction in a situation

similar to, but different in important ways from, a problem previously dealt with.
Then the reconstruction is not exactly the same as what existed previously, and

may in fact contain one or more advances to a more sophisticated level. This
whole notion is
relad to the well known Piagetian dichotomy of assimilation and
accommodation (Piaget, (1972)).

Finally, the question arises of what is constructed, or what is the nature of

the constructions and the ways in which they are made? It is when we talk about

this that our theoretical perspective, which may appear applicable to any subject

whatsoever, becomes specific to mathematics. We will deal with this question in

the next paragraph.

2.1 Mental constructions for learning mathematics
Understanding a mathematical concept begins with manipulating

previously constructed mental or physical objects to form actions; actions are then

interiorized to form processes which are then encapsulated to form objects.
Objects can be de-encapsulated back to the processes from which they were

formed. Finally, processes and objects can be organized in schemas.

Actually, there is a potentially misleading aspect of this description in that

there may be two much of a suggestion of a linear progression from action
through process to object and, ultimately, schema. In fact, although something
like a procession can be discerned, it often appears more like a dialectic in which

not only is there a partial development at one level, passage to the next level,

returning to the previous and going back forth, but also the development of each
level influences both developments at higher and lower levels.

In describing briefly the main mental constructions, we will use the

example of cosets of a subgroup, Lagrange's Theorem and quotient groups of a
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group and carry this example through the remainder of the paper to illustrate other
points.

Action. A transformation is considered to be an action when it is a reaction to stimuli which
the subject perceives as external. This means that the individual requires complete and
understandable instructions giving precise details on steps to take in connection with the
concept.

One example of an action conception comes from the notion of a (left or right) coset of a
group in abstract algebra. Consider, for example, the modular group [Z2o, + 201-- that is,
the integers (0,1,2,...,19} with the operation of addition mod 20 --- and the subgroup H =
(0,4,8,12,16) of multiples of 4. It is not very difficult for students to work with a coset such
as 2+H = (2,6,10,14,18) because it is formed either by a listing of the elements according
to some rule ("begin with 2 and add 4") or an explicit condition such as, "the remainder on
division by 4 is 2". This is an action conception. Something more is required to work with
cosets in a group such as S, the group of all permutations on n objects where simple
formulas are not available. Even in the more elementary situation of Z, students will have
difficulty in reasoning about cosets (such as counting them, comparing them, etc.)

According to APOS theory, all of these difficulties are related to students' inability to
interiorize these actions to processes, or encapsulate the processes to objects.

Although an action conception is very limited, it is an important part of the beginning of
understanding a concept. Therefore, instruction should begin with activities designed to
help students construct actions.

Process. When an individual reflects on an action scheme and interiorizes it then the action
can become perceived as a part of the individual who can establish control over it.

For cosets, a process understanding consists of thinking about the formation of a set by
operating a fixed element with every element in the subgroup. It is not necessary to perform
the operations, but only to think about them being performed.

Object. When an individual reflects on operations applied to a particular process, becomes
aware of the process as a totality, realizes that transformations
(whether they be actions or processes) can act on it, and is able to actually construct such
transformations, then he or she is thinking of this process as an object.

In the course of performing an action or process on an object, it is often necessary to
de-encapsulate the object back to the process from which it came in order to use its
properties in manipulating it.

In the case of cosets, given an element x and a subgroup H of a group G, if an individual
thinks generally of the (left) coset of x modulo H as a process of operating with x on each
element of H, then this process can be encapsulated to an object xH. Actions on cosets of H,
such as equipping the set of cosets with a binary operation (quotient group), or counting
their number, comparing their cardinality, and checking their intersections (Lagrange's
Theorem) can make sense to the individual. Thinking about the problem of investigating
such properties involves the interpretation of cosets as objects whereas the actual finding
out requires that these objects be de-encapsulated in the individual's mind so as to make use



of the properties of the processes from which these objects came (certain kinds of set

formation in this case.)

In general, encapsulating processes to become objects is considered to be extremely
difficult (Sfard, (1991)) and not very many pedagogical strategies have been effective in
helping students do this in situations such as functions or cosets. A part of the reason is that

there is very little in our experience that corresponds to performing actions on what are

interpreted as processes.

Schema. Once constructed, objects and processes can be interconnected in various ways:

for example, two or more processes may be coordinated by linking them through
composition or in other ways; processes and objects are related by virtue of the fact that the

former acts on the latter. A collection of actions, processes, and objects can be organized in

a structured manner to form a schema which may also include previously constructed
schemas. The structure of a schema has coherence in the sensethat an individual
understands, implicitly or explicitly, which phenomena the schema can be used to deal with.

Schemas themselves can be treated as objects and included in the organization of "higher

level" schemas.

For example, sets can be formed as objects and linked with binary operations are linked to

form pairs which may or may not satisfy certain properties. All of this can be organized to

construct the schema for coset. Groups and rings and other such mathematical objects might
be organized in a schema called algebraic structures.

The idea of schema is very important for our story in that it is one of the

few cases in which difficulties in analyzing data have led to significant revision of
the theory. In research studies connected with the chain rule (Clark et al, 1997),
using properties of the derivative to draw the graph of a function (Baker et al, in
preparation) and understanding sequences of numbers (Mathews et al, in review),
researchers found the mechanisms of actions, objects and processes inadequate.
Moreover, the idea of schema had only a superficial description as given in
Dubinsky (1991) where the development of a schema is not explained. The notion
of the triad developed by Garcia & Piaget (1983) could be seen to be very closely
related to that of schema and it turned out that it could be used to provide better
explanations of what a schema is and how it is constructed.

In the triad notion an individual's understanding of a concept develops
through three stages: the intra stage in which there is a focus on single objects

(which might be encapsulated processes or thematized schemas); the inter stage in

which there is a construction and understanding of transformations between these

objects (such as the relations of Skemp (1976) or interiorized actions); and finally
trans in which there develops a coherence among the transformations in that the
individual understands and is ready for, explicitly or implicitly, an organized

system of transformations including both those which have been experienced and
those that are only potential. It is this coherence that gives substance to our notion
of schema and connects the various actions, processes, objects and other schemas.
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Thus, for example, in the concept of the chain rule, and individual might
begin at the intra level by being able to take the derivative of individual
expressions obtained by replacing the variable in a given expression with another
expression. Then at the inter level there are certain "rules" such as the "power
rule" or the "inside-outside" rule; finally at the trans level, all of these individual
rules are encompassed by a single operation of taking the derivative of the
composition of two functions. The result is a schema in which the individual
understands that if a function can be written as a composition of functions whose
derivatives are known, then the derivative of the original function can be
obtained.

In this way, APOS Theory connects with the Triad Theory through the
notions of coherence and schema, to form a more powerful mechanism for
studying learning advanced mathematical concepts.

The Triad Theory is not the only case in which APOS Theory relates to
other theories of learning found in the research literature. Other examples include
the operational/structural characterization of Sfard (Sfard, 1991) which is very
similar to our process/object analysis, the concept image/concept definition
dichotomy of Tall and Vinner (Tall and Vinner, 1981), The procept notion of
Gray & Tall (1991, 1994), and the didactical engineering of the French school
(see, for example, Farfan (1997) and references therein.) In some cases such as
the use of the Triad to develop the schema concept discussed above and the work
of Arnon, to be discussed below, in combining APOS Theory with Nesher's
Theory of Knowledge and Exemplification Components a synthesis of two
different but related theories leads to advances in our understanding of the
learning process and improvements in our students' learning

3 Examples of research projects using APOS Theory
There are three categories of examples of research projects using APOS

Theory that we wish to consider: studies of advanced mathematical concepts by
those who are engaged in developing the theory; studies of advanced
mathematical concepts by those other than the developers; and studies of
elementary mathematical concepts that use APOS Theory.

3.1 Developers of APOS
After a period of several years in which the approach described here was

used by only a few people who were the original developers, an organization,
called a Research in Undergraduate Mathematics Education (RUMEC) was
formed for the purpose of bringing together experienced and novice researchers to
work in teams to conduct specific research studies. This group, which consists of
30-35 members, decided to focus on the development and use of APOS Theory
and engaged in a large number of projects, following the paradigm described in



Section 1, most of which have already resulted in published research reports and

applications to teaching practice.

Completed and ongoing RUMEC studies include investigations of
understanding the behavior of functions, infinity, existential and universal
quantification, permutations, symmetries and cooperative learning. Studies of
calculus are about the chain rule, slope, limits, graphical understanding of the
derivative, using the derivative to draw graphs, intuitive conceptions of the
definite integral, sequences and series. There is a long-range study of the effect on

student learning and involvement with mathematics of pedagogy based on our
paradigm in comparison with pedagogy in traditional courses. In statistics,
studies have considered means, medians and the central limit theorem. In abstract
algebra there are studies of binary operations, groups, subgroups, cosets,
normality and quotient groups. There is a study of the attitudes towards abstract
algebra in particular and mathematical abstraction in general as a result of
pedagogy based on our paradigm, again in comparison with pedagogy in

traditional courses.

Details of these studies and the specific results are summarized in Clark et
al (In preparation). The results presented in this paper represent a vast amount of
information, both quantitative and qualitative in nature, about learning the topics.

It is possible to draw some general conclusions for which justification can be
found in the references. First of all, it seems that APOS Theory (including the

more sophisticated version of schema) and the genetic decompositions it provides

are effective as tools for analyzing and describing what might be the mental
processes involved in learning a wide variety of topics. Second, in a fairly weak,
but not totally meaningless, sense it can be argued that the theory is predictive in
that one can postulate that if students make the mental constructions in a genetic
decomposition that an APOS-theoretical analysis of a conceptprovides, then they

are likely to learn the concept. Third, the comparisons, taken as a whole, seem to

point to the effectiveness of pedagogy based on APOS Theory in comparison with
traditional pedagogy. There is a large number ofcomparisons in which the former
leads to substantially better learning (both in the sense of statistical significance
and in the sense of differences that are so large that statistics are unnecessary).
There are even more cases of differences that are small, often not statistically
significant, but all in the same direction, favoring APOS-based pedagogy over
traditional. There are almost no examples in which students taking courses with
traditional pedagogy appear to learn better than the students in the APOS-based

courses. Finally, in addition to these results in terms of learning, APOS students

end up with better attitudes about mathematics and abstraction, they are more

likely to take more math courses after, for example, calculus, and they are not
adversely affected in their other university courses by what appears to be more

time spent outside of class on working on APOS-based courses.
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One of the major RUMEC studies was in abstract algebra and concerned
the concepts of cosests, Lagrange's theorem and quotient groups. The design of
this study very closely followed the paradigm and is taking place in several
phases. The first phase considered a group of high school teachers taking a
professional development course in abstract algebra that made use of an early
version of what would become our pedagogical approach (the ACE Teaching
cycle, which is described below in Section 4.) The result was a preliminary
genetic decomposition describing mental constructions that might help someone
understand cosets and quotients. The second made use of this decomposition,
designed a course following very closely the ACE cycle (it was necessary to
produce a textbook), and then designed a number of instruments to try to find out
about what the students had constructed and what they had learned. The results of
this study can be found in Clark et al (In preparation). Finally, a follow-up study
is in progress to see if the (very encouraging) results could be obtained by
teachers other than those who had developed the course.

3.2 Users of APOS
Use of APOS Theory has not been restricted to those who have been

involved in its development. For example, Carlson (1998) has used it to help
categorize students' understanding of the concept function; in their doctoral
theses, Tostado (1995) and Carmona (1996) applied APOS Theory to analyze
student responses to a questionnaire and transcripts of interviews about their
understanding of the idea of a tangent to a curve and its relationship to the
derivative of a function; Wahlberg (Submitted) used the theory to analyze both
interview transcripts and writing assignments in an experimental approach to
helping students in a calculus course understand the limit concept; Zazkis &
Gunn (1997) worked out action-process-object developments of pre-service
elementary school teachers' understanding of sets, elements, cardinality, subset
and the empty set.

In all of these (and other) studies, the theory invariably proved to be a
useful tool for explaining the development of understanding and the difficulties
students had with mathematical concepts at the post-secondary level. In some
cases, APOS Theory also served a predictive and applications role in that it
pointed to pedagogy that could help students learn better and when such pedagogy
was developed and employed, the results were very encouraging.

3.3 Elementary mathematical concepts
It is both interesting and satisfying that a theory based on an epistemology

of elementary mathematical concepts (that of Piaget) but developed explicitly in
relation to advanced concepts, turns out to also be useful in studies of elementary
concepts. The circle is completed.
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For example, an interesting approach of I. Arnon is to combine APOS
Theory with one or another theory developed in the elementary context, such as

Perla Nesher's Theory of Knowledge and Exemplification Components, to obtain

a powerful tool for studying children's construction of their conceptions of
fractions. Using a synthesis of these theories, Arnon is able to establish a stage in

the development of concrete actions into abstract objects: children use
mathematical language to describe imaginary concrete activity. The results of
pedagogy based on these ideas compare favorably with that of other approaches.
Her results are reported in several papers, for example Anion (1998).

Another example is the work of Zazkis who, in collaboration with Gunn,
Khoury and Campbell, used APOS Theory in studying pre-service teachers'
understanding of several elementary concepts: the positional number system using
bases other than 10 and focusing on numbers between 0 and 1 (Zazkis and
Khoury (1994); sets, elements, subsets, cardinality and the empty set ( Zazkis &

Gunn (1997); and divisibility (Zazkis & Campbell (1996).)

Finally, in a study in progress A. Brown and G. Tolias are using APOS

Theory to explain difficulties students are having with the idea of factoring a
positive integer into primes and representing this with a "factor tree".

These investigations indicate that APOS Theory has grown both beyond the

community in which it was born and raised and beyond the content area for which

it was intended.

4 Teaching practice
A second component of our framework is the design and implementation of

instruction. What sort of pedagogical approach can be used in our paradigm to

support the theoretical analysis, that is, to induce students to make the mental
constructions proposed by the theory and to help them move from these
constructions to understanding and knowledge ofmathematics per se? Our

response to these questions has been to design a pedagogical approach called the

ACE Teaching Cycle. It is a methodology that makes use of cooperative learning
and students writing computer programs. In this design, the course is broken up

into sections, each of which runs for one week. During the week, the class meets

on some days in the computer lab and on other days in a regular classroom in

which there are no computers. Homework is completed outside of class. We have

the students working in cooperative groups in all of these activities.

Following is a description of the three components of this structure with

some indications of the pedagogical goals of each component and examples for

the topic of coset.

141 1 - 104



Activities:
The course meets in a computer lab where students work in teams on computer tasks
designed to foster the specific mental constructions proposed in the genetic decompositions
of the course topics. The lab assignments are generally too long to finish during the
scheduled lab and students are expected to come to the lab when it is open or work on their
personal computers, or use other labs to complete the assignment.

In the abstract algebra course there were a large number of computer activities through
which students could construct, on the computer, many of the basic processes and objects of
elementary group theory such as: examples of binary operations, examples of groups; tests
for closure, associativity, existence of an identity and inverses, and commutativity.

After some work with such constructs, the students were given a rather difficult task. i ney
were asked to write a computer program that would accept a set and a binary operation that
formed a group and return a new binary operation that could accept any of the four
combinations of inputs that were either elements of the set, or subsets. This binary operation
would then determine what the inputs were and, as they dictated, return the product (in the
group) of the two elements, a left coset, a right coset or the set of all products of elements of
the two sets.

This is an extremely difficult task for the students, but the program they must write is
actually very simple. As a result, all of their struggles to get this program working correctly
lead them to confront important mathematical issues and construct deep meanings for
concepts related to cosets. Here is a program that solves this problem.

PR := func(G,o);
return =func(x,y);

if x in G and y in G
then return x .o y;

elseif x in G and y subset G
then return ( x .o b : b My);

elseif x subset G and y in G
then return ( a .o y : a in x);

elseif x subset G and y subset G
then return ( a .o b : a in x, b M y);

end;
end;

end;;

00 := PR(S5, comp);
GH := ((g .00 h : h H ) : g G };
K .00 L;

In the last three lines, the program defines the new operation, computes the set of all cosets
of the group G by the subgroup H and computes the coset product of the two cosets K and L.

Class:
The course meets in a classroom where students again work in teams to perform paper and
pencil tasks based on the computer activities in the lab. The instructor leads inter -group
discussions designed to give students an opportunity to reflect on the calculations they have
been working on and further construct their own meaning for their mathematical
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experiences. On occasion, the instructor will provide definitions, explanations and overviews

to tie together what the students have been thinking about.

In the case of cosets, constructing the lines of the program that form left and right cosets
leads, according to APOS Theory to students constructing in their minds a process
conception of cosets. Returning the two cosets as the result of the operation fosters
development of an object conception. Finally, writing code to form the product of all pair of

elements from two cosets relates to de-encapsulating these objects back to the processes
from which they came. There are also many other examples of constructions in this short

program that relate to process and object conceptions of other mathematical entities such as

group as object and binary operation as both process and object.

After writing and working with the above program PR students can find it meaningful when
they are asked in class to talk in their groups about the possibility of the intersection of two
cosets, the number of elements in a coset, and set of all elements that are in at least one
coset. Each of these questions has a complete answer for which the formal proof is rather

easy for students who have constructed meanings for all these ideas. It is not difficult for the
instructor to lead a discussion that brings out, not only the facts, but reasonable proofs of
what amount to the steps in a proof of Lagrange's theorem. Furthermore, the computer
experiences lead many students to think about cosets as objects and the result of PR as a

binary operation on them. In class, they are asked to consider if the group axioms are
satisfied and the notions of normality and quotient groups emerge.

Exercises:
Relatively traditional exercises are assigned for students to work on in teams. These are
expected to be completed outside of class and lab and they represent homework that is in
addition to the lab assignments. The purpose of the exercises is for students to reinforce the
ideas they have constructed, to use the mathematics they have learned and, on occasion, to
begin thinking about situations that will be studied later.

In the above-mentioned papers by the RUMEC teams, the results are based

on pedagogy that uses the ACE Teaching Cycle. In other studies (some of which
we have mentioned here), other pedagogies supporting this theoretical perspective
have been used by a variety of authors.

5 Gathering and analyzing data
Gathering and analyzing data in our approach is a complex matter. This is

for several reasons. One reason is that as we indicated in Section 1, our analysis

of data is both driven by and drives our theoretical analyses and possibly even the
development of the theory itself. Another is that we do not feel that a choice
between gathering quantitative or qualitative data is appropriate. In our view, the
best research will combine the two forms of information. This introduces
complexity both in the interaction of two different types of results and the special
needs of qualitative research which can be less straightforward than quantitative

investigations.

We have already discussed the interaction between data and theory in
Section 1. Regarding the qualitative/quantitative approaches, we don't just use
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both, but try to develop a synthesis of the two. For example, one can administer a
written instrument to a large number of subjects. We do this at times and analyze
the results statistically. But we also use such data in the following way. Often it is
possible to partition a large number of subjects into a relatively small number of
categories by putting together people in a category whose responses on the written
instrument are similar. Then we can apply the more time-consuming and
laborious
qualitative methods, such as in-depth interviews, to one or two representatives in
each category. Our assumption is that the interview transcripts we obtain in this
manner both tell us a great deal about the student being interviewed and are also,
to a greater or lesser degree, representative of all of the students in the same
group.

Another purpose of combining the two kinds of data is triangulation. An
in-depth interview can bring out a perhaps unexpected phenomena that needs to
be explained. One can use written instruments to prepare for an explanation for
example by considering questions such as: With how many subjects does this
phenomena occur? What are its variations? What relationships does it have to
other features of the subjects? Triangulation is of course, of critical importance in
qualitative research. In addition to using combinations of different forms of data,
we also take advantage of the fact that research in this approach is generally
conducted by a team. This allows us to have different people on the team interpret
qualitative data independently. Some of our best insights have been obtained from
discussions designed to resolve the inevitable differences in interpretations.
Triangulation consist in that when several researchers can agree on an
interpretation, its validity and reliability is enhanced.

Again returning to Section 1, we recall that our data, both quantitative and
qualitative tries to answer two kinds of questions: Haim the students made the
mental representations that the instruction was designed to foster? and To what
extent do the students appear to understand the mathematics? Of course, the
critical issue for our approach is whether there seems to be a causal relation from
the former to the latter. Without giving details, to complete our discussion of the
example of cosets, Lagrange's Theorem and quotient groups, we can report that a
very high percentage of the students who experienced the pedagogy described
here appeared to construct strong conceptions of cosets as processes and objects.
As a result, they performed very well on examinations, for example, most could
prove
Lagrange's Theorem, and indicated in interviews a good understanding of it and
related notions. The results for quotient groups were not so strong, but this is an
extremely difficult topic at the undergraduate level and what we saw in our data
was much better than one gets from traditional courses in abstract algebra. The
interested reader can pursue these questions by looking at the large amounts of
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information about all of the RUMEC studies that appears in Clark et al (In

preparation).

6 Alternative approaches
We have taken the position in this paper that good research in

undergraduate mathematics education must be based on one or another kind of
theoretical perspective. There is value in making assertions of universality in full

awareness of the existence of counter-examples. This is the situation here. We

believe our assertion is true almost all the time and that is important. We also
believe that there are, and should be, a small number of counterexamples and they
are important as well. Between the two extremes of always using a theory and use

one or not as seems most reasonable, we believe there is a middle ground. We

suggest that a research program should always expect to use a theory and one
should proceed without one only if there is compelling reason to do so. Moreover,

one should be quite concerned if the latter occurs very frequently.

Here is one example of research conducted by a RUMEC team that did not

involve a theory. In the work reported in Dubinsky & Yiparaki (in review), we

were interested in understanding student difficulties in interpreting mathematical

statements involving two quantifications, one existential and one universal. Such

statements are at once among the most difficult for students to grasp and
absolutely essential to understand modern mathematics. Our basic premise was

that people are successful in interpreting such statements when the context has to

do with phenomena, not from the world of mathematics, but from the world(s)
that most people in our society can think about. We thought that if we could
understand how people did this, we could use that knowledge to get them to apply

the same thinking to mathematical statements. This was a purely exploratory
study and there did not seem to be much sense to involving theoretical
considerations, at least at first.

All of this worked and we feel that we learned a great deal from the study

without using any theoretical analyses. What we learned, incidentally, was that in

fact, people do not tend to understand statements about the standard world if they

include two quantifiers. Moreover, when they do, this understanding does not

appear to transfer very well to mathematical contexts.

7 Conclusions
We do not have any definitive conclusions to which the considerations of

this paper force us, or should force the reader. We do feel that we have made a

strong case supporting a critical role, in research in mathematics education, for

theoretical perspectives in general and APOS Theory in particular. Regarding the

latter, we can say that its use seems to be increasing internationally. Indeed, there

are at least 40-50 researchers throughout the world who are engaged in active

research projects that make explicit use of APOS Theory. It is hard to say how
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this compares with other theoretical perspectives. We can say, however, that we
are obtaining results that may have some importance both for a basic
understanding of learning advanced mathematical concepts, and for developing a
basis for pedagogical reform that has the potential for making significant
improvements in student learning For this reason, we feel that APOS Theory and
its applications deserve a place of some importance in the mathematics education
enterprise.

Finally, we want to say that if the reader is at all convinced of the last point,
or even curious about it, then he or she might be pleased to know that, in addition
to the topics mentioned here, it seems that our approach can be applied to dk:
topics in mathematics at the undergraduate level and at least some topics at the
K-12 level. We have only scratched the surface and there is much to be done and
plenty of room for more people to come in and see if this kind of approach makes
sense to them and if the work might be something they would like to do. '
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What are the processes by which we construct mathematical concepts? What is
the nature of the cognitive entities constructed in this process? Based on the
theories of cognitive construction developed by Piaget for younger children,
Dubinsky proposed APOS theory to describe how actions become interiorized
into processes and then encapsulated as mental objects, which take their place
in more sophisticated cognitive schemas. He thus takes a method of
construction hypothesised in (elementary) school mathematics and extends it
to (advanced) college/university mathematics. In this paper I respond to
Dubinsky's theory by noting the need for cognitive action to produce cognitive
structure, yet questioning the primacy of action before object throughout the
whole of mathematics. Biological underpinnings reveal cognitive structures for
object recognition and analysis. I use this to suggest that APOS theory has
already shown its strength in designing undergraduate mathematical curricula
but question its universal applicability, in particular in geometry, and, more
interestingly, in the formal construction of knowledge from definitions to
deductions in advanced mathematical thinking.

Introduction

The purpose of this paper is to respond to the research forum presentation of Ed
Dubinsky (Czarnocha et al, 1999) on APOS theory as "one theoretical perspective in
mathematics education research". It is clearly more than this, offering a major
contribution to mathematics education at the undergraduate level. Indeed, in the Calculus
Reform in the United States in the late 80s, it formed the basis of the only curriculum
project that had a coherent cognitive perspective.

My response will analyse APOS theory within wider realms of mathematical learning
and thinking, in particular a comparison of its roles in various contexts in elementary
mathematical thinking (EMT) and its extension to advanced mathematical thinking
(AMT). (These acronyms were introduced by Gontran Ervynck who was responsible for
the formation of the AMT Working Group at the Psychology of Mathematics Education
Conference in 1985.) AMT referred initially to "mathematics learning and teaching at
16+" including the activities of mathematicians in research. The work of Dubinsky and
his colleagues has focused on undergraduate mathematics (RUME), in particularly in
developing suitable, working practices (eg co-operative learning) and learning sequences
(genetic decompositions) in a wide range of specific mathematical areas, including
discrete mathematics, logic, calculus, linear algebra, group theory. In this paper I shall
concentrate on the role of APOS theory.
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The biological foundation of action-process-object-schema

I wish to begin by showing that the broad brush-strokes of APOS theory seem to have a
deep underlying biological structure. Figure 1 shows a simplified model of three stages
of brain development as a result of successive stimuli (which could be perceptual or
reflective). Stage represents an external stimulus to neuronal group 1, which is
sufficiently strong to fire neuronal group 2 but not group 3. The firing causes the link
between 1 and 2 to become more sensitive for a period of hours or days (so that we are

more likely to recall recent events). If the connection is reactivated, it becomes more
easily fired until it reaches as stage where any excitation of 1 also fires 2. This long-term
potentiation of the neuronal connections builds new structures. The combined strength of

1 and 2 may now cause group 3 to be excited, and so on. In this way an external stimulus

can cause a firing between two states perceived initially as separate, then joined together,
then part of more complex neuronal groupings that can fire in more complex situations.
The broad action-process-object-schema therefore has a natural biological underpinning.

initial stimulus

A

weak connection
connection strong enough to trigger firing

linked

B C

Figure 1: building memories in the brain by long-term potentiation (Carter, 1999, p. 160)

However, suppose that the first stimulus is a perception of an object. Then the same
sequence of diagrams could represent a growing relationship with the properties of that
object and the building of a more complex system of properties and connections. Both of
these theories occur within the description of APOS in Czarnocha et al, (1999), There is
a sub-sequence beginning with actions and moving to objects, and a further sub-
sequence beginning with objects and moving to a broader schema.

The primacy of actions and objects
APOS theory begins with actions and moves through processes to encapsulated objects.

These are then integrated into schemasconsisting of actions, processes and
objectswhich can themselves be encapsulated as objects. This suggests a primacy of
action over object. At a fundamental level it absolutely clear that cognitive actions are
required to construct cognitive objects. This I refer to as an application of "strong
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APOS", in which the actions and processes are any cognitive actions or processes
(conscious or unconscious), not just (conscious) mathematical ones.

However, even with this strong interpretation of the theory, the primacy of actions
needs to be questioned. Dubinsky and his co-workers have made an impressive effort to
formulate everything in action-process-object language. However, the urge to place this
sequence to the fore leads to a description that, to me, soon becomes over-prescriptive.

The part of development that uses the triad theory of Piaget and Garcia (1983) moving
from object to schema describes the initial object as "an encapsulated process" or a
"thematized object" to maintain the primacy of the APOS sequence. The first stage of
the triad, denoted intra, is simply described as "focus on a single object", to:lowed by
inter (study of transformations between objects) and trans (schema development
connecting actions, processes and objects). Such a description (based on the language of
action, process and object) seems to be at pains to avoid other more widely used terms
such as "inter" including the study of properties of objects, or "intra" being concerned
with relationships between them. The term "transformation" is one that I sometimes find
impenetrable. Sometimes it has a mathematical meaning, but at others it seems obscure.
In comparing the size of one object with another, is there a transformation of objects in
some sense, or does the child just declare one is bigger because it pokes out beyond
another?

APOS theory even formulates the notion of "permanent object" as arising through
"encapsulating the process of performing transformations in space which do not destroy
the physical object" (Dubinsky et al., 1988, p.45). Thus the permanent mental object in
the mind is created by a physical or perceptual action on an external object, to maintain
the primacy of process over object.

Looking closer at the structure of the brain suggests a distinctly different scenario. The
research of Hubei & Wiesel (1959) revealed single neurons in a cat's brains that respond
to orientation of an edge. Similar experiments with other animals revealed the same
phenomenon. In the brain of Homo sapiens, in addition to a specific area of the cortex
that builds a point by point copy of the visual field, other brain modules specialize in a
variety of analytic activities, including the perception of edges, orientation, movement,
colour, binocular vision, and so on. Homo sapiens and many other Creatures therefore
have complex systems for the visual perception and analysis of objects. One may attempt
to state that such objects only arise as the result of cognitive actions, and this use of
strong APOS cannot be denied at a theoretical level. However, the practicalities of
consciousness tell a different story. When an individual is looking at an object, the
conscious experience is that of the object being seen, not of the multi-faceted
unconscious processes by which the internal brain processes information.

Furthermore the brain has a highly subtle collection of modules to detect object
properties. Recent research has shown that animals and very small babies have primitive
brain modules that distinguish between one object, two objects, and perhaps more. This
distinction occurs in babies at a far earlier age than Piaget' s theories predict. (See
"Piager s errors, p.44 et seq. in Dehaene, 1997).
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The primitive brain also operates in other ways that impinge on high mathematical and
philosophical constructions. Lakoff & Johnson (1999, p.16) hypothesize that the
primitive "embodied mind" plays a role in all our thought, including what may be
perceived as logical deduction when brain modules sense such things as "inside inside"
is "inside" (ibid, p32). This occurs not through logical deduction but because the brain
models just observe that "it is". Furthermore, intuitive deduction occurs using "embodied
arguments" such as the use of "prototypical" exemplars rather than strict quantification
(ibid. chapter 7). The objects of the world and the embodied structures in the brain have
a full role to play in learning and thought.

The previous discussion, whilst failing to deny the primacy of cognitive action to
construct cognitive concept, indicates that the brain observes objects, and what seem to
be primitive mathematical and logical concepts in ready-made brain modules. This
seriously questions a rigid Action-Process-Object-Schema strategy in every curriculum.
Even the APOS curriculum has sub-sequences building on objects.

APOS Theory in Elementary Mathematical Thinking

To see the relevance of APOS in mathematics, I begin with its source in EMT. Here
Piaget spoke of three modes of abstraction: empirical abstraction from objects of the
environment, pseudo-empirical abstraction from actions on objects in the environment
and then reflective abstraction from mental objects.

Geometry includes many acts of empirical abstraction focusing on objects, beginning
with an intra stage coming to terms with the nature of objects themselves. I contend
therefore that geometry starts as an object-based theory. This is not to say that there are

no processesof course there are (drawing, measuring, constructing etc). However the
focus of these processes is to gain knowledge about the objects themselves.

Concepts in geometry occur with many parallel activities involving physical
interaction with the real world, but also, in a very real sense, they depend on the growing
sophistication of language. Rosch's theory of prototypes (Rosch et al, 1976) shows that
children first recognize "basic categories" such as 'dog', or 'car', only later moving to
super-ordinate or sub-ordinate categories, such as 'poodle-dog-animal' or Tord-car-
transport'. Such basic categories have properties that relate naturally to immediate
perception. A basic category can be represented by a prototypical mental image; it is the

highest level at which category members have similarly perceived overall shapes and the
highest level at which a person uses similar motor actions for interaction with the
members. The focus on a category of basic objects occurs naturally through a coherent
combination of perceptions. I would contend here that it is the object that is the focus of
attention, with the actions being the agents of that perception. It is only later, in a Van
Hie le type growth (using a dialectic back and forth rather than a strict sequence of
stages) that language used for description enables the conscious mind to build platonic
objects such as lines with "no width" and "infinite extensibility".

On the other hand, the growth of knowledge in arithmetic and algebra begins with
pseudo-empirical abstraction and hence more closely follows an APOS sequence. In
counting, there is the action of repeating the number words and beginning to accompany
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this by pointing at objects in turn. Later various learning sequences set up neuronal
connections in the brain, routinizing the procedure, seeing it as a process when it is
realised that different orders of counting the same set give the same number, and then
"encapsulating" the process into the concept of number. In fact the encapsulation follows
a sequence of counting "one, two three, four", then silently counting all but the last
number, then saying just the last number without counting at all. Number names and
number symbols play an essential role in this development.

I was utterly flabbergasted to see that nowhere in Czarnocha et al, (1999) is there a
single mention of the word symbol. Symbols are at the heart of cognitive development of
arithmetic (and later in algebra). They can be spoken, heard, written, read, used in action
games and songs. They are the stuff that children work with. Indeed, those who focus
more on the objects being counted than on the symbols for the counting prove to have
much greater difficulties in later development (Pitta & Gray, 1997).

To develop a more elaborated theory to describe these phenomena, Gray & Tall
(1994) formulated the notion of procept as follows:

An elementary procept is the amalgam of three components: a process which produces a
mathematical object, and a symbol which is used to represent either process or object.

A procept consists of a collection of elementary procepts which have the same object.

The procept notion has strong links with APOS theory, but there are significant
differences. We have always insisted on focusing on the cognitive structure itself and do
not imply that the mathematical process involved must first be given and "encapsulated"
before any understanding of the concept can be derived. For instance, in introducing the
notion of solving a (first-order) differential equation, I have designed software to show a
small line whose gradient is defined by the equation, encouraging the learner to stick the
pieces end to end to construct a visual solution through sensori-motor activity. This
builds an embodied notion of the existence of a unique solution through every point,
with difficulties only occurring at singularities where the differential equation does not
give the value of the gradient. It provides a skeletal cognitive schema for the solution
process before it need be filled out with the specific methods of constructing solutions
through numeric and symbolic processes. It uses the available power of the brain to
construct the whole theory at a schema level rather than follow through a rigid sequence
of strictly mathematical action-process-object.

Figure 2 shows a succession of uses of processes and concepts in symbolic
mathematics (Tall, 1998). Arithmetic has computational processes, algebra has potential
evaluation processes but manipulable concepts, the dynamic limit concept at the
beginning of calculus involves potentially infinite computational processes that lead to
the mental imagination of "arbitrarily small", "arbitrarily close" and "arbitrarily large"
quantities. It is no wonder that so many students cling to the comfort of rote-learned
finite rules of the calculus.

In Advanced Mathematical Thinking, students meet an entirely new construction: the
axiomatic object in which the properties (expressed as axioms) are the starting point and
the concepts must be constructed by logical deduction. Although (strict) APOS again can
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computational processes
computational concepts (numbers)

Figure 2: Development of process/concept in symbolic mathematics (Tall, 1998)

describe the learning processes (as it always will), there is a far more serious area of
study in the relationship between embodied knowledge and formal deduction (Alcock
and Simpson, 1999). Procepts are only of value here in certain aspects (for instance, in
the element of a transformation group can be both process and an object); but the notion
of group is not as it does not have a symbol dually representing process and concept. Is
this a failure of the notion of procept compared with the broader application of APOS
theory? Superficially, of course. However, the very fact that there is a serious cognitive
reconstruction using symbols in formal mathematics in an entirely different way from the
procepts of elementary mathematics suggests a chasm that many students have difficulty

in crossing.
Dubinsky and his colleagues have a brilliant way of looking at the group axioms:

formulate it as a function which outputs whether a set and its operation is a group or not.

This to me is a fantastic solution (both in terms of computers and cognition). However, I

still have serious concerns about the cognitive constructions made in such a sequence.

Different styles of Advanced Mathematical Thinking

One of my favourite quotations, which I have used often before, is the following:

It is impossible to study the works of the great mathematicians, or even those of the lesser,
without noticing and distinguishing two opposite tendencies, or rather two entirely different
kinds of minds. The one sort are above all preoccupied with logic; to read their works, one is
tempted to believe they have advanced only step by step, after the manner of a Vauban who
pushes on his trenches against the place besieged, leaving nothing to chance. The other sort
are guided by intuition and at the first stroke make quick but sometimes precarious
conquests, like bold cavalrymen of the advanced guard. (Poincare, 1913, p. 210)

The approach to the development of APOS is closer to Vauban than the bold
cavalryman. As implemented it often begins with symbolic procedures or programming
activities with visual activities coming later, if at all. Such a curriculum clearly can be of
great value but I cannot help sensing we need to develop bold cavalrymen with insight,
even if it is flawed for these leaps can be the stuff of future solid conquest.
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There is such a difference between analysts who fear the fallibility of pictures and
geometers or topologists that live by them. But this does not mean that either style is
necessarily always superior:

In the fall of 1982, Riyadh, Saudi Arabia ... we all mounted to the roof ... to sit at ease in the
starlight. Atiyah and Mac Lane fell into a discussion, as suited the occasion, about how
mathematical research is done. For Mac Lane it meant getting and understanding the needed
definitions, working with them to see what could be calculated and what might be true, to
finally come up with new "structure" theorems. For Atiyah, it meant thinking hard about a
somewhat vague and uncertain situation, trying to guess what might be found out, and only
then finally reaching definitions and the definitive theorems and proofs. This story indicates
the ways of doing mathematics can vary sharply, as in this case between the fields of algebra
and geometry, while at the end there was full agreement on the final goal: theorems with
proofs. Thus differently oriented mathematicians have sharply different ways of thought, but
also common standards as to the result. (Mac lane, 1994, p. 190-191.)

Even though different approaches to research both end up with formal proof, the
mathematical insights gained are very different. In a time of fast technological
development, it is clear that we need our cavalrymen to make precarious advances as
well as those who carefully operate safely step-by-step.

Pinto and Tall (1999) reveal a wide spectrum of thinking processes in undergraduate
mathematics students including some who build meaning for definitions from their own
experiences and others who take the definitions given by others and build meaning
mainly by deducing theorems. The latter students seem more amenable to an action-
based APOS course than the former, who build on a whole range of embodied cognitive
constructs. Whilst cognitive actions are always necessary to construct cognitive
concepts, is it providing a service to necessary diversity in human thought by restricting
the learning sequence to one format of building mathematical actions, mathematical
processes and mathematical objects?

Summary

Strict APOS can be used to formulate the idea that cognitive concepts must be preceded
by cognitive operations. In this sense APOS theory is a "ToE" (Theory Of Everything).
However, given that the learner has a wide range of embodied constructs in need of
reflection and reconstruction, I contend that the accent on sequences solely built on
action-process-object-schema distorts the wider enterprise. Figure 3 shows my own
vision of the development of major themes in mathematics. APOS theory has many
applications in the elementary mathematics of arithmetic, algebra, and calculus, but is of
less relevance in the study of space and shape. In RUME the evidence shows its power in
designing certain types of highly successful curricula. However, it is not the whole
world. The varieties of thinking in professional mathematicians need an expression
beyond that of the measured action-process-object-schema development. For instance, in
my own approach, to calculus, I begin not with the new process of programming
functions in a computer language, but with the embodied visuo-spatial notion of "local
straightness" which is then explored in parallel with the symbolic operations of
differentiation. I welcome APOS as a major contribution to the understanding of
mathematical cognition, but as a valued tool, not a global template.
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Figure 3: cognitive themes in the development of mathematics (Tall, 1995, 1998)
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TEACHING AND LEARNING LINEAR ALGEBRA WITH CABRI

Anna Sierpinska, Jana Trgalova, Joel Hillel, Concordia University, Montreal, Canada

Tommy Dreyfus, Center for Technological Education, Ho lon, Israel

Abstract: The paper gives an account of a research program concerned with the
study of computer environments in the teaching and learning of linear algebra. In
an attempt to help students overcome the so called 'obstacle of formalism', we
designed an entry to linear algebra based on a geometric model of the two-
dimensional vector space within the dynamic Cabri-geometry II environment. We
present (i) the theoretical framework of the research whose main ideas are the
necessity of the use of 'multiple representations' in the learning of mathematics and
the notion of quasi fundamental situation, (ii) the methodology which is close to
didactic engineering, and (iii) the design and its evaluation in terms of an analysis
of discrepancies between the objects constructed by the students and the intended
ones.

1. Introduction

Our research program inscribes itself within the large domain of mathematics
education which is concerned with the design and study of the computer
environments for human learning (`environnements informatiques de l'apprentissage
humain', Balacheff, 1998), whose main questions regarding mathematics learning
are:

How are the computer representations of mathematical objects related to the
meanings of these mathematical objects in the mathematical theory?
What should be the conceptual furnishings of the student's mind in order for him
or her to interpret these representations not in phenomenological terms of what is
happening at the interface between the user and the computer program but in
terms of mathematical theory?
Can the computer learning environment be designed so as to promote the
development in the student, of such conceptual, rather than phenomenological,
interpretations?

There is already an awareness in the mathematical community of the general
`disparity between mathematical conceptual structures and their software
manifestations' (Burton & Jaworski, 1995, p. 8) and this phenomenon has been
thematized in the concept of 'computational transposition' (Balacheff, 1993, p. 147).
According to Balacheff (1998), the study of the transformations of meaning and of
the epistemological status of objects in the computational environments should
become an important field of research in mathematics education.

At the source of our research there lies the practical didactic problem of
overcoming, in students of linear algebra, the quite widespread 'obstacle of
formalism' (Dorier, Robert, Robinet & Rogalski, 1997). We have considered this
obstacle as responsible for, among others, the notorious confusion of linear
transformations with their matrix representations and lack of awareness of the
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relativity of the matrix representations with respect to a basis (Hillel & Sierpinska,
1994). In order to overcome the obstacle of formalism, our idea was to design an
entry into the topic of linear transformations using a definition of this concept
condition, without, however, using only the discourse of the axiomatic theory in
which vectors and linear transformations are nothing more than variables (e.g. let

v 1, v2) be a basis of a two-dimensional vector space' ; T be a linear
transformation on V', etc.). We needed an informal way of speaking about vectors
without immediately speaking about their coordinates.

The Cabri-geometry II environment appeared to provide us with some means
to reach this goal: We have created a geometric model of the two-dimensional
vector space where vectors are positions of points with respect to a fixed point
called the origin and where to describe the position of a point one needs only two
independent oriented directions and units in each direction. The arbitrary element of
the vector space was represented, in Cabri, by an arrow the Cabri 'vector' whose
tail was attached to a fixed point 0 and whose head could be dragged freely on the
screen. Linear transformations were introduced as transformations preserving
vector addition and scalar multiplication. Transformations in general were given, in
Cabri, by representations of dependencies between two vectors: One 'free' vector
would be put on the Cabri screen, labeled v, its image under a transformation would
be constructed, labeled T(v), and all traces of the construction would be hidden. The
construction would be recorded in Cabri as a macro and given a name. It would be
possible to obtain images of vectors under the transformation by using this name. If
a transformation was given this way, the only way to know whether the dependence
between v and T(v) is linear was by checking the conditions of the defmition.

Thus the Cabri environment appeared to make it possible for the students to
achieve a more direct contact with the objects of the abstract theory without too
quickly replacing these objects by computational procedures.

From the point of view of the idea of the relativity of the matrix
representation of a linear transformation with respect to a basis, a very useful feature
of Cabri is the possibility of creating systems of axes on an arbitrarily chosen pair of
non-collinear vectors ('New Axes'). Moreover, the dynamic features (the dragging
mode) of Cabri and the possibility of obtaining simultaneous geometric and
arithmetic representations of vectors and linear transformations, supported our
theoretical perspective on the role of multiple representations in grasping abstract
mathematical objects.

An experimentation, with several groups of students, of a series of activities
based on the above ideas, has shown, however, that our expectations are not easily
realized. This problematized our approach and our use of the Cabri technology for
the teaching of linear algebra. Since then our research efforts have been directed
towards explaining the sources of the perceived discrepancies between our
expectations and students' reactions to the designed activities.
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2. Epistemological position

The theoretical framework underlying our research program is constructed on a set
of epistemological assumptions (rather than psychological ones). A detailed
presentation of this framework can be found in Sierpinska, Dreyfus and Hillel
(1999).

Our main assumption is that there is no direct access to objects of scientific
knowledge; scientific knowledge, by definition, is semiotically mediated. The
development of scientific knowledge was triggered by the need to compare, order,
and predict the behavior of objects whose identity, magnitude, appearance in time,
etc. could not be evaluated with the use of the senses alone. Direct observation had
to be replaced by the construction of technical instruments, and of systems of
representation, notation and computation, as well as of theories containing means of
the validation of inferences made on this basis. In the absence of direct access to an
object, one of the main questions is: how can we tell whether two given
representations are, in fact, representations of the same object? Each representation
captures certain aspects of an object and ignores other aspects, and, therefore, the
answer to this question is not obvious (for a thorough presentation and justification
of this epistemological position, see Duval, 1998).

Much of the scientific effort is invested in the development and study of
instruments and systems of representations. This is especially (but not solely) the
case of mathematics. The objects of mathematics being theoretical objects, the
question of their identity is a particularly delicate one.

We take mathematical objects to be the invariants in the reference of several
semiotic representations (Duval, ibid.). In other words, we do not take them to be
the contents of mental representations in the psychological subject, nor do we
consider them as mind independent entities. One consequence of this
epistemological position is the necessity of the existence of several representations of
an object of knowledge. If there was only one, there would be no reason to
distinguish between the object and its representation. A learner of mathematics can
grasp an object of this knowledge only through working with several
representations of this object, processing them and converting from one to another.

Some caveats are in order with respect to the above presentation of our
theoretical perspective. We assume an independent existence of mathematical
objects (independent of individuals' minds and social conventions), but we do not
award mathematical objects any kind of absolute character. What is the object and
what is its representation may well depend upon the context of the mathematical
situation at hand. For example, in Analysis, an equation like y=2x+3 is usually the
object and a straight line drawn in a system of coordinates is its geometric
representation; but in Geometry the line will be regarded as the object and an
equation like y=2x+3 as one of its possible representations relative to one of the
many possible systems of coordinates. What accounts for the 'objectivity' of
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mathematical concepts is their theoretical and systemic character (cf. Steinbring,
1998). The existence of mathematical objects is of a logical, not psychological or
sociological order.

But, in taking this epistemological position, we are not denying that the
processes of construction of mathematical knowledge do indeed have a
psychological and social character. We are only saying that what we shall call
`knowledge' will be the products of these processes in the form of systems of signs
and that we are interested in studying the internal logical coherence of these
systems, their field of reference (i.e. the objects of the signs), and their relations acid
relevance with respect to other sign systems. As mathematics educators looking at
groups of undergraduate students learning linear algebra under the guidance of a
teacher, we study what is being said and written and drawn on paper or on a
computer screen, in the aim of creating theoretical models of the sign systems used
by the groups. Our analysis and evaluation of this model is done not in terms of the
cognitive characteristics of individual students and the teacher as psychological
subjects, nor of the nature of the social interactions in the group, but in terms of the
mathematical and logical relations between the knowledge produced by the group
and the 'intended knowledge' assumed by the didacticians who planned the
teaching/learning activities. This is not to say that the impact of didactic phenomena
such as 'contract didactique' or `effet Topaze' (Brousseau, 1986a) on the
knowledge produced by a group of students and a teacher is not taken into account.
It is, but we require that this impact be described in terms of a mathematical model
of the difference between the intended objects and concepts and the actually
constructed objects and concepts.

3. Quasi-fundamental situations
The methodology of our research is close to (but not identical with) didactic
engineering (Artigue, 1990; Artigue and Perrin-Glorian, 1991) in that (a) both the a
priori decisions and the analysis following a realization of the design are founded on
epistemological, cognitive, and pedagogical considerations, and (b) its methods of
validation are internal, based on an interaction between the a priori and the a
posteriori analysis, and not external, based on a comparison between experimental
and control groups.

Didactic engineering methodology has been originally based on Brousseau's
theory of didactic situations (Brousseau, 1997; Perrin-Glorian, 1994). Our design
deviates from the classical applications, usually structured along the situations of
action, formulation and validation. In Brousseau's theory, one of the basic
distinctions is between didactic and a-didactic situations, and it is assumed that, for
some important elements of mathematical knowledge, it is possible to construct a-
didactic situations in which this target mathematical knowledge will emerge as an
optimal solution to a problem for the students (' fundamental situations').
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Considering that the specific character of linear algebra concepts
(generalizing, unifying existing theory rather than tools for solving specific problems,
see Dorier, 1995) does not allow for the construction of a-didactic, 'fundamental
situations' in this sense, and acknowledging the importance of the 'didactic
contract's we propose a somewhat different categorization.

We consider only didactic situations and we divide them into 'social' and
`cognitive' ones. 'Social didactic situations' are those based on a social contract;
`cognitive' ones are those based on a cognitive contract. In a social contract, the
object of the negotiations between the students and the teacher are the social and
institutional rules governing the process of following and passing a course within the
given institution. The students' most frequent questions are concerned with the
presentation of their solutions, e.g. 'Do we have to write the solution with these
curly brackets, or is it enough to write x equals something ?', or 'Do we have to
justify our answer or is it OK if we just write the numbers ?'. If a teacher 'teaches
to the test', the contract is of this 'social' nature. In a cognitive contract, the object
of the negotiations between the students and the teacher are the interpretations of
the representations used in the communication of knowledge and the nature of the
studied [mathematical) objects.

We shall call a didactic situation a 'quasi-fundamental situation' (QFS) with
respect to a given mathematical object if it has a high potential to evolve into a
`cognitive didactic situation' in which the nature of this mathematical object will not
fail to be discussed. This does not mean that it has to evolve into such a situation
for all students and in all circumstances. We do not assume any kind of
`epistemological necessity' or determinism in the development of knowledge. We
admit that much depends on the students' attitude towards learning mathematics,
their previous mathematical experience, as well as on the teacher's perception of the
meaning of the subject matter. (For the presentations and discussions of the concept
of fundamental situation, see Brousseau, 1986b; Berthelot et Salin, 1995; Legrand,
1996; Sierpinska, to appear).

4. The evolution of the research program

Our research program has been evolving within the framework described above
since 1996. It is also then that the idea of using the Cabri-geometry software arose.
From the outset, our work concentrated on the development, within this
environment, of (a) a coherent system of representations of objects such as two-
dimensional vector space, linear transformation, eigenvector, and (b) a set of
activities and problems for the students using this system of representations. A
sequence of experimental sessions with students was designed aiming at testing
whether, in this linear algebra enriched Cabri environment students develop a better
grasp of the mentioned mathematical objects than is usually the case in ordinary
lecture style, paper and pencil setting.
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The first experimentation took place early in 1997: There were 7 highly
controlled sessions with only a pair of students, both after a college level vectors and
matrices course. The students were working together, partly with a teacher, partly

without his intervention. A computer with the enriched Cabri environment was
always there and the students could use it whenever they wanted. Most, but not all,
activities were to be done using the computer. The students' interpretations of the
Cabri representations and the activities and problems turned out to be rather far
from those that we had intended and expected, yet logically quite justifiable. Our a
posteriori analyses concentrated on modeling the mathematical objects that

appeared to emerge in the interactions of the students with the learning

environment, and justifying them on the basis of, mainly, the characteristics of the
representations and the activities and problems proposed to the students. The
results of these analyses can be found in Sierpinska et al. (1999).

A second experimentation (spring 1998) was then prepared, based on a
revised version of the previous design. Only five sessions were designed, focusing

on those concepts about which there was the most confusion in the first

experimentation: vector, basis, linear transformation and especially the notion that
transformationthe values of a linear ansformation on a basis determine the transformation

completely. Three pairs of students worked each with a different teacher. The

experiment was still very tightly controlled: The students were not given any
materials to study outside of the sessions, and all their conversations were recorded.
The a posteriori analyses of this experimentation concentrated, as before, on
understanding the mathematical objects that have emerged in the interactions within
the environment, but not so much on ways to improve the design of the
representations, activities and problems. It appeared to us that some unintended
interpretations are inevitable, whether due to the specificities of the Cabri
environment or to the axiomatic nature of the linear algebra concepts, or to other

reasons. We started thinking that, instead of trying to avoid them, we might
capitallie on the didactic situations that bring them to light, and create follow up
activities that would allow the students to become aware of these interpretations,

and see the possibility of alternative ones.

This led us to the notion of the 'quasi-fundamental situations' and the
preparation of the third experimentation focused on the development of these for
the notions of vector, linear transformation and eigenvector. These situations had to
be tested in an ordinary course context, not an experimental context, because in the
latter, the risk of the evolution of a 'social type of contract' is rather unlikely (the
situation may not even be perceived by the participants as a didactic situation). We
chose a course in linear algebra for students preparing for a master's degree in
mathematics education. The course, taught by A. Sierpinska, was titled 'Linear
Algebra with Cabri and Maple' and lasted 13 weeks, at the rate of one 2 hour
meeting per week. It took place in the fall term of 1998. It was only partly
controlled (materials to study between classes and assignments were given, but the
students' activities between classes were not recorded nor monitored). In the class,
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or rather computer lab, the students were given worksheets in which they had to
write the results of their activities with Cabri and solutions to problems. These
worksheets were collected each week. The students were also writing diaries. At
the end of the course, the students wrote a test. Nine students started the course,
seven completed it. Two students dropped out, feeling unable to cope with the
material and the pace of the course.

All these students had taken undergraduate linear algebra courses prior to
entering the master's program. The course was not planned as a re-take of an
undergraduate course; rather the students were supposed to experience this course
both as students and as potential teachers of linear algebra courses at the college
level. The aim was to help them see the presumably known concepts from a
different perspective and judge of the potential or pitfalls of this technological
approach for the teaching of college students. The course started with the notions
of vector, operations on vectors and linear transformations like the previous
experiments but then continued with the arithmetization of these notions:
coordinates, change of basis, matrix representations of linear transformations,
`eigentheory' and its applications to dynamical systems.

The analysis of the outcomes of this last experiment is ongoing at the time of
writing this text. So far, the analysis has focused on the potential of some of the
designed situations to evolve into quasi-fundamental situations.

5. Samples of results

The results of our research comprise
descriptions and justification of the didactic situations as designed;
description of the students' behavior during the experimentation of the designed
didactic situations;
models of the mathematical objects constructed by the students; their analysis in
terms of their inner consistency and possible differences between them and the
intended mathematical objects; and possible reasons why the students
constructed these objects;
evaluation of the potential of some of the designed didactic situations to evolve
into quasi-fundamental didactic situations.

The results reflect the foci of our experiments: the a priori analysis of the
linear algebra-extended Cabri environment in the first experiment; models of the
objects constructed by the students in the second, and the identification and study of
the candidates for quasi-fundamental situations relative to the basic objects of linear
algebra in the third.

In the sequel we present some samples of such results of our research. We
omit an example from the first experiment, whose thorough description can be
found in Sierpinska et al. (1999).



5.1 The second experiment: models of mathematical objects created by the
students

The results of our research in relation to the second experiment are a product of a
confrontation of an analysis of the students' behavior with our theoretical
assumptions and expected behavior. We give here a sample of these results, focused
on the concept of linear combination of vectors.

5.1.1 Overview of the design with respect to the notions of vector and linear
combination

These concepts were addressed in the first two sessions. In the first session, the
students became acquainted with a representation of the two-dimensional vector
space, constructed in the dynamic geometry environment Cabri-geometry II.

Vectors were introduced as models of translations in geometry and of forces in
physics, and were represented by an arrow produced by the Cabri command
`Vector'. A scalar k was represented in Cabri by a variable point attached to a
number line; its coordinate on this number line was the value of the scalar k. The
first activities were aimed at focusing the students' attention on two characteristic
features of a vector: length and direction, and at introducing the notion of equality
of vectors. Then the convention of representing all vectors by arrows starting from
the same point called the 'origin' was introduced. The second part of the session
was devoted to the operations of addition and scalar multiplication defined on
vectors. The operations were introduced by defining new vectors produced by Cabri
macros 'Vector addition' and 'Scalar multiplication' respectively, and the students
were asked to explore the properties of these new vectors. They were expected to
focus on those properties that appeared as invariants of the representation when the
given vectors and scalars were dragged around the screen. The notions of zero
vector and opposite vectors were introduced at this stage.

The second session was devoted to the notion of linear combination. The
linear combination of two vectors v1 and v2 was introduced algebraically as a vector
w = kiv 1-1-k2v2, where k1 and k2 are scalars. The students were asked to translate
this definition into a Cabri representation of a linear combination and construct w on
the screen. For this purpose, two number lines with variable scalars k 1 and k2 were
created on the screen and two vectors vl and v2 starting from the origin were given.
The students were then asked to explore the properties of a linear combination and
examine special cases when one of the scalars is set to zero and when both scalars
are equal to 1. In the next activity, the students were asked to put any vector u on
the screen and express it as a linear combination of the vectors v1 and v2. This
could be done by adjusting the scalars k1 and k2 so that the vectors u and ki vo-k2v2
overlapped. This activity aimed at creating an intuition that any vector in a two-
dimensional vector space can be decomposed into a linear combination of two given
non-collinear vectors. In the next activity, the students were composing and
decomposing vectors on the Cabri screen as well as on paper. At the end of the

1 - 126

163



session, the students were asked to determine which vectors in the plane can be
obtained as linear combinations of (a) one vector and (b) two non-collinear vectors
and which vectors cannot be obtained. This question aimed at an intuition of the
notion of basis in two dimensions.

5.1.2 Description and analysis of students' behavior with respect to the notion of
linear combination

The design described above was experimented with three pairs of students w::0 had
not taken any linear algebra course yet, but some of them, one pair in particular,
had encountered vectors in physics classes.

As we said above, a linear combination of two vectors v1 and v2 was defined
algebraically as a new vector w given by the formula w = k1v1 +k2v2. The invariant
of this representation was intended to be the sum of scalar multiples of v1 and v2.
The students were asked to construct a representation on the computer screen of a
linear combination of two given vectors v1 and v2 stemming from the same point,
using two scalars already on the screen. Following the formula, the students
constructed first the scalar multiples k1v1 and k2v2, and then added these two
together to obtain the vector w. To explore the properties of w, they were invited
to move the scalars along the number lines and observe what happens to w. To
help them identify the invariants of this dynamic representation, they were asked to
connect by segments the endpoint of w with the endpoints of k1v1 and k2v2
respectively, thus obtaining a parallelogram with w as a diagonal. The intended
invariant of the dynamic representation on the screen was: Linear combination of v 1

and v2 as a diagonal of the parallelogram built on vectors k1v1 and k2v2.

As intended, the students were focusing on the parallelogram and its diagonal,
however they seemed first to be overlooking its sides. The object 'linear
combination of v1 and v2' became for them the sum v1+v2 with a specific property:
The lengths of v1 and v2 were variable and adjustable by the scalars. This was the
difference between linear combination and vector addition, the latter being defined
for vectors with fixed lengths. The object that for the students was referred to by
the term 'linear combination of v1 and v2' was 'a set of all vectors v 1-1-v2, with v1
and v2 having fixed direction, but variable length'. Such an object could only exist
in the dynamic environment; in the paper and pencil context it was identified with
the vector addition. In the activities to be done on the computer, such as expressing
a given vector as a linear combination of two given vectors, the students were
successful and it was impossible for a teacher to notice that the concept being
developed in the students was not exactly the intended one. It was only revealed
when the students were asked to find scalars k1 and k2 such that the linear
combination k1 v 1 +k2v2 is a zero vector. The task was to be done away from the
computer. It is clear that, within the students' understanding of linear combination as
being the sum, the only possible answer, when v1 and v2 are non-collinear, is that
both vectors are zero, and when v1 and v2 are collinear, they are opposite to each

. .
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other. These were exactly the students' responses. This concept became even more
transparent in the activity of decomposing a given vector w into a linear
combination of two given non collinear vectors u and v. The students were able to
solve this problem on the computer: They first constructed the linear combination of
the given vectors using the values of scalars that were already on the screen, and
then adjusted the scalars so that the linear combination and the given vector w
overlapped. When they were presented the same problem on paper, they claimed
that it was impossible to solve it because w could not be expressed as u+v and they
said they 'don't have a scalar' to adjust the lengths of u and v so as to make w the

diagonal of the parallelogram on u and v.

We now analyze in more detail the activities of composing and decomposing
vectors into a ,linear combination of two given vectors. These activities were to be
done both on paper and with the computer. The composition of two given vectors
into a linear combination did not present any difficulty for our students: all necessary
information (vectors and scalars) was explicitly given in both environments, and the
students knew 'what to do' with the givens. The students needed only to draw
scalar multiples of the given vectors, using the given scalars, and then draw the sum
of those multiples. On the other hand, the decomposition of a vector into a linear
combination of two given vectors v1 and v2 is, in general, mathematically more
difficult. This task cannot be done without thinking about the linear combination as
an object described by its definition (rather than thinking about it as a sequence of
things to do). One needs to, in fact, create the parallelogram whose diagonal is the
vector to be decomposed, and express the sides of the parallelogram in terms of the
given vectors, i.e. find the corresponding scalars. However, when working on the
decomposition with the computer, one can easily bypass this difficulty and solve the
problem via composition, by first constructing a linear combination w with scalars
that are on the screen, and then adjusting the scalars to make w overlap with the
vector to be decomposed. This approach had even been encouraged by the
teachers in order to avoid the technical problems related to the accurate geometric
construction of the parallelogram with Cabri. For this reason, only the
decomposition on paper, where there was no other way of solving the problem,
presented real difficulties for the students and thus allowed to reveal the students'
understanding of linear combination.

As the students were working on generating vectors from a set of given ones,
they developed other objects that were for them referred to by the term linear
combination. For example, when asked which vectors can be obtained from two
non-collinear vectors by way of linear combinations, the students first drew two
vectors v1 and v2 stemming from the same point, perpendicular to each other, one

horizontal, the other vertical, and they started generating the new vectors as follows:
The vector v1 being given, one can obtain all vectors on the line through v1 using
scalar multiplication. One can obtain the line through v2 in the same way. One can
also obtain the vector vo-v2 and the whole line through this vector. By symmetry
of the figure that the students were drawing simultaneously, one can obtain the
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vector v1-v2 and the whole line through it. One can then obtain the vector
v 1-1-(v 1 i-v2) and the whole line through this vector. After that, the students
concluded that all directions can be obtained, a vector in a new direction being
obtained as a sum of any two given or previously obtained vectors, and any other
vector in this direction being obtained by scalar multiplication. This object developed
by the students and standing, for them, for a linear combination can be expressed by
the formula `k(mv,±nv2), where m, n are integers and k is a real number
(scalar)' .In this formula, Inv' and nv2 represent the additions of m times the vector
v1 and n times the vector v2 respectively, and only k(mv1 ±nv2) represents the
multiplication of the sum by the scalar k.

5.1.3 Possible' reasons for the discrepancies between the expected and observed
behavior

Reasons related to the graphical representation of linear combination. The
processing of the graphical representation of a linear combination w of two given
vectors on the screen (by changing the values of the scalars) made the students
focus on the parallelogram whose diagonal was w, and the diagonal was for them
associated with vector addition. Moreover, the way of decomposing a given vector
w into a linear combination of vectors v1 and v2 in Cabri by first constructing any
linear combination and then adjusting the scalars in an appropriate way, seems to
have conveyed the idea that scalar multiplication occurring in the definition of linear
combination is just a tool to control the length of the component vectors v1 and v2
to obtain the desired diagonal (sum).

Reasons related to some students' background in physics. As mentioned, one pair
of our students were already familiar with vectors and operations on vectors, in
particular vector addition, which they encountered in their physics classes. Indeed,
they were often referring to vectors, even in an abstract context, as representing
forces (e.g., one of these students described the sum of two vectors as a vector
having 'the same force with the same effect with these two vectors'). In physics,
vectors usually represent forces applied to objects. Typical problems involving
forces concern combining forces acting on an object to find the resultant force
(which is in fact vector addition), or the converse, decomposing a given force into
forces acting in given directions (decomposing a given vector into a sum of vectors).
The fact that the forces are multiples of a unit force remains implicit in the sense that
the unit force is never drawn in the diagram representing a composition or a
decomposition of forces. In other words, the notion of linear combination is never
explicitly encountered in physics. This fact might have been at the origin of the
students focusing on the vector sum exclusively.

Reasons related to the student's 'elastic' view of vectors. From the students'
behavior when faced with various problems involving the operations on vectors, it
seems that while, for them, vector addition produces a new vector (in a new,
direction between the two components), this is not the case for scalar multiplication,
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which just makes a given vector longer or shorter (elastic view). Such a conception
of scalar multiplication goes hand in hand with the concept of linear combination as
`a set of all vectors v 11-v2, with v, and v2 having fixed direction, but variable
length'. In addition, it allows to explain the emergence of the concept of linear
combination as a vector given by 1(mv i±nv,)': in fact, the students were first
generating new directions using the operation of vector addition, and then were
making the new vector longer or shorter by scalar multiplication, thus obtaining the
whole line.

5.2 The third experiment: the search for quasi-fundamental situations

Several of our candidates for QFS were designed so as to fully take into account the
indirect access to scientific knowledge. We give two examples: A situation based on
a game of communication (`jeu de message') and a situation in which the students
are asked to find some information about an object in two cases: (a) the information
can be almost directly read off a graphical representation; (b) the information can
only be derived using analytical means (a definition, an equation, etc.).

Example 1. A game of communication

One of this type of situations was aimed at bringing to the students' awareness the
need for a reference system in communicating the position of a point in a plane.
This situation was meant to address the students' interpretation of vector as 'an
elastic arrow' with no definite length nor direction, which we observed in the first
and second experiment.

The students worked in pairs. Each member of the pair had a circle cut out
of paper with its center marked and (a) nothing else marked, (b) one other point
marked, (c) two more points marked. One of the students had to put a point in the
circle and communicate its position to the other student in writing, without using
drawings. The other student had to follow the instructions to reproduce the position
of the point in his or her circle. In case of ambiguity, he or she would ask the first
student additional questions. They had then to compare their circles. The rationale
behind this activity was the following: A coordinate system is necessary only when
the position of an object cannot be given by ostension. This is why, historically, the
first coordinate systems were constructed in the areas of cadastral surveys,
navigation and astronomy (Boyer, 1994). This situation did, indeed, bring an
awareness, in all the students in the class, of the need for a reference system. Pairs
did, however, differ in the number of attempts needed to obtain an unambiguous
message, and in the degree of mathematical sophistication of the reference system
they came up with. An interesting observation is that students used polar
coordinate systems rather than Cartesian ones.

Example 2: From reading an information off the screen to calculating it

The concept targeted by this situation was that of the coordinates of a vector in a
basis. The students were asked to put, on the Cabri screen, two non-collinear



vectors v1 and v2 stemming from the origin, and draw NEW AXES on them. They
were asked to construct the vectors w1=.5 v +.3 v2 and w2=.8 v1-2.3 v2 and put
NEW AXES on these vectors, as well. Next, the students were asked to put any
vector u from the origin on the screen and find its coordinates in both bases { v1, v2)
and { w1, w2} . This task did not require any use of algebra. The coordinates could
be read directly off the screen with the Cabri command EQUATION and
COORDINATES. It was not even necessary to use the notion of coordinates of a
vector in a basis. The notion of coordinates of a point in a system of axes was
sufficient: In the latter the notion of linear combination is not necessary; the notion
of unit of length is implicit and the coordinates are found by dropping parallels (and
not by linear decomposition). However, an awareness of the process of dropping
parallels is needed because the systems of axes created by the students were not
orthonormal and were not in a horizontal/vertical position.

The next question required a very different approach: the students were asked
to find the coordinates, in the basis { w1, w2), of a vector u whose coordinates in
the basis {v1, v2} are (100, 85). A vector with coordinates of this magnitude could
not be constructed could not be constructed on the Cabri screen and, consequently,
its coordinates in the other basis could not simply be read off the screen. It was
necessary to think in terms of linear combinations of vectors, and to use analysis: the
vector u had to be written in two ways, as a linear combination of the vectors v1
and v2 with coefficients 100 and 80, and as a linear combination of the vectors w1
and w2 with unknown coefficients, x and y. Then these two representations would
be equated. Using the relation between the vectors v

1
and v2 and w1 and w2, and

the independence of the vectors v1 and v2, a system of linear equations in two
unknowns x and y would be obtained.

u= 100v1 + 85v2 , u = x w1 + y w2, w1 = .5 v1 + .3 v2 ,
w

2
= .8 v

1

2.3 v2

(.5x +.8y -100) v1 + (.3x 2.3y 85) v2 = 0

1.5x +.8y =100

.3x-2.3y= 85 (***)
whence x = 214.39 and y = -8.99

The leap from the first to the second task was conceptually quite big, and all
students experienced some difficulties with the latter. Some students solved the
problem with the help of a hint from the teacher. The main topic of discussion with
these students was why would one have to refer to the linear independence of the
vectors v 1 and v2 in solving the problem. For the students, the uniqueness of the
representation in a basis was something obvious. They would naturally conclude
from (**, ) that the coefficients should be zero, on the grounds that v1 and v2 are
non-zero. But a few other students were directing their conversations with the
teacher so that she tells them 'how to start', 'what to do'. One of these students
found the correct coordinates for u, writing equations (*), (**), and (***) and
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solving the last one, without any justifications between them. He then substituted
these coordinates into the equation (**) obtaining v1(0) + v2(0)=0'. His concluding
statement was: ' v 1 and v2 are linearly independent'. The reason why the student
wrote this 'conclusion' could be that he overheard the teacher discuss the
importance of the condition of linear independence of v1 and v2 in solving the

problem with other students. He thus knew that this fact must be included in the
solution; it was not important for him that putting it where he did, did not make

sense from the point of view of the question in the problem. 'Making sense' was
not his main concern; 'surviving the course' was.

In spite of the fact that three out of the nine students in the class were
perceiving the situation as based on a social rather than on a cognitive contract
when working on this task, we are willing to claim that the situation is a candidate
for a QFS; not a QFS for the awareness of the importance of the condition of linear
independence for the idea of basis, however, but a QFS for understanding the
notion of coordinates of a vector in a basis. Some of the students' diary entries for
this class give support to our conviction.

There were also other types of situations in our design with a strong potential

to evolve into QFSs. One of them was based on the principle of sustained
intellectual engagement in not just a simple task, but a series of related problems,
whose solution requires the overcoming of some deeply entrenched obstacle. The
series of problems which required students to extend a transformation of a basis to a
linear transformation of the whole plane, belonged to this kind. Students had
serious difficulties in solving these problems because they tended not to think about
linear transformations analytically, in terms of the axiomatic defmition, but
synthetically, as a term referring to a kind of proportional change, or a name for
transformations such as reflections, rotations, dilations etc. A description of the
evolution of students' thinking in confrontation with one such problem can be found
in Sierpinska et al. (1999). In the third experiment, not all students engaged in the
intellectual challenge that these problems presented. But, those who did, achieved
an understanding rarely encountered in the ordinary linear algebra courses.

*

The third experiment confirmed the inevitable character of some
interpretations of the Cabri representations in students, but it has also pointed to the
limitations of observations about the learning process that can be done in tightly
controlled teaching experiments, limited in time and based on a small number of
tasks. In particular, the time spent in the lab with the teacher could account for only
a small part of the process of understanding the defining condition of linear
transformations in the whole class experiment. Students were given a large variety

of problems to work on between the sessions. The students reported being
engrossed in some problems for the whole week between the sessions, working
alone and with their peers, and even dreaming the solutions. Three weeks after the
problem of extending a transformation of a basis to a linear transformation of the
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whole plane was given in class, one student suddenly exclaimed: "It's been three
weeks now that we have been working on it, and it's only today that it clicked into
place. Now I don't even understand why I didn't see it before. Now it's so clear.
And so beautiful". But the whole class experiment has also brought forth the
fragility of the cognitive contract and the difficulty of maintaining it in an ordinary
course, where the question of 'survival' in an academic program (as one of the
students put it) may easily become more important than that of understanding.

We find the chosen direction of research promising because it leads to results
which are relevant at the level of theory and methodology of research while making
some products of the research (adapted descriptions of the didactic situations, with
caveats concerning the possible unintended interpretations of the representations)
accessible to those instructors of linear algebra who are not engaged in research
themselves.
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Finding the Student's Voice vs. Meeting the
Instructor's Expectations

Uri Leron

Technion Israel Institute of Technology

Reaction Paper to:

"Teaching and Learning Linear Algebra with Cabri"

by Anna Sierpinska, Jana Trgalova, Joel Hillel and Tommy Dreyfus

The topic under discussion can be decomposed into four levels, which I list from
the bottom up:

A. Linear Algebra (LA);

B. The teaching and learning of (A);

C. The use of technology (specifically, dynamic geometry software; more
specifically, Cabri H) in (B);

D. Research on (C).

In my reaction I will say something on each level. The remarks on the first two
levels build up towards the last two levels, where the teaching and research issues
raised by authors are explicitly discussed. It is convenient to arrange my
observations around pairs of dual views that exist at each level.

Note: I use the abbreviation STHD to refer to both the paper and the authors.

A. Linear Algebra: Global-Geometric View vs. Local-Arithmetic View.

LA consists of a tight and powerful synthesis between two ubiquitous parallel
threads: The Global/Geometric View (GGV) and the Local/Arithmetic View
(LAV). GGV is a generalization and an abstraction from geometry of the
2-dimensional plane and the 3-dimensional space, especially in its vector
representation. LAV is a generalization and an abstraction from the theory of linear
equations in 2 and 3 unknowns. The LA synthesis is a generalization and an
abstraction from analytic geometry, that is, the synthesis of geometry and algebra
(of linear equations) developed by Rene Descartes in the 17 Century. The objects
of GGV are usually given abstractly by postulating their defining properties; they
include scalars, vectors, vector spaces, bases, dimension, linear transformations and
the like. The objects of LAV are given concretely by specifying their form; they
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include real numbers, linear equations, n-tuples and matrices over the real numbers

(the restriction to real numbers is for convenience only). The synthesis is achieved
by choosing a basis (analogous to coordinate system), and representing vectors by
n-tuples and linear transformation by matrices relative to that basis. The power of

the synthesis stems from the fact that this representation is an isomorphism between
the two systems, preserving the corresponding operations (n-tuple or vector
addition, multiplication by a number or scalar, and multiplication of matrices or
linear transformations); thus all 'abstract' statements that are true in one system are
automatically true in the other.

B. Teaching and Learning Linear Algebra: Conceptual Understanding vs.
Computational Facility.

Understanding linear algebra involves conceptual understanding (especially
manifest in GGV), computational facility (especially manifest in LAV) and facility

with the synthesis the ability to move smoothly between the dual views, utilizing

their complementary strengths and weaknesses: Some problems or theorems are
much easier to solve or prove in one of the views than in the other, and some
require clever combination of methods from both. Unfortunately, it is not easy to

teach both views at the same time. Moreover, computational facility has
traditionally been much easier to teach -- and test! -- than conceptual
understanding; consequently, traditional lecture-based LA teaching has been much

more successful with LAV than with GGV, even in classes where the instructor did

aim at conceptual understanding. One reason for this unfortunate state of affairs is
that students find computations with numbers and their derivatives (such as
n-tuples and matrices) much easier than reasoning with abstract entities (such as

vectors and linear transformations). Since in the early stages of learning LA
students must work with some more-or-less concrete representations for the

abstract entities, the traditional lecture-room instructor didn't really have much of

an alternative.

C. Technology in Teaching and Learning of Linear Algebra: Finding the
Student's Voice vs. Meeting the Instructor's Expectations

Modern technology has changed all this, since it has introduced new intermediate
(computational) objects, new representations and new interactive ways to

manipulate these objects. STHD give a beautiful example of these new
possibilities, in using Dynamic Geometry software to enable students to manipulate
`pure' geometrical vectors, thus bypassing their 'arithmetical' representation via

The last two sentences require some modification in case several vector spaces are involved.
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bases and coordinates.2 Thus technology in principle enables STHD, in their role as
teachers, to promote conceptual understanding, relative to what can be achieved in
traditional LA teaching. The benefit of such a change is obvious we all want our
students to have a better and deeper understanding of mathematical concepts. But,
as I explain below, this advantage does come with a price, and the instructor who
aims for such understanding must be willing to pay the price.

First, learning for conceptual understanding is more time consuming than the usual
more 'instrumental' learning, since students must go through a lot of interaction,
socially and with the computational-mathematical environment, to allow for the
necessary mental constructions to take place. Secondly, and for the same
`constructivist' reasons, conceptual understanding must come gradually by
successive refinement [Leron & Hazzan, 1998] and, in intermediate stages along
the way, students will inevitably form 'misconceptions' and `mispractices' when
judged by standard mathematical criteria. In particular, their computational facility
and their performance on standard tasks and tests may be expected to temporarily
lag behind. This should be no cause for alarm; on the contrary, students' urge to
`debug' their computational products can be a powerful engine for ascending to the
next stage in the sequence of successive refinements. This urge can come about
spontaneously or by appropriately designed activities, as seems to be the direction
STHD have aimed at in the third phase of their research. Indeed, the authors'
Quasi-Fundamental Situations may be just that a situation which affords students
feedback on their computational constructions in such a way that they can find and
eliminate bugs in their software products and in their thinking (signaled by a
feeling of surprise which results from a clash between their expectations and the
feedback from the computational environment). The need to pay this price forms in
my experience a major obstacle in practical implementations of such computational
environments and the attendants teaching methods, since most undergraduate math
faculty, who do not usually subscribe to `constructivise beliefs on learning
mathematics, will not be willing to pay it.

With this background, it seems to me that STHD in their second experiment,
having clearly aimed at conceptual understanding of their LA students, and having
designed a beautiful computational environment for achieving it, were not fully
ready to pay the necessary price. My (admittedly tentative) reconstruction of the
educational situation, based on the description in section 5.1 of the STHD paper,
consists of the following observations.

'Other examples of using of technology in teaching undergraduate algebra, utilize student
activities in a Computer Algebra System such as Maple [Dreyfus and Hillel, 98; Hazzan et al,
98], or a programming language such as ISETL [Meunch, 93; Leron & Dubinsky, 95].
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By emphasizing GGV via the Cabri environment, STHD have in effect chosen

to promote more conceptual understanding of their students (relative to
computational facility) than conventional LA instructors do.

The total duration of the teaching episodes in the second experiment was too

short to expect a solid conceptual understanding to emerge, except for very

bright students.

In the intermediate stages, the students should have been expected to
temporarily be less facile with computational procedures and to form
`misconceptions' concerning the mathematical objects and operations involved.

STHD's research agenda has got the better of their teaching agenda, leading
them to an over-pessimistic view of their students' achievements and preventing
them from exploiting the full potential of their innovative teaching design. This
claim is based on their research results and is explained more fully in the next

section.

D. Research on Technology in Teaching and Learning Linear Algebra: Clean
Research vs. Messy Reality

The educational researcher, in trying to describe the messy reality of teaching,
learning and the classroom, is pulled in opposite directions by two ideals:
producing clean, solid, 'scientific' research on the one hand, and giving a faithful
(or viable) description of the educational situation under study on the other. Since
clean research cannot faithfully account for messy reality, there really is a conflict
between the two ideals, and striking an appropriate compromise is basically a value
choice, not a scientific one. Since this is a matter of values, I cannot really argue
with the authors, only state my own preference, which leans a bit more in the

`messy' direction.

I believe that the authors by choosing an epistemological, not psychological or
social definition of mathematical objects, and by choosing to compare the intended
objects with those constructed by the students, rather than to look at the process of
construction, have obtained a relatively clean and solid research, but one that gives
(to my taste) a not quite satisfactory view of the educational situation. Instead, I'd
like to offer an alternative interpretation of their data.

The different analysis stems from three sources. First, I take a psychological and
social view of mathematical objects (similar though not identical to Hersh's [97]
humanist philosophy of mathematics), rather than the authors' 'purely'
epistemological one. Secondly, I focus on the process involved in students'
constructions, rather than comparing endpoints (the researchers' intended objects
vs. the student-constructed ones at a fixed point in time). Thirdly, and most
importantly, I bring in an interpretative approach to students' productions as

1 - 138

175



described in [Confrey, 94]: "It recognized that students' views are not simply
inadequate or incomplete adult views, and it allows for the reconceptualization of
the mathematical content of the expert in light of student invention." Indeed, this
approach enables me to see in the students' constructions a source for new
mathematical insight, rather than a cause for disappointment. I will now go into
some detail in order to explain and substantiate my claim.

STHD present a very clear and insightful analysis of the kind of understanding
(enabled by the Cabri environment) that the students did form. They describe the
students' elastic' view of scalar multiplication, which has led to the "concept of
linear combination as 'a set of all vectors v I +v2, with vl and v2 having fixed
direction, but variable /ength'"(italics in the original). I claim that the students'
intuitions in fact were very much in line with a mature mathematician's intuition:
the elastic view and the resulting interpretation of linear combinations is pretty
much the intuition behind the powerful notion of decomposing a vector space as a
direct sum of two subspaces. In this view each vector in the 2-dimensional space is
represented (uniquely) as a sum of two vectors, each taken from one of the
1-dimensional subspaces. It is quite natural then, and quite powerful too, to view
the first vector as a variable vector, with variable components ranging over the
respective subspaces. This is the GGV version of the LAV version of representing a
vector as a linear combination of two vectors. Since the teaching design used Cabri
to promote GGV, it is quite natural -- and welcome! -- that this view indeed
emerged in student's intuitions. A mature mathematician can of course easily see
the equivalence of the two representations and shift from one to the other as
needed. Given the limited time of the experiment, the students simply didn't get
there yet. But with proper planning, enough time, and a different set of
expectations, I see the STHD approach and the result of their experiment as very
promising in ways which are very hard to achieve with traditional tools and
methods.
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Interweaving the Training of Mathematics Teacher-Educators and the
Professional Development of Mathematics Teachers

Orit Zaslaysky and Roza Leikin

Technion Israel Institute of Technology

In this paper we present a study conducted within the framework of an inservice
professional development program for junior high and secondary high school
mathematics teachers. The focus of the study is the analysis of powerful
processes encountered by the staff members, which contributed to their growth as
teacher-educators. We offer a conceptual framework to think about becoming a
mathematics teacher-educator.

The Setting

In the past decade there have been several calls for reform in mathematics education
that are based on the assumption that well prepared mathematics teacher-educators are
available to furnish opportunities for teachers to develop in ways that will enable them
to enhance the recommended changes. Unfortunately, there are hardly any formal
programs that provide adequate training for potential mathematics teacher-educators,
let alone research on becoming a mathematics teacher-educator.

The work described in this paper was conducted within the framework of a five-year
reform-oriented inservice professional development project ("Tomorrow 98" in the
Upper Galilee) for junior and senior high school mathematics teachers. The goals and
design of the project were very much along what Cooney (1994), Cooney and Krainer
(1996), Comiti and Ball (1996), and Borasi, (1999) suggest as essential components
for teacher education programs. They were inspired by (a) Constructivist perspectives
of learning (von Glaserfeld, 1991; Kilpatrick, 1987; Davis, Maher, & Noddings,
1990). (b) Jaworski's (1992, 1994) teaching triad. (c) theories of reflective practice,
which are addressed by Jaowrski (1994, 1998), Calderhead (1989), Gilbert (1994),
Krainer (1998), Simon, (1994) and Borasi (1999); and (d) theories on social aspects of
teaching and learning (Adler, 1998; Lave and Wegner, 1991; Rogoff, 1990; Leikin and
Zaslaysky, 1997; Winbourne & Watson, 1998).

Thus, the project goals included the following:
Facilitating teachers' knowledge (both mathematical and pedagogical) in
ways that support a constructivist perspective to teaching;
Offering teachers opportunities to experience alternative ways of learning
(challenging) mathematics;
Preparing teachers for innovative and reform oriented approaches to
management of learning mathematics (particularly, the kinds with which they
have had very limited experience);
Fostering teachers' sensitivity to students and their ability to assess
students' mathematical understanding;
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Promoting teachers' ability to reflect on their learning and teaching
experiences as well as on their personal and social development;
Enhancing teachers' and teacher-educators' socialization and developing a
supportive professional community to which they belong.

The teachers who participated in the full program took part for four consecutive years
in weekly professional development meetings, six hours per week, throughout each
school year. In the first year there were two groups of about 20 teachers each, one
group of junior high school teachers and the other group of senior high school
teachers. In the second year most of the teachers continued and another two new
groups began. In the third year again another two groups began. By the fourth year
some teachers switched from full participation to monthly meetings. Altogether, about
120 teachers participated to some extent in the program. The meetings consisted of a
wide range of activities led by the project team. Some of the teachers gradually
became more involved in the program and towards their third year assumed
responsibility for many of these activities. As the program progressed, the location of
the activities shifted from a central regional location into the schools in the region.

The project team consisted mainly of experienced and highly reputable secondary
mathematics teachers. The team members varied with respect to their expertise and
experience. None of them had any formal training (such as the Manor Program
reported by Even (1999)). Some did not have any previous experience in mentoring or
teaching other teachers. Consequently, the project was designed to enhance the
development of the project team hand in hand with the development of the inservice
teachers who participated in the program. The design of both the staff enhancement
component of the project and the research that focused on the staff members'
professional growth stemmed from the project's goals, and was based on two main
assumptions: (a) Similar to the ways in which teachers learn through their own
(teaching) practice (Mason, 1998; Steinbring, 1998; Brown & Borko, 1992; Leikin,
Berman, & Zaslaysky, forthcoming), teacher-educators learn through their practice. (b)
There are learning aspects that are fundamentally inherent to the structure and nature
of the community of practice which the project team constitutes (Adler, 1998; Lave,
1996; Roth, 1998; Winbourne & Watson, 1998).

This paper focuses on the professional development of the staff members as
teacher-educators within the context of the project. We analyze some powerful
processes in which the project team engaged as they became more proficient, and the
conditions that contributed to their training and professional growth as a community of
teacher-educators.

Conceptual Framework
The design of the program of the project as well as the research that accompanied it,
were driven by constructivist views of learning and teaching. According to this
perspective, learning is regarded as an ongoing process of an individual or a group
trying to make sense and construct meaning based on their experiences and
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interactions with the environment in which they are engaged (von Glaserfeld, 1991;
Kilpatrick, 1987; Davis, Maher, & Noddings, 1990). The constructivist view applies to
any learner regardless of age and context. It follows that teachers and
teacher-educators can be seen as learners who continuously make sense of their
histories, their practices, and other experiences.

In order to prepare teachers to teach in reform-oriented ways (such as suggested by
NCTM, 1989, 1991, 1995), there is much they need to "unlearn" (Ball, 1997). The
reform of mathematics teaching requires that teachers play an active role in their own
professional development (Grant, Hiebert, & Wearne, 1998). Grant et al. raise the
issue that until now teachers were only told about the new ways in which they are
expected to teach, but did not experience these ways of learning and teaching. Thus,
"teachers must make sense of proposed changes in the context of their own prior
knowledge and beliefs about teaching, learning, and the nature of the content being
taught" (p. 218, ibid.). In order to help teachers see new possibilities for their own
practice they must be offered opportunities to (a) learn challenging mathematics in
ways that they are expected to teach; (b) engage in alternative models of teaching
(Cooney & Krainer, 1996; Ball, 1997; Grant et al., 1998; Malone & Taylor, 1992;
Brown & Borko, 1992). Thus, the main task of the project staff members was to offer
such opportunities for the participating teachers.

Providing the above kinds of experiences for teachers is not sufficient. It is also
necessary to emphasize "a reflective component of inservice programs in which
teachers explicitly consider the implications of their own learning experiences for their
teaching and for creating contexts in which pedagogy and content are intertwined in a
reform minded way" (Cooney and Krainer, 1996, p. 1162). Taking the stand that
reflection is a key issue in teachers' and teacher-educators' learning, many elements of
the program were incorporated in order to enhance reflection and self-analysis of both
the participating teachers and the project staff. Similar -to aspects of reflection such as
those that Simon (1994), Krainer (1998), Borasi (1999), Tzur (1999) discuss, and
depending on the situation, reflection in our study involved various aspects, e.g., the
mathematics in which the teachers or teacher-educators were engaged, pedagogical
considerations, implications for students' learning, or accounts concerning one owns
practice and growth.

Jaworski (1992, 1994) offers a teaching triad, which is consistent with constructivist
perspectives of learning and teaching. The triad synthesizes three elements, which are
involved in the creation of opportunities for students to learn mathematics: The
management of learning, sensitivity to students, and the mathematical challenge.
Although quite distinct, these elements are often inseparable. Jaworski claims that "this
triad forms a powerful tool for making sense of the practice of teaching mathematics"
(1992, p. 8). We borrow the idea of this teaching triad for describing in a general way
the tasks of the different groups of mathematics educators who were involved in the
study, as well as for analyzing and discussing our findings.
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In the current study, there were three different groups of mathematics educators: The
teachers who participated in the program, the project staff members who were the
teacher educators, and the project-director/leading-researcher (the first author of this
paper), who can be seen as a teacher-educators' educator. We describe some
similarities and differences between mathematics teachers (MT), mathematics
teacher-educators (MTE), and mathematics teacher-educators' educators (MTEE),
with respect to two aspects of their work: Task and the Context within which they
carry out their Task (see Table 1). By Task we refer to the teaching triad relevant to
each group.

Group of
Mathematics

Educators

Task Context

Manage
Learning of

Be Sensitive
to:

Provide Challenging Content
in:

Mathematics
Teachers

(MT)

Students
Mathematics Classroom Settings

...

Mathematics
Teacher-
Educators

(MTE)

Teachers
(MT)

Mathematical Challenge

.." v.$.

Management Sensitivity

Classroom Settings
Workshops for MT
Individual Mentoring
Staff Meetings of MT
University Courses

...

---..
of Students' to Students

Learning

Mathematics
Teacher-
Educators'
Educator

(MTEE)

Teacher-Educators
(MTE)

Mathematical Challenge

AVI '',.
Management Sensitivity

Workshops for MT
Workshops for MTE
Staff Meetings of MTE
Individual Mentoring
University Courses

...

.4____,
of Teachers' to Teachers

Learning

Table 1: Tasks and Contexts of Different Groups of Mathematics Educators

The main task of all three groups has to do with managing learning, being sensitive to
the learner and providing challenging content. The intended learners are different for
each group. For a MT's task the learners are students, for a MTE's task the learners are
teachers (or prospective teachers), and for a MTEE's task the learners are
teacher-educators (or prospective teacher-educators).

The target learning content for which challenges should be provided also varies from
one group to another. The task of MTs requires challenging mathematics. The task of
MTEs requires challenges regarding the three components in Jaworski's teaching triad
(see second row in Table 1). However, with respect to challenging mathematics, they
need to address the needs and interests of both MTs and students. The task of MTEEs
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requires challenges regarding the contents that MTs and MTEs should challenge (first
and second row in Table 1), and in addition, they need to provide challenges
concerning a similar triad. This triad consists of challenging mathematics for MTEs,
sensitivity to MTs, and management of MTs' learning (third row in Table 1). This
conveys the hierarchical nature of the content that plays a role for each group. It
should be noted that the content relevant for a particular group is accumulative and
includes the contents of the groups in the previous rows.

All tasks are influenced by the context in which the learning is managed. Table 1
presents the most commonly recognized contexts for each' group. Those that were
central to the current study are in bold.

Similarly to the ways in which teachers gain expertise in teaching as a result of their
own teaching practice, an important element in becoming a mathematics
teacher-educator entails experiences in facilitating the learning of mathematics
teachers. Table 1 conveys this learning-through-teaching process that teachers often
encounter (Mason, 1998; Steinbring, 1998; Brown & Borko, 1992; Leikin et al.,
forthcoming). A teacher (MT), by teaching (students) mathematics and reflecting on it,
may develop his or her awareness and knowledge with respect to the teaching triad.
Similarly, a teacher-educator (MTE), by gaining experience in providing opportunities
for teachers to develop their knowledge in the three domains comprising the teaching
triad (in the second row), is likely to become more knowledgeable of the three
domains with respect to teacher learning (in the third row). Thus,
learning-through-teaching is reflected in Table 1 by moving from one row to the
content in the subsequent row.

Steinbring (1998) suggests a model of teaching and learning mathematics as
autonomous systems. According to this model, the teacher offers a learning
environment for his or her students in which the students operate and construct
knowledge of school mathematics in a rather autonomous way, by subjective
interpretations of the tasks in which they engage and reflection on their work. The
teacher, by observing the students' work and reflecting on their learning processes
constructs an understanding, which enables him or her to vary the learning
environment in ways that are more appropriate for the students. Although each system
is autonomous, the students' learning processes and the interactive teaching process,
the two systems are interdependent. This interdependence can explain how teachers
learn from their teaching.

We adapt our interpretation of Steinbring's model to help us think about and offer
explanations to some ways in which mathematics teacher-educatorsmay learn through
the learning offers which they provide for teachers. It should be noted that
mathematics teacher-educators interact with mathematics teachers in many different
ways and settings. Thus, this model does not equally apply to all settings. It applies
mostly to those that are structured as workshops for teachers and resemble to a certain
extent the learning settings in school. According to the modified model, mathematics
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teacher-educators offer learning experiences for mathematics teachers. As shown in
Table 1, the content of these learning experiences includes many aspects of teachers'
professional knowledge, in which mathematics is one of the components. The teachers
work on the learning tasks, make sense of them and construct meaning in subjective
ways. The problems that they solve may be mathematical, pedagogical or both. By
reflecting on and communicating their ideas, teachers develop their professional
knowledge. The teacher-educators, by observing the teachers and reflecting on the
teachers' learning processes become aware of subtle aspects of their own knowledge,
assumptions and practices and of the teachers' interpretations and needs.
Consequently, they modify the learning offers for the teachers.

MTEs' professional
knowledge

MTEs make learning offers
for Mrs

s work on mathematic
& pedagogical problems

MTs' professional
knowledge

MTs reflect and
neralize their solu

MTEs observe MTs, reflect
d vary the learning offers

MTs' Subjective
interpretation of

Figure 1: A Modification of Steinbring's Teaching and Learning Model (1998, p. 159)

As mentioned above, the model presented in Figure 1 may account for some ways and
aspects of teacher-educators' growth. There are other aspects of the development of
teacher-educators that can be better explained in terms of their participation in a
community of practice (Lave & Wenger, 1991; Lave, 1996; Adler, 1998; Roth, 1998),
where members learn from each other's expertise in an apprenticeship manner (Rogoff,
1990): "Vygotsky's model for the mechanism through which social interaction
facilitates cognitive development resembles apprenticeship in which a novice works
closely with an expert in joint problem solving in the zone of proximal development.
... Development builds on the internalization by the novice of the shared cognitive
process appropriating what was carried out in collaboration to extend existing
knowledge and skills." (ibid., p. 141). As mentioned earlier, the community of
teacher-educators in the project was heterogeneous with respect to their prior
experience and expertise. Thus, similarly to the mechanism, through which cognitive
development is facilitated in social contexts, there are aspects of professional
development of (teachers and) teacher-educators which resemble apprenticeship.
Consistent with this perspective, the design of the project incorporated, for example,
many opportunities for staff members to observe, participate in, and reflect on learning
activities offered to teachers by more experienced staff members including the project
director.
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Methodology, Data Collection and Analysis

The methodology employed in the study followed a qualitative research paradigm in
which the researcher is part of the community under investigation. It borrows from
Glaser and Strauss's (1967) Grounded Theory, according to which the researcher's
perspective crystallizes as the evidence, documents, and pieces of information
accumulate in a dynamic process from which a theory emerges. The methods, data
collection and analysis grow continuously throughout the progressing study. The
researcher acts as a reflective practitioner (Schon, 1983) whose ongoing reflectiveness
and interpretativeness are essential components of this type of research (Erickson,
1986).

The project was carefully documented. In order to investigate the development
processes of the team members, and to be able to draw connections to the
development of the participating teachers, a number of means and sources of
documentation were employed. It should be noted that some of the means contributed
in themselves to these processes (e.g., responding to the written questionnaires and
being interviewed stimulated reflection and influenced the awareness to many aspects
of their professional and private lives).

The documentation included:
Interviews with the team members and with the participating teachers
fostering their reflection on their personal professional growth and its
connection to the project's goals and to the various activities in which they
engaged;
Written questionnaires for the staff members addressing the influence of their
work in the project on various aspects of their lives, and the characteristics of
the environment to which they attribute such influence;
Self and peer reports on and analyses of the activities with the teachers;
Videotapes of workshops with teachers;
Videotapes and protocols of the project team's meetings and
mini-conferences;
A documentary film about the project;
Resource materials developed by the project members.

Based on Bell & Gilbert's (1994) findings indicating that professional growth (i.e.,
developing ideas and actions) is interconnected to personal growth (i.e., attending to
feelings) and social growth (i.e., developing collaborative ways of relating to
colleagues) we looked for indications of these three aspects of growth. Other
researchers have found similar evidence (Even, 1999; Halai, 1998). In addition to the
three aspects of growth which Bell and Gilbert identify, they also point to three main
stages in teachers' growth, which are consistent with more detailed stages that Jones et



al. (1994) describe. These stages were helpful in interpreting the data, particularly with
respect to the differences between the group of teachers and the staff members.

Our conceptual framework guided our analysis of the professional growth of the staff
members. We looked for evidence of growth associated with mathematics challenges,
sensitivity to teachers, and management of teachers' learning. In addition, we looked
for indicators of professionalization and professionalism in Nodding's (1992) terms.

The Project Team

As mentioned earlier, the project team consisted of people with diverse expertise,
which is one of the characteristics that Roth (1998) considers essential to a
community. Although there were altogether over 20 team members, only 14 were
involved in the project from its early stages until its completion. The latter formed the
focal group for our study. All members had experienced teaching mathematics for a
number of years (they varied between 4 to 30 years of experience). Ten members
continued teaching junior high or senior high school mathematics in addition to their
work in the project. Of the above 14 members, at the beginning of the project there
were only 6 members who had had some previous experience in managing inservice
professional development activities for mathematics teachers. Three of the members
had had experience in incorporating technology in innovative ways in the mathematics
classroom. One member was competent in implementing cooperative learning methods
in mathematics classrooms and inservice workshops for teachers. One member was
particularly knowledgeable about new trends of assessment in mathematics education.
Two members had had experience in curriculum development. One member was a
practicing mathematician. Thus, it was expected that as a team, many elements
underlying the calls for reform would eventually be addressed, although at the initial
stage only 3 members were familiar with the NCTM Standards (1989, 1991) or similar
calls for reforms. It should be noted that at the early stages of the project most of the
project team members seamed to hold a transmission metaphor of the
teaching-learning process. In addition, they found it hard to reflect on their work, let
alone elicit reflection of the teachers.

In the first three years of the project, the tasks of the staff members were mostly
directed toward designing and carrying out inservice workshops (see the second row in
Table 1). Some were in charge of the inservice activities with the teachers, and others
facilitated the activities by participating in the weekly inservice meetings or by
assisting in the preparation of resources that were required for the inservice meetings.

It should be noted that at the beginning of the project there were many staff members
who were not very confident of their qualifications as teacher-educators, and
expressed a need for guidance by the project director or other relatively experienced
members. From the very beginning it was clear that it would be a long term project.
Thus, the staff members expected to gain expertise as teacher-educators within the
framework of the project, in order to become more capable in their work. It was only
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towards the end of the project that several staff members considered assuming the role
of mathematics teacher-educators within other frameworks.

As mentioned earlier, the project director assumed the role of teacher-educators'
educator (MTEE) in various ways (in later stages, an expert mathematics
teacher-educator shared this role with the project director).

Components Designed to Contribute to the Development of the Team Members
As mentioned earlier, the main task of the staff members was to design and carry out
weekly workshops and related activities with the inservice teachers. Contrary to the
task of a mathematics teacher, who teaches according to a rather specific mathematics
curriculum, there was no readily available and agreed upon curriculum for inservice
programs. From the start, the stated goals of the project called for considering the
teaching triad (Jaworski, 1992, 1994). The decisions regarding the mathematics, the
teaching strategies, and the aspects of students' learning that should be addressed
required analysis and self-reflection of the staff members with respect to their teaching
experience in school. Translating these (content-oriented) decisions into powerful
activities for teachers entailed considerations with respect to: (a) teachers'
backgrounds and interests; (2) appropriate ways to manage teachers' learning and
foster their development. All workshops were accompanied by resource material,
which was developed or adapted by the staff members.

Although there was an overall plan for each year, the staff members had to attend to
the constant need for (unexpected) adjustments and changes in plan and to be flexible
in carrying them out. This approach was often seen as an obstacle for the staff
members, however, it conveyed the need to listen - in the broad sense to the teachers
and involve them in the plan.

The teachers were grouped according to the grade levels they taught (junior/senior
high grades) and the year in which they enrolled in the program. Thus, in the third year
of the project there were 6 groups of 15-20 teachers in each group. There was a staff
member in charge of each group. Some activities were conducted separately within
each group, and some were conducted in different groupings (e.g., with all junior high
school teachers, or all teachers who had been participating for a given number of
years). For each workshop there was at least one staff member in charge. As part of
their working load, staff members were required to observe their colleagues'
workshops, to take part in the workshops' activities when they felt comfortable to do
so, and to provide written and oral reactions to their colleagues. In the first stages of
the project the project director would suggest for each member which colleague to
join. Her considerations were based on her knowledge of the different domains of
expertise of the staff members. The intention was to create situations in which less
experienced members would learn from more experienced ones in an apprenticeship
like manner. Along the same lines, when the project director was in charge of a
workshop for the teachers, she invited all the staff members who were not
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simultaneously engaged in other responsibilities to take part. The hope was that
through such workshops a constructivist perspective to teaching would be conveyed
and some forms of reform-oriented learning environments would be modeled.

In order to foster reflection and self-analysis of the staff members they were required .

to give written accounts of the workshops for which they were in charge (Borasi,
1998, reports the significance of writing for enhancing reflection). In addition, mutual
peer (written and oral) evaluation and teachers' (written and oral) feedback were
provided on a regular basis.

There were regularly scheduled staff meetings (Even, 1998, stresses the importance of
such meetings), in which staff members could reflect on their work, share their
experiences, consult with their colleagues, and negotiate meaning with respect to the
goals and actions of the project. Small groups of staff members, who had common
tasks, initiated additional meetings according to their specific needs and interests.

Staff members were continuously encouraged to initiate ideas and suggest new
directions and actions within the project. Members' personal interests and enthusiasm
drove many of the activities of the project. The underlying assumption was that
ownership and responsibility, which are indicators of professionalism (Nodding,
1992), would contribute to their position in their community of practice.

All staff members (and teachers) had access to an electronic network (in their native
language). The network served for informative communications, as well as for sharing,
reflecting, and debating.

Special professional meetings and mini-conferences for the project team (2-3 times a
year) were scheduled. These meetings were designed to address the evolving needs
and interests of the staff members (this exemplifies one aspect of the MTEE's triad, as
presented in the third row of Table 1). In these meetings staff members had the
opportunity to conduct workshops and various activities for their colleagues. In
addition, experts who were not part of the project team were invited to elaborate on
their expertise.

To summarize this section, it seems worthwhile to note that the above components
address all four dimensions which Krainer (1998, 1999) considers as describing
teachers' professional practice: Action, Reflection, Autonomy, and Networking.

Professional Growth through Cooperative Learning and Learning to Cooperate

Overall, the findings indicate that the staff members encountered powerful
experiences, which led to their professional, social, and personal growth (Bell &
Gilbert, 1994). As we reflected on our experience we noticed a few patterns of
development that seemed to emerge. The analysis of the accumulating data kept
supporting these patterns and provided numerous pieces of evidence confirming them.

In order to convey the nature of the growth of the project members along the
professional development of the participating teachers, we begin with a story (as
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KraMer (1999) advocates). This is a story of a theme -- cooperative learning -- that
evolved within the context of the project in many different layers by individual and
groups of participants.

At the initial stage, there was only one staff member, Tami, who was an expert in managing
cooperative learning experiences for students and teachers. Tami had strong beliefs
regarding the significance of fostering cooperative learning settings in mathematics, based
on her prior experience as a secondary mathematics teacher and a research program which
she conducted (Leikin & Zaslaysky, 1997, 1999). Thus, she felt the need to incorporate in
the teachers' workshops activities that would facilitate their appreciation of the potential of
this approach for their students. In addition, Tami was very eager to convince her (project
staff) colleagues to adopt this approach in their workshops. In staff meetings when planning
the workshops, Tami always offered to conduct "cooperative learning" workshops. These
workshops were very structured and were managed in one of five cooperative learning
methods, which she had developed for her students, prior to her participation in the project.
Several staff members observed her workshops and often took part in them as learners.
Since the main purpose Tami set forth was "to convince the teachers to use these methods in
their classrooms" she treated the challenging mathematics in the workshops mainly as a
vehicle for promoting her goal.

In the first year of the project Tami conducted several cooperative learning workshops with
the teachers, who were asked to adjust appropriate mathematical challenges for their
students and to apply cooperative learning methods in their teaching. The teachers made
some adjustments in the mathematics, however, used the cooperative methods exactly as
they had experienced in the workshops. When sharing their experiences with their
colleagues in the project some claimed that it was not realistic to expect a teacher to apply
this approach regularly because of many constraints in school. Towards the end of the year,
Tami encouraged a small group of teachers to adapt the material adjusted by their colleagues
and themselves and to produce a booklet including a collection of resource materials for
cooperative learning of school mathematics. This collection was restricted to one particular
method. Following the teachers in their second year, Tami found out that those who applied
cooperative learning methods in their classrooms used mostly the specific activities in the
booklet without any modifications or additions. One of the reasons they gave for this was
that in order to fully apply a cooperative approach to learning they needed to collaborate
with other teachers in their schools. In fact, in schools from which a number of teachers
participated in the project, Tami realized that collaboration began and more flexible ways
were employed to facilitate students' cooperative learning. Of the small group of teachers
that collaborated on the production of the booklet, some became rather competent and began
preparing workshops for other teachers in cooperative approaches. Eventually, two of these
teachers became teacher mentors in schools.

Parallel to the teachers' increasing appreciation of cooperative learning, staff members also
started seeing its potential for teachers. They gradually began incorporating in their
workshops elements that facilitate cooperative learning. However, unlike the teachers, they
did not stick to the structured methods that Tami had developed. On the contrary, they
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objected to the given constraints of each method. Each member adapted his or her own
interpretation of what constitutes conditions for cooperative learning. Yet, some staff
members felt they needed more theoretical background with respect to the principles
underlying and research findings supporting cooperative learning in mathematics. Thus,
Tami was invited by the project director to give a presentation to the staff members on
cooperative learning in mathematics. Following the rather theoretical presentation, the staff
members were asked to design cooperative learning experiences for the teachers to be
included in the program of the following year. As a result of this request, a group of four
staff members decided to collaborate on this task. This began a whole new story.

This group of four staff members encountered a unique experience in collaborating on this
task. They devoted enormous time developing their ideas in ways that neither Tami nor the
project director anticipated. Instead of planning a workshop for a period of an hour and a
half, they expanded it to twice the time. They tried to incorporate many of the aspects of
learning, for which they developed an appreciation, such as, connecting the mathematics to
real life situations, addressing subtle issues of graphing and scaling, designing tasks that are
open and engaging, in a way that inherently encourages full cooperation among learners.
They applied all the principles they had learned on ways to facilitate cooperative learning of
challenging mathematics. As they became more and more engaged in their task, they wanted
to share their ideas with the staff members before conducting the workshop with the
teachers. Thus, a special meeting for the staff was scheduled, in which the group of four
staff members tried out their ideas with all the rest (including the project director). During
this workshop, their colleagues were truly acting as learners, which turned out somewhat
painful for the four, since they were confronted with some unforeseen problematic
mathematical and pedagogical issues. They then returned to revise their plan and the
resource material, and in the following year conducted one of the most exciting workshops

with the teachers.

This story illustrates some of the dynamics, which the project fostered, as portrayed in

Figure 2. In many other cases a similar pattern was identified. Staff members with an
area of expertise provided learning experiences for teachers associated with their
expertise.' Consequently, the teachers started to appreciate the potential of this kind of
learning experience for themselves as learners, and began -- often as a given
assignment -- to try out very similar approaches with their students in rather limited
ways. At the same time, staff members who did not have any expertise in this area, by
observing and taking part in the offers for teachers, gradually began -- by their own
initiative to incorporate various aspects of this approach in the activities they
provided for teachers. Although both groups, teachers and staff members seemed to be
empowered by these interactions, we suggest that there are differences in the extent
and nature of these empowerments.

These differences can be explained mainly by the differences in the time and
opportunities staff members had, in comparison to the teachers, to reflect and share
their experiences, which are key elements in professional development (e.g., Borasi,
1998; Krainer, 1998; Jaworski, 1994). Another explanation can be seen in the
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differences in the nature of the task for which each group was responsible (see Table
1).

The Inservice
Mathematics Teachers

(MT)

Become aware of the
potential of innovative
approaches for them as

learners

The Members of the
Project Team

(MTE)

Provide learning experiences
for the teachers

Apply this approach in
workshops (sometimes

unexpectedly)

Try out this approach with
their students

Reflect and share their ideas

Discuss real classroom
experiences

A sub-group begins to
initiate and are ready to

begin acting as
Teacher-Educators

Exchange and compare
experiences

V

A Learning and Teaching
Community of Practice

A small number with
relative expertise (in a

specific innovative
approach)

The entire team becomes
enthusiastic of the potential

and is motivated to learn
more and gain expertise

(Some try it out with students)

Thus, become more
competent with respect to the

innovation

The team members become
more competent as
Teacher-Educators

Figure 2: The Learning Dynamics within and between the Two Groups (MTs & MTEs)

The mere planning of the workshops for teachers entailed considerations of a
teacher-educator triad in addition to a teacher's triad (see Table 1). There were also
different kinds of constraints. The staff members had much more freedom and
flexibility in terms of the "curriculum" they had to address and time allocated for the
different activities. Finally, for the staff members, the project was their working place,
thus their commitment to carrying out their task was inherently connected to their
positions. However, teachers enrolled in the program for various reasons, and for the
most, felt less committed and accountable for their role in the project. It should be
noted that some of the above differences can be seen as reflecting a different phase in
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the development 'of the teachers and teacher-educator (Bell & Gilbert, 1994; Jones et
al., 1994).

To better understand the processes, which the staff members encountered, we bring
excerpts from an interview with Ronit, one of the members of the "group of four". In
this interview she reflects on the group's work:

"I think we all felt that after the first two hours, in which we sat and worked on the task and
decided what to do, we thought that this is it, that we finished the work and there is not
much more work. It was clear to us, that we have the idea and we know what to do. So there

were a few doubts, maybe from the mathematics aspect it isn't so new, but it was clear to us
that we have the idea and only have to sit and write and it would take another three hours
and that would be it. But, like many things, it turned out that there was much more to it and
needed more investment. But since each of us already invested a lot, and I, I don't know, I
liked what we were doing, I found myself, not having a problem to invest the time. I found
myself constantly thinking about it, even, you know, when I did other things. It kept
bothering me, what can be done and how can it be improved. I enjoyed the group and the

collaboration, and I think I really learned a lot".

"I thought we produced something good and that we would benefit from it. I found myself
dealing with questions that interested me, because I asked the questions, I wanted to see if
they could be answered and how they could be answered. So I sat and solved and thought:
How can they be answered, then maybe in different ways, and I tried to see what could be
done with it and I hoped it came out good. I still want it to stand a test, others judgement,
because, maybe, I am too involved and not objective, like a mother to her child ... Yes, this

was really a process of giving birth".

The above excerpts express the professional, personal, and social aspects of Ronit's
development, which are interconnected.

We argue that the dynamics portrayed in Figure 2 influenced the growth of the more
expert staff members as well. We conclude with some of Tami's reflections on her own
development. Tami, who was considered by herself and her colleagues as a rather
competent teacher-educator to begin with, reflected on her own development at the
end of the project: "Today, I am much more open to many different ways of facilitating
teachers' and students' cooperative learning in mathematics. I now accept and use methods

that are not very structured, that seem to give way for many different kinds ofcooperation to

different extents."

In the beginning stages Tami was reluctant to conduct reflective discussions with the

teachers. She had many debates with the project director on the need and ways to
foster such reflections. Today she reflects: "When I first observed the project director
conduct a reflective discussion with the teachers I told myself that I would never be able to
do so myself. I wouldn't know what to ask, and would be insecure if the teachers would not

react right away. Silence was a threat to me. Having observed over and over again in many
different situations ways in which the project director conducted such sessions, with the
teachers and with us -- the staff members, I began to try it myself. Slowly, I began to listen.
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I no longer felt uncomfortable waiting for responses. I reached the extent that my colleagues
often accuse me of waiting too long for replies".

References
Adler, J. (1998). Lights and Limits: Recontextualising Lave and Wegner to Theorise Knowledge of

Teaching and of Learning School Mathematics. In A, Watson (Ed.), Situated Cognition and the
Learning of Mathematics. Oxford: Centre for Mathematics Education Research.

Ball, D. L. (1997). Developing Mathematics Reform: What Don't We Know About Teacher
Learning - But Would Make Good Working Hypotheses. In S. N. Friel & G. W. Bright (Eds.),
Reflecting on Our Work: NSF Teacher Enhancement in K-6 Mathematics (pp. 77-111). Lanham,
MD: University Press of America, Inc.

Borasi, R. (1999). Beginning the Process of Rethinking Mathematics Instruction: A Professional
Development Program. Journal of Mathematics Teacher Education, 2(1), 49-78.

Bell, B, & Gilbert, J. (1994). Teacher Development as Professional, Personal, and Social
Development. Teaching and Teacher Education, 10 (5), 483-497.

Brown, C. A., & Borko, H. (1992). Becoming a Mathematics Teacher. In D. A. Grouws (Ed.)
(1992). Handbook of Research on Mathematics Teaching and Learning (pp. 209-239). New
York: Macmillan.

Calderhead, J. (1989). Reflective Teaching and Teacher Education. Teaching and Teacher
Education, 5(1), 43-51.

Comiti, C., & Ball, D. L. (1996). Preparing Teachers to Teach Mathematics: A Comparative
Perspective. In A. J. Bishop et al. (Eds.), International Handbook of Mathematics Education (pp.
1123-1153). The Netherlands: Kluwer Academic Publishers.

Cooney, T. J., & Krainer, K. (1996). Inservice Mathematics Teacher Education: The Importance of
Listening. In A. J. Bishop et al. (Eds.), International Handbook of Mathematics Education (pp.
1155-1185). The Netherlands: Kluwer Academic Publishers.

Cooney, T. J. (1994). Teacher Education as an Exercise in Adaptation. In D. B. Aichele & A. F.
Coxford (Eds.) (1994). Professional Development for Teachers of Mathematics (pp. 9-22).
Reston, VA: National Council of Teachers of Mathematics.

Davis, R. B., Maher, C. A., & Noddings, N. (Eds.) (1990). Constructivist Views on the Teaching
and Learning of Mathematics. Monograph No. 4, Journal of Research in Mathematics Education.

Erickson, F. (1986). Qualitative Methods in Research on Teaching. In M. C. Wittrock (Ed.),
Handbook of Research on Teaching (pp. 119-161). New York: Macmillan.

Even, R. (1999). The Development of Teacher Leaders and Inservice Teacher Educators. Journal of
Mathematics Teacher Education, 2(1), 3-24.

Gilbert, J. (1994). The Construction and Reconstruction of the Concept of the Reflective
Practitioner in the Discourses of Teacher Professional Development. Teaching and Teacher
Education, 10 (5), 511-522.

Glaser, B. G., & Strauss, A. L. (1967). The Discovery of Grounded Theory: Strategies for
Qualitative research. Howthorne, NY: Aldine..

Halai, A. (1998). Mentor, Mentee, and Mathematics: A Story of Professional Development. Journal
of Mathematics Teacher Education, 1 (3), 295-315.

Jaworski, B. (1992). Mathematics Teaching: What is it? For the Learning of Mathematics. 12 (1),
8-14.

Jaworski, B. (1994). Investigating Mathematics Teaching: A Constructivist Enquiry. London: The
Falmer Press.

Jaowrski, B. (1998). Mathematics Teacher Research: Process, Practice, and the Development of
Teaching. Journal of Mathematics Teacher Education, 1(1), 3-31.

1 - 157 1 9 3



Jones, G. A., Lubinski, C. A., Swafford, J. 0., & Thornton, C. A. (1994). A Framework for the
Professional Development of K-12 Mathematics Teachers. In D. B. Aichele & A. F. Coxford
(Eds.), Professional Development for Teachers of Mathematics. 1994 Yearbook, (pp. 23-36).
Reston, VA: NCTM.

Krainer, K. (1998). Some Considerations on Problems and Perspectives of Inservice Mathematics
Teacher education. In C. Alsina, J. M. Alvarez, B. Hodgson, C. Laborde, A. Perez (Eds.), 8th

International Congress on Mathematics Education: Selected Lectures (pp. 303-321). S. A. E. M.
Thales: Sevilla, Spain.

Krainer, K. (1999). Learning from Gisela - or: Finding a bridge between Classroom Development,
School Development, and the Development of Educational Systems. Plenary paper presented at
the International Conference on Mathematics Teacher Education (ICMTE), Taipei, Taiwan.

Lave, J. & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge:
Cambridge University Press.

Lave, J. (1996). Teaching, as learning, in practice. Mind, Culture & Activity, 3 (3), 149-164.
Leikin, R., & Zaslaysky, 0. (1997). Facilitating Students' Interactions in Mathematics in a

Cooperative Learning Setting. Journal for Research in Mathematics Education, 28(3), 331-354.
Leikin, R., & Zaslaysky, 0. (1999). Connecting Research to Teaching: Cooperative Learning in

Mathematics. Mathematics Teacher, 92, (3), 240-246.
Leikin, R., Berman, A., & Zaslaysky, 0. (forthcoming). Learning through Teaching Symmetry.

Mathematics Education Research Journal.
Malone, J. A., & Taylor, P. C. S. (1992). Constructivist Interpretations of Teaching and Learning

Mathematics. In D. F. Robitaille, D. H. Wheeler, & C. Kieren (Eds.), Selected Lectures from the
7th International Congress on Mathematics Education (pp. 268-271). Quebec: Les Presses de
l'Universite Laval.

Mason, J. (1998). Enabling Teachers to be Real Teachers: Necessary Levels of Awareness and

Structure of Attention. Journal of Mathematics Teacher Education, 1(3), 243-267.
National Council of Teachers of Mathematics (NCTM) (Ed.) (1989). Curriculum and Evaluation

Standards for School Mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics (NCTM) (Ed.) (1991). Professional Standards for the

Teaching of School Mathematics. Reston, VA: NCTM.
National Council of Teachers of Mathematics (NCTM) (Ed.) (1995). Assessment Standards for

School Mathematics. Reston, VA: NCTM.
Rogoff, B. (1990). Apprenticeship in Thinking: Cognitive Development in Social Context. New

York: Oxford University Press.
Roth, W.-M. (1998). Designing Communities. Boston: Kluwer Academic Publication.
Schiin, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action. New York:

Basic Books.
Simon, M. (1994). Learning Mathematics and Learning to Teach: Learning Cycles in Mathematics

Teacher Education. Educational Studies in Mathematics, 26, 71-94.
Steinbring, H. (1998). Elements of Epistemological Knowledge for Mathematics Teachers. Journal

of Mathematics Teacher Education, 1(2), 157-189.
Tzur, R. (1999). Becoming a Mathematics Teacher-Educator: Conceptualizing the Terrain through

Self-Reflective Analysis. In this volume of the PME23 Proceedings.
Von Glaserfeld, E. (1991). Radical Constructivism in Mathematics Education. Dordrecht, the

Netherlands: Kluwer.
Winbourne, P. & Watson, A. (1998). Learning mathematics in local communities of practice. In A.

Olivier & K. Newstead (Eds.) Proceedings of the 22nd Annual Meeting of the International
Group for the Psychology of Mathematics Education. Stellenbosch, South Africa, Vol. 4, pp.
177-184.

1 9 4
1 - 158



Promoting reflection and networking as an intervention strategy in
professional development programs for mathematics teachers and

mathematics teacher educators
A reaction to the paper "Interweaving the Training of Mathematics Teacher-Educators and

the Professional Development of Mathematics Teachers" by Orit Zaslaysky and Roza Leikin

Konrad Krainer

University of Klagenfurt, IFF, Austria

0 Introduction

"I found myself dealing with questions that interested me, because I asked the questions ...".
This quotation stems from Ronit, a mathematics teacher educator engaged in the five-year
professional development program "Tomorrow 98" in Israel, led by the first adthor of the
above mentioned paper. Ronit's words give a first impression of the freedom enjoyed by the
teacher educators in this project to define their own ways to grow professionally when
working with teachers and when reflecting on their work as teacher educators, i.e. using
their teaching as a basis for their own learning. In addition, the quotation indicates that the
program fostered teacher educators' investigative attitudes in order to achieve a better
understanding of their role in the interaction process with the teachers.

Following this first impression, it seems appropriate to sketch a broad picture of the value of
the paper of Orit Zaslaysky and Roza Leikin before going into closer detail. One essential
strength of the paper is the description and reflection on an apparently really successful
project that creatively combines the professional growth of mathematics teachers and
mathematics teacher educators within the framework of a "supportive professional
community". It demonstrates the dynamics and power that heterogeneous learning groups
achieve through building on the specific strengths of individual learners (in this project
teachers and teacher educators). The paper sometimes would gain additional value through
more deeply linking the described processes in the project with the different theoretical
considerations indicated in the text. However, the paper represents a variety of powerful
ideas and interpretations that need to be highlighted and appreciated. It yields a good
learning opportunity for our scientific community to reflect on the process of becoming a
mathematics teacher educator, an issue that needs far more consideration in the future.

The paper of Zaslaysky & Leikin mainly considers the interaction between mathematics
teachers (MTs), mathematics teacher educators (MTEs), and the project director who
among others has the role of a mathematics teacher educators' educator (MTEE). In a
broader sense all the MTEs can also be seen as having the role of MTEEs when providing
workshops for their MTE colleagues. Figure 1 indicates the authors' explicit interest in their
analysis of the paper, namely the professional growth of the MTEs.

The data collected mainly come alive to the reader through some brief insights into one
teacher educator's, namely Tami's (individual, social, and) professional growth, and
partially through reflections of her colleague Ronit.
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MTEs as participants in teacher education:

MTEs as organisers of teacher education

(eventually also for their colleagues):

MTEEs

I
(MTEs 4-1.) MTE f- +MTs

Figure 1

The methodology used in the study follows the paradigm of "Grounded Theory" (Glaser
and Strauss, 1967) and refers to several theoretical considerations by other researchers,

primarily to Jaworski's teaching triad (1992), Krainer's four dimensions of professional
practice (1998), and Steinbring's model of teaching and learning mathematics (1998), for

which links to the program are made.

The following analysis firstly aims at finding common ground between Jaworski's, Krainer's
and Steinbring's considerations. Next, the story of Tami, an MTE in the program, is
reflected upon in greater detail through the lenses of the four dimensions of teachers'
professional practice, namely action, reflection, autonomy, and networking. Finally, this

paper sketches some future challenges for similar professional development programs.

1 Searching for common ground between the main theoretical perspectives

Let us start with Jaworski's teaching triad, which Zaslaysky & Leikin use for "describing in

a general way the tasks of the different groups of mathematics educators [MTs, MTEs,

MTEE] who were involved in the study, as well as for analyzing and discussing our

findings".

The teaching triad used by Jaworski (1992, p. 8) "as a powerful tool for making sense of the

practice of teaching mathematics" can be regarded as a possible concrete form of the classic

"didactic triangle: teacher student content", insofar as it puts three major tasks of the

teacher in the foreground (see Figure 2).
providing challenging

content (= mathematics)

management of learning being sensitive to the

by the teacher students
Figure 2

One benefit of this triangle as used by Zaslaysky & Leikin is its variable use in different

contexts, for example, in the versions MTE MTs mathematics teaching or MTEE MTEs

mathematics teacher education.

We must always bear in mind that the didactic triangle can be realised in a variety of
different models, expressing different norms, values, beliefs, philosophies, ... behind

learning and teaching, influenced by the teacher's explicit or implicit views on mathematics,
education, society, world, sense of life, etc. and the explicit and implicit socially constructed
views etc. in the context he or she lives in.
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Zaslaysky & Leikin refer in their paper to two perspectives of learning and teaching, namely
the "constructivist view" and the "transmission metaphor", as representing opposite
perspectives. The authors highlight the notion that the project is driven by a constructivist
view where "learning is regarded as an ongoing process of an individual or a group trying
to make sense and construct meaning based on their experiences and interactions with the
environment in which they are engaged", while at the same time also noting that "at the
early stages of the project most of the project team members seem to hold a transmission
metaphor", finding it "hard to reflect on their work".

This difference between the philosophy of the project and the starting perspectives of most
team members (the MTEs), and, in addition, the explicitly stated project goal "Facilitating
teachers' knowledge ... in ways that support a constructivist perspective to teaching", leads
us to assume that the project goal mentioned above was extended, tacitly at least, to the team
members. All in all, this apparently indicates that the project intended to promote teachers'
and teacher educators' change from the transmission metaphor to the constructivist view.

Referring to the didactic triangle, we can visualise the intended change as a transfer from a
Model T to a Model S as illustrated below (Figure 3). The use of such opposites as "top vs.
bottom" and "indirect vs. direct" is intentional and aims to amplify and to some extent to
exaggerate the differences between the two models:

Model T: content Model S:

1
teacher student 4-- content

student teacher
Figure 3

Whereas in Model T the teacher is transmitting the top-positioned content down to the
students, thus providing them with only an indirect access.to the content, Model S sees the
students' direct and partially self-organised confrontation with the content as the major goal,
with the teacher supporting and facilitating this process.

The "transmission metaphor" versus "constructivist view" distinction is one concrete form
of the difference between Model T and Model S. Other authors, for example, use the
difference "teacher-oriented" (or "content-oriented") versus "student-oriented" (or
"process-oriented"). We would need more discussion of what constructivist views,
student-orientation, process-orientation, and other perspectives have in common or how they
differ. We should also take into consideration other versions (than models S and T) of the
didactic triangle in order to avoid the trap of uniformly painting everything black & white.
In addition, we need to consider the question of to what extent the everyday practice of
teaching students, student teachers, teachers, teacher educators, ..., influenced by general
conditions like curriculum, assessment system, class sizes, etc., fosters or hinders these
perspectives. Furthermore, we should ask how we could describe, for example, a teacher
educator's position with regard to these models (whereby the position might change from
context to context), or describe (aspects of) change in a teacher educator with regard to these
models.
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When Zaslaysky & Leikin bring Steinbring's model of teaching and learning mathematics
(1998) into play in order to look more deeply into the MTE-MT base line of the didactic
triangle, their bigger cycle (Figure 1 in their paper) has - slightly modified the following

structure (Figure 4):r MTEs action

(e.g. making learning offers for MTs)

MTEs MTEs reflection

knowledge in action on MTs work

'..._ MTEs reflection on action +)
(e.g. on the basis of observations)

Figure 4

With reference to Figure 4, we can highlight two additionalfeatures of the "Tomorrow 98"
program. Firstly, the program not only puts an emphasis on MTEs actions and reflections
when working with MTs, but also strongly initiates and promotes joint actions and
reflections among MTEs, for example, through internal workshops where MTEs (or the
project director) work as MTEEs for their colleagues, through workshops where MTEs take

part in workshops that experienced colleagues conduct for MTs, or through joint reflections

among the MTEs. Secondly, experience in this program (as well as in general) shows that in
addition to MTEs knowledge, their beliefs, world views, etc. also play an important role.
Taking into account these two extensions, Figure 4 might be extended as follows (Figure 5):

MTEs action

MTEEs action

refl. i. action knowl. +

refl. o. action +)

(-÷ MTEs action

MTEs MTs action

knowledge, knowl. + refl. i. action

beliefs, ... L refl. o. action.)

-,MTEs reflection MTEs reflection 4-)
Figure 5

Figure 5 makes the connection to Krainer's four dimensions of teachers' professional
practice (1998), to which Zaslaysky & Leikin refer in their paper. It is apparent that in the
"Tomorrow 98" program the dimensions of action and reflection play an important role for
the MTEs (as well as for the MTs). In addition, if we examine the difference between the
right and the left circle, the dimensions of autonomy and networking also come to the fore:
whereas the right circle mainly refers to MTEs autonomous inservice work with the MTs,
the left one mainly refers to situations where the MTEs share their ideas and experiences
with other MTEs. The two circles, the autonomy and the networking circles, meet in MTEs
professional knowledge, beliefs, etc.

From this point of view, MTEs professional knowledge, beliefs, etc. can be seen as
influenced by the four dimensions and visualised by the followingschema (Figure 6):
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action

MTEs

networking professional autonomy
knowledge

reflection
Figure 6

All in all, looking at Zaslayski's & Leikin's use of the models of Jaworski, Steinbring and
Krainer, we can see common ground. Jaworski's teaching triad is used in order show the
different tasks the MTs, MTEs and MTEEs (the project director and MTEs when leading
workshops for MTEs) have in the project. Steinbrings' model of teaching and learning is
brought into play in order to allow a closer look at the interaction process between MTEs
and MTs. Finally, Krainer's dimensions of action, reflection, autonomy and networking can
be used as lenses to look at promoting and hindering factors that influence MTEs
professional practice, highlighting that a crucial part of MTEs growth is sharing experiences
within the group of MTEs.

Before using these four dimensions in the next section in order to reflect on the story of
Tami, I shall briefly describe how action, reflection, autonomy, and networking are
interpreted in this model:

Action: The attitude towards, and competence in, experimental, constructive and
goal-directed work;

Reflection: The attitude towards, and competence in, (self-)critical work that reflects on
one's own actions systematically;

Autonomy: The attitude towards, and competence in, self-initiating, self-organised and
self-determined work;

Networking: The attitude towards, and competence in, communicative and co-operative
work with increasingly public relevance.

Each of the pairs, "action and reflection" ana "autonomy and networking", expresses both
contrast and unity, and can be seen as complementary dimensions which have to be kept in a
certain balance, depending on the context. The interplay between these dimensions seems to
be of great importance: in general, more reflection contributes to a higher quality of actions,
and the sharing of experiences enriches one's own view; furthermore, a higher quality of
action and autonomy promotes the quality of reflection and networking, etc. Experience
shows that teachers' practice is usually characterised by a lot of action and autonomy but
less reflection and networking, in the sense of critical dialogue about one's teaching with
colleagues, mathematics educators, the school authority, the public, etc., and, linked with
that, by putting an emphasis mainly on the dimensions of action and autonomy in their
classrooms (see e.g. Krainer, 1999). Therefore, it is a great challenge for teacher education
programs to foster particularly the dimensions of reflection and networking in order to
support teachers' flexibility to generate and to keep an adequate balance between the four
dimensions in their practice.
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2 Looking at the story of Tami through the lenses of the four dimensions action,
reflection, autonomy, and networking

The description of Tami, "who was considered by herself and her colleagues as a rather
competent teacher-educator to begin with", by Zaslaysky & Leikin in the early stages of the
"Tomorrow 98" program can briefly be interpreted with regard to the four dimensions as
follows (I can only refer to the data presented in their paper).

Tami in the early stages:

Tami is an "expert in managing cooperative learning experiences" (CLE), and she has a
"strong belief regarding the significance" of CLE. Tami is "eager to convince" other
colleagues to adopt her CLE approach and to use the same methods she uses. Within the
project she offers to conduct CLE workshops for MTs and MTEs. She even encourages "a
small group of teachers to adapt the material ... and to produce a booklet". Tami's
workshops are "very structured", she is "reluctant to conduct reflective discussions with the

teachers", "silence" is "a threat" to her.

Concerning the four dimensions, Tami has clear strengths with regard to action and
autonomy. She is an expert in CLE and practices it with conviction. It seems that around
CLE she constructs a considerable domain of autonomous action with strict rules where she

feels competent and secure. It seems that Tami has some weak points in reflection. She
avoids reflective discussions with teachers, and the use of very structured designs decreases
the chance of such reflections. She is very convinced by her CLE approach and seems to feel

not much need to reflect on modifications. Concerning networking the situation seems to be

more complex. On the one hand, she is interested in spreading her knowledge to other

teachers. She practices CLE in her workshops, initiating cooperative learning among her
inservice teachers, thus promoting networking among them. On the other hand, she is
reluctant to conduct reflective discussions with the teachers and avoids departures from her
given workshop structure (which decreases the chance that the teachers themselves generate

new ideas and ways), thus hindering networking among teachers.

Tami at the end of the project:

By the end of the "Tomorrow 98" program, Tami seems to have changed a lot. Again, we

refer to the four dimensions of professional practice. Tami made great progress with regard

to reflection and networking, as her reflection on the program shows: "Today, I am much
more open to many different ways of facilitating teachers' and students' cooperative
learning in mathematics. I now accept and use methods that are not very structured, that
seem to give way for many different kinds of cooperation to different extents." Tami now no
longer feels "uncomfortable waiting for responses", having learned "to listen" to her
participants' voices. She succeeded in supporting a small group of teachers writing a booklet

about CLE, and in convincing other MTEs of the potential of CLE, in particular through
motivating a small group of team members to collaborate on designing CLEs for workshops

with teachers. This progress in reflection and networking also improved the dimensions of
action and autonomy. She gained further expertise in CLE and in leading CLE workshops.
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She increased both her flexibility and her self-confidence in taking autonomous decisions:
"I reached the extent that my colleagues often accuse me of waiting too long for replies."

What made this progress, in particular with regard to reflection and networking, possible?
Let us look at the program's effort to foster these two dimensions.

Zaslaysky & Leikin regard reflection as a "key issue" in their program and incorporated
several elements of it "in order to enhance reflection and self-analysis of both the
participating teachers and the project star . A considerable part of the reflection was
organised as joint activities by MTEs, thus promoting exchanges about their experiences at
different levels, for example, experiences from workshops they led for MTs or their MTh
colleagues, or from participating in workshops led by the project director or other MTI:s.
Examples of other essential elements that strengthened the combination of reflection and
networking were:

The MTEs were "required to give written accounts of the workshops for which they were
in charge"
"mutual peer (written and oral) evaluation and teachers' (written and oral) feedback
were provided on a regular basis"
"regularly scheduled staff meetings, in which staff members could reflect on their work,
share their experiences, consult with their colleagues, and negotiate meaning with
respect to the goals and actions of the project"
team members were "continuously encouraged to initiate ideas and suggest new
directions and actions within the project" (thus promoting participants' ownership and
responsibility for the project)
"special professional meetings and mini-conferences for the project team ... were
scheduled" where also "external experts" were invited to share their expertise
the project was accompanied by a systematic documentation, for example including
interviews, questionnaires, self and peer reports, written analyses, videotapes and
protocols, thus enriching the reflection and networking processes
all staff members (and teachers) had "access to an electronic network" that "served for
informative communications, as well as for sharing, reflecting, and debating"

a project director who apparently was really successful in coordinating this complex task
and in taking a considerable amount of responsibility for the whole project, being
involved intensively, professionally and socially.

All these factors (and more) together seem to have generated a fruitful and dynamic project
culture, as it had been intended by those responsible for the project, as articulated in the
project goals, for example: "Enhancing teachers' and teacher-educators' socialization and
developing a supportive professional community to which they belong." Nevertheless, this
supportive professional community cannot be the full explanation of Tami's growth,
although it surely promoted her efforts extraordinarily. There was an interplay between the
project's challenging network of actions and reflections and her autonomous struggle for
growth. In particular one situation seems to have played a very critical role in her
development, namely the one where a group of four MTEs, who had been motivated by
Tami to collaborate on designing CLEs, conducted a workshop for the project team and
were "confronted with some unexpectedly problematic mathematical and pedagogical
issues".
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However, in this network of "critical friends" it apparently was possible for the group to
appreciate the criticism as a learning chance and they "returned to revise their plan and the
resource material, and in the following year conducted one of the most exciting workshops
with the teachers". This challenging situation seemed to have greatly influenced Tami's way
of making her CLE approach more open and flexible. We can assume that the openness and
flexibility of the whole project, for example, with regard to MTEs freedom to define their

own ways to grow professionally within the project was a supporting factor. This is, for
example, expressed by Ronit who was one of the group of four MTEs that conducted the
CLE workshop for the project team: "I found myself dealing with questions that interested
me, because I asked the questions ...". Such a motivation for developing oneself further,
accompanied by colleagues who have similar goals and ambitions, and based on a project
culture that provides challenging learning environments, is a good starting point for
professional growth.

The "Tomorrow 98" project reveals some crucial features of promoting professional growth
of teachers and teacher educators, with the particular strength that it combines their learning
into a whole framework. It might be interesting to get an even closer view on Tami's
development, possibly indicating how she dealt with other (critical) situations that
challenged her. It would also be valuable to look more deeply at the growth of the four
MTEs that collaborated on CLE, a group, which became aprofessional mini-community of
its own. And, in addition, we could benefit from hearing a story about an MTE who was not

so successful in his or her further development, even though he or she was involved in the
project's rich learning environment.

3 Some future challenges for similar professional development projects

The paper of Zaslaysky & Leikin shows a unique project that combines the professional
growth of mathematics teachers with mathematics teacher educators. The short story about
the professional growth of Tami gives a brief insight into the processes that influenced her
development. It is worth writing data-rich stories about mathematics teacher educators' and
participants' development which allow us also to compare their growth.

One main feature of the uniqueness of the "Tomorrow 98" program is its complexity, as the

following aspects demonstrate:
The challenge of interweaving the professional development of MTs and MTEs.

The size and the structure of the project with regard to the people involved: 1 project
director (only supported by an MTE in the latter stages of the project), (a big group of)
20 team members, and about 120 participants.
The heterogeneity of the team members' competence and experience (only 6 out of 14
"had some previous experience in managing inservice professional development
activities" and "were not very confident of their qualifications as teacher-educators",
which means that many team members apparently were really busy with their own
learning process, and thus did not have all their energy for taking some responsibility off
the project director, or for looking more closely at mathematics teachers' growth).

- The heterogeneity of the participants' background (junior high school and high school

teachers, the different length and intensity of their involvement).
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- The variety of activities and meetings in the program.
- The variety of data gathered (observations, interviews, questionnaires, videos, ...).

It is astonishing that the complexity of the project given its low personnel resources
seemed to have been mastered so successfully. On the one hand, this is due to a high degree
to the work of a project director, who clearly is a highly skilled in leading projects and is
prepared to take more responsibility than usual. On the other hand, we can imagine that
more resources (people, time, money) for this project could provide the responsible people
with more freedom to concentrate on specific development and research questions.

In the following I confine myself to some challenges for similar professional development
programs, in particular looking at the differences in MTs and MTEs growth as reported in
the paper by Zaslaysky & Leikin.

Regarding the MTs and the MTEs further development in the "Tomorrow 98" project the
authors highlight 'differences in the extent and nature of their growth. Whereas the progress
of the MTEs is stressed through expressions like "entire team becomes enthusiastic", "is
motivated", "become more competent with respect to innovation" or "become more
competent as Teacher-Educators", the progress of the MTs is described far less
spectacularly, for example, through expressions like "become aware of the potential of
innovative approaches", "apply this approach" or "a sub-group begins to initiate and is
ready to begin acting as Teacher-Educators". Zaslaysky & Leikin also point out that the
MTs felt "less committed and accountable for their role in the project" than the MTEs.
Besides the fact that, of course, MTs and MTEs had different starting points and tasks
within the project, it is interesting that the relative effects, professionally and
atmospherically, seem to be stronger in the case of the MTEs. Zaslaysky & Leikin explain it
mainly by the "differences in the time and opportunities staff members had, in comparison
to the teachers, to reflect and share their experiences". This is certainly a very important
point. However, I would like to bring into play some additional hypotheses that might
explain the difference:
- The MTEs had more freedom to define their own ways to grow professionally, whereas

the MTs had more the role of applying the approaches introduced by the MTEs.
Connected with that, the MTEs were able to build their workshops on their individual
strengths (as e.g. CLE in the case of Tami), whereas for the MTs these approaches often
apparently meant the need to cope with situations that were really new for them (e.g.
alternative ways of learning). Both factors have an impact on one's energy to reflect on
one's own practice and on one's commitment with the project.

- The authors' assessment that at "the early stages of the project most of the project team
members seemed to hold a transmission metaphor of the teaching-learning process"
demonstrates the deep learning process of the MTEs. According to that, a lot of the
project's energy was covered by promoting the growth of the MTEs who really were
challenged in reflecting on their own learning process.

- The research mainly built on investigations into MTEs and MTs growth from the
perspective of MTEEs involved in the project. To some extent, the MTEs systematically
investigated their own practice (mainly following a research question that arose from
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their own interest), wrote down their experiences and shared it with their colleagues, and

thus practised a form of action research (see e.g. Jaworski, in press). The MTs, too, were

invited to reflect on their practice, however, it seems that their investigations were not

mainly aimed at giving answers to their self-defined questions, but more towards
informing the MTEs about how successful of their the MTEs interventions in
promoting a constructivist view of learning and teaching had been.
The project director had a complex task and took a considerable amount of responsibility

for the whole project. She was very active in different roles, for example, through
leading the project, defining and reinforcing further its philosophy and its conceptual

framework, being the chief researcher, conducting several workshops, giving feedback

and guidance to individual people, writing reports and research papers, and through

keeping all the things together (being supported by a colleague only in the latter stages of

the project). She seems to have been a focal point in the further development of many
MTs and MTEs. This is shown, for example, in Tami's reflection "Having observed over

and over again in many different situations ways in which the project director conducted
such sessions, with the teachers and with us - the staff members, I began to try it myself "

It can be assumed that the project director's competence and support reached the MTEs

more intensively than the MTs.

Finally, some brief suggestions with regard to futureprofessional development programs

that might have similar goals and general conditions like the "Tomorrow 98" project:

Given a complex project like above, it is worth considering getting enough resources in

order to enable a team to share a fairly balanced responsibility from the very beginning,

i.e. to differentiate between different roles (research, management, coaching, workshops,

evaluation, ...), and to initiate other elements of a project structure that allow the project

director to concentrate on important strategic and research-related activities.

With regard to the challenge of interweaving teacher educators' and teachers'
professional growth, it is worth considering putting more emphasis on teachers'
investigations into their own practice, thus also providing the teacher educators with
additional authentic reflections by the teachers.

Referring to Zaslaysky's & Leikin's interesting statement, "In fact, in schools from
which a number of teachers participated in the project, Tami realized that collaboration

began and more flexible ways were employed to facilitate students' cooperative
learning.", it is worth indicating that the organisational aspect of teachers' and teacher
educators' professional growth needs more consideration, both with regard to teacher
education programs and research on teacher education.
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BECOMING A MATHEMATICS TEACHER-EDUCATOR: CONCEPTUALIZING
THE TERRAIN THROUGH SELF-REFLECTIVE ANALYSIS

Ron Tzur

The Pennsylvania State University

Abstract: My purpose in this paper is to contribute to the conceptualization of the
complex terrain that often is indiscriminately termed mathematics teacher educator
development. Because this terrain is largely unresearched, I, interweave experience
fragments of my own development as a mathematics teacher educator and r,,7ective
analysis of those fragments as a tool to abstract notions of general implication. In
particular, I postulate a framework consisting of four stages of development that
are distinguished on the basis of the domain of activities one's reflections may
focus on and the nature of her or his reflections. Drawing on this framework, I
present four themes that contribute to thinking about and conducting research in
the terrain of mathematics teacher educator development.

During the third year of my work as an assistant professor I encountered a problem
that is not uncommon. A prospective doctoral student canceled her participation in
the program, thus we needed an instructor for a mathematics education methods
course for preservice teachers. I asked Kelly, a graduate student who has been
working for two years as a research assistant in the mathematics teacher
development (MTD) project if she would take on the responsibility. On the intuitive
(unformulated) basis of knowing Kelly as a developing researcher and as a student
in courses I taught, I expected that she would be able to take on the responsibility,
and that this would promote her development. Yet, while talking with Kelly and my
colleagues it soon occurred to me that I had never before articulated the perspective
underlying my practice as a mentor of developing mathematics teacher educators,
nor did I articulate my own development as a novice teacher educator. To my
surprise, in searching for research literature I could find many generic studies on
development of teacher educators (Denemark & Espinoza, 1974; Diamond, 1988;
Ross & Bondy, 1996; Wayson, 1974) or on such development in other disciplines
like English teaching (Farrell, 1985), but only one (Onslow & Gadanidis, 1997) that
focused on development of mathematics teacher educators. Therefore, in this paper I
attempt to begin conceptualizing the terrain of mathematics teacher educator
development through self-reflective analysis.

My interest in mathematics teacher educator development is rooted in my work of
studying mathematics teacher development (Simon, Tzur, Heinz, Kinzel, & Smith,
1998b; Tzur, Simon, Heinz, & Kinzel, 1998). I became convinced that mathematics
teacher educators can, and should, construct clearer (a) conceptions of desired
teaching practices that can serve in setting goals for the development of preservice
and inservice mathematics teachers (Simon, Ball, Dekker, & Russel, 1998a), (b)
explanations of mathematics teachers' development toward such practices (Tzur &
Timmerman, 1997), and (c) ways in which teacher educators might think about, and
promote, such development (Cooney, 1994). It seems as important that mathematics
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teacher educators construct clearer (a) conceptions of desired teacher-educating
practices that can serve in setting goals for the development of mathematics teacher
educators, (b) explanations of mathematics teacher educators' development toward
such practices, and (c) ways in which mentors of teacher educators might think
about, and promote, such learning processes.

I organized the paper as follows. Following Guilfoyle, Hamilton, Pinnegar, &
Placier (1996) writing, I first interweave narratives and analyses of experience
fragments of my own development. Then, I present my way of thinking (conceptual
framework) about learning and teaching processes, stressing the critical role that
reflection plays in learning. This is followed by my conception of mathematics
teacher educator development in terms of four interconnected foci of reflection
learning mathematics (student), learning to teach mathematics (teacher), learning to
teach mathematics teachers (teacher educator), and learning to teach mathematics
teacher educators (mentor). In this context I present four themes for further
research and conversation.

Reflecting on Experience Fragments

In this section I interweave narratives and analyses of experience fragments that
greatly impacted my current praxis' as a teacher educator and a mentor of teacher
educators. The experiences are ordered according to my understanding of the
developmental sequence in which the four foci mentioned above are interwoven. I
will elaborate on relationships among those foci later. However, it is critical to note
that I view the four foci as highly interconnected, and distinguish among them on
the basis of what issues (activities) serve as "material" on which the learner reflects
and on differences in the nature of the reflective process (awareness, rigor, depth).

Learning Mathematics

I learned mathematics at my kibbutz elementary and high schools. The kibbutz is a
small community operated by its members on the basis of socialist ideas such as
equality, cooperation, and mutual aid. To educate the young toward realization of
those ideas, the kibbutz school is operated as a mini-community in which adult
educators and students negotiate social norms and practices (notions borrowed from
Yackel & Cobb, 1996) to guide students toward gradually taking responsibility for
academic, social, and physical aspects of their life. In particular, capable students are
expected and encouraged to tutor their peers or younger students. Below, I present a
fragment pertaining to my learning through peer tutoring.

My peers knew of my affection for mathematics, and frequently asked me to help them

in doing their homework. My usual technique was that I worked one or two problems

step-by-step, then asked my peers to try the next problems, which for me seemed "just

the same." However, my peers usually got stuck. To help them, I explained what I saw

as the reasons behind what we were told or asked in class, and how all the pieces

I use the term praxis in Dewey's (1938) sense of the combined conglomerate of theory and practicethat characterizes

the teacher's work.
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"clicked together" in the process of solving the problem. Often, the struggle to figure
out how to explain the matter brought about new insights in me. Sometimes, my peers
"got it" and I experienced a feeling of accomplishment; other times they did not and I
felt dull and disturbed. In both cases, I was curious about their understanding. These
experiences were related to my decision to take several courses in education during my
junior and senior years in high school, where I was first introduced to the educational
and psychological thought of Dewey and Piaget. However, in spite of the courses, at
that time I continued to use the same tutoring techniques.

In reflecting on this fragment, I notice three significant aspectsthe social context
in which I learned, the advancement of my mathematical understanding, and the lack
of change in my ways of tutoring. Regarding the social context, it seems that my
tutoring was encouraged and affected not only by the generic social norm of helping
others, but also by our classroom sociomathematical norms (Yackel & Cobb, 1996)
of being expected to justify a solution and to make connections between results of
different problems. Regarding my learning, it seems that my continual reflection on
activities I used to explain my solutions to others played a key role in advancing my
mathematical understanding.. While I repeated the process of interpreting the
information provided in the problem, setting some image (goal) as a solution,
carrying out activities to work to the solution, and relating the effects of my
activities to the solution image, I noticed new regularities in activity-effect
relationships. Regarding the lack of change in my ways of tutoring, I did not
understand that many of my peers could not see what I saw because their
mathematical conceptions were different than mine (Cobb, Yackel, & Wood, 1992).
Thus, my reflection was focused on my own understanding of the (obvious to me)
mathematics, not on others' thinking and how it might be changed via their activities
and reflective processes. Simply put, I used activities in an attempt to promote
others' mathematics, but I did not reflect on the relationship between those activities
and the effects in terms of my peers' learning.

Learning to Teach

I started my formal education as a mathematics teacher in 1982, at the kibbutz
branch of Haifa University School of Education ("Oranim"). My development
continued while I taught mathematics at the kibbutz high school and while I studied
(1990-92) toward a master's in mathematics education at the Technion - Israel
Institute of Technology. While at "Oranim," I became friends with a small group of
students who not only prepared themselves as teachers in different disciplines, but
who also participated in the creation of a new program focusing on social education
issues. At the kibbutz high school, although I taught all grade levels (7-12) and
tracks, I worked mainly with the older, failure-experienced (non-college bound)
students who struggled to understand basic mathematical ideas and to not drop out of
mathematics courses. At the Technion, I focused on the role of assessment in
students' mathematics learning. I created an alternative assessment method in an
attempt to facilitate failure-experienced students' learning of mathematics and
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studied the impact of using this method on students and teachers (Tzur &
Movshovitz-Hadar, 1998). Below, I present fragments pertaining to my learning to
teach mathematics through teaching students and teachers, and researching.

A few years after high school I decided to realize my dream of being a mathematics

teacher at the kibbutz high school. I vividly remember how my teacher educators

encouraged me to give voice to my thoughts about how my (often painfully) growing

understanding of higher level mathematics would help (or impede?) my abilities to

make a difference in my future students' understanding of mathematics. They also

encouraged me to conduct several mini-research projects on diverse issues (e.g., the

development of the Cartesian coordinate system, gender differences in the kibbutz,

drug abuse impact on the brain). Most important, they supported my decision to begin

teaching full-time while completing my studies as a part-time student. Teaching failure-

experienced students was challenging and rewarding. I was engaged in taking apart

mathematical ideas that an expert might consider rather simple and unproblematic, and

continually searched for a variety of activities that might promote the students' learning.

I was pleased when their work indicated progress and felt somber when they were

frustrated and stuck.

The master's program was a breeze of fresh air, but it was not because I stopped

teachingI deliberately continued full-time teaching (cf. Halai, 1998) while joining a

research and curriculum development project (Movshovitz-Hadar, 1992). The project

team focused on developing learning materials to provide non-college bound students

with enjoyable, meaningful, and successful learning experiences. Besides using those

materials in my teaching, I also traveled every week to one of 6 high schools and met

with teachers to promote their understanding and use of the materials. During those

visits, I collected data (observe, interview, survey) for my thesis. The teachers' use of

the curriculum indicated (to me) misunderstandings on their part. By communicating

how I thought of the materials and demonstrating ways I would use them, I tried to

encourage the teachers to not only use the materials as given, but also to understand the

underlying educational reasoning and to adjust teaching activities to students' work. In

working with the teachers, I had many insights into teaching my students, but rarely

did the teachers' indicate the intended understandings. In writing my thesis, I struggled

to formulate commonalties I noticed in the teachers' use of the alternative method and

students' cognitive and social-emotional development. Consequently, I reconstructed

my conception of Piaget's and Vygotsky's theories, emphasizing the key theoretical

construct of interaction and applying it to the case of assessment.

In reflecting on these fragments, I notice three significant aspects besides the
obvious continuation of my learning mathematicsthe institutional norm to conduct
research; my learning to teach as a result of integrating activities of teaching,
research, and course work; and the lack of significant changes in my, attempts to

promote other teachers' reasoning about teaching-learning processes. Regarding the
first two aspects, it seems that both my undergraduate and master's programs
stressed a view of learning to teach that is compatible with Schon's (1983, 1987)
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notion of the reflective practitioner, and with recent trends of teacher action
research (Cooney & Krainer, 1996; Crawford & Adler, 1996; Jaworski, 1998;
Mc Ewan, Field, Kawamoto, & Among, 1997). My teacher educators expected me to
actively engage in doing research, to integrate my diverse learning experiences, and
to figure out how to make my research available to others. Being simultaneously
engaged in the activities of teaching mathematics, conducting research, taking
courses, and guiding teachers provided me with many situations in which to reflect
on my own teaching. For example, in teaching the high school classes, I actively
experimented with activities in an attempt to promote my students' unders.anding.
That is, I looked for tasks and problems in the learning materials that had been
developed in the project or that were in research articles, or I created new tasks on
the basis of my interpretation of learning theories. When the activities did not bring
about the intended learning I felt responsible for adjusting them, and the adjustment
process focused my reflection on relationships between my teaching activities and
their effects (students' learning). A similar focus was also evident in my work with
other teachers. I shared with these teachers activities that promoted my students'
learning, which again engendered my own thinking about why the activities were
useful. Simply put, I was actively exploring and transforming my own mathematical
and educational praxis (my students would say "improving as a teacher").

An important reason for the lack of change in my work with teachers seems to be
that I did not understand the teachers' praxisthe conceptions of mathematical
knowledge and learning underlying their teaching. In retrospect, I think that both
my own mathematics teaching and my attempts to promote teacher development
were rooted in a perception-based perspective (Simon et al., 1998b). That is, I
implicitly viewed mathematical (or pedagogical) knowledge as a well connected web
of concepts that exist independent of the knower, and thought of learning as the
essentially unproblematic process in which a learner comes to see a growing portion
of the web by connecting pieces he or she can already "see" with new pieces,
connections that take place through learners' active, first-hand experience. What I
lacked was an elaborated epistemology (Steinbring, 1998) that would provide an
explanatory mechanism as to how one can "see" a mathematical or pedagogical
concept in particular situations, let alone how one might develop new concepts.

Learning to Educate Teachers

In 1992, three years after the publication of the first National Council of Teachers
of Mathematics (1989) Standards document, I started my doctoral program at the
University of Georgia. Although my previous work as a high school teacher and as a
guide of teachers included influencing others' mathematics teaching, it was then that
I began to seriously consider issues of teacher education. Besides doing course work
in mathematics, mathematics education, psychology, and philosophy, I participated
in two research projects: a teaching experiment focusing on children's construction
of fraction knowledge and a teacher enhancement program focusing on teachers' use
of alternative assessment. After two years of working mainly as a research assistant,
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I added a teaching role to my program. Moreover, I was asked to let a new doctoral
student (Lori) who had little teaching experience join me in teaching a mathematics
course and two methods courses for elementary preservice teachers as a means of
assisting her learning to be a teacher and a teacher educator. Upon graduation
(1995), I assumed an assistant professor position in the School of Education at the
Pennsylvania State University. Here, I am currently developing as a teacher educator
through: reforming and teaching methods courses for teachers, creating and
teaching new graduate courses, promoting and researching mathematics teacher
development, and mentoring novice teacher educators. Below, I present fragments
pertaining to my learning to teach teachers and teacher educators.

Entering a doctoral program in the USA was a major cultural transition (e.g., language

difficulties, organization of teaching). My mentors encouraged my desire to articulate

relationships between several theoretical approaches and the real-life experiences of

students and teachers. I clearly remember how I was stuck when Les Steffe asked me:

"When interacting with children, how do you know that you met a scheme?" Such

questions sparked periods of intensive thinking, reading, and conversations with my

peers and mentors that led to focusing my dissertation on both children's construction

of fraction schemes and the teacher-learner interactions that might promote this process.

From day one, Lori and I were excited to team-teach. We shared full responsibility in

planning, implementing, and reflecting on our teaching reform-oriented mathematics

and pedagogy to the prospective teachers. Having excitedly worked with the students

throughout the course, I was startled when I received their low rating of my teaching.

Their feedback threw me into an intensive period of reflection. I painfully recognized

my failure to understand the teachers' experience (conceptions) as a critical first step to

teaching them anything. When discussing those issues with Lori, I also realized that

team-teaching with her enhanced my understanding of teaching and helped her to
experience activities of teaching, but it did not seem to be as useful in terms of Lori's

conceptualization of teacher education.

At Penn State, my learning about teachers' experiences and how I might build on them

to promote their development is taking a new form while I am integrating teaching

teachers and researching teacher development. As I supervise the graduate students

who teach methods courses, I try to inspire them with the kind of cooperative,
inquisitive, and creative work I enjoy in my research team. I cherish and contribute to

that kind of culture as a deliberate effort to confront the pressures of academia. I try to

translate the "aha" experiences of my research into new or revised methods coqrses for

teachers. In the last four years, I have been struggling with Marty Simon's question,

"Do you have a way of thinking, a theory, about graduate students' learning

processes?" For example, half way into a graduate seminar I realized that just reading

and conversing about children's mathematics resulted in superficial understandings.
Consequently, I engaged the graduate students in interviewing a child as a means to

make sense of the child's mathematical conceptions. Such adjustments in my teaching

intensified the question I came to view as preliminary to Marty's question: "What are
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graduate students' perspectives of mathematics education and, in particular, of
mathematics teacher developthent and the ways one might promote such development?"
It is this question that provoked my work on this paper.

In reflecting on the last three fragments, I notice three significant aspects: how
contextual features impact one's learning; how one's explicit ways of thinking about
the development of teachers and teacher educators empowers her or his acting as a
teacher educator or a mentor; and how it is difficult to translate such explicit ways
of thinking into daily planning for or reflecting on teaching, let alone adjusting (on
the spot) one's interactions with teachers and teacher educators. Next, I elaborate on
each of these three aspects.

The first aspect seems to be a case of the general notion of situated learning (Lave &
Wenger, 1991). Three examples in my personal experience seem to highlight this
notion. First, culture change intensified my learning by pushing me to see "old"
experiences in new light, hence to abstract new ideas about teaching and learning to
teach. Second, team-teaching also intensified my learning because of the need to
constantly reflect on my teaching in the context of observing Lori's teaching and
receiving her feedback on my teaching. Third, there is a mutual impact between my
research and my teaching (Jaworski, 1994) while I continually struggle with the
inherent tension between expectations and reward structures in academia (e.g.,
prioritizing writing or teaching, cf., Collins, 1997; Guilfoyle, 1995; Guilfyole et al.,
1996). It seems reasonable to expect that my development as a teacher educator
would differ from the learning of leader-teachers (Zaslaysky, this volume) whose
tenure and promotion are not determined by conducting and publishing systematic
research. As my experience indicates, the activity of writing serves as a main vehicle
for constant, rigorous, and deep reflection on and reorganization of thinking about
teaching and teacher educating.

The empowering impact that constructing explicit conceptions of teaching had on
my work was indicated in two shifts: from teacher to teacher educator and from
teacher educator to mentor. I now realize how the lack of such conceptions limited
the repertoire of plans and interactions that I, or other teacher educators and
mentors, could generate and use. For example, Lori could carry out most of the
teaching activities we planned for our students. However, her contributions indicated
that she had not yet constructed a global perspective about mathematics teaching that
allows one to generate or adjust teaching activities, let alone translate learning from
research with children into opportunities for teachers. Or, in teaching doctoral
students, I frequently found myself adjusting plans and activities after noticing new
regularities in their participation. Those adjustments were rooted in my perspectives
of the roles that students' conceptions play in their learning and indicate the limited
nature of my understanding of their conceptions. In all, it seems that formulating
explicit ideas about teaching-learning processes is a necessary (though not sufficient)
condition if one is to promote others' teaching or teacher educating.
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With respect to the translation of theory into practice, I came to distinguish between
reflective and anticipatory states of knowing with respect to my understanding of the
learning of students (children, teacher, or teacher educators). Being able to notice
students' learning while I reflected on concrete experiences with them is different
from being able to form anticipatory ideas as to how students might develop. The
latter allows for flexibility and creativity in planning or for adjusting one's
interactions on the spot. Moreover, I propose that developing one's ability to
construct reflective and anticipatory understandings at a specific enough level is a
long and difficult process. My experience (e.g., the negative feedback from
prospective teachers in my early methods courses) indicates that the process of
reconstructing for oneself a theoretical stance and applying it first to teaching
children, then to teaching teachers, then to teaching teacher educators, requires
reflective work on various "local" issues before abstracting and connecting the local
pieces into an integrated, well articulated praxis. Such a process involves the
development of new understandings of mathematics, its learning, and teaching.

Conceptual Framework

The previous section highlights the following seven main areas of potential
development of a mathematics teacher educator and a mentor: mathematical
knowledge, perspectives on the nature of mathematical knowing, how mathematics is
learned, how mathematics is taught, perspectives on the nature of mathematics
teaching, how mathematics teaching is learned, and how mathematics teaching is
taught. In this section I briefly describe my conceptual framework with respect to
these areas. This framework affects what I notice, what I consider important, and
what challenges my current understanding.

A foundational component of my conceptual framework is the emergent perspective
(Cobb & Yackel, 1996). Using this perspective, I regard the relationship between
social and individual aspects of human experience as reflexive (inseparable) in

nature. To account for human experiences such as knowing mathematics or
educating mathematics teachers, I try to understand both social and psychological
aspects of human beings' (inter)activities in their social-cultural-physical milieu. I
assume that people learn as they participate in, and reflect on, the continual
negotiation of norms, practices, and taken-as-shared meanings concerning their
(inter)activities in various communities of practice. I also assume a constructivist
epistemological stance and theory of learning (Piaget, 1980; von Glasersfeld, 1991)
that stress the inseparability of a person's history of (inter)activities in her or his
milieu and what she or he knows and feel.

I conceive of knowledge (e.g., mathematical, pedagogical) as a person's conceptions
that are used to make sense of (organize) her or his experiential world.
Accordingly, I view learning as the adaptive process in which people, while
participating in their communities of practice (e.g., a mathematics classroom),
transform their current conceptions via reflecting on the relationships between their
activities and the effects of those activities. In this context, I emphasize two key

2 0 1 - 176



to teach mathematicsdifferentiating plausible explanations of learning processes
that afford mathematics teachers' advancement from lower to higher stages, and (3c)
how someone's activities promote others' learning of mathematics teaching
differentiating plausible relationships between teacher educators' activities and
teachers' learning. In this sense, being teacher educators themselves, mentors of
teacher educators can develop their mathematical and pedagogical knowledge
through such experiences as teaching mathematics to students, teaching pedagogy to
teachers, or teaching epistemology to teacher educators.

Fourth Focus: Mentors of mathematics teacher educators develop ways of thinking
about and intentionally participating in others' learning to educate mathematics
teachers. Through reflection (indicated by arrows 1, 2, 3, 4, 5, & 6 in Figure 4),

Learn Math
* reason
* communicate
* connect ideas
* compute

6

Learn Math Teaching 4-
* Meaning of math knowledge?
* How others develop math?
* How to promote others' math?,,

3 Learn Educating Teachers 2
* Meaning of math teaching? 1E
* How others learn teaching? '`
* Promoting others' teaching?

Learn Mentoring Educators
* Meaning of educating teachers?
* How others learn teacher educating?
* Promoting others' teacher educating?

Figure 4: A four-Foci model of Teacher Education.

mentors may become aware of the perspectives that underlie their practices in terms
of: (4a) what it means to educate mathematics teacherselaborating one's own
perspective of 3a (hence la, lb, 2a, 2b, and 2c), 3b, and 3c above and
differentiating levels and stages in mathematics teacher educators' practices, (4b)
how someone comes to know how to educate mathematics teachersdifferentiating
plausible explanations of learning processes that afford teacher educators'
advancement from lower to higher stages, and (4c) how someone's activities
promote others' learning of how to educate mathematics teachersdifferentiating
plausible relationships between mentors' activities and teacher educators' learning.

A key to understanding this four-foci model is that development from a lower to a
higher level is not a simple extension (i.e., doing more and better of the same thing).
On the contrary, development entails a "conceptual leap" resulting from making
one's and others' activities and ways of thinking at a lower level the explicit focus
of reflection (cf., Cooney & Krainer, 1996; Edwards, 1996). Thiough such

1 - 179

3



reflection, the developing teacher educator (or mentor) may construct anticipatory
conceptions about learners and learning at the lower level(s), conceptions that
become the theoretical ground for one's praxis. One may question this distinction by
noting that all four foci include mathematical thinking. However, I emphasize that
even in the case of mathematical thinking, let alone pedagogical and epistemological
thinking, each focus is qualitatively different from the previous foci in that it
embodies the lower level as an explicit way of thinking abstracted via reflecting on
lower level ways of interacting in communities of practice (cf., Schifter, 1998). This
is why, for example, proficient mathematics teachers often feel limited in their
ability to teach pedagogy to other mathematics teachers on the basis of what they

came to experience as empowered understandings of mathematics or students'
conceptions and learning (i.e., being a good teacher does not necessarily imply being

a good teacher educator).

Themes for Conversation and Research
As the four-foci model indicates, we learn through reflecting on our experience
regardless of whether we are pupils, teachers, teacher educators, or mentors of
teacher educators. In this context, I delineate 4 themes significant to the mathematics
education community that can spark conversations and research.

1. Research Sites and Subjects: Graduate programs seem to be a good site to study
teacher educator development, because such programs may promote critical shifts of
foci and understandings. For example, one may study the interconnected nature of
doctoral students' development of anticipatory perspectives of mathematics,
mathematics learning, and mathematics teaching, as they teach mathematics teachers.
In doing so, researchers will have to consider the impact of graduate students'
motivations and backgrounds (e.g., beliefs about mathematics) and the political-
cultural contexts in which they learned (e.g., collaboration vs. competition) on
continual changes in their understandings (Acker, 1997; Diamond, 1988; Ryan,
1987). Moreover, it seems important to study development of novice teacher
educator's after their graduation, and to study groups of teacher educators who were
not doctoral students, such as teacher-leaders or principals (Clemson-Ingram &
Fess ler, 1997; Collins, 1997; Hord, 1988; LeBlanc & Shelton, 1997; Levine, 1997;
Rowley, 1988; Simon & Schifter, 1993; Talmage & Monroe, 1970; Zaslaysky, this
volume). I anticipate that this last point may become an issue of debate, because
mathematics educators may very greatly in their idea about "Who is considered a
mathematics teacher educator?" (Cooney & Krainer, 1996).

2. Research Focus/Scope: It seems useful to study both general trends and personal
shifts. Obviously, individuals in different communities of practice reflect on very
different experiences as they construct (anticipatory?) perspectives of mathematics
teaching (third focus) that underlie their shift from teacher to teacher educator.
Thus, researchers may be interested in identifying regularities in teacher educator
development that are unique to a specific sub-group (or political-cultural context),
or regularities that characterize the majority. Additionally, as my story and the
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four-foci model imply, teacher educator development is a very long and complex
process. Thus, longitudinal studies seem most appropriate, but I think that short-
term studies can contribute to conceptualizing specific aspects ofnew foci and how
they are developed on the basis of previous foci.

3. Research Questions: A few fruitful questions highlighted by my story as possible
research problems are: "How can models be developed for conceptualizing
professional development and what would they look like?" (cf. Cooney, Grouws, &
Jones, 1988) "What is important mathematics and mathematics pedagogy that
teachers need to learn and how do mathematics teacher educators develop
anticipatory perspectives of such learning in teachers?" "What specific shifts of
focus occur in teacher educators and how do political-cultural contexts and the
educators' perspectives about mathematics, mathematics learning, and mathematics
teaching impact such shifts?" (Kinzer, 1972) "How can teacher educators promote
bridging the gap between knowledge about students' thinking and teachers' learning
to teach, or how does teaching/researching impact focus change in teacher
educators?" (Cooney & Krainer, 1996; Denemark & Espinoza, 1974; Hudson-Ross
& McWhorter, 1995) "How can mentors be involved in teacher educators'
development and what models of teacher-learner interactions can inform the
mentors' activities?" (Rahal & Melvin, 1998; Simon & Schifter, 1991) "How do
teacher educators assimilate professional experiences into their praxis; what
dilemmas do they confront?" (Cher land, 1989).

4. Explicating Teacher-Educating Models: Along with research on teacher educator
development, it seems important to clarify the community's understandings of what
constitutes teacher education consistent with principles of reform (Wilson & Ball,
1996). This is analogous to Simon et al.'s (1998a) plea to clarify models of teaching
as a central means to explicate goals for teacher education. In the last 4 years, my
struggle to conceptualize models of mathematics teaching through focusing my
reflection on other teachers' development proved very difficult and useful to my
understanding of and involvement in teacher development. I therefore anticipate that
mathematics teacher educators will find it very difficult and useful to study
developing teacher educators as a means to construct models of teacher-educating.

Closing Comments

The four-foci model presented in this paper is a work in progress and it is certainly
far from being formulated and used in an anticipatory way. However, it highlights
the long process required to reflect upon components at one level and develop, first
locally and then globally, a new, higher level, integrated praxis. In particular, the
model captures a primary goal for teacher educators and their mentorsto promote
teacher educators' appreciation of the different foci of reflection. Key to this
appreciation is that moving from the teacher's classroom to the teacher educator's
classroom requires much more than a shift in the curriculum; it requires a shift in
the kind of reflective analysis in which both parties engage. In both cases, such a
shift calls into question the context of teaching and its impact on students' learning.
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This paper is but an incomplete, self analysis of one teacher educator's story. Thus,

it is limited to an individual's evolving perspective of teacher educator development,

including recent learning resulting from reflecting on literature and reviewers'
feedback while preparing the paper. Guilfoyle et al. (1996) suggested that self-
reflective analyses should not be underestimated as a way to research teacher
educator development. Although they stressed the need to extend studies of the

meaning that teacher educators give to their development beyond this method, they

saw this kind of research as appropriate because it provides access to important

aspects of the teacher educator's past and current experiences (Ayers, 1988;
Kaufman, 1996). In this sense, the hope is that the paper provides stimulating and

relevant material for further collective and individual reflection among mathematics

educators about the phenomenon loosely called teacher educator development.
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WHAT DOES IT MEAN TO PROMOTE DEVELOPMENT IN TEACHING?

A response to Ron Tzur's paper: Becoming a mathematics teacher-educator:
conceptualising the terrain through self-reflective analysis

Barbara Jaworski University of Oxford
Through a process of 'self-reflective-analysis' Ron Tzur sets out towards conceptualising
mathematics teacher-educator development. He presents a deep and searching account of
his own growth of knowledge as a teacher-educator on which he bases a four-focus model
to 'conceptualise the terrain'.

In this response I shall focus firstly, and briefly, on two aspects of Ron's theory and
methodology that are of significance to his substantive focus: (i) his use of fragments as a
methodological tool for self-reflective analysis; and (ii) his juxtapositioning of the
individual and the social as a foundation for discussing growth of knowledge in becoming a
teacher-educator.

Secondly, and at slightly greater length, I will then respond to the substantive material of
Ron's paper to discuss the main elements of his analysis and the resultingmodel, and to
raise an issue which seems implicit in the paper but not extracted explicitly or subjected to
critical scrutiny. This, I believe, raises questions central to much mathematics teacher
education as it exists currently.

Fragments as a tool for self-reflective analysis
Ron begins by reflecting on 'fragments' from his own experience, anecdotes, narratives or
stories which carry in the them the essence of the concepts he seeks to extract. John Mason
(1988a) has suggested afragment is

a temporarily continuous recallable incident whose content can be negotiated and
agreed. It is generally of short duration because it must be recallable ... and since its
content can be agreed, it must be detailed enough not to require extensive
interpretation.

Mason uses the phrase "brief-but-vivid" to capture the two essential ingredients of a
fragment. A working group of the Mathematical Association in the UK expounded a theory
of the use of stories or anecdotes to develop professional practice - the Anecdoting Process
(Mathematical Association, 1991). The notion of narrative as a source of theoretical
grounding is now well developed in the educational literature through the work of, for
example, Connolly and Clandinin (1995), acknowledged by Bruner (1986, 1996) as taking
its place alongside nomothetic and ideographic forms of evidence and demonstrated in the
mathematics education literature in the work of Deborah Schifter (1996) and Leone Burton
(in press). Ron himself refers to the work of Guilfoyle et al (1996) in the use of narratives
and analyses of experience to present their work.

As a methodology leading to emergent theory, however, fragments must be seen as more
than unsubstantiated personal reflections from which generalisation is dubious. The
importance of such stories, narratives or fragments lies in their offering particularities which
resonate so strongly with the experiences of others in a community that general principles
can be extracted. The notion of 'essence' is a key idea, since the fragment is chosen to carry
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this essence, to be generic rather than particular. It is not that we can generalise from the

one example, but rather that the one example points paradigmatically towards the principles

we wish to expound or issues to extract. The essential nature of the story is resonated in

experiences of its audience, who are able to recall similar instances of their own, and thus

enter into the general principles involved.

Ron's choice of fragments is done selectively and succinctly to point to the key stages in his

development and bring his readers, effectively, into the terrain he seeks to analyse. The

levels of generality or particularity in the fragment seem central to its effectiveness in

convincing its audience of the ideas or issues to be extracted. I should have liked to see

rather more specific instances of Ron's experience in some cases. For example, in his first

fragment, where he talks of his mathematical learning from peer tutoring, he says,

"Often the struggle to figure out how to explain the matter brought about new

insights in me. Sometimes my peers "got it" and I experienced a feeling of
accomplishment; other times they did not and I felt dull and disturbed."

I can enter into this experience, knowing myself of occasions when I as teacher learned

more from a situation than the students I was trying to teach. Thus the fragment has

important face value reflected in my experience. How much more powerful this might have

been had we been presented with a specific occasion in which something mathematical

suddenly was crystalised for the teacher while seeming not to be appreciated by the peer.

Similarly, in subsequent fragments, it could have been valuable to be given a glimpse of a

particular issue discussed with Lori, and its differences for Ron's and her development.

While a general description might resonate with a reader's own experience, such generic

particularity has an intrinsic power to convince, thus providing powerful evidence for a

theoretical conjecture. Mason (ibid) writes, "It is essential that a fragment be known by

what people experience, and not by some interpretation or generalisation of their

experience".
As a research tool, the use of fragments can be extremely valuable in analysing incidents or

situations leading to general articulations or characterisations. A brief-but-vivid account of

an incident which manages to capture its essential nature becomes data for analysis.

Analysis looks critically at the issues raised by the fragment and the particular

circumstances in which it occurred. For example, in a particular case of team teaching with

Lori, in which Lori's learning appeared not to be what Ron might have hoped, what were the

key circumstances and issues? How do these relate to circumstances and issues in other

fragments? Such identification across a range of fragments could start to provide insights

into the practices described and to a theoretical account of their problematic nature. In this

way, reflection shifts into research, and research provides clearer evidence on which further

practice can be more knowledgeably designed.

Reflection and Reflexivity: the individual and the social

Ron's position on knowing and the growth of knowledge influences overtly his conceptions

of himself as a learner. He acknowledges this position as a constructivist one in which

"people, while participating in their communities of practice (e.g., a mathematics

classroom), transform their current conceptions via reflecting on the relationships between
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their activities and the effects of those activities"(emphasis in original). He sees a
reflexivity between individual and social aspects of human experience, assuming that
"people learn as they participate in, and reflect on, the continual negotiation of norms and
practices, and taken-as-shared meanings concerning their (inter)activities in various
communities of practice (emphasis in original).

This reflexivity between the individual and the social is no simple matter. It involves a
complexity of theory which depends on assumptions about the growth and status of
knowledge and is lengthily articulated by theorists in psychological and sociocultural
domains in the mathematics education literature and beyond. It is understandable that Ron
did not include a critique of such theoretical positions in the short space allowed for !,is
paper in this forum. However, such critique is now well-known in the public domain. See
for example the excellent juxtapositioning by Jere Confrey ofelements of Piagetian and
Vygotskian theory in Confrey, 1995. She, along with Jerome Bruner (1996, in his key
address in Geneva, bridging the conferences celebrating the centenary of the births of Piaget
and Vygotsky) points to the incommensurability of these theories where the origins and
growth of knowledge is concerned. The debate in mathematics education, between
constructivism and socio-cultural theory, continues currently between Les Steffe and
Stephen Lerman in JRME (forthcoming).

My point in mentioning this debate is to emphasise the complexity of the theoretical arena in
which learning is conceptualised, and the problematic nature of 'giving the nod' to both
constructivist and socio-cultural positions as supporting a conceptualisation of learning.
Ron speaks of "the social and psychological aspects of human beings' (inter)activities in
their social-cultural-physical milieu", and "the negotiation ofnorms and practices, and of
taken-as-shared meanings concerning [people's] (inter)activities in various communities of
practice". He views learning as an adaptive process in which current conceptions are
transformed via people "reflecting on relationships between activities and the effect of those
activities". As he indicates, this is undoubtedly a constructivist position. However, it uses
terminology from a number of paradigms (for example, 'communities of practice' from
social practice theory (e.g. Lave and Wenger, 1991) and 'taken-as-shared meanings' from
social interactionist theory, (e.g. Bauersfeld, 1988) to explain communication of knowledge.
There have been many attempts to explain, from a constructivist position, apparently
'correct' understandings by one person of the thoughts or actions of another, or apparently
`mutual' understandings between one or more people what might be called 'common
knowledge', or intersubjectivity. Les Steffe and colleagues' second-order models offer one
persuasive example (e.g. Steffe, in press; another is Cobb , Wood and Yackel's focus on
developing taken-as-shared meanings. in classroom interactivity (e.g., Wood et. al., 1993).
It is nevertheless hard to explain intersubjectivity in constructivist terms. The
communication and 'sharing' of knowledge is central to consideration of social norms
within classrooms, yet, often, the problematic nature of such sharing, from a constructivist
theoretical perspective, is not addressed.

Socio-cultural theory, on the other hand, is based on a position of understandings being in
the community first, and individual learning being derivative of social practices, or even
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embedded in those practices. Reflexivity could be interpreted, in Vygotskian terms, as the

shifting between social and individual planes, with the social plane having pre-eminence.

Where reflection is concerned, it seems unclear whether its transformative nature is a

construct relating to the individual, or whether (and how) it leads to transformations within a

community. From a sociocultural view, learning is an enculturative process in which

learners grow into the intellectual life of the community in which they engage. What the

community espouses and practices (for example, critical reflective practice in teaching), it is

likely that participants in the community will develop as a result of participation (Lave and

Wenger, 1991). However, if such practices are not central to the community, it is unlikely

that they will be developed through a process of enculturation. In terms of the Vygotskian

construct of Zone of Proximal Development, by engaging with a learner in the learning

process, the more experienced other can interact to support learning within the ZPD.

Whether the outcomes would be those desired is far from certain.

These various theoretical positions (treated very sketchily here) depend on epistemological

assumptions regarding the nature and status of knowledge. It is dangerous to interpret

constructive intersubjectivity, participative enculturation, or supported learning as

promoting desired learning without examiningcritically such assumptions. Thus, in trying

to promote learning, we find ourselves in ambiguous positions theoretically. It is perhaps

not surprising therefore, that promoting desired learning in practice is so difficult, as Ron's

paper shows.
Another issue concerns the nature of the community in the mathematics classroom, where

negotiation of norms and practices may be central to achieving goals, for example goals of

mathematical described by Wood et al.,(1993) where it was clear that a changing of norms

was central to the success of their programme. When we set out to negotiate, or change, the

social norms of the classroom community, we have to look beyond mathematics and the

immediate institutional environment to the wider sociocultural influences on relationships

within the classroom: whether the practices being nurtured are compatible with societal

norms issues of equity for example, and the implications of changes in the classroom

power structure. Does reflection and negotiation include addressing these wider (and

potentially stronger) influences? If so, is this an individual or a collective act; constructive

or enculturative? How is it achieved and what are its consequences for participants? Ron

sidesteps these issues by acknowledging whathe calls the "non-academic issues", but

deciding for this paper to leave them "in the background". I believe they are too central to

all levels of development, including the academic, for this to be a real option, and this raises

issues for teacher educators as well as theoreticians and researchers.

The Teacher-Educator's Dilemma
Teacher-educator Development

The main theme of Ron's paper is the drawing of a conceptual model of teacher-educator

development based on deep reflections on, and critique of, his own development over a

lengthy time period. Ron describes his learning through reflection on his own activities,

starting with early experiences of peer tutoring leading to his own enhancement of

mathematical understanding, and continuing through a critique of teaching practices leading
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to adaptations to his teaching. The key notion here is that the reflective activity needs to
relate to a learner's own experiential domain, so that the learner tackles and finds solutions
to his own problems.

Ron has taken the questions from his own mentors (Steffe and Simon, for example) and,
through working on those questions relative to his own previous knowledge and experience,
has adapted his approaches to teaching, educating teachers and mentoring teacher educators.
He points to the importance of cultural changes , of the need to reflect on his experiences,
and of the mutual impact between his research and teaching leading to his own enhanced
awarenesses of growth of knowledge in teaching and educating teachers. In the terms of
Jaworski and Watson, 1993, Ron has an extremely well-developed 'innermentor'.
The developmental path that Ron traces for himself resonates strongly with my own
experiences of developing as a mathematics educator: for example, the recognition of key
stages in one's own learning of mathematics; the realisation that, in trying to teachanother
person, the teacher's own mathematical knowledge grows; the value of reflectingon
experiences in order to be more consciously aware, and critical, of aims and outcomes. I
believe that most educators will be able to produce their own fragments of experience to
speak to the stages of development described and conceptualised. It is quite clear that the
reflective process so clearly articulated is a compelling way to characterise effective growth
of knowledge both of mathematics and of the complexities of the learning and teaching of
mathematics for the critically conscious' teacher educator.

Ron outlines a four-focus developmental model based on his own experiences. This model
offers a clearly articulated and convincing conceptual account of the inter-related stages of
teacher-educator development, taking in learning of mathematics, learning of teaching
mathematics, learning of educating teachers of mathematics, and finally learning of
educating mathematics teacher-educators. It is an account which characterises the
development of an aware teacher educator. It also fits with other articulations in the same
terrain (e.g. Jaworski, 1999). However, it is an account in which it is not clear how any
student, teacher or educator comes to engage in this process: It is also not a model of how
educators promote the engagement of others in the process. A critical question, given that
the process is clear and convincing and well evidenced in the experience of many educators,
is how can educators use this conceptualisation to promote the learning of others at any
level within it? Or does it just describe a developmental process?

Educator centrism
In his clarity of articulation, what I found especially outstanding, and poignant, were Ron's
references to occasions in which, despite his own evident growth and development, his
teaching ambitions had not been realised in the learning he observed. For example, Ron
says

Often the struggle to figure out how to explain the matter brought about new insights
in me. Sometimes my peers "got it" [something mathematical] and I experienced a
feeling of accomplishment; other times they did not and I felt dull and disturbed.

In using such terminology I draw on a substantial literature relating to critical reflectivepractice, most seminally represented for .

me in the works of Dewey, Kemmis, and Schon. See for example Jaworski, 1994
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In working with the teachers, I had many insights into teaching my students, but

rarely did the teachers indicate the intended understandings.

When discussing those issues with Lori, I also realized that team teaching enhanced

my understanding of teaching and helped her to experience activities of teaching but

it did not seem to be as useful in terms of Lori's conceptualization of teacher

education.

As Ron acknowledges, in many of his teaching interactions the chief learner is himself.

What the other participant learns is not clear, but, often, it seems not to be what Ron would

ideally like to be learned, or at least there is no evidence that it is. Such situations are

clearly recognisable to me, and I could find many similar ones in my own experience. I

suggest this might be true for other educators. How does one build from such recognition to

a clearer understanding of the problematics involved? Research consisting of a systematic

analysis of fragments (mentioned above) might be one way to achieve this.

In particular, such research lifts reflective activity to a more objective plane. As teacher

educators individually reflect on their development and ask questions about its problematic

aspects, it is often the "I" which impedes progress in perceiving the nature of the problems -

a sort of educator centrism. A caricature of the situation is, 'I have learned this, or achieved

this how can I promote this in others?' The focus on the "I" both illuminates and obscures

the essential nature of the developmental exercise in which the "I" has participated.

'Promoting' the learning of others
Ron makes it very clear that his own learning relates strongly to his cycle of raising his own

questions and setting his own goals as a result of reflecting on outcomes ofhis own research

activity. This recognition leads to questions of how he, or other educators, might promote

such learning in others. I want to argue for some dichotomy between these aspirations. The

poignant nature of the quotations above lies in the frustration of the experienced, aware and

knowledgeable educator in trying to promote "intended understandings" in others. This

might be typified as "the teacher-educator's dilemma", and it relates closely to dilemmas of

the teacher, recognised for example as the teacher's dilemma (Edwards & Mercer, 1987)

and the didactic tension (Mason, 1988b). Perhaps a key phrase is "intended

understandings".
When Ron was faced with Les Steffe's question "When interacting with children, how do

you know that you met a scheme?" his learning was enhanced. He himself knows how this

question impinged on his experience at that time, and the subsequent effect of it. Could Les

Steffe have envisaged this? Did he see, in Ron, his own intended understandings? Was he,

perhaps, disappointed because of Ron's apparent understandings did not coincide with what

he had intended in posing the question? Were there parallels between his perceptions of

Ron's awareness and Ron's subsequent perceptions of Lori's awareness? Like Ron, Lori can

be seen to have a personal learning trajectory, one part of which relates to her team teaching

with Ron. Her learning relative to the team teaching is also relative to other parts of her

experience in communities of practice to which, perhaps, Ron has little access. According

to Ron's model of development, based on critical reflective practice, each person promotes
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their own development relative to the issues they address. What is problematic is for some
other person to try to direct that development.

A constructivist view is that the only person who can 'know' what has been learned
through reflection on experience is one's self . Through attempts at reaching
intersubjectivity, another person can gain insights to this learning, but can never be sure
what has been learned. More importantly, the other person can only try to approximate to
the desired learning, based on intersubjective experience. These issues are subject to the all
the theoretical problems mentioned earlier.

Towards resolving the dichotomy
Ron's team teaching with Lori seems to have been especially powerful in Ron's learning.
Here he was working with Lori, rather than (or as well as?) trying to promote her
development. Of course we know nothing from Lori about this development, only Ron's
perception of it. Lori's development can only be her development. It can never be Ron's.
Also Ron cannot be.expected to have insights into the cultural origins of Lori's experiential
development. However, as two people conduct classes together, and work together on ideas
and issues, their intersubjective understanding would grow. This would allow critical
questions to be recognised and addressed jointly, albeit from different experiences and
developmental levels. A form of co-learning, or co-mentoring would result, which would
support the inner mentor of each of them. Thus reflexivity is interpreted as acting between
the social plane and the individual plane for the individuals in a co-learning partnership.
The idea of such a partnership is based on a typology of researcher-practitioner co-operation
offered by Jon Wagner who writes:

In a co-learning agreement, researchers and practitioners are both participants in
processes of education and systems of schooling. Both are engaged in action and
reflection. By working together, each might learn something about the world of the
other. Of equal importance, however, each may learn something more about his or
her own world and its connections to institutions and schooling. (Wagner, 1997)

I have proposed that Wagner's concept of co-learning agreements might be extended to
work between teachers and educators in an enterprise of mutual development (Jaworski,
1999b). For any participant in the developmental enterprise this involves growth of the
individual in practice through reflexivity between co-mentoring and the inner mentor. A
co-learning agreement requires both participants to reflect on activities, jointly and
separately, and to critique outcomes of activity. The aim of a co-learning agreement is to
create learning situations in which all participants can be reflective partners, and through
which ideas can be offered and issues and tensions addressed overtly. Such a partnership
would remove the necessity for one person to 'promote' learning in others. Partners take
responsibility for their own learning and development, but levels of mutual responsibility
within the partnership offer and support development of ideas. There is no intention that
partners should be equal, but more responsibility rests with the more experienced partners to
ensure minimisation of power differentials and ease collaborative communication and
critical reflection.

1 - 191 223



Of course there are many issues to address, not least the epistemological groundings of such

a theoretical perspective, and the nature of relationships in an evolvingpraxis. These are

addressed to some extent in Jaworski 1999a and b, but further research and more rigorous

attention to theory is still required.

In Conclusion
In my response I have valued greatly Ron's articulate account of his own development, and

his consequent four-focus model to describe development in the teaching and education

process more generally. I have recognised what might be seen as a dichotomy in the

aspirations of educators in valuing development through self-reflective analysis, while

seeking simultaneously to promote particular development in others. In making a critique I

have touched on the methodology ofusing fragments as an analytical tool, and the

theoretical commensurability of constructivism with versions of sociocultural theory. It

must be recognised the enormous issues in epistemology, cognition and pedagogy which are

raised when we start to offer conceptualisations for teacher-educator development. Ron's

four-focus model offers an important starting point in addressing these issues.
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Visualization as a Vehicle for Meaningful Problem Solving in
Algebra

Michal Yerushalmy, Beba Shternberg, Shoshana Gilead

University of Haifa and Centre for Educational Technology Tel-Aviv.

Our experience with a new algebra curriculum has challenged us to
identify both strengths and complexities of the variationfunction
approach we take. Among a few noticeable effects of the approach, we
learned that functions form an important basis for solving algebra word
problems. The approach described here maintains that graphing is not
necessarily an outcome of measurement and plotting points. This
approach is supported by the use of a software environment. Already in
the very first stages of the course, a natural language text turns into a
script of events and processes, and then into qualitative graphs sketched
using iconic notations; then it turns into a subject for qualitative
analysis of the rate of change. This sequence forms a visual basis for
modeling. In this article we discuss the relevancy of this approach to
problem solving in algebra. We also do an exhaustive analysis of the
major types of algebra word problems in order to point out the
structural differences between various algebra rate problems and the
possible interactions between the visual mental models and the symbolic
equations involved in the solution process.

The use of various representations of functions offers new ways for
supporting strategies of solving algebra problems (Chazan 1993, Heid
1995, Yerushalmy 1997). Most attempts offer the use of multiple
representations as a means of bridging and deepening connections
between areas assumed to be separated (e.g., symbolic manipulations in
algebra and knowledge of functions). Other proposals call for
democratizing the access to calculus using MBL and simulations that can
help describe complex phenomena (Kaput 1994)without relying on
formal algebraic symbolization. As a result of studying our students who
were using the "Visual Mathematics" curricular materials and software
that offer syntax and semantics for qualitative visual description of
processes', we became interested in the link between the two; We
wondered how we could use modeling attempts based on the concept of
variation and on visual descriptions and analysis ofrates, that naturally
lead towards symbolization in calculus (e.g. simple differential equations

"Visual Mathematics" is an algebra curriculum focused on the concept of function
and organized around major ideas and representations rather than technical
manipulations (Centre for Educational Technology CET 1995).

1 - 197 227



such as f'(x)=Af(x)), in order to introduce and establish an understanding

of algebra.

To demonstrate a step within this exploration, we will look first at
strategies and representations used by calculus students and 7th graders
solving the same non standard modeling problem. Both groups were
equipped with tools for solving the given problem, which requires a
comparison of rates of two processes: the calculus students were
familiar with derivatives and algebra, and the 7th graders have learned
how to describe and analyze models using a basic set of iconic symbols.

The analysis of these solution attempts offers some ideas about how to

treat this gap between graphing and meaningful algebraic symbolization.
From the non traditional modeling we will move on to look at the
possible effects of the visual foundation on studying traditional algebra
word problems. We will start by looking at attempts of solving a non
trivial algebra problem prior to any teaching intervention; continueby
identifying problems that were harder for students to solve, and finally

suggest exhaustive classification of all linear-models algebra problems by
the deep structure of their graphical models.

Part I: Coping with the Ovens problem

The Ovens problem requires skills that are not usually taught in algebra;
it deals qualitatively with a phenomenon related to the lows of heat. It
does not provide numerical data. Therefore, students who are not
familiar with the physics involved nor provided with a simulation tool,

can hardly benefit from the use of graphing technology while solving this
problem. Thus, this was an appropriate activity for studying modeling

and solving skills of both symbolically mature and immature students.

The Ovens problem: A cook has to cook a large lamb as
quickly as possible. The meat is at room temperature. The
cook has a conventional oven and a microwave oven. In a
cooking test it was found that during the cooking time, the
temperature of the lamb in the conventional oven is always
higher than the temperature in the microwave and that the
cooking time required in both ovens is exactly 2 hours. In
the microwave oven, the heat of the lamb increases at a
constant rate, and in the conventional oven kept in constant
temperature, the heat of the lamb increases at a changing
rate. Could the cook use the two ovens to reduce the

two-hours cooking time ? (adapted from Taylor, 1992, p.
20)

2 2 3
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A symbolical approach

In order to learn about the contribution of formal symbolic knowledge to
the construction of models using rate of change, we interviewed a group
of 11th or 12th graders. The students took algebra, pre calculus and
calculus courses. However, none of their courses was centered on
modeling or realistic situations. We will demonstrate typical attempts
taken throughout the interviews.

Ella started her solution by looking for specific information about the
processes:
Ella: I think that some givens are missing...
Interviewer: Which one do you miss?
Ella: I think I need the temperatures...
Interviewer: So you'd like to have the measurements from the
experiment?
Ella: Yes!
Interviewer: Why don't you make them up yourself?...

It was not easy for Ella to give examples of numbers which could fit the
processes. She used constant differences to represent the constant rate
condition for the microwave sequence. But she could not form any model
of the collection of numbers she fabricated to represent the conventional
oven. Nothing looked as mathematics to her in this sequence, and as a
result she gave up trying to solve the problem. Ella was one of many
students (12 out of 34 interviewees) who tried but failed to express their
intuitions symbolically or in any other general way.

Yoni, on the other hand, immediately started by graphing and assigning
symbolic descriptions:
Let's say that m(x) is the microwave and f(x) is the conventional oven.
He sketched the graphs and inferred that the cook should start by using
the conventional oven:

Conventional

TA `x) Microwave

rh(o_,0,4-
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.... it should stay there to a certain point, something like that (he pointed
on the graph) and then... Intuitively, I would say that it should be at a
point where the slope here (conventional oven) will be equal to the slope
here (microwave), since from this point onward, the first slope begins to
be smaller than the second one.... m(t) = at, f(t).... it doesn't matter for
a moment what it is. We have to find the derivatives of m(t) and f(t).

Still, Yoni did not consider his answer to form a solution and continued
his efforts:

I have to find the value of the t...

Here Yoni began to look for an expression that would fit the description
of the curve. He offered the square root function but commented with
great disappointment that there is no way to know:

I have a problem with curves which aren't parabolas and here I am not
sure that it is a parabola...

So how do high achiever calculus students deal with a modeling problem
that does not provide information to form an algebraic equation? Yoni
belongs to the group (20 out of 34 students) that made an attempt to use
known symbolic conventions of functions to formulate a model. Yoni's
intention to provide a parametric description rather than a specific
expression was exceptional. Only 6 interviewees out of the 34 reached a
solution for the Ovens problem. Yoni, who was one of them, was
unhappy with his answer. His disappointment stemmed from his inability
to use rate as a tool for explaining the behavior of a curve (for Yoni, any
non linear curve is a parabola) and was probably linked to the traditional
sequence of an algebra course where the visual situation models are
being established as an outcome of an algebraic equation rather than
being a basic tool for description and analysis.

A qualitative approach

While technology usually serves for plotting data or performing
computations symbolically (Heid 1995), we were interested in using
technology to support the two qualitative stages: the recognition of
typical graphical models (as demonstrated in curricular materials of the
Netherlands and the UK [Swan 1982]), and the visual non-quantitative
analysis methods. To do this, we developed a software environment,
"The Algebra Sketchbook" ( Yerusihalmy , Shternberg 1992/4). We were
interested in understanding how this environment supports evolution of
visual and linguistic modeling capabilities and how these capabilities
support the solution of problems of the Ovens problem type that the
students were unfamiliar with. The interview of 16 7th grade pairs took
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place right after the completion of this qualitative modeling unit. The
students were intuitively using symbols as generalized numbers but did
not yet deal formally with manipulating or solving any algebraic
relations. The following is an attempt (made by Erez and Bank) to solve
the problem by offering a graphical method to evaluate the rates of
change of each of the processes.

04(.,4,
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The graph above that these students sketched represents the general
approach of students in this sample: they made a sketch, analyzed the
two rates, and compared the stairs size of the two processes as a way of
deciding if and how to use the two ovens. The modeling capability
demonstrated by 7th grade students was not only convincing; we found,
again and again, that it was a strong mathematical foundation which they
were able to build their further knowledge.

Part II: Visualizing traditional algebra word problems
For decades, algebra students encountered word problem of the
following kind :

Problem 1: A biker left Haifa for Tel-Aviv riding at an average
speed of 10 km/h. His friend left Haifa 4 hours later, took the
same road to Tel-Aviv, and rode at an average speed, of 20
km/h. How long after the first biker left Haifa did they meet?

The expectation has always been that students would assign symbols to
variables such as distance or speed, arrange them in an algebraic relation,
and solve the equation to discover the answer to the problem.
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Organizing table for Problem 1 Traveling path in Problem 1

Haifa

20time speed distance

Bilker

friend
t
t-4

10

20
10t
20 (t-4)

10

10t = 20(t 4)
Tel aviv

This translation from situation to symbols proved to be difficult for many
students. Previous studies suggest that the re-representation of a situation
by a symbolic expression requires the evolution of what is called "the
situational model" and the use of graphs, tables, and diagrams of various
sorts. With the function approach to algebra, this translation process
takes a different direction. The following is a solution of the problem
offered by Tal, an 8th grader of the "Visual Mathematics" curriculum
prior to any formal instruction of word problems:

x . g(x)

lox7.7'11
t .

4.5 1520"41'5 It is increasing and straight

-..--a.g±!!--1.4 It is straight increasing function
..__.a.5_44_>. which starts at (x-4)

3 .

.3. .

_ .

.. No

c..';

6 4,
I -1 !

Here it becomes zero"
5?()

Tal was mostly interested in the connections between the formal
functions expressions and the situation structure. At first, Tal described
the functions properties. Then, he found the value of the intersection
point. However, this numerical information from the graph and the table
did not coincide with the information retrieved from the functions
expression: "At x = 2 the function g(x) assumes the value -40, but a
negative distance does not exist, so there the function is zero but I still
use the expressiong(x) = 20x 80 since I don't know how to find a better
procedure". The negative values, which resulted from substitution in the

011=1

4
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function expression, were inconsistent with his perception of thesituation. But at that time, Tal did not know how to write symbolicdescriptions of functions in multi intervals, and therefor gave up. A wayto settle this conflict, one that we did not take at that time, was to followTal's thought about the meaning of the "negative" distance. One coulddo that by considering another situation having the same symbolicdescription and the same solution . For example, if the two bikers wouldhave left at the same time from two locations 80 kms apart, then Tal'sconflict would be set. Thus, a problem that we assumed to be a routineexercise turned to be a rich modeling activity for students who seekmeaning in connecting the situation and its representations and areequipped to do so.

Do graphs always simplify problem solving?
Here is an example of another motion problem taken from the same setof practice problems as problem 1:

Problem 2: A biker traveled from townl to at an average speed of10 km/h. Arriving at town2, she immediately turned back andtraveled from town2 to townl at an average speed of 20 km/h. Thereturn trip was 4 hour shorter than the outward trip. How long tookthe trip in each direction?
In the traditional approach this problem is almost identical to problem 1.
Organizing table for Problem 2

Traveling_path in Problem 2
time speed distance

out
back

t
r-4

10
20

10t

20 (t-4)

20

10
10t = 20(t 4) Townl Town2

In the function approach, there are noticeable differences between thetwo problems.

Problem2
f(t) =lOt

g(t) = 20(t m)

f (t):= et)

10t----20(t m)

Distance fro townl

B(m,0) time
ti

The distance in the second problem cannot tie graphed as a function oftime but must be sketched. Distance can be 'evaluated only for the first
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segment of the round trip, and the return point cannot be numerically
determined by a comparison of the two functions. The function rule g is
dependent on a parameter m to specify the x-coordinate of point B, and it
represents a family of parallel lines with a slope of -20. The equation
10t = 20(t m) represents a comparison between the function f and a

family of functions g,. Only one member of the family, for which

m = ti + (t, 4), satisfies all the constraints defined by the given story

problem. The solution requires substitutions that transform the original
equation, that describes processes as a function of t, into a function of m.

This function does not describe the situation structure as initially graphed

by the distance-time graph.

Thus, two similar problems pose different challenges regarding the

construction of symbolic semantics and the possible information that can
be evaluated from the visual model. What might be the source of the

different levels of complexity encountered while formulating functional
expressions? Since the problems have the same givens and constraints
(see table below), one may suggest the difference can probably be

explained by their different situational context.

The givens in problem 1

v1= 10 km/hour, v2= 20 km/hour

d1= d2 (same distance until they met)

t2= 4 hours

The givens in problem 2

vi= 10 km/hour, v2= 20 km/hour

d1= d2 (same distance in both directions)

ti- t2= 4 hours

To contradict this assumption we will re-examine problem 2, but this
time we will compare it to problem 3. Problem 3 describes a similar
situational context as problem 2 but defines a different time constraint.

Problem 3: A biker traveled from townl to town2 at an average
speed of 10 km/hour. Arriving at town2, she immediately turned
back and traveled from town2 to townl at an average speed of 20
km/h. The whole trip took 7 hours. How long was the trip in each
direction?

The givens in problem 2

v1= 10 km/hour, v2= 20 km/hour

d1= d2(same distance in both directions)

t2= 4 hours

The givens in problem 3

v1= 10 km/hour, v2= 20 km/hour

di= d2 (same distance in both directions)

t2= 7 hours

Problem 3 in contrast to problem 2 can be graphed (using a point and a

slope for each of the two functions) and the expressions, the equation
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10t=20(7-t) (or its equivalent equation 10t=140-20t) and the solution
values can be directly related to the visual situatuational model.

Use of visual models to classify algebra word problems
The different challenge each of problems 1 ,2 and 3 pose, suggests that
neither the situational context (which problems 2 and 3 share) nor the set
of givens and constraints (which problems 1 and 2 share) can each of
them alone explain the differences between problems when taking the
function solution approach. We conjecture that the interaction between
the two is the crucial component and therefore can serve to analyze the
deep structure of most algebra word problems.. To systematically test our
conjecture, we have chosen terminology drawn from cognitive research
on arithmetic and algebraic word problems. Problem structure can be
examined at two levels of abstraction: the quantitative structure
&scribes arithmetic operations and relations among symbolic or
numerical entities, and the situational structure describes relations
among physical properties of the entities within a story problem. Both the
quantitative and the situational structure of a problem can be described in
different forms and representations. (Nesher and Hershkovitz 1994,
Nathan, Kintch and Young 1992, Hall 1989). In this work, we describe
the quantitative structure of constant-rate problems by the number and
type of given quantities, the number and type of unknowns, and the
constraints formed by arithmetic operations between pairs of unknowns
(e.g. to-t2=5 or trt2=5 or ti/t2=5). We describe the situational structure of
constant-rate problems through sketches of linear functions that describe
the change of the output (e.g., signed distance) in time where the rate is
described by the slope of the line.

At this stage of the study, our main goal was to examine different
structures of "algebra rate problems" as an outcome of all the possible
interactions between the situational structure and the quantitative
structure. The problems in this study consist of two processes that for
some input share the same output, and the question in the problem asks
about the value of this shared input, its shared output or both.

Defining a space of the situational structures: The basic elements of the
functional language of rate problems in our work are two intersecting
linear functions from R to R, the intersection point, and two other points
(one on each line). There are three different possible combinations of the
two intersecting lines (see table below): 1. slopes of negative signs (left
column), 2. slopes of positive signs (middle column), or 3. slopes of
positive and negative signs (right column). For any of the three
combinations there are 4 different ways to create the set of the two
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points on each line. The graphic representation provides a visual global
ael-sertillejan,the_snacenf lge...h.Lajmoirat:constant rate problems.
o negative slopes Two positive:slopes Two opposite slopes

i`StM5S179

Shared domain Shared range

Adjacent domain - Adjacent

range

Shared domain Shared range

Adjacent domain- Adjacent range

Shared domain Shared range Shared domain- Adjacent range

Adjacent domain- Adjacent range Adjacent domain- Shared range

Shared domain Shared range Adjacent domain- Shared range

Adjacent domain- Adjacent range Shared domain- Adjacent range

Looking at the twelve situational structures in the table, four different
types of relations between and within domain and range can be observed:
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1. shared domain, shared range, 2. adjacent domain, adjacent range (both
obtained by two lines of the same sign slope), 3. shared domain, adjacent
range and 4. adjacent domain, shared range (both obtained by two lines
of opposite sign slope). This organization allows the mapping of most
algebra word problems onto one of the four types of situational
structures.

Shared domain Shared range

Adjacent domain- Adjacent
range

Definition of the space of the quantitative structures: Each of the
situation problems classified above can also be determined by the
following quantitative elements and relations:

1. Each problem deals with two triads of quantities, d, v, t , connected by
a multiplicative constraint d = v t .Thus, there are exactly six
elements involved in each problem.2

2. Only magnitudes of quantities are dealt with.

The problems which are normally called "algebra" problems describe
additional two constraints, each of them linking two quantities of the same
type by a binary operation (e.g., t, + t2 = c, v, + v2 = c, , "One left 5 hours
before the other", "His speed is 4 times larger", " They started at the same
station and reached the same station"). There are always two known
quantities and the unknowns are of a third quantity type (e.g. for given
constraints about t and v, d is unknown). All possible combinations of two
givens and two constraints produce a space of 24 different quantitative
structures. The 4 situaitonal structure types and the 24 quantitative types
produce 96 types of algebra problems. Our next step was to investigate the
96 interactions in order.to reduce the number of different classes. To do so,

Shared domain- Adjacent range

Adjacent domain- Shared range

2 The quantities referred to here, time, distance and speed, may be replaced by other
quantities for non temporal situations or for work problems.
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we considered again the differences between problems 2 and 3. The
structure of the given situation and quantities in problem 2 allow to draw a
unique graph. The structure of problem 3 allows to graph a family of
possible graphs; the family is created by the parameter m which provides
"freedom" to shift function g horizontally. Here is a demonstration of one
of the four situation structures:

Information
about slopes
and points

Constraints and
"freedom" of the
situation graph

Information
about slopes
and points

Constraints and
"freedom" of the
situation gaph

Class 1
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...i(x)

B..n

Class 6

V1(?)
v2(?)

B(,?)
A(,?)

AA

f(x

gi(x)

B.

x

x

Class 3

vl(V)
v2()

B(? ,?)
A(?,/)

gi(

R
Bn

Class?

v
v2(?)

B(?,)
A(V,V)

f(X)

Bi

.

. x

x

Class 4

vi( )
v2(V)
B(? ,?)
A(?,?)

: x)

Bn

Class 8

vl(?)
v2(?)

B(?,)
A(?/)

g i(
.-

Bi

x x



Analysis of all 96 structures according to "types and degrees of freedom"
reduced the number of different classes to 32; eight types of "freedom"
are repeated in each of the 4 situaitonal structures.

Part III: Directions for further research

Using images of rate to construct symbolic models

A covariational approach in analyzing a problem situation has been
already suggested as more powerful than a correspondence approach
(Confrey & Smith, 1994, Nemirovsky 1996). Even young children use
rate of change as a way to explore functional relations (Nemirovsky and
Rubin, 1991). A central question in our studies is whether the
consideration of rate of change is a vehicle towards formulating models
in algebra and calculus and whether the description of phenomena by
their rate of change (rather than by dealing with values of specific events)
can support symbolic understanding. We found that consideration of rate
of change as a vehicle towards formulating and explaining symbolic
models is absent in traditional algebra and calculus strategies. We
conjecture that this absence could be a major obstacle of the 'modeling
based' algebra curriculum designed to motivate the understanding of the
mutual relations between phenomena and it symbolic models. It is even
less clear how the qualitative visual covariation description of
phenomena (and not of numerical values of discrete events) can support
symbolic understanding or even create symbolic awareness.

Mathematics offers methods allowing the construction of symbolic
expressions from given data; here is an example: Imagine a "stairs"
graph that models a motion of a car that during an hour constantly
accelerates from 50 to 60 miles/hour (adapted from Thompson 1994).
The visual image of the rate can be translated and manipulated by the
following procedure:

a(t)= 10 mi/hr2 v(t) = 50 + 10*t mi/hr
d(t)= 50+(50+10)+(50+10+10)+...+(50+10*0=

= 50*t + (10 + 20+ 30 +... + 10*(t 1)) = 50*t +
10*(t

2

-1)*t
mi

In order to reach a symbolic model that describes the distance traveled at
any instant along this hour, one should employ calculus methods:

a(t) = 10 mi/hr2 v(t)=50+110du=50+10t mi/hr
0

d(t)=Iv(u)du =1(50 +10u)du =50t + iot2 mi
0 2
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Although the first procedure yields information only about instants and

suffers from inaccuracy, the sum expression is to a certain extent similar

to the expression resulting from the continuous model computation.

The visual based covariation approach is successful in supporting
complex non quantitative modeling. It also supports moving from graphs

to symbols in the case of linear expressions. But for other algebra
activities that involve quadratic (for example the acceleration -distance
model described above) or exponential models it is yet unclear how to

support the transition from graphs to the construction of symbolic
expressions. Although the mathematics of sequences can be considered

as a possible pedagogical bridge, it might be a too difficult task for
algebra beginners; it cannot be easily generalized along various models

and even more important, it must be accompanied by an intervention that

would justify the swap between discrete and continuous views of the

process. Acknowledging the benefits and the difficulties, we are seeking

ways to study further the visual foundation for supporting symbolization.

The impact of the classification

Data obtained from problem solving studies indicate that novices tend to
classify problems according to the surface structure of the problem and

experts according to the deep structure. (Schoenfeld 1985). The analysis

begun here identifies the deep structures of algebra rate problems.
Clearly, other dimensions of the problem structure should be further

explored by means of an exhaustive analysis of algebra word problem.
Our underlying assumption is that explicit representation of the deep

structure of a problem facilitates student's ability to recognize the

properties of the problem and choose appropriate strategies. We propose

that once problem structures are accurately defined, a tool of significant
predictive power would be formed that could be examined empirically.

The pedagogical implications of such an analysis will help us become

more sensitive to the sequence of instruction and the types of strategies

that should be adopted, and will also allow better understanding of the

difficulties encountered by algebra students.
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Visualization and Modeling in Problem Solving: From Algebra to
Geometry and Back

A Response to Michal Yerushalmy, Beba Shternberg, and Shoshana Gilead's paper:

Visualization as a Vehicle for Meaningful Problem Solving in Algebra

Bernard Parzysz
Equipe DEUREM, Universite Paris-7

When I was asked to react on M. Yerushalmy, B. Shternberg and S. Gilead's
paper Visualization as a vehicle for meaningful problem solving in algebra, I was
rather puzzled since I am not a specialist in algebra problem solving, my area being
mostly geometry. But, as I came to reading it, I was brought to link some ideas
developed in the paper with some I had met in my own field of research. I wrote them
down as they appeared, as well as some questions, and then tried to organize the
whole of them. So, you will not be surprised to see some references to geometrical

situations.

1- The Modeling Process
The first question, which came to me, was: ighat is a realistic situation? I know

that a teaching of mathematics based on 'realistic situations' has been developed
recently in some countries [Hershkowitz et al., 1996]. I believe it a sound idea,
training students to start from a problem they might be confronted with in their
everyday life, and undertaking to solve it with the help of a mathematical model that
they elaborate themselves, or with one that they already know and think well fitted to
the problem. This process -well known- can be described by the following diagram:

REALITY
real situation answer

control

modelling interpretation

mathematical
model THEORY

> solution

It appears clearly in 'double' statistics (regression) problems. This came to my
mind from Yoni's behaviour in the 'ovens problem': he started by graphing; then,
basing his choice on his graph, he got to a mathematical model (functions), looked 'for

an expression that would fit the description of the curve' and finally chose a particular
type (square root). Even if he could not go any further, he had undertaken a genuine
mathematical process. On the contrary, Ella and other students were not able to
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proceed because they clung to the wording of the problem (written in terms of
changing rate) and were unable to associate it with a mathematical model.

2- Real or Realistic?
Let us go back to the above diagram. The starting point is a 'real' situation, that

is to say a situation as it presents itself (or may present itself) to somebody in 'real' life.
But the authors are in fact talking of 'realistic' situations, and we can at first take this
term as meaning 'looking real'. It is the case with the 'ovens problem' as well as with
the 'bikers problem'. For instance, in the microwave oven 'the heat of the lamb
increases at a constant rate'. In fact, there is little chance of this actually happening:
there would probably be some variations of the rate; due to various factors. But 7° it is
impossible to determine these variations accurately and 2° it can be assumed grosso
modo that they will be of small range. Hence, at the cost of a small 'twist' of the real
facts, we shall suppose that 'the heat of the lamb increases at a constant rate'. This
situation is 'realistic', although not real; one can say that it is a 'pseudo concrete'
situation. It does not belong to a mathematical model, but it is does not belong to
reality either; it belongs in fact to a kind of 'idealized reality', in Plato's sense:

REALITY

real situation

THEORY
pseudo-concrete

> model mathematical

('realistic' situation) model

idealization mathematization

This 'idealized reality' is in fact a model, in the following sense: 'A model is an
abstract, simplified and idealized interpretation of an object of the real world, or of a
system of relations, or of an evolutive process, stemming from a description of
reality' [Henry 1997 p. 78, tr. B.P.]; hence, it belongs to theory. The difference
between a 'pseudo-concrete' model and a mathematical model being that the latter is
clearly included in a mathematical theory.

Many 'word problems' are of the 'pseudo-concrete' type, a type which can also
be found in geometry and probability. Here are two examples:

1- A box contains 5 red balls and 3 white ones, indiscernible by touch.
Three balls are drawn from this box simultaneously, at random.
What is the probability for getting at least two red balls?

2- A wooden stick is broken into three pieces.
Is it possible to make a triangle from these pieces?
In the first problem, the situation is already idealized: the balls are 'indiscernible

by touch' and 'drawn at random; in fact, the function of such features is to indicate
which mathematical model is to be used to solve the problem. In the second problem,
the situation is described as a 'real' one ('wooden stick'), and the student has to imagine
the pseudo-concrete model by him/herself, that is a 'straight' stick with 'no thickness'.

Now, if we look from this point of view at the two problems dealt with in the
paper, we can say that the 'ovens problem' is a pseudo-concrete model of a real
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situation, both from the qualitative data (changing rates) and the numerical datum
(which, anyway, is of no use apart from giving the problem a 'realistic' touch). What's

more, the data have already been selected; for instance, nothing is said of what
'cooking a lamb' consists of: is it reaching a given temperature? or being kept at a
given temperature during a given time? As this piece of information is not useful, it is

not mentioned. Nevertheless the authors choose not to give sufficient information to
solve the problem completely; the wording says that in the conventional oven 'the heat
of the lamb increases at a changing rate', but nothing is said about how it changes. So
the mathematical model is to be built by the student him/herself. This explains, to

some extent, the difficulty which the students were confronted with: they usually have
nothing to choose in a mathematics problem (cf Yoni's disappointment); and in fact,
when it is the case, they have the impression that some data are missing, and
consequently ask their teacher for them (cf Ella).

In the 'bikers problem' the given situation is somewhat idealized (by the choice
of the numerical data), but, as it is worded, it cannot be solved, since knowing the
average speed of a biker is not enough to determine his position at any time. As a
result, in order to solve the problem you have to make an extra hypothesis (model
hypothesis), the simpler one supposing that the speed of the bikers is constant during
the whole ride. Whatever the hypothesis you choose, it is only at that stage that you

get to a pseudo-concrete model.

3- Visualization and Modeling
Visualization can play an essential role in the modeling process, and especially

by helping to choose an appropriate model. This is the case for Yoni, who refers the
curve he has drawn to a parabola, and hence to the square root function. In that
respect, it seems important to provide students with what can be called a 'herbarium' of

functions, i.e. a collection of visual images of curves, each one of these being
associated with a set of functions and a set of properties such as symmetry, tangents,
asymptotes (Fig. 1).

y
y=kxn k eR n eN

k > 0 n even

x = 0 tangent at point 0

y = 0 axis of symmetry

y = 0 asymptotic direction

Fig. 1
In such a 'herbarium' the connection curve xfunctions x properties has to be

precise in order to be useful; the mental image of a curve, though essential (it acts as a
starting point enabling one to choose a possible model) is not sufficient by itself, and
neither is the symbolic relation. Fischbein's theory of figural concept seems quite

24 1 - 214



suitable to take this connection into account [Fischbein 1993]. The process is quite
similar in geometry problem solving; here, the diagram constructed from the wording
may help to find a 'key figure', i.e. a subdiagram related to a known and referenced
situation, as in the following problem (Fig. 2).

ABCD is a parallelogram.

E is the middle of IAN.

F is the middle of

(DE) intersects (AC) at M

(BF) intersects (AC) at N.

Demonstrate that AM = MN = NC.

Q

Fig. 3

Once these two subdiagrams are identified, the solution becomes simple, on the
condition that one can remember the associated property.

4- How to Solve It?
Tal's solution of the 'bikers problem', as it is described in the paper, appears to

be most interesting, for two main reasons. The first one is that it illustrates, in a
brilliant way, the control process which intervenes in modeling: having found that the
distance, as a function of time, can be expressed by g(x) = 20x - 80, Tal undertakes to
check if this makes sense, by testing some values of x. This is worth to be noted, for
such a behaviour is not common among students, for whom 'mathematics is not
reality', and hence it does not matter whether the result is plausible or not [Girard &
Parzysz 1998]. However, such a behaviour as Tal's should be developed among
students, since it is an essential component of the modeling process: indeed, what use
can a model be if it does not fit with the real situation it is supposed to represent ? By
the way, we can here get an insight into Tal's conception of a function (a most frequent
one), which is mainly that of a functional relation between two variables; and a
function defined by g(x) = 0 if 0 < x S 4 and g(x) = 20x - 80 if 4 < x < 8 is perceived
as a juxtaposition of two functions, not as a single function. This narrow conception
prevents Tal from overcoming his problem.

The second interest of Tal's behaviour is that he is able to establish relations
between several 'frames' [Douady, 1986] and 'representation registers' [Duval, 1995];
in this case: numbers, graphs and symbols (Fig. 4).

Fig. 2

The key of this classical problem lies in the spotting of
the subdiagram shown on Fig. 3, which appears twice on
Fig. 2. Since (U) is parallel to (PQ), one can assert that J
is the middle of [RQ].
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x f(x) g(x) 80

0 0 0
60

0,5 5 0 f(x) = 10x

40
4 40 0 g(x) = 20x - 80

4,5 45 10 1 20

8 80 80 0 4 5 6 7 8

Fig. 4

This ability to connect several areas of mathematics and/or several ways of
expressing mathematical situations is most important in problem solving, because it
enables the student moving to an area in which he/she will be more at ease, being thus
in better conditions for solving the problem. Here, Tat was able to solve the problem
with numbers (left column) and with graphs (right column), and he would have solved
it with algebra (center column), had he not been upset by the 'negative distance'.

5- Towards Dynamic Problem Solving
The second 'bikers problem', although looking similar to the other, confronts the

students with quite a different approach, since one has to introduce a parameter (for
instance the time when the biker is back to town 1, or the distance between the two
towns). A consequence is that it becomes impossible to draw an accurate graph (one

can only draw a sketch). The presence of the parameter defines, not a single function,
but a whole family, and 'only one member of the family (...) satisfies all the
constraints'. This problem reminded me another (classical) one (Fig. 5, A):
A triangle ABC is given. Construct a square MNPQ so asM and N belong to [BC], P
belongs to [AC] and Q belongs to [AB].

A
Fig. 5

In textbooks this problem is usually solved with the help of one of two diagrams
(fig 5, B and C). But I have experimented that this is not how students proceed. In
fact, they begin with a 'trial and error' process, drawing several squares successively
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(Fig. 6, A). This process leads some of them to an accurate solution, by using
homothecy, (Fig. 6, B).

Abb.
A B

Fig. 6

In fact, the various squares drawn in the first stage can be considered as
'snapshots' of a same square MNPQ growing from point 0, the points M and N
remaining on (CB) and Q remaining on (BA). This same 'dynamic' solution, in which
visualization plays a essential role by suggesting the suitable geometrical
transformation, may be used in the second 'bikers problem': supposing that the distance
between the two towns is, say, 100 km, you can draw a first graph (Fig. 7, A). By so
doing, you can see that the return trip is 5 hours shorter than the outward trip (instead
of the 4 hours requested). And then you can finally adjust the second line by using a
homothecy, the center of which is 0 and the ratio 4/5 (Fig. 7, B).

A

y
100

80

ii11111116.
(t)

10 12 15
4

Fig. 7

This type of solution can easily be put into play by using graphical software. In
the above problem, for instance, the line representing the distance covered during the
outward journey (y = 10x) can be graphed. Assuming now that the distance between
the two towns is 100 km, the point A(10; 100) will also belong to the line representing
the distance covered during the return journey. And, if the software makes it possible
to move this line parallel to itself (by changing the coordinates of A with the constraint
that it remains on the first line), a graphical solution of the problem can be found.
Here, students do not have mere 'snapshots' of the situation, but they can see it
moving, they have a continuous view of it. This gives sense to resorting to a
homothecy and can also lead to the idea of replacing point A by any point of the first
line: B(t; 10t), the question being then to determine the value of t for which the
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difference between the lengths of time of the outward journey and the return journey is
4 hours.

The efficiency of such a move from a discrete to a continuous point of view can
also be observed in phenomena such as radiocarbon dating. Knowing the value of the
'half-life' of C14, and provided some model hypotheses are defined, one can study it
by using a geometrical sequence, obtaining an interval of time, or one can solve a
differential equation, which gives a -theoretical- date [Parzysz 1999].

Similarly, in the 'ovens problem' Erez and Ilanit -after having drawn a
curve- use a discrete graphical method (Fig. 8): They compare thecontinuous

changing
rates of the two ovens in each time interval
('stair') and choose, for this interval, the
oven with the highest rate. By so doing, they
can conclude that, in the beginning, the
conventional oven is better, but towards the
end it is the contrary. But this process can
only give them an interval during which the
move from the conventional oven to the
microwave one has to be operated; one
cannot get a precise time.

Fig. 8
On the contrary, Yoni's process, which is a continuous one based on the slopes

of the curves, enables him -at least theoretically- to find this time: on the graph, it is
the point where the slopes are equal. This 'superiority' of the second process over the
first one, as regards the 'cost' and accuracy of the answer they can give, may be a
motivation for the students to shift towards the concept of derivative.

6- Classifying the rate problems
The idea of classifying the rate problems (in which two lines intersect on the

associated graph) according to 1° the signs of the slopes and 2° the unknown
quantities seems interesting. The authors distinguish between the situations which have
no degree of freedom, allowing to draw a unique graph (I should call them static
situations) and those which have one degree of freedom or more, allowing to draw a
family of possible graphs (I should call them dynamic situations). As we have just
seen, this leads to different processes, from the point of view of problem solving.

Such a mapping of the 'deep structure' of the problems seems promising,
because it can help teachers find problems in a more rational way, thus leading their
students to explore the different types. It can also help researchers study the relation
between the structure of a problem MO the difficulties encountered by students, in

order to have 'a tool of significant predictive power', as the authors say. Some
questions could perhaps be answered, as for instance:
How can the surface structure of a rate problem obliterate the deep one?
Are there realistic situations, which prove to make the solving easier?
Can rate problems help students :move from graphs to symbolic understanding?
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How can students be helped to grasp the deep structure of a rate problem?
Can graphical software help students become aware of the similarity of structure
between such algebra problems and some geometry problems?
Can the move from 'static' to 'dynamic' situations help students with the use of
parameters for solving problems?
Can dynamic situations help students deal with qualitative problems? etc.

This list, far from being exhaustive, shows that there is still some work for the
authors and other educational researchers to be done. I wish them good luck.
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THE ROLE OF VISUALISATION IN YOUNG STUDENTS' LEARNING

Kay Owens

University of Western Sydney, Macarthur

The study draws together a number of research studies carried out by others
and the author into a framework of early spatial mathematics learning The
emphasis is not only on conceptual knowledge but also on the role that
visualisation plays in learning spatial mathematics. Several tasks were
developed to assess students in primary school and the types of responses
collated in terms of the framework.

Related Research Studies with Adults

There are several aspects of visualisation that I have explored with adults although

my focus is on children's visualisation. Adult participants can articulate their thinking

as we explore new ideas, and comparisons between adults and children have

highlighted certain aspects of thinking. In one study (Owens, 1990), a comparison of

the order in which adults and children made the different pentomino shapes (shapes

made from five squares with sides exactly aligned) indicated that conceptualisations

and associated images influenced decisions. For example, children were more likely to

consider that shapes had to have a name or be symmetrical when making their first few

pentomino shapes. For both adults and children, responding in the problem-solving

situation was reliant on a range of cognitive processes including imagery, concepts,

affect, and heuristics such as investigative tactics and self-monitoring. This

responsiveness was idiosyncratic but an important part of problem solving (Owens,

1996b).

Another study (Owens, 1998) was an experimental study of adults asked to
recognise equal angles in complex designs presented on computer screens. The adults

responded to the training tasks in four different ways. During the training those who

were in the Doing group could use acetate and pens to trace over angles to check size;

those in the Speaking group were asked to explain how they were deciding; those who

were in the Listening group listened to the researcher on earphones explain why angles

were equal; while those in the Looking-only group could only read the explanation

which was presented to all the participants. Learners were presented with both analytic

reasons such as "vertically opposite angles are equal" and reasons such as "they just

look the same and (another) angle is smaller". The computer was programmed to show

the designated angle move to be positioned on the equal angle. Some of the adults

were later asked what they were attending to, and how they were thinking during the

tasks. There was significant variance between the scores of members of the groups
who were speaking or doing. The lower variance in the Listening group suggested that

this group had their attention more focussed. Overall there was no clearcut difference

between responding groups nor support for the effect of cognitive load due to training

responses. However, participants did refer to their use of visual imagery, their search

for equal angles and how they used geometric knowledge to reduce their searches. A
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significant effect of affective processes was noted in their retrospective comments.
Responsiveness was also a key to learning through investigating when the children
participated in the series of tasks that linked to angle conceptualisation (Owens,
1996b).

Studies on Children's Spatial Strategies

Relevant Findings from Earlier Studies
I have previously reported on a matched-group experimental study that showed that

primary-school students engaging in spatial problem-solving activities improved in
spatial thinking (Owens, 1992b). Based on the positive outcome of this experimental
study, it seemed important to explore how spatial problem solving improved learning in
classrooms. Over 180 problem-solving episodes were analysed. The role and diversity
of visual imagery in problem solving was one key aspect that emerged in this,
grounded-theory investigation (Owens, 1994; Owens & Clements, 1998). The work of
Presmeg (1986) was useful in classifying this diversity.

Students' apparent visualising was classified as concrete pictorial imagery, imagery
associated with patterning, dynamic imagery associated with movement within the
image structure, action imagery involving movement of body parts, and imagery that
involved following a series of procedures. The examples of dynamic imagery in such
young children were noticeable. For example, one child imaged a square becoming a
rectangle and then becoming thinner as he developed his rectangle concept. Another
dynamically changed a trapezium into a parallelogram. Action imagery was
exemplified by one child who explained that she could see her hand moving around the
line of four squares as she investigated new pentomino shapes. The fact that action
imagery was associated with investigative tactics provided a further focus for the
present study (Owens, 1994; Owens & Clements, 1998).

Pattern imagery was associated with students' developments in tiling areas. For
example, one child explained how a triangle could be covered by smaller, similar
triangles using the zig-zag pattern of one-up, one-down (Owens & Clements, 1998).
Some students on the test, Thinking about 2D Shapes (Owens, 1992a), used in the
experimental study, spontaneously drew tiles and grids to answer the questions on
tiling. A comparison of their drawings and those of children in a study by Outhred
(Owens & Outhred, 1997, 1998), and the earlier studies of Mansfield and Scott (1990)
on young children covering shapes, suggested that young students can develop a sense
that a particular shape could tile a given shape. Students were likely to do this by
recognising certain attributes of the tile such as type of angles, size of tile, relevant
pattern for filling with the tile, and recognition of gaps. The early ideas on tiling are
part of the current study.

Students' responses to the items of Thinking about 2D Shapes on angles and the
activities related to angles, showed that young children can recognise angles but
relevant experiences are needed as well as an ability to "see" the angle (Owens,
1996a). Rosser, Lane, and Mazzeo's (1988) study indicated the importance of rotation
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and visual memory in early spatial thinking. These two ideas also needed to be
considered in exploring young children's spatial thinking.

The ideas of reseeing, seeing parts that fit, and completing images have been
discussed extensively in the spatial abilities literature (see Eliot, 1988). Several tasks
were developed by Del Grande (1988) and a succinct summary made by Tartre (1990).
These seem to be important features of early spatial thinking. Students also increase
their visual memory, and sequential use of perceptions. For example, young students
can mentally fold a net of an open cube (Owens, 1992a).

Theoretical Framework Development

Reviewing the earlier studies resulted in the development of a theoretical framework
that could be used to inform teachers of young students' early spatio-mathematical
development. The framework was also designed to build on ideas developed by The
Count Me in Too project (NSW Department of Education and Training, 1998) through
which teachers became familiar with such terms as emergent, perceptual, and
figurative (imagery) stages.

Orientation and Motion
Students need to recognise shapes in different orientations and to develop the skill

of appreciating what an object or group of objects might look like from another
perspective. These changes in perspective and orientation are related to motion.
Motions with manipulatives (e.g. card cutouts and tiles) that represent two-dimensional
shapes include flips, slides, turns, and folds. These motions assist students to develop
concepts such as (a) reflection symmetry (flips in horizontal, vertical, and diagonal
lines or folding), (b) area (slide repetitions associated with covering of areas), and (c)

rotational symmetries.

Movement is imaged by students as they make associations between shapes. For
example, they can image one triangular shape moving to become another triangular
shape as a point slides along a taut string. They might see how a triangular shape
becomes a quadrilateral by bending one side into two or how a square can be pushed

over to make a rhombus.

Movement necessarily involves position concepts. Actions are described in
conjunction with directions such as left, right, or straight ahead. A particularly
important change of direction or turn is associated with the concept of angle. Early
learning is often stimulated by action and this turning of one arm of an angle away
from the other does seem to be one of the ways that children first begin to learn about
angles. However, they also begin to notice angles on shapes.

Part-Whole Recognition
All shapes are made up of parts. When students notice the parts, then they develop

their concepts about shapes. For example, a student might notice three corners on a
triangle and decide that this is a defining feature of a triangle. The corners are at first
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just considered as the pointy parts. Gradually, the parts become specific in their

features and students notice right angles or equal sides.

Students might only notice dominant features of shapes such as a pointy part or they

might only see the overall shape. It is important that students develop both skills.
Noticing the parts requires students to see the part within the context of a shape or
configuration of lines. This is the skill of disernbedding and it has a counter skill of
embedding by which a student is able to complete shapes imagined in the mind.

The ability to see angles on shapes, to see differences in angles, to see shapes within
other shapes, and to complete shapes using imagery are necessary skills for students if

they are to develop a repertoire of properties of shapes or to apply geometry in real
examples.

Classification and Language
Students will realise that a variety of examples of a shape can be categorised as one

particular shape. Students will begin to associate more and more properties of parts as
necessary or not necessary for a shape to belong to a particular category. Verbal
expressions are associated with visual imagery and help define it. As students group
and regroup, they develop relationships between shape categories and properties of
shapes and lines.

Students will associate particular words consistently with particular actions, shapes,
and other spatial relationships. They can use words to represent their imagery.
Students need to identify spatial features such as parallel lines, perpendicular lines,
spatial patterns, slopes, shapes, and corners in their environment, and discuss what
they see.

Through discussions, students begin to abstract concepts such as shapes, to describe
comparisons between parts, and to recognise why certain shapes make patterns and

tessellate.

Imagery Strategies

Each of the above aspects of spatial knowledge becomes evident in the way that
students behave and respond to tasks. Their imagery strategies can be inferred from
their actions and words. It is through student's language and the selection and use of
objects (including recognition of spatial features of card cut-outs, pictures, and shapes
in their environments) that decisions on children's learning will be made. By saying
and pointing, students indicate that they notice parts and visualise their relationships.

Certain experiences may encourage the development of dynamic changes and
patterning in their imagery. These can challenge and modify limited concept images.
For example, a full range of triangles can be included for the concept of a triangle.

Nevertheless, students' abilities to represent shapes by drawing or using materials
like sticks can have different influences on their thinking. For example, some think that
their drawing of a square is not a square because it no longer matches their mental
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imagery. They may then decide a problem cannot be solved because the square does

not look right but other students will accept that they just had trouble with the drawing

and their mental imagery dominates. In a similar way, when students are making
shapes, they make decisions about whether gaps and overlaps are important or not
(Owens & Outhred, 1997). It is important, therefore, for teachers to wait and probe
during assessment tasks in order to recognise how the student is thinking.

There are five groupings of strategies:
Emergent strategies. Students using emergent strategies are beginning to attend
purposefully to aspects of spatial experiences, to manipulate and explore shapes

and space, to select shapes like ones shown or named, and to associate words

with shapes and positions.
Perceptual strategies. Students using perceptual strategies are attending to spatial
features and beginning to make comparisons, relying on what they can see or do.

Pictorial imagery strategies. Students using strategies involving pictorial imagery

are developing mental images associated with concepts, with increasing use of

standard language.
Pattern and dynamic imagery strategies. Students using strategies involving
pattern and dynamic imagery are using pattern and movement in their mental
imagery and developing conceptual relationships.
Efficient strategies. Students using efficient strategies, are beginning to solve
spatial problems and constructions successfully by using imagery, classification,
part-whole recognition, and orientation.

These strategies are more or less likely to emerge and be used by children in the
above order. Intuitive and incidental learning can influence these strategies in
unexpected ways. The casual use of a spatial term can be picked up by a young child

in such a way that a well developed understanding of the concept is formed earlier than
expected. This might occur if a child realises that the term triangle is used over a
number of different occasions to refer to shapes that are not all exactly the same.

Orientation and motion, part-whole recognition, and classification and language

aspects of spatial thinking are described for each strategy group in Table 1.



Table 1
Framework of Imagery for Space Mathematics

Orientation and
Motion

The student:
Emergent recognises shapes
Strategies that match the

student's fixed
image(s)

Perceptual recognises shapes in
Strategies different orientations

and proportions,
checking by physical
manipulation

Pictorial Imagery generates images of
Strategies shapes in a variety

of orientations and
with different
features

Pattern and
Dynamic Imagery
Strategies

Efficient
Strategies

predicts changes by
mentally modifying
shapes and their
attributes using
motion or pattern
analysis;

represents
relationships created
by change and
patterns by
modelling or
drawing
selects effective
strategies to make
changes needed to
achieve a planned
product

Part-Whole
Relationships

The student:

attempts to put
pieces together to
see what is obtained

recognises whole
shapes used to build
a shape or picture

disembeds parts of
shapes from the
whole shape,
matches parts of
different shapes
completes a partially
represented shape or
simple design

develops and uses a
pattern of shapes or
relationship between
parts of shapes;

plans and
dynamically
modifies a shape to
illustrate similarities
between different
representations of
the same concept

assesses images and
plans the effective
use of properties of
shapes and
composite units to
generate shapes

Classification and
Language

The student:

matches shapes with
everyday words e.g.
ball for a circle

'describes similarities
and differences and
processes of change
as they use materials

discusses shapes,
their parts, and
actions when the
shape is not present

discusses patterns
and movements
associated with
combinations of
shapes and
relationships
between shapes

describes relevant
use of properties of
shapes to generate
new shapes



Assessment Tasks

Associated tasks were specifically designed to assess students' thinking in terms of

the framework and whether, in particular, students were developing pictorial imagery,

pattern imagery and dynamic imagery, and associated concept images. Several tasks

(e.g. Tasks 2 and 7) were developed from the concrete introductions and items used in

the test Thinking about 2D Shapes used in the initial experimental study with children

(Owens, 1992a) and from the above references (e.g. Task 2B is based on Mansfield &
Scott, 1990; Task 5 from Rosser, Lane, & Mazzeo, 1988). The revealing shape task

(Task 3) is an extension of a common task used in studies based on the van Hide
theory.

The development of the tasks has involved the assessment of over 50 students in the
first three years of schooling (ages 5 to 7 years) by the researcher, curriculum
consultants, and several teachers. Some students were video-recorded during the tasks,

and discussions on viewing the tapes assisted in checking the validity of the
framework and in improving the tasks.

Table 2 gives the details of some tasks and briefdescriptions of the remainder. Task

1 emphasises the idea of context for learning. It also seeks to see what properties the
student might know. Subtle changes were made to wording, (e.g., "tiles to make (not
cover) a given shape" in Task 2), and tasks were modified so they were manageable
by teachers and students (e.g. Task 6). The tasks were also devised to allow students

to show they were visualising before they were given the opportunity to try with
concrete materials (e.g. Tasks 2, 6 & 7). Several probes are suggested to help when
students are having difficulties with the harder question or if they are not familiar with

the language (e.g. Tasks 2C, 8).

The tasks require some equipment but it is kept to a minimum. The card cut-outs,
are shown in Figure 1. Spare small rectangles and small squares and another large

square, drawings of the square at a 30° slope (plus photocopies) and of an inverted

equilateral triangle double the size of the right-angled triangle are needed. Nets for
Task 7, 3 circles with tabs for Task 5, string, and sticks are used.

Figure I. Card cut-out shapes required for the tasks.



Table 2
Selection of Tasks for Assessing Students Early Space Learning
Task IA: Recognising shapes in the environment
Use card cut-out shapes, one of each type except the quadrilateral, (i.e. large square, circle,
large rectangle, and both types of triangles).
Place the card cutout shapes on the table.
Ensure the layout of the shapes is not aligned horizontally.

Look around the room. Can you see a shape like one of these shapes?
(Indicate the cut-out shapes on the table. Allow the student to nominate the shapes.)

How are they like each other?
Probe question
If a student is unable to complete the task, point to the rectangle. (Push it away from the other shapes

towards the student, turn it into horizontal alignment)

Can you see a shape like this one?

Task 1B: Sorting shapes and identi&ing properties
All the shapes shown in Figure 1 and the drawn shapes are to be sorted. Probes are
used, for example, if a picture is made.
Task 2A: Recognising double tiling
The square is used and students asked to image another joined to it. They are asked if
they can choose the shape it makes. If not, two squares are used to try. The squares
are used to explain that they join without gaps or overlaps in preparation for the next
two parts.
Task 2B: Imagining triangle tiles
The student is asked how many and how the right-angled triangle might cover the
drawn equilateral triangle, and then given the tile if needed.
Task 2C: Imagining tiling of areas
Use card cut-out shapes, drawn square, photocopies of square, pencil, more square and
rectangular tiles (if needed)
Display the card shapes and the drawn square on the table.

Which one of these cardboard shapes could you use to start making this drawn shape?
How many of those would you need to cover this drawn shape?
Show me how you would make it.

Provide the student with the photocopy of the square.
Draw what it would look like.
Probe. If the student cannot show how to move the the and cannot draw it on the diagram, give the student

more of the same tiles to make the square. Cover it Then ask

Draw what they have made.

Show me another shape to use to make this square.
If the student chooses an appropriate shape ask:

How many of these would you need?
Provide a second photocopy of the square.

Draw what it will look like.
Probe. If the student cannot draw it, give the student the tile (rectangle or square) and say:

Show me how you would make it
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Please draw

Task 3: Imagining shape completion

A square is gradually revealed. Each time, the student is asked what it might be and to

trace where it might be. They are encouraged to give more than one answer.

Task 4A: Seeing shapes within shapes
Students use sticks to form 2 squares joined together and then 2 triangles. They are

asked to draw the 2 triangles, preferably while covered.
Task 4B: Seeing shapes within shapes
Use diagram of a trapezium, 7 equal-length sticks, sheet A4 paper.
Arrange the sticks to make this design without the student seeing.

Show the outline drawing of the trapezium to the student. As you talk run your fmger

around the perimeter of the trapezium.
This is a drawing of a trapezium. Look at the design I made with the sticks.

Do not touch the sticks but point to the sticks you would need to take away so that it is the

same as the drawing of the trapezium.
Probe: If the student is unable to identify the correct sticks to be taken away, allow them to manipulate the

sticks.

Task 5: Angle recognition, visual memory, and rotation skills

Make the following diagrams on a circle using long and short sticks or pipecleaners,

point out the tab, let the student make the same diagram on their circle with tab mark

aligned with yours. The first two are uncovered, the third is covered before the student

starts, and the fourth is shown to the student, covered, and turned before the student

starts.
(a) (b)

\\
(00 \ (d)

Task 6: Dynamic imagery
Use 40 cm string, joined to form a loop; a firm stick.
Place the loop of string on the table and hold two points firm, about 15 cm apart (the string needs to

form a triangle when one side is shortened). Provide the student with the stick.

Use this stick to pull the string tight and make a triangle.
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How would you describe the triangle you have made?
Could you make other triangles?
How would they change?
Probe: If the student cannot explain, let them use the stick to demonstrate and tell about the triangles they

are making.
Point to one of the sides of the triangle.

Tell me what you would have to do to make this side shorter.
Point to the other side.

As the first side is made shorter, what will happen to this side?
Task 7: Imagining, folding and turning nets to make three dimensional shapes
Use nets of the open triangular prism and open cube. ME

Show the net of the open triangular prism and fold it up to make an open triangular prism. Talk
about how you folded up and turned the sides. Talk about how the 2D shape became a 3D shape.
Let the student try to fold it. The word "box" may be used as well as prism.
Show the net of the open cube but do not let the student actually fold the sides

Tell me how you might fold it up and where each square will end up.
What will it make?
Probe if the child cannot explain.

Try to fold it up, and as you do, tell me what you are doing.

As soon as you know what you are making tell me.

Task 8: Visualising turning three dimensional shapes
Place a square pyramid on its base in front of the student.

If I push this over and the point lands away from you, what shape will you see?
After the student responds, push it over so the point lands away from the student and the square is
facing the student.

If I stand it on its point, where will the square be?
Probe: If the student is unable to say the square is on the top, tell them and indicate with your hand how

the pyramid is turned up onto its point.

Draw how the triangle facing you will look.
Probe: If the student cannot draw it, hold the pyramid up on its point and indicate the triangle to be drawn.

Results

Our preliminary use of these tasks has indicated students portraying different
strategies. Table 3 indicates the kinds of responses given by students and how they
indicate different strategies within the framework. The efficient strategies were not
well established by any of the assessed students in Kindergarten to Year 2 at school. It
was possible to distinguish responses for the different categories of Orientation and
Motion, Part-Whole Relationships, and Classification and Language. Clearly some
tasks addressed one area more than another. More importantly, the tasks did provide a
range of strategies to be observed by different students.

While students did not necessarily show the same type of strategy across all
questions, there was a tendency for this to happen. That is, if a student tended to use
perceptual strategies in one task, the student was likely to show these same strategies
across all tasks. Some students were only showing the beginning of Perceptual
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Strategies; for example, they seemed inexperienced with diverse shapes. It is also

interesting that in some cases, one area such as Language and Classification assisted a

higher strategy for another area such as Part-Whole Relationships. For example,

students who learnt about quadrilaterals and that they had four sides were more likely

to use pictorial imagery strategies for Part-Whole Relationships in Task 1B.

Results of some tasks are presented in Table 3. Task 1A on shapes in the

environment and their properties shows how the students' responses may be best

considered in terms of one of the main conceptual areas. Task 2B on tiling with the

right-angled triangle shows the importance of the investigative tactic of flipping. Task

2C on tiling shows how the tasks can show a range of strategies. The idea of tracing

and encouraging different responses in Task 3 was successful in drawing out responses

of different kinds of strategies.

Table 3
Typical Responses for Space Tasks for Early Space Framework

Strategy Orientation and Part-Whole

Motion Relationships

1A: Recognising Shapes in the Environment

Emergent * Tries to match the
rectangle

Perceptual 0

Pictorial
Imagery

Selects much larger,
differently oriented
shapes

Classification and
Language

0 Selects and names
0 0 CI

Readily selects and
gives properties

2B: Imagining
Emergent

Perceptual

Pictorial
Imagery

Tilings of Equilateral Triangle with Right-Angled Triangles
* Can't guess 2 and places

triangle in centre of
equilateral triangle

Or 0 Covers shape with
triangles when both
given
Quickly says 2, places
and flips one triangle

0 Eventually flips
turns shape into
position

2C: Imagining Tiling of Square with Smaller Square or Rectangle Tiles

Emergent * Selects any shape and
places inside square

Perceptual 0 Turns tiles to be
aligned with sides
and corners

Pictorial

2 G

0 Says 3 to 5 tiles,
selects 1=3 ,

covers square when
given extra tiles

Says 40, 3=1 rough

. 1 - 230



Imagery
Pattern ,

Dynamic
Imagery

drawing, shows with 1

Quickly says correctly,
Uses grids in drawing

3: Imagining Shape Completion by Tracing Possible Hidden Shapes

Emergent * Says any shape name

Perceptual 0 Says square

Pictorial
Imagery

Pattern,
Dynamic
Imagery

Efficient
Imagery

Traces for a triangle or
square or rectangle

Traces out several
possible shapes

Indicates tracings and
various changes

0 Says triangle or square
but cannot trace where it
might be

Readily explains how
different shapes could
be underneath

4B: Seeing Trapezium within Shape
Emergent * Tries to place sticks to

make a shape

Perceptual 0 Can select a stick when
allowed to try it

Can select at least one
stick to take away

Can quickly point to all
sticks to take away

Pictorial
Imagery

Pattern,
Dynamic
Imagery

6: Dynamic Imagery Using a Stick to Move a Loop of String
Emergent * Moves stick but does

not make or recognise
a triangle

Perceptual

Pictorial
Imagery

Pattern,
Dynamic
Imagery

Efficient
Imagery

Makes different Tells other side will get
triangles longer

Automatically slides
stick to make different
triangles, commenting
on them

Shows an arc of
points to shorten side

0 Knows a triangle will
be made

Knows names and
properties of different
types of triangles

Explains why
continuous range of
triangles can be made in
general and by type
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Task 4B shows how the skill of disembedding or re-seeing parts is manifested while

responses to Task 5 indicated the development of orientation skills and noticing

angles. Results for Task 6 on making triangles show how a carefully designed task can

illustrate a full range of strategies. It was a particularly novel task for consultants and

teachers. The turning of a face for the 3D shape in Task 7 was a critical step for

pattern and dynamic imagery strategies under Orientation and Motion. Task 8 was an

important task for 3D concepts, and responses to the task could be placed in most of

the cells of the first four strategies.

Discussion

Task 1B was difficult to use if the idea of sorting and grouping was new to the

students. Both Tasks 1A and 6, as well as Task 1B, encourage students to express

their concept images. However, Task 1B may be very fruitful in ascertaining students'

knowledge, and in helping teachers realise just how limited students' concepts can be

due to the lack of mathematical ideas in the common language of the classroom. For

example, the lack of language such as "a quadrilateral has four sides" often meant that

students tended to group the quadrilateral with a triangle or turned square.

The tasks provide information about the students in the different areas of the

framework. One task can be multifaceted and used for a range of outcomes. In this

sense, the tasks are rich in informing the teacher about the students' learning. Not all

possible responses or cells of the table have been completed. It is possible that further

testing will assist in showing other common responses for different cells. Nevertheless,

this is not expected.

The tasks allow teachers to know the strengths and weaknesses of different

students. For example, Natalie in Year 2, mostly showed emergent strategies and

seemed to have most difficulty in the classifying and language area. She was able to

show perceptual or pictorial imagery strategies in Task 6, 7, and 8. These were novel

questions for her and may have been less associated with her general struggle with

learning. The assessment provided the basis to plan suitable activities for her. For

example, she needed experiences in sorting and grouping many different kinds of

triangles, squares and rectangles (two kinds at a time); talking about the reasons for

grouping e.g. four sides or four corners; seeing shapes within shapes in matchstick

type pii771es; doing more jigsaws and making geometric shape like squares with

pieces.

On the other hand, Jack in the same class, generally showed pattern and dynamic

imagery strategies and an ability to see shapes within shapes assisted by good general

language. However, his recognition of diversity when referring to a shape like "a

triangle" still needed extension. He needed activities like matching parts of different

shapes in order to notice similarities and differences, and to develop properties. He

also needed more language to describe the parts and types of shapes. Interestingly, he

showed some hesitation in placing the position to shorten the side of the triangle in
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Task 6, trying to indicate that it would be further away than the line of the string

(tending towards efficient strategies). He was ready to use properties to establish that

squares are rectangles and that the same names apply when the shapes are in turned

positions (a problem that was exacerbated by the use of words like diamonds), and to

use words like rhombus, trapezium, quadrilateral or four-sided shape.

The tasks can be used for individual assessment or for the basis of activities for the

class. The questions and probes can be used by the teacher to assist in students'

learning and assessment during class experiences. The technology may be as simple as

card cut-outs but computer-generated tasks could extend learning from previous

activities with concrete materials.

Further research is needed to assess how consistently students are showing the same

type of strategies across each task. It was clear in modifying the tasks that slight

changes could make a task more difficult so that students were not using the same

strategy as on other tasks. Research is also needed to see how classroom experiences

can encourage students to use more advanced strategies. Such longitudinal studies

would give further evidence of the validity of the framework, and its value for

classroom teachers.

Conclusion

The previous studies of the researcher and those of numerous other people working

in the area of spatial mathematics have been drawn upon to develop a framework that

is useful for teachers. Synthesising so much research into a framework is an important

step forward in developing a theoretical base for early childhood education in Space

mathematics. In particular, the framework shows how visualisation strategies are a key

to development of spatial thinking (knowledge and skills).

The framework provides a basis for teachers to assess students' current learning and

to plan learning experiences that will extend their students' knowledge and visual

skills. The facets of the framework interlink to provide holistic learning experiences

and assessment tasks for students. The tasks provide a richer forum for teachers'

understanding of the framework.

Students' responses to the tasks have provided evidence that the various facets of

the framework can be assessed. In particular, the tasks can assess more than one facet,

and each can generate responses showing different types of strategies. For this

reasons, some tasks are constructed to encourage students to visualise first, and probes

are suggested to elicit an emergent or perceptual response.
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SPATIAL STRATEGIES AND VISUALISATION:
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Abstract

This paper is an invited response to the Imagery and Visualisation
Research Forum of PME XX11 1 . It takes as its starting point the keynote
paper The Role of Visualisation in Young Students Learning
(Owens,1999). The review attempts to consider the paper in the wider
context of mathematical thinking. It addresses difficulties associated with
the investigation of imagery and draws the conclusion that a reappraisal of
the data could suggest the possible existence of a divergence in
spatio-visual thinking similar to that in arithmetical/algebraic thinking.

Introducing a Perspective

Writing in 1996, Owens suggested that:

Student's responsiveness during active engagement in problem-solving activities is
precipitated by their own thinking and feelings ... responsiveness implies a degree of
understanding as well as involvement and interest in the activity. (Owens, 1996, p. 101)

With this notion in mind, I present a personal review of the paper The Role of
Visualisation in Young Students Learning (Owens, 1999). In doing so, I am also
aware that each comes to the task of considering the paper with different personal
repertoires of knowledge. Inevitably, we see the paper in our own personal way.

Within her paper, Owens considers two features designed to inform teachers about
young children's early spatio-mathematical development. The first is a 'framework'
that provides a basis for teachers to assess children's thinking and build a teaching
programme. The second is a mechanism for assessing the children against the
framework. It is claimed that an important aspect of the two is the relationship
between spatial understanding and visualisation. Indeed, some of the tasks are
`specifically designed to encourage visualisation' and the framework itself is
associated with a 'hierarchical' list of imagery strategies.

My personal reading of Owens has been influenced by two questions:

first, how should we interpret the fact that some pupils seem to find the
study of mathematics relatively easy whilst others find it virtually
impossible?
second, what can it add to our efforts to establish some kind of
underlying theoretical structure that may help us further our
understanding of mathematical thinking?
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Perception, action and reflection

Geometry builds from the fundamental perception of figures and their shape,
supported by action and _reflection to move from practical measurement to
theoretical deduction and Euclidean proof. This was a theme which Tall (1995)
alluded to in his plenary address to PME in Brazil. He spoke of the way in which
elementary mathematics begins with 'perceptions of and 'actions on' objects in
the external world.

The perceived objects are first seen as visio-spatial gestalts, but then, as they are

analysed and their properties are teased out, they are described verbally, leading in

turn to classification (first into collections and then into hierarchy's...Tall, 1995, p 61.

To establish the distinction between the perceptive and manipulative aspects of
early spatial development and the verbal/symbolic development of arithmetic and
algebra Tall suggested that a different kind of development stemmed from actions
on objects. Here the process of counting is developed using number words that
become conceptualised as number concepts.

Early mathematical concepts are strongly associated with preliminary activities

involving perception and action within the physical world and reflection on both

perception and action (Gray, Pitta, Tall & Pinto, in press). Such a development

requires the ability to concentrate the mind and give careful thought to an act or
idea and then to filter out irrelevancies and separate notions from their context. It

involves the construction of relationships between and amongst objects and of the
inter-relationships of the actions on them. It may be that such a process works to
the advantage of the more successful. An emphasis on one or more of the
activities of perception, action or reflection leads not only to different kinds of
mathematics, but also to a spectrum of success and failure depending on the nature

of the focus in the individual activity.

In any context involving an action with objects, the individual has the possibility

of attending to different aspects of the situation. Indeed, this is an issue that Cobb,

Yackel and Wood (1992) see as one of the great problems in learning
mathematics, particularly if learning and teaching are approached in a

representational context. In their search for substance and meaning, some children

may be distinctly disadvantaged right at the start of their mathematical
development, but it is a disadvantage that may not make itself apparent in the

earlier stages of cognitive development.

Any considered attempt to establish the way children think as opposed to simply

measuring their level of achievement has to be welcomed. I see the Owens paper
in this context. But there is more it hints at a divergence in spatial thinking that

may match the one identified in arithmetic/algebraic thinking. This is not to say

that I applaud the paper in all of its aspects. As a research paper it has many
technical weaknesses, one of the major ones being the extensive inclusion of the

mechanisms of assessment (Table 1) at the expense of empirical evidence from

which the reader may make judgements. What we see is the researcher's
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interpretation of the evidence. In a sense, we have a description of the researcher's
image of the child's image.

The framework and possible links with van Hiele

The earlier work of Owens (see for example 1992, 1996, 1998) led to the
development of a framework to inform teachers of young students' early spatial
mathematical development. The 1992 test was developed at the recognition level
of spatial development (Owens, 1992,) and was therefore associated with Van
Hiele Level 1 (van Hiele 1986).

Dominated by perception, van Hiele Level 1 suggests that appearance becomes
the mechanism through which learners operate on shape and other geometric
configurations. However, though perception is the foundation of geometry, it
takes the power of language to make hierarchical classifications. Figures are
initially perceived as gestalts but then may be described and classified through
verbalising their properties, to give the notions of points, lines, planes, triangles,
squares, rectangles, circles, spheres, etc. Initially these words may operate at a
single generic level, so that a square (with four equal sides and every angle a right
angle) is not considered as a rectangle (with only opposite sides equal). Again,
through verbal discussion, instruction and construction, the child may begin to see
hierarchies with one idea classified within another, so that "a square is a rectangle
is a quadrilateral", or "a square is a rhombus is a parallelogram is a quadrilateral".

Owens' contribution to this development has been to tease out the coarser
framework and provide a finer grained analysis that may be beneficial to teachers.
Focussing on orientation and motion, part whole recognition and the use of
language and classification, she presents what may be a useable set of criteria to
establish children's thinking. However, I wonder how these criteria differ from the
van Hiele level 1, that of establishing a visual gestalt, and van Hiele level 2, that
of being able to characterize shapes by their properties. It seems self evident
though that these two need embedding in an associated language context in
recognition that:

The criterion for having a concepts is not that of being able to say its name, but that

of behaving in a way indicative of classifying new data according to the similarities

which go to form this concept. (Skemp, 1986. P. 26)

Evidence of divergent thinking

Of course, it is important to place these notions into a context which has meaning
for the teachers of young children. However, it is equally important not to
over-generalise from the outcomes a factor that does seem to dominate this part
of the paper, particularly since we are considering a "theoretical framework". We
may accept that students 'need to recognise shapes in different orientations' but it
is far less easy to accept (in the absence of any empirical data from which to make
a personal analysis) that:

movement is imagined by students as they make associations between
shapes
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that the need to complete shapes using imagery are necessary skills for
students.

Equally, it is difficult to accept that all students will "realise" and/or "develop
relationships" or "associate particular words" or use "words to represent their
imagery". These expressions project the hopes of the pedagogue not the realism of
the learning experience.

In the cognitive context, we see the framework presented as a model which
informs us about children's thinking. In the pedagogic context, we see the model
as a framework from which teaching could be developed. Such a suggestion
reminds me of efforts to turn Piagetian theories into a mathematics curriculum.
Indeed, we see similarities with the Piagetian notion of a stage theory and Owens
claims that the 'imagery strategies' through which the different aspects of spatial
knowledge become evident 'are more or less likely to emerge and be used by
children in an order'. Any divergence from this hierarchy of development is
simply explained in terms of 'intuition or incidental learning'. No evidence in the
paper supports either of these arguments. Most appears to be based upon teaching
experiments (for example Owens, 1992, 1996) and/or through the analysis of
children's spatial problem solving abilities (see for example Owens & Clements,
1998). Any claims about a hierarchical process of growing strategy sophistication
would seem to be best addressed by a longer-term developmental study with
individual students.

The notion that there are different strategies associated with children's spatial
thinking is important and perhaps we are seeing the first stages in an attempt to
mirror for spatial development the research in elementary arithmetic which has
proven to be so beneficial. The evidence presented within typical examples
suggests that there are differences in the way that children think. Though the study
refers to a sample of 50 children, 'typical responses' presented for the reader to
make judgements are only drawn from 6. For four of these children it is possible
to consider their responses over the 6 items which stimulated responses. An
analysis of the responses of these four suggests distinct behaviours not an ordered
development. The data within Table 3 may be re-interpreted; not to simply
provide 'typical responses' but to indicate qualitatively different thinking
representing a spectrum of varying between perceptual and figurative extremes.
We see, for example, that "*" always uses "emergent" strategies, "perceptual"
strategies dominate the thinking of "0", pictorial imagery that of "" and the
more sophisticated strategies are used by "0" and "111". Responses associated with
the emergent strategy, suggest that the child identified as "*" is at a stage of
"pre-recognition" (Clements and Battista, 1992) based upon a deficiency in
perceptual activity whilst child "0" appears to be firmly embedded in perceptual
strategy use. My conclusion from the evidence would be that some operate on a
perceptual level, whilst others operate at a figurative level which itself may reflect
differing degrees of sophistication.

A focus on imagery and visualisation
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Piaget and Inhelder drew our attention to the relationship between imagery and
perception:

Perception is the knowledge of objects resulting from direct contact with them. As
against this, representation or imagination involves the evocation of objects in their
absence or, when it runs parallel to perception, in their presence. It completes
perceptual knowledge by reference to objects not actually perceived...

As more progress is made on the research front the concept of image has become
less clear (Cooper, 1995). In a sense, Owens adds to this lack of clarity. Through
her implicit recognition that human cognition requires different representational
constructs, she adds another dimension to our perceptions of image and
visualisation. Images are significant components of cognition and their
interpretation has particular relevance to the study of mathematics. However, our
interpretation of the notions, and the evidence we use to describe and classify
them, is often somewhat speculative and open to interpretation.

It may be correct to make the assumption that there is a functional equivalence
between images and processes formed on images, and the corresponding external
objects and the perceptual operations that the images and the imagined operations
were thought to stimulate. To do so, however, suggests that images, like visual
perceptions, have depictive or picture-like qualities. Here we are faced with an
elementary problem whether or not the notion of imagery can be synonymous
with the notion of visualisation.

Guttierez (1996), in his excellent discussion of the various ways visualisation,
image and mental image have been used in mathematics, suggests that a

"mental image is a mental representation of a mathematical concept or property
containing information based upon pictorial, graphical or diagrammatic elements
[whilst] visualisation or visual thinking is a kind of reasoning based on the use of
mental images".

(Gutierrez, 1996, p. 6)

He considered that mental images were a basic element in visualization. Using the
notions of concept image (the student's mental picture of a geometrical figure)
and concept definition (the student's verbal definition to define a geometrical
figure) Matsuo (1993) suggested that the more these converge. the more likely it is
that the student moves from level 1 to level 2. Such a hypothesis would seem to be
consistent with Tall's (1995) view and Skemp's (1986) criteria for the possession
of a concept. Equally, the evidence suggested by Owens' responses from "0" and
"Or would seem to support this view. Interestingly, Matsuo then suggested that
there might be a difference between a state of understanding that is specified by
the visual mode and a state of understanding which is clarified by the visual mode.
I take this to mean a difference between the visual mode being necessary for
understanding and the visual mode being a generator of understanding. In an
entirely different study that looks at imagery in the context of elementary
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arithmetic, Gray & Pitta (1997) draw a distinction between the use of imagery that
is essential to thought and the use of imagery that generates thought.

It is possible that such a distinction may be interpreted from the evidence
presented by Owens, where we see notions of perception and imagery being
jointly classified to interpret imagery strategies. The fact that we see distinctions
between children who rely extensively on perception and others who evoke
imagery of a visual form may not be the whole of the story.

Though it would seem that the ability to visualise provides strength in the context
of developing spatial awareness, the labels 'visualiser' and `non-visualiser' may
not be indicative of level of mathematical achievement. Pitta (1998) has shown

that children at extremes of achievement may be strong visualisers. Equally,

children at the extremes could be identified as non-visualisers. To focus solely on
the incidence of visual imagery may not provide an insight into the qualitative
differences between children, whereas a focus on imagery in both visual and
non-visual form may.

The framework devised by Owens may lead us some way towards our
understanding of children's understanding. It may also be suggesting that there is
a diverging approach to elementary geometry which matches diverging

approaches to elementary arithmetic (see Gray and Tall, 1994). Such a divergence,

based upon qualitatively different interpretations that children place on spatial
activity, may be manifested in the formation of qualitatively different forms of
imagery and/or qualitatively different kinds of imagery. Visual imagery may be
one of these forms but a broader view of the notion of image would not disregard

the product of imaging in any modality.

I started this paper by asking two questions; one associated with the way in which

children deal with the study of mathematics; the other associated with the

formation of an underlying theoretical structure. The evidence from the

framework developed by Owens would suggest that more sophisticated thinking
reflects the ability to disregard details and focus on the generalizations that
support choice. This was not to say that the detail was unavailable to them it

was and could be incorporated and used if needed.

The ability to create mental imagery is inherent in us all and it would seem that a
visual stimulus would evoke visual imagery to a greater extent that verbal
stimulus. Pitta (1998) has suggested that it is quite possible for children to posses
the same visual image but to then attach different meanings to it. Therefore,

whereas the visual image of the more successful child may be used to refresh
memory or as a skeleton that ideas, equivalencies and relationships may be
attached to, that same visual image may be used in an active mental episode for

the less successful.

It is implicit from the Piagetian and the constructivist perspective that the

knowledge and the beliefs that learners bring to a situation can influence the
meanings they construct from that situation. Kay Owens uses the word
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responsiveness to mean a similar thing. The responsiveness of the sample in the
survey illustrates that the differences in strategy use may not only be apparent
when children's responses to the problems are considered but, also a manifestation
of the use of memory. A tendency to focus on surface characteristics of the stimuli
may be more strongly related to the use of short-term memory. On the other hand,
emphasis on long term memory use may men retrieval of mental imagery which
could be both meaning related information or carry surface characteristics. The
truth of the matter is we really do not know. The study of imagery in any context
is fraught with difficulty. We make an assumption that report, description and
external representation in the form of words, drawings and actions provide an
indication of the nature of the mental image. Any efforts to explain or provide a
description that relates to reality can be very different from the truth. However, I
would suggest that the strength of this paper lies in the possible insights it
provides to another divergence in mathematical thinking.
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Project Group PG1:
Algebra: Epistemology, Cognition and New Technologies

Epistemological and Cognitive Issues about Equations and Inequalities keeping into
account the aspects related to the use of Computers

Coordinators: Jean-Philippe Drouhard, IREM & IUFM de Nice, France

Alan Bell, Shell Centre for Mathematical Education,
University of Nottingham, UK

Sonia Ursini, Departamento de Matematica Educativa,
Instituto Politenico Nacional, Mexico

Aims of the group:

The members of the 1998 PME Working Group on "Algebra: Epistemology,
Cognition and New Technologies" wished to continue their work as a Project Group.
They will be involved, until April 1999, in the elaboration (through e-mail
exchanges) of a "Discussion Document" which will be circulated before the Haifa
Conference, with the aim of involving all people willing to attend the PME-XXIII
Project Group.

This Discussion Document will concern "Epistemological and Cognitive Issues
about Equations and Inequalities, keeping into account the aspects related to the use
of Computers" as a "case study". This document will be available to the participants
in the Project Group website:

http://math.unice.fr/irenmice/pme_wg_aecnt/index.html

The PME-XXIII Project Group will be devoted to discuss prepared reactions to
the Discussion Document, and to elaborate the guidelines for the chapters of an
electronic (or paper) volume which might be written during the following year and
discussed at the PME-XXIV Conference.



Project Group PG2:
Classroom Research Project Group

Coordinators: Simon Goodchild, College of St Mark and St John, Plymouth, UK

Ruth Shane, Kaye College of Education, Beer Sheva, Israel

This Project Group has evolved from the Classroom Research Working Group that
has met at PME conferences for a number of years. The focus of the group is the
methodology of classroom research. In the past the group has discussed a range of
issues crucial to all who are engaged in classroom research, from the consideration
of the types of questions that are explored, through the methods and technologies
that can be applied, to the approaches taken in the analysis of data that arises from
classroom research.

When the group met in Stellenbosch last year it was decided to collaborate in the
production of a book that collected together accounts of a variety of methodologies
used by members of the group in their own classroom research activity. This
project is progressing and one intention, as planned in 1998, is to share a draft
version of the resulting book with the Project Group in Haifa.

The other intention of the Group is to move on to consider in more detail
approaches taken in the analysis of qualitative data arising from classroom
research. This issue was raised in discussion in 1998 and it became clear then that
a useful outcome from the Project Group would be the publication of a resource
that could be used to both illustrate and provide experience of different approaches
to qualitative data analysis. The Group will consider the most suitable media for
publishing this work; this could be a CD ROM, the development of a web site or a
collection of printed papers.

The goal is to produce a useful companion to the book about methods for gathering
data. The sessions will incorporate opportunities for members to share their own
approaches to data analysis.
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Project Group PG3:
Cultural Aspects in the Learning of Mathematics

Coordinators: Norma Presmeg, Florida State University, USA

Marta Civil, University of Arizona, USA

Phil Clarkson, Australian Catholic University, Australia

The four subgroups of this Project Group are working towards functioning websites
that will enable continued collaboration between the members of each subgroup
between meetings. Suggestions for a published product will be considered at the
meetings in Haifa. The specific topics of the subgroups are as follows:

I. Theoretical perspectives on cultural aspects of learning mathematics.

2. Classroom culture and social practices.

3. Power relations (political, socioeconomic, etc.).

4. Language and culture.

As in Lahti and Stellenbosch, the twin aims of the meetings will be to welcome
newcomers to the group as well as to continue the exploration of issues introduced in
the interactions of the specific topic groups. This exploration will have the purpose of
consolidating the website constructed by Phil Clarkson after the meeting in
Stellenbosch. A presentation on a separate page of the website for each specific topic
will highlight the results of the Project Group's work in each of these areas, and
enable further collaboration.



Project Group PG4:
Research on Mathematics Teacher Development

Coordinators: Andrea Peter-Koop, University of Minster, Germany

Regina D. Moller, University of Landau, Germany

Vania M. Santos-Wagner, Federal University of Rio de Janeiro, Brazil

This Project Group has emerged from a Discussion Group (1986-1989) which was
continued as a Working Group between 1990 and 1998. One major asset of this group
has been its cohesiveness and its wide representation across many countries.

Goal of the Project Group

During recent years the group has been concerned with developing, communicating
and examining paradigms and frameworks for research in mathematics teacher
development. From previous group discussions and individual presentations emerged
the need to explore the implications of collaboration and collaborative research in
mathematics teacher education in a variety of different settings across the world.
Therefore, in 1998 the group decided to collaboratively prepare a book on this issue.
The working title of the book in progress is Collaboration and Co-operation in
Mathematics Teacher Education: Chances and Implications".

Since the meetings in Stellenbosch last year, altogether 18 abstracts were submitted,
of which 13 have been accepted as potential chapters. At this stage additional
chapters are still possible and most welcome. The authors of the accepted proposals
agreed to submit draft versions of their manuscripts to the co-ordinators by May 99 in
order for them to be distributed prior to and during the 1999 sessions.

Plans for the Project Group Activities at PME 23

During the two sessions in 1999 we will need to (1) clarify the theoretical
foundations and concepts of the book, (2) develop its structure and (3) begin the peer
review process with respect to the manuscripts submitted so far.

Central to the first session will be the discussion and clarification of the concepts of
collaboration and co-operation as guiding elements of the joint product. In order to
facilitate intense discussions, we will work in small groups each focussing on
different aspects with the aim to jointly develop a 'concept map'.

At the end of the session, copies of all submitted manuscripts will be distributed in
order to allow the participants to be prepared for the discussion of the papers.

The main focus of the second session will be to reflect on the levels, modes and
purposes of collaboration and co-operation addressed in the individual chapters in
order to prepare the structure of the book. At this stage it will become clear which
additional chapter(s) would complement the publication. Our final task will be to
develop a working plan for the time period until PME 24 in Japan.

.
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Project Group PG5:
Social Aspects of Mathematics Education

Coordinators: Jo Boa ler, Stanford University, USA

Paola Valero, Royal Danish School of Educational Studies, Denmark

The recent evolution of mathematics education as a field of research has brought
growing interest in the social dimension of mathematics education practices. The
existence and permanence over the years of the PME working group "Social
Aspects of Mathematics Education" is one of the multiple evidences of such an
interest. Recognition of the importance of social perspectives on learning poses
questions and challenges for researchers working within mathematics education.
What does it mean to adopt a research approach that considers the social aspects of
mathematics education? Which theories and conceptual frameworks are useful and
appropriate for such an approach? Which questions may be addressed by such a
perspective? Which research methodologies are suitable for this endeavor? Which
criteria for research quality are relevant? What are the social and economic
implications of this approach?

Mathematics education is facing the new challenge of taking and understanding
a social perspective on the teaching and learning of mathematics, aperspective that
has been shown to illuminate significant research questions, processes and results.
Such a perspective requires deliberation about the range of research methods and
methodologies that are consonant with social dimensions of mathematics education.
Such deliberations should broaden our understanding about the practices of
mathematics education and possibilities for action.

Therefore, this project group intends collecting a series of papers and publish
them in the form of a book whose working tittle is "The Social Dimension of
MathematicsEducation: Theoretical, Methodological and Practical Issues". The
book addresses the issue of research on the social dimension of mathematics
education, and it will include one or more of the following topics:

1. The meaning of the "social" for research in mathematics education
2. Theoretical approaches encompassed within such a dimension
3. Appropriate methodologies and methods
4. The quality of research and research findings
5. The connection between research and practice

Given that the process of the call for papers and submission of proposals has
already advanced, the sessions of the project group will be devoted to presenting
some of the papers that will make part of the book and receiving critical comments
from the group members.
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Project Group PG6:
The Teaching and Learning of Stochastics

Coordinators: John Truran, University of Adelaide, South Australia

Kathleen Truran, University of South Australia

Dani Ben-Zvi, Weizmann Institute of Science, Israel

Carmen Batanero, University of Granada, Spain

This project group exists as a focus for members interested in the psychology of
the teaching and learning of probability, statistics and combinatorics. It maintains
an informal network between conferences by means of an electronically
distributed newsletter. It particularly seeks to bring together interested people
from all language groups, and does its best to provide translation facilities as
appropriate.

Part of our Project Group meetings in the PME 23 Conference will also be
devoted to ensuring that all of us have an opportunity to talk about our work.
People who wish to be involved in this Project Group are invited to make a 10
minute presentation on their interests. This might be supported by two or three
overhead transparencies and perhaps some handouts of work, which they think
will be of interest for others. We shall also discuss Projects being done jointly
with the International Study Group for the Teaching and Learning of Probability
and Statistics.

Work is continuing on the preparation of a book on Teaching Statistics
Teaching and Learning Statistics: Implications for Research which has its basis
in psychological and educational research. The basic outlines of this work were
decided at our meeting in 1998. Some material is also being prepared for a book
on Advanced Mathematical Thinking. Some material will be available for group
comment at this PME meeting.
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Discussion Group DG1:

Exploring Different Ways of Working with Video in
Research and Inservice Work

Coordinators: Judy Mousley, Deakin University, Australia

Chris Breen, University of Cape Town, South Africa

Harold Frederick, Arizona State University, USA

This discussion group is concerned with the use of video as a means for obtaining data
for research purposes and in teacher education.

During the 1998 PME Conference, the group centered its work around the ways in
which video data could be re-presented when endeavouring to communicate research
to others and to enrich our research stories. Issues around the 'truth' of classroom data
obtained from a videotape was explored against a background of conflicting realities.
Discussions around these themes elicited energetic debate.

We would like to invite people who are interested in this area to contact Judy Mousley
directly and to submit questions or issues that may stimulate discussion and practical
activities. Similarly, anyone who would like to offer a short activity that will maximise
the participation of those attending the sessions should send a brief proposal for it to
Judy (who can also give details about data projection and VCR facilities that will be
available, as well as about videotape format).

Questions that will be used to shape the 1999 sessions include:
How does the viewer's experience influence what they get from a video lesson?

What impact do extras (commentary, dialogue, transcription) have on
interpretation?
Are there clinical versus descriptive/analytical orientations to viewing lessons?
Does video data enable researchers to come closer to classroom reality?
Can experts identify and isolate examples of their theoretical perspectives in videos
of mathematics classrooms?
What are various "points of dialogue" in videos of mathematics classrooms?

The coordinators wish to signal their interest in this becoming a Project Group in
2000, so part of one session will be used for planning future work.



Discussion Group DG2:
Learning and Teaching Elementary Number Theory

Coordinators: Rina Zazkis, Simon Fraser University, Canada

Stephen Campbell, University of California, Irvine, USA

The discussion group on learning and teaching elementary number theory
convened for the first time at PME 21 in Lahti, Finland and continued its work at PME
22 in Stellenbosch, South Africa. Referring to "elementary number theory" we think of
concepts associated with multiplicative structure of natural numbers, such as factors,
divisors, multiples, prime and composite numbers, GCD and LCM, divisibility and
divisibility "rules", prime factorization and the Fundamental Theorem of Arithmetic,

among others.

A central mandate and guiding motivation for this group is to explore the extent
to which elementary number theory can serve as a gateway leading from concrete
arithmetic understanding to more abstract levels of algebraic understanding. During the
last two years the discussion group covered a broad spectrum of issues, including

the nature of number theory, its influence on the historical development of
mathematics, and its philosophical implications regarding the nature of mathematics
more generally

the role of number theory in the K-16 curriculum
difficulties teachers and students alike may encounter in understanding introductory

concepts of number theory
the utility of number theory as a vehicle for teaching and learning mathematical

concepts such as uniqueness, variables, and proof
theories and methods for conducting research into these areas

Participants enthusiastically recognized the need to encourage, conduct, and
disseminate research into the learning and teaching of elementary number theory. This
year, we Propose to discuss in more detail some of the issues, especially with respect
to the utility of number theory in learning and appreciating mathematical structure and
patterns. We also wish to share several insights from research in this area that have
influenced or may influence our teaching practice.

Some of the participants from last year's discussion group have offered to give
short 5-15 minute presentations of work that they have been conducting. These
presentations will serve as a focus for discussion and as an opportunity for feedback
from other participants. Another objective is to identify and pursue specific items for
potential collaboration in the areas of learning and teaching introductory number
theory, further research and its dissemination.
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Discussion Group DG3:
Mathematics in Working Practice

Coordinators: Richard Noss, University of London, UK

Celia Hoyles, University of London, UK

Rudolf Straesser, University of Klagenfurt, Austria

The Discussion Group on "Mathematics in Working Practice" starts from the
well-known dilemma:

Apart from basic arithmetic, Mathematics is not used at the workplace (a
statement always offered by workers when asked to describe the Mathematics
they use at work).

- The use of Mathematics is growing in production, reproduction and other
societal domains and is penetrating more and more domains of practice.

Starting from these contradictory statements, the Discussion Group will look
into:

- the current use of Mathematics at the workplace,

- research methodologies to explore the uses of Mathematics in the workplace,

- current and future ways to teach/learn Mathematics so that it connects more
strongly with the workplace,

- the role of "new technologies" and other artifacts in using, teaching and
learning work-related Mathematics,

- the foundation of a research network on Mathematics in vocational contexts.
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Discussion Group DG4:

Teachers' and Pupils' Mathematics-Related Beliefs

Coordinators: Erkki Pehkonen, University of Helsinki, Finland

Fulvia Furinghetti, University of Genoa, Italy

The importance of beliefs/conceptions in the study of cognitive and metacognitive
phenomena, as well as teachers' behavior and attitudes in the classroom are widely
recognized. The following passage' expresses very significantly this importance with
respect to the study of students' performances:

"purely cognitive" behavior is extremely rare, and that what is often taken for pure
cognition is actually shaped - if not distorted - by a variety of factors. [...] The
thesis advanced here is that the cognitive behaviors we customarily study in
experimental fashion take place within, and are shaped by, a broad social-cognitive
and metacognitive matrix. That is, the tangible cognitive actions produced by our
experimental subjects are often the result of consciously or unconsciously held
beliefs about (a) the task at hand, (b) the social environment within which the task
takes place, and (c) the individual problem solver's perception of self and his or her
relation to the task and the environment.

As for teachers, many studies have shown that beliefs are behind teachers' behavior in
their classroom and act as a filter to indications of curriculum developers2.

The discussion group will focus on the following three main issues, in addition to
issues which will emerge from participants' contributions:

Terminology: Some points need a careful discussion in order to agree on
terminology and description of terms. Even the words 'belief and 'conception'
have different meanings for different researchers.

Methodology: How do we detect and analyze beliefs, which in their nature are
entities hidden and elusive?

Effect: How may studies on beliefs/conceptions affect the classroom practice
and strategies for teacher education?

Schoenfeld, A. H. 1983, Beyond the purely cognitive: beliefs systems, social cognitions,
and metacognitions as driving forces in intellectual performance, Cognitive Science, v.7,
n.4, 329-363.

2 Thompson, A. 1992. Teachers' beliefs and conceptions: A synthesis of the research. In
A.D. Grows (Ed.), Handbook of research on mathematics learning and teaching,
127-146. New York: Macmillan.
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Discussion Group DG5:
Understanding of Multiplicative Concepts

Coordinators: Tad Watanabe, Towson University, USA

Julia Anghileri, Homerton College, University of Cambridge, UK

Angela Pesci, University of Pavia, Italy

Mathematical concepts within the 'multiplicative conceptual fields" include
multiplication and division operations, fractions, ratio and proportion, and linear
functions (Vergnaud, 1988). Understanding of these concepts mark significant points
in students' development as mathematics learners. 'Moreover, although these
concepts are taught at different grade levels, their developments are closely
connected (Harel & Confrey, 1994).

This dicussion group is a continuation of the Working Group on the same topic
which had been in existence for 3 years. There will be opportunities for participants
to informally share insights they have gained in their previous studies, discuss ideas
they are planning to pursue and develop potential collaborative research
opportunities. Although we will not limit our discussion to any specific topic, we
have agreed to spend some time discussing two ideas: (1) proportional reasoning, and
(2) development of algorithms for multiplicative operations.

References

Harel, G. & Confrey, J. (1994). The development of multiplicative reasoning

in the learning of mathematics. Albany, NY: Macmillan.

Vergnaud, G. (1988). Multiplicative structures. In J. Hiebert & M. Behr

(eds.), Number concepts and operations in the middle grades (pp.
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BECOMING A MATHEMATICS TEACHER EDUCATOR:

REFLECTIONS AND ANALYSIS

Bridget Arvold

University of Illinois

If findings from research on becoming a mathematics teacher extend to becoming a
mathematics teacher educator, then investigation into becoming a mathematics
teacher educator is crucial. Based on the assumption that mathematics teacher
educators impact not only their students but ultimately their students' students,
studies of becoming a mathematics teacher educator may illuminate not only our
understanding of a scaffolding of impact but also the complex process of
becoming. Unfortunately, research related to teacher educators is minimal and
focuses primarily on problems of identity (See Reynolds, 1995).

To initiate research in mathematics teacher educator's becoming, I scoured
recent PME-NA conference proceedings for author interest in teacher education. A
diverse group of seventeen of the 72 mathematics educators contacted, responding
electronically to an open-ended request to share their thoughts on the meaning of
becoming a mathematics teacher educator and on significant experiences that had
influenced or were influencing them in becoming mathematics teacher educators.
Attribution of sense making to the constructions of individuals and the introduction
of only "sensitizing concepts" to research participants supported a research
framework of interactionist theory as promoted by Blumer (1969).

Although interpretations of becoming a mathematics teacher educator were
diverse and exposed distinct perspectives such as personal growth, upward
movement in a hierarchy of authority, moral development, and service, a common
focus on communication permeated the data. Expressions of personal "naivete" as
a teacher as well as struggles to understand the "complexity of teaching" and of
one's "impact on teachers" contrasted with expressions of exploring "mirrors to our
souls" and "compromising an intellectual side." This small selective study suggests
that a wide variety of interpretations of becoming a mathematics teacher educator
and related attributions are prevalent. Follow-up research into how various
interpretations of one's own becoming interacts with one's practice and impacts
students and students' students warrants continued research in this area.

Blumer, H. (1969). Symbolic interactionism: Perspective and method. Englewood Cliffs, NJ:
Prentice Hall.

Reynolds, R. J. (1995). The professional self-esteem of teacher educators. Journal of Teacher
Education, 46, 216-221.
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TWO ASPECTS OF THE MATHEMATICAL RATIONALITY.
FUNCTIONS OF THE COUNTEREXAMPLE

Gustavo Barallobres, Mabel Panizza
Universidad de Buenos Aires, Argentina

This work deals with two identically constituent aspects of mathematical
rationality, involved when dealing with conjecture, and which depend whether
the aim is to determine the conjecture's truth or its validity domain.

According to this context, two different marks are particularly worth
reading a counterexample when dealing with a refutation: either to inform us
whether the conjecture is true or false (logical status) or to inform us the of
conditions under which it would be true (mathematical status).

Both sides, neither opposed to nor subordinated to each other, have to
do with the didactic responsibility domain.

After a cognitive and epistemological analysis, we have identified a
number of variables that could be considered to be relevant for a parallel and
complementary development of both aspects of mathematical rationality as
they could command different focusing.

In doing so, we have mainly considered Balacheff' contributions (1991)
in relation with the student's treatment of a counterexample and Duval's
contributions(1995) in reference to the components of the sense of a
proposition outside a theoretic context of enunciation.

The variables which have been identified are:
As regards the conjecture:
- Validity domain (finite, infinite)
- Author of the conjecture(student, partner, teacher)

Knowledge nature (intuitive, learned)
- Interaction between the "epistemic" value and the logical true value
As regards the counterexamples:
- Quantity (one, few, a lot, infinite)
- Characterizable ensemble (yes, no)

During the oral communication, we will ground our choices of these
categories and present a few problems belonging to the algebra domain
which have been chosen on account of them. We will also report some
results of an empirical study which aims to observe the cognitive functioning
of the students (ages 15-18) when facing such problems.

References
Balacheff; N. (1991). Treatment of refutations: aspects of the complexity of a constructivist
approach to mathematics learning. In E. Von Glasersfeld (ed.), Radical Constructivism in
Mathematics Education, 89-110. Kluwer Academics Publishers.
Duval, R. (1995). Semiosis et pens& humaine. Peter Lang.
Lakatos, I. (1976). Proofs and Refutations. Cambridge: Cambridge University Press.
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FROM NATURAL LANGUAGE TO SYMBOLIC EXPRESSION:
STUDENTS' DIFFICULTIES IN THE PROCESS OF NAMING.

Luciana Bazzini, Department of Mathematics, University of Padova, Italy.

The use of symbolic expressions seems to be a relevant cause of difficulties in
students at different school levels. Most difficulties emerge because of the
incapability to relate the algebraic code to the semantics of natural language. The
student able to express the relationships among the elements of a given problem
correctly, by means of the natural language, can be unable to express the same
relationships through the algebraic code.
The passage from natural to symbolic language is a key point in the development of
algebraic thinking and asks for special attention in teaching.
Starting from the analysis of students' difficulties when they have to coach their
stream of thinking in order to condense the most relevant aspects of a given problem
into a formula, we have deserved special attention to the initial approach in the
construction of algebraic expressions. Our focus is on the process of naming, i.e. the
process of assigning names to the elements of a problem in order to construct a
symbolic expression functional to the problem's solution.
In this process the role of letters is crucial. Letters can be used to give a name to the
elements involved in the problem and to emphasize the relationships among the
elements within an algebraic expression. The choice of names to designate objects is
strictly linked to the control of the variables introduced: since algebraic formulas are
usually not a linear stenography of what is expressed by means of natural language,
difficulties emerge, especially for novices (Arzarello, Bazzini and Chiappini, 1994)
An additional contribution is given by a study carried out with a sample of 244
students (aged 15-16 years) attending the first two grades of upper secondary school
in Italy. The study was set when the students have attended at least two years of
algebra. A questionnaire was submitted to the pupils: all items required a translation
of statements expressed in natural language into symbolic expressions involving the
use of letters. In particular we are concerned in studying the students' responses in
the case that the mathematical elements are already named by a letter, compared with
the case when they are not.
Two main features emerge from the data analysis: a difficulty in the items not simply
requiring a step by step translation from natural to symbolic language and a drop
down of correct answers in the items requiring the process of naming for the
elements of the problem. There is evidence that the semantic control of letters should
be systematically carried out by means of adequate coordination of different semiotic
registers (according to Duval, 1995).

Arzarello F., Bazzini L., Chiappini G.,1994, The process of naming in algebraic problem solving,
Proceedings of PME XVIII, Lisboa, Portugal, Vol.II, (40-47).
Duval R., 1995, Semiosis et pensee humaine, Peter Lang, Bern.
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A RELATIONAL ANALYSIS OF A MATHEMATICAL LEARNING EPISODE

Margot Berger

University of the Witwatersrand

Most members of the mathematics education community would agree that learning is a

complex and interrelated phenomenon. In this paper I demonstrate how the framework of
Activity Theory (Leont'ev) offers a tool for the analysis of mathematical learning episodes
which is commensurate with that perspective.

Certain mathematics educational researchers (such as Crawford, Meira) use Activity

Theory or aspects of it in their interpretations, but detailed and multi-leveled analyses in
terms of this theory are not common in the literature of mathematics education research.

In line with Activity Theory, which proposes purposeful human activity as the unit of

analysis, I explicate mathematical learning in the classroom in terms of the relationships

between the pupil's activities and the different elements of the learning system: the pupil
with his/her own history and motives, the goal of the mathematical task as subjectively
perceived by the pupil, the activities of the pupil (purposeful or automated), the actual
mathematical task, the social interactions (which include the teacher's mediations), the

tools and the setting.

Furthermore I argue that although it is necessary to regard these components as
analytically distinct, they are, in fact, interrelated and mutually constitute the learning

episode.

The episode which I analyse and interpret, derives from a case study of a lesson in which

two Grade 8 girls, working as a pair, are videod as they embark on a mathematical task.

The task involves moving from a graphical representation of the changing water levels in a

bath tub to a real world description of a sequence of events which could generate such a

graph. The task is given in a lesson published on the internet and as such, is presented to

the girls on a computer screen.

In this particular episode, the relationship between goals and activities is foregrounded.
The analysis shows how the pupils struggle to articulate the goal of this task; how teacher
mediation is required to explicate the goal; how the motives and cultural background of

each girl serve to re-orientate the goals of the other and how the maths activities change

as the goal does.

This small example illustrates the usefulness of Activity Theory as a multi-focal lens

through which to view the mathematical learning that may take place in the classroom.

LEONT'EV, A.N. (1981) The problem of activity in psychology. In J.V. Wertsch (ed.) The Concept of Activity

in Soviet Psychology pp.37-71. New York: M.E. Sharpe

MEIRA, L. (1995) Mediation by Tools in the Maths Classroom. In Meira, L.& Carraher, 13.(eds.) Proceedings

Of The Nineteenth PME Conference, 1995, 1. Recife, Brazil.

CRAWFORD, K. (1996) Cultural processes and learning: Expectations, actions and outcomes. In Steffe,

L.P., Nesher, P., Cobb, P., Goldin, A. & Greer, B. (Eds.) Theories of Mathematical Learning. pp. 131-

147. Mahwah: Lawrence Earlbaum.



THE EFFECT OF DRAGGING IN A DYNAMIC GEOMETRY
ENVIRONMENT ON STUDENTS' STRATEGIES SOLVING LOCUS

PROBLEMS

Irma Bershadsky and Orit Zaslaysky

Technion, Haifa

The concept of locus of points can serve as a unifying idea in geometry, reflecting a
basic and general approach in modern mathematics. In school, traditionally, the
approach to the notion of locus puts more emphasis on deductive inference and
computational methods for finding the algebraic equations of a limited class of
geometric loci, rather than pays attention to intuitive, geometric, visual aspects, which
are at the heart of this notion (Hershkowitz, Friedlander, Dreyfus, 1991).

The special visual features of Dynamic Geometry Environments open new
perspectives and powerful opportunities for mathematics education. However, these
opportunities can raise new difficulties. To make optimal use of computerized
environment, one must understand how students interact with the environment and
how students' mathematical thinking is reflected and affected by their use of the
environment (Ha7zan & Goldenberg, 1997).

The goals of this study are to explore the way in which dynamic features are used by
students while solving locus problems and the effect that this use might have on the
understanding of the concept of locus.

We report the main results of one case-study investigating the knowledge constructed
by a Grade 11 student while solving locus problems in a Dynamic Geometry
Environment during 12 sessions of about 2 hours each. A qualitative data analysis was
based on everything that the student said, constructed on the computer screen and
wrote on paper during these sessions.

Data analysis points to several stages through which the student went: At first, the
student was inclined to implement a segment-based approach to construct loci defined
by their properties. Then, by dragging points and marking their trace, the student was
able to find and reflect on the geometrical relations and properties that remained
unchanged under the dragging transformation. This process led to the student's insight
of "seeing" in his mind the locus as a global entity. The dragged points on the
computer screen played a significant role in the student's strategies. Finally, the
student developed an awareness of the limitations of his own segment-based strategy
and moved to a more global perception of locus and its construction.

Haz7an & Goldenberg, (1997). Students Understanding of the Notion of Function in
Dynamic Geometry Environments. International Journal of Computers for
Mathematical Learning. Vol.1, pp. 263-291.

Hershkowitz, Friedlander, Dreyfus, (1991). Loci and Visual Thinking. In Proceedings
15th PME Conference, Assisi (Italy). Vol. 2, pp. 181-188.
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USING THE UNDERGRADUATE MATHEMATICS CLASSROOM TO
CHALLENGE PROSPECTIVE SECONDARY TEACHERS' NOTIONS OF

MATHEMATICAL DISCOURSE

Maria L. Blanton

University of Massachusetts Dartmouth

The way that teacher and students interact with mathematical ideas in the social context

of the classroom structures students' thinking about mathematics (Wertsch & Toma,

1995) and so ultimately, prospective teachers' [PTs] thinking about teaching mathematics
(Lortie, 1975).The purpose of this proposal is to discuss results of using a one-semester,
undergraduate geometry course to challenge PTs' notions of mathematical discourse
[MD]. The course was structured to engage PTs (9 total) as student participants in MD, as
students in the pedagogy of MD, and as architects of MD. As geometry students, PTs

were expected to establish mathematical ideas through conjecture, justification, and peer
argumentation. The resulting MD, which PTs reported as differing from their previous
experiences in undergraduate mathematics, became a springboard for in-class analyses on

the nature of our dialoguing. The characterization of discourse as univocal or dialogic
(Wertsch & Toma, 1995; see also Lotman, 1988) was used to frame discussions about
MD. To engage PTs as architects of MD, each PT taught a one-hour lesson as part of the

class. The lesson was videotaped, transcribed, and analyzed with respect to the nature of

MD by the PT. Data for this study consisted of video recordings of the geometry class,
PTs' discourse analyses of their teaching, clinical interviews with each PT about his or

her discourse analysis, PTs' pre/post reflections about their notions of MD, and PTs'

reflections about the pedagogical and mathematical structure of the geometry course.
Results indicate that PTs matured throughout the semester in their ability to engage in

and reflect on MD. Moreover, by examining MD in the mathematics classroom, PTs were

able to dissect a mathematically authentic discursive event as they created it, allowing
them to apprentice more powerful techniques of MD than might be possible in other
contexts. Additionally, PTs' teaching episodes and subsequent discourse analyses
revealed to PTs the complexity of MD and deepened class discussions about MD. In
conclusion, the model used in this class seemed to give PTs a concrete, experiential
approach to understanding the MD needed to support students' mathematical thinking.

References

Lortie, D. (1975). Schoolteacher: A sociological study. Chicago: University of
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MATHEMATICS AND LITERATURE: LEARNING MATHEMATICS IN A
FOLK-TALE CONTEXT

Malka Brender, Nomy Dickman, Rachel Heller, Larisa Marku, Alla Shmukler,

Clara Ziskin, and Orit Zaslaysky

Technion, Haifa

In the past decade there have been many calls for connecting mathematics and other
domains (e.g., NCTM, 1989). The reasons for such calls are cognitive as well as
affective. The current study is based on the assumption that connecting literature and
mathematics can help decrease students' math anxiety, motivate them to learn
mathematics, and consequently, improve their attitudes towards mathematics

For the purpose of the study, a special booklet was developed called "On the Fairy
Tale Wings". This booklet continues a long lasting tradition of combining
mathematics and literature, which began in the 19th century. It includes the original
text in addition to a Hebrew translation of a Russian folk-tale called Princess the
Frog, new episodes interlacing the main plot and its characters, and mathematical
and logical problems associated with these episodes. The booklet and its activities
are intended for middle and high school students. For example, one type of problem
deals with plotting pictures of the various folk-tale characters by computer generated
graphs of functions.

In order to study possible effects of learning mathematics in such a context, an
experiment was conducted in which students had to read the folk-tale and engage in
the accompanying assignments. At the end of the experiment the students were asked
to pose new problems based on this folk-tale as well as other tales that they know.

Three 8th grade classes of students participated in the study. An attitude questionnaire
was administered prior to the experiment and after its completion. In addition,
classroom observations and student and teacher journals were documented and
analyzed. The findings point to students' increase in positive attitudes towards
mathematics and their inclinations and desires to combine mathematics and literature
in school. Interestingly, students' motivation to pose worthwhile mathematical
problems was also enhanced.
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ACQUISITION OF THE MODEL OF PROPORTIONALITY
SUPPORTED BY A HYPERMEDIA DOCUMENT

Isabel Cabrita and Armando Alves de Oliveira

Universidade de Aveiro Portugal

Our study was based on three fundamental pillars problem-solving,

the model of direct proportionality and the 'new' information and com-

munication technologies. The main objective of the study, which was

carried out with 7th Grade students, was to develop and validate a
hypermedia document which, designed according to aproblem-solving

methodology and a constructivist view of learning, might intervene in

the acquisition of the model of Direct Proportionality (Alves de Oliveira

& Cabrita, 1997 e Cabrita 1999).

We opted for an extra-curricular experimentation of our hypermedia pro-

gamme for two main reasons: firstly, the use of computers in the class-

room situation is not (yet) asystematic reality in Portuguese schools; and

secondly, for several reasons which have to do essentially with the de-

mocratization of schooling, the classroom space is not the most suitable

to cope with the individual rhythm ofeach student, or, cause and conse-

quence of the above, to respect different browsing behaviours. Although

we believe that this strategycould bring added advantages, we were con-

scious of the fact that it would certainly bring with it new responsibilities

for teachers who will increasingly have to know how to negotiate the

knowledge acquire in spaces other than the microcosmof the classroom,

leading to a broadening of the horizons of their professional development

In this context, and following the conclusion of the research (Cabrita,

1998), which we propose to divulgue in this paper, it was possible to offer

indications in three directions: about how interactive teaching programmes
should be designed and put into effect; about how, where and in what

conditions they should be exploited and about the implications of this

study for teacher education.

Alves de Oliveira, A., Cabrita. I. (1997), Interactive Multimedia and
problem solving on proportionality. Proceedings of PME21, vol 1, pp. 223.
Cabrita, I. (1998). Resolucao de problems: aquisicao do modelo de proporcionalidade
directa apoiada num documento hipermedia. Aveiro: Universidade de Aveiro. (Doc-

toral Thesis).
Cabrita, I. e Alves de Oliveira, A.,(1999) 0 hipermedia ao servico da
conceptualizacao do modelo de Proporcionalidade. III CongresoInternacional de
(Tele)Informcitica Educativa y II Foro de Tecnologia. Santa Fe: Argentina.
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PROSPECTIVE SECONDARY MATHEMATICS TEACHERS'
CONCEPTIONS OF FUNCTION: MATHEMATICAL

AND PEDAGOGICAL UNDERSTANDINGS

Insook Cha, University of Michigan, Ann Arbor, USA
Melvin (Skip) Wilson, Virginia Polytechnic Institute and State University, USA

This study investigates the three research questions: (1) What are the common
definitions of function given by preservice teachers?, (2) What are the common
preferred definitions of function for teaching given by preservice teachers?, (3)
What conceptions tend to impede or allow the selection of certain definitions of
function for teaching? Twenty-one preservice teachers enrolled in a required
mathematics methods course in the Fall Semester 1997 at a large mid-western
university in the US were subjects of the study. Preservice teachers' conceptions
were investigated both before and after they completed an instructional unit about
the teaching of functions. Open-ended questionnaires, observations, and written
documents of 21 subjects were collected and three subjects were each interviewed
twice.

Most subjects could not give more than one definitional description nor discuss
features of definitions. Analogical (machine/equations) definitions were the most
popular. Logical (set-theoretical) and genetical (dependence) definitions were not
common. Before the instructional unit, when selecting definitions to use in
teaching, most subjects were concerned with pedagogical reasons (whether they
thought students could easily understand/memorize the definition) rather than
mathematical reasons (whether the definition allows students to learn the nature of
the function concept). In contrast, after the unit most subjects were concerned
with mathematical reasons. This study also illustrates the importance of
integrating different domains of knowledge for a good pedagogical content
preparation. An understanding of functional relationships and their relation to the
genetical definitions as well as an appreciation for the usefulness of functional
relationships and the importance of multiple representations within and outside
mathematics were all significant factors allowing the selection of genetical
definitions. Preservice teachers' conceptions of students' understandings and
potential misunderstandings of the function concept were important factors
impeding logical definitions (particularly, correspondence and set definitions).
Some preservice teachers were reluctant to select a correspondence definition for
students because they believed that students might not readily grasp the ideas of
correspondence or sets.
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MATHEMATICS TEACHERS' USE OF THE NEW TECHNOLOGY
Cosette Crisan

South Bank University

Interest in teachers' subject matter knowledge and pedagogical content knowledge
has risen in recent years (Cochran et al, 1993, Meredith, 1993, Ruhama et al, 1996).
With the increased availability of the new technology (graphics calculators and/or
computers together with different items of educational software) in our schools, it is
important to examine how these components of teachers' professional knowledge
base affect and are affected by its use in teachers' instruction (Zehavi, 1997, Simmt,
1997).

The focus of this session is to report on a pilot study that involved a number of
secondary mathematics teachers who regard themselves as confident and competent
users of IT in their mathematics lessons. Three main factors affecting teachers' use of
the new technology emerged from the analysis of the interviews: types of hardware
available in schools and their accessibility, software & resources on the use of IT and
departmental policy. The presentation will also give an account of teachers' reasons
for starting to use IT, reasons for using IT in their mathematics lessons as well as
reporting on teachers' views regarding the value of using IT with respect to todays'
school mathematics, teaching of mathematics and their knowledge of mathematics.

In the analysis of the data there is evidence to suggest that the use of the new
technology enriches and challenges teachers' knowledge of mathematics as well as
their instruction. The findings point out to the importance of teachers' own learning
experiences when doing mathematics with the new technology.

The longer term intention is to develop a theoretical model which accounts for
teachers' learning about IT and teachers' incorporation of IT into their planning for
teaching mathematics. It is hoped that this will have useful implications for pre-
service and in-service teacher education area.

References
Cochran, K.F., DeRuiter, J. A. and King, R. A. (1993) Pedagogical content
knowledge: An Integrative Model for Teacher Preparation, Journal of Teacher
Education, 44(4), pp.263-272.
Even, R., Tirosh, D., Markovits, Z. (1996) Teacher Subject Matter Knowledge And
Pedagogical Content Knowledge: Research and Development. In L. Puig and A.
Gutierrez (Eds) Proceedings of the 20th Conference of the International Group for the
Psychology of Mathematics Education, (vol. 1, pp.119-134).
Meredith, A. (1993) Knowledge for Teaching Mathematics: some student teachers'
views, Journal of Education for Teaching, 19(3), pp. 325-338.
Simmt, E. (1997) Graphing Calculators in High School Mathematics, Journal of
Computers in Mathematics and Science Teaching, 16 (2/3), pp. 269-289.
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An Activity Approach to Dynamic Assessment

Chris Day

South Bank University

Ferrara (1987) investigated static tests which provide an index of a child's
developmental level. She discovered that the rate of adaptation to similar, but more
complex problems can provide a far more comprehensive index. This is indicated
inversely by the number of hints needed in the second training phase of a test-train-
retest procedure. In applying her assessment procedure, Ferrara (1987 p 106) found
that children who scored highly on the post-test were not simply the ones who did
well on the pre-test. Multiple regression indicated that background knowledge
accounted for 22% of the variance in residual gain scores and neither IQ nor
`Learning Efficiency' (total hints to reach mastery in simple addition problems)
produced any increase in this. However 'transfer efficiency' (total hints to reach
mastery in 'transfer and far transfer' problems) explained an additional 32% of the
variance in residual gain scores.

I have adapted Ferrara's basic method for use in the evaluation of a mathematics
teaching program that I have conducted in English middle schools. This mathematics
teaching program was based on principles of Activity Theory described by N
Talyzina (1981). Although my intentions were rather different, my own assessment
results were consistent with Ferrara's. I have, however, taken the view that Dynamic
Assessment is essentially an assessment of social interaction and cannot provide an
index of individual potential. I will suggest some theoretical considerations
concerning the genesis of the generalisation and fluency of mental actions that I
consider to be of central importance for the development of Dynamic Assessment
procedures. I will also briefly present some of my results and I will outline some
modifications to Ferrara's method which I have used to develop the Dynamic
Assessment procedure within the theoretical framework of Activity Theory.

References:

FERRARA, R.A. (1987) Learning Mathematics in the Zone of Proximal
Development: the Importance of Flexible Use of Knowledge ( PhD Dissertation,
University of Illinois, Champaign).
TALIZINA, N.F. (1981) The Psychology of Learning: Theories of Learning and
Programmed Instruction (Moscow: Progress Publishers)



THE "CESAME " PROJECT:
MATHEMATICAL DISCUSSIONS AND ASPECTS OF KNOWLEDGE

Jean-Philippe DROUHARD
DIERF (IUFM de Nice)
drouhard@unice.fr

Catherine SACKUR
GECO (IREM de Nice)

sackur@unice.fr

Within the research field of Social Constructivism (Ernest, 1995), we are
working on a project called CESAME: in Nice (France): J-Ph. Drouhard, M.
Maurel & C. Sackur; in Paris (France): T. Assude & N. Douek; in Madrid (Spair):
Y. Paquelier; in Buenos Aires (Argentina): G. Barallobres & M. Panizza. The
word, "CESAME", is an acronym of the following French words: "Construction
Experiencielle du Savoir" et "Autrui" dans les Mathematiques Enseignees ", which
could be more or less well translated as: " the Subject's Experience of Dialogues
with Interlocutors ("Others") in the Social Construction of Taught Mathematical
Knowledge ".

Our starting point was the following. What is the teacher supposed to do, at
the end of a Scientific Debate (Legrand, 1988) or more generally of a Mathematical
Discussion (Bartolini-Bussi, 1991), in order to turn the many statements yielded by

the discussion into "official" mathematical statements, which is "Institutionalisation"
in the terms of the Theory of Didactic Situations (Brousseau, 1997, Margolinas
1992, 1993)? And what is s/he actually doing? On the one hand, in a strict Social
Constructivist point of view, the group is supposed to " construct " the whole
mathematical knowledge by itself, the teacher's role being just to lead the
discussion. On the other hand, the teacher actually says something about the new
common knowledge. Well, what does s/he says?

Obviously, the teacher institutionalises something more than the strict
`content' of the mathematical text. In order to give a framework to this idea, we
propose to consider that knowledge present three aspects. The first aspect is made
of the mathematical content of the knowledge, the semantics of the related
statements (definitions, theorems...). The second aspect contains the rules of the
mathematical game (`game' in the sense of Wittgenstein), the principles that make
the definitions define as they are supposed to do, the theorems prove as they are
supposed to do etc. The third aspect contains the most general believes about
mathematics, as for instance "mathematics is a matter of understanding" or in the
contrary (as many students say), "algebra is just a matter of formal rules".

Within this framework, to learn mathematics is to learn mathematical
contents (aspect 0, is also to learn how to do mathematics the way mathematics are
supposed to be done (aspect n) and is also to learn what are mathematics (iii). On the

other hand, to teach that a statement is mathematical, is also to teach that
mathematics are made (iii) of statements like the one which is taught (i)!

After a first theoretical study we are at present, collecting more empirical data.

2 9 3 1 - 272



WHAT DO STUDENTS DO WITH CONJECTURES? PRE-SERVICE
TEACHERS' RESPONSES TO A GENERALIZATION TASK

Laurie D. Edwards

St. Mary's College

Rina Zazkis

Simon Fraser University

Problem-solving and generalization are central activities in mathematics,

with the solution to difficult problems often requiring generalization

across specific cases. In order to support students' learning of

generalization , teachers of mathematics require experience with this

process themselves. This study examines the work of undergraduate

students enrolled in a mathematics course for prospective elementary

school teachers, as they grappled with a challenging problem in number

theory (determining the number of squares crossed by a diagonal in a

rectangular grid). The central research question examined how students

responded to evidence that did not confirm their conjectures. Although in

such a case, it is mathematically normative to reject or revise the

conjecture, not all students had internalized this norm. An analysis of 27

written problem solving journals revealed that although few students were

successful at finding a complete and correct general solution to the

problem, most responded appropriately to disconfirming evidence.

Variants from the normative response are described and implications for

instruction discussed.
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Literacy-in-mathematics perception of mathematics educators: From
Literacy-in-mathematics to mathematics literacy

Hanna Ezer, Levinsky College
Dorit Patkin, Hakkibutzim College of Education
Shosh Millet, Achva Academic College

In this paper we present the relations between literacy and
mathematics as perceived by mathematics educators such as pre-service
teachers, in-service teachers and teacher trainers. The relations between
mathematics and literacy develop on the backdrop of the perception of
using literate activities in the disciplines in order to develop learning and
thinking (Fulwiler and Young, 1990; Ackerman, 1993).

The purpose of this study is to investigate through questionnaires
and interviews the participants' perceptions of the notion of literacy in
general, the relations between literacy and mathematics in particular and
the contribution of literacy to the teaching and learning of mathematics.
All participants had been exposed to the notion of literacy in

mathematics during a one year in-service and pre-service courses.
Findings indicate that students and teachers of mathematics hold

medium to low perception of literacy in general and literacy in
mathematics in particular, though teacher trainers hold high perception of
both. Yet, pre-service teachers reveal higher perception of literacy in
general, probably due to exposure to literacy learning in other courses in

a teacher training college.
Following the study results we recommend the use of literacy

activities such as oral discussion, reflective journal, writing process
(Waywood, 1992; Scheibelhut, 1994) etc. in mathematics in-service and
pre-service courses. The training period should be longer, using
reflective tools and coaching to strengthen the perception of
literacy-in-mathematics in order to develop mathematics literacy in
teachers and student teachers as well as in school students.

Ackerman, J.M. (1993 July). The promise of writing-to-learn. Written
Communication, 10 (3), 334-369
Fulwiler, T. & Young, A. (1990). Programs that work. NI-I: Heinemann

Educatonal Books
Scheibelhut, C. (1994 December). I do and I understand, I reflect and I

improve. Teaching children mathematics, 242-246
Waywood, A. (1992 June). Journal writing and learning mathematics.

For the Learning of Mathematics, 12 (2), 34-43
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TEACHER DEVELOPMENT: A SELF-INQUIRY APPROACH
Razia Fakir Mohammad, University of Oxford, Department of Educational Studies, Oxford, UK

In this presentation I offer and analyse accounts of how teachers and a mentor learned
about their practice through a process of self-inquiry in a research study in Pakistan.
Action research was the method for analysing and learning from the significant
accounts of the teachers' practice. The purpose of the study was not to examine the
meaning of being a teacher, nor to provide teaching strategies and underlying
teaching practice, but to explore the ways in which action research contributed to the
teachers' process of development by helping them to create their own theories of
teaching and learning. The investigation was carried out in a Karachi school as a
partnership between a mentor and two mathematics secondary school teachers in
1996. The agenda for study had two parallel strands: in one, teachers learned to
search their own classroom practice on their own as insider and perceived themselves
as an agent of change of their own practice rather than received knowers; in the
second the mentor was involved in researching the teachers' learning as a result of
teachers' research. It was a two-level inquiry with a co-operative learning agreement.
As a participant observer the mentor-researcher performed the role of an observer,
who observed the lessons and took notes; a listener, who listened to the teachers very
carefully; a stimulus, who encouraged them to reflect on the significant aspects of
teaching and learning; a task-keeper, who focused their thinking; and a guide, who
helped them to improve their practice and develop their own theories of learning. On
the other hand the teachers were involved in planning, implementing and reflecting
through the period of study. They had three roles: teachers planning and
implementing their teaching; researchers - researching their practice by examining
and reflecting; learners - developing new understanding of children's learning
mathematics. The data was collected in one academic year. The mentor-researcher's
data included field notes, transcription of audio recording of dialogue and notes from
reflective journals. Teacher-researchers maintained reflective journals as a record of
significant accounts of teaching and meeting with mentors. All the details of data
were shared among the participants( teacher-researchers and mentor-researcher) on
an on-going basis. There was on-going data analysis, which helped the participants
to plan and decide further actions. The fmdings show action research as an evolving
experience, because of the nature and significance of development of self-reflection
and a sense of ownership of the participants concerning their actions and
development of theories in collaboration. This presentation will share some insights,
which show how reflection and dialogue on the classroom events helped the teachers
to learn and understand the different aspects of mathematics and teaching
mathematics and an understanding of action research as a result of practical
experience of conducting the research.
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MEANING PRODUCTION FOR FUNCTION: PARALLEL AXES

Authors: Janete B. Frant and Monica Rabe llo de Castro

Affiliation Universidade Santa Ursula - Instituto de Educacao Matematica

The purpose of this study is to investigate how high school students produce
meaning for linear function while working in an unusual environment. This
environment, called P.A.RParallel Axes Representation, was proposed by Arcavi
and Bruckheimer (1996). In this presentation we will discuss the process followed
by two students while developing a formula to relate the cartesian representation to

PAR representation.

The theoretical framework is based on the notion of meaning production proposed by
Lins (1997). We agree with Lins that meaning production is related to enunciation,
actually he defined meaning production as everything that is effectively said about an

object. In this way, we are analyzing the dialogues that arise during students'
argumentation. In order to analyze data we develop a argumentation strategy model
based on Perelman's Argumentation Treatment (1996).

The study took place in a public high school in 1997. Two 10th grade students were
videotaped during 6 one-hour-and-forty-minute meetings.

Three points will be discussed: 1) How to find the image of a point in PAR, 2) the
Crucial Point and 3) the Formula to enable relating cartesian and PAR
representation.

Fragments of Crucial Point Dialogue

1. P- I told you to not connect
2.F- So it's all wrong
3.P- No. Why is it all wrong?
4.F- Because if it doesn't work for one [point], it can't work for the others.

5. P- Cool
6.F- Uaaauuu, it always connect in the same point. I discovered it the Crucial Point.

7.F- Is everything already invented or we can invent things too?
8.P- I don't know
9.F- Because call it crucial point because I think it's cool, but I do think they already

invented it.
Partial Findings: We found that working in this unusual environment students were

able to be flexible in using algebraic and graphic representation, to elaborate a
formula to pass from cartesian to PAR representation and vice-versa. Moreover,
they believed they were able to invent mathematics.

Reference
Arcavi, A and Bruckenheimer. 1996. PAR micromundo. Serie Reflexoes em Educacao Matematica.

MEM/USU.
Lins, R. 1997. Perspectivas para Aritmetica e Algebra. Ed Papyrus SP

Perelman,C. 1996. 0 Tratado da Argumentacao. Ed Martins Pena SP
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Computers and the teachers' role in mathematics learning environment.

Some episodes from the classroom.

Anne Bent Fuglestad

Agder College, Kristiansand, Norway

In a teaching experiment, with students of age 10 - 14, computers were used in
the teaching of decimal numbers with some spreadsheet tasks (Fuglestad, 1996b;
Fuglestad, 1996a). Based on a constructivist view of learning (Davis, Maher, &
Noddings, 1990), the aim was to implement a diagnostic teaching approach (Bell,
1993) to stimulate the students' construction of knowledge.

In order to help the class teachers combine the use of computers with a diagnostic
teaching approach, some spreadsheet tasks were provided on student worksheets.
The teachers were given an introduction to computers in the classroom including
spreadsheets, diagnostic teaching and the worksheets over three days.

The teachers' role appeared to be crucial in utilising the potential of the computer
and spreadsheet tasks. Clearly, this can be seen from episodes where the
students' misconceptions were provoked and discussed, and from other episodes
which revealed less. The teacher's or observer's intervention, asking questions or
giving suggestions for further trial, was of major importance. The teacher should
not give the answers too quickly, but give the students time to reflect on their
experience and discuss in small groups and in class. There was also a need to
give clear introductions, to follow up, to summarise findings and to provide
further discussion in the class.

The teachers' awareness of diagnostic teaching was vaguer than expected at the
end of the research. However, some elements were implemented and in particular
some spreadsheet tasks helped them to achieve this. The computer apparently has
the potential to be a useful tool in diagnostic teaching;but there is a need to
strengthen the teachers awareness of their role in implementing this.

Reference List

Bell, A. (1993) Some experiments in diagnostic teaching. Educational Studies in
Mathematics, 24, 115-137.

Davis, R.B., Maher, C.A. & Noddings, N. (1990) Constructivist views on the teaching and
learning of mathematics. Journal of Research in Mathematics Education. Monograph
number 4. National Council of Teachers of Mathematics.

Fuglestad, A.B. (I 996a) Computers and the understanding of mathematics. A study of
teaching decimal numbers. PhD thesis. Agder College, Research Series no 6, 1998.

Fuglestad, A.B. (1996b) Students' misconceptions with decimal numbers - preliminary results
from a study of computer based teaching. In L. Puig & A. Gutierrez (Eds.).
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What do Mathematics Senior Phase Teachers Understand about the new
Outcomes Based Curriculum 2005?

Ms. Mellony Graven
RADMASTE Centre, University of the Witwatersrand, South Africa

The Programme for Leader Educators in Secondary Mathematics Education (PLESME) began

workshops with teachers from schools in Soweto and Eldorado Park (both urban townships

outside Johannesburg) in January 1999. The primary goal of this programme is to:

create leader teachers in mathematics with the capacity to interpret, critique and

implement current curriculum innovations in mathematics education in South

Africa and to support other teachers to do the same.

South Africa is currently embarking on radical curriculum change which aims to implement an

outcomes approach to education. This curriculum places a significant emphasis on the

contextualisation of mathematics, socially, politically, economically and historically. It also

places a significant emphasis on mathematising particular mathematical processes such as

mathematics communication, interpretation and justification.

Previous research work, conducted by myself, indicated that very little information about
curriculum development was being disseminated in these areas. The interim curriculum, which

was to be implemented at the Senior Phase Level in 1995, had never reached the schools and

little or no information had reached them about the new outcomes based education curriculum

which was initially scheduled to be implemented at the Senior Phase level in 1997.

The research work presented here is part of a broader two year research plan which aims to

investigate mathematics teachers' learning especially as it relates to implementing 'new' aspects

of mathematics emphasised within the current South African context of curriculum change.

The PLESME Programme and its related research began in October 1998. This research paper

will look at some preliminary findings of baseline questionnaires and interviews conducted with

ten teachers from Soweto and Eldorado Park. The interviews and questionnaires covered a range

of topics such as teachers' views on how mathematics should be taught, their understanding of

the new curriculum and its related mathematics specific outcomes, who teachers talk to about

their mathematics teaching etc.

In this presentation I will discuss teachers' understanding of the new curriculum and the related

mathematics outcomes as revealed by analysis of the transcriptions of recorded interviews with

teachers and their written responses to the questionnaires.

Some preliminary findings indicate that:

teachers have not received any documentation relating to the new curriculum. Most of

their opinions have been informed by what they have read in newspapers and what they

have heard from teachers who have implemented it in grade 1.

there is a mixture of positive and negative attitudes towards the value of the new

curriculum and variation in their understanding
o teachers have difficulty understanding the meaning of the maths specific outcomes
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WHEN OBSTACLES SEEM TOO BIG

Michael D. Hardy

University of Southern Mississippi Gulf Coast

This paper is based on a case study of Sharon, a middle school

mathematics teacher who endorsed a constructivist epistemology and strove

to use a variety of instructional strategies to teach for understanding as well

as computational skill. The goal of the study was to gain insight into how

Sharon made sense of her teaching experiences by investigating both her

constructions of such experiences and her beliefs about teaching and

learning.

Over the course of the study, it became apparent that a discrepancy

existed between Sharon's teaching and her ideal for teaching. Sharon was

aware of this discrepancy but was able to justify it. Hence, it did not

perturb her. Sharon's efforts to use a variety of instructional strategies

were further impeded by student resistance, her conception of her role as

an educator, and limited engagement in critical reflection. However,

participation in communicative discourse (Habermas, 1987) could have

perturbed Sharon with respect to her beliefs and practice, helped her

envision alternatives for her practice, and provided support for her efforts

to alter her pedagogy. This is significant because all of these potential

outcomes are components of the process of teacher change (Shaw &

Jakubowski, 1991). Thus, participating in communicative discourse could

help teachers alter their practice and overcome pedagogical constraints.

Habermas, J. (1987).The theory of communicative action (Vol. 2) (T.
McCarthy, Trans.). Boston: Beacon. (Original work published 1981)

Shaw, K. L. & Jakubowski, E. H. (1991). Teachers changing for changing
times. Focus on Learning Problems in Mathematics, 13, 13-20.



ATTITUDES OF PROSPECTIVE HIGHSCHOOL
MATHEMATICS TEACHERS TOWARDS INTEGRATING

INFORMATION TECHNOLOGIES IN THEIR FUTURE
TEACHING

Orit Hazzan

Technion Israel Institute of Technology, Haifa

& Oranim College for Education, Tivon

ISRAEL

Hundreds of papers are published nowadays arguing that computers
become an integral part of our lives and, as such, should be integrated
into educational systems as well (Cf. Edelson, Pea and Gomez, 1996;
Flake, 1996). Since such integration requires a change in teaching
methods, teachers play a central role in such a transition. Of course, this

is also true in regard to teaching of mathematics.

The talk presents attitudes of prospective mathematics teachers
towards integrating computers in their classes in the future. A course took
place, which focused on didactical and cognitive aspects of learning
mathematics with computers. At the end of a course, ninety-four
prospective teachers (from 4 classes) were asked to present reasons, pro
and con, that would influence their use of computers in their future
mathematics teaching. Based on written questionnaires and class
discussions, the reasons given by the prospective teachers were grouped

into the following two-dimensional theoretical framework:

learner teacher mathematical
content

learning
environment

class
atmosphere

cognitive
factors

affective
factors

social
factors

In the presentation I explain what each category means, present reasons

given by the prospective mathematics teachers, and suggest some
plausible implications of these attitudes on mathematics education.

References
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STUDENT'S OWN MATHEMATICS AS AN EXPLANATION FOR ERRORS IN
DRUG CALCULATIONS

Sinikka Huhtala

Department of Teacher Education, University of Helsinki, Finland

Accurate mathematical calculations are a critical skill that nurses must demonstrate in
order to safely administer medications. However a review of published research
shows that many nursing students are unable to accurately calculate medication
dosages because they are deficient in basic mathematical skills: they have deficiencies
in decimals, fractions and metric conversion. They also fail to recognize incorrect
answers, they have negative attitudes toward mathematics and little confidence in their
ability to solve problems. (e.g. Cartwright 1996, Huhtala 1996, Pozehl 1996)

This study explains the errors in drug calculations with student's own mathematics.
Data for this study has been collected by tape recording small group instruction of
practical nurse students in a mathematics clinic (Case studies).

The student's own mathematics consists of experiences as a learner in mathematics,
emotions towards mathematics and strategies and mini-theories which students use
while studying mathematics. When a student has very negative experiences and math
anxiety, she/he tries to avoid mathematics and chooses superficial strategies while
working with mathematical problems instead of trying to understand. These strategies
may change to permanent mini-theories like "in division you must always divide the
bigger number by the smaller" or that "multiplication always makes bigger and
division always makes smaller" or " when you convert grams to milligrams the answer
always has four numbers". As a result this own mathematics leads to errors like this:

Mrs. Malmi (aged 64) is to take 40 IU of Insulin. The strength of Insulin is
100 IU/m1; how much should the patient be taking?

100 TU/rnl. : 401U = 2,5 ml

The short oral presentation will further describe the student's own mathematics and
how this should be taken into consideration in the instruction.
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INSTITUTIONAL RELATION TO A MATHEMATICAL CONCEPT:
THE CASE OF LIMITS OF FUNCTIONS IN MOZAMBIQUE

Danielle Huil let and Balbina Mutemba
(Eduardo Mondlane University, Maputo, Mozambique)

Changes of settings introduced by the teacher could help the students to understand

different aspects of a concept and make their conceptions evolve (Douady, 1986).
The concept of limit may be defined and limits determined in a purely analytical
setting, but concept may also be illustrated and studied in numerical and graphical
settings. Students may learn to work in various settings, but experience indicates that

they often see no link between them.

This paper presents the first results of an on-going research which aims to construct a
didactical engineering (Artigue, 1992), using changes ofsettings, in order to improve
the teaching and learning of limits of functions in the Mozambican Secondary

School.

In the very first place, and using the anthropological approach of Chevallard (1992),
the institutional relation of the secondary school to this concept has been analyzed
through the contents of curricula, textbooks and final exams. This study suggested
that limits of functions are shown as algebraic transformations and procedures that
the students have to learn in order to calculate limits. Usually the results of the

calculation are not interpreted.
The only book produced in Mozambique on this topic at this level has a very formal
approach (formal definitions and demonstrations). However it only requires the
students to apply procedures. In the final secondary school exams, there are always

two exercises to calculate complicated limits and very few exercises linking limits
with graphs. It seems that the secondary school institution has an "algebraic
conception" of limits of function as an opportunity of creating algebraic
transformations for the learners to apply.

In that moment the relationship of some secondary school's teachers to this concept

is being studied through a questionnaire and interviews.
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THE PROCESS OF ACCEPTANCE OF THE REALISTIC
MATHEMATICS CURRICULUM BY TEACHERS IN HARARE

GODWIN HUNGWE

UNIVERSITY OF ZIMBABWE

The study will investigate the process of acceptance of the realistic mathematics
curriculum by secondary school mathematics teachers in Harare, Zimbabwe.

According to the realistic mathematics curriculum students should be guided to
re-discover mathematical concepts and skills from contextual situations and from
class discussions. Teachers should stimulate pupils to find their own solutions
instead of teaching by demonstration (Freudenthal, 1973; Gravemeijer, 1994;
van Galen & Feijs, 1991). Research in The Netherlands showed that initially
teachers followed the realistic mathematics curriculum mechanically but after
familiarisation, they implemented it more flexibly (Gravemeijer, 1994).

The current mathematics curricula in Zimbabwe were investigated for evidence
of the presence of the realistic mathematics curriculum. A sample of
mathematics teachers in Harare, will complete questionnaires, be interviewed
and observed while teaching. Only the teachers who are unaware of the realistic
mathematics curriculum will be in-serviced in the processes of this curriculum
and be observed while teaching. They then will complete questionnaires and be
interviewed again.

Documentary evidence revealed that the current mathematics curricula in
Zimbabwe do not promote the realistic mathematics curriculum. The
pre-treatment questionnaires and interviews will hopefully reveal the teachers'
current beliefs and practice in mathematics instruction, while on the other hand
the post-treatment ones may reveal acceptance or non-acceptance of the
curriculum by the teachers.

1. Freudenthal, H. (1973) Mathematics as an Educational Task Dordrecht,
Reidel Publishing Company.

2. Gravemeijer K.P.E. (1994) Developing Realistic Mathematics education,
Calemborg, Utrecht: CD-B Press.

3. van Galen F. and Feijs E. (1991). Interactive video in teacher training. In
L. Streefland, (Ed.), Realistic Mathematics education in primary school
(pp 11-20). Utrecht, CD-B Press.
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The Effects of the Exposure to the "Math is Next" Database on
Teachers' Methods in Teaching Mathematics to Young Children

Bat-Sheva Many, Ilana Binyamin Paul, Miriam Ben Yehuda, Rina Gafny, Nehama Horin
Belt Berl College, Israel

"Math Is Next" is a computerized database intended to help the teacher to construct a
work program for developing mathematical thinking in young children. The database
assists the teacher in planning the work and in constructing a rich, experiential and
authentic mathematical learning environment, that combines creativity and use of
language and is appropriate for the individual needs of every learner. At the foundation
of the database is a matrix that lists the academic skills, on one axis (mathematical
concepts and development of thinking skills), and the cognitive processes through
which we transmit information (processing of visual, audio and sensomotor information
and memory), on the other axis. These information processing options play an
important role in everyday life and in acquiring the foundations of academic skills,
reading and arithmetic. Junctions of coordinates form "cells" and we inserted the
appropriate activities in each cell. Attached to the activity card there are, frequently,
related cards with additional suggestions and games for similar materials that can be
prepared for the children.
The program was tested in 21 kindergartens and lower elementary school grades. The
study findings indicate improvement in the teachers' self-confidence and sense of
competence to teach mathematics, as well as changes in their methods of working in the
kindergarten and classroom. The study method was qualitative, employing the
following tools: Semi - structured interviews, Observations, Supervision and reporting.
The study findings indicate that following the use of the database, changes took place in
two principal areas: A. Changes in the teacher's sense of competence and degree of
confidence and readiness to deal with the subject of the development of mathematical
thinking in young children. B. Changes in the teacher's teaching methods came along
with the developing sense of competence and acquired self-confidence:
The findings show that the "Math Is Next" database is user friendly and easy to operate.
The teachers did not view the database as "just another tool", but as a pivotal tool that
can assist and can be "relied" upon in constructing the curriculum for young children.
Other teachers pointed out the substantial contribution of the database to the teaching of
mathematics to young children and the changes that took place in their teaching.
According to them, the principal contribution of the database is its structured
organization (search table) that enables the teachers to teach mathematics by employing
a variety of teaching methods, with which they were unfamiliar prior to encountering
the computerized database.
The conclusions of this study are that when teachers are offered a tool that presents
content in a well organized and well defined form that fulfills their teachers' needs, they
feel greater confidence and competence in dealing with teaching mathematics. As a
result, these teachers engage the children in mathematical activities more frequently and
are more inclined to attempt a variety of new teaching methods.

Demo of "Math Is Next": http://www.beitberLac.i1/intmatieng.htm
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DEVELOPING SKILLS OF ADVANCED MATHEMATICAL THINKING

Kahn, P. E., Department of Mathematics, Liverpool Hope University College

It is becoming apparent that many students studying mathematics in higher
education do not possess the necessary skills of advanced mathematical thinking,
especially in the UK [1]. This paper describes an action research project that sought
to help 40 first year undergraduates at the author's institution develop a variety these
skills, going beyond a focus on one skill.

The project initially identified several skills as critical to the study of
advanced mathematics. These were the ability to write mathematical text, think
logically, solve problems, improve own learning of mathematics, and make
connections between concepts [2]. A metacognitive approach to skill acquisition was
followed, in which the aim was to direct students towards active and deep, rather
than surface, approaches to learning. The students were alternatively introduced to
content from abstract algebra and to the skills themselves, with learning in each of
these areas reinforcing learning in the other area.

A variety of methods were employed to consider the effectiveness of the
innovation. Student evaluation schedules and examination results indicated that the
innovation was positively received and led to good outcomes. Coursework and the
teaching experience indicated that the skills were unfamiliar. They further indicated
that too many elements of the first skill, writing mathematical text, had been covered
in the time available. Work on developing the remaining skills was thus scaled
down, with outcomes on coursework improving. The need for an appropriate balance
of familiar and unfamiliar material was also apparent. A standard instrument [3]
indicated increases in students' confidence for their study and that motivation had
remained good. Qualitative questionnaires further linked increases in confidence to
good outcomes and suggested this had been aided by the integrated nature of the
work on skills and content. Responses also indicated a shift towards more cohesive
views of mathematics, which is of importance to deep learning. Promoting skills as
relevant to every area of mathematics may have helped lead to this shift. Responses
finally indicated that some students had begun to take greater account of the nature
of mathematics in their learning.

The project indicates that a need exists to help students develop the skills of
advanced mathematical thinking and provides a variety of lessons for programmes
that make dedicated teaching and learning available to meet this need. Finally, it is
interesting to note that such programmes may wish to consider ways in which these
skills can be applied in a wider context than just the study of mathematics.

REFERENCES
[1] Kahn, P. E. and Hoyles, C. (1997) Studies in Higher Education 22(3) 349-362
[2] Tall, D. (ed.) (1991) Advanced Mathematical Thinking (Kluwer)
[3] Galbraith, P. L. and Haines, C. R. (1996) "Student perceptions of computing,

mathematics and their interaction" in Mathematics and Common Sense (eds.
Keitel et al) Proceedings of CIEAEM 47, Berlin, 1995.

1 - 285 311



COMMUNICATIVE INTERACTIVE PROCESSES IN PRIMARY
VERSUS SECONDARY MATHEMATICS CLASSROOM

M. Kaldrimidou', H. Sakonidis2, M. Tzekaki3
'University of Ioannina, 2Democritus University of Thrace, 3Aristotle University of

Thessaloniki, Greece

A number of studies have put emphasis on the importance of the interactive patterns of

teaching and learning in the acquisition and the development of mathematical knowledge.
An essential aspect of this view is that the way the teacher defines the frame of
mathematical knowledge, poses questions, refuses and reinforces students' answers and

propositions provides decisive orientation for the children with regard to what the legitimate

conceptions of mathematical knowledge are.

However, as many researchers argue, there should not be a total shift of analytical attention

from subject matter-structure to social-interactional structure because there is then «a risk of

destroying theoretical mathematical meaning by a reduction and an hypostasis of
mathematical relations instead of inducing an enrichment of meaning by the interactive

construction of new and more general relations» (Steinbring, 1998).

An analysis of the interaction in the mathematics classroom that takes into serious
consideration the epistemological as well as the social-interactional conditions helps to

provide a better understanding of how the communicative patterns and routines emerge and

«makes it possible to re-establish a sound interactive mathematical reasoning that has been

destroyed by these communicative patterns and routines» (Steinbring, 1997).

The results of an earlier study (Ikonomou, Kaldrimidou, Sakonidis and Tzekaki, 1998)

showed that the teaching approach adopted by Greek primary teachers, possibly because of

their poor mathematical pre-service training, does not often allow pupils to conceive the
epistemological features of mathematics. In the present study, a comparison between
primary and secondary mathematics lessons is carried out with respect to the following
questions: What kind of ideas and meanings regarding mathematical knowledge are

constituted during the course of the mathematics teaching? How do the communicative

patterns and the epistemological constraints of the mathematical knowledge influence each

other? What hinders or favours the development of mathematical meaning during the course

of classroom interaction?
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Diagnose and Treat Pupils with mathematics difficulties in middle schools
YOUSEF KHOURY & NASIF FRANCIS - Wiezmann Insititute

Arab pupils in middle schools in Israel learn mathematics according to the Rehovot
program. The textbooks and the supplementary material of the program have been created
and implemented by the mathematics group at the science teaching department of Weizmann
Institute of Rehovot. Among this group there is a special team whose members are Arab
educators, their work is devoted to the translation of the textbooks and the supplementary
material in the Arab junior high school. The present project is one of the special and
important activities of the Arab team of the mathematics group. The clear objective of the
project is to identify the specific difficulties that face the low capacity student in regular
classes as well as in classes of lowest level where from the beginning the material was
written for these pupils, and trying to create remedial materials.
This project is distinguished by:

The approach that adopt from the beginning is the implementation of the research to
create the materials.

The involvement of the teachers in diagnostic stage of the process and his commitment
to implement the remedial material.

The originality and the accordance for needs of the Arab pupils and teachers.
The development of the tools and the suggestions for treatment in the project are done

on the basic of academic research. Those tools contain a lot of attractive worksheets,
games and computer activities.

The project process:
First stage: numbers and number problems: (From the elementary school curriculum)
Second stage: algebraic expressions (early algebra learning)
Third stage: algebraic expressions (in process)

Diagnose and treat algebraic expressions
The importance of the subject for studying mathematics in later gra,des of the high school, and
Algebra "is a source of considerable confusion and negative attitude among pupils"I,
motivated us to diagnose the difficulties faced by Arab pupils concerning this topic and to
find how to treat them
The diagnosis
We choose to check three topics:
1) Substitution in different algebraic expressions;
2) Operations on algebraic expressions in order to get similar expressions;
3) Translation of problems in mathematical language;
Findings:
We find most difficulties in distributive law and its applications to get similar expressions,
and translation of word problems with two variables.
The following topics were found difficult for part of the pupils
* Substitution of big numbers in expressions,
* Number substitution in expressions with multiplication or subtraction.
* Negative number substitution in expression with subtraction and multiplication.
* Similar expression especially applying the distributive law
* Associatively and distributive laws and the application in expressions with multiplication
with the variables out of the parentheses.
* Translation of problems in rhathematical language.
The project has been implemented in some of the Arab middle schools in Israel and the results
were satisfied. This was obtained from the assessment that was carried out at the end in
classes and replies of the pupils, teachers, directors and parents.

'Booth Lesly R. Children difficulties in beginning algebra. ero2988
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RELATIONSHIP BETWEEN PCK AND LESSON PLANS: DOES

IMPROVEMENT IN TEACHERS' PCK EFFECT THEIR LESSON PLANS?

Ronith Klein and Dina Tirosh

Kibbutzim College of Education, Tel Aviv

School of Education, Tel Aviv University, Tel Aviv

Recent journals and PME papers discussed the importance of teachers' familiarity

with students' ways of thinking (e.g. Even & Tirosh, 1995; Jaworski, 1998). Studies

have shown that participation in programs focusing on children's thinking could

increase teachers' awareness of students' incorrect responses and their possible

sources (e.g., klein, Barkai, Tirosh and Tsamir, 1998). Several programs (CGI, for

example) explore the impact of teachers' knowledge of students' thinking on actual

teaching practices. The main aim of this study was to explore the effect of a

workshop specifically designed for enhancing inservice teachers' knowledge of

students' ways of thinking about rational numbers on lesson plans on Multiplication

and Division word problems with Rational Numbers (MDRN).

Fourteen experienced elementary teachers participated in the course. Participants

were asked to plan a teaching unit on MDRN, at the beginning and again at the end of

the workshop. Our main aim was to explore the extent to which the participants took

account of students' ways of thinking in this planning.

We hypothesized that teachers would adjust their lesson plans, taking account of

common, systematic students' conceptions and misconceptions when planning

instruction. Our data did not fully confirm this assumption. Still, in the lesson plans

submitted at the beginning of the course, only few written references were made to

possible, common incorrect students' responses whereas at the end of the course

some building on students' common incorrect responses occurred .

During our presentation we shall describe the course and raise some alternative

explanations as to why more substantial improvements in teachers' lesson plans were

not found.

Even, R. & Tirosh, D. (1995). Subject matter knowledge and knowledge about

students as sources of teacher presentations of the subject matter. Educational

Studies in Mathematics, 29, 1-20.
Jaworski, B. (1998). Pilot in-service mathematics teacher education. Proceedings of

the 22nd International Conference for the Psychology of Mathematics Education

(Vol. 1, pp. 88-96). Stellenbosch, South Africa: University of Stellenbosch.

Klein, R., Barkai, R., Tirosh, D. & Tsamir, P. (1998). Increasing teachers' awareness

of students' conceptions of operations of rational numbers. Proceedings of the

22nd International Conference for the Psychology of Mathematics Education

(Vol. 3, pp. 120-127). Stellenbosch, South Africa: University of Stellenbosch.
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Mistaken conjectures as a trigger
to develop basic probabilistic reasoning

Lilya Kot, Sara Kiro Abraham Arcavi
Department of Science Teaching

Weizmann Institute of Science Israel

In a comprehensive review of the research on understanding and
learning probability and statistics, Shaughnessy (1992, p. 465) claims
that most people's intuitive and immediate responses to probability
problems make no use of elementary concepts to estimate the
likelihood of events and thus produce wrong answers.- Moreover, he
points out that "nonmathematical ways of estimating likelihoods" can
be deep rooted and good teaching may not always change them.
Nevertheless, we propose that an appropriate learning trajectory with
the characteristics described below may be successful with non-
academically oriented high school students.
The learning trajectory proposed: a) presents engaging situations close
to students' experiences, b) relies on students' common sense, c)
respects all conjectures, d) supports and encourages the use of visual
representations to make sense of situations, and e) promotes the
discussion of opposing conjectures which can be empirically tested
and analyzed.
The following is an example of a series of problems used in our
curriculum project (Arcavi, Hadas and Dreyfus, 1994). "Efrat and
Donna play the 'fingers' game: each of them shows simultaneously a
number of fingers on their right hand. If the sum of what both show is

Efrat wins, if it is odd, Donna wins. If you think the game is
fair, explain, if not, who has greater chances to win, and why?"
This is a common game, well known to the students. A great majority

them do not hesitate, and without further analysis. claim that the
game is fair, possibly because of its popularity. Students are
encouraged to build a table representation to display all possible
situations, in the light of which they realize that the game is slightly
unfair. After a series of such problems, students learn to develop the
habit of checking their initial conjectures against a visual
representation of the space of all possibilities.
In the short oral presentation, we will show data from pairs of
students solving a series of problems (similar to the above) in which
they face opposing conjectures to check. Some pairs had previous
instruction in probability and others had not, but all of them raised
initial conjectures which were wrong. We will show how they slowly
changed their conjectures by using table representations to make
sense of the problem, and how they started to develop a different
approach towards similar problems.
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RESEARCH ON THE VALIDITY OF "TWO-AXES PROCESS
MODEL" OF UNDERSTANDING MATHEMATICS

Masataka linama
Hiroshima University, Japan

The problem of understanding mathematics has been a main issue buckled down by

some researchers in PME. Koyama (1992) discussed basic components that are substantially

common to the process models and presented the so-called "two-axes process model" of

understanding mathematics as a useful and effective framework for mathematics teachers.

The model consists of two axes, i.e. the vertical axis implying levels of understanding such as

mathematical entities, relations of them, and general relations, and the horizontal axis

implying three learning stages of intuitive, reflective, and analytic at each level. There are two

prominent characteristics in the "two-axes process model". First, it might be noted that the

model reflects upon the complementarity of intuition and logical thinking, and that the role of

reflective thinking in understanding mathematics is explicitly set up in the model. Second, the

model could be a useful and effective one because it has both descriptive and prescriptive

characteristics.
It is a significant task for us to examine both validity and effectiveness of the model in

terms of practices of the teaching and learning of mathematics. Focussing on the validity of

"two-axes process model" of understanding mathematics, Koyama (1996) demonstrated the

validity of three stages at a certain level of understanding mathematics by analyzing a fifth

grade elementary school mathematics .class in Japan. The purpose of this research is to

closely examine the validity by analyzing data collected in three different mathematics

teachers' classrooms at the national elementary school attached to Hiroshima University.

As a result of this research, we find out the followings. First, the "two-axes process

model" of understanding mathematics is valid in such a sense that it could describe

children's development of understanding mathematics in their classroom. Second, we could

characterize such a teaching and learning of mathematics as the dialectic process of

children's individual and social constructions that enables them to understand mathematics

deeply and in their meaningful way. In order to realize such mathematics classroom, it is

suggested that a teacher should make a teaching and learning plan in the light of "two-axes

process model" of understanding mathematics and that she/he should play a role as a

facilitator for the dialectic process. There are two important features of teacher's role: The

one, related to children's individual construction, is to set a problematic situation in which

they are able to be conscious of their own learning tasks and encourage them to have various

mathematical ideas and ways. The other, related to children's social construction, is to

encourage and allow them to make, explain, and discuss their various representations.
References
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INTERACTION BETWEEN KNOWLEDGE AND CONTEXTS
ON ABILITY TO SOLVE PROBLEMS:

THE ROLE OF DIFFERENT LEARNING CONDITIONS

Bracha Kramarski

The Institute for the Advancement of Social Integration
School of Education, Bar-Ilan University

How do children solve mathematical problems, which are the same in
mathematical content, but different in the contexts presented in them? Are
mathematical problems, which embedded in concrete contexts easier to solve
than those, which appear in abstract contexts? To what extent do contexts exert
different effects on children's understanding of abstract mathematical
concepts? How do different learning conditions influence the development of
the ability to solve problems presented in different contexts?

The current research relates to these issues and focuses on problems which deal
with the linear function graph. 384 students participated in the study. Boys and
girls from the eighth grade who were studying the subject: "the linear function
graph" under different learning conditions: cooperative learning with
metacognitive training, the whole class with metacognitive training, cooperative
learning and the whole class without metacognitive training. The metacognitive
training is based on a model of self-addressed questions: comprehension
questions, strategic questions, and connection questions. (Mevarech &
Kramarski, 1997; Schoenfeld, 1985). All the students were tested both at the
beginning of the experiment and afterwards with problems presented in concrete
and abstract contexts, which tested skills of graph reading and graph drawing
(transfer). It was found that students who were exposed to metacognitive
training whether in cooperative learning or in whole class improved by the end
of the experiment the ability to read and draw graphs (transfer) as opposed to the
students who were not exposed to this training. The greatest improvement was
found among the students who were exposed to this training in cooperative
learning. Similarly, the students exposed to metacognitive training revealed an
equal ability in solving problems presented in different contexts:
concrete/abstract, as against students who were not exposed to metacognitive
training, who showed a greater ability to solve problems presented in concrete
contexts. The findings are discussed from a theoretical and practical aspect.

Mevarech, Z.R, & Kramarski,.B.(1997). IMPROVE: A multidimensional method for teaching
mathematics in heterogeneous classrooms. American Educational Research Journal, 34,
365-394.

Schoenfeld, A.H. (1985). Mathematical problem solving. San Diego, CA: Academic Press.
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CONSTRUCTIONS OF NEW MATHEMATICAL KNOWLEDGE IN
DIFFERENT LEARNING ENVIRONMENTS

Christian Kratzin

Institut ftir Entwicklung & Erforschung des Mathematikunterrichts, Universitat
Dortmund, Germany

In this paper I would like to report some findings and results of our ongoing re-
search-project "Epistemological and social-interactive constraints for the construc-

tion of new mathematical knowledge (in primary mathematics teaching)"1.

During autumn 1997 we observed and video taped about 30 mathematics lessons in

grades 3-4 of primary school. In this lessons the teachers used two different kinds

of learning environments, which beforehand were developed by our research-team.

One typ of learning environment can be characterized as arithmetic-structural and

the other one as geometric-visual.

The epistemological and interpretative analysis of the interactions in some selected
transcribed teaching episodes from the two kinds of learning environments shows,
that the constraints and the chances for the children to develop generalized argu-

ments (which are necessary and undispensable for the construction of new mathe-
matical knowledge) are depending on some special features of the respective lear-

ning environment.
When preparing the learning environments we assumed that it would be easier for
the children to develop the view for the generalities within the scope of a geome-

tric-visual reference context, because there one can construct relations and connec-
tions not only on an arithmetical level but also on a geometrical one. Our observa-

tions and analyses have set us right: In a geometric-visual learning environment the

children mainly produce concret interpretations and construction that are merely

related to individual cases; whereas in an arithmetic-structural context the children

more often reach the point where they are able to see the general in the particular.

In a geotiletric-visual context it is much more difficult for the children to get a cer-

tain distance from the concrete (geometrical) objects, that sometimes even can be

touched by the children (for instance in forms of the counters used to build up mo-

vable dott patterns) and which perhaps chain the view too strongly to the particula-

rities.
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MATHEMATICS ASSESSMENT IN
A NEW CURRICULUM MODEL IN SOUTH AFRICA

Daniel Krupanandan, Springfield College Of Education South Africa.

South Africa has seen the introduction of " Curriculum 2005 " or commonly
known as " Outcomes Based Education(OBE) " a new vision of curriculum
transformation in our country since 1998. This renaissance in the teaching
and learning of mathematics has been initiated through readings of many
policy documents and attendance of many curriculum workshops.

Despite the stirling efforts of the education departments, the speed and
urgency with which the training and informing process has taken place has
left many committed mathematics teachers lagging on the road to the
successful introduction of " Curriculum 2005 ".

This paper will provide the results of a research conducted amongst 400
primary mathematics teachers, who completed a questionnaire based on their
understandings of the new curriculum model, with particular reference to
their views on mathematics assessment in the OBE model. 40 primary
mathematics teachers were also interviewed.

Since assessment in mathematics is a central component to any curriculum
model, it was not encouraging to find that almost 97% of the teachers
involved in the research had conflicting views about assessment in
mathematics or they were implementing assessment strategies that were not
entirely consistent with an OBE curriculum model. Mogens Niss(1998)
comments that this is an international phenomenon," During the last couple
of decades, the field of mathematics education has developed considerably in
the area of ideals and goals, and the theory and practice, whereas assessment
concepts and practices have not developed so much ".

The results of the research has challenged teacher educators to undertake
intense in-servive programs to assist primary mathematics teachers
make the paradigm shifts in implementing assessment strategies that measure
not only knowledge, but attitudes and values as well.

REFERENCES: Mogens Niss(1998); Investigations into Assessment in
Mathematics Education. Kluwer Academic Publishers. London



THE LANGUAGE OF MATHEMATICS
AS THE OBJECT FOR SPECIAL STUDY

Raissa Lozinskaia, Tomsk Polytechnical University, Russia

Mathematics is a definite world outlook. "Mathematics is of great interest in
itself, first of all as the totality of objective truths. Besides, mathematics gives
convenient and fruitful ways of describing various phenomena of real world and in
this sense really performs the function of a language (Kudrjavtsev, 1980).

One of the aims of "MPI-project" (the leader Prof. E. Gelfinan) is working out
the system of methods and ways of successful acquisition of mathematics language.
Our basic task was to compare psychological pedagogic fundamentals of
mathematics education as well as of a foreign language.

L.S. Vigotsky ( Vigotsky, 1982) pointed out that the main role in concept
formation is played by "a functional usage of a word" as a means of advancement of
characteristics of an object, their synthesis and generalization. That's why our system
of exercises includes such tasks as to teach students work with different values of one
and the same sign, to be able to single out essential, general and particular for the
solution of a concrete problem. It was pointed out that students fail in mathematics
very often due to mistakes in translating mathematical expressions into natural
language (Bell & Malone, 1992; Ferrari, 1996). We have worked out special tasks,
which form the skills of performing verbal-figurative translation, teach students to
draw schemes, to pass over from real situations to mathematical models.

Mathematics language, like natural language is metaphorical (Sfard, 1996). We
look for metaphors of mathematics language. Perfect acquisition of any foreign as
well as of mathematics language is a long process and presupposes operating units of
both the languages without translation. That's why we specially initiate situations
where students work within the frames of some conventional agreement of
mathematics language, when students themselves have to construct the system of this
language. Teaching mathematics language should include study of semantics (values
of signs, symbols', concepts) as well as of syntax (rules according to which signs are
united in sentences or formulas); that's why a student should understand how a new
notion or a symbol is connected with a system of concepts, i.e. it is necessary to
establish the system of different links between notions, including genetic one.

References.
Bell, A., Malone, J. (1992). Learning the language of algebra. Shell Centre for Mathematical

Education, Nothingham.
Ferrari, P. L. (1996). Some factors affecting advanced algebraic problem solving. Proceedings of

PME 20. Valencia, Spain. Vol. 2, pp. 345-352.
Kudrjavtsev, L., D. (1980). Modern Mathematics and its Learning. Moscow: Nauka (in Russian).
Sfard, A. (1996). An acquisition metaphor and participation metaphor for mathematics learning.

Alsina, C. Et al (eds). ICME 8. Selected Lectures. Sevilla: S.A.E.M. 'THALES'.
Vigotsky, L.S. (1982). Thinking and Speech. Complete works, V. 2. Moscow: Pedagogics. (in
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2 9 nv 1 - 294



AVERAGE, TEACHERS AND STUDENTS

Zvia Markovits
Oranim School of Education, Israel

Mathematics-ClassroomSituation (MCS) Cases are real or hypothetical
classroom situations involving mathematics, in which the teacher has to respond to a
student's question or idea. Previous research studies (e.g. Even and Markovits, 1997)
indicate the potential of MCS-Cases in raising mathematical as well as pedagogical
issues.

The Average Situation deals with the dilemma of accepting an answer which
seems to be unreasonable in everyday life situations as an answer to a mathematical
problem.

The Average Situation:

"A student was given the following problem:
At Narkisim School there are 3 fifth grade classes. In the first class
there are 31 students, in the second 24 students and in the third 28
students. Find the average number of students in the fifth grade classes.
The student answered: There is no average here. You [teacher] told us
that there is not such an answer 27 2/3 students."
How would you respond?

The situation was given to about 60 teachers who teach mathematics in the upper
grades of elementary school. Most of the teachers agreed that there is an average in
this situation, but many of them suggested that the average should be 27 or 28, since
the answer is people. Many of fifth and sixth graders, given this problem, were able to
correctly use the averaging algorithm, but unable to accept 27 2/3 as the answer to the
given problem. It seems that students and teachers developed an uncompleted
understanding of the average concept.

It is interesting to point out that while many research studies suggest that
students do not use "out of school" experience when dealing with mathematics
problems in school, in this case they did apply everyday life considerations.

References
Even, R. and Markovits, Z. (1997). A close look at the use of Mathematics

Classroom Situation cases in teacher education. In E. Pehkonen (Ed.).
Proceedings of the 21st PME Conference, Vol. 2, pp. 249-256, Lahti,
Finland.
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PROBLEMS OF CONCEPTUAL CHANGE ON THE
ENLARGEMENTS OF THE NUMBER CONCEPT

Kaarina Merenluoto, Department of Education, University of Turku, Finland

Erno Lehtinen, Department of Teacher Education, University of Turku, Finland

The cognitive processes of concept acquisition do not follow the logical
hierarchy of mathematics (Tall 1991) of a typical curriculum. The structure
of mathematics may appear fragmentary and discontinuous for the student
The crucial idea in conceptual change is the radical reconstruction of prior
knowledge. This complicated process leads however often systematically to
misconceptions because the prior knowledge may not be transformable into
the new subject matter (Vosniadou 1994).

The dual nature of mathematical concepts (Sfard 1991), the long
development period between the operational use and structural definition of
the concept (Boyer 1959), the high level of abstraction of advanced
mathematics and the low nature of abstraction in the every day mathematics
all seem to refer to the problems ofconceptual change in the learning of

mathematics.

We collected an extensive data from students (n=640) in high school
calculus courses. The results showed that the vast majority continued to use

the logic of natural numbers in tasks on the domain of rational and real
numbers and their concept of more advanced numbers was confused. These
findings suggest important considerations for planning conceptual change
supporting learning environments.

Boyer, E.T, 1949. The development of mathematics. New York: McCraw Hill.

Sfard, A. 1991. The dual nature of mathematical conceptions: Reflections on

processes and objects as different sides of the same coin. Educational
studies in Mathematics, 22 (1), 1-36.
Tall, D. 1991. The psychology of advanced mathematical thinking. In Tall.

(ed.) Advanced mathematical thinking. Dordrecht: Kluwer Academic

Publisher.
Vosniadou, S. 1994. Capturing and modeling the process of conceptual
change. Learning and instruction, 4, 45-69.
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TUTORIAL INTERACTIONS AND DIDACTICS OF MATHEMATICS :
RECOGNITION OF FRACTIONS IN PRIMARY SCHOOL AND

VOCATIONAL EDUCATION

Maryvonne MERRI, Assistant Professor of learning psychology
Ecole Nationale de Formation Agronomique, Toulouse (France)
Research Team "Cognition and didactics", University of Paris VIII
Marie-Paule Vannier
Institut Universitaire de Formation des Maitres de Melun (France)
(Dissertation director : Gerard Vergnaud)

When working as a mathematics teacher trainer, every cognitive psychologist
has to face a recurring epistemological problem : initially, the most important
psychology concepts did not refer to didactical situations. This short oral
communication intends to discuss the pertinence of Piaget's and Vergnaud's concepts
of scheme in describing tutorial interactions in student problem-solving activity.

The same fraction recognition task was proposed to primary school teachers
(for 10 year-olds) and to vocational school mathematics teachers (for 15 year-olds).
Every teacher could adjust this task to his own particular teaching methods. Tutoring
sessions are defined as interaction periods for problem-solving achievement. They are
analysed and then related to the larger didactical process.

A few videotaped examples will illustrate one of the most important
characteristics of action on problem-solving schemes in didactical contexts : tutorial
interactions must therefore achieve much more than simple completion of the task.

When interacting, teachers and students do not just consider problem-solving
as a "private" cognitive activity. They can (explicitly or implicitly) refer individual
knowledge to mathematical norms inside and outside the classroom. How can tutorial
interactions improve students scheme and prepare them to share this skill with the
community ? The authors will analyse the theoretical consequences of these two
dialectics (private vs public and individual vs collective knowledge) on Gerard
Vergnaud's concept of scheme.

Brousseau G., 1986. Fondements et methodes de la didactique des mathematiques,
Recherches en didactique des mathematiques, Vol 7, n°2, p. 33-115.
Vergnaud G., 1994. Le role de l'enseignant a la lumiere des concepts de scheme et de
champ conceptuel, in 20 ans de didactique des mathematiques en France, Grenoble,
La pens& sauvage, Grenoble
Wood, DJ., J. S. Bruner & G. Ross, 1976. The role of Tutoring in problem solving. J.
Child Psychol. Psychiat, vol 17, p. 89-100
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ON DEVELOPING TRIDIMENSIONAL SPACE AT SCHOOL*

A.L. Mesquita (U. de Lille/IUFMNPdC)

Geometry appears nowadays as "one of the most universal and useful tools in all

parts of mathematics" (J. Dieudonne, 1981, quoted by C. Mammana & V. Villani,

ICMI Discussion Document, 1998). However, there is "a gap between the increasing

importance of geometry [...], as well in research and in society, and the decline of its

role in school curricula" (op. cit., p.338). It is the case in France, where school

programs give a reduced place to geometry. The aim of the project we are
developing at present has as a central aim the valorization of geometry and space at

school. It is a longitudinal case-study, in course of implementation in a primary

school of the northern of France, since 1997/98, and it concerns the two groups of

pupils (i.e., about fifty pupils) during their school attendance. The main assumptioms

of the project are:

1) The first step to introduction of geometry at school concerns the space: for us, the

beginning of geometry at school is centered on tridimensional space, and this in

articulation with geography, the other subject-matter concerning the study of space at

school.

2) A didactical progression is clearly assumed and developed along all the school-

attendance: from space to plane; from plane to line; from line to point. Interactions

between these entities are strongly stimulated; in particular, transitions between them

are considered decisive steps in the learning of geometry .

3) A special attention is given to the different registers of representation (in the sense

of R. Duval, 1995, i.e., the semiotic systems of presentation of knowledge) used in

geometry, and to their articulation.

In the beginning of school-attendance (ages 6 to 8), our attention is centered on

tridimensional space and on the transition from space to the plane. Activities of

problematization appears to be decisive to this transition, in general neglected by

teaching (A.L.Mesquita et al., 1998). These activities are associated with the

construction of objects and other activities of material manipulation, which are

privileged; at this phase. The presentation will enable a discussion about the main

assumptions of this study, as well as some initial results concerning its

implementation.
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COOPERATIVE GROUPWORK A VEHICLE FOR DEMOCRACY IN BLACK
SOUTH AFRICAN MATHEMATICS CLASSROOMS?

Duduzile Mkhize, RADMASTE, Witwatersrand University, SA

The behaviour and attitudes of learners in mathematics classrooms is by and large
determined by the way the teacher interacts with them. On the other hand teachers are
driven by the curriculum to act the way they do. The new curriculum , Curriculum 2005
(C005) that was launched in 1997 in South Africa has to change mathematics classroom
practices, especially in black schools. The EduSource Survey (1996) revealed that
authoritarian approaches were prevalent in the teaching of mathematics in South African
black schools. Hindle(1997) contends teachers in the past were turned into factory
workers, thus uncritical compliance was expected from them. This was all in line with
the non-democratic curriculum of the day! C005 is viewed as a curriculum that should
promote democracy in mathematics classrooms and cooperative groupwork could be an
ideal vehicle for this.

C005's view of mathematics, "It is a human activity that deals with patterns,
problem-solving, logical thinking, etc. in an attempt to understand the world and make
use of that understanding. This understanding is expressed, developed and contested
through language, symbols and social interaction", implies the need to create social
interaction to express and debate the understanding in the classroom.

This study aimed to improve cooperative groupwork practices in mathematics
classrooms. Learners were encouraged to develop rules for working in groups. Linear
programming lessons in a cooperative groupwork mode were prepared and conducted
with grade 11 learners. Each session took two hours. After five sessions learners were
asked to complete the self assessment forms. The rules and self assessment comments
are summarised below.
Rules: "No parasites, give others a chance to talk, respect other members' opinion, we
help each other, listen and pay attention to one another, patience."
What went well: "Everyone came with an idea, everyone was thinking, we understood
very well most of the things we did, at last we gained something from a maths lesson and
I enjoyed the lessons."

The rules indicate what learners value in cooperative groupwork. Clearly, the inculcation
of the democratic principles such as listening to one another, a chance for all to give their
opinions is inculcated through cooperative groupwork.
References:
EduSource Survey (1997). Mathematics and Science Teachers in South Africa.
Hindle(1997) . Managing OBE. in F. Goolam(Ed), Perspectives on OBE.UDW, SA
Curriculum 2005 (1997): National Department of Education. Pretoria.



TEACHING MATH WITH TECHNOLOGIES:
A NATIONAL PROJECT IN MEXICO

Simon Mochon and Teresa Rojano

Center for Research and Advanced Studies, IPN, Mexico

Since 1997, the Ministry of Education of Mexico has being sponsoring a national

program to teach mathematics with technologies at the secondary level. The tools

used in the classroom are a combination of calculators (TI-92) and computer 'open'
software: "Spreadsheets" (all purposes), "Stella" (Modeling package), "Math Worlds"
(Mathematics of Change package) and "Cabri" (Dynamical Geometry package).
Parallel to this program, there is an ongoing research project that has as its main

purpose to investigate the impact of this technological implementation in students'

learning, teaching practices and curricular transformation.

The Mexican Math Curriculum calls for a close connection with real life situations.

The actual practice however is far from this. In addition, topics are introduced from

general principles down to particular examples. This new educational program
stresses the opposite, bottom to top approach. Another important element is
collaborative learning. The interaction student-computer and student-student are
being studied within the framework of Vygotsky's perspective on mediational means

and the zone of proximal development. Cultural influences are also being considered.

Within the classroom, we have used very effectively a teaching strategy that in part

consists of coupling a math modeling approach with worksheet guidance. A recent

antecedent of this method is a collaborative Mexico/UK research project (Sutherland

et al, 1996) aimed at investigating the role of modeling with spreadsheets across a

range of subject areas (physics, chemistry, and biology). In this research, the
spreadsheet was introduced into the students' science classrooms to construct models,

"artificial worlds" (Mellar et al, 1994), that were explored and analyzed and which

enhanced students' understanding of the scientific ideas related to the model.

This presentation will concentrate on two aspects of the project: the phase of
teachers' training and the design, implementation and evaluation of activities for the

classroom. The teachers received seminars on 1) the use of the software (each teacher

learned and used only one software package), 2) the methodology related to teaching

with computers and 3) how to structure the activities. We found that teachers still

followed a traditional model to design the activities but have a substantial advance on

their role in the classroom. We will also describe briefly some preliminary results on

the students' cognitive and affective development. This data was obtained from

classroom observations and tests throughout the school year (the tests contain

questions about the most relevant concepts introduced by the software packages).

Mellar, H., Bliss, Boohan, Ogborn and Tompsett (Eds., 1994), Learning with Artificial Worlds, The Falmer

Press, London and Washington D.C.

Sutherland, R., Rojano, T., Mochon, S., Jinich, E. and Molyneux, S. (1996) Mathematical Modelling in the

Sciences Through the Eyes of Marina and Adam, Proceedings of PME-20, Vol. 4, 291-297, Valencia, Spain.
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MODELS OF MATHEMATICS UNDERSTANDING

Judith A. Mousley

Deakin University

The problem

Meanings that teachers, teacher educators and curriculum documents hold for the
term mathematical understanding shape curriculum planning, teaching, and
assessment in schools and in teacher education. However, these are rarely articulated.

Some models from the literature
_structural progression (e.g. Piaget; Sinclair; von Glasersfeld)
_zones of achieved and potential (e.g. Vygotsky)
_different forms of knowledge (e.g. Maslow; Skemp; Gray & Tall)
_levels of understanding (Herscovics & Bergeron)
_lattice: acts interwoven with situations (Sierpinski)
_recursive process of organising knowledge structures (Pirie & Kieren)
_socio- linguistic activity (Wittgenstein)

Results from a (pilot) survey of mathematics educators

Ideas that best matched the respondents ':
_a shift from "unable to explain" to "able to explain"
_grasping meaning
_a mental organisation or structuring of experience
_moving from one zone of knowledge to another

appreciation of what lies beneath a statement (or solution, etc.)

Physical models that best suited their ideas:
_a three-dimensional web
_a tree

_a lattice or woven fabric
_a spiral

Different tunes of mathematical understanding most commonly mentioned:

_instrumental_
relational

(4 people)

_iconic_
symbolic
relational
factual
conceptual
analytical

_visual/spatial
logical
numerical
inter-relation
al

rote
concrete
conceptual
abstract

_instrumental_
relational
logical
symbolic

As well as outlining the key characteristics of the results of this pilot study and their
relationships to the literature, the presentation will identify some of the
methodological problems experienced when analysing responses to forced-choice
items on the questionnaire.
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MULTI-WORLD PARADIGM IN MATHEMATICAL LEARNING

Tadao NAKAHARA

Hiroshima University JAPAN

Lately, the mathematical education is under significant influence of three

perspectives including radical constructivism, social interactionism, and

social culturism, and a lot of studies are being conducted on the mathema-

tical education based on each of such paradigms or combinations thereof.

Table 1 shows comparisons among such thoughts from different view points.

View point Radical const. Social interactionism Social culturism

Nature of
cognition

Construction by
individuals

Construction by
community

Enculturation

View of
language

Means of thought
expression

Containing a process
of interpretation

Medium of cultural
transmission

View of
learning

Cognitive self-
organization

Social interactions Participation to
cultural practices

The above comparisons reveal a common aspect among three perspectives: all

of three perspectives view that children's activities play very important

roles in mathematical learning, and they position social interaction as an

important means in learning. However, on the other hand, they have distinct

differences in any of the views of cognition, language,and learning. In

particular, difference in the view of the nature of cognition is a matter

of principle that is mutually incompatible, and the integration of those

perspectives is considered theoretically impossible.

However,in the observations and analyses of children's practical activi-

ties in mathematical learning, the three perspectives are frequently seen

at the same class. While those three perspectives are mutually conflicting

theoretically, it is considered unavoidable to integrate and coordinate the

three perspectives in order to explain the realities of learning in fair

manner. The studies of mathematics learning by Cobb and Bauersfeld should

be considered as have been suggested based on such standpoint.

The author calls the above-shown view the multi-world paradigm in mathema-

tical learning. It contains the three worlds of the radical constructivism,

social interactionism, and social culturism. He shows theoretical as well

as practical study of mathematical learning based on the multi-world

paradigm.
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HELPING TO DEVELOP THE ABILITY OF ARGUMENTATION IN MATHEMATICS'
L. Nasser and L. Tinoco

IM 1UFRJ- Brazil
This research was motivated by the project carried out by C. Hoy les (1997) in the U.K., in

which students are led to evaluate and write proofs to basic mathematics statements, in Algebra and
Geometry, under the light of the British National Curriculum. The functions of proof and its role in
the teaching of mathematics have been the focus of several papers (Hanna, 1990; de Villiers, 1991;
Hanna & Jahnke, 1996). Concerning the functions of pool, we agree that:

In the educational domain it is natural to view proof first and foremost as explanation, and in
consequence to value those proofs which best help to explain. (Hanna & Jahnke, 1996, p.903)

The kinds of argumentation and the analysis of the difficulties considered in this work are
based on Balacheff (1987), Rezende & Nasser (1994) and van Hiele (1986). The main aims are to:
- identify some kinds of argumentation used by secondary mathematics students in Rio de Janeiro;
- develop and test activities to promote the progress in their levels of argumentation;
- suggest trends to the enhancement of the levels of argumentation of students, as well as of
prospective and in-service mathematics teachers.

After the first trials with 14-16 year old students, it became clear that the majority of the
Brazilian mathematics teachers do not require their students to justify their answers, mainly because
this was not stressed in the curriculum (it appears in the new curriculum proposed). As a
consequence, students show difficulties in justifying a statement or in explaining how they reason
when solving a problem. Several strategies to improve these abilities have been tried by the teachers
and undergraduate students involved in our project, such as:
- after answering a task individually and listening to the teacher's explanation, students work in
groups, discussing a joint solution to the same task;
- students have to evaluate justifications given by other students;
- items requiring logical reasoning are often proposed, despite the topic being studied;
- the same task is proposed both to students that have learned or not the correspondent mathematical
content, in order to investigate the differences in the kinds of argumentation used;
- students use dynamic geometry softwares to verify the veracity (or not) of a statement and after ,
convinced of its truth (or not), are led to justify or prove it (or to seek for a counter-example);
- activities requiring the recognition of a theorem and its reciprocal have been used with pre-service
and in-service teachers.

This research is still in development, but we can already conclude that the lack of experience
in self-assessment stresses the difficulties to evaluate someone else's justifications and that the
symbolism of the mathematics teaching may be an obstacle for students to write in mathematics.
One strategy to improve the students' level of argumentation is requiring justifications to all their
answers, and proposing challenging problems requiring logical reasoning. This must be done all the
time, all over the year.
References:
Balacheff, N. (1987): Aspects of proof in pupil's practice of school mathematics. In D.Pimm (ed.):
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A STUDY ON THE FUNCTION OF TRANSACTIONAL WRITING:

A FUNCTION MODEL OF SOCIO-MATHEMATICAL SKILL IN
MATHEMATICS EDUCATION

Hiroyuki Ninomiya
Hiroshima University Graduate School, Japan

Writing activities in mathematics education has been focused on, and many writing
activities have reported, e.g. practices in NCTM's Standards based curricula in
America, whereas there are some reports about Mathematical Writing in Japan.
Most of the writing activities can be classified into the following three types; Journal
writing, Expository writing, and Creative writing. Journal writing is about mathe-
matics classes; Expository writing is about the topics of mathematics with problem
solving activities; and Creative writing is literatures with mathematical terms.

Britton et al.(1975) classified the functions of journal writing into the following
two types, expressive function and transactional function, and Ninomiya(1998)
defined two types of Journal Writing: Expressive writing, and Transactional writing.
Expressive writing expresses students' emotional affairs, and Transactional writing
refers to the students' understanding or the development of mathematics abilities.

Examining the precede studies, we can find two aspects in Transactional writings;

as a method of mathematics learning, and as an aim of mathematics learning. These

two aspects are two faces of a
coin, and any Transactional Community
writing activities have both of
them. Moreover, Transactional Social Skill

writing has two functions. When (Social Interaction)
the aspect as a method is high-
lighted, writing works in students'
interaction as Social Skill. On Aspect as a Method

the other hand, the aspect as an r
aim is highlighted, writing works
as Mathematical Skill when Learner Aspect as

students think and do mathematics. an Aim

Because of the duality of the
Socio-Mathematical

aspects in Transactional writing, Mathematical Skill Skill:

two functions are related, and a (Mathematical Transactional

Function Model of Socio- Notation) Writing
Mathematical Skill in Mathe-
matics Education can be estab-
lished as Figure 1. Fig. 1 A Function Model of Socio-Mathematical Skill

References:
Britton,et al,(1975), The development of writing abilities(11-18). London: Macmillan.
Ninomiya, H.(1998),The Fundamental Study on Mathematical Writing, ICMI-EARCOME 1
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Difficulties in calculating the volume of
three-dimensional arrays of cubes

Guri A. Nortvedt, Department of Teacher Education and School Development,
Faculty of Education, University of Oslo, Norway.

On a national survey of students understanding of measurements and units for grades
6 and 9 in Norwegian schools students were asked to write texts explaining how they
solve specific volume problems. These texts have been investigated qualitatively in
order to identify patterns in the children's approaches and to' seek information about
their conceptual understanding of volume. As a result of this investigation several
categories for different text stereotypes have been developed in an emergent manner,
making it possible to investigate the texts quantitatively as well.

When calculating the number of cubes needed to build a
three-dimensional array, the two most common approaches
for successful children was to calculate the volume by a
formulae alike approach or building the volume in terms of
layers (Nortvedt, 1998). Another group of children gave
answers like 30, 40, 80, or 96 when asked how many
cubes are needed to build the box in fig. 1. (19,2 % of
grade 6 students, 16,4 % of grade 9 students).

These students wrote short texts and did not always explain in a sufficient
manner their approach to the problem. From the analysis of the texts it seems likely
that some of These students did not read the illustration as three-dimensional. From
other explanations an emerging possibility is that some students viewed the side of
the cube as a representative for the volume of the cube, concluding that when they
could count 40 "sides", the number of cubes needed is also 40. Battista and Clement
(1996) suggest that many students are unable to numerate the cubes due to lack of
ability to co-ordinate separate views of the array and thereby fail in constructing a
mental model of the array.

The presentation at the PME-conference will focus on presenting stereotype
texts written by students calculating the number of cubes on the surface of the array,
and possible consequences for the teaching of this topic will be outlined.

References:
Nortvedt, G. A. (1998): Investigating children's mathematical texts. In Breiteig, T. and Brekke, G.
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`EVERYDAY' CONTEXTS IN SCHOOL MATHEMATICS
Thabiso Nyabanyaba

University of the Witwatersrand, South Africa

It is now widely accepted among educationists that school mathematics is not

an abstract, immutable and monolithic body of knowledge that applies across
contexts. To that end, the use of contexts, especially 'real' life contexts, in order to

generate school mathematics knowledge has become widely recommended. My
study of how teachers understand 'relevance' as it refers to relating school
mathematics to the everyday experiences of students adds to the growing debate on

the use of contexts in school mathematics (Boaler, 1993). In my study, teachers

were asked to discuss, in focus group interviews, how they would make school

mathematics more 'relevant' to the students' everyday experiences and what
difficulties they anticipated in this practice. Practical scenarios were used in order

to provoke discussion. Among the many interesting issues that emerged from this
study was the ease with which teachers were distracted by the very contexts or
scenarios that were supposed to generate their mathematical discussions.

The new Curriculum 2005 for South Africa, advocates 'relevant',
`integrated' learning, rather than the memorisation of discrete facts (DoE, 1997).
The discussions of the teachers in this study highlight the challenges that teachers
are likely to face in the implementation of a 'relevant' curriculum. The study also
suggests the prospect of such contexts to produce highly complex understanding.

In this presentation I will use two critical incidents to illustrate the nature of

the discussion and what issues emerged around the use of contexts in school
mathematics practice. In one of the incidents, teachers were to discuss how they
would make the teaching of 'parallel lines' more relevant to the students' everyday
experiences. Several very interesting suggestions were made, including the use of

electricity power lines to illustrate parallel lines. The discussion centred on precise
mathematical terminology and what was proper to do pedagogically. In another
scenario teachers were to discuss the usefulness and limitation of using a football

log table to assess students' mathematics ability. The discussion centred explicitly

on the scenario. The usefulness and limitations were only referred to implicitly.
These scenarios illustrate what can happen in school as students are

immersed in contexts, especially contexts that they know about. Therefore, potent

as 'real' life contexts are in the teaching of school mathematics, many teachers are

going to find it a difficult exercise to draw the students' discussions towards the
mathematical experiences and away from the novelty of the 'everyday' experiences.

Boaler, J (1993) 'The Role of Contexts in the Mathematics Classroom: Do they Make

Mathematics More Real? In For the Learning ofMathematics. 13, 2

Department of Education (DoE) (1997). Curriculum 2005. April, 1997.
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MATHEMATICAL ACTIVITY IN THE CLASSROOM: GEOMETRIC DYNAMIC
ENVIRONMENT AS A WINDOW FOR LEARNING

Giselia Correia Piteira

Centro Competencia Nonio

Faculdade de Ciencias da Universidade de Lisboa

The following principles are assumed as a basis for the ongoing research: (1) the
mathematics classroom is a system of activity, including all activity in and among its
elements' interactions; (2) students don't interact only with the environment but all
their action is mediated by artefacts; (3) knowledge is located in the community,
being shared by the persons involved through social interaction and mediated by
artefacts;' (4) mathematical objects make sense within the social interactions, (5)
technology is relevant as a window for mediation of knowledge (Kuutti, 1996). It is
also accepted that the environment that supports our exploration of geometry
influences in different ways the appropriation of concepts and skills. Learning
geometry with paper, pencil, ruler and compass is quite different from having access
to dynamic software such as Geometer's Sketchpad or Cabri-Geometre. Putting away
mechanic tasks of construction, measure and calculation, time is used to a dynamic
and active work in geometry (Laborde, 1993).

With the support of this assumptions, this communication presents a research project
which aim is to study mathematical activity in the classroom, occurring among its
elements and mediated by geometric dynamic environments identifying how
mathematical meanings emerge from that activity (Voigt, 1994; Wertsch, 1991).
Drawing on a qualitative approach my analysis focus on the mathematical activity of
an ordinary 9th grade class, working in geometry with Sketchpad. Eight lessons were
observed and video-recorded. Students work was saved and copied to be observed
and analysed. An overview of the outcomes and results of the preliminary analysis
are described and analysed in this paper.

Kuutti, K. (1996). Activity theory as a potential framework for human-computer
interaction research. In B. Nardi (Ed.), Context and consciousness: Activity theory
and human-computer interaction (17-44). Cambridge, USA: The MIT Press.

Laborde, C. (1993). The computer as part of the learning environment: The case of
geometry. In C. Keitel, & K. Ruthven (Eds.), Learning from computers:Mathematics
education and technology (48-67). Berlin, Germany: Springer-Verlag.

Wertsch, J. (1991). Voices of the mind: A socio-cultural approach to mediated action.
Hertfordshire, USA: Harvester Wheatsheaf.

Voigt, J. (1994). Negotiation of mathematical meaning and learning mathematics.
Educational Studies in Mathematics, 26 (2-3), 275-298.
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A SOCIAL REPRESENTATION APPROACH TO INVESTIGATE
LEARNING

Authors: Monica Rabe llo de Castro and Janete B. Frant

Affiliation Universidade Santa Ursula - Instituto de Educacao Matematica

Abstract
The purpose of this study is to better understand how students learn mathematics. Specifically, our aim

is to investigate and analyze how high school students deal with the idea of function and, how can a teacher
tell that a student acquire the function concept. In order to talk about learning, we reviewed the notions of

concept and representation in mathematics education. A glimpse on the works of Winner, Herschkowitz,
Fischbeim and others lead us to raise the hypothesis that concept acquisition is extremely related to the
notion of representation. We argue that an approach from the field of social representation can help us to

build a theoretical model to analyze mathematical learning.

This study has been developed in a federal high school in Brazil, students from
9th grade and 1 1 th grade are being observed while working in activities about the
concept of function. Some of these activities involve using computer software.
The relationship between concept and representation is found mainly in research
findings about different representation for functions using multirepresentational
software. The work of Hershcowitz and Schwartz was very relevant. ( Herschkowitz
and Schwartz 1997, Villareal and Borba 1998). To build a framework for this study

we review the literature about concepts, definitions, and representation.
(Fainguelernt 1999, Fischbein 1994, Vinner 1994, Varela 1991, Nuftez et all 1997).
It is accepted that a concept is different from its definition, being the concept
broader. The notion of representation is regarded as a medium between the external

world and the internal one. The concept is situated at the thinking level, the
representation is regarded as an expression of this concept and it is distinct from the
concept. However the nature of concept was not touched. A different perspective
come from the works of Vinner, Hershcowitz and Schwartz, they add a component to
the concept-relation paradigma that is the concept image. Varela and Nuriez bring
different perspectives to this discussion establishing that it is not a pregiven outer
world and an internal one. A new model to look for the concept acquisition based on
the theory of social representations (Moscovici) and the argumentation strategy
theory (Frant and Rabello in press) gave us a strong theoretical support for analyzing

data and will be shown.
Partial Findings: Students used linear and quadratic functions as prototypes,

confirming Hershcowitz.
The concept of function seems to be part only of the school environment, the

students did not give any example about everyday life problems.
Students use strategies of daily life while learning mathematics concepts.

Reference
Frant and Rabello. Concepts and representations in mathematics education. In press.

Hershkowitz, R. and Shwartz, B. 1997. Unifying cognitive and sociocultural aspects in research on learning the function

concept. Proceedings of the 21stPME-Lahti
Moscovici, S. 1984 Social Representations Cambridge University Press

Villareal,M and Borba,M. 1998. Conceptions and graphical interpretations about derivative. Proceedings of the 22nd

PME South Africa.
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DEFINITIONS FOR THE CONCEPT OF MAXIMUM /
MINIMUM OF A FUNCTION

Shakre Rasslan, Oranim School of Education. Israel

Definitions of a relative (local) maximum / minimum of a function in a certain domain were
examined in 204 Israeli Arab high school students. A questionnaire was designed to explore
some aspects of the concept. One of the research questions aimed to check whether the
students knew how to define the concept of a local maximum / minimum of a function. Another
question was whether the students knew how to apply the techniques of calculating extremum
points for specific functions. A third question examined the misconception that a maximum /
minimum of a function is the largest / smallest value of the function. The results show that
56% of our sample knew the definition, but the entire picture was not encouraging.

This study examines several aspects of the definitions that junior high school students
have regarding maximum / minimum of a function. Concept images and concept definitions
have been discussed in detail in several papers (Vinner and Hershkowits, 1980). We will
therefore introduce them here very briefly. All mathematical concepts except the primitive
ones have formal definitions. Many of these definitions have been introduced to high school
or college students at one time or another. The student, on the other hand, does not necessarily
use the definition when deciding whether a given mathematical object is an example or a
non-example of the concept. In most cases, he or she decides on the basis of a concept image,
that is, the set of all the mental pictures associated in his / her mind with the name of the
concept, together with all the properties characterizing them.

The concepts of the maximum as well as the minimum of a function are central in the
chapter about derivative of functions. In many countries, including Israel, the chapter on
derivative of functions is taught in the tenth grade. The topic is mentioned time and again in
high school courses and elementary college courses (pre-calculus and calculus). In most
mathematical textbooks one can find definitions such as the following: We say that f has a
relative (or local) maximum at x, if there exists a neighborhood V of x, such that f(x) f(x,)
for all x E V. (Kitchen, 1968). The definition of a relative minimum can be obtained simply
by reversing the inequality in the above definition.

Sometimes, in order to present a new concept, authors of mathematics textbooks limit
themselves first to a "special case" which is supposed to illustrate the rigorous definition. The
"special case" in our instance was the continuous and polynomial functions. The "special
case" approach frequently causes serious difficulties in the formulation and the application of
concept definitions (Rasslan and Vinner, 1998).

Taking into account the difficulties mentioned in this study, at least some doubts should be
raised whether the "special case" approach to the maximum / minimum concept is the most
effective way of teaching such a concept. The pool of examples introduced to the students
should include many different examples. Only this may increase the chance that one or two
examples will not become a prototype and, as such, also a concept substitute.

REFERENCES
Kitchen, W. (1968). Calculus of One Variable. Addison-Wesley Publishing Company, Inc. 195 196.
Rasslan, S. & Vinner, S. (1998). Images and Definitions for the Concept of Increasing / Decreasing

Function. Proceedings of the 2%. Conference of the International Group for the Psychology of
Mathematics Education. Vol. 4, 33 - 40. University of Stellenbosch. Stellenbosch, South Africa.

Vinner,S., Hershkowitz, R. (1980). Concept Image and Common Cognitive Paths in the Development
of Some Simple Geometrical Concepts. In R. Karplus (Ed.), Proceedings of the Fourth
International Conference for the Psychology of Mathematics Ethication.177-184. Berkeley:
University of California.
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Spatial ability and declarative knowledge
in a geometry problem solving context

Kristina Reiss

Department of Mathematics, Carl von Ossietzky University Oldenburg, Germany

Research question

Is there a correlation between declarative knowledge about geometrical concepts and
spatial ability as it is assessed by standardized tests?

Method
The sample comprised 60 students of grade 7. They took part in individual inter-
views. In the first part of the interview the students were asked to solve spatial geo-

metry problems (compare Pospeschill & Reiss, 1999, for a description of the tasks

presented). In the second part of the interview the students constructed a concept

map using concepts related to the problem solving context. Furthermore aspects of

spatial ability and general intelligence were assessed using appropriate subtests of
the German non-verbal intelligence test PSB (Horn, 1969). The subjects were
incidentally assigned to one of two groups. The problems were presented to these
groups either in an environment making use of real solids or in a computer
environment

Results

The quality of a concept map does not depend on the environment in which the
students worked whether it was the computer or the real cube environment (rt = .140

; p = .1149 ). The interpretation for this can be twofold. On one hand it may mean

that the two groups do not differ essentially in their verbal abilities. On the other
hand it may mean that neither the computer environment nor the cube environment

induces a certain cognitive style. Analyzing the correlation between the concepts

maps and the PSB scores one has to distinguish between the two groups of. Items

which present aspects of spatial ability are not indicators for the students'
achievement in concept mapping ( rt = -.009 ; p = .9923 rsp. rt = .094 ; p = .2896 for

the subtests ). In contrast, the correlations between concept mapping and general
interlligence ( rt = .217 ; p = .0142 rsp. rt = .212 ; p = .0165 for these subtests) are
siginificant. Thus, general intelligence is a better predictor for good results in con-

cept mapping on geometry concepts than spatial ability.

References

Horn, W. (1969). Prithystem fur Schul- and Bildungsberatung. GOttingen: Hogrefe.

Pospeschill, M. & Reiss, K. (1999). Phasenmodell sich entwickelnder Problemlose-

strategien bei raumlich-geometrischem Material. To be published in Journal fur
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ON APPLICATION OF ELEMENTS OF COMMUNICATION THEORY IN
CLASSROOM PRACTICE

Kaarin Riives, University of Tartu

The process of teaching and learning is one of many communication processes
[2,3]. This note refers to a test undertaken to check the effects of certain theoretical

considerations and possibilities in practical work with first-year university students..
The aim of a teacher is creation of a positive attitude, motivation to study and interest in

the material to be handled. The aim of a student is, in general, to gain a pass in the
compulsory subject of the chosen university course. The active party in the alignment of
these aims, at last during the initial stage, is the teacher, whose knowledge and experience
as well as emotional intelligence will determine the success of the joint undertaking. In
classroom, at the first meeting, I explained my vision of the forthcoming work to all groups,
emphasizing the need for sustained independent effort and feedback, from the student's as
well as the teacher's poits of view. Aims and the means for their achievement were
formulated. It was interesting to observe the process of alignment of aims within the
separate groups. The specialized groups showed a greater initial interest in what was
presented than the groups who took mathematics as a general subject. The level of previous
knowledge was also essentially different. During the course of the study both categories
displayed a noticeable increase in appreciation, but for different reasons. The former began
to see their subject material in the light of greater generality than previously comprehended
while the latter perceived a new ability in a subject that had formerly seemed difficult and
uninteresting. Ongoing work as a contact preserving phase requires a variety of means to
disseminate information. Parallel use was made of analytic-axiomatic treatment and
visualization. Essential results were drawn together and tabulated for systematization and
revision of the subject. Reception turned out positive beyond expectations in all groups as
the material was made intelligible to all students willing to cooperate regardless of their
cognitive and learning style [4] as well as differences in initial interest and level of
knowledge. This became evident through feedback already quite early after commencement
of work when the first assignments were lodged and discussions took place on the topics
dealt with. Informal discussions gave a picture of the student's attitudes towards the subject
studied [1]. The effectiveness of the joint work can be assessed by how much the results
justified the aims. The formal assessment turned out to be positive for all students who were
prepared to cooperate. The moral assessment ought not to be overlooked. Our resultative
strenuous work gave joy and satisfaction to all participants.
References: 1. Godino, Juan D., Recio, Angel M. (1998) A semiotic model for analyzing the
relationships between thought, language and context in mathematics education. In: Proc. of PME
22. Vol. 3, South Africa. 2. Ludlow, R., Panton, F. (1992); The Essence of Effective
Communication. Bussiness Communication. New York, Toronto, Singapore etc: Prentice Hall.
3. Riives, K. (1998): Teaching of geometry with reference to the elements of learning psychology.
In: Proc. of PME 22, Vol. 4, South Africa. 4. Witkin, H.A., Goodenough, D.R. (1982); Cognitive
Styles: Essence and Origins. New York: International University Press Inc.
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"WRITTEN CONVERSATION FORM" AS PROMOTER OF
TEACHERS' CHANGE

Naomi Robinson Na'ama Adin

Department of Science Teaching Department of Science Teaching

Weizmann Institute of Science Weizmann. Institute of Science

There is a growing recognition of the importance of the social context in which
teaching and learning occurs. It becomes clear that any attempt to dissociate the
cognitive from the metacognitive, and social aspects of learning, denies the reality of
the learning situation (Clarke, 1987). Journal writing, on a regular basis, in the
mathematics classroom, has become a tool for promoting reflection. Researchers
indicate that teacher reflection on their teaching has two important results: (1) if
reflection on instruction becomes a habit, it improves teaching and (2) reflective
teachers will also encourage their students to reflect on learning (Cobb et al, 1997).
The present study is part of a project aimed at teaching mathematics classes with a
heterogeneous student population. The purpose of the project is to promote the
learning of mathematics within groups of students of various mathematical abilities,
by basing the learning processes on complex, and open-ended mathematical tasks. In
order to work according to this philosophy, teachers must change their views and
practice in many aspects. During in-service courses, the "Written Conversation
Form" (WCF) was chosen as the tool for teacher reflection. The idea of the WCF was
based on Clarke's (1987) report about IMPACT a program aimed to promote
student reflection. The WCF was intended to be a means of communication between
each participant teacher and the course's teaching staff. The WCF contains questions
about both cognitive and affective issues and also allows for other remarks. At the
end of each session, the participants were asked to fill in a WCF and received written
feedback during the next meeting. Participants' responses to WCF were collected and
were photocopied before returning to the participants. The use of WCF during the
course had several results. It strengthened and deepened the teachers' understanding
of the course's main ideas. It enhanced teachers' reflection on teaching, on students'
learning, and on learning materials. It also raised teachers' awareness to the WCF's
potential to provide information about their students, and their own instruction.

References

Clarke, D. (1987). The interactive monitoring of children's learning of
mathematics. For the Learning of Mathematics, 7(1), 2-6.
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IS A COUNTER EXAMPLE ALWAYS ENOUGH TO REFUTE A
MATHEMATICAL STATEMENT?

Gila Ron and Orit Zaslaysky

Technion, Haifa

The present study examines students' understanding of the role of counter examples
in mathematics. This is another part of a larger study, which was reported in
Zaslaysky and Ron (1998). The focus of this presentation was on the validity
students attribute to the use of a counter-example in establishing the truth of a
mathematical statement.

Two hundred and four students participated in the study. The students were top level
9th and 10th grade students from four different schools.

Two parallel questionnaires were constructed. Both questionnaires describe an
imaginary debate between 3 students who try to establish the truth of a false
mathematical statement and to justify their conclusion. The first imaginary student
claims that the statement is true and justifies his decision by an example. The second
imaginary student claims the statement is false and justifies this claim by using a
counter example. The third student claims, like the second, that the statement is false,
but he criticizes the use of an example for refutation and suggests another way to
refute it. The two questionnaires differ in the context. The first deals with a
geometric statement, while the second deals with a question taken from a
pre-calculus context. The students were requested to provide written responses
expressing their opinion about the standpoint of each of the imaginary students.

The analysis of the written responses led to the following findings:

Most of the students did not accept the verification of a statement based on an
example as sufficient evidence that a statement is true.

Many students did not accept a counter example as sufficient evidence that a
statement is false. The extent to which students were willing to accept a refutation
based on a counter-example varied according to the different tasks: About 80% of
the students accepted the use of a counter-example to refute a geometric statement,
while only 23% of the students accepted it for the pre-calculus context

There were also students whose responses reflected confusion and inconsistency.
These students agreed both with the imaginary student who used a counter-example
to refute the false statement, and with the student who criticized him for the use of a
counter-example.

Zaslaysky, 0., & Ron, G. (1998). Students' Understanding of the Role of
Counter-Examples. In A. Olivier and K. Newstead (Eds.), Proceedings of the 22"1
Conference of the International Group of the Psychology of Mathematics Education,
v 4, 225-232.
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TEACHERS' VIEWS ON MATHEMATICS, MATHEMATICS TEACHING
AND THEIR PRACTICES

Lynn Rossouw & Eddie Smith
University of the Western Cape, South Africa

This research project describes teachers current views on school mathematics and classroom
teaching in relation to the new curriculum requirements.

Purposes: We address three main questions: (a) What views on mathematics and mathematical
activity appear to be prevalent among teachers? (b) What views of teaching mathematics that
would facilitate learning are used in classrooms? and (c) What teaching strategies are employed
by these teachers in their classroom? To address and synthesise these questions we constructed

a theoretical framework around teacher's views on mathematics and that of teaching, in relation
to an Outcomes-Based curriculum, using data from the eight grade 3 teachers'.

Methodology: An ethnographic research design is used (Hammersley & Atkinson, 1995), as its
qualitative methods enabled the researchers' sufficient flexibility for describing, interpreting,
exploring and explaining the views teachers have of mathematics and their teaching. The
research data was gathered through (a) direct observation and (b) indepth interviews. The
research analysis draws on the twenty-four classroom observations and sixteen pre- and post-

interviews.

Summary Findings: The views on mathematics and teaching held by the teachers can be
categorized into three groups: (a) transmission, (b) empirical and (c) connected. They are by no

means water tight categories, as there is some overlap in teachers' views however, it helps us to
identify the dominant views held by a specific teacher.

The views of the teachers involved in this study about mathematics and mathematical activities

are in direct conflict with a pedagogical practice articulated in an Outcomes-based approach,
which offers learners opportunities to engage in problem-solving, logical thinking, recognising
patterns, and implementing a pedagogy that focuses on conjecture, conceptual exploration and
reflective, critical discussion. The predominant views of mathematics and mathematics teaching
among the subjects of this study is that, of a system of algorithm transmitted by teachers to be
committed to memory by their students.

Through a process of systematic observation of classroom interactions and interview it was
possible to identify teaching styles that do not accord with the expectation of the

Outcomes-based approach.

References:
Hammersley, M. & Atkinson, P. (1995). The Politics of Social Research'. London : Sage.
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TRIANGULAR RELATIONSHIP INSTITUTION-
TEACHERS- SECONDARY SCHOOL PUPILS:

THE CASE OF INEQUALITIES
(Reseach in Progress)

By Luis Weng San and Ribas Gwambe

Brijlall (1996) contends that the forever burdening task of solving
inequalities by senior secondary higher grade pupils is consistently an
issue debated by mathematics educators. This contention is also a concern in
Mozambique. A significant number of new corners at the Eduardo Mondlane
University pursuing Physics majors, Chemistry majors and Engineering
seem unable to relate certain mathematical concepts to each other.
Particularly, in solving inequalities students seem not to see and explore the
connection between algebraic and graphical approaches. Besides, it seems
that a lot of students epistemologically consider equations and inequalities
the same mathematical entities.

Although, there has been a great deal of research on issues regarding
inequalities, little was done in this area in Mozambique (e.g. San, 1996 )
and almost nothing was investigated related to the research question of this
study.

The purpose of this study is to improve mathematics teaching at secondary
school level, especially the syllabi and teaching methods. In order to
approach this objective, we intend to study how the current way of teaching
affects the pupils' skills and understanding of mathematical concepts,
particularly in the teaching of inequalities.

Therefore, out of several activities it will be studied the contents of
curricula, textbooks and final exams of secondary school in order to find out
if and how the link between algebraic and graphical approaches is presented.
For this short paper it is just aimed to present some preliminary findings of
the study of curricula and final exams of secondary school focusing on link
between algebraic and graphical approaches.

BRIJLALL, D. (1996). Relook: Graphical Solution to algebraic Inequalities.
Paper presented at the Second Nacional Congress of AMESA..
SAN, W. L. (1996). Eight first-year University Students' Solution Strategies
in Quadratic Inequalities. Unpublished M. Sc. Research Report, University
of the Witwatersrand, Johannesburg.
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TASKS FOR ASSESSING RELATIONAL UNDERSTANDING OF FUNCTIONS
BASED ON THE OPERATIONAL/STRUCTURAL DISTINCTION

Thomas L. Schroeder, John E. Donovan II, Corinne M. Schaeffer, &

Christopher P. Reisch

State University of New York at Buffalo, USA

We are interested in gaining insight into the teaching and learning of
mathematics by developing and administering assessment tasks that probe students'
understanding. In particular, we are interested in students' relational understanding
(Skemp, 1978) of functions in precalculus and calculus classes. Our work in this area
has been influenced by Sfard's (1991) views on the duality of operational conceptions
and structural conceptions in mathematics, and by the algebra tasks discussed by
Sfard and Linchevski (1994) in terms of the distinction between operational and
structural conceptions.

We have developed a number of non-routine problems which we think demand
structural conceptions of functions. Unlike routine tasks which may appear to require
structural thinking but which students can handle successfully with an instrumentally
learned and understood procedure, we believe that these tasks, when used in
interviews, can provide evidence concerning the versatility and adaptability of
students' knowledge and the nature of their conceptions operational, structural, or

pseudostructrual.
In this short oral communication we will describe some of the tasks we have

developed, and we will discuss the results of the interviews in terms of the qualities
of the students' understanding of functions.
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RE-THINKING THE NOTION OF SLOPE UNDER CHANGE OF SCALE

Hagit Se la, Orit Zaslaysky, and Uri Leron

Technion, Haifa

The current study addresses the mathematical, cognitive and pedagogical
implications of changing the scale in a coordinate system. It was stimulated by the
increasing use of graphical technologies for learning mathematics in the past decade,
in which students are often told that they can zoom in or out as they like, since the
"behavior" of the graphs of the functions under investigation does not change. They
observe very different pictures, and are expected to "see through" these pictures a
common behavior. A number of studies indicate the illusions and pitfalls with which
such technologies present students (e.g., Goldenberg, 1988; Hillel et. al., 1992). Some
of these illusions and pitfalls have to do with the connection betWeen geometry and
algebra, and particularly, with a number of basic mathematical concepts that may be
interpreted differently from a geometric perspective than from an algebraic one. Our
study focuses on the notion of slope of a straight line, and the interplay between its
geometric and algebraic meanings.

For the purpose of the study we constructed a set of tasks, in which the change of
scale played a role in eliciting how people interpret the connection between slope as a
geometric entity related to angle, and slope as an analytic/algebraic property of a
function related to the difference-quotient. The tasks were given to a diverse
population of people: High school students, secondary mathematics teachers,
mathematics educators and mathematicians. In addition, interviews and classroom
observations were conducted and documented.

Two main results will be discussed:

Generally, three approaches were identified: A dominating geometric
approach to slope, a dominating analytic approach to slope, and a combined
approach that takes into account the conditions under which the geometric
system is isomorphic to the algebraic system.

Similar approaches and conflicts were found across mathematicians,
mathematics teachers, and high school students.

In our attempt to offer explanations to these findings, we revisit the notion of slope of
a linear function, the assumptions for which it is invariant under different
representations, and the connections between the "worlds" of algebra and geometry.

Goldenberg, E. D. (1988). Mathematics, Metaphors, and Human Factors: Mathematical, Technical,
and Pedagogical Challenges in the Educational Use of Graphical Representation of Functions.
Journal of Mathematical Behavior, 7. 135-173.

Hillel, J., Lee, L., Laborde, C. & Linchevski, L. (1992). Basic Functions Through the Lens of
Computer Algebra Systems. Journal of Mathematical Behavior, 11. 119-158.
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MATHEMATICAL MODELING BY PRE-SERVICE TEACHERS IN A
PHYSICS COURSE'

Gill Shama and John Layman, University of Maryland

In the last two decades there is a growing call for making connections between
mathematics and science. Scientific situations include stories and experiments.
Experiments are sensorial, they include detailed raw information, and they are
bounded by physical constraints. Stories are verbal and abstract, they serve as a
summary and they are not necessarily bounded. Shama and Layman (1997) found
that modeling processes carried by students are affected by the type of the situation.

This paper describes a study of the effect of a physics course on pre-service teachers'
(N=22) ability to model a scientific situation (as a story and as an experiment). In the
physics course small groups of students designed experiments, carried them out, and
presented their results with supporting evidence. Graphs of linear relationships from
experiments involving a microcomputer based laboratory were mainly examined.

The course affect was examined by a pen and paper pre and post tests. Each test is
composed of two parts, asking to obtain an equation for scientific situation. In Part I,
given a story and observing only an experimental setting, individual students are
asked to design an experiment, to predict data and to give a representing equation. In
Part II the same situation was given to pairs of students to be designed and carried
out with the actual experiment.

The students' responses to both tests revealed that in the experimental part they used
more graphs and tables, constructed algebraic representations with a better format,
used better methods to obtain the slope, and described better the connection between
the equation and the data, than were the situation was described only verbally.

From the beginning of the course to its end, the students' responses improved in
both parts of the tests. The responses to the part II improved more than the responses
to part I. No improvement was found only in checking of the equation back with the
data, as Hodgson and Harpster (1997) found "students often proceed from problem
to solution without looking back at their efforts or revising their models" (p. 260).

Reference
Hodgson, T. & Harpster, D. (1997). Looking back in mathematical modeling:

Classroom observations and instructional strategies. School Science and
Mathematics, 97(5), 260-267.

Shama, G. & Layman, J. (1997). The role of representations in learning an
interdisciplinary mathematics and physics university course. Presented at Research
Conference in Collegiate Mathematics Education. Mt. Pleasant, Michigan.

I The research reported in this paper was supported by the National Science
Foundation under grant No. DUE-9255745

2 Currently at The Israeli Open University
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MODELS FOR TEACHER ENHANCEMENT IN MATHEMATICS
EDUCATION: A TWO-YEAR PROGRAM IN THE BEDUIN

SCHOOLS

Ruth Shane
Kaye College of Education Beersheva, Israel

Both standardized tests and informal evaluation showed a low
level of mathematics achievement in the Beduin elementary schools of
the Southern District in Israel. Recent articles have confirmed the
conclusion that children's achievement is affected by teacher expertise
which can be improved by teacher education. In particular, curriculum-
centered professional development can improve the teaching of
mathematics (Cohen & Hi11,1997). Therefore, math educators at Kaye
College proposed an intervention focusing on teacher education,
merging two interrelated components: on-site school supervision and a
weekly workshop for the teachers. This research examines the results
of the program for the years, 1997-1999.

Traditionally, there have been two separate components to teacher
education: subject matter and "methods." Shulman's (1986) definition of
pedagogic content knowledge is, however, a reorganization of this
knowledge base for teacher development, such that the mathematics be
transparently relevant for the elementary teacher and the didactics be
integrally faithful to the mathematics. This perspective is particularly
relevant in designing a teacher enhancement program.

While cultural issues have been raised in how children learn
mathematics, little has been studied about culture and teacher
development programs. The awareness that everyone senior staff,
teachers, and pupils - is bringing to the project their own knowledge
base for teaching and learning mathematics and that this base must be
acknowledged, respected, shared, and developed, is a another
key feature of the program.

In the fall of 1997, forty teachers from thirteen Beduin elementary
schools were chosen for the program by their principals, 3 from each
school, at least one from grades 1-3 and one from grades 4-6. In 1998-
99, the program moved into a second phase with the same participants.
Two of the Beduin teachers became part of the on-site supervision team.

The findings of this study are based on an analysis of the
audiotapes of staff meetings and interviews with participants. Issues of
cultural reference are considered the borders of mathematics, language,
politics, and cooperation. The focus is on identifying and categorizing
evidence of the professional development of the teachers, of their
developing knowledge for teaching mathematics (Shane, 1998).
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THE TEACHER THE DECISIVE AGENT IN THE QUALITY OF TEACHING

Nadja Stehlikova and Milan Hejn
Faculty of Education, Charles University, Prague

The contribution is based on the research and experiences of the authors related to
the teaching of mathematics in the Czech and Slovak Republics. From the idea ex-
pressed in the title, which is the authors' strong belief, it follows that the improve-
ment of teaching mathematics is only possible via teachers' pedagogical work.
About twenty years ago we hoped that this could be done by giving the teacher new
effective teaching methods, and that he/she would implement them and thus improve
his/her teaching. However, this way yielded little improvement, and failed com-
pletely to change the instructive way of teaching. The similar experience has been
confirmed by many authors2.

Our understanding of the problem of influencing teachers was substantially changed
by the following experience.

Dana was a secondary school teacher, who had taught in an instructive way for
twenty years. She was satisfied with her work. She enthusiastically took part in our
research. Then came conflict. Dana's opposition to our opinions was very strong.
She was not willing to accept that the results showed that her students knew algo-
rithms but their knowledge suffered from formalism (= parrot-like knowledge). She
prepared her own experiment to persuade us that her students understood mathemat-

ics well.

The results of her experiment were not as she expected. This influenced her consid-
erably. When she told us about her experience, she was crying. She was sorry: "for
the years when I taught in an ineffective instructive way". In the next years, she sys-
tematically and creatively changed the way of teaching different topics and looked
for new ways of working with students. She was excited by this work.

The most important result of Dana's case is that the change in her pedagogical be-
liefs was not brought about by our advice or instruction, but by her independent
work. The didactic knowledge cannot be transmitted from researchers to teachers but
rather it must be reconstructed and made meaningful by teachers themselves.

We believe that a teacher who does independent experimental and research work
changes his/her pedagogical consciousness and attitude in a positive direction. This
belief has brought about a profound change in our approach to research collaboration
both with practising teachers and students - future teachers. In this collaboration, we
create a similar climate for them as we, the researchers, have when solving different
research problems. Rather than tell the teachers the basic results and principles of the
research methods we encouraged them to do their own experiments and to analyse

the students' outcomes.

' The contribution was aided by the grants GACR No. 406/97/P132 and GACR No. 406/99/1696.
2 For more detail see the full version of this paper on
http://www.pedfcuni.cz./k_mdm/pracovnici/stehliko/stehliko.htm.
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TEACHERS IN A PROCESS OF CHANGE: REFORMING
MATHEMATICS BY BUILDING ON CHILDREN'S THINKING

Steinberg Ruti

Hakibbutzim State Teacher College and
Ministry of Education, Elementary School Dept.,Israel

This research describes case studies of six teachers (grades 1 to 3) who
implemented an innovative approach to teaching mathematics, Cognitively Guided
Instruction. The teachers learned about children's thinking in solving mathematics
problems from current research and from listening to the children. This
knowledge served as the basis for instruction in a constructivist approach.
Reflectiveness and teacher-research were encouraged. This paper describes the
teachers' changes and provides insight into the process of change.

Research methods included about 100 in-class observations conducted in a
full school year, interviews with the teachers at the beginning and the end of the
year, conversations with them and short reflective writing by the teachers.

Results and discussion. Five of the teachers changed their beliefs markedly
during the year. They came to believe that children can learn mathematics
concepts without direct instruction and actively construct mathematical
knowledge. The teachers also moved toward a new view of their role in the
classroom, typified by coaching, listening, creating dialog, directing discussion
and giving children opportunities to solve problems, reflect on their solutions and
present them orally and in writing. The teachers made substantial changes in their
teaching: they gave many more challenging problems, they altered classroom
organization, created a rich mathematics environment and learned to listen to and
learn from the children. Teachers worked with heterogeneous small groups and
encouraged the acceptance of a variety of solution strategies.

The five-level model of Fennema, Carpenter, Franke, et al. (1996) was used
to assess the teachers' changes in beliefs and instruction. All 6 teachers started
at level 1. One new teacher stayed in level 1. One teacher changed to level 3,
two teachers moved to level 4 and two teachers moved to level 5 in only one
year. Teachers who moved towards the higher levels also developed more in
their ability to conduct discussions. I present here quotations of the teachers'
perceptions of their changing roles in the classroom:

In the past I used to stand in front of the class, teach, repeat, drill. Today I
let the students experiment. I am more of a coach, standing next to them,
looking from the side, observing, giving advice, helping if someone gets stuck.

To give challenges that encourage children to think, act, search, and
generalize. To present conflicts, dilemmas, to let the children find varied ways
to solve problems. To monitor, to be present. When a child needs help, to be
supportive. I see my role a lot less as transmitting knowledge.
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EMPHASIZING MULTIPLE REPRESENTATIONS IN ALGEBRAIC

ACTIVITIES

TABACH MICHAL

Department of Science Teaching, Weizmann Institute of Science

Computers facilitate, and can thus be used to promote the use of multiple

representations. Conventional algebra teaching focused mainly on the symbolic

(algebraic) representation. This can pose serious obstacles in the process of effective

and meaningful learning (Kieran 1992). Hence, the use of various representations is

recommended from the very beginning of learning algebra (NCTM Standards 1989).

Each representation (algebraic, verbal, numerical and graphical) has advantages and

disadvantages. The need to encourage students' individual styles of thinking make

the importance of working with various representations obvious. In the case of

algebra, spreadsheets and graph plotters allow for quick and well-organized

sequences and tables of numbers and a wide variety of graphs.

Flexibility in work with a variety of representations cannot be expected to occur

spontaneously. Appropriate tasks are needed, designed to raise student awareness

and ability to use several representations simultaneously, whether learning algebra is

technologically based or in a more conventional environment.

Savings is an activity designed for beginning algebra learning in the 7th grade, and

was developed as part of a comprehensive curricula project Compu-math. In the

presentation, I will use the Savings activity to demonstrate both guidelines for the

design of such activities and episodes from students' activity.

References

Kieran, C. "The Learning and Teaching of School Algebra". In Handbook of Research on
Mathematics Teaching and Leaning, edited by Douglas A. Grouws, pp. 390 - 419. New
York: Macmillan Publishing Company, 1993.

National Council of Teachers of Mathematics. Curriculum and Evaluation Standards for
School Mathematics. Reston, Va.: The Council, 1989.

34 8
1 - 322



GENERALIZING WITH EXCEL
AT THE BEGINNING OF LEARNING ALGEBRA.

Naomi Taizi

Weizmann Institute of Science, Israel

Generalizations in early algebra
At the beginning of learning algebra, generalizations are made and applied in a
variety of ways. The use of variables is an advanced stage in generalizing or
applying a pattern. The use of large numbers, or the "reversed" use of a pattern
are two possible ways to require students to generalize without variables
(Friedlander et al., 1989).

We observed that students tend to avoid generalizations by performing a step-by-
step development of a sequence. Therefore, the requirement to apply a pattern
for large numbers does not allow students to follow this path.

Generalizing with Excel
Over the last few years, we experimented with Excel as a tool for generalizing
patterns, at the beginning algebra stage. The students were exposed to three main
methods of developing number sequences: (a) "dragging" two adjacent cells to
produce a linear sequence with the corresponding rate of variation, (b)
"dragging" a formula that uses the previous cell to construct the next one (i.e.,
regression) and (c) "dragging" a formula that uses the place indicator (situated in
another column) to construct the sequence.

Several difficulties arise in students' attempts to generalize patterns, using Excel
in this way:

* Students prefer to follow their natural tendencies and use regression, rather
than employ a formula with the place indicator as a variable.

* Students may get confused by the need. to cope with the Excel syntax of writing
formulas, in addition to the traditional algebraic form.

* The power of Excel allows students to perform a direct search of numbers in
very long sequences, rather than encourage them to use more sophisticated
ways which rely on the general rule of the sequence.

* Excel's ability to produce large quantities of numbers de-emphasizes students'
need to justify an observed pattern.

Examples of these difficulties and of attempts to overcome them will be reported
in our presentation.

Reference
Friedlander, A., Hershkowitz, R. & Arcavi, A. (1989). Incipient "algebraic" thinking in pre-

algebra students. In: Proceedings of the 13th International Conference for the Psychology of
Mathematics Education, Vol. 1, (pp. 283-290). Paris, France.
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MODELING FIBONACCI: TWO UNIFIX CUBE PROBLEMS
Lynn Tar low and Emily Dann

Rutgers University

Theoretical Framework Research at Rutgers University carried out over the last

decade has centered on the use of unifix cube towers to build models for

constructing various mathematical ideas. Chief among these have been those related

to combinatorics and proof (Maher & Martino, 1996; Maher & Speiser, 1997).

Papert (1980) encourages the use of models for mathematics that provide learners

rich concrete environments through which they can explore mathematical ideas and

relationships. This gives them references for future problem modeling. This paper

presents an analysis of two problems, illustrating the power of immersion in model

understanding for extension into other areas of mathematics.

Motivating Question When presented with the challenge of finding a
non-recursive formula for the nth term of the Fibonacci sequence, one of the authors

created a tower model representation. This representation answered her question:

"How could I make this task understandable to my students?" Problem situations

were developed that resulted in two different ways of building towers that provide a

concrete representation of the Fibonacci structure. These models lead to a
non-recursive formula based on combinatorics.

The Models The original tower problem requires one to find all possible towers of

height n when allowed to select from two colors. This results in a concrete model of

the task of finding how many combinations exist. The first model created to produce

the Fibonacci structure uses individual white unifix cubes and blue unifix cubes

paired in twos. The second uses individual unifix cubes of white and blue and

requires that no two blue cubes will be adjacent.

Presentation The oral presentation will invite the audience to participate in forming

each inductive step as images of the towers are created on an overhead projector.

Participants will be able to see the Fibonacci sequence develop in a unique setting.

REFERENCES
Maher, C.A. & Martino, A.M. (1996). The development of the idea of mathematical proof:

A 5-year case study. Journal for Research in Mathematics Education, 27(2),194-214.

Maher, C.A. & Speiser, R. (1997). How far can you go with block towers? Journal for

Mathematical Behavior, 16(2), 125-132.
Papert, S. (1980) Mindstorms: Children, computers and powerful ideas. New York: Basic

Books.
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Children's number concepts: Implications for teacher education.
Noel Thomas

Charles Sturt University

Results of research involving the clinical interviewing of 132 children (Grades K to
6) are used to draw implications for the training of primary school teachers in
understanding the needs of young children when learning mathematics. In the study,
it was found that children have difficulties with using numeration as a number
system and this could be a result of limited instructional experiences. Common
teaching practice focusses on the numbers 1 to 1000 (the limits of the usual
representations with Dienes blocks) and algorithm-related techniques using place
values separately. Also, multiplication and division need to be more closely linked,
and more experiences bringing out the recursive nature .of repeated groupings need
to be provided.

In particular, the research highlights that the teaching of numeration as
compartmentalised knowledge restricts the construction of relationships. It is
argued that the teaching of numeration requires a more holistic perspective of what
children need to develop in their learning of number. Curriculum and teaching need
to reflect the goal of achieving understanding of the structure of the number system
through key processes of: counting, grouping, partitioning and regrouping and the
formation of multiunit values. Moreover, children must be helped to build their own
mental connections between their intuitive knowledge, various models that might be
used and the formal rules of numeration. Finally, children need to build their own
models as a means of constructing meaning for the number system.

In this report, the implications of a reliance on the modelling of number with Dienes
base ten blocks is explored through the use of explanations given by teacher
education students to a question requiring an extension to common use of the
blocks. It is demonstrated that some student teachers do not understand the
multiplicative structure of the number system. The students use numbers efficiently
but do not see a relationship between the model they are using and number as a base
ten system.

Thomas, N. (1996). Understanding the number system. In J. Mulligan & M. Mitchelmore (Eds.),
Children's number learning (pp. 89-106). Adelaide: Australian Association of Mathematics
Teachers.

Thomas, N., & Mulligan, J. (1995). Dynamic imagery in children's representations of number.
Mathematics Education Research Journal, 7(1), 5-25.

Thomas, N., Mulligan, J. T., & Goldin, G. A. (1996). Children's representation of the counting
sequence 1-100: Cognitive Structural Development. In L. Puig & A. Gutierrez (Eds.),
Proceedings of the Twentieth Annual Conference of the International Group for the Psychology
of Mathematics Education (Vol. 4, pp. 307-314). Valencia, Spain: PME.
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UNIVERSAL THEOREMS: A PARADIGMATIC MODEL

OF MATHEMATICAL THEOREMS

Chaim Tirosh

Kibbutzim College of Education, Tel Aviv

A paradigmatic model is a particular instance or a subclass of objects, accepted as a
representative of the whole class (Fischbein, 1987). This particular representation of
the concept has a strong impact on students' cognitive decisions, and may exert a
coercive effect on their ways of reasoning. Examples of paradigmatic models of
various mathematical concepts are described in the mathematics education research
literature (e.g., Hershkowitz & Vinner, 1982).

Mathematics teaching and learning attends to different types of mathematical
theorems, including universal (quantifier) theorems, equivalence theorems, existence
theorems and uniqueness theorems. This study aims at determining whether one of
these types of theorems acts as a paradigmatic model for prospective elementary
teachers.

Three classes of mathematics majors, prospective elementary teachers, women in
their second or third out of four years' teacher education program in two Israeli State
Teachers' Colleges, participated in this study. At the beginning of the academic

year, these prospective teachers answered two questionnaires. The first included nine
mathematical propositions. Participants were asked to consider each proposition, to
decide whether it was true or false and to prove their assertions. The second
questionnaire consisted of six propositions, each accompanied by four to seven
prepared arguments in favor of or against the proposition. The prospective teachers
were asked to judge the truth of each statement as well as to determine if each
presented argument was a valid mathematical truth. Analysis of prospective
teachers' responses to both questionnaires suggests that universal theorems serve as
paradigmatic models of mathematical theorems, for this population. In the
presentation I shall provide various examples of items from both questionnaires,
typical prospective teachers' responses and some, educational implications.

References
Fischbein, E. (1987). Intuition in Science and mathematics: An Educational

approach. Dordrecht, Holland: Reidel.
Hershkowitz, R., & Vinner, S. (1982). Basic geometrical concepts, definitions and

images. In A. Vermandel (ed.), Proceedings of the Sixth International
conference for the PME (pp. 18-23). Antwerpen, Universitaire Instelling.
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WHAT COUNTS AS EVIDENCE: UNCOVERING THE FOUNDATIONS
OF FAILURE IN MATHEMATICS LEARNING

Dianne Tomazos and Cerro! Hall
Education Department of Western Australia

The Education Department of Western Australia is implementing a major reform of
the curriculum using an outcomes based approach. Rather than prescribing what
must be taught, the department has made explicit the learning outcomes which all
students should achieve, and assigned to each school the responsibility and flexibility
to develop "their own teaching and learning programs according to their
circumstance, ethos and the needs their students" (Curriculum Council 1998 p.6).
The role of the classroom teacher in making ongoing professional judgements about
student learning has become central to this process. Determining what counts as
evidence of having achieved outcomes, along with the early identification of students
'at risk' of failing to achieve outcomes, are therefore essential research foci.

In this presentation the authors will report on a collaborative action research project
in progress* which is designed to assist teachers develop strategies for identifying,
accelerating and monitoring students who, by the end of primary school (approx 12
years old), have not achieved a sufficient level of mathematics learning to enable
them to make adequate progress in secondary school. A feature of the project has
been the opportunity for year seven primary generalist teachers and year eight
secondary mathematics teachers to work together to investigate and analyse the
features of children's developing mathematical ideas which are likely to put them 'at
risk' of future failure to achieve. Although the project is still in the early stages of
development, some important issues are emerging.

There are distinctive differences in the way primary and secondary schools in this
state operate and this has implications for the ways in which the respective teachers
are able to interact with students, and consequently the types of evidence they use to
make judgements about students' learning. Developing a common unbiased means by
which evidence of achievement in mathematics is determined by teachers in their
day to day classroom practise is a major challenge, as Watson (1997) has also noted.

What children cannot do in mathematics is usually the initial focus when teachers
are asked to identify students 'at risk', and this is relatively easy to ascertain. Why
they cannot do it then becomes the central question as teachers explore strategies for
accelerating students' learning. However, questions about why children CAN do
mathematics are also emerging as important issues in the project there are children
who can do the expected mathematics by the end of their primary schooling, but for
the wrong reasons, thereby laying the foundations for later failure.
Curriculum Council, (1998) Curriculum Framework for Kindergarten to Year 12 Education in Western Australia,

Osborne Park, Western Australia: Curriculum Council.
Watson, A. (1997) Coming to know pupils: a study of informal teacher assessment of mathematics. In E

Pehkonen, (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of
Mathematics Education, Lahti, Finland: University of Helsinki, Vol. 4, pp. 270-277.

*Transition Numeracy Project an initiative of the Education Department of Western Australia funded by the
Australian Government Department of Education, Training and Youth Affairs (DETYA).
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"NO ANSWER" AS A PROBLEMATIC RESPONSE:

THE CASE OF INEQUALITIES

Pessia Tsamir* Nava Almog**

Kibutzim College of Education* Tel Aviv University* Beit Berl College**

There is a growing interest in the last couple of years, in learning and teaching algebraic

inequalities. Traditionally, the related mathematics education literature consisted mainly

on papers suggesting preferable teaching methods, and only few papers either describe

students' ways of thinking about inequalities or examine the impacts of given teaching

methods on students' conceptions (e.g. Linchevski & Sfard, 1991, Piez & Voxman,

1997, Tsamir, Almog & Tirosh, 1998).

Our study investigated 355 high school, mathematics majoring students' solutions to

various types of inequalities, including linear, quadratic, absolute value, rational and

irrational ones. A 30 items questionnaire was administered to the participants, and they

were given two hours to solve these inequalities and explain their solutions. Those who

presented unusual (correct or incorrect) solutions were orally interviewed; in order to get

a better insight into their ideas.

The first phase of the analysis of data related to each type of an inequality, focusing on

preferred solving methods, common mistakes, and possible reasons for these mistakes.

In the second phase, a more general perspective was taken. Incorrect solutions, common

to several types of inequalities were detached and possible sources were suggested. This

analysis revealed that in all inequalities, cases in which the solution was either "there is

no value to satisfy the inequality", or "no numbers satisfy this inequality" were found to

be extremely problematic for a substantial number of the participants. Most outstanding

were students difficulties with `?..' inequalities, where students tended to claim, even in

purely numeric cases such as 3 3 or 7 3, that no numbers can both be smaller than

and equal to another number, and thus there is 'no answer'. In the oral presentation

examples will be presented, and possible implications to instruction will be described and

discussed.

References

Linchevski, L., & Sfard, A. (1991). Rules without reasons as processes without objects

- The case of equations and inequalities. Proceedings of 15th International Group for the

Psychology of Mathematics Education, Assisi: Italy Vol I I, 317-324.
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MATHEMATICAL BECOMING: THE PLACE OF MATHEMATICS IN THE UNFOLDING

STORIES OF LEARNERS' IDENTITIES.
Peter Winbourne

South Bank University

The research to be reported in this session is framed by theories of situated cognition.

The tools for analysing apprenticeship models of learning provided by this
perspective (Lave 1988,1996, Lave and Wenger, 1991) are used to describe
mathematics classrooms in terms of multiple intersections of practices and
trajectories. (Winbourne and Watson, 1998.)

A central focus of this session will be the exposition and justification of a
methodology which enables the learner's developing identity (or, more appropriately,
identities) to be characterised. This methodology, essentially biographical, draws
upon the work of writers such as Ricoeur (1984, 1985, 1988), and Brown (1997). It is

used to claim the legitimacy and validity of adding a narrative dimension to the
researcher's description of learning. In this research, the processes of mathematics
learning observed in the classroom are placed in the wider contexts of the lives of the
people who happen to come together in that classroom (in that school.)

Data drawn from observations of a small group of learners - 'inside' and 'outside' of
the classroom will be presented. These data, woven into narratives, will allow
particular classroom events, associated with learning of specific pieces of
mathematics, to be presented as strands in possible stories of the learners' lives. The
discussion will focus on aspects of those stories which describe the learners'
developing identity within the practice of school mathematics seen as but one of the
many practices in which learners participate. These stories provide a powerful
account not just of what, but of how and why people learn.

The research suggests that learning happens as much as a result of the complex
identities in practice that teachers and learners bring with them when they step into the
classroom as anything that happens to them once they are there.

References
Brown, A. (1997) Mathematics Education and Language: Interpreting Hermeneutics
and Post-Structuralism, Dordrecht, Kluwer.
Lave, J., & Wenger, E. (1991) Situated learning: Legitimate peripheral participation,
New York, Cambridge University Press.
Lave, J. (1988) Cognition in Practice, New York, Cambridge University Press.
Lave, J. (1996) Teaching, as learning, in Practice, Mind, Culture and Activity, 3(3), pp

149-164.
Ricoeur, P.(1984, 1985, 1988) Time and Narrative, 3 vols, Chicago, University of
Chicago Press.
Winbourne, P. & Watson, A.(1998) Learning Mathematics in Local Communities of
Practice, in A. Olivier & K. Newstead (Eds.) PME 22, Stellenbosch, South Africa,
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VISUALIZATION OF SOLUTIONS OF A QUADRATIC EQUATION

Kiyosi Yamaguti
Kyushu Sangyo University, Fukuoka 813-8503, Japan

To solve a quadratic equation is one of important topics of high school
mathematics. If the numbers considering are restricted to the real
numbers, then the equation has no solution when the discriminant of the
equation is negative. By introducing the complex number, any equation
has (complex) solution. A real solution can see as an intersection of the
graph of quadratic function and the x-axis. How visualize elementary an
imaginary solution on the complex plane would be important for teaching
of high school mathematics.

We first recall three visualizations of the products of complex numbers
in the complex plane in the sense of Hamilton. Secondary, we consider the
geometric constructions of solutions of quadratic equations. To construct
imaginary solutions is essentially equivalent to construct two real
solutions. In fact, given a quadratic equation (1): ax2+ bx+ c=0, then
consider a quadratic equation (2): ax +bx+c*=0, where c*:=(b2/2a)-c,
associated with (1), then (1) has two imaginary solutions if and only if (2)
has two real solutions. We shall give some geometric constructions by
using parallelism and drawing of circle in the orthogonal coordinate plane.
Example: Assume the discriminant D of the equation (1) is negative. Then,
the solution of (1) is a solution of the system of equations (3) x=-b/2a, (4)
x +y2=c/a. Hence, the imaginary solution is obtained as intersection of the
axis (3) of parabola and the circle (4). Assume a>0, D>0 in (1). Then, (2)
has imaginary solution points P*, Q*, that are obtained by above. The real
solutions of (1) are the intersection of the x-axis and a circle with center
(-b/2a, 0) and P*Q* as a diameter.

The above geometric constructions are elementary. However, these
constructions need that student understands the theoretical reasoning on
solutions of quadratic equations and the properties of the graphs of
quadratic functions.

A graphing calculator can also use for these constructions. Therefore,
such a construction of the solution could assist students for visual and
theoretical understanding for a solution of quadratic equation.
[1] K. Yamaguti, Geometric construction of roots of a quadratic equation, Proceedings

of the ICMI-East Asia Reg. Conf. on Math. Educ. Vol. 2, Korea, 1998, 577-588.
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UNDERSTANDING THE CONNECTIONS BETWEEN THE GRAPH OF A
FUNCTION AND THE GRAPH OF ITS DERIVATIVE

Smadar Zamir and Orit Zaslaysky

Technion, Haifa

The notion of derivative is fundamental in pre-calculus and calculus courses. There are
many calls recommending that emphasis be drawn to connections between properties
of the graph of a function and the graph of its derivative (Hallet, 1991; Tall, 1991;
NCTM, 1989). Yet, in spite of the qualitative and visual aspects the notion of
derivative, students often treat it technically without understanding its meaning. One
way to create opportunities for the recommended kind of learning experiences dealing
with derivatives can be done with a Gradient Measurer (Tall, 1991). This tool
provides ways to pointwise construct the graph of the slopes ofa given graph. Thus, it
enables the student to construct the graph of a derivative function without having to
know its analytic expression.

The purpose of the present study was: (1) to explore ways in which students
understand and solve problems associated with the connections between the graph of a
function and the graph of its derivative; and (2) to examine the influence of learning
experiences based on the use of a Gradient Measurer on students' interpretation and
application of these connections.

Nineteen 11-grade students participated in the study. The students encountered a series
of learning activities based on the use of a Gradient Measurer to construct graphs of
derivatives. They were given a written questionnaire prior to this intervention and
again after its completion. Both questionnaires were similar in structure and content,
and included 13 problems dealing with visual connections between the graph of a
function and the graph of its derivative. All the problems could be solved without the
use of any analytic expression of the function or its derivative.

Analysis of students written responses to both questionnaires pointed to five main
approaches students used: 1. Expressing the need for an explicit analytic expression of
a function or of its derivative; 2. Attributing similarity between the graph of a function
and the graph of its derivative; 3. Turning to familiar families of functions; 4. Applying
familiar theorems; 5. Examining or constructing the slopes of the graph at various
points. Some approaches were more helpful than others for solving the above kind of
problems. The findings indicate an increase in use of the more helpful approaches.

Hallet, D. H. (1991): "Visualization and Calculus Reform". In Zimmerman and S. Cunningham
(Eds.), Visualizing in Teaching and Learning Mathematics, Mathematical Association of
America, Notes Series, Vol. 19, pp. 121-126.

Tall, D. (1991). "Intuition and Rigor: The Role of Visualization in the Calculus". In Zimmerman and
S. Cunningham (Eds.), Visualizing in Teaching and Learning Mathematics, Mathematical
Association of America, Notes Series, Vol. 19, pp. 105-119.

1 - 331

357



CONFRONTING AND MODIFYING

STUDENTS' INTUITIVE RULES IN NUMBER THEORY

Rina Zazkis

Simon Fraser University.

This study adds another example to a rich collection of mathematical and

scientific situations presented by Stavy and Tirosh in which the intuitive rule "the

more of A, the more of B" has been applied. It is students' intuitive belief that a larger

number has more factors.

This study is situated within the research on learning mathematics at the

undergraduate level in general and learning introductory Number Theory by

preservice elementary school teachers in particular. I will introduce "the rule" by

demonstrating excerpts from interviews with preservice elementary school teachers. I

will discuss the robustness of this rule by considering how students assigned truth

value to the following two statements:

(1) "If a natural number a is bigger than a natural number b, then the number of

factors of a is bigger than the number of factors of b."

(2) "If a natural composite number a is bigger than a natural composite number b,

then the number of factors of a is bigger than the number of factors of b."

I will analyze the differences in students responses to the two statements,

pointing out to a pattern emerging in students' struggle to reconcile their intuition

with conflicting evidence. Further, I will show students' tendency to consider

"conflicting evidence" as exceptions, their willingness to amend the rule, but not to

give it up. In conclusion, I will argue the importance of instructor's awareness of

students' potential misconceptions. Pedagogical approaches that confront students'

popular beliefs (without giving explicit reference to those), and attempt to deepen

students' understanding of the relationship between natural numbers and their factors

will be suggested.

Stavy, R., and Tirosh, D.: 1996, 'Intuitive rules in science and mathematics: The case of

"more of A more of B" '. International Journal of Science Education 18(6), 653-667.



IMPROVING STUDENTS' MATHEMATICAL

THINKING:

THE ROLE OF DIFFERENT INTERACTIONS IN

A COMPUTER ENVIRONMENT
ORIT ZEICHNER, BRACHA KRAMARSKI, ZEMIRA MEVARECH

SCHOOL OF EDUCATION

BAR-ILAN UNIVERSITY, ISRAEL

The goals of mathematics teaching published by the National Council of Teachers of

Mathematics (NCTM, 1989) placed special emphasis on doing mathematics in a

manner that encouraged students to develop their ability to solve problems, think and

give reasons for the solution process. The present study examined the effect of

learning in a computerized environment with interactions based on different types of

feedback, on achievements in mathematics and on developing mathematical

communication. The study is based on the Self-Regulation Learning model and two

types of feedback provided by the computer when the student made a mistake:

metacognitive feedback (SRL) (Mevarech, & Kramarski 1997) and knowledge of results

(KR) feedback. To test mathematical thinking and communication, subjects (186)

were given an achievement test in arithmetic series that examined general term

formula, rule of recursion, verbal problems, and overall score. To test mathematical

communication, students' explanations were analyzed, first as right/wrong

explanations, and then in terms of type of rationale according to the categories:

algebraic rationales, verbal rationales, and algebraic and verbal rationales. The main

conclusion of this study is that students working in a computerized environment with

metacognitive feedback attained higher achievements and demonstrated better ability

to explain their solutions than students who worked with knowledge of results

feedback. The authors also bring theoretical and practical applications of the research

findings.

Mevarech, Z.R. & Kramarslci, B. (1997). IMPROVE: Amultidimentional method for teaching

mathematics in hetrogeneus classrooms. American Educational Research journal, 34 (2),

365-395.

National Council of Teachers of Mathematics (NCTM) (1989). Curriculum and evaluation

standards for school mathematics. Reston, VA: NCTM.
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MOTIVATING TEACHERS TO USE ALTERNATIVE ASSESSMENT

Jeanne Albert
Weizmann Institute of Science Israel

This poster describes a national project which uses mathematical investigative tasks
for assessment in elementary schools. During the first three years of the project, the
researcher found that elementary school teachers believe that understanding and
thinking are their most important goals in teaching mathematics. Nevertheless they
are still creating mostly traditional tests.
In 1994 the Israeli Ministry of Education funded a project to create test item banks
for use in school-based assessment. The mathematics investigative tasks which we
created were guided by the following principles:
- to present mathematics as a subject which requires dealing with authentic,
worthwhile problems.
- to emphasize the process of solving instead of final solutions.
- to emphasize processes of higher level thinking e.g., generalization, justification,
estimation.
- to downplay the use of calculation techniques and encourage the use of calculators.
- to introduce the students to unknown problems without algorithmic solutions.
- to introduce the students to problems with many solutions.
- to integrate various branches of mathematics.
- to enable each student to reach his highest possible mathematical ability.
- to enable even students with lower mathematical abilities to experience
mathematical investigations.

In order to encourage teachers to use investigative mathematics tasks as assessment
tools workshops were given. The general plan of a workshop was adapted from a
model Clarke (1995) developed for familiarizing students with newly introduced
criteria of assessment. There is evidence that teachers' participation in these
workshops has an impact on their instruction and assessment.

In the poster will be displayed:
- Teachers' beliefs.
- Examples of typical elementary school mathematics tests.
- Mathematical investigative tasks from the test bank with students' work.
- Examples of tests which have been influenced by workshop participation.

Clarke, D. (1995). Quality Mathematics: How Can We Tell? Mathematics Teacher,
88(4), 326-328.
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Mathematical sense-making strategies
of non-academically oriented students

Yoni Amir and Orly Gott lib
Department of Science Teaching

Weizmann Institute of Science Israel

"Shay" is a curriculum development project for non academically
oriented students (ages 15-18) in Israel, who undertake a national
matriculation examination at the end of high school. The curriculum
includes the basics of analytic geometry, calculus, statistics,
probability, linear programming, trigonometry and stereometry. The
approach of the learning materials stresses graphical and visual
aspects, uses of and connections among multiple representations,
informal intuitive reasoning, and estimation. In the records collected,
we found instances of flexibility, control mechanisms and
resourcefulness in student thinking which may exceed those usually
found in more mathematitally able students.

In the poster, we will display:

Background information of the "Shay" program, and its pedagogical
rationale.

Examples of student work in which:
a) a problem clearly identified with one mathematical subdomain is
solved using tools from another subdomain
b) problems which require formal tools, are solved informally,
c) the search for alternative perspectives on a solution approach
reveals a mistake in the original approach,

The examples will be presented in its original written form, translated
into English, and analyzed. The analysis will suggest the ways in
which the learning materials support students' sense making attempts
and strengthen their confidence and self-esteem.



TEACHERS' BELIEFS AND USE OF NON-ROUTINE PROBLEMS IN
MATHEMATICS TEACHING

Dalia Asman Gordon College, Haifa , Israel Zvia Markovits Oranim School of Education, Israel

This study focuses on teachers' beliefs regarding mathematics non-routine problems
and ways in which teachers cope with this kind of problem.

Interviews were conducted with thirty elementary school teachers from three
different groups.
a. Ten in-service mathematics teachers. (T)
b. Ten in-service teachers who participated for at least two years in teachers'
development programs. (TT)
d. Ten pre-service teachers specializing in math, in their last year of study (PST)

Teachers were first asked about their general beliefs concerning mathematics
problem solving. Then, each teacher solved eleven non-routine problems. Each
problem was followed by a series of questions exploring their beliefs about the
problem. Questions included: Would you pose this problem to your students, to the
whole class or part of it? Would you give this problem in an examination?

One of the problems was the Bell Problem.
At the top of a high tower, there are three bells. One Rings every 10 minutes, the second every 8
minutes, and the third every 5 minutes. They all rang together at 12:00. When is the next time
they would ring altogether?

The following table indicates the number of teachers who solved this problem and
distribution of their answers concerning some of the follow un uuestions.

T TT PST Total
Solved correctly 5 8 3 16
Would pose problem to the whole class 9 9 10 28
Would give the problem in examination 1 2 0 3

Encountered the problem in textbooks or
math courses

0 0 0 0

Findings indicated that almost half of the teachers solved the problems
incorrectly. Nevertheless, most of them after realizing the correct solution were
willing to pose the problem to their entire class. However most teachers would
definitely not pose the problem in an examination, in order to avoid unnecessary
difficulties for their students during exams. None of the teachers had encountered
such a problem in any of elementary schools' textbook.

The analysis of the other ten research problems draws much a similar picture.
The TT teachers solved more problems correctly than the other teachers did. In
addition during the interviews, TT teachers expressed much more the kind of beliefs
which we would like and expect math teachers to hold. This might indicate the
importance of in-service teacher development programs.
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LEARNING MATHEMATICS BY PROJECTS USING WEB PAGE

SEP SSEDF DGENAMDF
Yolanda Campos Centro Sig lo XXI

Teresa Navarro de Mendicuti BENM

Objective and description: In this experience we have elaborated one prototype project
which represents an interinstitucional effort to produce some kind of material that encour-
age the critical and creative incorporation of computer technologies in the area of teachers
training as part of an Academic Programme of Computer for Education in Mexico D.F.

The objective of this prototype is to promote the learning of Mathematics in elementary
school based in projects, to stimulate teachers and students to use computer technologies
critically and creatively as a didactic assistance and elaborate a Web page as an integrative
element within the multimedia elements generated during the projects process. Concerning
the level of teachers training we intend to promote the active participation of teachers and
students the use of computer technologies as a support for educational projects that can be
applied to elementary education after being introduced to the prototype.

Among the computer technologies used we have: productivity tools and structured educa-
tional software elaborated specially for the prototype, Logo, software for exploration,
Internet, and the elaboration of a Web page. This Web page integrates the project descrip-
tion, the software, book and notebook exercises, participation in learning circles and dis-
cussion forum. Didactic suggestions are offered as well as a teachers manual, parental ad-
vice and lines of investigation. It is our wish to prepare the teachers trainers together with
the students so that they can apply the project working model in elementary school and
generate new projects with the assistance of the prototype.

Some Results: Until now in the experimental phase of the prototype, teachers in training
involved have acknowledged the agreement between the project and the focus of the new
plans and study programs within Primary School Study Licence. For the moment we have
not yet gotten personal project production but we hope to achieve this in 99. Working with
the children in open participation within the pilot phase we have observed the way they
have advance not only in Math but also in their attitude towards school according to their
parents. We were able to capacitate teachers from the Valle Arispe Primary School on the
project focus and collaborative learning around the prototype; each teacher managed to
produce a personal project that was included in the Web page. We successfully organised a
direct workshop of Web page project elaboration with the National Association of Teach-

ers of Mathematics.

We have considered pedagogic follow up for the learning circles for children, teachers,
parents and researchers as well as discussion groups with other interested teachers. It is our
intention to document every action realised and generate lines of investigation to sustain the

thesis proposed in the corresponding section. Developmental courses for training and actu-

alising, as well as other higher studies have been organised for teachers in service to be
innovated and reflective in this new system.
Some References: SOMECE. (1984 1998) Proceeding of International Simposium of Computers Education. Mexico: SSEDF

CAMPOS CAMPOS, Yolanda. (1995) Propuesta de una Didactica lntegradora de la Matematica con Computed& pars In Educaci6n

Basica Mexicana. Mdxico: ENS



A Study of Second Semester Calculus Students' Notion of Covariation
Marilyn P. Carlson

Arizona State University

Research has shown that calculus students possess weak understanding of impor
aspects of the function concept, with particular difficulty understanding covariant aspects
function relationship (Carlson, 1998; Thompson, 1994). The present study investigate
calculus II students' understanding of covariation.

Imagine this bottle filling with water. Sketch a graph of the height as a function of
amount of water that's in the bottle.

On the above problem, 14 of the 20 students constructed a graph that was str
concave up or concave down, conveying that "as more water is added, the graph should r
However, when asked to explain why, most appeared to be responding with a memor
phrase. When prompted to discuss the changing shape of the graph, fewer than half
mention of the changing rate, and when further probed, did not appear to understand
varying magnitude of the variables represented in this situation. Few students attended to
"rate change" from positive to negative. Although these students had successfully complet
course that emphasized rate and covariation, most did not appear to possess deep-se
understandings for applying this knowledge in fairly routine settings.

References
Carlson, M. (1998). A Cross-Sectional Investigation of the Development of the Func
Concept. Research in Collegiate Mathematics Education III. CBMS 7.

Thompson, P. (1994). Students, Functions, and the Undergraduate Curriculum. Researc
Collegiate Mathematics Education I. CBMS Issues in Mathematics Education, 4, 21-44.
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LEARNING CONSTRUCTIVIST TEACHING BY DOING:
A COURSE FOR IN-SERVICE TEACHERS

Chang, Ching-Kuch

National Changhua University of Education, Taiwan

E-mail: macck@cc.ncue.edu.tw

A problem-centered and investigation-based course on teaching for
in-service mathematics and science teachers has been developed in a
summer program. The purpose of this course was to learn how to teach
mathematics or science from the constructivist perspective. The course

development was based on constructivism, especially social

constructivism (Ernest, 1991). Major adjustments concerning the
structure, contents, and the ways of teaching have been made on this
course. The course not only introduced constructivism, but also taught
according to its principles, letting the teachers construct their teaching
knowledge by doing, talking, presenting, and writing. Furthermore, the
course also had the teachers investigate their own teaching problems.
During investigation the teachers have processes experiences such as
exploring, searching, formulating, planning, testing, justifying,
conjectures, reflecting, and generalizing. It was found that the new course
was more effective than traditional courseby lecturing. Teachers'
learning was illustrated by excerpts from their journals.

References

Ernest, P. (1991) The Philosophy of Mathematics Education, London:

Falmer.

von Glasersfeld, E. (1995) Radical Constructivism: A way of Knowing
and Learning. London: The Falmer Press.

Vygotsky, L.S. (1972) Thought and Language. Cambridge, MA: The

M.I.T. Press.

Vygotsky, L.S. (1978) Mind in Society: The Development of Higher
Psychological Processes. Cambridge, MA: Harvard University Press.

Wheatley, G.H. (1991) Constructivist perspectives on science and
Science Education, 75, 1, 9-21.
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THE COMPLEMENTARY ROLES OF IDEA INITIATOR AND
INQUIRER IN MATHEMATICS CONJECTURING ACTIVITY
Ing-Er Chen Fou-Lai Lin
Kaohsiung Normal University Taiwan Normal University

We had developed a thinking model of mathematics conjecturing.
Evidence in our research had shown that two different thinking paths in
this model conforming to the functions of conjecturing and refuting
respectively could keep the fluency of one's thinking. Thus, we applied
this model to design mathematical conjecturing activities to develop
students conjecturing abilities.

This paper reports the discourse between two students in the activity
conducted in a Taiwan eighth-grade mathematics class. All students were
encouraged to guess a conclusion and judge the correctness of a
proposition. Their performance in this activity could be divided into four
stages: making conjectures, judging reasonably, refuting arguments, and
comment and reflection. Some learning materials were quoted or
rewritten from Mason (1989) and Polya (1954). Data was obtained from
classroom observations, interviews, transcription of videotapes and
audiotapes of the lessons, and students' booklets.

According to the episodes of their discourse, one student can be
identified as an idea initiator, and the other as an inquirer. The idea
initiator was an active conjecturer. Her contribution in the class is to
provide some vague but good ideas followed by others. The contribution
of the relative role, idea inquirer, is to arouse everybody's thinking. She
got benefit from the activity by absorbing the initiator's ideas and her
query could help the initiator to put her thinking in order.

Our evidences show that successful conjecturing needs two roles,
idea initiator and idea inquirer. One student may play these two roles
spontaneously. But most students could only play one of these two roles.
Thus, the interaction between initiator and inquirer, who both offered
complementary scaffolding by each other and conformed to the functions
of conjecturing and refuting respectively, made the conjecturing activity
successful. Based on this phenomenon, we suggested that cooperative
learning and social construction might be the appropriate way of
developing conjecturing activitiy.
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THE HETEROGENEOUS CHARACTER OF THE STUDENT TEACHERS
THOUGHT

Climent, N.; Contreras, L.C. & Carrillo, J.
(University of Huelva, Spain)

Teachers usually consider their students as a group (homogeneity tendency), but every
student builds their own individual knowledge in their personal way, based on their
previous knowledge and their beliefs on mathematics and its teaching and learning.
Their mathematical abilities and their own logic come also into play in every situation

they approach.

Problem solving emerges as a challenge for students. They, when tackling problems,
apply their mathematical abilities and views. Hence, problem solving is a very
appropriate realm in which one can analyse knowledge as well as beliefs.

We have posed to related statements (Cl and C2) of the Dickson et al. Problem to
two groups (A, B) of student primary teachers Cl to group A and C2 to group B).

Cl C2

Find the area of the triangle of the picture, given
20 cm2 as the area of the rectangle.

What part of the rectangle is the triangle of the
picture, given 20 cm as the area of the
rectangle?

Inspired in Dickson et al. (1984) Children Learning Mathematics: A
Teachers Guide to Recent Research. London: Cassell.

The students were asked to solve it at home and to write the process in as detailed a
way as possible. After that, we analysed their protocols and we chose one
representative of each different way of solving. Each student was interviewed twice
(individually, to light some aspects of their processes and, in groups, to promote
sharing and further discussion, comparison and revision of the solutions). Our
analysis focused on main global processes and perspectives, as well as major errors,
to find some differences related to students' beliefs and knowledge organisation.

We conjectured that there would be different approaches depending on the numerical

or geometrical character of the statement. It happened, nevertheless almost all the
students seemed to be keen to give numerical support, making explicit some aspects
of their mathematical beliefs. In addition, we found an absence of reflection on what
is being done in each moment of the process.

With these comments we want to highlight the importance of metacognitive
knowledge and beliefs in teacher education. The metacognitive features go beyond

the specific mathematical knowledge towards the students' current and future
professional knowledge (metacognitive knowledge lies in the basis of professional
knowledge, supporting it).
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AUTHENTIC LEARNING IN MATHEMATICS:
A REAL POSSIBILITY OR AN ACADEMIC'S FANTASY ?

Anne D. Cockburn,
University of East Anglia, U.K.

Kindergartens and elementary classrooms tend to be full of brightly coloured
tools and toys which are rapidly produced when the children are introduced to
the early stages of mathematics. Unfortunately, as the students grow older and
the work becomes more formal, there is less and less evidence of apparatus -
let alone everyday objects - to develop skills and promote understanding.
Thus, in effect, the quality of 'authentic learning' (Desforges, 1995) is
diminished leaving mathematics as an abstract series of equations and
problems which appear to have little, or no, relevance to the real world.

I am certainly not the first to advocate that learning from everyday experience
is effective (see Froebel, 1887; James, 1899; Dewey, 1933; Kamii, 1985 and
so on) but it may be that (1) it is an unrealistic aspiration when one is
endeavouring to teach thirty children or (2) only fairly simple mathematics
lends itself to the use of real examples which may be familiar to the children.

This poster focuses on the second of these possibilities. It will include some
examples of mathematical concepts which have been presented in an everyday
manner in order to aid pupil insights and understanding. It will also encourage
delegates to explore the possibility that more complex mathematics might be
presented in such an accessible way and invite them to express their opinions
on such an approach.

References

DESFORGES, C. (1995) 'Learning out of school'. In C. Desforges (ed.) An
Introduction to Teaching. Oxford: Blackwell.
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DOES THE AUTHENTICITY OF THE CONTEXT AFFECTS THE
TENDENCY TOWARDS IMPROPER PROPORTIONAL REASONING?

Dirk De Bock* **, Lieven Verschaffel* and Karen Claes*
University of Leuven* and EHSAL, Brussels**; Belgium

Two recent studies by De Bock, Verschaffel and Janssens (1998) revealed a very
strong tendency among 12 to 16-year old pupils to apply the linear model in non-
linear scaling problems (such as "Farmer Carl needs 8 hours to manure a square
piece of land with a side of 200 m. How many hours would he approximately need to

manure a square piece of land with a side of 600 m?"). However, these studies did not
explain why so many pupils improperly made use of this model. One possible expla-
nation for pupils' misuse of the linear model is the inauthentic or unrealistic nature of
the problem situations. Some evidence for this hypothetical explanation can be found
in Treffers (1987), who realized a design experiment in sixth graders on the influence
of linear enlargement on area and volume that was built around the context of "Gulli-
ver's travels", and claimed that, in this realistic mathematics education approach,
pupils have no difficulty with a problem like "How many Lilliputian handkerchiefs
make one for Gulliver?". However, the facilitating power of realistic and attractive

contexts on pupils' ability to solve non-linear scaling problems has - as far as we
know never been investigated in a systematic way.

To investigate the influence of authentic contexts on pupils' well-documented
tendency towards improper proportional reasoning, we executed a new study. In this
study, 152 13 to 14- and 161 15 to 16-year olds were matched in two equivalent

groups. A paper-and-pencil test, consisting of two proportional and four non-
proportional scaling problems was administered to all pupils. In the first group, the
test was preceded by an assembly of well-chosen fragments of a film version of Gulli-
ver's visit to the isle of the Lilliputians, and all experimental items were linked to
these film fragments. In the second group, an equal number of mathematically
isomorphic problems was presented in the form of a series of non-related traditional

school problems, without any contextual support.
In this poster, we present a selection of the materials and the main results of this

research. In addition, we exemplify the different correct and incorrect strategies
pupils applied to represent and solve the non-proportional problems in both experi-

mental groups.

References
De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear

model in secondary school pupils' solutions of word problems involving length

and area of similar plane figures. Educational Studies in Mathematics, 35,

65-83.
Treffers, A. (1987). Three dimensions. A model of goal and theory description in

mathematics instruction. The Wiskobas project. Dordrecht: Reidel.
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VISUALISATION AND THE INFLUENCE OF GRAPHICAL CALCULATORS
Sally Elliott, Brian Hudson. Sheffield Hallam University, Sheffield, UK.

Declan O'Reilly. The University of Sheffield, Sheffield, UK.

Visualisation is increasingly being accepted as a fundamental aspect of mathematical
reasoning. Indeed many researchers stress the importance of mental imagery in the
construction of meaningful mathematics (Presmeg, 1995; Wheatley and Brown,
1994). Zimmerman and Cunningham (1991) further argue that visual thinking needs
to be linked to other modes of representation in order for students to learn optimally.

The potential of utilising graphical calculators to promote and encourage
visualisation skills has been recognised in numerous studies. In particular, graphical
calculators can be used to enable students to develop a deeper insight into functions
and their graphs (Carulla and Gomez, 1997, Ruthven, 1990). Borba (1996) suggests
that the use of graphical calculators mediates both teacher-student relationships and
interactions between students.

This study investigated ways in which the graphical calculator mediated students'
powers of visualising functions. The findings indicate that this occurred in three
distinct ways. Firstly, it appeared that the graphical calculator enabled the students to
access graphical images of functions quickly and easily, when perhaps they may
have had difficulty otherwise. This in turn allowed them to see the problem more
clearly and proceed towards a solution. Secondly, it seemed that the graphical
calculator influenced students' perceptions in a positive way towards the validity of
visual methods in mathematics. Thirdly, the observations suggested that the graphical
calculator was instrumental in improving levels of student confidence surrounding
functions. It did so by providing scaffolding for student-student interactions, which
enabled students to make connections between visual and symbolic modes of
representation more easily.

References
Borba, M. C. (1996) Graphing Calculators, Functions and Reorganisation of the
Classroom. Proceedings of working Group 16 at ICME-8, pp. 53-60.
Carulla, C. and Gomez, P. (1997) Graphics Calculators and Problem Solving. Do
They Help? Proceedings of PME 21, 1, p 224.
Presmeg, N. C. (1995) Preference for Visual Methods: An International Study.
Proceedings of PME 19, 3, pp. 58-65.
Ruthven, K. (1990) The Influence of Graphic Calculator Use on Translation from
Graphic to Symbolic Forms. Educational Studies in Mathematics, 21, pp. 431-450.
Wheatley, G. and Brown, D. (1994) The Construction and Re-presentation of Images
in Mathematical Activity. Proceedings of PME 18, 1, p 81.
Zimmerman, W. and Cunningham, S. (1991) Visualisation in Teaching and Learning
Mathematics, Providence, RI: MAA Notes Series, 19, pp. 1-9.
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"MANOR PROJECT': PREPARATION OF TEACHER-LEADERS AND
IN-SERVICE TEACHER EDUCATORS

Ruhama Even, Hasida Bar-Zohar, Orly Gott lib, Nily Hirshfeld, Naomi Robinson,

Josephine Shamash, Weizmann Institute of Science, Rehovot, Israel

The Manor Project is used as a vehicle for the preparation of teacher-leaders and

inservice teacher educators whose role is to promote teacher-learning relevant to

mathematics teaching as part of effecting changes in school mathematics. The
poster presents the central aspects of the Project in an attempt to expand and

enrich understanding about professional preparation of teacher-leaders and

teacher educators.

The aims of the Manor Project: 1) to prepare promising mathematics educators to

serve as teachers, leaders and guides for secondary school teachers and provide

support in the process of studying mathematics teaching and introducing changes

in school mathematics, 2) to prepare resource materials for project participants

and other mathematics teacher educators relevant to their work with teachers.

The preparation program is in the framework of a two-year intensive course
whose central aims are: 1) to develop an understanding about current views in

mathematics teaching and learning; 2) to develop leadership, mentoring
knowledge, skills and work methods with teachers; 3) to create a professional
reference group.

The program focuses on cognitive, curricular, technological and social aspects of
teaching different mathematical topics, such as: algebra, analysis, geometry, the

real numbers, probability and statistics. It also examines critical educational
issues, such as assessment and teaching in heterogeneous classes, enhances
mathematical knowledge, emphasizes the development of leadership skills and
methods for working with teachers, encourages discussion of practical difficulties

and dilemmas. The program also focuses on educational initiatives whose
purpose is to effect changes in school mathematics teaching and learning.

The resource materials focus on central subjects in mathematics teaching and
learning and are field-tested. Three resource files have so far been developed:
Algebra, Functions and "it ". The major themes in these files are: historical
aspects of the central subject, selected mathematical topics relevant to the subject

matter of the file, students' conceptions and ways of learning and thinking,

aspects of mathematics teaching relevant to the central subject.

All resource files contain detailed suggestions of activities for teacher-
development meetings and provide examples of different models for such
meetings, intended to serve as a guide to teacher-educators and teacher-leaders.
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The Use of Images in Primary mathematics texts
Tony Harries, Bath Spa University College

Rosamund Sutherland, Graduate School of Education, Bristol University
This presentation represents part of the work from a larger study which compared
mathematics text books used in primary schools in 5 different countries France,
Hungary, Singapore, United Kingdom, United States of America. Text books play an
important role in influencing the ways in which primary teachers think about teaching
and learning mathematics. We take the view that what appears in a mathematics text
book does not appear by chance. It is influenced by the multifaceted aspects of an
educational culture. In this way mathematics text books provide a window onto the
mathematics education world of a particular country. A full consideration of the
results of the study, which included a comparative analysis of the use and consistency
of use of multiple representations, are presented in the final report (Harries,
Sutherland 1999). A number of ways have been developed for classifying illustrative
representations in texts. But one of the most useful for our purposes is developed
from Botsmanova (1972). Three categories are used: Objective-illustrative,
Object-analytical and Abstract spatial diagrams and sketches.

Using these categories the presentation will contain illustrations from a range of text
books showing in particular the way in which images are used to introduce pupils to
the concepts which underlie multiplication and division. We suggest that it is
important to make more explicit the principles influencing text book design and
development so that consistency in the way in which concepts are represented and
developed can be pursued and theory and practice can develop in an iterative way.
References:

Botsmanova M E (1972) The Forms of pictorial aid in arithmetic problem solving In Kirkpatrick
J and Wirzsup I (eds) Soviet Studies in the Psychology oflearning and teaching mathematics. Vol.
vi pp. 105-110. USA, Chicago
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SOLVING ALGORITHMIC PROBLEMS ASSISTED BY THE COMPUTER
Ronit Hoffmann,

Kibbutzim College of Education, Israel

The main consideration leading to the development of the above mentioned course
was the need to use the computer as a tool for solving mathematical problems. In the
current situation, most college students in Israel do not know how to program. We
believe that the future mathematics teacher should know how to build algorithms and
computer programs. The concept of the algorithm is essential both to computer
science and mathematics. The Harari Committee (1992) and the NCTM standards
(1989) recommended it to be among those topics that should be expanded and
emphasized in the mathematics curriculum. Therefore we decided to develop an
educational unit about algorithms, in which the emphasis is on writing algorithms for

a given mathematics problem, and 'running' them on a computer.

While solving problems in the suggested way, the students are exposed to new
mathematical thinking (for them) - algorithmic thinking. They are exposed to
another facet of mathematics, and different aspect of integrating computers in its
teaching.

Mastery in the course, which deals with discrete algorithmic mathematics, invites
further opportunities of integrating the computer in mathematics classes in all the
learning stages, and gives the opportunity to solve complex problems, assisted by the
computer, even in more advanced mathematics courses. During our study, this course
served us as an introduction to that of Computer Oriented Numerical Mathematics.
The fact that the students (176 students during the four years of the experiment) who
had not known any programming language, were successful in tackling the numerical
problems in the later course, demonstrates that the aims of the introductory course
were achieved, and within a relatively short time.

The poster will demonstrate a sample problem, one of several problems that are dealt
within the above-mentioned course. The problem is followed by a variety of different
solutions that are presented in a gradual way. It will emphasize how the students,
while solving the problem, are exposed to several kinds of algorithms - due to
different problem solving strategies, and how they learn to perform each of them in
the computer, using the spreadsheet.

REFERENCES
Ministry of Education and Culture (1992),"machar 98", The Report of the Superior
Committee for Scientific and Technological Education (The Harari committee).
Hard D.(1992),Algorithmics:The Spirit of Computing, Addison-Wesley Pub. Com.

Maurer S.B. & Ralston A. (1991),Discrete Algorithmic Mathematics,
Addison-Wesley Pub. Corn.
NCTM (1989),Curriculum and Evaluation Standarts for School Mathematics,Reston,

V.A.: NCTM.
NCTM (1991), Discrete Mathematics Across the Curriculum K-12,1991 Yearbook.
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A Study on Students' and Teachers' Conception of the Effects
of Dynamic Geometry Software

Kyoko Kakihana *, Katsuhiko Shimizu **, Nobuhiko Nohda ***
*Tokyo Kasei Gakuin Tsukuba Women's University,

**National Institute for Educational Research, ***University of Tsukuba

Dynamic geometry software (DGS) has been used in schools for about ten years in Ja-
pan. DGS such as Cabri Geometry, Geometric Constructor and etc. are commonly used.
Workshops/ seminars for the use of DGS have been held for teachers for its implemen-
tation. As a result of these works, DGS started to be disseminated in many classes. On
the other hand, the possibility that researchers identified as merits of the use of DGS
seems to be realized in a limited extent, in these classrooms (1). The reasons why this
limited realization might due to the purposes for what teachers use DGS and the recog-
nition of actual effect of DGS by teachers and students.
Purpose: The purpose of this research is to identify students' and teachers' conception
of effects of DGS and to find similarities and differences between these conceptions of
effects and research findings.
Method: The opinions/ impressions from 23 reports of Cabri classes were categorized
and analyzed: # of students: 164,sentences labeled: 270, # of teachers: 15, sentences la-
beled: 106
Result
(1) By using DGS, students recognized they could learn and enjoy geometry more ac-
tively. There were 44% of students' sentences and 26% of teachers' sentences on affec-
tive effects. These affective effects are coincident with the research finding of the effects
of using Cabri(2).
(2) Some teachers' expectations were recognized also by students. Some teachers expect
explanatory works/motivating to proof in DGS as researchers' finding (3). And teachers
recognized that students were motivated to make a proof through exploration/discovery.
(3) The problems on situation/ timing when to use DGS, on development of drawing
ability, on the task designation for DGS and on teachers'. over expectation were pointed
by teachers themselves. These obstacles are also pointed out by researchers like Laborde
C. (4) and others. These obstacles explain the limited realization of merits of DGS men-
tioned above.

Reference
(1) Kakihana K. and Shimizu K. (1998), Survey on Research Trends in Geometry Software's

uses of Mathematics Education, the proceeding of 22" conference of Japan Society for Science
Education , pp.29.4E3 - 29.4E4

(2) Kakihana, K.(1991), The effects of Using 'Cabri-Geometry'-The new Learning Environ-
ment of Plane Geometry : 'Geo-World', Unpublished Master's thesis , University of Tsukuba Ja-
pan

(3) Schumann H. and Villers M(1993) , Continuous Variation of Geometric Figures : Interac-
tive theorem finding and problems in proving, Pythagoras, 31 April 1993,pp.9-20

(4) Laborde C. (1998) , Factors of integration of dynamic geometry software in the teaching
of mathematics: the design and the use of teaching scenarios in senior high school, The Math Fo-
rum, http:/ / forum. swarthmore. Edu / technology/ papers/ papers/ laborde / laborde.html



THE FUNCTION AND THE STUDENTS OF ASETEM/SELETE:
A CASE STUDY

Athina Katalifou, University of Athens, School of Philosophy.
E-MAIL: akatal@cti.gr

This study is an exploratory activity (teaching experiment) for the teaching of
functions involving a multi-representational software oFunction Probe» (Confrey,
1992) in ASETEM/SELETE, a teacher's college.

The aim of this study was the observation of the way students understand functions

and especially transformations, using one more tool: the computer (Kynigos,
1995).The main questions of the study concerned: the attitude of the students towards
the software, the way they deal with mathematical problems and the impact of
technology in the problem solving stragedies they used.

The teaching of transformations, that mainly concerned the parabola y = x2 , started
with the visual and graphical forms and was extended to data table and algebraic
equations. It should be noted that the experiment consisted of four parts:

1. phase 1: the students had to match different parabolas starting from the prototype
y x2 and using the transformation icons of Function Probe.

2. phase 2: using the graph and the data table of some parabolas the students were
asked to try to think out the algebraic equations.

3. phase 3: the students studied the relationship between changes in different graphs
and changes in coefficients of their algebraic equations.

4. the task: it concerned the possibility to use the tool demanding an exploratory
behaviour from the students.

The data, and especially the observed talk, were analysed qualitatively (Cohen and
Manion, 1997). According to recent research emphasis is placed on the joint
construction of knowledge (teacher-learner, learner learner). Though the time available
was insufficient for differentiating the already established concepts of the students,
formed through a traditional environment, the results pointed our that the utilisation of
Function Probe leads probably to a better understanding and suggests more research

on the function concept.

References:

COHEN, L., and MANION, L., (1997), Research Methods of Education,
Routledge, london-New York.
CONFREY, J., (1992), Function Probe, Cornell Research Foundation Inc.

KYNIGOS, C., (1995), Programming as a Means of Expressing and Exploring Ideas:
Three case Studies Situated in a Directive Educational System, Computers and
Exploratory Learning, Springer.
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A GEOMETRIC APPROACH TO BUILD INEQUATION MEANING

Este la Kaufman Fainguelemt Franca Cohen Gottlieb

[EM, Santa Ursula University,Brazil LEM, Santa Ursula University, Brazil

The data has been collected since 97, students from a public high-school, a low
income group working with a teacher-researcher, Alzir Fourny Marinhos, in Rio
de Janeiro, Brazil. He is working in his master thesis advised by the authors.
Our main question: What is the role o_ f graphical representation in the process of
build inequation meaning?
To answer this question we suppose that through the visualization process
students could have a better understanding of the algebraic solution for
inequations.
For example, the majority of our students solve inequations following rules:

x-1 >0 -x >1 x>-1
They use a single technique, without connection with the relation order nor with
functions. It is a kind of ritual and before, when they used the same technique to
solve equations, "it works".
Using a geometrical approach they begin represent intervals, after that they plote
functions as, f(x) = ax +b.
Using the example above, f(x) = -x-1, the function is ploted and students
observe when the function is positive and when it is negative.
Comparing the graphic solution with algebraic solution they easily understand
that the first solution is not the right one.
Seems to us a certain unhappy circularity, which states that inequation is badly
taught because is misunderstood and it is misunderstood because it is badly
taught.
Several kinds of mathematical concepts are tied to similar situation. The
conceptual field provides a framework for this research, Vergnaud (1991).

"A conceptual field is defined as a set of situations, the mastering of
which requires mastery of several concepts of different natures"

The research mastery historical evolution of relation order, algebraic aproach
through daily-life situation, and a geometric aproach.

References:
Bekken, 0. B. (1994). Equacaes de Ahmes ate Abel. Rio de Janeiro, Brasil:
Editora da Universidade Santa Ursula
Boyer, C. B. (1984). Historia da Matematica. sao Paulo, Brazil: Editora Bluch.
Vergnaud, G. (1991). La theorie des champs conceptuels. Recherches en
Didactique des Mathematiques,10, n.2-3, 133-170. Paris, France.
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Complementary Strategies To Cognitive Analysis:
The Case Of Mathematically Successful Populations

Evgeny Kopelman
Hebrew University of Jerusalem, Israel

It is not a surprise that the less researched school populations in mathematics education

are those at more advanced levels of studies and who generally had no problems in
passing standard evaluations. This doesn't say that they may nothave any difficulties
with basic mathematical notions. In fact, they do - as has been shown elsewhere (Vinner
& Kopelman, 1998; Kopelman, 1996). While understanding their difficulties is very
instructive for mathematics education, it poses a real challenge before a researcher, since
standard methods seem to be not easily applied in this case.
First, those who do such research run a risk to fall out of the research tradition, since they

can't draw on the known theoretical frameworks and results, which, as a rule, tend to
speak about an average student. For a researcher studying mathematically successful
populations it is useful to
ask instead, whether he or she may imagine a chosenmodel being applied also to oneself.
Secondly, a researcher analyzing responses to questionnaires delivered to these
populations or transcripts of conducted interviews will rarely find there flaws in logic ,
inability to think in abstract terms or to appreciate the idea of the mathematical proof. On

the contrary, the
explanations will bear the unmistakable qualities of experienced learners of mathematics
and the researcher will have to look for the extra-cognitive reasons which had brought the
respondents - often unanimously - to their certain line of thinking and, eventually, to

wrong answers. Whereas
traditional cognitive studies focus on student's cognition grappling with a certain
mathematical notion, for this type of research neither of them is certain; the responses of
the students often make sense only in the context of the didactic tensions which

accompany the teaching of that notion.
The poster presents examples from research which revealed difficulties of

mathematically advanced students when they had to apply some notions of school algebra
and geometry. The examples are accompanied by historico-didactical deconstruction of
the corresponding notions, which may be also used in teacher education.

References
Kopelman, E.: 1996. Invisible angles and visible parallels which bring deconstruction to
geometry, in Puig, L. & Gutierrez, A. (Eds.) Proceedings of the PME 20, v.3, Valencia:

University of Valencia, 185-192.
Vinner, S. & Kopelman, E.: 1998. Is symmetry an intuitive basis for proof in Euclidean

geometry?, Focus on Learning Problems in Mathematics, v.20 (2), 14-26.



THE RICE VIRTUAL LAB IN STATISTICS: A WEB

RESOURCE FOR TEACHING STATISTICS

David M. Lane, Rice University

The Rice Virtual Laboratory in Statistics is an integrated combination of a set of
simulations/demonstrations, an electronic textbook, case studies, and a data
analysis program. The lab currently contains 16 simulations and demonstrations
designed to make abstract concepts concrete and allow students to investigate
various aspects of statistical tests and distributions. Topics such as how the choice
of bin width affects a histogram, sampling distributions, restricted range, and
repeated measures designs are illustrated. Example results of the sampling
distribution simulation are shown below. The left portion of the figure illustrates
the effect of sample size on the sampling distribution of the mean; the right portion
shows how the sampling distribution of the mean differs from the sampling
distribution of the median when the sample size is 10 and the parent population has
a uniform distribution.

3856
Distribution of Means, N=5

3956
2892 2967
1928 1978

989

0 0 32 °

3856
Di35 dbUli011 of Means, 14=10

3956
2892 2967
1928 1978
964 989

0 0 22

Distannon of Means, N=10

o as

Disnibinion of Medians, N=10

The electronic textbook covers topics typically included in an introductory course
in statistics and contains over 2,000 links among related topics. The case studies
demonstrate the real-world applicability of statistics and illustrate many methods
of descriptive and inferential statistics. They include the raw data so students can
perform their own analyses if they wish. The data analysis program can create
boxplots, histograms, stem and leaf displays, and scatterplots as well as basic
statistical analyses such as correlation, regression, and simple analysis of variance.

The four components of the lab are closely integrated. The textbook has links to
simulations that illustrate concepts in the text and the simulations have many links
to the textbook. When data from case studies violate an assumption of the
inferential test performed, simulations are used to assess the practical effect of
these violations. Many of the graphs and analyses presented in the case studies
were produced by the statistical analysis program.

The URL is http://www.rufrice.eduk-lane/rvls.html. This work was supported in
part by the NSF Division of Undergraduate Education grant DUE# 9751307.
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REINFORCING TEACHERS UNDERSTANDING OF LIMITING
PROCESSES BY CONSIDERING SEQUENCES OF PLANE FIGURES

J. Mamona Downs & Martin Downs
University of Macedonia

In our presentation we will indicate what sequences of plane figures and their
limits are. The topic is not commonly familiar and, partly because of this, has not
been "institutionalised". This helps in raising the following issues of educational

interest:
(1) It is well known that many students have cognitive problems with limits of

real sequences (e.g. [1]). It would be of interest to know how these problems may
change with limits of figures.

(2) It has been remarked often in the literature (e.g. [2J,[3]) how difficult it is

for teachers who have assimilated a complicated concept (say, that of the limit of a
real sequence) to understand the problems a student has when (s)he first faces it. In
teachers training, the introduction of a "parallel" concept (but new to the teachers)

may prompt better understandings towards these problems of students in the original

concept.
(3) The exercise of forming definitions may provide a way of partially

dissipating the "Platonic" bias found in many people towards Mathematics.
(Whereas the importance in regarding Mathematics as a product of the human mind
is widely acknowledged in research). As with limits of figures we have several
different approaches to take for our definition, we have much room in our paradigm
for debate and criticism, activities rarely found in pedagogical practices in maths.

With these issues in mind, we designed a fieldwork to use in a pilot study.
This involved 16 maths. secondary school teachers with varying teaching experience.
The fieldwork consisted of one three - hours session, where at different stages the
teachers were asked to examine given tasks concerning limits of sequences of plane
figures and to address their thoughts publicly to the whole audience and hence to

invite open discussions.
The study revealed many phenomena of diffuse character and its results

suggest some particular avenues worthy of further research. The poster presentation
will largely consist of diagrams of sequences of plane figures and (when appropriate)
their proposed limits; these will be carefully selected to illustrate some of what we

feel are our more significant findings.
1. Davis, R. B. & Vinner, S. (1986) "The Notion of Limit: Some Seemingly

Unavoidable Misconceptional Stages", Journal of Mathematical Behaviour

5(3), 281 - 303.

2. Freudenthal. H. (1983). The Didactical Phenomenology of Mathematics
Structures, Reidel, Dordrecht.(p.469).

3. Thurston, W.P. (1990). "Mathematical Education", Notices of the American
Mathematical Society, 37(7), 844 - 850.
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ON DYNAMIC SOLUTIONS OF THE QUADRATIC EQUATIONS
USING A COMPUTER
Matumoto Yosifumi

Nishinippon Institute of Technology ,kandamati,Fukuoka,Japan

A solution of a quadratic equation is obtained by factoring
decomposition or the quadratic formula algebraically.The solution is
explained as the intersections of the parabola and the x-axis.The purrpose
of this communicationis to construct the solutions on the computer.
display by using parallel lines and circles dynamically.
We consider a quadratic equation with real coefficients

(A) ax 2 bx c = 0 , a*0
such that the graph of quadratic function y = ax 2 bx c with vertex
(r , s) and passing through a point (p , q). Then b = 2ar ,c = ar 2

s and q = a (p 2 S .

We regard the display as the orthogonal coodinate plane . The solution
points are constructed step by step by using parallel lines and circles .In
order to the constructions can be seen dynamically , we present a

program with the following properties.
(i) Through the process of constructions, when a figure is constructed

in a step,data need for later remain and others are wipe out and go to
next step.

(ii) Drawing of parallel lines : Drawing of a parallel line m through
the point P which is parallel to the given line L. Starting from L, we
construct the family of lines m (t) which is parallel to L such that when
a line m (t) is drawn , then next line is drawn and m (t) is wiped out .

Thus, we can imagine a parallel line m (t) approch to m from L
dynamically.

(iii) Drawing a circle : A dotted point moves continuously and draw a
circle.

Following our program ,a student can easily construct the solutions of a
quadratic equation on the display.The construction is visual and dynamic,
which means that the student can imagine the solutions
geometrically.And we believe he also understand that a real solution and
complex solution has the same character essentially.



Exposure of "Self Knowledge" in Solid Geometry among Mathematics
Teachers Through Reflective Process

Shosh Millet Achva Academic College
Dorit Patkin Kibbutzim College of Education

The teacher's "self knowledge" is an element in his or her
pedagogic-practical knowledge (Zuzovski 1998, Patkin & Millet 1997,
Clandinin 1987). This study exposes the "self knowledge" of mathematics
teachers in primary schools regarding solid geometry, through reflection.

Children are exposed to solid geometry on various levels, from

kindergarten age up. Previous studies have testified to the fact that pupils
encounter difficulties - aversion and fear engendered by geometry. A good
number of teachers have aversions to solid geometry, as well (Ben-Haim
1987). Therefore, those engaged in teaching the subject must address the
problem and try to overcome these difficulties. In this poster we have
introduced the reflective process among teachers, including application of
this process to the Van-Hiele Theory in solid geometry.
In order to expose the "self Knowledge" of a group of teachers enrolled in
the enrichment courses in solid geometry, a two-stage reflective
questionnaire and a post-intervention questionnaire regarding application

were employed. The intervention plan involved an encounter with the
Van-Hiele's theory in plane geoinetry and adaptation and adoption of this
theory to spatial concepts.
Sample: 18 primary school teachers certified to teach math, with at least
five years teaching experience, enrolled in the enrichment course
Results indicate that 50% of the teachers evaluated themselves to be at the
third level, 6 teachers rated themselves at the final level, and the rest rated
themselves at the second level.
The rationale and examples of findings and evaluations expressed by
course participants will be presented in the poster.

Ben-Haim, D., (1987), Analysis of the ability of pupils to "see"
perspectives constructed of small cubes and their influence on teaching
them, Misparim, 1, Weizmann Institute of Science, Rechovot.

Clandinin, D. J. (1987) Personal Practical Knowledge: A Study of
Teacher's Classroom Image, Calgary - University of Calgary.

Patkin, D., Millet, S, (1997), Openness of Mathematics Teachers to
Changes Spells Self-Growth in Professionalism. Dapim 25, pp. 84-100.

Zuzovsky, R. (1998) "Teachers' knowledge- Exposure and
conceptualization - an advance course in teachers training " in:
Zilberstein, M. Ben-Peretz M. and Ziv S.(editors), Reflection in
Teaching A Central Axis in the Teacher's Development, Mofet

Institute, pp.128-158.
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MAGIC CIRCLES:
AN INVITATION TO EXPERIENCE CAS TECHNOLOGY

FROM A DIDACTICAL POINT OF VIEW

Esther Openheim and Nurit Zehavi

Weizmann Institute of Science, Israel

In order to prepare teachers to teach with modern technology, Balacheff (1993)
suggested that teachers be provided with opportunities to experience mathematics
from a mathematician's point of view, and to experience technology from a didactical
point of view. We have provided such opportunities by introducing a relatively new
technology, Computer Algebra Systems (CAS). The teachers learned to use the CAS
software Derive in rich problem-solving situations and explored the didactic
strategies that make effective use of this technology. One of the problems that the
teachers encountered in the course was Magic Circles.
Magic circles involve a rich variety of mathematical structures, concepts and ideas,
such as composing linear functions, inverse functions, fixed points, group theory,
complex numbers, and vectors. Given a closed circle of 10 linear functions, we begin
at the top of the circle and substitute a number of our choice. The outcome is
substituted in the next expression and so on, proceeding clockwise, until we complete
the circle, and the final output turns out to be the same number with which we started.
We posed several problems. For example:
1. If we break the circle at any other function, substitute a number, proceed

clockwise and complete the circle at the new point of entry, will we always finish
with the same number with which we started?

2. Is it possible to construct magic circles such that if we traverse them in either
direction, the output is the same as the input?

To answer the first question, "the breaking of the circle", it should be realized that the
whole circle reduces to the identity function, function composition is associative, and
a linear function has an inverse. Thus,

F 2 0

In using a CAS, the input requires a particular forced way of viewing things and
expressing relationships and the output needs to be interpreted similarly. The poster
will include a variety of approaches to a series of problems related to magic circles,
demonstrating the expressive power of the technology in integrating mathematical
concepts, methods, and visual representations.
Reference
Balacheff, N. (1993). Artificial Intelligence and real teaching. In C. Keitel and K.
Ruthven (eds.), Learning From Computers; Mathematics Education and Technology.
Berlin: Springer.
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ELEMENTARY CHILDREN AS REAL-WORLD PROBLEM SOLVERS:
THE IMPLICATIONS OF GROUP WORK

Andrea Peter-Koop
University of Minster, Germany

The study-in-progress reported in this poster was initiated with the concern that little
is known about elementary students' real-world problem solving competencies and
strategies as related to the dynamics of group problem solving. Although we are
reasonably well aware of the individual capabilities of single students, the
complexity of the 'normal' classroom in terms of mixed abilities, and the variety of
socio-cultural (out-of-school) experiences of children as well as their quantitative
and qualitative participation in classroom interaction have been almost completely
neglected (Pehkonen 1991). The objective of the research is to identify the
collaborative and individual mathematical problem solving strategies and
competencies that groups of third and fourth graders (8- to 10-year-old children)
apply with respect to open real-world related tasks.

The following criteria guided the development of the open problems used in this
classroom based study: the problems should be 'open-beginning' as well as 'open-
ended' real-world tasks that provide 'reference contexts' for elementary students; the
wording of the problems should not contain numbers in order to avoid that the
children immediately start calculating without first analysing the context of the given
situation and in order to challenge the students to engage in estimation and rough
calculation and/or the collection of relevant data.
To date, four such problems have been posed in both grade 3 and grade 4 classes
which were subsequently divided into working groups of 4-5 children. Each group
was videotaped while solving the problem.

The methodological framework of the project is based on an 'Interpretative
Classroom Research' approach (Bauersfeld et al. 1988) following a strict analytical
procedure for the interpretation of the video data.
As the analysis of the data is not yet completed, this poster will show examples of
students' solutions and excerpts from their discussions which illustrate some of their
strategies and difficulties, focussing on their estimation and/or rough calculation
strategies and the forms of visualisation they developed in order to represent sub-
problems/aspects which arose during group discussion.

Bauersfeld, H., Krummheuer, G. & Voigt, J. (1988). Interactional theory of learning and teaching
mathematics and related microethnographical studies. In H.-G. Steiner & A. Vermandel (Eds.),

Foundations and methodology of the discipline mathematics education (pp. 174-188). Antwerp.

Pehkonen, E. (1991). Developments in the understanding of problem solving. Zentralblatt fur

Didaktik der Mathematilc 23 (2), 46-50.
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What is the relationship between the teaching and learning of early addition in the
primary classroom?

Alison J. Price

Oxford Brookes University, OX33 1HX, UK

Background

Young children's development in the learning of addition has been extensively researched and
minutely documented (see for example Nunes and Bryant 1996) so that we know that there is a
development through 'counting all', 'counting on', 'known facts' and 'derived facts'. However it
would seem that not all children progress through these stages, as Gray and others (Gray and Tall
1994) have identified older children still using elementary counting strategies to attempt to solve
more complex addition. The effect of teaching on the children's development has been little
researched. In England children begin full time schooling at the age of four or five and encounter
formal arithmetic very early. What effect does this early teaching have on their understanding?

The Study

This study therefore investigates teaching and learning, in terms of how the teacher presents and
represents mathematics to the children and the sense that the children are making of their work.
Participant observation carried out in four classes (four teachers and 121 children aged four to six
years) during one lesson a week over a period of six months, provided 60 teaching episodes for
analysis. The teacher's representation of mathematics was analysed using an adaptation of a
model from Lesh, Post and Behr (Lesh, et al. 1987) which identifies the inter-relationships
between manipulative materials, real world scripts, pictures, spoken language and symbols.
Analysis of the children's responses defines the way in which their previous social, linguistic and
mathematical understanding affects their learning. Analysis of this data is still continuing.

The poster

The poster display will further explain the process of data analysis. Details of initial findings
from this research will be presented, with emphasis on the role of written recording and the use of
symbols in identifying the children's thinking. This will be illustrated with examples of
children's work.

References

Gray, E. M. and D. 0. Tall (1994). "Duality, Ambiguity and Flexibility: a "Proceptual" View of
Simple Arithmetic." JRME 25(2): 116-140.
Lesh, R., T. Post, et al. (1987). Representations and Translations among Representations in
Mathematics Learning and Problem Solving. Problems of Representation in the Teaching and
Learning of Mathematics. C. Javier. Hillsdale, New Jersey, Erlbaum: 33-40.

Nunes, T. and P. Bryant (1996). Children Doing Mathematics. Oxford, Blackwell.
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CONSTRUCTING INQUIRY QUESTIONS BY STUDENTS

T. Resnick M.Tabach

Weizmann Institute of Science.

Compu-Math project is a development, implementation and research project for

middle school and high-school mathematics. The learning environment includes

tasks organized around large-scale problem situations, which can be investigated

using various approaches. The students, as investigators, are involved in

mathematical thinking processes, such as looking for appropriate strategies,

posing hypothesis and accepting or rejecting them, monitoring, asking questions,

etc. Students have at their disposal computerized tools such as

multi-representational software. They are encouraged to decide which

representations to use, when to switch from one to another, when and how to

link them, and in which medium to work (e.g., paper and pencil, technological

tool, discussion in teams).

One type of activity, The Problem of the month, is open-ended, and includes

most of the topics that the students have learned recently.

Our poster will illustrate an example of The Problem of the Month called The

Animal Park, in which we present a situation, without any questions. Each part

of the situation is presented in a different representation (words, table, graph or

algebra). The students are required to construct inquiry questions. We give a

collection of words, concepts and expressions, connected with the situation, to

help and guide the students. In their responses, most students refer to more then

one part of the situation. Hence, they have to deal with more than one

representation, and to perform transitions between them. They does these

transitions deliberately, and the construction of the questions involves all the

mathematical thinking processes that were mentioned above.



Teachers and Computers: Teachers Cultures

Elvira Santos - Escola Basica de Alvaro-Velho - Portugal

This research intends to contribute to a better understanding of teachers
cultures, related with the use of computers in the classroom.

The study's framework draws from "teaching cultures are embodied LI the
work-related beliefs and knowledge, teachers shared - beliefs about appropriate ways
of acting on the job and rewarding aspects of teaching, and knowledge that enables
teachers to do their work" (Feiman-Nemser and Floden, 1986, p.508). The content of
teacher cultures consists "of the substantive attitudes, values, beliefs, habitats,
assumptions and ways of doing things that are shared within a particular teacher
group, or among the wider teacher community. The content of teacher culture can be
seen in the way teachers think, say and do." (Hargreaves,1995,p.166)

In this research we studied how teachers use their knowledge about computers
and their practice. The conceptual framework this study is shown in Figure 1.

Teacher's
C ultures

Computer's
knowledge

Figure 1

In this poster we will show and compare teacher's cultures of three mathematic
teachers: i) one teacher who use the computer in classroom; ii) another that had
abandoned the computer's use with pupils; iii) and, firmly, one teacher who never
used it.

References:
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Wittrock(Ed.), Handbook of Research on Teaching (3a ed.), New York:
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CAN YOU TELL ME WHETHER THIS IS A PROOF?

Annie Selden
Mathematics Department
Tennessee Technological University
Cookeville, TN 38505 U.S.A.

John Selden
Math Ed Resources Co.

P.O. Box 2781
Cookeville, TN 38502 U.S.A.

Eight mid-level university mathematics majors, the entire cohort in a "transition to
abstract mathematics" course, were interviewed individually and asked to

think-aloud as they determined whether four "proofs" of a theorem, generated by
similar students, were proofs. All eight students considered the "proofs" carefully
line-by-line, finding some notational and computational anomalies; however, they
apparently often did not notice or check structural difficulties, such as the proof of

the converse being offered.

First, the students were asked to read the theorem, give examples, and attempt a
proof on their own. Then each of the four "proofs" was presented separately. At this

stage, the students were only able to judge correctly about half the time, with some
saying they were "unsure." Next, students were given all four "proofs" and asked
whether they would like to rethink their judgments. As the interviewer continued to

probe over the hour to hour-and-a-half interview, they gradually came to make more

correct judgments, eventually being correct in about 80% of the instances. At the
close of each interview, students were asked several questions about how they read
proofs. All said they read proofs very carefully and checked all steps to make sure
everything followed logically. However, their actual ability to tell whether the four
"proofs" presented in the interview were correct was initially no better than chance.

Since all but one were preservice secondary mathematics teachers, this calls into
question their ability to judge the correctness of secondary pupils' proofs. Perhaps
validation of proofs, that is, the process of checking them, which is now only a part
of the implicit curriculum of most mathematics departments should be made part of

the explicit curriculum.
The Statement and One of the Four "Proofs"

For any positive integer n, if n2 is a multiple of 3, then n is a multiple of 3.

(a). Proof: Assume that n2 is an odd positive integer that is divisible by 3. That is

n2 = (3n + 1)2 = 9n2 + 6n + 1 = 3n(n + 2) + 1. Therefore, n2 is divisible by 3.

Assume that n2 is even and a multiple of 3. That is n2 = (3n)2 = 9n2 = 3n(3n).

Therefore, n2 is a multiple of 3. If we factor n2 = 9n2, we get 3n(3n); which means
that n is a multiple of 3.?



ANGLES IN TRIANGLES AND PRALLEL LINES - WHAT ARE THE
DIFFICULTIES AND MISCONCEPTIONS?

Behiye Ubuz
Middle East Technical University, Ankara, TR

The concept of angle is one of the more basic ideas in understanding all geometrical
concepts and further mathematics such as calculus. This study investigated 10th and
11th grade Turkish students' learning of the concept of angle given in triangles and
parallel lines and the difficulties in finding its measure. In addition to that this study
also dealt with whether and how the gender issue could influence learning. A
diagnostic test including 11 open-ended questions was administered to 67 students
from a private college at the end of the second semester of 1998. 34 of these students
were 10th grade and the rest were 11th grade students. There were 23 female and 11
male students for the 10th grade, and 11 female and 22 male students for the 11th
grade. The test was administered in the usual classroom conditions. The time allowed
was about 50 minutes.

Geometry as a separate course is given starting from 10th grade. While geometry I in
grade 10 includes Lines, Angles and Triangles, geometry II in grade 11 includes
Polygons, Circles, Vectors, and Solids. Time allowed for Geometry I and Geometry
II is two and four hours a week respectively.

The analysis of the written responses given to the diagnostic test questions revealed
that: (i) the percentage of students answering correctly increased with class grade
level (maturity, experience, or both). On the contrary, misconception or errors had
the same pattern of overall incidence from one grade level to another; (ii) questions
including angles in parallel lines are much easy than questions including angles in
triangles for both sexes; (iii) the comparison of "no answer" and "incorrect answer"
categories for both gender, for almost every questions, showed some differences. It
seems that the female students, because of their initiative, made much more errors
and the male students.

Also it was noticed that the errors made were due to: 1) incorrect choice of angles as
the base angles of a isosceles triangle; 2) thinking that the base angles of each
isosceles triangle should be the same; 3) incorrect application of exterior angle
theorem in a triangle: incorrect choice of angles; 4) not knowing the meaning of
traversal line cut two parallel lines; 5) assuming something which is not given.

During the presentation the results mentioned above will be shown on the examples
of questions.
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An in-depth analysis of Japanese elementary school
mathematics teachers' manuals: A preliminary report

Tad Watanabe, Towson University, USA

The recent results from the Third International Mathematics and

Science Study (TIMSS), specially the videotape study, showed that the

Japanese mathematics classrooms are organized very differently from those

of the US and Germany. Although the TLMSS videotape study focused on

the 8th grade level classrooms, other researchers' reports indicate that these

differences are also present in elementary school classrooms.

On the other hand, some researchers have reported that many

elementary school teachers, both in Japan and in the United States, rely

heavily on their textbooks (for example, Shimahara & Sakai, 1995).

Although textbooks have been analyzed previously, most of the time, the

focus was to identify the contents of mathematics curricula. However, if

teachers are to 'rely' on textbooks, the books they will use is most likely the

teachers' manuals.

In this session, I will present the results from a study that is analyzing

the contents and organization of Japanese elementary school mathematics

teachers' manuals. The questions the study addresses are: What information

is provided in the teachers' manuals? How are the teachers' manuals

organized? How consistent are the contents and organization of the

teachers' manuals with the nature of mathematics teaching in Japan reported

in the existing literature.
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TEACHER PROFILE IN THE GEOMETRY
CURRICULUM BASED ON THE VAN HIELE THEORY

Afonso,C; Camacho, M. and Socas, M.M.
University of La Laguna. Tenerife. Spain

Abstract
In this paper we present a study of six in-service teachers. Using various instruments
such as diagnostic tests to assess the level of the teachers' geometrical reasoning,
structured interviews, learning unit notes and class session video recordings, we
study the teachers' experiences and behaviour regarding the teaching /learning of
geometry and we analyze whether the profile of the teachers in question is or is not in
keeping with the profile of the ideal type of teacher who, according to current
Educational Reforms (MEC 1989), is presumed to be prepared for successfully
teaching the present innovative Matehematics curriculum which is based on an
interpretation of the Geometry curriculum set forth in the Van Hiele model of
geometrical reasoning. We conclude that, in order to implement these curricular
innovations with some measure of security, it is necessary to set up in advance
comprehensive teacher training programmes. These programmes should not be an
isolated part of the curriculum nor a series of recipes about how to put Van Hiele
programmes into effect, but rather an interpretation, justification and orientation
arising from the teachers' practice itself.

Introduction
The role played by Geometry in the compulsory education curriculum has been

under discussion throughout the school Mathematics community for the past few
decades. Its importance within the curriculum has been clearly reflected in the various
documents which at an international level outline the path to be followed in Secondary
School Mathematics teaching (NCTM 1991); NRC, 1989). Among these discussions
(Freudenthal, 1973; Clements and Battista, 1992) the van Hiele model of Geometric
reasoning constitudes a theoretical framework that enables us to design and restructure
the Geometry curriculum in compulsory education (Geddes, 1992; Geddes and
Fortunato, 1993; Burger and Culpepper, 1993).

This frame of reference means our accepting a major curricular change in
Geometry that has multiple effects, especially with regard to the subject (Geometry),
the students and the teachers.

To date, research on Geometry from the van Hiele perspective has focused more
on the structure and organization of contents and on a better understanding of the
students' knowledge and behaviour (Clements and Battista, 1992) than on the those
problems the teacher faces when putting this curriculum into practice.

According to followers of the Van Hiele theory, mathematical thought follows a
concrete model made up of two parts. Firstly, a descriptive part whereby a sequence of
types of reasoning ("levels of reasoning") can be identified; an individual's
mathematical reasoning progresses through these various levels from the moment s/he
begins learning until s/he reaches the maximum degree of intellectual development in
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this field. Secondly, an instructive part whereby teachers are given guidance about
how they can help students most easily attain a higher level of reasoning as they pass
through "learning phases".

As is well known, the Van Hie le model (Fuys, Geddes and Tisch ler, 1984) is
made up of five levels of reasoning recognition (visualization), analysis, classification
(informal deduction), formal deduction and rigour; and five learning phases
information, directed orientation, explication, free orientation and integration.

The aims of this empirical, descriptive study are as follows.
a) To compare the situation of a group of in-service teachers regarding their

experiences and behaviour in Geometry teaching/learning situations.
b) To analyze whether the profile of the teachers in question is or is not in

keeping with the profile of the type of teacher who, according to current Educational
Reforms (MEC 1989), is presumed to be ready to teach successfully the present
innovative Mathematics curriculum based on an interpretation of the Geometry
curriculum set forth in the Van Hiele geometrical reasoning model.

Research Context and Methodology
The present study was carried out in six public schools in Tenerife during the

academic year 1996-97. Six in-service teachers took part, all of them with more than
10 years of experience. These teachers taught Mathematics at Year 7 level (11-12
years old) and their places of work were distributed as follows: Teachers B and D
(urban area), Teachers A and C (suburban area), and Teachers E and F (rural area).

An essentially qualitative methodology was used. Test instruments enabling us
to determine the teacher's level of reasoning (Usiskin, 1982; Jaime, 1993) and
structured interviews with closed protocols were employed together with instruments
that allow us to undertake studies through a purely interpretive analysis of video-taped
classroom sessions and an examination of the learning unit notes used by the teachers.
We have considered that it is the suitable methodology to use because the research
problem has to do with aspects related to teacher's thinking. That presupposes that we
have to obtain data, not only from the teacher's geometrical knowledge but also from
his oppinions and decissions in a giventeaching situation

Instruments
The data collection instruments used were:

1.- Structured interviews with closed protocols and open-answer questions. These
enable us to obtain information about individual differences (D.I), institutional
limitations (L.I), the nature of the task the teachers set their Geometry students (N.T.),
their opinions of their students (J.P.E), the geometrical contents (J.P.C.) and the kind
of decisions the teachers must make regarding teaching and learning (D.D.), as
adapted from the model proposed by Shavelson and Stern (1981).

In the teaching decisions category (D.D), Geometry teachers' didactic practices
are analyzed and are then related to their classroom styles. In order to identify the
various styles of the teachers under study, we adapt the terminology used by Porlan
(1993): traditional style (excessive concern with contents in their formal logical
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aspect); technological style (excessive concern with operative and behavioural
objectives); spontaneous style (excessive concern with the activities carried out by the
estudents), and investigative style (concern to integrate desirable scholarly knowledge
and the students' knowledge and interests). However, in this study we fuse together
the "spontaneous" and "investigative" trends and call this amalgam simply
"investigative", this being the term used in current Educational Reform programmes in
the Mathematics field, as we do not possess enough elements to differentiate the
amalgamated terms with the instruments we use.
2.- Tests to assess teachers' geometrical thought (Usiskin, 1982 TU and Jaime, 1993-
TJ). Although there are other diagnostic instruments to assess reasoning levels
(Mayberry, 1981; Crowley, 1987); which have been used with more or less success in
various research projects, we opted to choose both these tests for two reasons:

a) To determine the degree of acquisition attained by the teachers, in accordance
with the continuity hypothesis set forward in the Van Hie le Theory.

b) To compare the information provided by two different diagnostic instruments
deriving from contradictory theories (the discrete and the continuous) and thereby
contrast results.
3.- Class notes required from the teacher before s/he performs in class. Taking into
account these notes, we are able to study the type of decisions the teacher has to take
during the class. The structure of the notes enables us to examine the type of
organization the teachers make beforehand. We can identify two different tendencies
towards either conceptual or curricular organization. By conceptual organization we
mean the type of organization that treats contents as a basically instructive element
which are then organized from the point of view of the internal logic of geometry. By
curricular organization we mean the type of organization that treats contents as a
basically educational element and which are then organized from a curricular point of
view. In other words, contents are considered epistemologically and
phenomenologically as an educational tool in order to attain skills that also require a
pedagogic and didactic organization (Methodology) and an organization of the
assessment process designed to measure the skills acquired.
4.- Video recordings of two one-hour sessions taken by the teachers and the
observations made by an external observer in the classroom. The classroom study
made by the external observer and the analysis of the transcriptions of the video
recordings are carried out using the observation guidelines adopted by Walker (1984).
In the present work we consider the following categories: students (groupings,
motivation and participation in tasks), teachers (suitable mathematical vocabulary,
teachers' answers to students's questions and class work distribution), resources
(textbooks, written materials, graphic materials, manual materials and other resources)
and performance of the learning unit (what is taught concepts, procedures or
attitudes; how the task is organized and what the role of the teacher is when the task is
carried out).

Results analysis.
We should point out that it has been difficult to find teachers prepared to carry
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out educational experiments which imply the implementation of innovations as
proposed by Van Hiele. So we cannot claim that selection of the 6 teachers taking part
in our research was random.

Based on the data shown in Table 1 we can see that the teachers use different
teaching styles in the classroom: Teachers A, C and F usually employ an investigative
style rather than the traditional, while Teachers B, D and E use the traditional style
rather than the investigative. Except for Teachers B and E, the technological style is
hardly ever used.

Teacher
D.I.: Individual
differences:
-Coordination wih other
teachers
-Importance of Geometry
-Why?

.No

.Very important

.Formative;
understanding
of the real world

No
.Very important
.Of use as a
focus of interest

.

No
.Important
.Develops the
reasoning
ability

No
.Important
. Gives
specific
ideas about
space

.Yes

.Important
.Usefulness

. Yes

.Very important
.Applications
in life

N.T.: Task nature. They
use :
a) Textbooks
b) Graphic materials
c) Manipulatives

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. No

. Yes
J.P.E.: Teachers' opinion
of students:
a) Students like
Geometry?
b) Why?

. Yes

. Intuition and
construction

. Yes

.Construction
. Yes
. As long as
it's dynamic

.

Indifferent
. Depends
on how it's
taught

. Yes

.Sometimes
. Yes
No opinion

J.P.C.: Teachers' opinion
of contents of Geometry:
1.-Practice.

. Yes

. Yes

. Yes

. Yes

. Yes

.No opinion

. No

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. Yes

. No

. Yes

. No

. Yes

. Yes

.No opinion

. Yes

No opinion

.Yes

.Yes

.Yes

.Yes

.Yes

No opinion

. No

.Yes
No opinion

.Yes

.Yes

. No

No opinion

. No

. Yes

. Yes

. Yes

. Yes

. No

. Yes

a) Much informal work
b) Promoting spatial
development
c) Much deductive work
d) Many activities and
open questions
e) Many manual activities
2.- Role in Mathematics
f) Most important part of
Mathematics
g)Shows level of
mathematical
understanding.
D.D.: Didactic decisions
about teaching:
a) Investigative style
b) Traditional style
c) Technological style
d) Groupwork.

.Yes

. No

. No

. Sometimes

. No

.Yes

.Yes

. Sometimes

.Yes
No
.No
.Almost
always

. No

.Yes

. No

.Almost
always

. No

. Yes

. Yes

.Almost
always

. Yes
. No.
. Yes
. Hardly ever

Table 1 Structured Interview
As was to be expected, real difficulties arise when subjects attempt to solve a test
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such as that proposed by Jaime (1993), as this is quite hard and implies a great deal of
work on the part of the respondent. In our study, one of the 6 teachers did not answer
the last five questions in the Jaime test; so, with only the results from the Usiskin test
to go on, this teacher (Teacher C) is placed, not very reliably, at Level 1, which is not
very reliable. With regard to the remaining teachers, two of them (Teachers A and D)
are placed at Levels 3 and 4, their results from both tests coinciding for the most part,
while the other three teachers are at Levels 2 and 3 (Teachers B, E and F). The results
of the tests are shown in Table 2. In the first column (TU) we give the number of
correct answers/total number of questions for each teacher, and in the second column
the degree of acquisition for each level according to the corresponding percentage
(Complete acquisition = C, High acquisition = H, I = Intermediate acquisition, Low
acquisition = L, No acquisition = N). To interpret the degrees of acquisition, see
Gutierrez and Jaime (1995).

Teachers A B C D E F

TU TJ TU TJ TU TJ TU TJ TU TJ TU TJ
LEVEL 1 4/5 (C) 100 3/5 (C) 100 3/5 (C) 100 4/5 (C) 100 4/5 (C) 100 3/5 (H) 75

LEVEL 2 3/5 (C) 90'6 3/5 (H) 78 2/5 - 3/5 (C) 91'9 3/5 (C) 88 4/5 (A) 78

LEVEL 3 5/5 (C) 96'6 1/5 (I) 46'7 1/5 - 3/5 (C) 95'8 2/5 (H) 75'8 2/5 (I) 47'5
LEVEL 4 3/5 (H) 81'3 0/5 (N) 0 0/5 - 2/5 (H) 75 2/5 (L) 66'5 1/5 (N) 0

LEVEL 5 4/5 - 0/5 - 0/5 - 3/5 - 1/5 - 1/5 -

Table 2. Geometric Reasoning Tests
The Geometry taught in the Mathematics curriculum for students aged between

9 and 13 years involves levels of attainment of between 1 to 3 on the Van Hie le
geometrical reasoning scale. Accordingly, as the subjects of our research teach the
final two years of Primary and the first two years of Secondary education, we can see
that only Subjects A and D attain the geometric reasoning levels deemed appropriate
for carrying out the tasks at these stages of education.

The classroom notes handed in by the teachers (see Table 3) show a greater
tendency towards conceptual organization (Teachers C, D, E and F) than curricular
organization.

Based on analysis of the video- recorded sessions, groupings for undertaking tasks
confirm the tendency towards group work in the case of Teachers B and C, and the
tendency towards individual work in the case of Teachers A, D, E and F, in other
words, most of the teachers involved in our research. However, the tendency
expressed in the interview was group work (Table 1). Also, there is a greater tendency
towards individual work (A, D, E and F) than group work (B and C).

Generally speaking, the teachers are quite rigid and exercise excessive control
when it comes to class dynamics; nonetheless, they adopt more flexible postures when
communicating course contents, suitable vocabulary and correct answers to students'
questions and doubts. Although there is a tendency in teachers' answers towards an
homogenized treatment rather than individualized treatment (Teacher F), the other
teachers tend to answer the whole group (A, B and C) or establish some balance
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between individual and group answers (D and E).
Teachers A and B organize classroom tasks from an investigative focus when

carrying out the learning unit, and these teachers also play the role of guides in this
area. The other teachers (C, D, E and F) set tasks in a routine fashion, playing the role
of transmitters of knowledge. In these cases, although to a lesser degree in the case of
Teachers A and B, organization is fundamentally curricular, as we have noted before.

Worthy of note is the way in which Teachers A, D and E confirm the
expectations they expressed in their respective interviews, while the other teachers (B,
C and F) fail to live up to these expectations.

CLASS NOTES

VIDEO-RECORDING:
Students
a) Groupings
b) Motivation
c) Participation in the task
Teachers
a) Suitable vocabulary
b) Teacher's answers (*)

c) Student distribution
Resources:
a)Textbooks
b) Materials: graphic,
manual, written
c) Others resources
Learning unit
a) What is taught (**)
b) Task organization
c) Task role

Curricular
organization

Curricular
organization

Conceptual
organization

Conceptual
organization

Conceptual
organization

Conceptual
organization

Individual Group Group Individual Individual Individual
High Low Medium High High High
High Low Low Medium Medium Medium

Yes Yes Yes Yes Yes Yes
Group, Group, Group, Group/Ind. Group/Ind. Individual,
E,G,M E,G,M,W E,G,M E,G E,G,M E, G,M
Individual Group Group Individual Individual Individual

No No No No No No

Yes,Yes,No Yes,Yes, Yes Yes, Yes, No Yes, No, No Yes, Yes, No Yes, Yes, No

.C, P. .C, P .C, P .C, P, A .C,P. .C, P
Invest. Invest. .Routine .Routine .Routine .Routine
.Guide .Guide .Transmitter .Transmitter. Transmitter .Transmitter

Table 3 Class notes and Video Recordings
(*) Video recordings: Teacher answers: By means of examples (E); Using graphics (G);Using
materials (M); Using written materials (W)
(**) Learning unit: Concepts ( C ); Procedures (P); Attitudes (A)

Conclusions
The reforms in the Spanish education system (MEC, 1989) involve major

changes in teacher training and imply significant direct effects on teachers' classroom
work. Such is the scope of these reforms that curricular proposals made on the basis of
Van Hiele theories require a teaching community possessing certain skills and attitudes
(teacher profile) that might lead to major changes in teachers'epistemological outlook,
which can be summarized as follows:
1. Scientific training in Geometry to at least one level higher in geometric reasoning

than the level teachers will work on with their students.
2. The concept of learning in terms of guided investigation.
3. Ability to work with sets of student with very different basic skills, interests and

necessities as far as Geometry is concerned.
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4. The idea of the Geometry curriculum as an educational tool that enables students to
attain the various levels of geometric reasoning.

5. Positive valorization and use of group work.
The present research work forms part of a broader project we are undertaking in

conjunction with in-service teachers (Afonso, Camacho and Socas, 1995 and 1997),
which is designed to find out whether there is any relationship between the styles of
teachers working in our education system and the profile of the ideal teacher capable
of carrying through the curricular proposals based on Van Hiele's theories. Our aim is
to establish the means for teachers to change their attitudes and help understand better
the dynamics of the processes involved in curricular changes of this nature.

On the basis of the various instruments used in our research work, we have
interpreted teacher profiles in the terms set out in Table 4. The data are taken from
geometric reasoning tests (Table 2) and classroom notes and video recordings (Table
3). In Table 4 we do not refer to the data obtained in the structuredinterviews because
of the contradictions apparent in the data obtained from the various instruments.

We can see that Teacher A would have the ideal profile for carrying out a
curriculum designed from the Van Hiele persepective if we could aid him to foster
group work and repect class differences, though his teaching is effective and highly
individualized.

Teacher profile A B C D E F

1. Scientific training (Table 2) 3-4 2-3 (TU) 1 3-4 2-3 2-3

2.Guided research (Table 3, items 4 and 5) Yes Yes no no no no

3.Respect the heterogeneity of the class (Table 3, item 3) no no no Yes-no Yes-no Yes

4. Organization of Geometry from a curricula (Table 3, item 1) Yes Yes no no no no

5. Team group (Table 3, item 3) no Yes Yes no no no

Table 4. Teacher profile
In spite of having a suitable level of geometric reasoning (3-4), Teacher D sets

about classroom activities in a routine way, thus becoming no more than a transmitter
of knowledge. Also, the teacher puts little value on group work, over-standardizes his
classes and manifests an excessively conceptual idea of the curriculum. Such a teacher
would appear to have difficulties in carrying out curricular proposals in the terms set
out by Van Hiele.

The results we have obtained for the rest of the teachers lead us to believe that
these teachers' epistemology might be a major obstacle when it comes to
implementing a Geometry curriculum based on Van Hiele's theories. There are various
imbalances between the five categories that go to make up the ideal teacher profile.

In order to implement these curricular innovations with some measure of
security, it is necessary to set up in advance comprehensive teacher training
programmes. These programmes should not be an isolated part of the curriculum nor a
series of recipes about how to carry out Van Hiele's idea, but rather an interpretation,
justification and orientation arising from practice itself (immersion). The term
immersion should be understood as the performance and discussion on the part of the
teachers of those very activities that they will later propose for their students in class,
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as well as their knowledge of the most relevant aspects of research into the present
area.
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DOING ALGEBRA TYPE STUFF:
EMERGENT ALGEBRA IN THE PRIMARY SCHOOL

Janet Ain ley
Mathematics Education Research Centre

Institute of Education
University of Warwick, Coventry, U. K.

There is a large body of research about the early stages of algebra which
attempts to identify and explain pupils' difficulties. In this paper I take a
different approach, exploring the potential of spreadsheets to provide new
ways for children to be introduced to, and to appreciate the need for, an
algebra-like notation, and illustrating 'emergent algebra' in primary
school children familiar with spreadsheets.

Introduction
There is a large body of research about the teaching and learning of the early stages
of algebra (sometimes referred to rather confusingly as 'pre-algebra') much of which
seems to be about trying to explain why algebra is hard, identifying which bits of it
are hard, and exploring pedagogic approaches which offer ways of overcoming the
difficulties. A theme within much of this research has been to identify when 'real'
algebra begins; to define a boundary between algebra and arithmetic. Filloy and
Rojano (1989) define a 'didactic cut' between linear equations which contain only
one use of a letter to represent the unknown and can thus be solved by essentially
arithmetic approaches, and those equations in which the unknown appears more than
once, so that arithmetic approaches have to be replaced by algebraic ones, involving
the manipulation of symbols.

Other researchers have focused on the cognitive obstacles pupils encounter in the
early stages of algebra. Herscovics and Linchevski (1994) argue that the divide
between arithmetic and algebra lies not in the mathematical structures, but in the
cognitive structures of pupils. They define the 'gap' as occurring when pupils are
required to operate on or with the unknown. Many other researchers (too numerous to
list without the risk of serious omissions) have explored in detail particular cognitive
obstacles, sources of misinterpretation of algebraic symbols, pedagogic approaches
which may introduce, or alleviate, potential difficulties, and theoretical models of
learning processes which may illuminate our understanding of why algebra is hard,
and when the hard bits start.

Brown et al (1998) draw on the work of Ricoeur to offer a critique of this research in
early algebra as an example of research based on the notion of transition from one
state (of knowledge) to another. They propose instead the need for multiple narratives
in order to capture the complexity of the learning process. In the spirit of Brown et
al., but with not drawing directly on Ricoeur's work, I intend in this paper to offer a
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narrative of what I shall call emergent algebra in children in the last year of primary
school, within the context of the use of spreadsheets.

Re-viewing the problem
In offering this narrative of children's emergent algebra, I want to take a view of the
whole area which differs from that of many previous researchers in a number of
ways. This may prove to side-step some difficulties, and to introduce others. In
contrast to attempts to define the boundaries of algebra, I want to work within a fuzzy
description of 'algebra type stuff': an expression given to me by a ten year old pupil.
I take this view partly because I am unconvinced that a clear definition of what is and
isn't algebra is particularly useful in looking at what pupils do, say and write, and
partly because the use of technology, and particularly spreadsheets, may affect the
kinds of algebra type stuff which are important and interesting. As I discuss in more
detail in the next section, spreadsheet environments produce some interesting
ambiguities in the ways algebraic ideas can be seen and used.

A different view of what makes the early stages of algebra hard is that it is very
difficult for pupils to have any sense of the purposes of algebra, of what it is that
algebra is useful for. Lave and Wenger (1991) have drawn attention to the important
characteristic of out-of-school learning contexts, in which, 'learners, as peripheral
participants, can develop a view of what the whole enterprise is about'. Sutherland
(1991), in a discussion of what she saw as some outstanding research questions in the
teaching and learning of algebra called for 'a school algebra culture in which pupils
find a need for algebraic symbolism' (my emphasis). However the current school
curriculum offers few genuine opportunities for pupils to develop a view of the whole
enterprise, or a sense of the need for algebraic symbolism.

Investigations of number patterns in practical contexts are often used as a starting
point for the introduction of algebraic notation. But, although it may seem clear to the
teacher that a general algebraic expression arises naturally from such investigations,
for pupils this may seem pointless. If you already have a rule for finding any term in
the sequence, what is the point of expressing it again algebraically? An alternative
approach often proposed as a way of providing meaningful contexts for algebra is the
use of word problems (for example, Stacey & MacGregor (1997), Sutherland &
Rojano (1993)). In practice, such problems can often be solved by arithmetic
approaches, or the contexts themselves are largely ignored by pupils as a distraction
(Ainley (1997)), so the usefulness of algebraic notation remains unclear for pupils.

One of the features of technological environments which use algebra-like notations
(e.g. spreadsheets, graphic calculators, Logo or Basic programming) is that when the
notation is used, it does something: there is an immediate point and pay-off for using
it. This feature can be incorporated into the design of meaningful activities in ways
which give opportunities for pupils to gain at least a glimpse of the purpose of the
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whole enterprise (Ain ley (1996), Ain ley, Nardi and Pratt (in press)). Furthermore,
computers and calculators will only accept inputs in particular forms without and
capacity for interpretation, and so there is an additional need to adopt the conventions
of notation. This opportunity to use an algebra-like notation in an active way, to
produce results of various kinds (a Logo drawing, a numerical output from a Basic
program, a spreadsheet of data which can be graphed), is in stark contrast to the more
passive use of algebraic symbolism in more traditional pedagogic approaches, where
the only feedback accessible to the pupil may be the teacher's approval.

The spreadsheet as an algebraic environment
Spreadsheets, which are becoming increasingly available both in and out of schools,
offer an environment with some interesting algebraic opportunities. However, as
spreadsheets are designed as commercial, rather than pedagogic, tools there are also
some significant differences between what can be done on a spreadsheet, and what
might be done in formal, pencil-and-paper algebra. In this section I will explore both
the opportunities and some of the limitations of spreadsheets as an environment for
learning about and using algebraic ideas1.

Spreadsheets use an algebra-like notation, in which the cell reference is used
ambiguously to name both the physical location of a cell in a column and row, and
the number that the cell may contain. The spreadsheet thus offers a strong visual
image of the cell as a container for a number, which may or may not be present in the
cell when the cell reference is used to create a formula elsewhere on the sheet. The
image of a variable name as a container whose contents can be changed is one which
has been used successfully as a pedagogic device in a number of settings (see, for
example, Tall and Thomas (1991)). However, the image offered by the spreadsheet is
ambiguous in another powerful way: when a formula is entered in a column, it can be
`filled down' to operate not just on a single cell, but on a range of cells in a column.
The cell reference can then be seen as both specific (the particular number I am going
to enter in this cell) and general (all the values I may enter in this column).

When a cell reference is used within
a formula, the cell in question may
contain a number, or another
formula, as shown in cell B2 in
Figure 1. This means that operating
on an existing operation or function,
a well known area of difficulty for
many pupils, is easy and intuitive. The spreadsheet notation allows the encapsulation
of the operation as a single cell reference, but at the same time disguises what has
happened (as in D2 in Figure 1).

A B C D

1

2 =(A2-7)*5 =B2C2
3

Figure 1

Although there are some small technical differences between particular pieces of software, 1 shall ignore these in favour of
concentrating on common features.
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Spreadsheets lend themselves to activities in which the focus is on creating
expressions to represent relationships. It is less obvious how they maybe used to
create equations, and since there is no facility, or need, for symbol manipulation on a
spreadsheet, solving equations can only be done indirectly through trial and
improvement approaches. Whilst I am aware that some researchers might claim that
this is sufficient reason to disqualify activities on a spreadsheet from being 'algebra',
I wish to propose a different view. Spreadsheets provide a powerful environment for
what Kieran (1996) refers to as Generational activities: expressing general
relationships arising from a variety of sources. Because of the ease with which large
quantities of data can be generated and explored, they are also powerfulfor some
aspects of Global, meta-level activities, such as problem solving and awareness of
constraints in problem situations (Kieran (1996)).

Starting algebra type stuff with spreadsheets
Much of the research and curriculum development with spreadsheets in secondary
school algebra which has been reported, even the inventive work of Sutherland and
Rojano (e.g. 1993), has focused on using spreadsheets to tackle traditional problems.
However, the cognitive accessibility of spreadsheets also offers exciting opportunities
to introduce pupils to different kinds of activities which are essentially algebra-like,
and thus to meet algebraic ideas in new ways. Within the Primary Laptop Project,
children regularly use spreadsheets as tools within mathematical and scientific
activities. Pupils currently in Year 6 (aged 10-11; the final year of primary school),
have had access to spreadsheets during the last four years. Their work has included
entering formulae for 'function machine' or 'guess-my-rule' activities, collecting and
graphing data in problem solving activities, and entering and copying formulae to
generate data. Within the primary school, the children have not been introduced to
any 'formal' algebra, such as the use of letters in equations to represent specific
unknowns, but they have had opportunities to use spreadsheet notation for
representing unknown numbers, generalised relationships and ranges of numbers, in
the context of meaningful activities. In the last part of this paper I report on the
preliminary stages of research on how these experiences are translated into work with
formal algebraic notation as children move from primary to secondary school.

Talking about Algebra Type Stuff
To provide a starting point for conversations with these Year 6 children about their
algebraic ideas, I have used some of the questions selected by MacGregor and Stacey
(1997) in their study of secondary school pupils' understanding of algebraic notation.
Using these questions offered the opportunity for comparison with results from a
large scale survey. Because of the experience the children, I decided to present the
questions in both a standard algebraic form (as in MacGregor and Stacey's study) and
in a spreadsheet version. While designing the question sheets, it also occurred to me
that some of the questions could be expressed in 'everyday' language, without any

use of a formal notation, and I designed a third sheet of questions phrased in this way.
All the Year 6 children were asked to complete the three question sheets; first the
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everyday version, then the spreadsheet questions, and finally the algebraic form. In
the following discussion I shall focus on just one of these questions, HEIGHTS2.

everyday version algebraic version
-David is 10 cm taller than Ellie.
If you knew Ellie's height how could you work
our David's height?

David is 10 cm taller than Ellie.
Ellie is h cm tall. What can you write for
David's height?

In the interviews, I introduced an extension to this: the Christmas tree question.

Let's imagine that David is a little boy, and he is going shopping with his mother (father) to buy a
Christmas tree. He says, "I want a Christmas tree that is twice as tall as I am". What could you write
down for the height of the tree?

From the written responses, it was clear that most children found the everyday
version of HEIGHTS unproblematic, and the results for the algebraic version were
comparable to those MacGregor and Stacey obtained for children who had had some
introduction to algebra in the first year of secondary school. My main interest ,
however, was to use the written responses as the basis for interviews exploring the
children's ideas. I made the selection for interviews on two criteria: I was interested
to talk to some of the children who had apparently completed both the spreadsheet
and algebra sheets correctly, and also to some of those who had given idiosyncratic
responses. There is space here to give examples from only four conversations.

Livy had completed the everyday and spreadsheet questions correctly, but had left the
algebra sheet blank except for one question. However, her explanation of this answer
indicates that she is comfortable with using a letter to stand for an unknown number.

Res: ... you did this one with the triangle. Can you explain what you meant there? [n x 3]
Livy: Well, is it like a sort of algebra sort of thing, so [...] so, using n would be like having a

number, would be some equivalent number, so that, what n is it's times by 3. [...]
Res: Let's just have a look at these others that you didn't try before. [We look at HEIGHTS.]
Livy: It would just be h add 10 or something.
Res: OK, you write it down, write it down how you think it might go. [Livy writes: h+10].

After looking at the rest of the page, I asked Livy the Christmas tree question.
Livy: Just do... Well you times David's height by 2, but would you put urn a letter, 'cause

you don't know what it is?
Res: Well we've got something written down for David's height.
Livy: Oh, he's 10 cm taller.
Res: Mmmm. Can you think of a way we could write down David's height times 2?
Livy: times 2 on the end.
Res: OK have a go, write it over here in this space, how you think you might write it.

Livy immediately wrote h + 10 x 2, and without prompting correctly added brackets.
Notice that Livy is familiar with the term 'algebra', and seems to have a reasonable
notion of what this means.

2 In trying to devise a version of this question involving sensible use of a spreadsheet, I produced something unnecessarily
complex, which I will not include here.
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Wen was more tentative in his responses, completing the everyday sheet, but leaving
the spreadsheet page blank. For the algebra version of HEIGHTS he had written
It 10cm. He too had clearly heard of algebra.

Res: Tell me what you were thinking about if you can remember when you wrote that.
Wen: I was thinking of algebra, whatever, something ...
Res: OK good. [...] So what did you mean when you wrote that?
Wen: Ellie is h cm tall and if David is 10cm taller than Ellie, then you must do h 10cm. [...]

It's 10 cm taller than h.
Wen did not see that he needed to add an operation to link h and 10; it was already
clear to him what his answer meant. However, when I wrote h + 10 cm, he was
happy to accept this notation, and said, 'It means a number add 10.' At the end ofthe
interview Wen confidently used this notation to write (h+10) x 2 in response to the
Christmas tree question. I asked him about his use of 'algebra'.

Res: You knew that name 'algebra'. Where did you learn that from?
Wen: Murderous maths. [A comic-style book]
Res: What do you think algebra means?
Wen: urn it's a bit, it's where you use a letter for an unknown number.

Emm gave detailed and correct answers to the everyday and spreadsheet questions,
but seemed to have fallen into a well-documented error in trying the algebraic
versions. Her response to HEIGHTS was i, followed in small writing by the comment
including each letter adds 10cm. This seemed to indicate that she was not simply
seeing the letters as a code. As the following conversation shows, this was actually
her way of trying to write `h plus 10'.

Res: Can you explain what you meant here? I wasn't quite sure what you meant.
Emm: I'm not quite sure. I said if every like a, b, c, d if in between that letter was 10 cm, if

Ellie was h it would be i next.
Res: Oh I see,[...] Can you think of any other way we might be able to write down

something for David's height?
Emm: I couldn't quite think of anything, because that seemed kind of strange, because I

didn't understand the h.

After discussing some other questions, I decided to simply show Emm the standard
notation for David's height. Her face immediately lit up.

Emm: Oh! of course! (laugh and huge grin)
Res: Do you like that?
Emm: Yes, it's much easier, 'cause my mum says I work things out really hard, the hard way.
Res: Right, so you think that's an easier way to write it? Now you've seen that, could you

think of a way to write some of the other questions?

Emm went on quickly and confidently to complete the rest if the questions on the
page, and the Christmas tree question. She seemed to accept the need for this new
notation to express her ideas, and her pleasure in using it was clear.

Kit responded to the everyday version of HEIGHTS by writing = x - 10 cm. Although he
had got the wrong operation, he was clearly trying to give an algebraic response.
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Res: Tell me about what you wrote here and why you wrote it. [...]
Kit: Well x ... we say x means any number so we, so if David is 10 cm taller than Ellie,

Ellie would be the x, no, David would be the x and Ellie would be the answer, would
be what came out, so we were doing like er function machines and stuff

Res: I see. [...] Where you put 'equals x'?
Kit: I did it as a formula.
Res: Right, so what you really meant was Ellie's height equals x minus 10?
Kit: No I meant if David's 10 cm taller ... David's, well I think I went wrong there, I think I

should have put plus 10.

During a lengthy discussion of Kit's responses to the other everyday questions (all
answered on the same style), and the spreadsheet questions, it was clear that he had
some understanding that letters could be used in similar ways to cell references, to
stand for any unknown number. His use of an equals sign at the beginning of his
answers also indicated that he was thinking in terms of spreadsheet formulae in his
algebra-style responses. However, when we got to the algebraic version of HEIGHTS he
appeared to have changed his approach to use an 'alphabetic code'.

Res: 'What can you write for David's height?' You put a G
Kit: Yeah, I was doing it in like in algebra type stuff.
Res: Well, what we were doing here is certainly algebra type stuff! Why did you choose G?
Kit: Well I just thought urn ...
Res: ... you'd just choose another letter?
Kit: No, I actually did something and like went through the stages but using letters instead

of numbers.
Res: Oh ... Can you remember why you wrote G?
Kit: Erm, probably because ... actually it's wrong because it should be higher than H.
Res: OK, [...] Can you think of another way that we could write down David's height?
Kit: Well maybe h could have been like the same as n [n was used in a previous question]
Res: We could use h instead of n. What this is telling us really is to use h to stand for ...
Kit: ... yeah, a number
Res: ... a number, but we don't know what the number is, [...] but we're allowed to call that

number h, to use h to stand for that number, just like you were using x before.
Kit: Yeah and then we used n, and now were going on to h.
Res: [...] So could you write like the formula for David's height, using h and saying what

you have to do to h?
Kit: Yeah, you could put like just h plus 10.

Despite his apparent confidence when he had the freedom to choose a letter to
represent an unknown number, Kit seemed to be confused when a particular letter
was assigned in the question, perhaps feeling that this must have some significance.
At one point in the interview he said in two consecutive statements that 'n means just
the same as x', and that 'n is nothing'. He still seemed uncomfortable about the use of
particular letters when he tackled the Christmas tree question.

Res: How would we write down the height of the Christmas tree?
Kit: n times 2, or 2 times n.
Res: Well, where's this n come from?
Kit: n is just his height.
Res: OK, we've got something that means his height.



Kit: h, so it will be ...
Res: Well we've got, all of that [pointing to h+1(1] means his height. h plus 10 means

David's height.
Kit: Yeah, so it will be h + 10 brackets, bracket it times 2. [...] That's how I would write it

[...] if I didn't know. I'd probably put x actually.

The picture that emerges from these interviews is not of children who are confused
by, or failing to use, algebraic notation and ideas. These children are reasonably
comfortable with talking about and representing unknown quantities, and with the
idea of operating mathematically with them. They also accept the need for a way of
expressing these ideas in writing. Many of them were clearly aware that this was a
legitimate part of mathematics, and knew the name 'algebra' from sources outside
school. Their written representations do not always match those expected in formal
algebra, but this seems to be because they do not yet know the conventions, rather
than because they cannot grasp the ideas. Once they were shown the notation, or
reassured about their attempts to use it, all four children went on to use it confidently,
even to express the more complex answer to the Christmas tree question.

Their position seems to me to be similar to that of young children who are learning to
write their native language: they can already communicate in a limited spoken form
of that language, and understand the purposes for which written language is used by
adults. Young children's spontaneous attempts at writing are often described as
emergent writing. By analogy, rather than using the term 'pre-algebra', I would like
to describe much of what the children produced as emergent algebra, arising from
their attempts to imitate and invent a written notation whose function they already, at
least partially, understand. This has the enormous advantage of enabling me to see
their attempts not as errors or misunderstandings, but as attempts to get it right.
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THE RIGOUR PREFIX

Lara Alcock and Adrian Simpson
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University of Warwick, Coventry, CV4 7AL, UK.

This paper defines the rigour prefix, a way of dealing with mathematical
categories in contrast to general cognitive categories. Illustrative episodes
from interviews with beginning university students learning about convergent
sequences highlight the contrast between students who are beginning to
develop this prefix and those who continue to work with mathematical objects
using general cognitive strategies. The importance of the parallel
development of the object and rigorous ways of dealing with the object are
discussed.

Introduction
Human beings categorise the world in order to deal with it. In this paper we shall be
concerned with two different types of human categories; object categories and
situational categories. Here "object" covers both concrete and abstract objects, although
our principal example will be the mathematical object "convergent sequence".
Situational categories are akin to frames (Minsky, 1975; Davis, 1984) in that they
determine our expectations of, and our normal behaviour in a given situation. In order
to deal with mathematical objects in an educational setting, learners develop situational
categories which we call personal "maths frames".

Situational categories frequently act as prefixes in the sense of Lakoff (1987). Important
aspects of a concept may be overridden by a prefix to the word denoting that concept,
for example the prefix "white" in "white lie" overrides the idea that a lie is usually
intended to be harmful. In a similar way finding ourselves in a situation belonging to a
particular category may cause us to deviate from our usual behaviour. We will contrast
expert maths frames, which act as a significant prefix, with non-expert maths frames
which deviate less from general cognitive behaviour.

While our situational categories in general enable us to deal with the world, they do not
necessarily always work to our advantage. Schoenfeld (1987) describes some common
beliefs students have about doing mathematics problems, including that there is one and
only one way to solve any given problem, and that none should require more than a few
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minutes' work to complete. These are examples of expectations in the maths frame
which may well inhibit a student's progress.

The Rigour Prefix
General cognition involves dealing with categories which are not "classical"; their
membership is not dependent solely on some given common property (Lakoff, 1987). If
categories were classical then there should be no gradience of membership, and
categories should have well-defined boundaries. Instead categories can have "better"
and "worse" members, for example the robin is generally considered a better example of
a bird than the ostrich, and some have fuzzy boundaries, for example the category "tall
man". This means that we are rarely consider any given category in its entirety. In order
to reason about it we are compelled to operate on representative members of the
category and then assume a generalisation to a large part of the category. Since
efficiency is valued over accuracy (Balacheff, 1986), this strategy, which we call the
"general cognitive strategy", causes few problems.

However, contrasting this with the formal work of expert mathematicians we find that
they operate quite differently. Mathematical objects (at least at university level) belong
to defined categories. By the nature of definitions the membership of such categories
depends solely on common properties and therefore they are classical. In a formal
mathematical sense there is no such thing as a "good" or "bad" example of a convergent
sequence, and the category has well-defined boundaries. This means that in
mathematics whole categories can be dealt with at once by working exclusively with the
definitional properties. This is necessary if unambiguous communication between
mathematicians is to be possible.

We claim that expert mathematicians have, as part of their maths frames, an
encapsulation of this idea, which some call "rigour". This acts as a prefix, in the sense
that it overrides the individual's general cognitive strategies in formal mathematical
situations. The "rigour prefix" is essentially a directive in the maths frame allowing
those who have it to exploit the classical nature of defined categories by using only the
definitional properties in formal work.

Mathematicians who have developed the rigour prefix are thus able to access two ways
of working: they can work with representative examples to develop intuitive ideas about
object structure, but they are also aware of the need to work with the whole category.
Those who have yet to develop the rigour prefix only have access to the former way of
working.

At the beginning of a university mathematics degree, students are required to develop
mathematically in two distinct ways: they learn new object categories (such as
"convergent sequence"), but also need to enhance their maths frame as a situational
category in order to cope with formal deduction and proof.
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We can infer the different levels of development of the rigour prefix in beginning
university students from the contrast in the kind of objects they use. In examining
students' initial reasoning with convergent sequences, we can see a qualitative
difference between those whose immediate reaction is to deal with the whole category
(through the definition) and those who deal with an exemplar.

The Rigour Prefix in Action

The following excerpts are taken from interviews with students taking a first course in
Analysis. Some were attending a standard lecture course (with three hours of Lectures
per week and a weekly assignment to be completed for credit), and others were
attending a new course based on Burn (1992). Those on the new course had only one
lecture per week and in addition attended four hours of classes; a class of 30-35 students
worked in groups of about four to complete a weekly "workbook", with the assistance of
a teacher (a member of staff or a graduate student) and second year students who had
been successful on a similar course the previous year. The workbooks aimed to lead
students through a carefully structured sequence of questions covering inequalities,
sequences and series. These students proved most of the main results of the course for
themselves.

Students from both courses were interviewed fortnightly, in pairs, throughout the term
when the course took place. The interviews included a mathematical task-based section
related to their recent work.

In both cases the students were asked to work on the question:

For a sequence (an), which of the following is true?

a) (an) is bounded a (a) is convergent,
b) (an) is convergent a (a) is bounded,
c) (an) is bounded a (a) is convergent,
d) None of the above.

Justify your answer.

We present excerpts of interviews with two pairs of students whose behaviour is
illustrative of the contrast between having and lacking the rigour prefix.

The first two students were taking the question-based course. Having decided that b) is
true and produced a counterexample to reject a) and c), Adam and Ben immediately had
the following exchange:

B: Right, b) is convergent. Right, our definition of convergence is that...well, there
exists an N such that when n is greater than big N, there, modulus of an is less than



epsilon. So that leads to epsilon being a bound...plus or minus epsilon being a
bound, about a. an. Is it?

A: Yes go on do you want to write that down? Right the, you have it bounded by, the
plus or minus epsilon, thing, and that shows it's eventually bounded and then it is,
bounded. By sort of, an earlier result, sort of thing.

[Ben then writes something down and is asked to read it out]

B: It's only sort of, vague. But, modulus of a will be less than epsilon if it's
converging, when n is greater than big N. Hence minus epsilon is less than an , is

less than epsilon, therefore epsilon is a bound. Since (an) is eventually bounded,

therefore (a) is bounded by, whatever various proofs that we've done in the book!

I: Mm. What were you going to say, Adam?
A: If it's convergent, rather than converging, or tending to zero...that, the modulus of

an you've written, should be modulus of, an minus a. And you have to say, if, the

sequence (an) tends to a, then...and that needs to be the modulus of an minus a.

While their speech was informal, Ben's immediate recourse to the definition of
convergence allowed them to make rapid progress. They went on to prove that a
sequence which is eventually bounded must be bounded and wrote down and explained
their whole proof without any significant difficulty. We claim that this is evidence of
the development of a rigour prefix - the use of the definition means that the conversation
is about all convergent sequences. It is not claimed that either had a fully functional
rigour prefix at this stage; they may not have an explicit idea of why formal definitions
are used in Analysis, but they certainly seem to know that they are used.

This contrasts with the behaviour of Wendy, a student on the lecture course. In the first
excerpt she and Xavier had just established that they think b) is true, and Wendy had
drawn a picture of a monotonic increasing convergent sequence:

W: It's convergent...yes so if it's convergent it's always, or, say it could be the other
way round it could be, going down this way. It converges, so it's always above that
limit.

X: Could you do, a minus 1, mod is less than epsilon...thing? That goes to...
W: I wouldn't have done that, but you can have a go if you want!

[There follows a discussion in which they generate counterexample to disprove a)
and c), and then Xavier comes back to his idea, and Wendy agrees.]
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X: Erm, well the term in the sequence an , er minus the limit, or the bound, the

modulus of that is less than epsilon, where epsilon is, any, er, real number, positive
real number...

W: So that shows it's convergent. You've got a...(writing).... And therefore it's
between those, and therefore it's bounded.

[They are asked to explain this in more detail which they do, and then to consider
what happens "before big N". (There is some confusion here as they speak of
"bounded" meaning only bounded above or below.)]

W: Yes if it's an increasing sequence, the limit'll be, up above. It'll be increasing
up...so, what happens before big N doesn't really matter because it'll always be
below that. And then if it's decreasing sequence it'll er...(draws)

X: Mm. So it doesn't matter what happens before, big N. It's what, after, what
happens after,

W: As long as you know whether it's an increasing or decreasing,
X: Sequence..

Short pause.
I: What if it's neither of those things?
W: You're in trouble.
I: Oh dear...

Pause.
X: So if it's oscillating...(drawing)

[The interviewer then clarifies the meaning of "bounded" and the fact that a
sequence cannot "shoot off to infinity" at any particular term, and suggests that the
terms before aN are our current problem and asks if we can fix that.]

W: Find out what the points before that point are...
I: Can we do that?
W: When you've found big N, yes.
I: Yes. And what would you do then?
W: You'd have to check that erm...well you could find out whether it was an increasing

or decreasing sequence,
I: What if it wasn't either?

Pause.

Throughout this discussion (which lasted approximately 15 minutes) Wendy appears to
be employing what we earlier termed "general cognitive strategies" in her reasoning
about convergent sequences, based around the idea that a monotonic sequence is a good
representative example of that category. It may be suggested that she does have a



version of the rigour prefix and is using this as intuitive work prior to introducing the
definition. However we argue against this. Not only does she return to the monotonic

sequence idea several times, despite repeated suggestions from the interviewer that other
kinds of sequences also be considered, she also sidesteps Xavier's attempt to bring part
of the definition into the discussion.

In Xavier's case we can see a contrast between his developing maths frame (which is
beginning to show signs of a rigour prefix in his attempts to introduce part of the
definition) and his development of the object category for "convergent sequence" which

appears to be no more developed that Wendy's: both seem to have access to a very
limited number of representative examples.

This highlights the relationship between mathematical object categories and the rigour
prefix; the two may influence each other but they are not entirely dependent on each
other. A student may have well developed object categories, for instance be able to cite
many varied examples from a category without apparently assuming any extra properties
or weighting them differently. However, such a student may not work with these
categories in the way determined by the rigour prefix. Equally it is possible to have the
rigour prefix in the maths frame but have a poor understanding of what any particular
mathematical object category contains. We claim that changes to object categories are
easier to make than changes to situational categories.

Discussion
Category change has many similarities to Skemp's ideas of how concepts come to be
learned (Skemp, 1979). Skemp claims that concepts are altered as the learner
acknowledges the importance of different examples of the object. In Wendy's case the
examples of convergent sequences that she has been exposed to appear to have led her to
believe that a good representative example of that category is monotonic. She is by no
means atypical of those on the lecture course in this respect. We suggest that while a
teacher may choose to exhibit a particular example on the basis of its simplicity of
expression, intending it to serve as illustrative of the general principles under discussion,
a student may attach inappropriate weight to it as a member of a category. Exposure to
more varied examples may discourage this tendency to consistently work with one
particular representative example, and increase the student's number of prototypical
members. Using more representative examples enables the student to cover more of the
category. However, this is not the same as developing the rigour prefix, without which,
the general cognitive strategy of working with representative examples is the only
available option.

The rigour prefix is defined as a directive in the maths frame allowing those who have it

to exploit the classical nature of defined categories by using only the definitional
properties in formal work (although their informal reasoning may still rest on
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representative examples). We claim that situational categories are modified in the same
way as object categories, that is by the learner acknowledging the importance of
different instances of the situation. This may be why the question-based course is more
successful in encouraging students to develop the rigour prefix. These students are
regularly put into a situation where they are asked to prove general results for
themselves: the general cognitive strategy is not likely to lead to consistent success in
producing such proofs. They are likely to find their current maths frame is no longer
efficient and to be ready to explore alternatives to the general cognitive strategy.

We do not suggest that the development of the rigour prefix will be smooth. An interim
stage for many in Analysis seems to be a period of manipulating definitional statements
in order to please the authorities rather than as a reasoned alternative to the general
cognitive strategy. The next stage in development may be a realisation that the definition
corresponds to their own category for that object. As was put by one girl in the pilot
study for this research:

"I didn't see how it [the definition] related to what I thought, and I thought
what I thought was a lot better than how they'd written it on the page, and
then the more I saw how it, sort of works, the more I can see that that is
actually just what I thought anyway, and it's just said better than I could say
it.

This idea has obvious connections with those of concept image/concept definition (Tall
and Vinner, 1981). A student without the rigour prefix works solely with some piece(s)
of their concept image, although they may be able to state the definition quite accurately.
In addition such a student may well display a propensity towards "proving by example",
having what Harel and Sowder (1998) call inductive or perceptual proof schemes.

Conclusion

The way mathematics has evolved has led to experts in the field working with defined
(and therefore classical) categories. These offer huge scope for generality and accuracy,
but their use requires a maths frame which can override general cognitive strategies.

The development of the maths frame occurs in all learners throughout their
mathematical education. However, the development of the rigour prefix is essential to
the transition to advanced mathematical thinking. Prior to this, the learner may be able to
cope with school mathematics by using a combination of a specialised version of the
general cognitive strategy as their maths frame and by being able to create and modify
object categories. At university, the student not only needs to be able to continue to
create and modify object categories at increased levels of abstraction, they also need to
develop a new and fundamental aspect to their maths frame: the rigour prefix.
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THE PROBABILISTIC THINKING OF 11-12
YEAR OLD CHILDREN

Gilead Amir, Liora Linchevsld, Hebrew University, Jerusalem
Ma lka Shefet, Lewinski College, Tel-aviv

Abstract

This research explored the probabilistic thinking of 11-12 year old children in
Israel. A questionnaire was developed, including scales that explore children's
estimations of probabilities. 294 children completed the questionnaire, and 32
of them were also interviewed Some of the main findings include:
'representative ' sequences got higher estimations of chance than other

sequences; most of the children did not discriminate between single sequences
and classes of sequences; several new examples of children's use of the
'representativeness' and the 'availability' heuristics were identified

1. Literature and theoretical framework

Piaget and Inhelder (1975, original in French, 1951) analyzed children's
thinking about probability into the usual stages (pre-operational, concrete
operational, etc ), culminating in a formal understanding of probability through
combinatorics. Green (1982), in a survey of 3000 children aged 11-16 showed
how their development followed a hierarchy which was consistent with
Piaget's stages.

A focus of criticism of much of Piaget's research has been the gap in
communication which may develop between researcher and child (see for
example Donaldson, 1978). Borovcnik and Bentz (1991) similarly cast doubt
on common interpretations of answers to commonly used-probability questions.

Another focus of criticism on Piaget is in not taking enough into consideration
non-formal, intuitive lines of thought. Fischbein (1975) showed that some
intuitions in young children's thinking are important in helping (and hindering)
their pre-formal probabilistic thinking. Kahnemann, Slovic and Tversky (1982)
showed how adults reason in situations of uncertainty using intuitive
`heuristics', rules of thumb which seem to be developedto guide our behavior
in daily living. Shaughnessy (1981) asked college students to compare the
likelihood of two sequences of births of six children. Only 27% of them
answered that there is about the same chance for each. 70% thought
`BGGBGB' is more likely than 13BBBGB', probably applying
`representativeness' (expecting a sample to be similar to its parent population).
Two heuristics we have found (Amir, 1994, Amir & Williams, 1994, Amir &
Williams, 1995) relevant also to children: 'representativeness' and
`availability' (estimating odds according to memories of similar past
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experiences). Beliefs also influence children's interpretations of probabilistic
situations (Amir, 1994).

This knowledge of chance and probability that the child acquires informally,
mainly outside school, is relevant to the learning of probability (see Fischbein,
Nello & Marino, 1991). Unfortunately, our knowledge of children's
preconceptions of probability is not systematic and not precise (Shaughnessy,
1992). This research intended to contribute to this knowledge both in
methodology and in substance.

Thus, the aims of this research were:

1) To develop tools for research of probabilistic thinking.

2) To develop insight into probabilistic thinking of 11-12 year old children.

2. Method

Two questionnaires were used: the first is a translation of part of Green's
questionnaire (1979) into Hebrew. The second questionnaire is new, aimed at
mapping children's probability language, and quantitative estimations and
comparisons of probabilities. The instruments' validity and reliability were
checked by piloting them both in writing and in interviews.

Use was made of scales, which are frequently used in research of attitudes,
beliefs, etc, but are not commonly used in estimations of chances. An example
of a question:

3. On each of the scales mark the chances of the event.
For example:
What are the chances of 'Heads' when tossing of a usual coin?
If we think the chances are even we mark the number 50:

-->
Low chances High chances
0 100

I I I I I 4. I I I I I

A fair coin is tossed 6 times. Tick the chances to get the following results:

a. 6 'Heads'
I I I I I I I I I I

b. 6 'Tails'
I I I I I I I I I I

c. 5 'Heads' and 1 'Tails'
L I I I I I I I I I

d 1 'Heads' and 5 'Tails'
I I I I I I I I I I

e. 4 'Heads' and 2 'Tails'
I I I I I I I I I I

f. 2 'Heads' and 4 'Tails'
I I_ I I I I I I I I

g. 3 'Heads' and 3 'Tails'
I I I I I I I I I 1
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A similarly structured question with scales asked about chances for specific
sequences:

A coin is tossed 6 times. Tick the chances to get the following results (in that specific order):

0 100

a. 'Heads', 'Heads', 'Heads', Ileads"Heads', 'Heads' LI I I I I I I I I

b. 'Tails', 'Tails', 'Tails', 'Tails', 'Tails', 'Tails' 11111
c. 'Heads', 'Heads', 'Heads', 'Tails', 'Heads', 'Heads'

1 1 I I I

d. 'Tails', 'Tails', 'Tails', 'Heads', 'Tails', 'Tails' LL_I I I

e. 'Heads', 'Heads', 'Tails', 'Heads', 'Tails', 'Heads'
I I I LI I I I I I

f. 'Tails', 'Tails', 'Heads', 'Tails', 'Heads', 'Tails' L_L_I I I

e. 'Heads', 'Heads', 'Tails', 'Tails', 'Heads', 'Tails' 11111 I 1J I I

f. 'Tails', 'Heads', 'Tails', 'Heads', 'Tails', 'Heads'
I I L I I J I I I I

A question with equivalent items dealt with series of births:

In a family of 6 children mark the chances of the following sequences (in that specific order):

a. boy, boy, boy, boy, boy, boy

b. girl, girl, girl, girl, girl, girl

c. boy, boy, boy, girl, boy, boy

d. girl, girl, girl, boy, girl, girl

e. boy, boy, girl, boy, girl, boy

f. girl, girl, boy, girl, boy, girl

e. boy, boy, girl, girl, boy, girl

f. girl, girl, boy, boy, girl, boy

Other questions dealt with classes of sequences in families (such as '3 boys and
3 girls'), and with dice tossing.

When piloting these questions, in writing and in interviews, we found that the
pupils used the scales without difficulties, and understood their meaning.
Obviously the pupils, with no formal knowledge of probability, were not
expected to offer precise values, or even rough values, of the probabilities.
What the scales did enable is comparison of their various estimations: Does the
pupil see different sequences in a specific question as having equal chances? Is
there a trend in his estimations? Does the pupil give similar chances to a
specific sequence (such as `H,T,H,H,T,H') and to the unordered event (in this
case '4 'Heads' and 2 `Taili")? How similar are the chances the pupil gives to
equivalent events in different contexts? Do the pupil's responses suggest an
application of a certain heuristic? Data that emerged from the questionnaires
was validated through interviews.
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After finalizing the instruments the questionnaire was administered to 294

11-12 year old pupils from central Israel, chosen randomly. 32 of these children

were also interviewed. Results were analyzed both quantitatively and

qualitatively.

3. Results

3.1 Probability of sequences

When giving an estimation of the probability of the result '2,2,2,2,2,2' when
tossing a die 6 times on a scale in the questionnaire the average was 0.24
(n=294), the lowest probability for the sequences in the question. The average

estimation for the sequence '6,6,6,6,6,6' was close (i=0.25). The highest
probability in the question was for the sequence '6,5,3,6,2,4' (x=0.59). As
previously explained, the significance of the results is not in the absolute values
of the probabilities, because the pupils have no tools for estimation of the
correct probabilities. The results' significance is in the comparison between
them: although mathematically each sequence has the same probability, the
pupils assign to the second sequence a much higher probability. The same
results were received also when dealing with coin tossing: 11,H,H,H,H,H' and

`T,T,T,T,T,T' were the sequences estimated with the lowest probability
(Fr-4126 and TrA.25) when tossing 6 times a coin, and '11,T,H,T,H,T' was the

sequence estimated with the highestprobability (Tr--0.57). In the domain of

birth series, the sequence 13,B,B,B,B,B' received the lowest probability
(5E-3.36), only slightly lower than the sequence of 6 girls (5C4.36). The
sequence 13,B,G,G,B,G' received the highest probability (i=0.63).

One possible explanation is that pupils expect different sequences to have

different chances because they apply the 'representativeness' heuristic (a
detailed discussion of this heuristic is in section 3.4). Another possible
explanation deals with communication: maybe the pupils understand wrongly
the question. Maybe they treat each sequence as a type of result, a
representative of a class of sequences, rather than a specific sequence. If so,
then although the answer is formally wrong, it is based on the correct line of
reasoning: when tossing dice, receiving 5 different numbers with one
repetition, and with no specific order, has a higher probability than receiving 6

times the same number!

This explanation can be checked by comparing estimations of probabilities of
specific sequences with estimations of probabilities of unordered events
including several possible sequences. For example comparing the estimation

for the probability of the sequence `13,B,G,G,B,G' with the estimation for the

probability of the event 4 boys and 2 girls in a family of 6 children'. This
comparison is possible with the following table, containing results of sequences
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and the matching classes of sequences of 6 coin tosses, and equivalent
questions dealing with the order of births in families of 6 children.

Table no 1: Average estimations of probabilities for specific sequences
versus classes of sequences of 6 coin tosses and of birth order in families
with 6 children (n=294)

Tossing a coin 6 times A family with 6 children

CLASS OF

SEQUENCES

AVE-

RAGE

SPECIFIC

SEQUENCE

AVE-

RAGE

CLASS OF

SEQUENCES

AVE-

RAGE

SPECIFIC

SEQUENCE

AVE-

RAGE

6 HEADS 0341 11,H,H,H,H,H 0.256 6 BOYS 0359 0,0,B,B4O,0 0357

6 TAILS 0351 T,T,T,T,T,T 0.253 6 GIRLS 0365 G,G,G,G,G,G 0358

5 HEADS,

1 TAIL

0.420 H,H,H,T,H,H 0357 5 BOYS,

1 GIRL

0.450 B,B,B,G,B,B 0.427

5 TAILS,

1 HEADS

0.419 T,T,T,T,T,T 0346 5 GIRLS,

1 BOY

0.454 G,G,G,B,G,G 0.450

4 HEADS,

2 TAILS

0379 HAT,II,T,H 0.488 4 BOYS,

2 GIRLS

0.549 B,B,B,G,G,B 0.503

4 TAILS,

2 HEADS

0.550 T,T,H,T,H,T 0.489 4 GIRLS,

2 BOYS

0.554 G,G,G,B,B,G 0.520

3 HEADS,

3 TAILS

0.604 H,H,T,T,H,T 0.556 3 BOYS,

3 GIRLS

0.649 B,B,G,G,B,G 0.632

H,T,H,T,H,T 0.568 B,G,B,G,B,G 0.582

3.2 Probability of sequences versus complex events

The pupils' responses from the table indicate a high similarity when comparing
the estimations for sequences with the estimations for classes ofsequences.

This low discrimination was also supported by part of the interviews. For
example, in a discussion of coin tossing, D. was asked if there is a question
similar to 1-1,H,H,T,H,H'. She answered that "1 'Tails' and 5 'Heads' is
similar, and that, yes, she would give each the same estimation. Similarly, A.
claims that there is no difference between the question about the probability to
get the sequence '6,4,5,3,1,2' and the probability of "to get 6 different
numbers" when tossing dice. "It is the same, this is also 6 different numbers".
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These results suggest that many children do not discriminate between ordered
sets and unordered sets in probability. For these children the comparison
between the probabilities of the sequences 11,H,H,H,H,H' and `11,T,H,T,H,T'
is the same as the comparison between the probabilities of the events "getting 6
`Heads' when tossing a coin 6 times" and "getting 3 'Heads' when tossing a
coin 6 times". These differences are especially small when dealing with birth
orders. A possible explanation is that in families the relative frequencies of
boys and girls are seen as important, and not so much the order.

Although, as previously stated, results of sequences and matching classes of
sequences were similar, most children did give the unordered event a slightly
higher probability than the sequence, i.e., there is some discrimination between
the two, but it is low, and has no relationship with the number of sequences in
the class of sequences.

3.3 Probability in different domains

Table 1 enables comparison also between answers about coin tossing and about
order of births. Similarity in answers to equivalent questions is high, although
in general results of birth orders are higher, especially when dealing with
specific sequences. Perhaps the context of children in the family is more
familiar, and so estimations for these questions are higher. In this case, the
pupils are applying the 'availability' heuristic (offering higher estimations for
familiar situations).

Interviews confirmed that while part of the pupils thought there is no difference
between equivalent questions in different contexts, others thought there is some
difference. For example, part of an interview between the child A. and the
interviewer I.:
A.: "The questions are different Became, everything depends on God, like, what he gives man."
I.: "And with coins?"
A.: "With coins it is luck"

A. attributes order of birth of children to God, and results of coin tosses to luck
Questions that are equivalent mathematically do not seem so to children, due to
their beliefs. For similar results see Amir (1994).

Or in another interview, with D.:

D.: "No, this is really not the same question."
I.: "Why?"
D.: " Because it is a fact that last week a girl was born to a woman with 11 boys."
I.: " And with coins, to get 11 times 'Heads'?"
D.: "It is impossible."

The explanation of this pupil is based on memory: the pupil does recall
memories of families with many boys, but does not have similar memories of
long sequences of 'Heads' or 'Tails' when tossing a coin perhaps because he
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does not often toss coins! This type of generalization based on memories is, as

mentioned before, an application of the 'availability' heuristic.

And with K.:
K.: "The two questions are different ... A coin you toss, here (i. e. with births, G. A.] you can get what

you want ... With a coin you can control only if you cheat ... With children you do not compete."

3.4 Representativeness

Previous literature (for example Konold et al, 1993), and our pilot interviewing,

suggested that the heuristic 'representativeness' includes two distinct and

independent dimensions when applied within probabilistic situations: the

tendency to expect a sample to reflect the numerical proportion of the parent

population; the tendency to expect a sample not to be too orderly, i.e., to look

`random'. Order seems to be more special, thus with less chance to happen.

These dimensions lead us to identify four types of responses that seem to

reflect application of the 'representativeness' heuristic. A problem used in this

research that can exemplify these different types is: tossing 6 coins.

Most of the pupils thought (correctly) that getting 3 'Heads' and 3 'Tails' has

the highest chances of all given possibilities. A group of these children applied

this view also when analyzing sequences: they gave all sequences with 3

`Heads' and 3 'Tails' a high chance, without taking into consideration the

order.

Another group of children thinking 3 'Heads' and 3 'Tails' has the highest

chance when analyzing sequences expected the ordered sequence

1-1,T,H,T,H,T) to have the highest chances.

A third group of the children thinking 3 'Heads' and 3 'Tails' has the highest

chance when analyzing sequences expected the 'randomly' ordered sequence

`11,H,T,T,H,T' to have the highest chances.

Another group of the children thought the highest chances are for a case which

is near the expected numerical value, but not the exact value. In the case of

tossing 6 coins they expect "4 'Tails', 2 'Heads', or "2 'Tails', 4 'Heads' to
have the highest chance. When asked about the result with the highest chances

when tossing 30 times a coin, these children answered that "14 'Tails', 16

`1-leads'" or "14 'Heads', 16 'Tails' have the highest chances.

4. Conclusions

1. New instruments based mainly on scales provided useful information about

children's concepts of probability.
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2. Children gave sequences different probabilities. 'Representative' sequences

got higher estimations of probability.

3. Discrimination between sequences and classes of sequences was low.

4. Equivalent probability questions in different domains gave close results,

although differences existed, especially when comparing order of birth of

children to tosses of coins.

5. The 'representativeness' heuristic includes two distinct and independent

dimensions: the tendency to expect a sample to reflect the numerical

proportion of the parent population; the tendency to expect a sample not to

be too orderly, to look 'random'. These dimensions led to the identification

of 4 variations of 'representativeness'.
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WHAT CAN BE LEARNT ABOUT FRACTIONS ONLY WITH COMPUTERS

Ilana Arnon, Pear la Nesher, Renata Nirenburg, CET, Tel Aviv

In this report we will present the software "Shemesh", designed for the learning of
mathematical concepts through concrete representations that can not be constructed by
the students without the computer. The concept of Equivalence Class plays a
significant role in the structure ofRational Numbers. In a discrete Cartesian system an
equivalence class of fractions is represented as a line through the origin. Other
fraction concepts also have concrete representations in such a system. Fifth-graders
who used "Shemesh" in their learning process were clinically interviewed several
months later. It was found that they remembered these representations and could use
them for solving conventional arithmetic fraction-problems.

To compare two fractions means to find the order relation between them, such as the
following problem: "Of a and -1, which fraction is larger, or are they equal?" How

do we usually approach such problems in elementary schools? One way is to teach
some algorithm, to be learned by heart. If we aspire to some meaningful learning,
we might choose more lengthy methods. For example, we might teach the following
method:

Find two new fractions: One equal tol 2-the second equal to , yet both having
4 10

the same ("a common') denominator. Compare the new fractions.

Some will argue that the easiest common denominator to find would be 40 (the
product of the two given denominators). In this method, we expand each given
fraction by the denominator of the other, to deduce that 1.: , -41, and hence,

according to a previously learned rule of comparing fractions with common
denominators, -41< , hence

40

Others will argue that there exists a simpler common denominator, to work with -
namely 20. The followers of the first method will argue that 20, being a smaller
integer, might be perhaps easier to use for the calculation, but not at all easy to find.
To obtain it involves either using complex ideas of whole-number-theory, such as
decomposition into prime factors and smallest-common-multiple, or else
constructing lists of fractions equal to the original ones until hitting fractions with a

3 6 9 12 15 7 14common denominator: Hooray! All these methods
4 8 ' 10 20

lead the student to believe that he had found the appropriate common denominator
(and respective representative solution), and not one of several.

Working on fraction concepts with 4-, 5-, and 6- graders we found that it was
extremely difficult for students simultaneously to conceive of the components of this
complex situation: The two given fractions, the equality of each of them to the
members of its own list, and the three significant characteristics of the fractions with
common denominator: that their denominators are equal, that each of them equals
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one of the original fractions and that they usually do not equal each other. (On the
contrary, we have to determine which one is larger and deduce from that the order
relation between the original fractions).

The same holds for other arithmetic operations on fractions, such as addition and
subtraction. If we do not wish to teach an operation as a technical algorithm, the
solution always begins by searching for a replacement for each given fraction; We
search for the replacement in the set of the fraction's equals. We choose the
replacement according to convenience; the same arithmetic problem can often be
solved by means of more then one choice. The idea that the solution of the problem
does not depend on the choice we make (on the individual replacement we used in
the solution-process) is very crucial for the understanding of fraction-operations, and
too much neglected, in our opinion, in school mathematics.

There is a fundamental mathematical idea behind all these methods, namely, that a
fraction is not a single pair of integers (numerator and denominator), but a class of
equivalent such pairs. The arithmetic operations executed between pairs of fractions
are in fact defined in terms of their equivalence classes. Here is an example of a
definition of this idea:

Let R be a commutative ring without zero-divizors.
(a) We define a relation on R x(R I 100 by (a, b) (c,d) : p ad = bc.

This is an equivalence relation. The equivalence class of (a, b) is

denoted by b .

b) The set Q(R) := { b / a E R, b E R 1 {01 } of equivalence classes,

c + bc
endowed with the operations

a ad
bd

is a field, called the quotient field of R.

and
a c ac_
b d bc

(Spindler, 1994, V. II, p. 40).

Teaching fractions as equivalence classes means more than teaching the equivalence
of two elements of a given class. It means getting the students to operate on the
classes as objects. So, while the concept of fractions as equivalence classes remains
difficult and very abstract it is essential that it be taught. Piaget taught us that
students of this age develop abstract mathematical concepts by reflecting on their
own concrete activities (Piaget, 1976). What if we find concrete representations for
equivalent classes of fractions? Will that enable the teaching of this concept?

Resnick (1987) emphasized the necessity of strict and explicit mapping between a
concrete representation and the mathematical ideas it represents. Nesher (1989)

emphasized the need for well defined and (mathematically) closed knowledge
domains, to be taught by the use of isomorphic concrete exemplification domains.
Dubinsky (1991) emphasized that the development of a new mathematical concept
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begins by an action, and Arnon (1997) investigated the improvement of the
development of fraction concepts by the use of concrete actions. Arnon (1997) also
showed the necessity of another condition: the ability of children to operate the
concrete actions, after due interiorization, in their imagination.

We chose to represent fractions as equivalence classes of ordered pairs of integers in
a discrete Cartesian coordinate system. An ordered pair is represented by a point
whose vertical coordinate is the numerator and its horizontal coordinate - the
denominator. The ordered pairs of each equivalence class are situated on a straight
line passing through the origin (Kalman, 1985; Kieren, 1976):

a

Drawing 1

The use of computers is indispensable for this exemplification, because of the need
for accuracy in drawing the different lines. The software "Shemesh" (I) was
developed with a screen consisting of two separate parts: A number-domain and a
drawing-domain. An equivalence class is represented in the number-domain as a list

of fractions
b

and is referred to as a "class". In the drawing-domain it is

represented as a line through the origin together with all the points of the "class", a

point for each numeral (see drawing 1). Users can construct points representing

individual pairs of numerator and denominator and lines representing equivalence
classes. Other options of the software are: The construction of additional types of
fraction sets, the performance of arithmetic operations such as addition, subtraction,
comparison, and more. The software and its optional activities were constructed
according to the necessary conditions established by the researchers that were quoted
above. Even so, the use of this representation for elementary school students poses
the following questions:

0 To what degree is this representation really concrete for young children?

"Shemesh", Fractions as Equivalence Classes, CET - Center for Educational Technology, Tel-Aviv, Israel
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Does the use of this software enhance the development of the concept of fractions
as equivalence classes?

We set out to investigate these questions. In a preliminary experiment, thirty
fifth-graders attended between one to four lessons a week. The sessions took place
in a computer laboratory, in addition to the normal school schedule, and participation
was voluntary. Some of the students dropped off along the way. Others were
persistent and attended up to 30 lessons. The lessons consisted of group-work,
individual work and large group discussions.

Three months after the teaching experiment was over we interviewed 21 students
(those available at the time). One student dropped out because she was quite unable
to work with the specific representation. We will present the data collected from the
remaining 20 students in two parts, concerning the construction of the concept, and
its further use.

A. The construction of the concept of equivalence class

1. The representation of a numerator and denominator pair as a point in the
Cartesian system

All 20 students handled this representation correctly (although some needed a few
"recollection" exchanges): Using pencil and paper drawings they drew points
representing given fractions, and vice versa, and successfully accomplished even
more sophisticated assignments.

2. The relation between the members of an equivalence class

All 20 students knew that the fractions whose points were on a line passing through
the origin were equal to each other. They also knew that the fractions that appeared
on a list in the number domain equaled each other.

S8: "...actually they are in the same class... because they are equal."
SI9: "Because they are in the same class, and they equal each other."
S20: "First of all, they are all on this line. Second - they are all equal."

3. The link between a list on the number-domain (a "class") and a line on the
drawing-domain

19 students expressed their certitude about the link between such a list and its line:

S8: "Because usually in the computer, when we have a line, and we
have a class, then usually they belong to each other."

S17: "All the fractions of a class are on the line."

S10 expressed the integration of all three ideas:

"They [refers to the list] are all fractions of 1, it is a line of s and

they all are expansions of
3
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B. The use of lines in solving arithmetic fraction-concepts.

1. The use of lines for the comparison of fractions

In this representation the order relation between fractions is determined by their
lines, and not by their individual points: The fraction whose line is higher is the
larger fraction (see drawings 2 and 3). This rule is valid in the first quarter of the
Cartesian system, and needs refinement with negative fractions (which was tried out
with older populations, but will not be reported here). In the interviews we dealt
with three situations of fraction-comparison, which denote a hierarchy in the
development of students' ability to use the lines as problem-solving tools:

la. The fractions were presented by their lines

The students were presented with
a drawing of two lines in a
Cartesian system devoid of points:

The problem was: Drawing 2

"Here are the lines of I and of I. Write each fraction next to its line."
1 2

and ' were chosen because we believed that most students knew which of them is

larger. We expected students who had'interiorized the representation of the relation
">" in the Cartesian system, and knew that > 2 will ascribe to the higher line,

and ' to the lower. We found that 15 of the 20 students did so, and relied on the

order relation between the fractions in their explanations:

S1 : "Because this is a whole, and it is larger than a half, therefor its line is
higher."

S10: "Half is smaller. It is a fraction smaller than one over one. And the lines that
are higher, which rise upward, are the lines that are larger."

lb. The given fractions were presented as lines
while the answers were requested as points:

The students were presented with this Cartesian system
and were requested to draw points of fractions:
a. Smaller than i ;

b. Larger than ;

c. Smaller than I and larger than .
2

2

Drawing 3

The same 15 students who succeeded to solve the previous problem, succeeded here
too. S10 (for question c):

"It can't be above the line of one, but it will be above the line of half."
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2 students used lines for their answers: 14 students spoke of zones of the plane:

Drawing 5

lc. Both fractions represented by points

The students were presented with two Cartesian systems devoid of all but two points:

In each system the students
were asked to mark the point
of the larger fraction.

Drawing 6
0

a.

a
b.

0 a

In order to solve the problem they had to know that the order relation was
determined by the relative position of the lines, and not of the points. 14
students used lines to solve the problem correctly. 4 of them actually drew the lines.
10 answered correctly with no visible action. When asked to explain they refered to
lines in their explanations:

S4: "If we take a line and we drew it from the origin point up to the fraction, and we
draw it, then we will find that the square will be beneath the line, so it will be
smaller than it [no line drawings, only hand gestures of imaginary line drawings
in the air, accompanying the explanation].

S5: "If I took a ruler and drew a line from here to there, the line would be higher
than i f I drew a line from here to there [draws while explaining his answer] and
the higher the line, the larger it is."

S8: "Because here if one draws of the circle, an imaginary drawing of the line, then
the line is higher than the... if one draws an imaginary line of the square [with
each reference to a line "draws" with his finger in the air a line via the origin]."

S17: "It has to do with the lines, not the fraction itself"

One might say that for these students the concrete action of comparing fractions by
means of their representative lines was interiorized to a degree where they performed
it in their imagination.

One student estimated the fractions corresponding to the given points numerically,
and then compared them correctly. One student thought that the further the point
was from the vertical axis, the larger the fraction. The others either could not solve
the problem, or were not asked to.

467 - 38



2. The density of the rational numbers

The question was: "Find fractions (as many as possible) that are

larger than -14- and smaller than :
3

<1 ,1

3

16 students started with a . That was the only solution for 3 of them. Others added

expansions of 4. 2 students added ( "from my head") a fraction that was not an

expansion of (3 and -,3i) and used the software for checking. The last 11 used the
4 13

Cartesion system in their search for more solutions: They drew the lines of 5 and of
I
3

(see drawing 1), and wrote many fractions whose points were located between

these two lines. As for how many such fractions exist, they all answered "many" or
"a lot" or "infinite":

S9: "[Draws the lines] "All that is between this line and that line" [writes ± , 4

13 14

, . Then she expands the drawing-domain to reach more fractions].
16 17

In.: "How many are there?"
S9: "Up to infinity".

S21: [draws the lines and writes . Strolls with the cursor among the points within

the lines, and continues to write: 1, 3 , 3 , 3 , 3 ] "there are a lot".
9 10 11 12 13

Summary of findings:
The findings we described suggested answers to our two research questions. As to
the question about the concreteness of this representation, we have shown that
fifth-graders worked with the different components of the discrete Cartesian system -
points, lines, axes, origin and zones. These were concrete to them to the extend that
they were able to draw sketches by hand when needed.

As for the second question, about the development of the concept of fractions as
equivalent classes, we have shown that:

Students understood the mapping between the mathematical language and this
representation (Resnick, 1987; Nesher, 1989): They could identify a fraction
given by its point or line, draw sketches of a line or point of a given fraction, and
even find the correspondence between sets of fractions of a given characteristic,
and zones of the Cartesian system.

The students knew the term "equivalence class of fractions" and its concrete
representation a line through the origin. They were also aware of the equality of
any two elements of such class.



The students used this concept and its representation to solve arithmetic problems.
They did so when the problem was presented by drawings, such as when they
found fractions smaller than ! beneath the line of !. They also did so when the

2 2

problem was presented in formal mathematical language, such as when asked to
find fractions larger than s and smaller than s , they drew the lines of these

fractions and found the required fractions between these lines. They could even
make deductions about the abundance of such fractions.

Further findings, relating to the connections students make between this
representation and other common concrete representations of fractions, will be
reported in the presentation.

Conclusions
The findings of this research indicate that fifth-graders can develop the concept of a
fraction as an equivalent class, provided that appropriate concrete representations
and activities are used. Such development was made possible by the software
"Shemesh".
The findings also indicate that this concept develops gradually. Further research is
needed to obtain more insight into the nature of this development.
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DECISION-MAKING STRATEGIES IN PROBABILITY
EXPERIMENTS: THE INFLUENCE OF PREDICTION

CONFIRMATION
Paul Ayres Jenni Way

University of Western Sydney Nepean University of Cambridge
Australia UK

Two groups of grade six students observed a video-recording of coloured balls
being drawn from a box (sample space unknown). After every fifth selection,
students were required to predict the colour of the next ball drawn. One group
observed a sequence where the most frequently occurring coloisr (white) was drawn
80% of the time following prediction, whereas for the second group, a white only
appeared 20% following prediction. Even though the accumulated experimental
probabilities prior to prediction for both sequences had been manipulated to be
identical, the former group chose white, more consistently than the latter group.
Consequently it was argued that children may be influenced in their probability
judgements by confirmation or refutation of their 'predictions'.

One focus area of probability research, particularly in the context of education,
has been inappropriate decision-making strategies, or misconceptions in situations
involving random events (for example: Peard, 1995; Shaughnessy, 1981; Tversky &
Kahneman, 1982). Several of these strategies are attributed to the effect of
sequences of randomly generated outcomes from probability experiments on the
subject's expectations regarding the 'next' outcome. One such strategy that has
received considerable attention is representativeness (Fischbein & Schnarch, 1997;
Kahneman & Tversky, 1972; Shaughnessy, 1981), which is the expectation that a
random set of outcomes should be representative of the composition of the known
sample space. Related to representativeness is the type of thinking known as
negative recency or gambler's fallacy, where there exists the expectation that as the
frequency of a particular outcome increases the probability of that outcome
occurring decreases. For example; when repeatedly flipping a coin, a run of heads
would lead to the expectation of the next flip being a tail. The opposite and less
common strategy (Fischbein & Schnarch, 1997) is referred to as positive recency
(in this case, predicting a head because that's the trend).

Much of this research has been conducted with adults, using written tasks o r
`tests', in which preconceived sets of outcomes have been presented to the subjects.
However, it is quite common for researchers working with children to use real
random generators to accommodate children's need for concrete experiences (for
example: Truran, 1992; Way, 1996). Often in this type of study the children,
following a number of experimental outcomes, are asked to state what they consider
to be the most likely outcome of the next random event. This context gives rise to a
little studied, possible influence on decision-making; that of the confirmation or
refutation of the 'prediction' by the actual next outcome.

Truran (1996), working with a known sample space, analysed the changes in
prediction of primary and secondary students in regards to the next outcome. One
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finding was that when the more-likely outcome was predicted, it didn't really
matter whether the next outcome confirmed or refuted that prediction. However, if
the less-likely outcome was predicted, the subject was highly likely to change the
prediction, particularly if the following outcome refuted the less-likely prediction.
Similarly, Ayres & Way (1998b) working with unknown sample spaces, found
evidence that upper primary-aged students would change their prediction patterns
according to how successful they were in their predictions. Although, students
would choose the most frequently occurring colour under specific conditions, they
would change strategy if their predictions were not rewarded.

The findings (not directly tested) by Ayres & Way (1998b) suggest that children
may be influenced in their probability judgements by confirmation or refutation of
their 'predictions' rather than the overall picture. Consequently, this study was
designed to explore this theory directly. Because random generators naturally
produce sequences which vary, a video-recorder (see Ayres & Way, 1998a) was
used to control the outcome sequences and provide a realistic medium for children.

METHOD

Participants. Fifty nine grade six students from a primary school in the state of
New South Wales, Australia, participated in this study. Students had not been
formally taught any chance and data topics in their mathematics classes.

Apparatus. A video recording of coloured balls being chosen from a box was
made according to the following procedure. Ten coloured table-tennis balls (6
white, 3 blue and 1 yellow) were placed in an opaque brightly-coloured box (18cm
x 18cm x 14cm) with no lid. To ensure that particular outcomes occurred, the box
was fitted with three cardboard compartments which were not visible from the
camera angle. Within each compartment was placed a ball so that the three colours
were represented once only. In addition, the box was fitted with a false bottom in
which the remaining seven balls were placed. Hence when the box was shaken
(before each selection), the noise was consistent with a box containing a number of
balls. Furthermore, the compartment design made it possible for a researcher to
select a particular coloured ball at will, but give the appearance that the ball was
selected at random. In this fashion, thirty selections were made, with replacement,
and consequently a particular colour sequence of outcomes was made to occur. The
researcher (positioned in front of a white board) was filmed making the selections.
As each selection was made, a second researcher recorded the "colour" on the
whiteboard in a 6 x 5 array format. At all times, the researcher making the
selections and the box was visible, as was the record of the colours previously
selected. In order to make the video as authentic-looking as possible (see Ayres &
Way, 1998a), a clock was positioned close to the whiteboard to indicate a
continuous time passage and avoid possible suspicions of video-splicing. After five
selections, the researcher paused and asked for a prediction to be made. This
process was continued a further five times and a prediction was made after every
fifth selection.
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Ayres & Way (1998b) found that students of this age are more likely to select
the most frequently occurring colour if a high percentage of the sample space is
represented by that colour. Consequently, the particular sequence selected included
19 whites (63%), 7 blues (23%) and 4 yellows (13%). To create a situation where
the most frequently occurring colour (white), appeared consistently on prediction,
four of the first five prediction were manipulated to be white. This sequence was
called the Typical Outcome sequence (see Table 1). The positions where predictions
were made are underlined in Table 1.

Table 1: Colour sequences developed for the Typical and Non-typical groups.

Outcomes
Typical Outcome

Sequence

Non-typical
Outcome
Sequence

Experimental
Probabilities (%)

W : B : Y
First five WYWBW WYWBW 60 : 20 : 20

Second five WWBWY BWWWY 60 : 20 : 20

Third five BWWWB WBWWB 60 : 27 : 13

Fourth five WYBWW YWBWW 60 : 25 : 15

Fifth five WBWWW BWWWW 64 : 24 : 12

Sixth five WYWBW YWWBW 63 : 23 : 13

W Y

Note: Underlined positions indicate where predictions were made.

In the same fashion, a second video-recording was made. In contrast to the first,
the less likely outcomes (blue and yellow) appeared consistently at the prediction
locations. This sequence was called the Non-typical Outcome sequence (see Table
1). To achieve this effect, the underlined colours in the first sequence were rotated
with a different colour within the same subset of five colours. As a result, only one
white appeared in the first five prediction positions. Students who predicted a
number of whites would therefore not be very successful. Furthermore, the
accumulated experimental probabilities after each set of five outcomes (see Table 1)
for both sequences were identical, and approximately matched the theoretical
probabilities (60: 30:10). Consequently, if students viewed either sequence and were
guided by experimental probabilities alone, they would choose white as the most
likely outcome in both situations. However, depending upon which sequence was
viewed, students' success rates would vary considerably. It was therefore anticipated
that this design would cause the two groups to adopt different selection strategies.

Procedure. Students were randomly assigned to two groups. One group was shown
the typical outcome sequence (Typical Group), whereas the second group viewed
the non-typical outcome sequence (Non-typical Group). The experiment was
conducted with small groups of students each time. As an introductory instructional
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phase, a student was asked to select a ball from the box (used in the video) with the
partitions removed, show it to the rest of the class, before returning it to the box.
The class was then asked to predict what colour would occur the next time if
another ball was selected. This procedure was repeated twice, so that students
became familiar with the idea of making predictions following a random selection.
The experimenter used the following statement: "What do you think the next colour
will most likely be?" The wording "most likely" was used to encourage students to
make decisions based on their concepts of chance; however, it should be noted that
children may interpret words, such as "likely", differently to what is expected
(Konold, 1991). They were also informed that there were some white, blue and
yellow balls in the box, but no clue was given to the proportions. Additionally, the
students were told that it was a game and students should try to predict as many
correct colours as possible. When the experimenter was satisfied that the students
understood the nature of the task, they were shown one of the videos according to
which group they had been assigned. The video recording was shown on a large TV
monitor positioned at the front of the classroom. After each selection a record of
the colours was also recorded on the classroom chalkboard. After the first five
colours were observed being drawn, the video was stopped and students were asked
to make their predictions, then given time to record them on answer sheets. This
procedure was then repeated for five more subsets. The language used by the
researcher was identical for both groups, as was the task that the students were
required to complete.

RESULTS

For each student, a sequence consisting of six colour predictions, was recorded.
Given the nature of the prediction tasks in this study, of particular interest was the
number of whites chosen. If students were guided by experimental probability then
it was expected that a high percentage of whites would be chosen. To investigate
this, the mean number of whites chosen for each group was calculated (see Table 2).
In addition, the number of whites chosen in the first and last three predictions was
also recorded (see Table 2). Ayres and Way (1998b) found that students may not
necessarily choose the most frequent colour after a small number of observations
and may need more information before committing to a strategy. By comparing
predictions over the two halves it was possible to analyse the extent to which
students refined their strategies as more selections were observed.

Over the six trials, the mean number of whites predicted by the Typical Group
(2.73) was not found to be significantly greater than the Non-typical Group mean
(2.65) under a two-tailed t-test (t(57) = 0.26, p > 0.05). Although, there was no
difference in overall means between these groups, substantial differences can be
found in the prediction patterns. By comparing the change from the first three
predictions to the final three predictions there was a significant difference between
the Typical Group (+0.61) and the Non-typical Group (-0.24) under a two-tailed t-
test of differences (t (57) = 2.44, p < 0.05). For the Typical Group, a significantly
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greater number of whites was chosen in the last three predictions (1.60), compared
with the first three (1.13), under a paired t-test: t(29) = 2.31, p < 0.05. As the mean
number of predictions for white was greater than 50 % (1.6 out of 3) for the final
three, there was a clear indication that this group had started to favour the most
likely outcome. Nineteen of the thirty students chose at least two whites. In contrast,
the Non-typical Group chose less whites in the latter half (1.21) compared with the
first (1.45), although the difference was not significant under a paired t-test: t(28) =
1.16, p > 0.05. A value of 1.21 out of 3 indicates that the group was less likely to
favour the most likely outcome in their predictions. Only six of the 29 students
chose at least two whites. The above analysis indicated that by the end r; the
prediction sequence there were significant differences between the groups. The
group, which was being rewarded with correct answers by choosing the most likely
outcome, was increasing the use of this strategy; whereas, the group which was not
being rewarded was moving away from the strategy.

Table 2: Mean number of whites predicted by the two groups

Typical Group Non-typical Group
(n=30) (n=29)

Mean number of whites
chosen on first 3 predictions

Mean number of whites
chosen on last 3 predictions

Mean number of whites
chosen over 6 predictions

Mean = 1.13

SD = 0.73

Mean = 1.60

SD = 0.81

Mean = 2.73

SD = 1.08

Mean = 1.45

SD = 0.79

Mean = 1.21

SD = 0.86

Mean = 2.65

SD =1.20

Prediction Patterns

To gain insights into the type of strategies employed, prediction profiles for each
group were found by calculating the frequency of each colour selected at each
prediction point (see Table 3). The profiles indicate that many students changed
their choice of colour. For both groups the most frequent colour chosen for the
first prediction was yellow. This may be example of the negative recency effect as
the other two colours had more recently occurred (see Table 1). Following the first
prediction, the group profiles changed considerably. For the Typical Group, white
was the most frequent (61%) colour chosen on the second prediction. As a white
occurred at the first prediction point and because of the high proportion of whites
occurring, this group may have been influenced by experimental probability in this
instance. However, these students were not rewarded with a correct prediction, as a
white did not occur when the colour was drawn. This failure may have also
influenced the third prediction, as yellow was the most frequently (55%) chosen
colour in this position. Again, this may be an example of negative recency as a
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yellow had not occurred for five selections. For the remaining three predictions,
white was the most frequently chosen colour, with 84% of the students choosing
white for the last prediction. Overall, white was chosen by more students than any
other colour except for the first prediction (when a sequence had barely been
established) and on the third prediction (following the only non-white occurrence at
a prediction point).

In contrast, the Non-typical Group, only had a clear preference (41%) for white
on the third prediction. As this followed a white occurring at the second prediction
point, it may have been the group's only majority attempt to use experimental
probability. Although there are some other notable preferences for this group,
namely 66% blues on the fourth prediction and a high number of yellows on the
second and fifth predictions, it is unclear why these preferences occurred. It could
be argued that both negative and positive recency effects occurred at particular
points. Equally, it may be argued that these profiles are just random. However,
what is clear is that this group was reluctant to predict white.

Table 3: Colour selections (%) at each prediction point

Predictions

Typical Group Non-typical Group

W B Y W B Y
First 29 16 52* 38 21 41

Second 61 32 3* 41 3 55

Third 23 19 55* 41 28 31

Fourth 42 26 29* 31 66 3

Fifth 42 23 35 31 21 48

Sixth 84 6 10 34 34 31

Overall 47 20 31 36 29 35

* Note: a red selected by one student at these positions

The above analysis, based on the data reported in Table 3, indicated that students
in both groups changed the colour of their predictions considerably. The extent of
these changes was investigated further by calculating the changes of colour made by
each student in their prediction sequences. For example, a student in the Typical
Group predicted the following six colours- W B Y W W B. This sequence involves
four changes of colour from one prediction to the next The maximum of number
changes possible is five. The mean number of changes made by the Typical Group
and Non-typical group was 3.52 (SD = 1.06) and 3.38 (SD = 1.32) respectively.
Both means indicate considerable colour changing. However, there was no
significant difference found between groups on this measure under a 2-tailed t-test:
t(57) = 0.13, p > 0.05.
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To investigate the extent to which changes are influenced by previous successful
predictions, changes were categorised according to whether they followed
confirmation or refutation of predictions. For each student the number of changes
made following either outcome was calculated as a proportion. For example, if a
student made four correct predictions which were followed by a total of one change
in colour following these successes, then the student had a ratio of 0.25 changes per
successful predictions. For the Typical Group, the mean ratio of changes made
(0.92, SD=0.47) following successful predictions was significantly greater than the
mean ratio (0:46, SD = 0.46) following unsuccessful predictions under a paired t-
test: t(28) = 3.15, p < 0.01. For this group, the students changed colour twice as
many times following an unsuccessful prediction than a successful one. For the
Non-typical Group, no significant difference was found between the mean ratio
(0.62, SD = 0.42) following successful predictions and the mean ratio (0.71, SD =
0.46) following unsuccessful predictions under a paired t-test: t(27) = 0.77, p >
0.05.

CONCLUSIONS

The main objective of this study was to test the hypothesis that a subset
(consisting of student predictions) of a sequence of "random" outcomes, can affect
selection strategies. Even though the accumulated experimental probabilities prior
to prediction for both sequences were identical, the Typical Group chose white,
more consistently than the Non-typical Group, especially in the latter half of the
trials. The experimental design was therefore instrumental in forcing measurable
differences between the groups. Consequently it was argued that children may be
influenced in their probability judgements by confirmation or refutation of their
predictions. Certainly students in the Typical Group were less likely to change
colour following a successful prediction, than following an unsuccessful colour. In
contrast, students in the Non-typical group consistently changed colour. These
changes for the latter group may well have been caused by an underlying conflict
between the overall observed experimental outcomes and the lack of white
occurring in the prediction locations.

To a certain degree, this study has shown that children this age, without any
formal probability schooling, can make decision based on likelihood. However,
probabilistic reasoning may not be well developed as decision making seems to be
highly influenced by unexpected outcomes. Consequently, any teaching activity in
this domain needs to make a focus on this issue. The study has also shown the
effectiveness of using a video-recorder as a research tool. No student doubted the
validity of the videos. In fact, all students enjoyed the activity. From the perspective
of future research, the study will be expanded to investigate other age groups and to
include experiments when the sample space is known. In addition, interviews will be
conducted to find out if their given reasons support the data trends.
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Abstract

Ethnomathematics so far has gained a certain degree ofmomentum in the developing
countries, and some developed countries with multicultural backgrounds as well. On the other
hand, critical mathematics education which originated from a developed country, has highlighted
critical points of ethnomathematical research. In order to connect ethnomathematics to school
mathematics as a part of educational endeavor, the complementary relation between critical
mathematics education and ethnomathematics has been deliberated in both ways. Subsequently the

foundational framework has been proposed to strengthen the critical nature by means of
reciprocity and to develop mathematics education based on ethnomathematics.

1. Introduction
'Ethnomathematics', which was named by D'Ambrosio at ICME 5, in 1984,

has resonated among researchers who tried to engage in cultural aspects of
mathematics education, and has formed a productive field of research to enlarge the
interpretation of mathematics education. Some examples shown in such as Ascher
(1991) and Gerdes (1988, 1990) have gradually added concrete images to its
general characteristics and materialized its abstract existence. However, the clearer
its characteristics become, the more criticisms are made against its potential and
applicability to mathematics education.

((Ethnomathematics does not amount to a set of general thinking tools since
the mathematical activity is 'locked' into this practice , of which it is part, and
it cannot function as a tool or basis to criticize that practice itself. Being
critical towards the use of mathematics in the context of practice requires
viewing that practice from an external perspective in a way that allows the
mathematics to be distinguished in some way from the remaining aspects. It is
this complete integration of mathematical activity with practice which marks it
as distinct from the mathematics of the classroom.)) (Keitel, 1997, p.19)

In other words, her criticism is equivalent to the observation that
ethnomathematical activities are closely linked with practices and there is no



necessity for the practitioners to explore the implication and method of their
activities. On the other hand, the 'general thinking', which forms a core of school
mathematics, demands the completely opposite direction, that is consideration of the
reason and method of activity. Thus, the critical points in her words can be
summarized as follows.

" Ethnomathematics cannot express itself in its own words."
"The practitioner of ethnomathematics is not necessarily conscious of its
implication."
"The objectives of ethnomathematics and school mathematics are different in
nature."

Since these points are taken from the perspective of critical mathematics
education proposed by Keitel, the first objective of this research is,
C) to consider the relationship between both ethnomathematics and critical

mathematics education.
Applying this result, the second objective of this research is,
Q2 to consider the preconditions such that ethnomathematics may provide some
perspectives for the foundational reconsideration of mathematics education.

2. Critical Mathematics Education (CME)
Keitel has referred to Skovsmose from various perspectives in CME and

Skovsmose has developed this theory more overtly and radically. In this research,
therefore, the focus of consideration is upon the theory of Skovsmose.

CME is an educational theory which reflects critical theory of Frankfurt
School and develops educational practice for the formation of critical citizenship.
Its systematization is being made in northern Europe and Germany. The subject,
mathematics, had a tendency of being excluded from the practice because of its
formal and objective nature, but Skovsmose pointed out the importance of critical
aspect which should be incorporated into mathematics education, as follows.

((It is necessary to increase the interaction between ME and CE, if ME is not
degenerated into one of the most important ways of socializing students (to
be understood as students or pupils) into the technological society and at the
same time destroying the possibilities of developing a critical attitude towards

precisely this technological society.)) (1985,p.338)
Here, we would like to clarify the objective of CME through the verification

of its three key terms, instead of trying to define directly the meaning of 'critical'.
These three key terms, which are listed below, play a central role for the fulfillment
of the objective of CME.

(1) critical competence (2) critical distance (3) critical engagement
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More concretely, (1) critical competence means that students need capability
to think and judge by themselves what is important and they are presumed to have

it for the active participation in the educational process. This is a human element of
the educational process. (2) critical distance is to keep a distance from the given
subject or curriculum, and the teacher and students are not supposed to take it for
granted. This regards an element of curriculum in the process. (3) critical
engagement means to direct the educational interest of classroom towards the

outside of school and to relate it to the existing social problems. This concerns how
to set the objective in the educational process.

((I conceive a majority of the developed examples of concrete materials to be
used in mathematical education as being abstract from a social point of view,
even if they are.. concrete in a physical sense.)) (1995,p.63)

Skovsmose pays much attention to the social implication of teaching material
and what it realizes in mathematics education. Any practical examples in CME aim
at the formation of critical citizenship through thematization and projectization
strategies beyond the subject framework at present. Thus when the children are
asked if it is reasonable to do something in order to get pocket money or what is a
reasonable salary, they are naturally stimulated to deliberate on the issue of money
more socially.

This perspective is very indicative when we consider the fact that many
children just learn to do calculation without knowing the reason and yet this
technological society is supported to be productive by high level mathematics.
However, there seems to be little consideration from the viewpoint of mathematics
in particular and this aspect will be discussed after the two-way consideration of
ethnomathematics and CME.

3. Ethnomathematics
The term, 'ethnomathematics', sometimes causes confusion in terms of

whether the definition refers to a single mathematical activity, a set of mathematical
activities in each culture, or the research to analyze these activities. We think it is
not very productive to adapt a narrow definition, and that awareness of
multi-aspects of the definition should underpin the discussion.

((' ethnomathematics' can refer to a certain practice as well as to the study of
this practice. In what follows we use 'ethnomathematics' in both senses,
although we primarily think of ethnomathematics as including certain

educational ideas and a research perspective.)) (Vithal, Skovsmose, 1997,
p.133)

In this study, we will not differentiate these two ' ethnomathematics', as
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practice and its analysis. The more explanatory terms, 'mathematical activities' and
'ethnomathematical research', will be employed to make a clear distinction only
when necessity arises.

While many mathematical activities have been identified and unified into
ethnomathematics, Bishop ( 1994, p.15) and Vithal, Skovsmose ( 1997,
p.134-135) have recently tried to clarify the structural relationship among some
strands of the ethnomathematical theme. Their classifications have similarities from
the historical and socio-cultural point of view except that the latter has the
additional category as a research to focus on the relationship between
ethnomathematics and mathematics education. Naturally Bishop as a mathematics
educator knows its importance but Vithal, Skovsmose state clearly that this has
potential to integrate other strands.

The intention of this paper relates to this category which is to lay a
foundation for the relationship between mathematics education and
ethnomathematics. The ethnomathematics emerged as 'objection' from the
developing countries against the predominance of Western mathematics in schools,
but the fulfillment of this goal requires ethnomathematics to be self-referential,
which will be discussed in depth in the next section.

Here we would like to take one example for further discussion. Gerdes
(1990) deliberated on the application of sand drawing, Sona, to the mathematics
curriculum.

F ig.1 Sona
The Sona drawer has to draw efficiently and beautifully by any means. The

method was invented to mark a set of equidistant points with a fingertip on the
wiped-up ground and make a drawing by use of these points as reference. Many
Sona drawings are done under the restriction of symmetry and in one stroke. And
the laws such as symmetry and repetition incarnated in the drawing can represent
arithmetic relation, sequence, symmetry and similarity in mathematics education.

Gerdes attempts to resurrect a cultural value with introduction of this Sona.
Accordingly this creates a new research field by means of applying mathematical
activities, immanent within African culture, to the curriculum development.
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4. Bilateral Consideration of Ethnomathematics and CME
According to Vithal, Skovsmose (1997, p.132), while both ethnomathematics

and CME have a common term as a reaction to modernization theory, the former
has a cultural background and the latter a political one. In short they share the
critical stance against the implicit belief which modem society holds but from
different angles. However a further deliberation on this difference exposes the
difficulty and complexity of this problem. One person, one group of people, or one
society can criticize another party from a certain angle but, this fact only exposes
half of 'the truth'. Neither ethnomathematics nor CME are immune from ci;;icism.
That is why we would like to consider as a next step the relationship between
ethnomathematics and CME in both directions and to find a complementary role to
strengthen each other structurally.
Consideration of CME by use of ethnomathematics

As discussed earlier, three key terms of CME are critical capability, critical
distance and critical engagement, which provide important views to the educational
process. As for the first term, it is necessary to retain an inner standard for the
criticism, and this standard and critical capability are fortified by the reflection of
his/her own mathematical activities.

The second term implies 'to keep a distance from curriculum' and it requires a
mathematics different from the one under discussion. Ethnomathematics
substantiates this other mathematics in a practical way.

((whenever we increase our understanding of other cultures, we increase
understanding of our own by seeing what is or is not distinctive about us and
by shedding more light on assumptions that we make which could , in fact, be
otherwise. Our concepts of space and time are, after all, only our ideas and not
objective truth. And, there is no single correct way to depict objects in space,
nor one correct way to orient a picture in order to comprehend its contents.))
(Ascher, 1991,pp.186-187)
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Fig. 2 Musk-ox hunting on North Somerset Island
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Also Ascher has given this picture as an example. It enables us to imagine and
investigate a mathematics beyond the horizon of our culture.

The critical engagement as the third term means 'to direct an interest toward
the outside world of classroom'. It naturally brings about such awareness to stay
within the situation of ethnomathematical practice, because the ethnomathematics is
unavoidably intertwined with other activities in the society.

It has been shown from the above consideration that CME provides just the
theoretical framework and ethnomathematics can concretize this framework of CME
by providing practical examples.
Consideration of Ethnomathematics from the Perspectives of CME

Naturally ethnomathematics takes a critical stance against Western
mathematics from its original background, but the first two of Keitel's points
require ethnomathematics to verify itself critically. That concerns the expression of
ethnomathematics in its own words and the awareness of ethnomathematics
practitioners. At this junction, Gerdes offered a kind of solution in his educational
consideration.

((The artisan, who imitates a known production technique, is, generally, not
doing mathematics. But the artisan (s) who discovered the technique, did
mathematics, was/were thinking mathematically. When pupils are stimulated to
reinvent such a production technique, they are doing and learning
mathematics)) (1988, pp.140-141)
This means that the artisan of mathematical activities, with little mathematical

consciousness, practices his own activity as a part of culture. However, it is this
mathematical consciousness, and in other words the objectization of practice in
mathematical perspective, that enables the incorporation of ethnomathematics into
the educational practice. And this is not the viewpoint of practitioner but the one of
creator.

In the example of the Sona, there exists a specific method 'to plot a matrix of
points on the sand beforehand' in order to make a perfect Sona drawing without
hesitation. This method transforms 'to draw Sona' to 'to plot a matrix of points' and
'to follow an algorithm to travel through these points'. However the repetition of
drawing the Sona a thousand times will not automatically give birth to this method,
but for this invention it is necessary to consider the process analytically and
synthetically. This transformation provides justification for its applicability to
education. Therefore, the critical verification of ethnomathematics has a close
relationship with the fact that 'ethnomathematics is engaged in mathematics
education' and we suppose that the last point by Keitel can find a solution in this
connection.
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As for this critical verification we would like to examine the Sona further by
use of key terms of CME. In this case students are assumed to have critical
competence basically and they are encouraged to do mathematics from the
viewpoint of being creator. The critical distance from the ethnomathematics is
required implicitly here. In other words, this example already includes some key
terms of CME. The Sona may be able to cast the question to the applicability and
eligibility of school geometrical materials, but in mathematics education its
self-critical nature should be scrutinized. To view critically the Sona will induce the
students to look around themselves, to analyze the mathematical activities in their
environment and to develop these activities into an organized but still somewhat
personal tool.

5. Conclusion
The first objective of this paper has been to consider the relationship between

ethnomathematics and CME in both directions. As a result, it has been shown that
mathematical activities substantiate three key terms in CME, and in return these
terms can provide a structure and thus a rationale for the application of
ethnomathematics to mathematics education. The second objective of this paper,
that is the consideration of prerequisite for ethnomathematics to contribute
positively to mathematics education, has also been addressed in this two-way
consideration because of their complementary relationship.

So far, ethnomathematics has developed discussion from the viewpoint of
critics to criticize the school mathematics, but the perspective of educational
application necessitates it to be viewed critically_ as well. This means the
incorporation of 'ethnomathematics as method' with 'ethnomathematics as object'
can consolidate a foundation for the research field of ethnomathematics. The
following framework will be proposed for the integrated approach in
ethnomathematical research.

(1) to reflect critically mathematics education through mathematical activities
and ethnomathematical research

a) mathematical implication b) social implication
(2) to reflect critically ethnomathematics from the perspectives of critical
mathematics education

c) mathematical implication d) social implication

The distinction between mathematical implication and social implication is
important to consider the characteristics of the subject, mathematics. The
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mathematical implication here concerns the formality peculiar for the subject and,

on the other hand, the social implication means the usage of the mathematical
concept in the social context.

In this framework, the first component as (1) has potential to reveal the
uncritical nature of the present mathematics education. The students are frequently

required to develop mathematical thinking as an objective tool with what they find

little meaning, but they are not encouraged to consider .the relation between this

objective tool and their mathematical activities. Here the integration of CME and

ethnomathematics plays an important role to uncover what has been taken for
granted. The second component as (2) will invite the students to reflect their
activities and develop their thinking from there. Their own activities are the target

of reflexive thinking and at the same time the source for higher level of reflection.

For this development three key terms of CME will provide a guide in how to
develop the critical thinking upon their mathematical activities.

Thus we think this integrated approach by use of the above framework plays

a pivotal role in the practical and theoretical development of the ethnomathematical

program so that ethnomathematics research will eventually produce a fruitful
alternative to the present school mathematics.
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Abstract
In this paper, we use Lacan's four discourses in order to characterise current
traditional mathematics teaching and suggest an alternative methodology from the
point of view of psychoanalysis theory. The paper is a continuation of "Lacan and
the school credit system", Proceedings of PME22, v. 2 p. 56-63.

Introduction
In Baldino & Cabral [1998A] we pointed out that the plenary conference of Shlomo

Vinner in PME-21 [Vinner, 1997] highlighted a mismatch between students' discourse and
action with respect to the credit system. We referred to it as a mismatch phenomenon. We
remarked that it is in this gap opened by such a mismatch that Lacan places desire, and
we approached this phenomenon from the perspective of psychoanalytical theory of
Lacan's four discourses [Lacan, 1973]. This theory has helped us to understand what we
have been doing for quite some time, namely learning mathematics as an experience of
modification of the desiring subject [Cabral, 1998].

In that paper, we referred to discourse as a complex process entailing the
participation of the talking subject in three registers: imaginary (pre-suppositions of the
talking action), symbolic (language), and real (jouissance). Therefore, the discourse was to
be understood as a joint effort of the students and the teacher in order to sustain a certain
relation or statute of actions and utterances. According to Lacan, there are four
possibilities for this statute: the master's, the university's, the object's and the hysteric's
discourses. In the paper mentioned, we introduced four signifiers: the master Si, the
knowledge S2, the lost object a (petit-a) and the hysterics S and four positions: the agent,
the work, the production and the truth. The master's discourse is characterised by the
distribution of these signifiers through the four positions according to the following diagram
(figure 1). We invested the master's discourse in the analysis of a hypothetical traditional
classroom. The positions are occupied respectively by the teacher, the student, the credit,
system and the castrated or ignorant teacher (figure 2). We also hinted that the three other
discourses should be obtained by counter-clockwise shifts of the signifiers through the
positions.

the teacher the student
agent work

S ->
A

S2

a

truth production

Fig. 1: the masters discourse

Si -> S2

a
the ignorant the credit

teacher system

Figure 2: the masters discourse
in the classroom

In the present paper, we shall invest the other three discourses comparing a
hypothetical traditional classroom with a classroom organised according to an alternative
teaching proposition called Solidarity Assimilation Groups (SAG) [Baldino, 1997]. We shall
show that, in traditional teaching, these discourses alternate from the university to the
object and then to the hysteric, whereas in SAG, this order is reversed. For further
references about psychoanalysis, language and mathematics education, see Brown
[1997], Atkinson & Moore [1998] and Baldino & Cabral [1997, 1998B].
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The University's discourse
If we follow the student's way from elementary to high school and into the university,

we shall find that it is not the master's discourse that is present in the classroom any more.
The challenge of the teacher's authority has disappeared. In the university, the master's
discourse happens only during a very brief initial moment when the teacher states the
course's pre-requisites and the goals to be pursued, according to the syllabus. Honours
students do not ask questions at this moment. The teacher minimises the discussion of the
credit system and refers to it as a minor bureaucracy. He assumes that the student's
grades are a consequence of the acquired knowledge. The students seem to readily agree.
The teacher makes an effort to hover over the magisterial authority (Si). He tries to build
an image of himself, identifying himself with a scientist or researcher. The lessons are
dominated by a continuous word-flux emanating from the blackboard and received by
affirmatively-nodding frenetically writing students sitting on the second row. The first row is
most of the time empty, since it is reserved for students considered geniuses.

In the mathematics classroom, the students frequently expect clear explanations in a
steady voice and watch carefully for the teacher's vacillations. Questions are allowed within
narrow limits. Questioning is the risky enterprise by which students establish their position
in their ranking. The risk is pays off if the question embarrasses the teacher or reveals that
he has made a mistake. Each class starts at the point where the last one stopped,
following the thread of organisation of mathematical knowledge established by

mathematicians who operate the scientific practice. "Le savoir est, a un certain niveau,
domino, articule de necessites purement formelles, des necessites de l'ecriture, ce qui
abouti de nous fours a un certain type de logique" [Lacan, 1991, p. 53]. We say that an
effort of linearisation of the signifiers' chain is evident mainly in mathematics. In order to
perfectly understand and dominate this logic the teacher has to talk, to show and practice
his ability as a juggler of knowledge. Such is the sceance magistrale. The teacher's alibi for
putting on this sort of game is to pretend that he is teaching. He actually believes he is and
that the students learn by listening to his voice. He believes that his talking can fill the gap
in the students' knowledge. Actually, he is the one who is learning the most.

The foundation of this kind of discourse is "une pretention insense d'avoir pour
production un etre pensant, un sujef' [Lacan, 1991, p. 203]. Indeed, signifiers have rotated
one fourth of a lap counter-clockwise (figure 3). The signifier of the castrated subject S is
now in the place of production and exerts the function of loss. It points to the students that
were lost, either because they gave up the course's credit or because they will never use
the acquired knowledge in their future lives, or because they did not actually learn what the
institution claims they did.

agent

S2

S1
truth production

Figure 3: the university's discourse

The petit-a, the cause of desire that was the lost production of the student in the
master's discourse, is now on the numerator and exerts a demand that puts the agent into

action. Now the petit-a indicates the students' plenary, the big-Other to whom the teacher
addresses. "L'objet a, c'est ce que vous etes tous, en Cant que ranges /a" [Lacan, 1991,
p. 207]. The S2 must exert its function with respect to desire from the position of the agent.

work

a
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However, desire is generally the Other's desire. What the teacher desires is what is
socially desirable. Hence, it is necessary to go after the teacher's desire on the right of the
arrow, in the place of work, from where the Other, in this case the students' assembly,
exerts the demand. In this position we now have the object a. As the cause of desire, the a
is hidden in a gap of the Other, where the agent will have to look for it. In order to do that,
the teacher tries to guess the student's doubts (or questions and motivations) for the
knowledge that he wants to introduce. The arrow indicates that it will be impossible to fulfil
this guess, but a renewed attempt has always to be made, in order to sustain the
university's discourse. The students, on the other hand, look through the blackboard at
their future career or at the admittance door to the math department.

Since the a is a lost object, its function of demand can only be exerted if a
representative of it reaches the front stage and offers itself as a desirable façade of the a.
This façade acts as a bung of the Other's gap: "C'est la le creux, la beance que sans doute
viennent d'abord remplir un certain nombre d'objets qui sont, en quelque sorte, adapt& par
avant (...) ils sont pries de constituer avec leur peau le sujet de la science (...)" [Lacan,
1991, p. 121]. The bung of the gap, the façade of the petit-a, is the smart faces of
affirmatively nodding students.

In order to sustain the S2 in the position of the agent, it is necessary to pretend that
what the teacher says is true, not because magister dixit, but because of a logical
reasoning stemming from solid epistemological foundations. The magisterial authority (Si)
must be repressed under the stage where he stands and must never be evoked as an
argument. It is necessary to make believe that what is hidden under the stage is the deep
secret of knowledge. It is the a-students who actually work, and as workers they have to
produce something. The barrier in the denominator indicates that there is no possible
contact between the secret of knowledge and the castrated subject. Such a contact would
short-circuit the whole scheme. "Comme sujet, dans sa production, it (5) n'est pas
question qu'il puisse s'apercevoir un seul instant comme maitre du savoit" [ibid. p. 203].
The university discourse is the main expedient used by the State, the Law and the Ideology
in order to assure that the labour work-contract is made between equal parts that meet
freely in the market.

The object's discourse
In general, at the end of the course there is a final exam. Students are expected to

review the course material and organise their ideas in order to show a certain performance,
the so-called "mathematical ability". However the exam invariably leads to credit and
certificate. The students work in order to prepare themselves for the exam. However, the
work is now done by the ignorant subject (S) who is at home, at the student's house or in
the library as the subject who tries to understand the course material. Consideration of
classrooms in third-world countries shows that, for many students, the acquisition of the
necessary knowledge is an impossible strategy to get credit [Baldino, 1997]. They lack the
adequate background and study habits. They resort to several ad hoc strategies among
which rote learning is the most widespread [Cabral, 1992, 1998]. Vinner refers to such
strategies as "pseudo-conceptual" and "pseudo-analytical modes of thinking" [Vinner,
1997, p. 1-70]. The object of desire (a) is the credit system, now in the position of the
agent. True knowledge (S2) is repressed and provides an alibi for the credit system to
operate. The result is a credit certificate, a meaningless sheet of paper stamped "passed'
(Si) without which the student cannot move into the next course. The certificate is just as



void as a king's signet, a mark without which the profession cannot be practised. The arrow
indicates that no pseudo-learning strategy can assure that the student will pass. The black
triangle indicates that a direct connection between the certificate (Si) and the true
knowledge (S2) would invalidate the whole pseudo-learning strategy and substitute true
knowledge for rote learning (figure 4).

agent

a

S2 A
truth production

Figure 4: The object's discourse

work

Si

The hysteric's discourse
It is evident that the school apparatus cannot function only on the basis of either the

university discourse or this kind of object's discourse, since the production of such
discourses are respectively the cultural eunuch and a piece of paper. Somewhere else in
the university some other kind of discourse must be happening. "The moment one knows
the difference between analytical and pseudo-analytical he or she can reflect about their
thought processes, abandon the pseudo-analytical and follow the true-analytical. I say
abandon the pseudo - analytical because usually the pseudo-analytical comes first" [Vinner,
1997, p. 1-74].

Indeed, the sceance magistrale is followed by the class of travaux diriges. Later in
the exam the students will be asked to reproduce this sort of work, without the help of the
teacher. The students are now expected to ask What is this? Why does it work? What is
the ultimate reason for it? They are expected to address these questions not to the teacher
but directly to the organisation of mathematical knowledge expressed in the books. They
are expected to reduce complex developments to symbols of their own. In the sceance
magistrale the teacher has showed them that he can do it, hence this is possible. They are
told: Don't you see that now it is your desire that moves the process? What do you want
from school? Your production should now be your own comprehension. This means that
now each student has to work (S) in order to supply his/her ignorance with respect to a
small piece of mathematical knowledge (a) generally in the form of a problem to be solved
or a proof to be understood. Placing oneself in the position of the one who does not know
(S) is the fundamental condition for learning. The condition of possibility for this to happen
is that this piece of knowledge becomes a representative of his/her private object of desire.
In their effort, the students are comforted by the idea that there is an ultimate reason for
each mathematical result to be true, since it fits into the organisation of mathematical
knowledge (S2).

The student knows that the exam questions will not be mere application of ready
formulas and that some kind of extra difficulty will be involved. S/he will have to resort to
the history of his own knowledge acquisition to be found in the under-pressed S2. The effort
is paid off by the Aha! I got it! This "aha" (Si) means nothing, except that something has
died in the subject. Indeed, an old (ignorant) subject has died and another one who
dominates this piece of knowledge, has been born. Comprehension has no weight. The
arrow means the impossibility of fully supplying the subjects demand for understanding.
Some residue is always left. The triangle means the isolation: if there would be a passage
between Si and S2 in these positions, there would be no possibility of a aha, since S2 is
already complete (figure 5).
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agent work

--> S

a S2
truth production

Figure 5: the hysteric's discourse

However, things do not generally happen as expected. The day before the exam the
student is at home reviewing the course's subject-matter. Since s/he lost a long time as a
good a-student, studying the a-theory for the exam of another course, s/he finds out that
there will not be enough time, neither to do the exercises and understand the proofs nor to
accomplish any fast rote learning. Many obscure points remain. S/he dangles completely
lost between the notes in the binder and the textbooks. Somebody please tell me what to
do; s/he asks herself. At mid-night s/he is tired. At this moment the exam loses its meaning,
either as a warranty of knowledge for the future courses or as a means to pass this course.
The Other's demand becomes concentrated on a single point. The student simply hopes to
be lucky the next day. The exam becomes a pure SI that goes to the position of demand of
the other in the form of a school's "honour's code", reminding the student that there are
less honourable strategies.

The cause of desire (a) sustains the agent as the castrated subject whose truth, not
to be revealed at any price, is that s/he is a distressed student (S) who has an exam next
day and to whom the institution did not provide enough time and conditions to learn. S/he
should not be blamed for such a failure. The final production of this discourse is the last
sprout of the traditional school credit system, the inclusion of cheating know-how (S2)
among the strategies to get credit. The cheating document is going to be thrown away after
the exam, eliminated as if it had never existed. The arrow indicates the impossibility of the
above-depicted student to satisfy the divergent school's demand, no matter how hard s/he
works. The triangle means that the truth of the hysteric cannot face the know-how that
constitutes it as a truth. Knowing how to pass without learning, cannot be admitted as
legitimate.

The four discourses in the SAG classroom
It is possible that what we are calling traditional teaching cannot be fully found

anywhere. Each classroom has some traces of it. For the sake of the exposition we have
assembled all these traces in a single exaggerated cartoon and have labelled it traditional
teaching. It consists in a sequence of four moments. Briefly, an inaugural moment, based
on plain authority (the course's introduction), a second moment dominated by a verbal flux
(the seance magistrale), a third moment centred on the credit system, and a final moment
where the student only hopes for luck in the exam.

If we want the students to learn anything beyond learning how to get credit, we must
do something different from the traditional teaching described above. We propose SAG as
one among possibly many alternatives to face the difficulties pointed out by the preceding
analysis of the school apparatus. It can certainly be said that such an analysis was biased.
Which one is not? We explicitly admit that differently biased analysis would lead to other
propositions.

In the alternative didactical and pedagogical SAG proposition, the four moments
alternate in the reversed order: we go from the master's discourse to the hysteric's
discourse, then to the object's discourse and end with the university's discourse. In
addition, some roles that support such discourses will be reversed.



At the first moment of a typical SAG classroom, the master's discourse is present.
However, the teacher is the one who knows (S2). She is informed by everything that we
have just written. She knows that the students want to get credit and she resists co-
operation. However, she does not display this knowledge. She works to organise the
classroom in such a way as to frustrate the (re)production of the credit system distortions.
A work contract explicitly including all rules to get credit is introduced and tried for a couple
of weeks, before it is put to a vote. The contract is based on some non-negotiable
principles. As a characteristic of SAG it includes specific rules to get credit for classroom
group work, for collective classroom organisation and for tutorial sessions [see Baldino,
19971 Insofar as the students are not used to similar work contracts, they show some
degree of astonishment. However, they generally end up accepting the contract and
abiding by the teachers proposed classroom organisation. In this way they preserve their
position as students (Si). As the ones who are there to learn, students are ignorant by
definition. This ignorance includes ignorance of classroom organisation. Such ignorance
supports their consent ( S ). The production of this discourse is a certain classroom
organisation (a). It may take a few weeks to get it going (Figure 6).

agent work

S istudent --> S 2 teacher

a
truth production

Figure 6: The master's discourse
in the SAG classroom

Next, the teacher distributes worksheets to the groups of students or assigns them a
specific task from the textbook. The students naturally ask what they are supposed to do.
Here is a typical dialogue:

Student: What do you want me to do?
Teacher: Look at the task on the blackboard.
Student (later): May I do it this way?
Teacher: If it is right, you may; if it is wrong you may not.
Student: Is it right?
Teacher: Check with your peers.

The teacher deliberately, but only to a certain extent, refuses to assume the function
of the supporter of mathematical truth. She stands and observes the class, trying to decide
which group she is going to visit next or which general instruction or advice she should
write on the blackboard. Since the voted contract is prevailing, the student identifies the
watching teachers eye as a kind of demand (Si) to him/her from some point of a picture
impossible to fully apprehend ( S ). The students know that credit is at stake in this gaze.
However, they also know that the condition to get credit is not displaying mathematical
ability. Instead, they are expected to work-to-learn, according to the established group work
rules. These rules include listening to their peers and being able to explain how they have
solved each problem, until a consensus is reached or a clear divergence is established.
Rules to get credit for group work explicitly exclude right/wrong mathematical criteria. In
order to sustain such a situation, mathematical knowledge has to appear as the hidden
object of desire (a). The production of this discourse is the collective elaboration of the
solution of the assigned exercises or questions. No possible action can completely free the
student from the staring of the teacher (-4). No contact between the production and
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mathematical truth is possible (A); credit is for working to learn and understand, not for
getting the right solution (Figure 7).

agent work
student ---> S 1 the eye

a A S2
truth production

Figure 7: the hysteric's discourse
in the SAG classroom

At the end of the class, each group hands in a common worksheet with the result of
their work. In the next class, the teacher gives these worksheets back to the groups, with
added remarks to be further worked out. Mistakes are pointed but, but they do not weigh
negatively on credit. The first task of the group is to correct the mistakes and answer to the
teacher's specific remarks. The ignorant student (S) who inquires into the mathematical
objects (a) settles the demand.

Mathematical knowledge (S2) is present and assures an underlying function of
coherence indicating that this demand makes sense and may in principle be satisfied. The
production is the student's exclamation: Aha, I got it (Si). Of course, this situation is a mere
hope. It never happens completely, as we would like it to happen (). The student's "Aha"
only marks the beginning of a necessary explanation and is not worth it (A) (Figure 8).

agent work

a mathematics > student

S2 S1
truth production

Figure 8: the object's discourse
in the SAG classroom

Finally the class is organised in such a way that students go to the blackboard to
present the solutions of their groups to the students' assembly or to the peers who attend
the tutorial meeting. This is certainly a typical university's discourse, but contrary to the
situation described in the traditional teaching, now the speaker is the student (S2). The
demand is put forth by the audience (a), as before, but it is does not consist of affirmatively
nodding students. The objective of the meeting is to give back to the student at the
blackboard a reading of what s/he is saying. Students are instructed to watch for points
where the comprehension of the colleague at the blackboard may look frail and to convey
their remarks, not through statements of sapience addressed to the teacher, but through
questions addressed to the student at the blackboard until s/he realises his/her weak point
was. The teacher's authority assures the co-ordination of the process (Si). The production
is the castrated subject (S) insofar as the students in the audience recognise their
difficulties in the mistakes of the student who is at the blackboard (figure 9)

agent work

S 2 student

S1 A
truth production

Figure 9: the university's discourse
in the SAG classroom
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SAG's daydream is the following. If classroom group work is well done, if the
students have the necessary pre-requisites for the course and if the assigned tasks are
adequate, there should be no need for exams. Students may get credit only on the basis of
group work assessment. This is not because SAG assures that the students will learn as
much as the institution requires them to learn. It is because we will have learned as much
as possible, since we will have engaged them in the tasks best suited for their learning and
given them the best possible assistance. In reality, we may also say there is not such a
classroom fully organised according to SAG. SAG is a principle to be followed: credit for
group-work, not for mathematical ability, in one word, for the ethics of work in the
classroom [Baldino, 1998]. In practice the work contracts have established a percentage
(up to 30%) for group work assessment. This principle is necessary to bring and sustain
the object's discourse in the classroom. This is not as easy as is supposed in Vinner
[1997]: "The moment one knows the difference between analytical and pseudo-analytical,
he or she can reflect about their thought processes, abandon the pseudo-analytical and
follow the true-analytical. I say abandon the pseudo-analytical because usually the pseudo-
analytical comes first' [Vinner, 1997, p. 1-74].
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ABSTRACT

This paper reports on the activities of a five-year action research group whose
goal is to develop a speech community committed to change the failure of
mathematics teaching and the classroom routines that support it. Our premise is
that accepting or challenging the stories told by newcomers to the community
about their classroom experiences will interfere with the formation of their
professional identities by preserving some of their recollections in the
community's memory and dismissing others. Ms. Daniels, a personage of Borko
et al [1992] is brought to the fore in order to provide a guiding thread for the
discussion.

Introduction: change, commitment and identity

Taking into account the public concern and amount of investments made in
mathematics instruction around the world, one conclusion is inevitable: mathematics
teaching is a human activity haunted by failure. If we hope to banish the ghost of
failure, change becomes necessary. In PME22, a Plenary Panel Discussion was
dedicated to it. There are many meanings of this word. In some cases, change means
to look for a "linguistically and culturally sensitive learning environment"
[Khisty, 1998:101]. In other cases change means to concentrate on curriculum issues
[Jaworski, 1998, Pence, 1995], or to introduce new technologies [Crawford, 1997], or
to change the classroom norms and management [Cobb&Yackel, 1995, Tomazos,
1997]. It may also mean to change teachers' knowledge and practices [Simon &
Tzur, 1997], or to change teachers' beliefs [Becker & Pence, 1996]. Still in other
cases, change means to focus on ethnical issues or gender inequity [Breen, 1998] or,
simply to improve learning and teaching [Konrad et al, 1998].

However, if the majority of the projects for change succeeded in effectively
improving the learning of mathematics, there is no guarantee that the minimum
standards would not rise automatically, so that the ghost of failure would still be
around. If we look at the hundreds of existing teacher formation programs, it seems
that all efforts to produce a commitment to change as an output also fail. What
happens to the student teachers the "day after"? If the program closely follows them
as they enter the school system, success can be reported [Shane, 1997]. However, as
soon as the effects of the teacher formation program cease, or even before that, there
has been dramatic evidence that teachers conceptions and practices are rapidly
absorbed by the dominant traditional school ideology, and change is invalidated.
[Borko et al, 1992, Ensor 1998, Schmidt & Duncan, 1998].



We shall concentrate on the case of Ms. Daniels, who "approaching the end of her
student teaching, was still unable to provide a clear explanation of division of fractions"
[Borko et al, 1992:209]. When a student, Elise, asked her why to invert the second
fraction, she erroneously picked up the diagram for multiplication and got stuck. The
authors are perplexed because Ms. Daniels "did not attempt to correct the representation
the following day" [ibid. 198] and because she "did not learn the conceptual information
and representations that she needed to produce an adequate explanation of division of
fractions during the mathematics methods course" [ibid. 218]. She had to compensate
her failure in answering Elise's question by drilling the inverse algorithm. "However,
despite her realization that 'the explanation wasn't very good', she was basically pleased
with the lesson" [ibid. 198].

How strongly can teacher formation programs impose commitments to change
on the student teachers? If "teacher preparation programs respond more quickly to calls
for reform than school classrooms, perspective teachers' field experiences are inconsistent
with the expectations developed in their teacher education coursework" [Van Zoest,
1998:354]. Brown [1998] reports the case of a student, L, who revolted against the
teaching methods. This case had a happy ending, since L reevaluated her written
stories and reached "the calm, almost detached from the former state, knowingly living in
the new realm where the new brand of stories are seen as fitting better" [ibid.]. However,
can't we say the same of Ms. Daniels? As a result of her strategy she got credit
[Vinner, 1997], became a teacher and went on living in school, where her brand of
stories are seen as fitting better. Can the constraints of a credit-based system impose
emancipatory commitments on the human subjects who constitute its output? Was
this the contradiction that L revolted against?

However, suppose that all goes well and we finally obtain a teacher culturally
committed to change. Here is an excerpt of a dramatic report.

"Keiko's philosophy of education was developed in Japanese culture and her (...)
beliefs about mathematics mesh with the goals of NCTM (1989, 1990 & 1995) but not with
the traditional ,classroom and ways of teaching mathematics in American Schools. (...) By
the end of her two week field placement, Keiko concluded that she would not teach in
public schools because the cultural and societal differences were too great; they demanded
that she give up her identity" [Schmidt & Duncan, 1998:310-311, our emphasis].

The question is, should we help Keiko to abandon her identity and become a
happy, accepted citizen of her new cultural environment? Or are we politically
committed to change the school she taught in? Commitment is a consequence of the
subject's personal identity as a social human being. Arguing from the analysis of a
film (Bladerunner) Zizek [1993] has produced evidence that our identity depends on
our memories.

"Stories are precious, indispensable. Everyone must have his history, her narrative.
You do not know who you are until you possess the imaginative version of yourself. You
almost do not exist without it" [Time magazine, quoted by Zizek, 1993 in Brown,
1998].

Brown [1998] asks, how do we build a sense of our own identity through the
memories we hold on to? His answer is that our memories "are constructed through
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our own particular understanding of the path we follow through the passage of time"
[ibid. 2] and then he connects this "with the explicit task of pinning down bits of
experience faced by teachers carrying out reflective practitioner research" [ibid. 2].
He finally suggests that the student teachers must find a space where their personal
stories about their teaching practices can be told and will be listened to, so that these
practices can be reevaluated and finally cast as part of their new teacher's personal
identity.

Borko et all's [1992] report on the case of Ms. Daniels is an example where the
control of the credit system did not work as expected. The authors are puzzled: why
did she not investigate the topic later? For Ensor [1998] there is no puzzle at all; just
"a human subject inserted into a range of different contexts, each of which defines
competence differently" [286].

From this point of view, Ms. Daniels behavior is coherently human: she told the
researcher interviewers what they would like to hear; she reproduced the instructor's
demonstration in the exam, and she .kept the class under control by drilling the
inversion of the second fraction algorithm. One discourse for each occasion. This has
nothing to do with faking and gulling but with typically honest human behavior.
According to Lacan, we can say that a being is properly human if she fails to abide by
what she honestly promises to herself. Such a mismatch is what he calls desire. I
can't avoid recalling a tale by a famous Brazilian writer from the last Century': a girl
fell in love with a sailor and promised to wait for him. When he came back from his
six-month trip, she was married to another guy. But you swore that you would wait
for me, protested the desolate sailor. The girl tried to comfort him. Of course, I did,
but please, understand, when I swore it was true...

This tale refers to a commitment to permanence that meant change. It elicits that
the reported cases, with the exception of L's, refer to commitments to change that
turned into permanence. We seem to know very well that school does not do what it
promises. What we do not know is how it reacts to change, especially the change that
compels it to do what it promises. Is the discourse for change covering up a desire for
permanence? In one word, we have touched the dialectics of change/permanence.

Methodology: action research with self-regulated differential intervention

In 1993, guided by reflections like these, we endeavored to simultaneously
challenge and produce conditions favorable to student teachers' commitment to
change2. Somehow we had realized what we can now state clearly: commitment is a
consequence of human identity; such an identity develops from recollections of
memories; and such recollections are anchored in discourses involving the subject
and a context. We also realized that the discourse starts with a demand from the
context that precedes utterances and writing: "The discourse is the norm of what fits and
what does not fit into the Other's ears, and consequently what can and what cannot be said

Machado de Assis.
2 At UNESP, Rio Claro, SP, Brazil.
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by the speaker" [Baldino & Cabral, 1998:58]. Hence, the context is productive of

discourses:
"(...) in each case the produced text is evoked within a particular context, by a specific

invitation to speak. In this sense the contexts are productive. At the same time they are
constraining insofar as each context, with its audience, both canalizes and silences
expression" [Ensor, 1998:283 emphasis added].

So we succeeded in creating a speech community whose identity is now
supported by a five-year history. The stories told by the newcomers about their
classroom experiences are listened to and discussed from the point of view of the
understanding of the community members. Our premise is that accepting or
challenging such discourses interferes with the process of formation of the student
teachers' professional identities by preserving some of their recollections in the
community's memory and dismissing others. What is at stake is the feeling of
belonging to this community or not. The objective is not to graft commitment onto
this or that student, but to provide an identity for the community of students and in-
service teachers committed to change.

Of course, this community has to be based in the university but should not be
subjected to bureaucracy so as to keep its critical stand with respect to both school
and academy. In particular it has to be free from any obligations to the credit system.
Participation should be only on a volunteer basis. The task of constructing this
community clearly required an action research method:

"Action research is small-scale intervention in the functioning of the real world and a

close examination of the effects of such intervention (...) the ultimate objective being
improvement of practice in some way or other" [Cohen & Manion, 1994:186].

Our project is both decision and conclusion oriented. Our two research questions

are: 1) how to face the general failure of mathematics teaching at all levels? 2) What

are the school and classroom routines that sustain this failure? There are no
formalities for admittance; everybody who is touched by these questions are welcome

to our Saturday-morning meetings. At the beginning of each semester we split into
several subgroups according to the interests of participants. Each sub-group defines a
project connected to the research questions involving some kind of classroom action.
Projects may last for one semester or for several years. Every Saturday all projects
report their weekly progress and get advice from the other community members.
Themes have varied from children's songs and stories to the teaching of analysis,
from games for integers to ecology and garbage collection. Evaluation of these
projects consists of submitting their results to specialized reviewers. There are almost

one hundred publications, including dissertations and papers in specialized journals

and conference proceedings.
During these years we have counted on an average of 25 people in these

meetings: professional teachers, graduate students in mathematics education, and
undergraduate student teachers who are simultaneously taking courses in

mathematics methods and pedagogy. Most of the classroom interventions employ the
technique of differential intervention: once in the classroom, either as a regular, a
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temporary or experimental placement, the teacher or teaching team does not do
exactly what is expected from him/her/them but introduces some change that makes
the school system uneasy and against which tradition does not find any ready
available argument: introduction of group work, new topics, new instructional
material, new classroom norms, new forms of evaluation, etc. We do not go to
observe the student teachers' classrooms. Data is collected from the reactions of the
school system to such changes as reported by the student teachers who decide what
change should be made. We say that the differential intervention is self-regulated.

Research report and discussion

One way to report on the five-year production of this action research group
would be to select one group and report fully on it. Another way would be to report
on a hypothetical "average" group. We shall follow the second way, using an
expedient: we shall suppose that Ms. Daniels has joined us in the beginning of this
semester. In this way we will be able to accurately describe what has actually
happened in most of our sub-groups. In what follows, many of Ms. Daniels speeches
are copied or adapted from Borko [1992]. We shall omit the references.

In the first Saturday plenary meeting, Ms. Daniels declared her interest in
fractions and was suggested to join the existing sub-group of rational numbers
coordinated by a Mathematics Education graduate student [Izzi, 1998]. However, she
managed to convince some of the participants about the importance of dedicating one
semester specifically to operations with fractions. The newly-formed subgroup found
a tutor among the university teachers and graduate students. They established the
time-schedule for their weekly meetings and had no trouble finding a school where
they could carry out some experiments. In fact the cooperating teacher was very
pleased: "I can relax for a few weeks", she said, meaning that this was her only
motivation. The following Saturday the group reported their plans to the plenary. In
the first sub-group meeting Ms. Daniels conveyed confidence on her mathematical
knowledge:

I already know all about rational numbers; I have successfully completed over
two years of course work as a mathematics major. I only need some techniques that
will hold the students' attention, some ideas that will work.

The tutor wrote on the blackboard one over '/2 and asked Ms. Daniels to
complete it. She wrote "2" and asked surprised:

What do you mean? Do you want me to describe how I would teach the topic
to a sixth-grade class?

No. I want you to tell me why you have done that. Why did you invert the
bottom fraction? It is you, not your student who is on the spot here.

Ms. Daniels tried several explanations, but none stood up to the tutor's inquiry.
The other elements of the subgroup were called to help her, but nobody succeeded.
The group became united around this mathematical difficulty. Ms. Daniels finally
confessed in a low voice: "I don't know why you invert and multiply; I just know that's
the rule" [Borko et al, 207]. Her faith on her knowledge was finally broken. This is
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the moment when Lacan says that the hatch is opened. It is the only moment when
the student is receptive to information that the tutor can pass through the opening
before it closes again. The tutor conducted the dialogue through the following
questions, eventually supported by diagrams and cubes:

If you give one sausage to each half-dog, how many sausages does one dog
eat? And if you give one sausage to each 5/8 of a dog, how many sausages will five
dogs eat? And how many sausages per dog? As soon as Ms. Daniels produced the
answer "eight sausages to five dogs make 8/5 of sausage per dog", the tutor
remarked: How come you said you did not know why you invert. You have
produced the answer yourself...

The group was amazed. Other examples were tried. Some students started
explaining to those who had not yet understood. The tutor intervened:

No explanations, please! You may only ask questions until they get what you
want them to understand.

Finally everybody got the idea. The session was over. The next Saturday they
reported their intention to take the subject into the sixth-grade class as soon as
possible. In the next sub-group meetings they planned how they would organize the
classroom for group work, how to establish a work contract precisely indicating how
grades would be assigned to participation in group-work3. They drew cartoons with
figures of dogs whose bodies could be stretched by inserting cards4 and discussed
how they would move from this material to the conventional written algorithm. When
all was ready, one of the plenary sessions was dedicated to testing the instructional
material with all the community members. The group was urged to write a report
about their classroom experience. They reported that the most disruptive students
were the ones who got the idea first and acted as tutors to the other groups. They
decided also to report on the detached and sometimes deleterious attitude of the
cooperating teacher. Their diaries looked very much like the ones reported in Brown
[1997, Ch. 7]. Their individual written reports were discussed in the sub-group
meetings. The tutor's remarks about these reports were also written and subjected to
the sub-group members for further discussion. Results of these discussions were
regularly reported and debated in the Saturday plenary sessions. The paper finally
produced was considered to be of joint authorship, like the papers stemming from
other sub-groups: Souza et al [1995], Leal et al [1996], Baldino et al, [1997]. Here is
a typical discussion of a plenary session.
Ms. Daniels. I wonder why the mathematics methods instructor never mentioned
this to us.
Participant. He could not. He insisted on the measurement interpretation of division
of fractions and "there is no direct or concrete way to demonstrate using manipulative, the
derivation of this algorithm" [Borko et al, 1992:214].

This is important, given the degree of deterioration of public teaching in the State of Sao Paulo.
4 This material was actually developed in Centro de Ciencias, FAPERJ, Rio de Janeiro in 1983 and
was named "Sispixa" ("Stretchy").

4.9
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Ms. Daniels. Why didn't he shift to the distribution representation like we did?
Why did he insist on his representation knowing that it could not lead to an idea to
use in the classroom?
Participant: He had no need for this shift. He was looking for "ways to represent
mathematics concepts and procedures" [NCTM, 1991:151 in Borko et al, 1992]. He was
not trying to build knowledge from a dialogue situation with you. He was merely
trying to "explain that the derivation demonstrated that the algorithm produced a correct
answer" [Borko et al, 1992:214]. Since he believes that knowledge has to be
"represented", he naturally assumed the function of introducing this representation to
a large audience. He talked, he explained, he demonstrated; students should have
"followed" him. In the last PME Ron Tzur showed nicely how a teacher's
epistemological conceptions determined the way he conducted his class [Tzur &
Kinzel, 1998].
Ms. Daniels: Doesn't he realize that the theory he gives us is cut and dry and that
most of us do not follow it?
Participant. For this he counts on the audience to which he is the introducer of the
representation of knowledge. "(...) the bright ones who are good in math, will have a
pretty good understanding of what's happening here. The rest of them I just have to take it
on faith" [instructor's lesson in Borko et al, 1992:214]. What he was saying to you,
Ms. Daniels, is that you are not included among the bright ones and that you will
have to take it on faith. This is a very subtle way of blaming the victim. Apparently
your instructor himself would not have been able to answer Elise's question better
than you did. Your interviewers do not even believe that a concrete derivation of the
inversion algorithm is possible. Yet you are charged because "you did not seem to feel
that it was (your) responsibility to actively seek to improve (your) understanding of the
mathematics (you) were teaching either by consulting resources or by engaging in hard
thinking of (your) own" [Borko et al, 219]. What they have actually taught you is to set
a good display of representations of knowledge and to charge those who do not
follow you for not being bright enough. This is very different from the dialogue
situation that we have here.
Ms. Daniels (exasperated): This is a situation that I am certainly committed to
change.
Participant (casually): Why? Why do you want to change it?
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KAREN AND BENNY: DÉJÀ VU IN RESEARCH
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An integrated learning system (ILS) is a computer-based tutoring program
that provides students with learning experiences in many disciplines across
many years of school. This paper reports on the fraction knowledge of Karen,
a Year 6 student using an ILS to remediate her fraction knowledge, and
compares her resulting knowledge constructions with those of Benny
(Erlwanger, 1973), a student using an Individually Prescribed Instructional
(IPI) program in the 1970s. Karen was interviewed on tasks involving the
common and decimal fractions and the results showed that she was able to
progress on the ILS with an impoverished understanding of fractions, a
phenomenon that echoes the earlier findings with respect to Benny. This
paper discusses reasons for this phenomenon as well as the propensity of
learning systems (computer or paper) to focus on syntactical and instrumental
understanding (Skemp, 1978).

One of the by-products of the growth of information technology in education has been the
computer-based integrated learning system (II S) which includes extensive courseware
plus management software. An ILS has three essential components, namely,substantial
course content, aggregated learner record system and a management system which tracks
learners' task responses and progress, and provides performance feedback to the learner
and teacher (Underwood, Cavendish, Dowling, Fogelman, & Lawson, 1996, p. 33). An
1LS marginalises the teacher's role and virtually removes students' initiative and
autonomy in the system's learning process Pottino & Furinghetti, 1996).

This paper reports on diagnostic interviews undertaken with Karen, one of several
Year 6 students who were using an ILS for remediation purposes. Karen was singled
out because the ILS system revealed that she had made the most "gains" (about 18
months) in mathematics in a 5-month period. The interview probed her structural
knowledge of fractions to determine the thinking strategies she employed when
processing fraction concepts. The paper provides the results of Karen's interview and
relates her responses to her performance on the ILS and to her beliefs about the ILS.
These results are then compared with those of Benny (Erlwanger, 1973), a student
working on an IPI program in the USA a quarter of a century ago.

Individual Learning Programs

The ILS used by the students was a comprehensive instructional system powerful
enough to deliver complex courses. According to the manufacturer, its courses were
designed to foster the development of foundation skills and concepts and to promote
the use of higher-order thinking skills. It should be noted that the manufacturers
endorse the system only as a tool for teachers to use to consolidate already introduced
material and to diagnose student difficulties. They argue that it is the teachers' role
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to introduce the material to be practised on the ILS, and to remediate the difficulties
identified by the ILS. Thus, they contend that the effectiveness of the ILS depends
on the quality of teacher input and that any evaluation of the ILS should take into
account the role of the teacher in relation to the program.

The ILS in this study was a closed system, that is, the curriculum content and the
learning sequences were not designed to be changed or added to by either the tutor or
the learner (Underwood et al., 1996). Its major feature was its management system
which, according to the manufacturer, has three main functions: (a) to deliver
courses to each student according to the teacher's instruction; (b) to manage all
student enrolment and performance data; and (c) to provide the means for teachers,
laboratory managers, and administrators to organise the use of the courses, and to
monitor student progress.

The ILS core numeracy course is divided into a range of topics (e.g., numeration,
addition, multiplication, fractions, space) which are then sub-divided into collections
of tasks that are sequenced in terms of performance at different levels. The difference
between levels was constructed so that high mastery at one level (approximately
85%) is the same as mastery (above 60%) at the next level. The core numeracy
course is based on USA syllabi but correlates reasonably well with Australian
syllabus requirements; individual tasks were developed and placed in levels as a
result of large-scale trials in the US. For their initial placement on the ILS, students
are given a large number of tasks at different levels until the system finds the level at
which they have reasonable mastery (about 65-75%). When students achieve high
mastery at one level, the system automatically raises them to the next level. To
maximise the chance that task performance correctly represents level, the tasks within
a level are presented randomly. Any reduction of randomness affects the accuracy of
placement and, therefore, the potential for students to achieve mastery. Without
mastery, students may not experience the continual success, and therefore the
motivation for achievement, that lies at the theoretical heart of the ILS.

The ILS tasks are in the form of electronic worksheets which are generally attractive
in their presentation and sometimes creative in the way they probe understanding.
They attempt to encourage the construction of knowledge by providing 2-D
representations of appropriate teaching materials in mathematics (e.g., Multi-base
Arithmetic Blocks, Place Value Charts, fraction and decimal diagrams). Built into
the core numeracy course are online student resources that enable students to get
special help during a session should the need arise. However, use of the Help and
Tutorial icons automatically grades performance as incorrect. The Toolbox icon
makes calculators, rulers, tape measures and protractors available for student use and
also provides complex tools (e.g., graphing and drawing) for advanced levels.

For some topics and levels, there appears to be insufficient task variety to prevent
repetition. Furthermore, some tasks have novel presentation formats which students
fmd difficult to interpret (e.g., spring scales used to determine number size, not object
mass). Other tasks require inflexible and/or novel solution formats which result in
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students' correct answers being marked incorrect (e.g., failing to type the units digit
first in operations) as are responses which differ syntactically from the expected
responses even when they represent semantic understanding (e.g., the omission of
zero in decimal numbers such as 0.63). There is a tendency for questions to be closed
(i.e., "find the right number") and a tendency to base performance on speed (although
the teacher can vary the time limits on answers). Time delays (e.g., while an
algorithm is completed with pen and paper) can lead to the ILS's defaulting to
incorrect. For each level and topic area, there are worksheets that can be printed thus
providing students with extra practice and teachers with a guide to the types of
activities that need consolidating.

The ILS is designed to work with individual students, a feature whichappears to be contrary
to modem teaching/learning principles which encourage group work that promote verbal
and kinaesthetic interaction. However, students normally work on the ILS in mathematics
for a maximum of 45 minutes per week over three sessions. Therefore, the amount of time
working alone is small when compared against the total weekly time spent on mathematics
(usually 200-225 minutes).

A computer search found only two evaluations of the ILS used by the students in this study.
In a review of 32 studies, Becker (1992) concluded that only manufacturer-based studies
reported significant gains for the ILS but that these studies, had "used the unusual procedure
of eliminating cases from data analysis that showed sharp declines" (p. 30) while retaining
cases that showed large gains. In a review of 9 studies, Underwood et al. (1996) found a
substantial positive gain for mathematics performance in computation but not for fractions
(which is of interest to this study). However, to compare mathematics knowledge gains,
both reviewers used standardised tests which do not provide explicit information on
students' mathematical knowledge structure and thinking strategies.

Integrated learning systems are reminiscent of the Individually Prescribed Instructional (IPI)
packages that proliferated in the US in the 70s with the ILS activities presented in electronic,
rather than paper, form. Both systems have a management system which marks students'
responses, directs unsuccessful students to other similar activities until "learning"
(familiarity?) takes place, and directs successful students to another higher level, and the
process is repeated continuously. The only real difference between the two systems is that,
in any ILS session, activities cover a variety of mathematical topics whereas in any IPI
session, activities are presented in finely detailed sequences within the one topic. The
pedagogical flaws in IPI systems were exposed by Erlwanger (1973) when he undertook a
series of interviews with a variety of students in an attempt to understand what
mathematical knowledge students acquired from individualised instruction and that
knowledge was acquired.

One student, Benny, had been perceived by his teachers to be "very good" at
mathematics, a perception that had been gained entirely from his rapid rise through
the levels of instruction. The interview with Benny revealed that he had constructed
several misconceptions that enabled him to accommodate the variety of answers that
were demanded by the discourse of the package. The following protocol provides an
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instance of Benny's misconception with respect to decimal fractions and his
"incorrect generalizations about answers" (Erlwanger, 1973, p. 15). He had
previously solved 2 + .8 = 1.0 (a revealed error pattern) and 2 + 8/10 = 28/10 and was
explaining (unsolicited) how IPI's answer key (the ILS's marking system) would
mark him if he interchanged the answers to the particular problems.

Wait. I'll show you something. If I ever had this one (2 + .8) . . . actually, if I put
2860, I get it wrong. Now down here, i f I had this example (2 + 8/to), and I put 1.0, I
get it wrong. But really they're the same, no matter what the key says. 15)

Method

Subject: Karen was one of 60 Year 6 students who had been using the ILS for
approximately 3 months. She was selected for further interviewing because,
according to the system, she had made the largest mathematical knowledge gains
(about 18 months) but an initial interview had revealed that her understanding of
elementary fraction concepts was impoverished. Furthermore, she liked using the
ILS and believed that it was helping her learn.

Instruments: Two diagnostic interviews were undertaken at the end of the study to
probe Karen's structural knowledge of fractions. Interview 1 comprised tasks which
involved: (a) probing understanding of the basic part/whole notion of fraction, that
is, the relationship between fraction name, equal parts, and number of equal parts; (b)
translating prototypic area representations (i.e., 10 x 10 grids) of tenths and
hundredths to symbols (decimal fractions); and (c) translating tenths and hundredths,
written in words to symbols, and vice versa. Interview 2 comprised tasks which
involved comparing common and decimal fractions (see Figure 1). These tasks were
based on a worksheet related to Level 4 (a level by which most concepts and
processes related to fractions had been "taught" by the computer program), and which
Karen had already completed successfully (according to the ILS).

In each set, circle the number that has the larger value.

A. 2 4 D. 2 3 G. 3.14 3.6 J. 9 99

5 5 3 4 10 100

1 1 5 1 K. 4 12
B. E. 2- 3 H. 3.84 3.7 .

6 2 6 3 10 100

3 3C. F. 4.7 6.2 I. 2.08 2.8
5 8

Figure 1. Comparison tasks used in Interview 2.

Procedure: For each interview, Karen was withdrawn from the classroom and the
interviews audiotaped. In Interview 2, she was asked to read the given fractions
before solving in order to address one of Erlwanger's (1973) major findings
regarding students who were engaged in individually prescribed learning situations,
namely, the lack of appropriate vocabulary required for discourse. Karen was asked
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to provide an explanation for each selection she made to determine whether her
comparisons were based on syntactic or semantic knowledge.

Analysis: The interview results were scored and Karen's responses and explanations
were examined for error patterns. Inferences were thus drawn regarding Karen's
structural knowledge of fractions.

Results

The pertinent results of Karen's first interview are provided to illustrate the
impoverished fraction concepts and language that she brought to the second interview
(and on which her progress through the ILS was based). Karen had a sound
understanding of the need for equal parts when determining fractions but not of the
relationship between the fraction name and the number of equal parts. For example,
when asked why she had not selected the shape showing 3 equal parts (when
identifying halves), Karen said she wasn't sure.

For the pictorial representations of tenths and hundredths, she wrote 2.10 for 2 parts
out of 10 equal parts, 74.100, 40.50, and 4.100 (see Figure 2). With the exception of
40 hundredths, she was able to unitise the representations but was confused with
decimal and common fraction recording forms. The representation of 40 hundredths
seemed to invoke a part/part ratio notion instead of a part/whole fraction notion,
indicating that she may have developed syntactic knowledge developed by overuse of
prototypic representations.

2.10 74.100 40.50 4.100

Figure 2. Karen's responses in Interview 1.

Karen was able to read the given decimal numbers syntactically only (i.e., as "6 point
three nine", for example, instead of "6 and 39 hundredths"). For the remaining task
(writing numbers given in word form in digit form), Karen gave the following
responses: eight tenths (08.10); four and six hundredths (4.600); eight and nine
thousandths (8.9000);five and thirty thousandths (5.30 000); 47 thousandths (47.000
000). Thus underlying Karen's 2nd interview (and her progress on the ILS) was
incomplete or unconnected fraction knowledge of the notion of equal parts and
number of parts, confusion between common and decimal fraction recording forms,
and an inability to read or write decimal numbers.

Interview 2. Karen read the common fractions semantically (i.e., so the fraction
name could be heard, for example, 2 fifths. 1 sixth) but read the decimal numbers
syntactically as the following protocol shows for 4.7: 4 point 7 [4 and 7 what ?] 4 and
7 um . . . I've forgotten.
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Karen misinterpreted Task A, reading it as 5, take away 4 minus 5, take away 2.
When focused on the task, she selected 4/5 because 4 is bigger than 2. In Task B, she
selected 1/6 because 6 is bigger than 2. When asked to show how she could prove
this, Karen drew the following shown in Figure 3 and said that there's more of them
(sixths). Karen also drew similar representations for 2/3 and 3/4.

©1111111110111

2,3 goo
3/4

v2

Figure 3. Karen's representations of fractions.

In Task C, Karen selected 3/5 and then said she thought she'd marked the wrong one
because there's 8 on the bottom and 3 of them (31a) and there's only 3 on the bottom
here (315) and the same 3.

Changing her mind turned out to be a common occurrence as shown by the following
protocols. In Task D, she had correctly selected 3/4, explaining that: You've got 4
wholes and you've got a remainder 3 (314); over here (2/3), you've only got 3 and a
remainder of 2. [So, how do you know one is bigger than the other in that case?
Which part do you look at that part (numerator) or that part (denominator) when
you compare ?] That (numerator) but I also look down here (denominator). Um, I
think it might be that one (2/3) now. [Tell me why you think that.] Well, there's 3
(drawing 3 small squares and circling 2 of them see Figure 2) and there's 4 and 3
of them (drawing 4 small squares and circling 3 of them). [Well, there's the same
amount left over (1 square). That makes it tricky doesn't it?] Mm. [So how do you
decide if they've got the same amount left over?] (No response) [Are they the same
value?] They could be. [You're not too sure about this one, are you?] No.

In Task E, Karen selected 25/6 as having a larger value than 31/3 because she said she just
looked at the fraction parts. Similarly, in Task F, she initially selected 4.7 because 7 is
bigger than 2 (in 6.2). Unsolicited, she then went on to say but then again, I was
wondering about these two (the whole-number parts). [So you can't make up your mind,
then, whether you should look at these two (whole number parts) or these two (decimal-
fraction parts). Is that what you're saying?] Yeah, so I just chose one.

For Task G (3.14; 3.6), she selected 3.14 but when asked why, she said, Um, I think
that one (3.6) should be the answer. [Why?] Because 3 point 6, um . . . I can't
remember. [You've done them before but you can't remember is that it?] Yes.

Task H (3.85, 3.7) revealed the impact of prototypic tasks. Karen selected 3.7 because
that's (3.7) only got 1 number after it (the 3), and that's (3.84) got 2 numbers after it.
I've had these on (ILS) and there's usually only 1 number after. This inappropriate
strategy enabled her to make the correct selection in Task I (2.08, 2.8).



For Task J (9/10; 99/100), Karen eventually selected 99/100 because there's only 1 more
(difference between numerator and denominator in each fraction)so they're the same
number. But this (the denominator, 100) is bigger than that (the denominator, 10)
and this (the numerator, 99) is bigger than that (the numerator, 9) so . . . [So you had
a bit of a problem deciding then ?] Yep. Karen used similar comparisons of
numerators and denominators to make the correct selection in Task K 4( 0,124 ) For
future interviews involving comparison of fractions, a task such as comparing8/10 and
6/100 will be included to challenge students who use a strategy similar to Karen's.

Conclusions and discussion

Karen, who had made the highest knowledge gains (according to the ILS) of all the
Year 6 students using the system at that school, revealed that she had an
impoverished understanding of comparison of fractions, tasks which were based on
those undertaken on the ILS. Karen had constructed "rules" and the rule she applied
depended on the pair of fractions being compared. Amongst her repertoire of rules
for comparing common fractions was a "whole number rule" that was invoked when
the numerators were the same but the denominators were different (e.g., Task B-
1/2; Task C 3/5, 3/8). According to Karen's rule, 1/6 is larger than 1/2 because "6 is
large that 2" and, similarly, 3/8 is larger than 3/5. However, she had a different rule
when the common fractions being compared had different denominators and a
difference of 1 between the numerator and denominator in each pair (e.g., Task D-
2/3, 3/4; Task J 940, 99/100). For Task D, Karen couldn't make up her mind whether
the fraction with the larger value was 3/4 (because 4 is larger than 3) or whether the
fraction were equal (because of the difference of 1). However, there was no such
indecision with Task J where she applied the whole-number rue to both the numerator
and the denominator (and thus selected the correct fraction but for an inappropriate
reason). Inconsistencies such as these are indicative of superficial syntactic
knowledge (Hiebert & Wearne, 1985; Resnick et al., 1989). The problem of applying
rules without reason is that it can led to as many correct solutions as incorrect
solutions, depending on the tasks provided, thus adding to the confusion and leading
to the development of thinking that Benny exhibited (Erlwanger, 1973), namely,but
really they're the same, no matter what the keysays 15).

Prototypic tasks also tend to promote incomplete structural knowledge as evidenced
by Karen's performance in Tasks G (3.14, 3.6) and H (3.84, 3.7). Karen consistently
applied the "fraction rule" (Resnick et al., 1989) where the number with the fewer
number of decimal places is the larger in value because "tenths are larger than
hundredths". The ILS tasks (there's usually only 1 number after) had promoted
Karen's construction of the fraction rule although it is doubtful whether Karen
considered the place values of the digits, focusing instead on the "length" of the
decimal-fraction component of the number. It is also hypothesised that the ILS
comparison of fraction tasks (common and decimal) focused on same whole-number
parts so that she "learnt" to consider the fractional parts only (see her performance in
Tasks E and F 25/6, 31/3 and 4.7, 6.2 respectively).
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An interview with Karen's teacher revealed that he was unable to provide specific
instances where Karen's ILS gains had been transferred to improved mathematical
performance in the classroom. However, Karen believed that it was helping her learn
which raises two issues that need to be addressed in future research, namely,
associating success with "getting things right" irrespective of the means to the correct
response, and associating effort (i.e., time spent) with learning.

The anomaly between Karen's progress on the ILS and misconceptions revealed by
the interviews raises the spectre of Erlwanger's (1973) report regarding IPI in which
he claimed that IPI programs develop an attitude to learning that is answer-oriented,
syntactically based and delivery-process driven. In this learning context, students
tend to develop the skills required for a correct answer without developing
mathematical knowledge that is transferable outside the closed system (Erlwanger,
1973; Fuglestad, 1996; Jones, 1998).

In the time (15'/2 hours) that Karen had spent on the ILS, a teacher trained in
remediation should have been able to overcome the deficits in Karen's elementary
fraction knowledge. However, for Karen, neither traditional teaching (including the
years leading up to Year 6) nor the ILS had facilitated construction of appropriate
fraction knowledge.
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FRACTIONS, REUNITISATION AND THE NUMBER-LINE
REPRESENTATION

Annette R Baturo and Tom J Cooper
Centre for Mathematics and Science Education, QUT, Brisbane, Australia

This paper reports on a study in which Years 6 and 10 students were
individually interviewed to determine their ability to unitise and reunitise
number lines used to represent mixed numbers and improper fractions. Only
16.7% of the students (all Year 6) were successful on all three tasks and, in
general, Year 6 students outperformed Year 8 students. The interviews revealed
that the remaining students had incomplete, fragmented or non-existent
structural knowledge of mixed numbers and improper fractions, and were
unable to unitise or reunitise number lines. The implication for teaching is that
instruction should focus on providing students with a variety of fraction
representations in order to develop rich and flexible schema for all fraction
types (mixed numbers, and proper and improper fractions).

In summarising the literature, Behr, Harel, Post, & Lesh (1992) claimed that there are
five subconstructs of rational number, namely, part /whole, quotient, measure, ratio
number, and operator, and that comprehending rational numbers means having an
understanding of each subconstruct as well as their interrelatedness.

Australian mathematics syllabi focus primarily on the part /wole subconstruct. Under
this subconstruct, a fraction is a generic term used to denote a numerical amount that
is a part of a whole (Kieren, 1983; Nik Pa, 1989; Payne, Towsley, & Huinker, 1990),
where the whole is any continuous quantity (e.g., a region/area, a line or a volume) or
discrete quantity (e.g., a set of objects). Thus, children's ability to interpret fractions
is highly dependent on their notion of a unit (whole), their ability to partition the
whole (Lamon, 1996; Pothier & Sawada, 1983), and to reconstruct units (Behr et al.,
1992; Lamon, 1996; Nik Pa, 1989; Steffe, 1986). According to Steffe (1986), there
are four different ways of thinking about a unit, namely, counting (or singleton) units,
composite units, unit-of-units and measure units, with each type apparently
representing an increasing level of abstraction There is a consensus in the literature
(Behr, Harel, Post, & Lesh, 1992; Harel & Confrey, 1994; Hiebert & Behr, 1988;
Lamon, 1996) that the cognitive complexity involved in connecting representations,
symbols and operations can be attributed mainly to the changes in the nature of the
unit. In particular, the complexity required to process unit-of-units and measure units
has major implications for acquiring an understanding of rational numbers,
particularly in relation to concrete and pictorial representations.

Whatever the representation of the whole, fundamental to the part /whole subconstruct
is the notion of partitioning a whole into a number of equal parts and composing and
recomposing (i.e., unitising and reunitising) the equal parts to the initial whole.
According to Kieren (1983), partitioning experiences may be as important to the
development of rational number concepts as counting experiences are to the

2 -81



development of whole number concepts. Students, therefore, should be provided
with several opportunities to partition a variety of fraction models in a variety of
ways so that they come to understand that 1/2 (for example) always represents one of
two equal pieces. Partitioning, unitising and reunitising are often the source of
students' conceptual and perceptual difficulties in interpreting rational-number
representations (Baturo, 1997; Behr et al, 1992; Kieren, 1983; Lamon, 1996; Pothier
& Sawada, 1983). In particular, reunitising, the ability to change one's perception of
the unit, requires a flexibility of thinking that may be beyond young children.

Australian syllabi advocate the use of the area model in developing the initial
understanding of a fraction because of the conceptual and perceptual difficulties
students have in interpreting the other models (Payne, 1976). For example, with the
set model, students fmd it difficult to unitise a group of discrete objects (Behr et al.,
1992; Nik Pa, 1989); with the linear model, children tend to see the marks as discrete
points on a line instead of as parts of a whole unit and, again, the problem is related
to unitising; with the volume model, the equal partitions are often not shown.
Although the set, linear and volume models are not used in the initial development of
the part/whole notion of fractions, they should not be avoided as full understanding of
any notion requires an ability to abstract the salient features from a variety of
materials (Dienes, 1969). In his study involving 220 college students, Silver (1983)
reported on what he called representational rigidity, a limitation in the variety of
mental models that was available to the students. This limitation appeared to be a
major inhibitor of the students' ability to operate on fractions.

There has been a recent resurgence of interest in the number line representation, for
place value (Bove, 1995), mental computation (Beishuizen, 1997), word problems
(Okamoto, 1996), fractions (Maher, Martino, & Davis, 1994), percent problems
(Dole, 1998; Parker & Leinhardt, 1995), and functions (Olsen, 1995). This would
appear to be in conflict with the earlier literature (e.g., Payne, 1976; Payne et al.,
1990) that stressed the conceptual difficulties students had in unitising and reunitising
fractions represented by number lines. However, the number line appears to be an
ideal representation to help students connect whole-number and fraction processes
such as counting (e.g., 3 fifths, 4 fifths, 5 fifths, 6 fifths ... is isomorphic to counting
whole numbers). A well, the partitions on a number line showing fractional parts can
be recorded as improper fractions or as mixed numbers, thus strengthening the
understanding that these two forms can be used interchangeably.

This paper reports on Years 6 and 8 students' responses to tasks involving placing a
mixed number and improper fractions of a number line. The study's impetus was an
interest in students' ability to use this representation, particularly with respect to
unitising and reunitising, and the conflicting reports concerning number line success.

The study

Subjects. The subjects were 24 Year 6 students (12 girls, 12 boys) from 3 suburban
and 2 regional primary schools and 10 Year 8 students (5 girls, 5 boys) from 2
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regional secondary schools. The schools were generally in lower middle-class areas.
The students were chosen by their teachers to represent a cross-section of abilities in
their classes (not including extremes).

Instrument. There were three interview tasks (see Figure 1) which were designed to
represent a sequence of cognitive difficulty (simplest to hardest).

Task 1: Show 21/4 on the number line below.

I I I I I I I I I I I

0 1 2

Tasks 2 and 3: Show 6/3 and 11/6 on the number line below.

0 1 2 3

3

4

Figure 1. Number-line tasks.

Unitisation was required for all three tasks whereas reunitisation (in conjunction with
physical or mental repartitioning) was required for Task 3. Task 1 was included to
give all students the most chance of being correct in that it required unitisation only
and the whole number provided a visual clue to the particular whole to be considered
on the number line. Task 2 was considered to be more difficult that Task 1 because
of the improper fraction recording of a whole number. It was thought that this would
be a nonprototypic representation for most students. Task 3 was considered to be
more difficult than Task 2 because, apart from the nonprototypic recording, it
required reunitisation.

Procedure. The students were withdrawn from class and interviewed individually.
They were asked to place the numbers and then to explain their responses. Before
doing this, the tasks were read to the students to alleviate any difficulties that might
arise from: (a) the use of the slash instead of the vinculum in the fraction recording,
and (b) an inability to read fractions. The interviews were audiotaped.

Analysis. The students' responses and reasons were recorded and categorised into
commonalities. Inferences were drawn with respect to the knowledge and strategies
held by students giving certain responses.

Results

The results for each task were categorised in terms of correctness and closeness to
correctness (see Table 1).

Task 1. When asked to explain their responses, students with correct placement
tended to respond in terms of the existing parts on the number line and to



acknowledge that the 2 and the 1/4 were separate [e.g., because they're all quarters,
and that's two (the whole number) and that's a quarter].

Table 1
Number (%) of Task Response Categories for All Tasks by Year Level.

Students
Task response category Year 6 (n=24) Year 8 (n=10)
Task 1: 21/4

Correct (21/4) 54.2 60.0
Other quarters (22/4, 23/4) 16.7 20.0
Eighths (21/8, 25/8, 27/0 20.8 20.0
Could not do 08.3 00.0

Task 2: 6/3
Correct (6/3) 25.0 10.0
Near (15/6, 12/3, 21/3, 22/3) 20.8 20.0
High (35/6, 4, 61/3, 62/3, 63/4) 29.2 10.0
Low (1/6,

1/2,
1) 00.0 30.0

Could not do 25.0 30.0

Task 3: 11/6
Correct (11/6) 25.0 00.0

Near (2, 11/3, 12/3)
08.3 20.0

Mid (31/3, 32/3, 35/6, 4) 20.8 30.0
High (111/3, 111/2) 08.3 00.0
Low (1/2) 00.0 10.0
Could not do 37.5 40.0

The responses from the 6 students who marked incorrectly but focused on quarters
(i.e., 22/4 or 23/4) were idiosyncratic. For example, of the 2 students who marked 22/4,
one indicated prototypic thinking in that she seemed to associate the unit numerator
with a half (it has 1 here so it's in the middle); the other student seemed to combine
21/4 with another quarter (there's two up there and it goes up in quarters ... goes one
quarter, two quarters, three quarters ... two quarters, so there). Of the 4 students
who marked 23/4, three seemed to associate the unit numerator with meaning 1
"space" less than the next whole number whilst the remaining student seemed to
interpret 21/4 as having 2 wholes, 2 quarters, and then add on the 1/4 [cos there's two ...
zero to two (pointing at whole numbers) ... and you go up four (pointing to quarters)
... go to two (quarters) and about there (3/4)]. The responses from students who
marked eighths generally appeared to ignore the relationship between the
denominator and the number of partitions. They seemed to have developed a holistic
view of mixed numbers so that 21/4 was just a little past 2 (marking 21/8) or just a bit
before 3 (marking 27/8). The student who marked 25/8 indicated that he also
associated the unit numerator with a half (cos that's 2 and a quarter) and then
marked just past the 1/2.
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The students who could not place the, number were generally confused by the fourths.
They counted the marks and, therefore, saw the intervals as thirds [e.g., two (pointing
to the whole number) and then it goes one, two, three instead of four (pointing to the
partitions)].

Task 2. Unlike Task 1, the Year 6 students' responses were more accurate than those
of the Year 8 students. Students with correct placement tended to invoke the quotient
(2 threes are 6) or operator (6 thirds is 2) subconstructs as well as the part/whole
subconstruct (i.e., counting in thirds). Although correct, 2 of the latter students
(part/whole) were unsure of their answers, for example, I'm pretty confused about
this but with thirds, there's 3 in each one of them (the units) but, ifyou count them
like that, there's 6 there (at 2). It seems as though this student had had little or no
experience with renaming whole numbers (with the possible exception of 1) as
fractions and that this was a nonprototypic task for her. The other student was
confused between the 4 intervals (and therefore quarters) and the three partitions (and
therefore thirds).

The explanations from students who marked "near" the correct response (e.g., 15/6,
12/3, 21/3, )2

L showed that they tended to count thirds but either counted the partition
lines starting at 0 (12/3 or 15/6 12/3 with a little bit on), counted an extra third (I went
1, 2, 3, 4 5, 6 and then a third more 21/3), or thought that the partitions at the whole
numbers could not be counted because they were not the same size as the internal
partitions (22/3). The responses from students who marked "high" (i.e., beyond 3)
indicated that they thought the 6 in 6/3 was a whole number. This belief was so strong
that the students extended the number line to past the whole number 6 so that they
could position the improper fraction [e.g., six and a bit more marking 61/3; you've
got to put thirds (between 6 and 7) so you'd mark the 3rd one counting the partition
at 6 as the first third and thus marking 62/3; six, and three partitions for the third
marking 63/4]. The responses from students who marked "low" (i.e., 1/6, 1/2, 1)
showed very poor understanding of improper fractions and confusion between
representations (e.g., it's six threes ... six threes are eighteen ... so 18% of the whole
marking 1/6; it's half interpreting the fraction as 34; I counted up six in a row and
came back three marked 1).

Students who could not place the number tended to have the same misconception as
those marking high (but without the initiative to extend the line), namely, equating
the numerator with the whole number, 6 (e.g., there's no six; not enough numbers).
One student couldn't interpret the improper fraction because it didn't have a whole
number before it and therefore, there was no "range marker" [e.g., there's 3 here
(counting the whole numbers) but it didn't say a whole number to put it between, or,
after or before].

Task 3. As for Task 2, the Year 6 students were more accurate than the Year 8 (none
of whom gave the correct response). Except in one instance, correct placement
involved either overt physical repartitioning or mental repartitioning of thirds into
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sixths (e.g., well there's only thirds ... but if you count two of them, there'd kind of
like be sixes - 1 sixth, 2 sixths; cut each third in halves; you'd have to draw them all
... put one in between). The exception was the boy who invoked the quotient
subconstruct (as he had for Task 2).

The "near" placements at 11/3 and 12/3 were based on idiosyncratic strategies, neither
of which involved reunitising thirds as sixths [e.g., 11/6 was interpreted as 11/6 and the

partition after 1 was marked 11/3; 2 sixes are 12 so take off 1 (third) 12/3]. The
"near" placement at 2 revealed erroneous thinking (e.g., 1/6 I- 1/3, 1/6=>1A).

Generally, the "mid" errors were based on either counting the thirds as sixths and
consequently marking 32/3 (if parts were counted correctly) or 31/3 or 4 (if partition
lines, not intervals, were counted). "High" placement at 111/3 and 111/2 resulted from
associating the numerator with whole numbers on the number line and then
partitioning the unit from 11 to 12 into thirds. Again, this belief was so strong that
the students extended the number line to past the whole number 11. The "low"
placement at 1/2 was a consequence of the same confusion between percent and
fractions as for Task 2

The students who could not place the number appeared not to comprehend the
fraction, the number line or how the two could go together (e.g., you can't get it on
there and but that's not sixths). They exhibited no confidence and little interest in
attempting the problem.

Discussion

The poor results for the simplest task (Task 1) suggests that there is an inherent
cognitive difficulty involved in conceptualising the number line representation of
fractions. The difficulty appears to be compounded when the given fraction is
recorded in improper fraction form. These arguments are supported by the increased
number of students who could not attempt to answer Tasks 2 and 3 (see Table 2).

Incorrect responses were idiosyncratic, that is, few error patterns were discerned, and
same responses nearly always were the result ofdifferent (and inappropriate) thinking
strategies. Those error patterns that were discerned were: (a) counting partition lines
rather than intervals and therefore counting included 0; (b) associating the numerator
(in improper fractions) with a whole-number marker and therefore counting whole
numbers rather than parts; (c) failure to reunitise when required because of lack of
awareness (and therefore a metacognitive shortcoming) or lack of knowledge (e.g., 1
sixth is composed by doubling a third, rather than halving a third).

Furthermore, maturation appears to have no effect on performance. In fact,
performance in this study dropped with age (particularly for the improper fractions), a
phenomenon we found difficult to understand, particularly as we had expected the
Year 8 students to have been much more exposed to this form of fraction recording in
view of the fact that they would have encountered addition and subtraction of unlike
common fractions requiring decomposition, as well as being exposed to percent
conversions to decimal and common fractions, and to prealgebra tasks. We



tentatively suggest that, if appropriate structural knowledge has not been constructed
(i.e., semantic knowledge), then students are forced to create "rules", the number of
which increase as more and more knowledge needs to be accommodated. The result
of this would be to have no means of solving nonprototypic tasks or to invoke as
many "rules" as one can think of. One student (Year 8) exemplifies this latter
situation as his protocol shows. In Task 2, he had placed 6/3 (which he read as 6
threes) at 1/6 and, in Task 3, placed 11/6 at 1 /2.

Task 2: Six threes are 18 so 18% of the whole (0 to 1) about there (1/6).
Task 3: I timesed 6 by 11 66% in a hundred so 1 took it to the nearest part, point

five (1/2).

Conclusions

This study found that students have conceptual difficulties in placing proper (e.g., 1/4
in 21/4) and improper fractions on number lines may have been partitioned into the
appropriate number of parts. Thus, the results tend to support Payne's (1976)
findings that students have difficulties with unitising units on a number line. In
particular, there appears to be confusion between whole and part [e.g., not counting
the wholes (6/3 is placed at 22/3), counting markings not spaces (6/3 is placed at 12/3),
and counting wholes as parts (6/3 is placed somewhere after 6)].

The study also found that the placement problems were exacerbated when the number
of partitions did not match the given denominator, indicating a continuing difficulty
with partitioning and unitising/reunitising on a number line (e.g., counting thirds
instead of sixths so that 11/6 is placed at 32/3; not knowing how to reunitise thirds as
sixths). This fording reinforces the consensus in the literature on the fundamental
importance of children's notion of the unit with respect to representations (e.g., Behr
et al., 1992; Harel & Confrey, 1994; Kieren, 1983; Lamon, 1996; Pothier & Sawada,
1983).

The major implications of the findings are that: (a) unless teachers are aware of the
inherent conceptual problems students have in processing number lines, their
effective use as a teaching and problem solving aid will be limited; and (b) further
research which focuses on analyses of students' comprehension of number line
fraction representations is required in view of the current resurgence of interest in the
area (Beishuizen, 1997; Bove, 1995; Okamoto, 1996; Dole, 1998; Olsen, 1995). An
exhaustive review of the PME proceedings dating back to 1994 produced very few
articles in this area, supporting the need for further research.
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CLASSROOM COACHING: CREATING A COMMUNITY
OF REFLECTIVE PRACTITIONERS*
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Abstract

This paper reports on an observational study of 14 high school mathematics
teachers who had been involved in one to five years of professional development,
including intensive summer institutes, follow-up workshops, and purchase of
resource materials and technology. The study was undertaken to determine the
effects of the in-service programs on the actual classroom practices of the
participants. Using a coaching model, the two authors observed over 200 classes
of 17 sections. Seven categories of results were formed from observational data,
interviews with teachers, informal interviews with students, and perusal of student
work and other ancillary material. This paper reports on three of those categories
and discusses critical dimensions of the model of coaching.

Perspective

The professional development programs upon which this research was based
endeavored to adhere to promising practices identified by the California
Post-secondary Education Commission in a study of projects it had supported from
1992 to 1996 (CPEC, 1996). These included the following aspects:

Successful projects found ways to create systemic change across entire school
districts. In the CPEC project we provided professional development to all high
school mathematics teachers in two districts (about 150 teachers) over a
three-year period. This project, coordinated with the national Equity 2000
project, aimed at helping teachers change their curriculum and instruction in
algebra 1/course 1 as the districts implemented an "algebra for all" policy in
ninth grade. In the NSF leadership project, we included teachers from several
districts, but endeavored to incorporate at least two teachers from each school so
that the teachers would have support as they went back to their sites and led
curriculum reform.
While successful projects need a coherent and consistent set of goals and a
reasonable theory of change, they also require strategies that allow
participants the flexibility to meet their own personal needs. The NSF project,
in which some teachers participated for three summers four academic years, had
the opportunity to incorporate this strategy by forming a small cadre of teachers
to help plan subsequent workshops after the first year and by allowing teachers
to work on projects of their choice.

The research reported in this paper was partially supported by the Dwight D. Eisenhower Mathematics and
Science State program administered by the California Postsecondary Education Commission (CPEC) grant
#785-5. The professional development projects being evaluated were funded by CPEC (#785-5) and the
National Science Foundation (NSF) Teacher Enhancement Program, grant # 9155282. The opinions
expressed here are those of the authors only and do not represent the views of CPEC or NSF.
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Successful grantees adopt their own system of internal assessment. Such
evaluation has been an ongoing aspect of both projects (Becker & Pence, 1998;
Becker & Pence, 1996; Kitchen, Becker & Pence, 1997; Peluso, Becker &
Pence, 1996).
Successful projects develop strategies that enable their teachers to achieve
self-actualization. Fundamental change in teacher behavior occurs when a
teacher begins to think of her/himself as a professional and feels that authority is
internal rather than conferred from an external authority. Without this
orientation, Cooney has claimed (1994), teachers will be unable to exert control
over their curriculum and even their pedagogy. Evidence of this level of
professionalism was found in previous research (Becker & Pence, 1998).
Successful projects do much more than explain constructivism; they model it by
involving their., teacher-participants in well designed constructivist learning
experiences. As discussed in the next section, we modeled in the professional
development a teaching approach that we advocated the participants use.
Successful projects know that time-on-task is an important determinant in
teacher learning as well as student learning. The projects utilized extensive
summer institutes (three weeks or more) and at least 10 days of followup
workshops during the academic year, repeated over several years.
Learning about new content or pedagogy is only a necessary condition for
improving one's teaching; actually employing that knowledge in the classroom
requires more. The coaching model described in this paper was our approach to
encourage teachers to use their new knowledge in the classroom.

The classroom coaching model we used had two main objectives as an
extension of the professional development in which teachers had participated: to
provide analytic and objective feedback to the teacher with regard to
teacher-student behavior; and, to develop within the teacher the desire and ability
to reflect upon her/his own behavior and evaluate the results of that behavior as a
means of self-improvement. The coaching followed an adaptation of a clinical
supervision model, providing teachers feedback that was descriptive rather than
evaluative and always requested. The feedback was usually given immediately
following the lesson observed, or as close to that as practical given the teacher's
schedule.

Background

The professional development projects being studied in this research were
based on the assumption that what a teacher believes and what a teacher knows
both influence the teaching of mathematics (Fennema & Franke, 1992; Thompson,
1992). What a teacher knows is understood to include both content knowledge and
pedagogical content knowledge (Cooney, 1994). Cooney (1994) has interpreted
Shulman's (1986) original notion of pedagogical content knowledge in the
discipline of mathematics. For Cooney, pedagogical content knowledge in
mathematics involves integrating content and pedagogy, borrowing ideas from
mathematics and from our knowledge about teaching and learning mathematics. he
presents the example of the rational numbers, for which we have various
interpreteations and a deep knowledge base about how children construct their
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understanding of the rational numbers through these different interpretations. This
integration of the mathematical and psychological domains defines pedagogical
content knowledge.

As we structured the inservice education to enhance both content and
pedagogical content knowledge, we were mindful that teachers themselves are
constantly constructing knowledge, albeit knowledge about students' learning of
mathematics, effective teaching of mathematics, as well as mathematical content.
Therefore activities were structured to ensure that knowledge was actively
developed by participant teachers, not passively received. Teachers were
frequently involved in presentations, facilitation of small group activities, and even
development of workshop foci as the inservice progressed. The professional
development became a collaboration among university faculty, district curriculum
coordinators, and participant teachers.

Methodology

A year-long observational study was undertaken to ascertain the impact of
the two professional development projects on the classroom practice of participant
teachers. A sample of teachers were invited to participate in this study. We
selected the sample of 24 based upon the number of years of involvement in the
inservice, which varied from one to five, and demographic factors such as gender,
ethnicity, school district, and teaching experience. Fourteen teachers agreed to
participate, and 17 different classes of the 14 teachers were observed by the authors
for a combined total of 210 classroom observations over a six-month period. The
authors alternated weekly visits of each teacher.

Courses observed varied from an algebra restart [for students who were
unable to succeed in algebra the first semester] to algebra 2/integrated course 3.
We observed one algebra restart, six algebra 1 classes, five geometry classes, one
algebra 2, one integrated course 1, two integrated course 2, and one integrated
course 3. The textbooks used varied from the traditional (3 classes) to "transitional"
(10 classes), to integrated (four classes). The sample of teachers included five
males and nine females from nine schools and four different school districts. Three
teachers were Asian-American and the rest European-American. The participants
varied in teaching experience from under five to thirty years, with inservice
participation from one to five years.

In addition to the classroom visits, both informal and formal interviews were
held periodically with each teacher. These interviews were based upon what had
been observed in the teacher's class, probing such things as: goals for the lesson
and the unit; planned assessment; use of technology; student understanding; plans
for followup to the lesson. observed; and curricular issues.

Description of Coaching

The classroom observations primarily used a clinical supervision model, in
which the teacher and observer discussed before the lesson specific items on which
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the observer would focus. The observer then endeavored to collect data to help
inform the teacher about the teaching behavior(s) of interest to him/her. After the
observation, the teacher and observer discussed the lesson; the observer shared
information about the focus of the lesson with the teacher in a non-evaluative way.
That is, the observer reported data on the behaviors of interest without assessing
the merit of the teacher's classroom practices.

During each visit, the researcher acted as a participant-observer (McCall &
Simmons, 1969), taking an active part in the class activities, helping students as
they worked individually or in groups and asking questions of students to
determine student understanding of new concepts. The observer acted as a true
collaborator in the classroom. The debriefing sessions freqently included
questioning and reflection on the part of the teacher, as we exchanged ideas for:

further developing new mathematical concepts;
reforming the curriculum;
infusing technology into their teaching;
ways to teach upcoming mathematical concepts;
assessment techniques;
equity issues in teacher-student interactions; and,
ways to help recalcitrant or struggling students.

Results

In analyzing the data from observations and both informal and formal
interviews, we formed seven categories on which we partitioned the classroom
practices of the fourteen teachers. These categories included equity, multiple
representations, and the use of technology, the foci of the observers. The
additional four categories - student understandings, use of cooperative groups,
alternative assessment, and reform curriculum arose either from the observations
or from questions raised by the teachers in debriefing sessions. Table 1 below
delineates the partitioning formed, with "yes" indicating strong evidence of
practices consistent with the emphasis of the professional development.

Due to space limitations, we will discuss three categories in this paper:
equity, student understandings, and assessment. Each category is exemplified by
instances from at least one teacher, instances which are representative of patterns
discerned in that category.

Equity

Although more than half of the teacher sample showed evidence of
inequitable treatment in the classroom, especially by gender, we want to highlight
two teachers in particular. One male teacher, Damon, consistently called upon a
small number of male students during questioning. In his geometry class, for
example, in one observation Damon interacted with males on 16 occasions (seven
of which were callouts), but only 3 with females (two of which were callouts).
This class was only 37% female; however, the young women were only involved in
16% of the interactions with the teacher. This disproportionate pattern of
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interactions was typical in this class. In his algebra 1 class, evenly split between
young men and women, Damon usually interacted about twice as much with the
young men as with the young women in the class. Damon learned about the
observers' areas of interest because he asked and we answered honestly. Following
this discussion, Damon asked one observer to share data relative to equity. He was
most chagrined to learn about the inequities in his response opportunities, and was
determined to monitor and change his own behavior.

A female teacher, Shana, was much more equitable in her teacher-student
interactions, with most of these occurring during small group activities or as pairs
worked on computers. However, she initiated discussions about this issue on her
own. She had a student assistant tally her interaction patterns as a way of
monitoring her behavior. And Shana, on her own initiative, devised a plan to ensure
equitable interactions in her class. She planned to use the computer to randomly
generate a new sequence of names for her to use each day as she called on students.

Student Understandings

Some concepts were difficult for teachers to teach for understanding. In an
integrated course 1, Polly was introducing the concept of standard deviation, which
she did rather traditionally, putting an extensive table on the board and having
students calculate all the intermediate steps on a set of data. Then she showed the
students how to find the standard deviation on a graphing calculator, and she
allowed them to use this tool consistently thereafter. In this introduction, Polly did
not attempt to provide an intuitive understanding of what the standard deviation
measures. After the class, she remarked to the observer that although she thought
students understood the steps in the algorithm, she did not feel they understood
what the standard deviation meant from her instruction. This was confirmed by the
observer in a later observation by questioning students as they worked in groups.
Polly told the observer that she would think about how to provide meaning for this
concept. In a later lesson, Polly presented a nice activity in which students
collected data on the heights of students' navels from the floor and again while
standing on identical chairs. Students then compared various measures of central
tendency; they were not surprised that the mean changed by the height of the chair,
but were very surprised that the standard deviation did not change at all. This
activity seemed designed to help students begin to develop understanding of the
standard deviation, and it seemed to meet its goal. Polly's concern about student
understanding was, we felt, indicative of new knowledge Polly had gleaned from
the inservice programs in which she participated. Although the text did not provide
any guidance, Polly had the confidence and persistence to develop an instructional
strategy that she felt would develop the understanding she valued.

Assessment

Shana had established a detailed scheme of assessment in her geometry class
in which she included performance standards for homework, performance standards
for projects, a rubric for computer work with a sample format, a culminating
computer investigation for the semester's work, and a unit portfolio which was peer
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reviewed. We should note that Shana had been working on this scheme over three
years of her inservice involvement, revising it as experiences suggested needed
changes. The coaching helped support Shana in this unusual assessment plan and
assisted her in reflecting on its effects on student understandings and reporting to
parents and her peer teachers.

CATEGORY YES NO
Equity 6 8
Multiple representations 5 9
Technology 9 5
Student understandings 8 6
Use of cooperative groups 8 6
Alternative assessment 5 9
Curriculum 10 4

Table 1: Observation Categories

Discussion

The intensive inservice program over three to five years impacted the
teachers in a number of ways. The programs established a common base of content
and pedagogical content knowledge (Cooney, 1994) and a common language
between teachers and researchers which allowed for a challenge of traditional
beliefs about the teaching and learning of mathematics. In addition, the teachers
received a considerable amount of resource materials and technology, such as
graphing calculators and computer software, essential for implementing new
knowledge in the classroom setting. Perhaps most important to the teachers was
the strong network of peers formed over the years. This network supported
teachers as they attempted to implement change in their curriculum and
instructional practices (Becker & Pence, 1996).

Past evaluations of the inservice documented these positive effects of the
programs (Becker & Pence, 1996; Peluso, Becker & Pence, 1996; Peluso, Pence &
Becker, 1994). In this work we used a variety of self-report measures to determine
the effect of our inservice programs. However, we are well aware of the limitations
of such data. Therefore, we initiated this observational study to ascertain the
impact of the two professional development projects on actual classroom practices
of participant teachers.

But, we were surprised that many of the 14 teachers reported that the
coaching itself was a critical extension of the professional development program.
The two-to-one contact over six months with each teacher served several purposes.
First, it provided the opportunity for both observers to experience the development
of full units of mathematical content. As the content developed, we were able to
see how student work progressed and how student understandings grew. Weekly
visits enabled the teachers to identify a conflict or concern, ask questions about
student experiences and glean insight into their teaching from our feedback.
Second, although we had a good working relationship with these teachers before
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they assented to participate in the study, the coaching helped establish a stronger
rapport and true collegial collaboration. We were not the authorities, but rather
sounding boards with whom teachers could formulate instructional questions,
extend those questions, and work out solutions for themselves.

Finally, our presence supported the teachers who were trying to make real
change in their curriculum, instruction, and assessment. At some school sites,
parents, other teachers, or administrators hindered reform efforts. Observer
feedback and encouragement ameliorated such challenges. We acted as another
voice, counteracting negativity these risk-takers sometimes faced (Peluso, Pence &
Becker, 1994).

Summary

We should point out that the classroom coaching described in this paper
requires a great deal of time and thus financial resources to effectuate. However,
the results of this work indicate that such coaching may well be a critical
component to consolidate changes in classroom practice as a result of professional
development.
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CONSTRUCTING AN UNDERSTANDING OF DATA GRAPHS

Dani Ben-Zvi
The Weizmann Institute of Science, Rehovot, Israel

I describe episodes of two 13-year-old students working on Exploratory Data
Analysis (statistics) developed within an innovative curriculum. I analyze the
microevolution of their incipient understandings of some features of graphs as data
representations. The description includes the role of the instructional materials, the
students' discussions and collaborative attempts to solve the tasks, and the teacher's
intervention. Although her intervention seemed to be a miscommunication, itappears
to have helped the students to make sense of their tasks.

BACKGROUND

The teaching of Exploratory Data Analysis (statistics) is mostly based on: (a)
organization, description, representation and analysis of data, with a considerable use
of visual displays (Shaughnessy et al., 1996); (b) a constructivist view of learning
(Garfield, 1995); and (c) incorporation of technological tools for making sense of
data and facilitating the use of various data representations (Biehler, 1993).

With these perspectives in mind, we developed a middle school statistics
curriculum' (Ben-Zvi & Friedlander, 1997a), implemented it in schools and in
teacher courses, and undertook research on learning (Ben-Zvi & Arcavi, 1997;
Ben-Zvi & Friedlander, 1997b). The curriculum is characterized by: (a) a use of
extended real (or realistic) problem situations; (b) collaboration and communication
in the classroom; and (c) a view of the teacher as "a guide on the side" (Hawkins et
al., 1992). The students pose, collect, analyze, interpret data, and communicate
(Graham, 1987) using a spreadsheet. The classroom activities are semi-structured
investigations, in which students, working in pairs, are encouraged to hypothesize
about possible outcomes, choose tools and methods of inquiry, design or change
representations, interpret results, and draw conclusions.

THE STUDY

A pair of 13-year-old students (A and D) was videotaped at different stages of
their learning statistics (20 hours of tapes). I focus here on 15 minutes of their work
with brief teacher interventions. The students were considered by their teacher to be
both very able and very verbal. They were asked to talk aloud and explain their
actions.

The purpose of the following analysis is to study how students construct their
understanding of graphs as displays of real life data, and learn to design them to
support certain claims. I used interpretive microanalysis (see, for example, Meira,
1991, pp. 62-3) to try to understand students' discussions, considerations, difficulties
and solutions. In this analysis I consider socio-cognitive aspects, taking into account
verbal, gestural, and symbolic actions, in the context in which they emerged --

The project is part of CompuMath, an innovative and comprehensive curriculum (Hershkowitz & Schwarz, 1997).

2 -97

526



comparing and contrasting the data with other pieces of data, written records, and
conversations with the teacher.

The Problem Situation
The extended (four lesson) activity - The same song, with a different tune

occurs early in the curriculum. The context is the Olympic 100 meters race. The
students were given, in a spreadsheet, the men's 100 meters record times, and the
years in which they occurred (from 1896, the first modern Olympiad, to 1996). In the
first part of the activity, the students were introduced to the context of the
investigation and were asked to describe the data graphically and verbally. In the
second part, the students were asked to manipulate data graphs, i.e., change scales,
delete an outliar, and connect points by lines. In the third part, they were asked to
design graph to support the following claim: "Over the years, the times recorded in
the Olympic 100 meters improved considerably".

In the following, I present and analyze the students' work through the activity.

DEVELOPING UNDERSTANDING OF DATA GRAPHS: THE 'STORY' OF A AND D

In this section, I present three parts of the activity chronologically: (a) getting
acquainted with the context, (b) acquiring tools, and (c) designing graphs.

(A) Getting Acquainted with the Context
In the first part of the activity, A and D analyzed the table of results,

compared the records of consecutive Olympiads, considered the issue of extreme
data, sorted the data, and created a graph with a spreadsheet (Figure 1). In their
written summaries, they wrote that (a) the best record is 9.48 sec. and the worst is 12
sec., (b) the greatest improvement is from 10.25 to 9.48 sec., and (c) the differences
between records are not constant. The first two conclusions are wrong: the best
record is 9.84 sec., and the greatest improvement is from 12 to 10.8 sec. When
requested to describe the data patterns, they did not seem to understand the meaning
of the question. With the teacher's help, they concluded correctly that "the record
times seem to improve, yet there was occasionally a lower (slower) result, than the
one achieved in previous Olympiads".

Although A and D seemed to notice the general trend of improvement in the
records, their view was mostly local and focused on discrete data points, or, at most,
on two consecutive records. I claim (based on data not detailed here) that their
difficulty to discern general data patterns was caused by: (a) the students' lack of
experience with the notion of pattern; (b) the discrete nature of the graph; (c) the
non-deterministic and disorganized nature of statistical data, which is very different
from the deterministic formulae, they had met in algebra.

(B) Acquiring Tools
In the second part of the activity, the students became acquainted with three

strategies for manipulating graphs (changing scales, deleting an outliar, and
connecting points), and considered the effect of these changes on the shape of the
graphs. The objective was to prepare for the design task (Part C below).
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Changing Scales

The following transcript describes the students' comments on the effect of
changing the vertical scales of the original graph from 0-12 to 0-40 (Figures l& 2):
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A. Now, the change is that... that the whole graph stayed the same in shape, but
it went down...

D. The same in shape, but much, much lower, because the column [the y-axis]
went up higher. Did you understand that? [D uses both hands to signal the
down and up movements of the graph and the y-axis respectively.]

A. Because now the 12, which is the worst record, is lower. It used to be once
the highest. Therefore the graph started from very high. But now, it [the
graph] is already very low.

The students' perception of the change is restricted to the overall relative
position of the graph; they considered the shape itself as remaining "the same". Their
description includes: global features of the. graph ("The whole graph ... went down"),
an interchange of background and foreground (the graph went down and/or the y-axis
went up), and local features (12 as a "starting point" of the graph). These
descriptions are linked and complement each other. A wrote the following synthesis
in his notebook: "The graph remained the same in its shape, but moved downward,
because before, 12 the worst record - was the highest number on the y-axis, but now
it is lower".

Deleting an Outliar

In this task, the students were asked to delete an outlying point (the record of
12 sec. in the first Olympiad, 1896) from the graph (Figure 2), and describe the effect
on its shape. First, D justified why 12 can be considered an outliar:

D. It [the record of 12 sec.] is pretty
exceptional, because we have here [in the
rest of the data] a set of differences of a
few hundredths, and here [the difference
is] a whole full second.

Then, they struggled to interpret the effect
of the deletion on the graph (Figure 3):
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D. The change is not really drastic ... Now,
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however, the graph looks much more tidy and organized.
A. One point simply disappeared. The graph... its general shape didn't change.

They wrote in their notebooks different descriptions of the change: "The
graph became straighter" (D); "One point in the graph disappeared" (A). Thus, the
students struggled between different views of the effect: global and significant
change (the graph is tidy and organized), no change at all (the general shape didn't
change); or just a mere description (one point disappeared).

Although the dispute about the outliar was not resolved, it served another
purpose: it drew A's attention to a mistake in their conclusions in the first part of the
activity, and corrected it: "the greatest improvement is from 12 to 10.8 seconds".

Connecting Points
In the third task, they were asked to connect the points to obtain a continuous

graph. The new graph (Figure 4) elicited many comments from the students, who
tried to make sense of what they saw. They were particularly intrigued by the fact
that the connected graph included both the original points, and the connecting line.

D. OK You see that the points are connected by lines. Now, what's the idea?
The graph did not transform to one line.
It transformed to a line, in which the
points are still there. It means that the
line itself is not regarded as important.

A. This line is OK. We previously thought
that if we connect the points with a line,
they might disappear. But now, there is a
graph, and there are also the points,

a
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Figure 4: Connecting line

which are the important part.
In their view, the connecting line (as provided by the spreadsheet) not only

did not add any new meaning, but also contradicted the context, as D observed:
"Olympiads occur only once in every four years" (namely, there is no data between
the points). The students did not see the line as an aid to detect or highlight patterns
in the data, and this is consistent with their previous difficulties in recognizing data
patterns.

So far A and D were practicing manipulations (changing scales, deleting an
outliar, and connecting points), and discussing their effect on the graph's shape. The
intention was to provide students with the means to design a graph, in order to
support a particular claim. In the following section, I discuss in what sense this
preparation helped them achieve this purpose.

(C) Designing Graphs
I present here a fragment of the students' work on the third part of the activity.

The students were asked to design a graph to support the statement: "Over the years,
the times recorded in the Olympic 100 meters improved considerably". I bring first a
teacher intervention, which eventually helped the students understand the task. Then,
I focus on five attempts (Stages 1-5 below) to obtain a satisfactory form of the graph.
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The Teacher Intervention

A and D did not understand the task and requested the teacher's (T) help:
T. [Referring to the 0-40 graph displayed on the computer screen -- see Figure

4.] How did you flatten the graph?
A. [Surprised] How did we flatten it?
T. Yes, you certainly notice that you have flattened it, don't you?
D. No. The graph was like that before. It was only higher up [on the screen].

The teacher and the students are at "loggerheads". The teacher assumes that
the students (a) had made sense of the task, but just did not know how to perforn it,
(b) had acquired the necessary tools, and understood their global effect on the graph's
shape to be used to support the claim. Thus, her hint consisted of reminding them of
what they had already done (scale change). However, the students did not regard
what they had done, as changing the graph's shape. Although this intervention
seemed to be a case of miscommunication, it apparently had a catalytic effect, as
reflected in the dialogue, which took place immediately afterwards:

T. How would you show that there were very very big improvements?
A. [Referring to the 0-40 graph -- see Figure 4.] We need to decrease it [the

maximum value of the y-axis]. The opposite... [of what we have previously
done].

D. No. To increase it [to raise the highest graph point, i.e. 12 sec.].
A. The graph will go further down.
D. No. It will go further up.
A. No. It will go further down.
D. What you mean by increasing it, Imean - decreasing.
A. Ahhh... Well, to decrease it... OK, That's what Imeant. Good, I understand.

Even though their use of language is not completely clear, their previous
perception that the graph shape remains the same was not mentioned at this stage.
Moreover, D expressed what appears to be a new understanding:

D. As a matter of fact, we make the graph shape look different, although it is
actually the same graph. It will look as if it supports a specific claim.
At this point, D seems to discern that a change of scales may change the

perceptual impressions one may get from the graph. Thus, they seemed to understand
the purpose of the activity, and started to focus on its goal. In the following, the
students' five attempts to design corresponding graphs are presented.

Stage 1 (The scales are changed to x: 1880-2000; y: 0-5)
D suggested (Figure 4) changing the scale on the y-axis to 0-11. It seems that

he chose 11, since he had previously deleted the outliar, making 11 the maximum
data point. They didn't implement this change, because he immediately proposed
another scale change: 0-5. This suggestion seems to be based on his assumption that



the smaller the range the larger the decline in the record time would look (Idea I).
However, when they implemented this change, the graph disappeared.

A. We don't see the graph at all, since there is no graph in 5.

Stage 2 (x: 1880-2000, y: 0-12)
Having failed to present a new graph, they returned to the 0-12 range (see

Figure 1):
A. The graph looks more curved, because the difference between records is much

bigger, since we increased the... now the "Olympic time in seconds" [y-axis]
is from 0 to 12, and every record as much as it descends it is bigger than
the record... the line is more ...[D. interrupts] Wait a second, the line is bigger
than it used to be from 0 to 40.

The effect of changing scales on the graph's global features (straight, curved),
which were not noticed initially, and started to be considered after the teacher's
intervention, were now being fully considered. Still, the students struggle to
verbalize and explain what they do, or want to do.

Stage 3 (x: 1896-1996, y: 0-12)
At this stage, it seemed that A and D had exhausted the changes on the y-axis.

So they turned to the x-axis. D suggested changing the upper limit of x from 2000 to
1000 (Idea I above). They realized, however, that this would cause the graph to
disappear again (the year's range is 1896-1996). Thus, D proposed using 1996
(instead of 2000) as the upper limit of x. Although the effect was marginal, D
commented:

D. One can really see, as if there are bigger differences in the graph... Very
interesting!
Although they had presumably understood how changing scales effects the

graph's shape, D's wrong impression of this horizontal change, seems to originate
from his ambiguous distinction between vertical or horizontal "differences" and /or
distances. However, having focused their attention on the x -axis, they realized that it
does not start at zero, which triggered the following idea (Idea II).

Stage 4 (x: 1896-1996. v: 8-12)
A transferred attention from the x-axis to the y-axis, and suggested changing

the lower limit for y from 0 to 8 (to get a scale of 8-12). Observing the resulting
sharp visual effect, he reacted immediately:

A. It looks much bigger.

Stage 5 (x: 1896-1996, y: 9.48-12)
D suggested applying Idea II to the x-axis, but withdrew, when A indicated

that it already started at a non-zero value. Instead, A suggested using the minimum

2 The lower limit for y changed automatically to 1896, resulting in a final range of 1896-1996, instead of 1880-2000,
which were the default values provided by the software.
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record time (9.48 sec.) as the lower limit of y
(Idea III). The resulting graph (Figure 5)
satisfied them, and they made the following
final comments:

D. This way we actually achieved a result
[graph] that appears as if there are
enormous differences.

A. To tell you the truth, this booklet is
lovely.

D. Right, it is nice!

12

11.37

10.74

10.11

9.48

1896 1916 1936 1956 1976 1996
Year

Figure 5: Final design

DISCUSSION

This 'story' of A and D traces the microevolution of incipient understanding of
some features of graphs as displays of real life data (see also Bright & Friel, 1997). It
describes the students' perceptual development from a stage in which they did not
understand the requirements of the task and the notion of data pattern, to the final
successful completion of the design task. The following elements seem to have
contributed to the construction of students' understanding of certain characteristics of
data graphs.

Careful instructional engineering: The students worked with semi-structured
guidance to solve open-ended questions. First, they acquired tools to modify graphs
and then, they employed these tools in the design of graphs, to support a certain
claim.

Close collaboration between the pair of students. The students:
a) verbalized almost every idea that crossed their minds. At times this

spontaneous verbalization produced mere descriptions, but later served as
stepping stones towards a new understanding, and at times, it served as
self-explanation (Chi et al., 1989) to reinforce ideas;

b) complemented and extended each other's comments and ideas, which seems
to have "replaced" some of the teacher's role in guiding their evolution;

c) decided to request the teacher's help when faced with a difficulty, which could
not be resolved among themselves; and

d) transferred and elaborated, in iterative steps, ideas of changing scales, from
one axis to the other.

The teacher's main intervention. At a first glance, the teacher's intervention to help
the students make sense of the task, can be considered unfortunate. She did not grasp
the nature of their question, misjudged their position, and tried to help by reminding
them of their previous actions. The students, however, did remember the acquired
tools, but perceived them differently.

Nevertheless, this miscommunication itself contributed to their progress. At
first, A and D were surprised by her use of the notion of flattening the graph as a
description of what they had done. Then, they started to direct their attention to the
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shape of the graph, rather than to its relative position on the screen. Although
puzzled by the teacher's language, the students appropriated (Moschkovich, 1989) her
point of view on what to look at. Their previous work and their "struggle" with
language seems to have prepared them for the reinterpretation of what they had done,
triggered by their teacher's comments.

In sum, the microevolution of the students' understanding of data graphs was
influenced by the instructional engineering, the students' ways of making sense
(descriptions, self-explanations, questions to a colleague and the teacher, transfer of
ideas, etc.), and the teacher's intervention and the use students made of it.

Acknowledgment. I thank Abraham Arcavi and Alex Friedlander for their helpful
comments and suggestions.
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ROUTINE QUESTIONS AND EXAMINATION PERFORMANCE

John Berry & Wendy Maull University of Plymouth, UK
Peter Johnson & John Monaghan University of Leeds, UK

Abstract This study concerns student performance in pre-university
examination questions. In particular whether lower attaining students in
mathematics examinations generally gain their marks on routine parts of
questions? This is an important issue because routine questions could be
awarded fewer marks if algebraic calculators are allowed in examination,'
Students' scripts in a recent mathematics examination were examined in an
attempt to evaluate this question. The results are not conclusive but indicate
that a problem of this type does exist, though the nature and location of the
problem is not as straightforward as expected.

Introduction

Our starting point is the question: do A-level Mathematics' students who attain
lower pass grades (D and E) generally obtain these grades by answering 'routine'
parts of A-level Mathematics questions? Routine questions may be viewed as those
for which students may be expected to execute a rehearsed procedure consisting ofa
limited number of steps. Problems in characterizing routine questions are considered
later. The next three paragraphs explain the rationale for and import of the study.

During the period 1994-1996 the then Schools Curriculum and Assessment
Authority (SCAA) set up a number of working groups investigating possible
consequences of student use of a new generation of algebraic calculators on A-level
Mathematics questions and papers. One important debate was whether such use
would accentuate the difference between higher and lower attaining students, e.g.
between those attaining A-level grades A & B and those attaining grades D & E. An
example should clarify matters.

A typical question on geometric series may start by a request to evaluate E20 i.05`
and then proceed to a question on compound interest, e.g. "If I invest £550 at a rate
of 5% per annum, how many years must I wait until I have more than £1000 in this
account?" It should be noted that the new generation of algebraic calculators can
perform the first part of this question, e.g. the TI-92 screendump below. In the
ensuing discussion everyone initially assumed, ,

f Al rz.. aas a generality with exceptions, that students 20

1E1
((i.05)i)

=

r6lear a-z...

34.7193

Advanced level (A-level) Mathematics is the most common senior public examination for
students in the UK. It covers considerable algebra and calculus of a single variable. There are
five pass grades, A to E. Examinations are set and marked by independent institutions called
Examination Boards. Examination sheets are called papers.
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attaining lower A-level grades learnt how to do the first routine part but would have
difficulty with the second non-routine part. At the next meeting, however, the
discussion continued with several people saying they were not sure that this really
was the case. There appears to be no literature of direct relevance in this area

Now if lower attaining students generally obtain the majority of their marks on
routine questions and if, as seems likely, such questions are allocated a relatively
smaller share of the total mark scheme when algebraic calculators are permitted in
examinations (see Monaghan (to appear) for a discussion of this issue), then these
students will find it more difficult to pass these examinations. Mathematics is
already considered a difficult subject at senior school level (see Fitz-Gibbon &
Vincent (1994, p.23) for UK data) and we would be extremely concerned if
mathematics examinations became more difficult to pass.

Methodology

To address the question we analysed the performance of students with different A-
level grades (A, B, C, D & E) in questions which have routine and non-routine parts.
An A-level Examination Board provided us with the scripts from a recently marked
Pure Mathematics paper. A Pure Mathematics paper was chosen, rather than a
Mechanics, Statistics or Discrete Mathematics paper, since Pure Mathematics is the
core for all mathematics options and because it is the area most likely to be affected
by algebraic calculators (see Monaghan (to appear) for a discussion of this). Over
300 scripts from an almost equal number of male and female students who obtained
scores at the boundaries of the A, B, C, D and E grades were provided.

Each question part was coded as routine or non-routine (further details below) and
the marks for the question parts were adjusted in accordance with our expectations of
what future marks, where routine questions were allocated a relatively smaller share
of the total mark scheme, would be like. Students' scripts were then remarked.

The A-level paper and mark scheme(s)

The paper used was the first of six papers. It was one of three papers that all students
following a popular modular A-level scheme had to take. There were four questions
each worth 15 marks. Questions 1, 2 and 4 had four parts. Question 3 had five parts.
We reproduce question 2 below as an example of the kind of question asked. The
original marks are given in square brackets.

The gradient of a curve is given by dy = 3x
2 8x + 5. The curve passes through the point (0, 3).

dx
(i) Find the equation of the curve. [4]

(ii) Find the coordinates of the two stationary points on the curve. State, with a
reason, the nature of each stationary point. [6]

(iii) State the range of values of k for which the curve has three distinct intersections

with the line y=k. [2]

(iv) State the range of values of x for which the curve has a negative gradient. Find the

x-coordinate of the point within this range where the curve is steepest. [3]

2 - 106

5345.



The other questions concerned: Q 1 , trigonometry in context; Q3, coordinate
geometry (lines, circles and ellipses); Q4, integration in context (comparison of exact
and numeric methods). We classified each question part as routine (R) or non-routine
(N) and obtained: Q1 (R, N, N, N); Q2 (R, R, N, N); Q3 (R, R, N, N, N); Q4 (R, R,
R, N). The division of marks for routine and non-routine parts was 30 marks each.
Various alternative mark schemes were developed, all adjusting the mark ratio so
that routine parts of questions scored fewer marks. The agreed version left each
question with 15 marks, left the mark allocation of Q1 unchanged but adjusted the
others so that routine parts totalled 23 marks and non-routine parts totalled 37 marks.
The parts of Q2, for example, were allocated 3, 4, 4 and 4 marks respectively.

The grade boundaries for this paper were: A, 40; B, 33; C, 27; D, 21; and E, 15. In
keeping with A-level conventions A, B and E grade boundaries were determined by
examiners' judgement while C and D boundaries were fixed at equal intervals
between B and E grade boundaries.

Results

311 scripts (63, 63, 62, 62 and 61 at grades A, B, C, D and E respectively) were
remarked to the new mark scheme. The use of statistics in this study must be
carefully examined for much of the data is far from independent (consider, for
example, the relationship between the total on the original mark scheme and the total
on the revised mark scheme). The statistics which follow are intended to give the
reader a feel for the general patterns in the data. Three aspects are examined here: the
overall scores; the proportion of marks to routine and non-routine parts of questions;
and factor analytic results suggesting that students follow through whole questions.

The scatter diagram, figure 1, of old and
new totals illustrates the general pattern.
The ranges overlap but the ranges from
the original grades retain their
hierarchical structure. The new totals are
generally lower than the original totals.
In fact of the 311 student scripts
examined 297 obtained lower scores
from the new mark scheme, 11 scores
remained the same (3, 3, 2 and 3 from
A, C, D and E grade students
respectively) and three obtained higher
marks (a B and a D grade student
obtaining one more mark and a C grade
student gaining three more marks). This
indicates that increased emphasis on non-routine
lowering of the overall marks obtained.

Figure 1, scatter diagram showing total
scores under both mark schemes
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Figure 2 displays the mean marks obtained by the groups of students at each grade

level for:
Old routine (0-R) parts (out of 30)
Old non-routine (0-N) parts(out of 30)
New (revised) routine (N-R) parts (out of 23)
New non-routine (N-N) parts (out of 37)

Note that each column decreases with
decreasing grades (hardly surprising) and that
mean marks obtained for routine parts of
questions are consistently greater than mean
marks obtained for non-routine parts of questions even though there were more
marks for non-routine parts of questions in the revised mark scheme. This may be
interpreted as evidence that students attaining at all pass grade gain more marks on
routine parts of questions An examination of the ratios O -R:O -N and N-R:N-N is
interesting. For grades A-E we get, respectively: 1.9, 2.5, 2.8, 3.0, 3.7 and 1.2, 1.6,
1.8, 1.8, 2.3. The decrease in the second list, relative to the first list, clearly mirrors
the higher weighting given to non-routine parts of questions in the revised mark
scheme. The increase in both lists, however, may be interpreted as evidence that
higher (respectively lower) attaining students gain proportionally (to their overall
mark) more (respectively less) marks on non-routine parts ofquestions.

O-R O-N N-R N-N

A 26.3 13.7 19.9 16.4

B 23.2 9.3 17.4 11.2

C 19.9 7.1 14.8 8.1

D 15.8 5.2 11.1 6.2

E 11.8 3.2 8.3 3.6
Figure 2, mean marks over grades

Principal component analysis of both the old and the new scores yielded 6 factors
with eigenvalues greater than one. In both old and new scores the question parts
which loaded significantly on the factors were as follows: all parts of Q2; all parts of
Q4; Q1 parts i, ii, and iii; Q3 parts i, ii, iii, and iv; Q3 parts ii, iv and v; Q 1 iv,
Question 1 i (negatively) and Q2i. The first five factors suggest an interpretation that
the correlations of the scores of the parts within a question dominate the analysis, i.e.
if you do well on one part of Q2, you tend to do well on all of it.

Grades and routine questions

So, do lower attaining students gain a substantial proportion of their marks on
routine parts of questions, compared to higher attaining students? The results are not
conclusive but they are not without interest. Before considering them we address an
aspect of their surface validity. The results arise from at least two semi-arbitrary
decisions: the categorization of parts of questions as routine or not (and the
dichotomy implicit in this categorization); the weightings given in the revised mark
scheme. These are important factors to bear in mind but it should be noted that both
decisions were made after considerable debate by a group of people with
considerable experience of the type of examination paper in question.

The overall lower scores obtained from the revised mark scheme and the distribution
of mean marks over routine and non-routine question in both mark schemes clearly
indicate that all students score substantially more marks on what we have designated
routine parts of questions. The increasing ratios of routine to non-routine mean
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marks over grades in both mark schemes, however, does provide evidence that lower
attaining students do obtain proportionally more of their marks on routine parts of
questions. Looking at the scatter diagram in figure 1, however, it would not appear
that this would make a substantial difference to the overall grades (if they were still
determined by the same judgement/equal interval rubric) given the small 'new total'
overlap over old grades. Indeed, several experiments at reallocating grades under the
revised mark scheme were conducted and none of these resulted in more than a 10%
reallocation of grades. The outcomes are not recorded in this paper for fear of
introducing another semi-arbitrary element.

The principal component analysis results alerted us to a possibility we had not, but
should have, anticipated: that many students, at all levels of attainment, exhibit a
propensity to follow a question through. This may have many bi-causal connections
with other influences, including a familiarity with a specific content area indeed a
dialectic may exist between attainment and familiarity with a range of content areas.
Again we must view these results with caution, due to regularity conditions implicit
in the analysis and a lack of prior hypotheses, but five out of six located factors
indicating such a propensity in students certainly deserves consideration.

What this and other results lead to is the need for further investigations. Two such
investigations are a refinement of what is meant by the term 'routine question' and a
more realistic interpretation of curriculum development vis a vis assessment
development. We turn to a considerations of these now.

Problems in characterizing routine questions

A problem with this study is that it implies that routineness is located in a question
rather than being a psychological construct of the relation between an individual, or
group, and a question. The latter appears more valid. Indeed, the psychological
relation is likely to be a socio-psychological relation. Routineness as located in a
question is, however, one way to approach this study. This study's origins grew
from a SCAA working party examining examination questions and we had the
opportunity to explore this issue by examining completed A-level scripts without
exploring classroom situations. Rather than viewing our approach as flawed we
choose to view it as exploring one avenue of routineness.

There are very few readily available references to routine questions in the
mathematics education literature. An important paper, which addresses a similar
level/type of mathematics to this study, is Seldon, Mason & Seldon (1989). They
make a distinction between problems and exercises and view, in a similar way to the
above socio-psychological relation, a problem having two components: task and
solver(s). They view 'cognitively non-trivial' problems as those where "the solver
does not begin knowing a method of solution". and note that traditional calculus
courses contain few cognitively nontrivial problems. They note that 'tasks' require
skills and are divided into parts, algorithms, sample solutions and examples and that
many problems are made routine in this way. This accords with our own experiences



of UK A-level mathematics classes. Seldon et al, however, do not define what they
mean by 'routine'.

Boa ler (1997) explored a range of issues from two schools with strikingly
contrasting ethoses and teaching methods. We focus here on her analyses of pre-A-
level students' performance on conceptual/procedural questions, which may be
viewed as a form of the non-routine/routine division. She defines procedural
questions as "those questions that could be answered by a simplistic rehearsal of a
rule, method or formula." Conceptual questions were viewed, in contraposition, as
questions which require "the use of some thought and rules or methods committed to
memory in lessons would not be of great help". Boa ler claims that conceptual
questions are more difficult, for students, than procedural questions, and descriptive
statistics support this view. Notwithstanding the fact that cursory summaries do not
do justice to Boaler's work it can be said that performance on conceptual and
procedural questions shows that similar overall results in examination performance
may be obtained in different ways (ratios of success in the two types of questions)
under different school ethoses and subject teaching methods.

Boaler's work raises the obvious question of the relationship between routineness
and teaching methods. Nagy et al (1991) examine the relationship between test
content and instructional content at the level ofHigh School calculus. It would be in
injustice to characterize their study as purely quantitative as their foci are intent of
instruction, nature of materials and operations. However, their analysis of
assessment activities on a six-category system, ranging from skills to situational
problems, showed wide variation in teachers' emphasis, especially at the skill level.
This calls attention to the importance of further studies on instruction which our
study cannot contribute to.

A parallel question to the 'routine/non-routine' distinction is "What makes one exam
question more difficult than another?" (Fisher-Hock et al. (1997)). This is the
starting point of the Question Difficulty Project which examined UK mathematics
and other subject examinations taken by 16 year old students. The project examined
a model of question answering based on reading, application and communication
through protocol analysis. The study notes the difficulty of both social and
mathematical language, to the presentation of answers and the concomitant recording
of steps (the latter two being particularly important for future work with algebraic
calculators). Trials of variations in mathematics questions revealed 22 sources of
difficulty, from command words to irrelevant information. The import of this for our
study is the sheer number of factors impinging on what might make a question
difficult (routine) or not.

This study and the work of Boaler alert us to the issue of context. Context is a term
in mathematics education that is particularly difficult to define. Indeed, we believe
that no definitive definition can be produced. It was the original intention of our
study to examine contextual/non-contextual questions as well as routine/non-routine
questions but the problems of finding real context questions and the problems of
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characterizing context questions forced us to focus on the more manageable
routine/non-routine distinction. We leave the question of context to further research.

Three further thoughts on routineness:

The relation between experience and the examination question is metonymic, at the
level of syntax rather than meaning2, i.e. the form of words used in a question,
evokes a particular response. Arguably the most routine question at this level in the
UK is, find the equation of the tangent to at the point

Students opinions of what are routine and non-routine questions are important,
though it must not be assumed that students share a collective meaning of the term.
We asked 100 students who had studied the paper we examined, in the course of
their revision, to categorize the question parts, see figure 3. These responses
generally show: only partial agreement with our categoization; several parts are
neither generally perceived of as either routine or non-routine; greater apparent
accord on routineness than on non-routineness.

li lii liii liv 2i 2ii 2iii 2iv 3i 3ii 3iii 3iv 3v 4i 4ii 4iii 4iv
total 'routine' 98 81 47 4 99 97 32 40 95 87 71 47 49 93 69 87 70

total 'non-routine' 2 19 52 94 1 3 68 59 5 13 29 53 51 7 31 13 30

Our categorization R N N N R R N N R R N N NR RR N

Figure 3, student classification of routine and non-routine parts of questions

Finally we discussed routineness with the relevant mathematics officer of the
Examination Board whose paper we used. They had a policy for question design:
"In a standard question of four parts, the first two parts require an application of a
standard algorithm, the next two parts require insight." This may be construed as a
form of the routine/non-routine division and accords quite closely with our
categorization in the paper considered.

Curriculum development and assessment development

This study is located in what may be termed 'traditional' examinations. Common
themes of contemporary research in assessment are the purpose and validity of
assessment and alternatives to traditional forms of assessment (see Niss, 1993). We
applaud this but traditional forms will continue to persist in many countries and
investigations into how students perform in them are important. This will be the case
with the UK A-level examination (see http://vvww.qca.org.uk/aframe.htm and go to
AJAS subject core consultation, then to Mathematics).

In the medium and long term scenarios, when algebraic calculators become
commonplace in developed countries' classrooms, it is possible that the curriculum
will develop to incorporate the potential offered by these calculators (see Browne &
Ellis, 1997). Ideally examination questions, if not the form of examinations, will
change in line with curriculum developments. In this projected setting the current

2 Suggested by T Rowland in personal correspondence on the nature of routine questions.
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study is partially misplaced as an attempt to second guess the future without taking
account of parallel curriculum and assessment development. It is difficult, however,
to envisage how a realistic 'future' experiment might be conducted for traditional
examinations.

In regions that permit less rigid senior school examinations the potential problems
exhibited by UK examinations are not necessarily present. Where teacher-generated
examinations are allowed there is scope for simultaneous curriculum and assessment
development. In some schools in Austria, for example, where regular use of
algebraic calculators is made teacher-generated 'parallel' calculator and non-
calculator examinations take place (Browne & Ellis, 1997).

Conclusion

There are many issues in this study which require further investigation: the effect of
teaching and learning styles and of instructional content on students' performance in
questions and question parts; an analysis of what makes an A-level question difficult
regardless of apriori categorizations such as routineness; an exploration of the factors
involved when students follow a question, of several parts, through.

Regardless of further research there is a need, in countries with traditional senior
school examinations, to take the indicators in this study seriously lest, when
algebraic calculators are allowed in examinations, that the examinations become
more difficult to pass for a class of students. Although this study in not conclusive
the indicators are such that we cannot ignore the equity issue present.
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PUPILS' IMAGES OF TEACHERS' REPRESENTATIONS
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This paper suggests that learner's procedural and conceptual knowledge of
mathematics is constructed, in part, from their mental representations of teachers'
external representations. These mental representations reproduce the learner's
perceptual experiences and are thus referred to as images. In the first instance
individual images may be quasi-sensory or language-like in format. Some pupils
form a general image of the structure inherent in the external representations
whilst others have specific images which embody the surface characteristics of
those representations teachers use to communicate the mathematics. For such
pupils the medium becomes the message.

INTRODUCTION
Teachers use a variety of representations, involving verbal, written, pictorial and
concrete material presentations, to communicate their mathematics to pupils. Pupils
are asked to replicate the mathematical activity through the use of these 'external'
representations. Their talk, writing, drawing or actions indicate the nature of their
knowledge construction. This paper considers the mental representations pupils
form from these varied stimuli and seeks to answer the question "What kinds of
mental representations do pupils form from the representations given and how do
they make use of them?" A preliminary study in an English school for 5 to 11 year
olds suggests that pupil's internal representations are initially 'image-like' in that
they reproduce, in part, their previous perceptual experiences. These images may
not be visual or tactile, yet, when they are evoked for mental calculation, pupils use
language associated with spatial or motor aspects of the external representation. The
study also suggests that the pupils' construction of mathematical meaning appears to
be based on their internal representations of the teacher's external representations. It
is conjectured that the way in which these internal representations 'stand-in' for the
original experiences varies between pupils of different abilities. It is also
conjectured that individuals' mathematical knowledge construction may be
transformed from a quasi-sensory mental representation (visual, auditory, tactile) to
a more general, language-like, representation over different time periods.

The paper provides a brief review of some of the literature on representations and
images which has influenced and informed the study and gives some detail of the
Phenomenographic methodology. The focus for the initial classroom observations
and semi-structured pupil interviews has been whole number place value and
addition and subtraction of two digit numbers. The implications of these findings
and recent research at the University of Warwick are considered and the conclusion
is drawn that a longitudinal study of teachers' and pupils' representations is needed
to investigate the influence of the one upon the other.
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REPRESENTATIONS AND IMAGES
Lesh, Post, & Behr (1987) suggest that five types of representation are available to
mathematics teachers: world contexts, manipulatable models, pictures and diagrams,
spoken language and written symbols. Such representations are not the mathematics
but transformations of the mathematics into communicable form, a process that
Kang & Kilpatrick (1992) have termed 'didactic transposition'.

The way in which pupils form mental representations from their mathematical
experiences is open to debate. The Piagetian view is that mental representations are
constructed by the individual. This is, in a sense, a compromise between theorists
such as Fodor, who assumes an innate representational language of thought, and
others, such as Vygotsky, who insist on the priority of public external
representations that are copied to become the internal representations (For a fuller
discussion see Olson & Campbell, 1993).

The study reported in this paper starts with the same premise as Lesh & Kelly
(1997), that the learner's internal conceptual structures cannot simply be received
from others but are developed from, and expressed using, external systems of
representation. The assumption is also made that aspects of the internal
representation can be inferred from the children's use of external representations, in
this case through their language and the physical movements that they use (see also
Thomas, Mulligan, & Goldin, 1996). However, no precise claims can be made about
the nature of these internal representations (Kaput, 1992).

The pupil's encounter with a teacher's representations is a multi-sensory experience
and the first interest of this study is the image formed from the child's perception of
this experience. An image "reproduces in part some previous perceptual experience
in the absence of the original sensations" (Russell, 1956) or, more generally, it is a
quasi-sensory experience that is a "concrete re-presentation of sensory, perceptual,
affective or other experiential states" (Richardson, 1969). In this sense an 'image' of
Dienes Blocks might be the almost tangible sense of feeling them or moving them, a
recalled vision of them on a desk, the recall of a teacher talking about them, a
memory of thinking how to add tens and ones, or remembered pleasure in piling
them higher than anyone else.

In the field of visual imagery Kosslyn (1980, 1996) has demonstrated that images
can have depictive, picture-like, qualities that could not be explained by purely
propositional, language-like, mental representations. His model suggests that images
are short-term memory representations generated from long-term memory
representations that may have a depictive or propositional form. He also proposes a
`Representational-Development hypothesis' which has strong parallels with the
development from procedural to proceptual thinking in some individuals (see for
example Gray & Tall, 1994). Kosslyn suggests that the type of internal
representation that is predominantly used changes with age and that later types of
internal representation, being more powerful, supplement and eventually
overshadow older ones.
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Kosslyn further suggests that visual imagery will necessarily be used in response to
a question about a concrete object where the information has not been stored as part
of a propositional representation or can not be deduced from propositional
representations. As propositional knowledge increases and deduction becomes easier
then visual imagery may be used less. Indeed, he suggests that with the increasing
use of facts the image is more likely to take on a propositional format. If the child
has few representations in other formats he has little choice but to use his visual
image. Imagery generation may be preferred because it is quicker than
propositional reasoning which requires more or different processing resources. A
similar point is made by Intons-Peterson & McDaniel (1991) that the less familiar
we are with a task the closer is our imagery to the original perception.

Paivio (1986) refers to `proto-typical' mental representations of conceptual
categories that are either the best example or a composite of typical features of that
category. Kosslyn (1996) suggests that proto-typical images tend to be stronger
because they have been accessed more often but that a particular exemplar may be
stronger if it has been refreshed frequently. In the context of this paper children
may form proto-typical images from the variety of teacher's representations, for
example a sense that 62 is 6 tens and 2 ones without reference to columns or blocks.
Others may have an image based on the most frequently used exemplar (for example
`counting-on' for addition) or most recently used exemplar (for example Dienes
Blocks for addition).

METHOD
The assumption made in this exploratory study is that the images formed by pupils
can not be studied in isolation from the context of the classroom or the interaction
between the pupils and teachers. It is therefore regarded as essential to observe the
common experiences of the learners as a basis for the analysis of their different
conceptualisations. The focus is on what the teachers and pupils say and do in the
lessons and how the pupils make reference to their experiences when questioned in
interviews.

The research approach adopted is a naturalistic qualitative one which can be termed
Phenomenographic' in that it is an investigation of people's understanding of
phenomena and it seeks to categorise and explain the qualitatively different ways in
which people think about the phenomena. The initial discovery of previously
unspecified categories of thinking may be peculiar to the researcher and context but
the test of their validity is in their applicability for other researchers and as a source
of explanation of differences in learning outcomes (Marton,1988).

The study was conducted in a school for 5 to 11 year olds in a large middle-income
village near Birmingham, UK in the period October 1997 to July 1998. One lesson
per week was observed with follow-up interviews with individual children. Audio
transcriptions of children's interviews were supported by detailed field notes. The
teacher observed is an experienced male and his 33 pupils were those judged by
their previous teachers to be the most able of the 80 Y2 pupils (6 to 7 years old) in
the school. Samples of these pupils were interviewed in October, March and July.
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RESULTS
The discussion of the results will draw upon the several representations used by the
class teacher (Mr. K.) to demonstrate 2-digit addition. These included a Number
Track, ranging from 1 to 105, a Hundred Square, Dienes Base Ten Blocks, Numeral
Cards, printed with single digits, and the written algorithm. The pupils practised a
representation-specific procedure with each of the materials. Though each
representation is structure-oriented, in the sense used by Resnick & Ford (1981), the
`transparency' of the correspondence between the material and the structure is
variable (Meira, 1998). The validity of using such a variety of representations of the
same mathematics has been questioned (Dufour-Janvier, Bednarz, & Belanger,
1987) but the intention of this study was to observe the effect of the variety not to
criticise it. To trace the relationship between teacher's representation and pupils'
internal representations over the 9-month period two themes are examined:

The common experience of the pupils and their individual conceptualisations
from the experience.
The medium term proto-typical representations that are formed by the pupils.

Conceptualising from Experience
A typical lesson prior to the October interviews shows one of the teacher's
representations involving Dienes Blocks used in demonstration mode:

The teacher gave Mandy two tens (In response to the question "Another way of
putting it?" Mandy said "twenty") and 4 ones. When asked "How many
altogether?" Mandy said "Twenty-four". A similar demonstration was used with
Nina. She was given 1 ten and 2 ones and responded correctly to similar
questions. The teacher requested Mandy and Nina to "Now put them together in
my hands". In response the two children put the tens in one hand and the ones in
the other. The teacher then requested "How many altogether?" adding "Look how
easy it is to add them instead of all individual cubes".

Pupils were then directed to work on two-digit addition questions presented in the
textbook as pictures of Dienes Blocks with written numerals

One week later, after some further practise with the representations, 11 pupils were
asked to work out one question, 24 + 53 (presented on paper), in their heads . They
were then asked how they had worked it out. Though none of the pupils
spontaneously mentioned visualising Dienes Blocks, Elspeth's response has a clear
trace of the teacher's representation:

Elspeth: Well you add the tens together then you add the units because its like in one hand you
have the tens and in the other you have the units

Elspeth was one of only 2 pupils who gave the correct answer to this problem. The
other pupil counted on from 53 using fingers to help.

Though the above example lesson involves the teacher's use of Dienes Blocks a
dominant representation, previously presented to the children, had been the Hundred
Square used for two-digit addition. When the children were prompted to think about
either a Hundred Square or Dienes Blocks (their choice), none could mentally
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manipulate them without considerable assistance. Max's responses, however, suggest
that he had formed an image related to the Hundred Square:

Max If it was 24 add 11 it would be 35 ... Because it was diagonal like that. (moves head to
the right and down)

Asked what 24 add 10 was he replied "34" and explained
Max because you just go down and it would just go back under there .. 'cos that would go

in tens and then that would stay in the same place and the tens would just go back
under there.

In each instance it sounds as if he is describing a visual image yet when requested to
move down 5 squares from 24 he could not do so. A possible explanation is that he
has a 'global' image (Kosslyn, 1996) of a Hundred Square that lacks the visual
resolution for him to scan very far over it.

Another instance where the internal representation is a consequence of what has
been attended to and extracted ( see Kosslyn, 1980) is given by Neal

Neal You get 24 in your head then add on the 5 and the 3. .. 32

Here he has attended to the separate adding of tens and ones.

A second indication of a relationship between the teacher's representation and the
child's conceptualisation is provided from an example obtained in March. During a
lesson that focused upon adding one to a three digit number a temporary teacher
summarised previous teaching in the following way:

"You have been throwing dice and all sorts of things. You also looked at rolls of
raffle tickets like this...1 1 1861 I (Drawn on board) What comes next? Why
wasn't the 1 or the 8 changed?" A pupil replies "Because you are not adding tens
or hundreds."

The teacher next wrote 199 in the middle position and again asked "What comes
before? What comes after?" Going on to comment: "But that means Fm altering
the tens and hundreds. That's because I can't have more than 9 in any column."

The teacher continued to talk to the group of pupils who had experienced
difficulty. To illustrate "going to" the next number she held up 3 Numeral Cards
and then changed the units digit card for a different one. She indicated that only
the units digit changed except when the 9 is changed for a 0 and then the tens are
changed as well. The children were invited to use similar cards to help them with
additional exercises concerning raffle tickets. In the exercise which followed half
of them made mistakes by altering the wrong digit.

The usual class teacher also makes use of these Numeral Cards to illustrate changing
digits to increase a number by one, ten or a hundred. Interviews conducted during
March included a question focusing upon children's conceptualisation of adding one.
Fifteen children were asked: "What comes next after three hundred and seventy
nine?" and then "How did you decide that?"

The results of these interviews suggested that three quarters of the children were
influenced by these experiences. The separate digit reasoning of the pupils has traces
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of the single-digit representation involving changing individual digits of a number.
Two thirds of this 'influenced' group (9 children) obtained the correct solution:

Hazel Because urn three hundred and seventy nine we have to change the urn ten, we have to
change the 7 to an 8 and we take 9 to an oh.

Elspeth Well when you add, you said that it was seventy nine, and add one on and it equals to
seven, so, eighty because when you add one on to 9 it has a nought at the end.

Brian Well you just urn well urn you don't think about the first number, well, you don't
change the first number but you urn you have to change the second two numbers
because it's gone on to a nine and it's like going on to a ten

However, one third of those who made use of separate-digit reasoning attempted to
add one to the wrong digits:

John

Ann

Christine

... 389 ... I changed the ten to the next

4 hundred . 480 'cause if you just keep it on 3 it wouldn't be right

... 4, ... 5 hundred, and, ... fifty. Well I was thinking about, I added one more on to,
the units makes ten and then I, added it on so it was 4 made 5, the hundreds, and 7
would ... uh... becomes 5 little dots

The use of words such as 'change', 'changed' and 'gone on to' suggests that these
particular pupils' representations are image-like in that there are spatial allusions to
the teacher's representation and an echo of the teacher's words. It is conjectured that
these representation-specific words are not those that the children would use if their
mental representation were simply based on counting.

A final group of children, approximately one quarter of the number interviewed,
reflected a more powerful form of knowledge construction based upon a deeper
conceptualisation of numeracy.

Jack(1/4) 'cause you know 79, eighty , just add a hundred to it, 380.

Clara(20/4) 'cause urn I know, I know the hundred well what comes after 79 is 80

Steph(20/4) ... 380 I added one on I added another one on.

Representational Consistency
The pupils were interviewed again in early July. In the period between the two
interviews the children had many lessons in which adding tens by increasing the tens
digit was demonstrated and practised with Dienes Blocks and Numeral Cards. Nine
pupils were given verbally-presented questions requiring addition of ten in both
interviews. There are striking similarities in the language they used in response. For
example

March interview: 81 add on 10
Cora ninety one. You just add one, I know nine

comes after 8.
Jack ninety one. If you just go 8, 9 then you

just make it into a ten and you put the 1
on, ninety one

Christine well I, ... sort of ignore the units for a
minute and just added like a ten on.
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July Interview: .38 add 10
I just add one onto the tens

... forty-eight. I know my ten times table
and then I just put the eight on

I would leave the un... units and just add
on ten



Mandy

Brian

well cause in Mr K's we did adding on ten
and I remembered cause 81 add on 10 is
91
well I just change the tens and I just leave
the units.

Well we did it in Maths and he just said
you add on ten so it would be the same

Well 'cause all you have to do is add the
ten. You leave the units

In July questions on 2-digit addition and subtraction showed that half of the pupils
used the same form of words for each, indicating reference to similar images or
perhaps a single image of 2-digit manipulation. Some children's representations
were very close to the teacher's written algorithm which he based on Dienes Blocks.
There is evidence here of a proto-typical image being recalled and described to
explain their calculation

DISCUSSION
Gray and Pitta (1996, 1997) indicate that there are qualitative differences in the
images formed and used by pupils of different abilities. They suggest that some
children continue to mentally reconstruct the numerical procedure rather than
encapsulate it. Lower achievers tend to use pictorial and iconic representations and
attempt to mentally manipulate images of these. High achievers more often have
symbolic images that appear to act as thought generators and memory aids. The
divide between high and low achievers is also apparent in the images they project of
concrete nouns (ball, car) and abstract nouns (five, fraction). Pitta goes on to
conjecture that children may have a disposition toward different kinds of mental
representations which transcends arithmetical and non- arithmetical boundaries
(Pitta, 1998).

In this paper it is assumed that initially the image a learner uses when thinking about
a piece of mathematics is an amalgam of verbal and non-verbal information derived
directly from perceptual experience of the teacher's representation. Paivio (1986)
notes that such a representation of past episodic experience has been refered to as a
`memory trace'. The 'image' is subsequently augmented, however, by the learner's
experiences of using both external and internal representations. Furthermore an
image may no longer be evoked when automatic recall of a known fact replaces it. It
would appear that some pupils seem more capable than others of constructing an
efficient proto-typical image that embodies the structure inherent in the
representations whilst disregarding surface characteristics. Some pupils mentally
manipulate digits to decide 380 follows 379, for others it has become a known fact.
Some continue to count-on for 2-digit addition, others use a mental analogue of the
written algorithm and yet others count on in tens and ones.

The preliminary study in this paper provides evidence of the relationship between
the teacher's representations and the pupils' images. It also suggests that the images
can remain unchanged over a short time scale. Knowledge construction in arithmetic
and algebra requires a cognitive shift to encapsulate active aspects of arithmetic into
numerical concepts. The abstraction, which is the essence of this shift, requires that
the surface characteristics of, and actions on, representations that are didactic
transformations of the mathematics be eventually overshadowed. It remains to be
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seen whether or not Kosslyn's representational-development hypothesis is applicable
to images used for mental calculation and place value and whether mental
representations formed in mathematical and non-mathematical contexts follow
similar development in individuals. A longitudinal study may resolve these issues.
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Problem solving processes in geometry.
Teacher students' co-operation in small groups: A dialogical approach

Raymond Bjuland, University of Bergen, Norway

This project investigates how students' mathematical understanding develops in a social context
and when using mathematical language in small group dialogues. The empirical material has been
collected by means of an ethnographical research method, while the analysis of group discussions
and the reconstruction of the students' problem solving processes are based on a dialogical
approach. The theory is presented in two categories: problem solving and cooperative learning.
The participants were first term teacher trainees at a Norwegian college of education in the autumn
of 1996. In this paper two episodes which illustrate some aspects of the dialogues are presented
The students have created an open atmosphere in the groups. Their reflections during the solution

process and their social skills play an important role in order to develop their mathematical
understanding.

1. Introduction

In this paper I will give a brief overview of my ongoing research. I am working on a
doctoral thesis and the preliminary title is: 'Problem solving processes in geometry.
Teacher students' co-operation in small groups: A dialogical approach'. I focus on
two perspectives.

The first perspective is to identify the students' mathematical thinking and
understanding, their social skills and different affective characteristics. My research
questions concerning the first perspective are: What mathematical thinking and which
social skills can be identified? Which affective characteristics, like joy, frustration,
willingness and endurance to work on the problems are prominent in the small group
dialogue?

The second perspective is to analyse how students in three small groups develop
their mathematical concepts through social interaction and to analyse how the students
reflect on the solution process. Here I investigate similarities and differences in the
three groups of students as far as the following research questions are concerned: How
do the students reflect on the solution process? How do the students develop their
understanding of mathematical concepts through the social interaction?

The empirical material is based on a group project on problem solving in
geometry. The project was carried out on teacher trainees in their first term at a college
of education in the autumn of 1996. One hundred and five students attended the
course, and they were divided into groups of five.

The material consists of fieldnotes from observation in three randomly chosen
groups of students with 8 lessons in each group, tape recordings from the same lessons
and the reports of all the groups. So far, I have started a qualitative study of three
groups of students where the students' dialogue in the groups and the reconstruction of
the solution process for the mathematical problems are analysed.
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In this paper two episodes which illustrate some aspects of the dialogues based
on my first perspective are presented.

2. Theoretical Background

The theoretical material consists of five categories: problem solving, cooperative
learning, affective aspects, classroom research, and social and cultural aspects. In this
paper I focus on two of the categories: problem solving and cooperative learning.
These areas play an important role when it comes to pupils' work on problems in a
social context. The research literature is quite comprehensive for each of these areas
and different traditions of research have different approaches. I therefore limit my
presentation to some important studies related to my work.

2.1 Problem solving

Much attention has been paid to the concept of problem solving in the American
literature from 1970 and onwards (Silver 1987; Schoenfeld 1985, 1992). In the
literature the concept has been used with multiple meanings that range from 'working
rote exercises' to 'doing mathematics as a professional' (Schoenfeld, 1992, p. 334).
Schoenfeld defines a mathematical problem in the following way:

Tor any student, a mathematical problem is a task (a) in which the student is interested and
engaged and for which he wishes to obtain the resolution, and (b) for which the student does
not have a readily accessible mathematical means by which to achieve that resolution.'
(Schoenfeld, 1993 p. 71)

Schoenfeld (1993) also emphasises that it depends on the pupils' prior knowledge if a
task is a real problem. He claims that most exercises in textbooks are not real
problems since they often can be solved by means of a well-known algorithm. He
points out that a problem must confront a student as a difficulty. It is this
understanding of a mathematical problem that forms the basis of my work.

Metacognition is another concept which has played an important role in the
American literature during the 80s and the 90s (Silver 1987; Schoenfeld, 1985, 1992).
This concept, which is related to problem solving, also has different definitions in the
literature. According to Barkatsas & Hunting (1996) there is however one definition
which is generally accepted, having incorporated two important aspects of
metacognition: to monitor and regulate ones own cognitive processes. The students'
monitoring and reflections on the solution process are an important starting point of my
analysis.

Two models are of vital importance as far as the mathematical solution process
is concerned (Polya, 1945, Borgersen, 1994). The models show different stages in the
problem solving process. The stages are not linear, but they must be seen as dynamic
and cyclic.
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Schoenfeld (1992) is concerned with developing a theoretical framework in
order to analyse complex problem solving behaviour. He raises two important
questions: What does it mean to think mathematically? How can we help pupils to
think mathematically? His framework consists of five categories (the knowledge base,
problem solving strategies, monitoring and control, system of beliefs and
socialization). These categories form the basis of my analysis of the students'
mathematical thinking.

Lester (1994) gives an overview of the problem solving research during the 70s,
80s and into the 90s. He is worried about the decline of research within this field in the
USA. He emphasises that there is still a need for more research on problem solving
instruction. Lester suggests that research should focus on the role of the teacher, the
interaction between teacher-student and student-student and on groups and whole
classes rather than individuals.

2.2 Cooperative Learning

The social psychologist, Kurt Lewin was concerned with cooperation in groups in the
30s and 40s. Morton Deutsch (1949) continued to work within this field. The tradition
from Lewin and Deutsch went on in the 60s, 70s and 80s in the direction of more
practical, methodological implications of teaching on all school levels. A method
called 'Learning Together' which is developed by David and Roger Johnson at the
University of Minnesota, has inspired Norwegian researchers to develop cooperative
learning in Norwegian schools (Haugalokken, 1987; Digre & Solerod, 1993).

Johnson & Johnson (1990) give some advice how cooperative learning can be
used in mathematics. They suggest some basic elements in cooperative learning. These
elements (positive interdependence, promotive interaction, individual accountability,
interpersonal and small group skills, and group processing) have formed the basis of
my analyses when it comes to the identification of the students' social skills.

In recent years, researchers of different theoretical traditions have focused on
the activity of the classroom where the social interaction between teacher-student and
student-student plays an important role. Cestari (1998) has used a dialogical approach
in order to explore communication in the classroom. The aim of her research was to
identify how mathematical concepts develop through language, in a dialogue between
teacher and student (see Cestari, 1997a, 1997b). Such a dialogical approach has been
the basis of my analysis of the communication in the small groups.

3. Method

Three groups of students were observed, and 8 lessons were tape-recorded in each
group. I was a non-participating observer. The empirical material consists of these
observations, fieldnotes and group reports. A dialogical approach has been used to
interpret and analyse the conversation of the students. A dialogue is characterised by
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`an interaction, in temporal and spatial immediacy, between two
or more participants who face each other and who are intentionally conscious of, and
orientated towards each other in an act of communication' (Markova & Foppa, 1990, p. 6).

This definition is the basis of my analysis of the dialogue between the students in their
learning processes. I analyse each utterance by examining the turns both before and
after the utterance. In this way, every single utterance is analysed and put into a wider
context. An utterance is maybe caused by an earlier idea or a statement in the dialogue,
and we get an idea of how the utterance is related in the context. By using this
dialogical approach, I try to identify what kind of social interaction is established by
the members of a group and how they verbalise their mathematical reasoning in this
social context.

The transcription of the dialogue of each group session has been divided into
episodes which are related to the research questions on the two perspectives. A new
episode starts when there is a natural change in the conversation, maybe a pause or a
new idea, a statement or a question that generates new thinking processes between the
students.

Every single episode will be analysed on three levels. The first level analysis
describes what the students say. The second level analysis is my interpretation of each
utterance. On the third level I discuss my description and interpretation and link it to
related literature. The levels are not separated, but together they will form a unit for
each episode.

4. The context of the study

A new, private college of education was founded in the autumn of 1996 in Norway.
The first year 105 students attended the school, and they all participated in the problem
solving project on geometry in small groups. The students attended the course in their
first term at the college. The students were divided into project groups of five by the
administration (21 groups), and three groups were randomly selected for observation.
In the project period all groups got their own room.

5. Presentation of data

In Bjuland (1998) I introduced four episodes from the dialogue of group A, which
show some important aspects of my study. In this paper I present two episodes: The
first episode from group A identifies some of the student reflections during the solution
process, while the second episode from group B is concerned with the interaction of
mathematical understanding and social skills. Both episodes are selected from the first
group meeting of the groups, and the students are in the process of solving the
following problem:
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Choose a point P in the plane. Construct an equilateral triangle in such a way that P is an inner
point and the distances from P to the sides of the triangle are 3, 5 and 7 cm respectively.

5.1 Student reflections as part of the solution process

The students of group A have only been working on the problem for some minutes.
They have drawn a model, and they have constructed three circles with radius of 3, 5
and 7 cm respectively, with P as centre. This episode focuses on the students' first
reflections on the solution process.

134. Unn: So, we have to construct the tangents...
135. Roy: Eeh...yes
136. Unn: Haven't we done this in an earlier problem?...
137. Liv: What?
138. Unn: Constructed the tangents?...(6 sec)...

Roy and Liv study the figure of the triangle that Roy has drawn

143. Unn: We are able to construct those tangents...aren't we?...(9 sec)...
144. Roy: An equilateral triangle where P is an inner point and the distances from P to the sides
145. are three, five and seven centimetre respectively...
146. Liv: So, it is an equilateral...
147. Roy: Yes, that's true...you have a point there...
148. Unn: We have to read the problem...(Liv is laughing)...
149. Roy: Wait a moment...is it when all sides are equal?...
150. Liv: Yes...
151. Roy: Yes isosceles is two sides...this isn't correct then...(Liv is laughing)...then we have to
152. give up what we have done so far...
153. Liv: I think I write it on the blackboard (READ THE PROBLEM)
154. Roy: But...eeh...since it is an equilateral...then all angles must be sixty degrees...

Unn starts the episode by focusing on the construction of the tangents (134). She
defines in a way the next step in the solution process. Roy has just drawn a model, and
perhaps his brief response (135) suggests that he is busy studying it. The next question
from Unn (136) shows that she tries to invite the other students to take part in the
discussion on how to construct the tangents. It seems like the students have solved a
similar problem before, and Unn is now reflecting upon whether the other problem
could be helpful in the solution process. By looking back on an analogue problem, Unn
tries to put the problem into a familiar context. According to the research literature
(Polya, 1945; Schoenfeld, 1985; Borgersen, 1994), such a reflection could be an
important problem solving strategy in order to succeed in solving a problem. The brief
question from Liv (137) invites Unn to repeat the idea of constructing the tangents
(138). The pause (138) could' suggest that Unn has to wait for a response to her last
utterance (138). Roy and Liv are still studying the figure of the triangle.
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The dialogue shows that Unn repeats the idea of constructing the tangents (143).
She has now repeated this idea three times (134), (138), (143). When her utterance is
ended by a question (143), she is inviting a response. On the other hand, it seems as if
Unn is patient and gives the other students some time (143) to reflect on her idea.
Leder (1987) refers to some studies where teachers after introducing a question, only
allowed students to think for one second before giving an answer.

Instead of responding to Unn's question (143), Roy breaks the silence by
reading the problem once more (144), (145). We see that the students' solution
process is not linear and straighforward, but it is dynamic and cyclic. When they look
back and study the problem, Liv recognises that it has to be an equilateral triangle
(146). The section (144) - (148) shows that the students have discovered that they
missed important information the first time they read the problem. Roy reads the
problem (144), Liv discovers the missed information (145), while Unn emphasises
how important it is to read the problem carefully (148). We see how all the students
contribute in the mathematical discussion.

Roy's question (149) may show that he is not certain of the differences between
an equilateral and an isosceles triangle, but on the other hand, he does perhaps invite
the group members to be aware of the characteristics of these triangles (149) - (151).
Roy recognises that they have to give up what they have done so far (152), and Liv's
writing on the blackboard suggests that she really wants to stress how useful it is to
read a problem carefully before starting the implementation (153). It seems that the
students have made a useful experience. Roy's statement (154) suggests that the group
members have got a better understanding of these special triangles.

We see how the students' reflections could help them to put the problem into a
familiar context. When they look back and read the problem once more, they also
experience how important it is to study a problem carefully before starting work on it.
The reflections may help the students to develop their understanding of an equilateral
and an isosceles triangle. We also see that the students' solution process is not linear
and straightforward, but dynamic and cyclic.

5.2 The interaction of mathematical understanding and social skills

In group B the students have read the problem, and they have constructed three circles
with radius of 3, 5 and 7 cm respectively, with P as centre. The mathematical
discussion shows that the students intend to construct tangents to the circles by
constructing angles of 60 degrees and displace parallels to each of the circles. The
students are not sure how to do it. Jon and Maj discuss how to continue the
construction, while Eli helps Siv to construct an angle of 60 degrees.

263. Jon: Are we ready to work together again?..(inaudible talk)...
264. Eli: If you just try without the circle once...you just take a line...
265. Siv: Yes...
266. Eli: Then you put a dot on that line...
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267. Siv: Minm...(5 sec.)...
268. Eli: Then...
269. Siv: Yes
270. Jon: Yes, that's nice
271. Eli: Then you put the compasses...
272. Siv: We have some basic learning...
273. Jon: Yes, that's nice

Jon's question (263) suggests that he and Maj may have got an idea of how to go on
with the construction, and now he is concerned with introducing the idea to the other
students. On the other hand, Jon's question could also be an invitation to the rest of the
group to participate in the same discussion. It seems as if Jon is aware of how
important it is to work together on the problem.

Jon does not get any response to his question. Eli goes on helping Siv with the
60-degree construction (264). It is important to notice that Eli does not want Siv to
focus on the circle, but just to focus on the angle. Eli has perhaps seen that doing this
construction could be a difficult exercise for Siv. It seems as if Eli tries to simplify the
situation for Siv by suggesting that Siv should not think of the circles but 'just take a
line' (264). The brief response of Siv (265) shows that she has understood what to do,
and Eli then continues the explanation (266). The dialogue shows how Eli gives help to
Siv step by step, by 'just take a line' (264), then 'put a dot' (266), and Siv makes brief
responses (265), (267). The pause (267) could suggest that Siv gets time to think and
reflect on each step.

It is interesting to emphasise that when Eli breaks the silence (268), she does not
continue the step by step instruction (271) until Siv has confirmed that she is ready
(269). The social interaction between the two girls shows an open atmosphere where
Eli, who operates in the role of a teacher, is really concerned with helping Siv with the
angle construction. Jon (270) indicates that he has been listening to the instruction and
is aware of what the two girls are doing. Instead of being impatient to continue the
construction, Jon praises the work of Siv and Eli. This also suggests how the group
members try to establish an open learning environment. Siv informs the other students
of the 'basic learning' (272) Eli gives her. It is possible that Siv feels her lack of
knowledge is an obstacle for the progress of the solution process, but the response of
Jon (273) shows that she has nothing to fear. He still appreciates what the two girls do.

The dialogue shows how one student is concerned with helping another student
to understand a basic construction. We see that the group members are determined to
have a common starting point in the solution process so they are able to participate in
the mathematical discussion. We see the students helping, listening to, respecting, and
encouraging each other. This suggests that the students have developed their
interpersonal and small group skills, which according to Johnson & Johnson (1990),
are basic elements in cooperative learning.



6. Summary

In this paper I have given a brief overview of my research on problem solving

processes in geometry as teacher students cooperate in small groups. Two episodes are
presented to illustrate some aspects of the group dialogues. The episodes suggest that
the students really want to participate in the mathematical discussion, and it seems as if
they already at the first group meeting have created an open learning environment in
the groups. The students' solution process is not linear and straightforward, but
dynamic and cyclic. The dialogues show that the students' reflections on the solution

process and their social skills play an important role in order to develop mathematical

understanding.

References
Barkatsas, A.N. & Hunting, R. (1996). A review of recent research on cognitive, metacognitive and affective

aspects of problem solving. Nordic Studies in Mathematics Education, 4, (4), 7-30.
Bjuland, R (1998). Lwrerstudenters matematiske tenkning og utvikling i en sosial kontekst. Problemlosning i

smAgrupper. Nordisk matematikkdidaktikk, 6, (2), 41-66.
Borgersen, H.E. (1994). Open ended problem solving in geometry. Nordisk matematikkdidaktikk, 2, (2), 6-35.
Cestari, M.L. (1997a). Abandoning some certainties: The social construction of knowledge in the mathematics

classroom. In A. Tjeldvoll & I.S. Holmesland (Eds.). Globalization and Education. Essays on Quality of
Equality. University of Oslo, Institute for Educational Research. Report no. 10.

Cestari, M.L. (1997b). Communication in mathematics classrooms. A dialogical approach. Doctoral thesis by
the Faculty of Education, University of Oslo, Norway.

Cestari, M.L. (1998). Teacher/Student communication in traditional and constructivist approaches to teaching.
In M.B.Bussi & A.Sierpinska & H. Steinbring (Eds.), Language and communication in the mathematics
classroom, 155-166. Washington: NCTM.

Deutsch, M.(1949). A theory of cooperation and competition. Human Relations, 2, 129-152.
Digre, L. & Solerod, E. (1993). Samarbeidskering i matematikk. Halden Lxrerhogskole, Norge.
Haugalokken, O.K. (1987). Elevsamarbeid og holdninger i klasserommet. Hovedoppgave, Pedagogisk Institutt,

Universitetet i Trondheim, Norge.
Johnson, D.W.& Johnson, RT.(1990). Using cooperative learning in math. In N. Davidson (Ed.), Cooperative

learning in mathematics. A handbook for teachers, 103-125. Menlo Park: Addison Wesley.
Leder, G.C. (1987). Teacher student interaction: A case study. Educational Studies in Mathematics 18, 255 -

271.
Lester, F.K. (1994). Musings about mathematical problem-solving research 1970-1994. Journal for Research

in Mathematics Education, 25, (6), 660-675.
Markova, 1. & Foppa, K. (Eds.) (1990). The dynamics of dialogue, New York, NY: Harvester Wheatsheaf.
Polya, G. (1945; 2nd edition 1957). How to solve it. Princeton, NJ: Princeton University Press.
Schoenfeld, A.H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
Schoenfeld, A.H. (1992). Learning to think mathematically: Problem solving, metacognition and sense making

in mathematics. In D.A. Grouws (Ed.), Handbook of research on mathematics teaching and learning,
334-370. New York, NY: Macmillan.

Schoenfeld, A.B. (1993). Teaching mathematical thinking and problem solving. Sdnn, Jal Rapport fra en
konferanse om matematikkdidaktikk og kvinner i matematiske fag. (Arbeidsnotat 2/93, s. 67-89), Oslo:
Norges forskningsrad, Avd. NAVF Sekretariatet for kvinneforskning.

Silver, E.A. (1987). Foundations of cognitive theory and research for mathematics problem solving instruction. In
A. Schoenfeld (Ed.), Cognitive science and mathematics education, 33-60. Hillsdale, NJ: Lawrence
Erlbaum.



CHALLENGING THE ESOTERIC:
LEARNING TRANSFER AND THE CLASSROOM COMMUNITY.

Jo Boaler, Stanford University, California.

In this paper I use the perspective of situated cognition to analyse the results of paired
interviews with 76 students from six schools. The students' perceptions about the
individual, abstract or 'esoteric' nature of school mathematics environments are used
to challenge traditional models of teaching, on the grounds that they problematise
movement from the communities of practice of the classroom to those of the socially
constituted World.

The Oxford Dictionary defines the esoteric as that which is accessible only to 'the
initiated, not generally intelligible, private (and/or) confidential'. I intend in this
paper to show that a range of features of the traditional mathematics classroom
(Boaler, 1997a; 1998), contribute to the esotericism of the classroom environment
and, in so doing, limit the usefulness of the mathematics that students learn. I shall
draw upon data from an ongoing research project that is studying the mathematical
learning of students in six schools in England (Boater, Wiliam & Brown, 1998). The
aim of the project is to monitor the impact of teaching method and ability grouping
and the interaction between the two, upon students' understanding of mathematics. In
a series of paired interviews with 76 students from the six schools, a range of factors
emerged that the students cited as limiting their understanding. The relationship
between these factors and the peculiar or esoteric nature of the mathematics classroom
will be the focus of this paper.

Situated perspectives on learning (Lave, 1988; Wenger, 1998) move the focus of
research away from individuals and their construction of knowledge (Lerman, 1996)
towards the broader communities of practice in which people operate and the relations
formed between people and systems of their environments. Lave has challenged
traditional notions of 'learning transfer' as they suggest that knowledge exists,
independently of the World, and may be taken from one place to another, impervious
to context, situation or process of travel. But whilst the 'transfer' term may be
inadequate because it suggests a view of cognition that is distinct and separate from
the social world in which it is constituted, it is clear that people function in the World
through a process of using, applying and adapting learned knowledge. One of the
main purposes of school is to prepare students to use the knowledge they learn in the
classroom, in the rest of their lives. Mathematics education appears to be particularly
problematic in this regard, as a range of research projects have shown that students are
unlikely to use the mathematics they learn in school in any other places (Masingala,
1993; Nunes et al, 1993), resorting instead to their own invented methods. I will
suggest in this paper that this problem arises, in part, from the fact that mathematics
teaching is often based upon narrow models of the mind and learning transfer.
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Research Methods

The six schools in the study are located in five local education authorities in England.
Some of the school populations are mainly White, others mainly Asian, while others
include students from a wide range of ethnic and cultural backgrounds. Approximately
1000 students are being monitored as they move from year 8 to year 11. Research
methods have included approximately 120 hours of lesson observations during years 8
and 9 (ages 12-13) and 38, in-depth, interviews with single-sex pairs of year 9
students. This has included 4 students each from a high, middle and low 'ability'
group in the 4 schools that use ability grouping and students from a comparable range
of attainment in the 2 schools that teach mathematics to mixed ability groups.

In interviews with the 76 students, students were asked, amongst other things, to
describe what they liked and disliked about mathematics lessons, they were asked to
describe particularly good and bad lessons, and they were asked to contrast their
current experiences of mathematics lessons with experiences in previous years. In
most cases the same questions were asked of students, but as interviews were open,
allowing the interviewer to respond to issues that the students raised as important,
some questions were not asked of all students. The conversations with students were
coded, using a process of open coding (Glaser & Strauss, 1967). A number of issues
emerged from the interviews that the students cited as significant to their learning of
mathematics; four of the themes related to the unusual, particular or esoteric nature of
mathematics classrooms in a particularly significant way and these themes will be the
subject of this paper.

Research Results

Monotony

In the UK, mathematics teaching is characterised by a strict adherence to a particular
scheme, with a scheme usually comprising a series of mathematics textbooks or
workcards. In the six schools that are being studied, two use the SMP 11-16 scheme;
one uses Oxford mathematics textbooks; one uses the SMILE workcard scheme, one
uses 'Task Mathematics' textbooks, another uses NMP textbooks. All six of the
schools rely upon their particular scheme to a large extent, with 90% or more of
lessons requiring students to work through books or cards. In approximately 120 hours
of observations, researchers observed students working through books or cards, with
no practical, investigational or group work; although students did report that they were
given occasional investigations or open-ended tasks each term.

At the beginning of the interviews all of the pairs of students were asked to describe
their mathematics lessons. Fifty-two of the 76 students immediately communicated
the lack of variety they experienced, with words like 'just' and 'every' being used in
almost all of the student descriptions, for example "we just work through books every
lesson". Sixty of the students were also asked if they could describe a lesson that was
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particularly good, a lesson that stood out for them as being enjoyable. Twenty-two of
the students simply answered that they could not. Two students laughed at the
suggestion that a mathematics lesson could be particularly good, one said that she
would have to "have a really long, hard think" and most explained that they could not
think of such a lesson because mathematics lessons were "all the same". Twenty of
the 22 students who said that there were no particularly good lessons were girls. Nine
of the 19 students who could think of a good lesson, chose one in which they had
abandoned their normal work and completed a project or investigation. Three students
chose lessons when they 'didn't do any work', four students chose lessons by the
same teacher who was popular, mainly because he used a variety of approaches. Only
three students chose lessons involving the books or workcards that they used in the
vast majority of their lessons. For example:

P: Every day we was copying off the board and just doing the nextpage or the next
page or the next page and it gets really boring. (Paula, School A).

I. The lessons can be a bit tedious, the same thing every lesson.
J: Just the same thing for weeks on end. (Isaak & Jake, School F).

When students were asked to describe subjects that they particularly liked or that
contrasted with mathematics, many of their descriptions centred upon variety:

I. For instance in English you're doing different topics, like once we did
Shakespeare, now we are doing a magazine and stuff like that. (Ishak, School F)

The monotonous nature of school mathematics lessons was an important,
distinguishing feature of mathematics for the students.

The Individual Learner

Grouping decisions are commonly made in UK schools, with individuals being moved
into teaching groups according to perceptions of 'ability' or some other factor, with
the assumption that groups are made up of separate individuals and that relationships
between students have minimal impact upon their learning. Yet many of the students
interviewed, cited their relations with other members of the group as the most
important factor influencing their predilection towards mathematics. Four of the six
schools in our study had recently changed the grouping of students from mixed
ability, to `setted' ability grouping, with students regarded to be of similar ability
placed into the same groups for mathematics and taught work at particular levels. This
meant a change in teacher and teaching method, as well as level of work, for the
majority of students. Seventy of the students were asked whether they preferred
working in mixed ability or setted groups. Fifty-one (73%) chose mixed ability
groups, 19 (27%) chose setted (11 of these students came from intermediate groups,
neither high nor low groups were popular with students see also Boaler, 1997b).
What was particularly significant for this analysis was that 31 of the students cited the
relationships they had formed within groups as the main reason for their preference:
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N: Some people, they don't like see what set they are in, they see what people are

in their class. (Nigel, School R).

The impact of students' relationships with classmates, upon their attitudes towards

and learning of mathematics, was a totally unexpected outcome of the research:

A: I prefer being with my class because you know everyone and you get on with

more people. In this class you don't know everyone and it's difficult (Aisha,

School T39.

P: I think it makes us better when we are as a form, because when we are as a

form, that is you learn. Like, if you know that's like your group of people you don't
feel shy to do anything in front of them or anything. (Paula, School A)

The importance of the relationships formed between students also emerged when
students were asked about the way they moved forward in mathematics when they
encountered a difficult problem. Forty-five out of 50 of the students asked, said that
they found it more helpful to ask other students for help than the teacher. This
suggests that the relations formed between students were formative at an important

point in their learning, when they needed to learn something new and possibly

experience cognitive conflict. Another indication of the importance of student
relationships was revealed when students were asked to describe their favourite

lessons. Many of the students' descriptions centred upon the rare opportunities they

received to work with others:

R: I like the ones when we do experiments, when we are in a group, again. So you

can work in a group, so if anybody is stuck on anything you can help people and if

you are stuck you can ask people for help." (Ruby, School C)

C: Frogs (investigation) was good because everyone was involved
A: It was fun because everyone likejoined in with it and everything. We all had a

go with it didn't we? (Carla & Ann, School R)

The significance students placed upon their relationships with other students is
perhaps unsurprising, given that most adults would probably cite relationships with

colleagues as important factors impacting upon job success and satisfaction. The
formation of student relationships is however, a factor that is rarely considered by
schools and absent from many analyses of learning. This seems to be particularly

significant for mathematics education as the majority of mathematics classrooms in

the UK place a premium upon individual work. In the six schools in our study
students were allowed to talk to each other as they worked, but none of the teachers
encouraged discussion as a form of mathematical thinking or learning, except for
during occasional lessons. It seems significant that the social relations formed between
students and the discussions they held with each other, were cited by many students as
the most important feature of their learning, yet this social dimension was largely
downplayed or ignored in the schools, by virtue of the mathematics approaches
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employed. The students located their learning of mathematics within a broad, social
domain, which is entirely consistent with situated perspectives on learning, whilst the
schools regarded the students as individual learners.

Lack of Meaning

Many students regard the purpose of mathematics lessons to be the memorisation of
procedures (Boaler, 1997; Schoenfeld, 1985). Teachers of mathematics introduce
methods and procedures to students in the hope that students will learn and understand
the procedures, as well as link the different procedures to the broader mathematical
domain. But, as Mason points out, this does not always happen: 'To the teacher they
are examples of some good idea, technique, principle or theorem. To students they
simply are. They are not examples until they reach examplehood.' (Mason, 1989
p29). The distinction between the teachers' intention to demonstrate examples of a
broader phenomenon, and the students' inclination to view the examples as facts to be
learned, is revealed by the fact that teachers rarely regard mathematics as a subject
which involves a lot of memorisation, whereas students often do:

F: It's because maths is different from other subjects. You have to know the facts
and remember them, (...) remember the rules and stuff, remember which way goes
that way and there's just a lot to remember. (Fiona, School 140

In the six schools in our study, many of the students appeared to regard mathematics
as a vast collection of rules and equations that held little meaning for them:

A: It's because there are so many equations and stuff
L: It's hard and it boring.
JB: It's different to other subjects then?
A&L: Yeah.
L: Some of the questions are so hard and so weird. (Aisha & Lena, School Pr°

C: I look at it right, and it looks like Greek on the page, sometimes and it's like
what? (Cheryl, School C)

Conversely, when students talked about subjects they liked, they often related their
preferences to the meaning the subjects held, and their relationship with the World:

H: (In science) you learn about normal things in life, that you don't really know,
like energy. Energy and stuff and acids and all that, stuff inyour own homes."
(Harnack, School W)

P: (In geography) you learn about people and places andyou get to research and
stuff researching places, statistics from countries and things. (Peter, School H)

C: History is like learning what happened in the past and how its affected us now.
(Charlie, School W)
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The students talked about working hard in other subjects because they were genuinely
interested in the content of the subject. Those students who were motivated in
mathematics seemed only to be inspired by the prospect of gaining correct answers.
None of the students' descriptions of mathematics gave any indication that the
students were encouraged to appreciate the beauty of the subject, the creativity
possible in the exploration of problems, or the links between mathematics and life:

DW: Do you ever work hard on something just because you are interested in it?
C: Yeah, but not in maths. (Colin, School R)

The distance between the World of school mathematics and anything that was
meaningful or real for the students carries obvious implications for students'
enjoyment of mathematics, but the students' perceptions also convey the esotericism
of the school mathematics community within which they were required to operate.
This may carry a significance that extends beyond enjoyment. Being good at
mathematics in such a community, appeared to some students to involve being less
than human:

M: Like we are robots. All we want to do is work like. But in the other classes it's
different (Mitch, School A)

The students' perceptions of the unrealistic nature of school mathematics may account
for the fact that 30 of the 42 students asked, said that they could see no links between
the mathematics of the classroom and the rest of their lives, for example:

S: It's got no connection. It's just something to make you think (Suthida, School

M: I just think I am never going to see this again you look at some things and you
think I am never going to see this again, so what is the point? (Moynur, School H)

A: You learn stuff that you think, oh God, what am I going to do with this? Why am I
learning this? (Amy, School C)

Discussion and Conclusion

Situated theories posit learning as an 'aspect of changing participation in changing
"communities of practice" everywhere' (Lave, 1996, p150). Students do not just learn
cognitive structures and forms in mathematics classrooms, they learn to 'be' school
mathematics learners, becoming inducted into specialized and institutionalised forms
of knowledge (Dowling, 1996). My concern for the students in the 6 schools in this
study, as well as students in other specialised, esoteric mathematics environments, is
that the students regarded the mathematics classroom as sufficiently strange and
other-worldly that learning to `be' a mathematics learner, involved adopting the
identity (Wenger, 1998) of an 'alien' (Mitch, school A) or, at the very least, someone
who could abandon natural human desires to attain meaning and interact, socially,
with others. In a previous in-depth study of students learning mathematics in two
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schools (Boa ler, 1997a; 1998; forthcoming), I found that students who learned
mathematics in a traditional environment found it difficult using their school
mathematics in non-classroom settings. They related this difficulty to the fundamental
differences they perceived between the environments of school and the 'real world'.
Such environmental differences impacted upon the students' use of mathematics. The
results of these two studies both suggest that even when students learna mathematical
procedure in the classroom, if the community in which they learned mathematics is
abstract, individualistic and generally esoteric, they will find it difficult adapting their
participation in that community to any other.

In the late seventies and early eighties many schools and textbook publishers
responded to the awareness that students face difficulties using school learned
mathematics in their jobs and everyday lives, by placing mathematical examples 'in
context'. But the use of pseudo-realistic contexts (Boaler, 1993) appears to have
done little to enhance students' mathematical competencies in the 'real world'. More
recently researchers have advocated the use of meaningful problems that provide the
kinds of realistic constraints and affordances (Masingila, Davidenko and
Prus-Wisniowska, 1996) that students are likely to meet in their lives. This is an
important development, but I would like to suggest that our focus as mathematics
educators should extend beyond the mathematics problems given to students, to the
communities of the mathematics classrooms and the identities students develop in
relation to these. In addition to providing students with the opportunity to use
mathematics, and to choose, adapt and apply methods, we must recognise that
students' learning is socially constituted and that students need to interact with the
people and systems of their environment (Greeno & MMAP, 1998), in the
mathematics classroom as they do elsewhere.

The suggestion that mathematics teaching approaches should offer varied, realistic
constraints and engage students in discussion and negotiation is far from new. But
the situated perspective adds another dimension to such proposals. For if learning
mathematics entails more than the construction of cognitive forms, but of changing
participation in a range of communities, then a classroom community that lacks the
human and worldy qualities of social interaction and meaningful engagement, may
`bound' (Siskin, 1994) students' knowledge. Thus it is not the form of knowledge
that is in question, but its accessibility. Classrooms that appear 'alien', esoteric or
other-worldy to students may simply condemn their mathematical knowledge to
nether reaches of their minds, producing learning identities that lack compatability
with any other places.
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Abstract : Conditionality of statements (i.e. the fact that statements of theorems are implicitly or
explicitly shaped according to the "if A then B" clause) has been a peculiarity of theorems throughout
the history of mathematics and of various related fields. The aim of the research partially reported in
this paper is to detect and describe a set of processes of generation of conditionality in statements
(PGC) that is wide enough to cover the majority of PGCs that occur in different fields of
mathematics. In this paper we will describe four kinds of PGCs, along with some productive links
between these PGCs and the processes of construction of proof

1. Introduction
In our previous investigations we considered the conditionality of statements

(i.e. the fact that statements of theorems are implicitly or explicitly shaped
according to the "if A then B" clause) as a peculiarity of theorems throughout the
history of mathematics and various related fields. (see Boero and Garuti, 1994). We
also considered two possible ways of generating conditionality in the geometry
field, and posed the problem of finding other ways (see Boero et al, 1996). In one
case (that of generation of conditionality by a "time section" in the exploration of
the problem situation), a strong link was detected in students' protocols between the
process of generation of conditionality (PGC) and the process of construction of
proof (see Garuti et a, 1996).

The aim of the research reported in this paper is mainly to detect a sufficiently
wide set of PGCs and describe them in order to cover the majority of PGCs that
occur in different fields of mathematics. We will describe four kinds of PGCs; we
may add that no other PGC was detected in the examined protocols (see 4.1). In
addition, as part of our continuing research on the cognitive unity of theorems (see
Garuti et al, 1998), we will here describe some productive links between the PGCs
and the processes of construction of proof (see 4.3.).

This research may have important implications for mathematics education: it
seems to be possible (through suitable tasks) to let students experience different
kinds of PGCs that are important in mathematical activities concerning theorems
(see 5.).

2. Background Research
Psychology has always devoted much attention, in a developmental

perspective, to reasonings concerning conditionality (a landmark contribution in
this direction is the early scientific production of Piaget: (see Piaget, 1924, Chapter
2). More recently, psycholinguistic research has explored in depth the acquisition of
the "if... then..." clause, analysing its context-dependence and its links with other
aspects of mental development, in particular those related to mastery of causality
(see French, 1985 for a survey).

On the mathematicians' side, processes related to producing conjectures and
proving theorems have for decades been a fundamental point of attention: we may
quote Hadamard (1949), Polya (1962) and, recently, Thurston (1994).
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Progressively, this attention has shifted from descriptions of personal experiences
or very general statements to more precise hypotheses.

Recently, research in the fields of logic, foundations of mathematics and
artificial intelligence have converged on the need for understanding of how humans
actually produce conjectures, prove theorems and exploit the knowledge thus
acquired: "We do not yet see how humans are able to discover proofs, we cannot
yet explain how they affect the human mind" (Robinson, 1998).

Educational research too has focused on the topic of analyzing processes of
production of conjecture and construction of proof, in order to create suitable
learning environments and tasks to enhance them. Recent contributions in this
direction are the theoretical constructs of "transformational reasoning" by Simon
(1996) and "transformational proof scheme" by Harel (1998).According to Simon,

"Transformational reasoning is the physical or mental enactement of an operation or set of
operations on an object or set of objects that allows one to envision the transformations that these
objects undergo and the set of results of these operations. Central to transformational reasoning is the
ability to consider, not a static state, but a dynamic process by which a new state or a continuum of
states are generated" 1...] "[...] transformational reasoning is a natural inclination of the human
learner who seeks to understand and to validate mathematical ideas. The inclination, like many other
inclinations must be nurtured and developed [...J."
"It seems that transformational reasoning can serve several cognitive functions including, theorem
generation, making of connections among mathematical ideas and validation of mathematical ideas".

In our research about historical-epistemological, cognitive and educational
aspects of conjecturing and proving (see Boero & Garuti, 1994; Boero et al., 1995;
Boero et al, 1996; Garuti et al, 1996; Garuti et al, 1998) conditionality of
statements was a point of major concern.

Conditionality has been a crucial peculiarity of theorems throughout the history
of mathematics and of all related fields. Heath (1956) points out how conditionality
is always present in Euclid's "Elements" theorems, whether in explicit terms or in
implicit terms. In the latter case, the statement can be reformulated in order to
make the "if A, then B" clause explicit (for instance in the case of Pythagoras' well
known theorem, the usual statement "in a rectangular triangle, the square built up
on the hypotenuse... etc" can be reformulated as follows: "If a triangle is
rectangular, then..."). We may remark that, today, statements of theorems do not
differ from Euclid's as concerns conditionality. After Hilbert's revolution the
epistemological perspective has changed considerably as concerns the nature of
truth expressed by the statement of a theorem, the nature of postulates, the
requirements of proof. However, the formulation of a statement in (explicitly or
implicitly) conditional terms remains a peculiarity of theorems. Moreover, when
we consider the conditionality of statements we do not limit ourselves to the textual
property of statements. Its substantial importance in mathematical activities
concerning theorems lies in the fact that the proving process keeps the "if A then B"
clause as a crucial orienting reference for validating the statement. The difficulty is
to match this evidence about the importance of the conditionality of statements from
the epistemological point of view with a cognitive analysis of how it is generated
during mathematical activity of conjecturing and how it is linked to the proving
process.

Our research work on some PGCs detected in students' protocols (see Boero et
al, 1996) pointed out some peculiarities of those processes, related to management
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of virtual time and space variables in students' "inner visual space" (Vygotskij,
1978, Chap. I). In particular, we described in the following way a particular kind
of PGC detected in students' protocols:
"the conditionality of the statement can be the product of a dynamic exploration of the problemsituation during which the identification ofa special regularity leads to a temporal section of theexploration process that will be subsequently detached from it and then "crystallize"from a logicpoint of view ("if..., then ...)" .

We also found some links with the proving process(see Garuti et al, 1996).
Our next research work was aimed at finding other PGCs and determining more

precise links between PGCs and proving processes. In this paper we will describesome kinds of "transformational reasonings" (Simon, 1996) that intervene in
producing and proving conjectures (see 4.1.).

3. Method
Following occasional hints, a systematic investigation was performed onstudents' protocols concerning conjecturing and proving. We considered:

beginners' written protocols (grades from V to VIII), in order to explore some
basic PGCs not yet influenced by known patterns and complex analytictechniques; these protocols were used as sources of ideas about possible
generative processes;
undergraduate mathematics students' protocols, in order to validate the
definitions deriving from preceding analyses and make them more precise and
content-independent. Most were written protocols but some recorded dialogues
with the teacher were also considered. Students were attending mathematics
education courses on problem solving in the last four years.
A common production condition for all protocols was that in all cases the

educational setting should stimulate students to write or orally express their
thinking processes. In most cases this was done as real-time wording of their
intuitions and endeavors, in others as on the spot reports about their reasoning. Inthe case of undergraduate students, this was done by systematically exploiting their
written (or possibly recorded oral) solutions as anonymous texts to be discussed bytheir fellows, without any evaluation about correctness. In this way students
recognized exhaustive wording of processes as a necessity in order to get interesting
material for discussion. In the case of beginners, writing down reasoning was a partof the didactical contract in the classes engaged in Genoa Group Projects for
primary and junior high school.
The fields of mathematics involved were:

elementary plane and space geometry, arithmetic (properties of natural
numbers) and elementary algebra for VII-VIII graders: five tasks with more
than 20 protocols for each task;.
mathematical analysis, euclidean geometry, algebra and theory of numbers for
undergraduate mathematics: nine tasks, more than ten protocols for each task.

The analysis of students' protocols was performed following these steps:
first, detecting and trying to describe PGCs and their links with proving
processes as they arose in single, clear protocols (see later for some examples);
then, challenging the description through the comparison with other protocols(possibly by different students and in different fields of mathematics) that
presented similarities as concerns PGCs and their links with proving; and
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subsequently improving the description in order to make it content-
independent;
finally, trying to establish a common style of description among the different
PGCs that had been detected, trying to get an overall vision of them and show
any possible relationships, symmetries, etc. among them.

The reported results represent a final summary of what emerged during these
analyses. They are quite complete as concerns the four detected PGCs, they are far
from being exhaustive as concerns links with the proving processes.

4. Some Results

4.1. Processes of generation of conditionality
In order to make the presentation easier to understand, examples will precede
definitions. The examples will be given related to different fields of mathematics so
that "invariant" elements are highlighted. The following kinds of PGCs were
detected in the students' protocols, covering the different fields of mathematics.

PGC1.
For some examples concerning VIII graders, see Boero et al, 1996. Here are some others.

EX.1.1.: geometry field, undergraduate students. Task: "In the euclidean environment,
formulate and demonstrate, a conjecture concerning the possible existence of a minimum area among
the areas of all triangles obtained by closing an angle with straight lines passing through a point on the
bisecting line of the angle itself".

One student draws the configuration angle/bisecting line/point on the bisecting line and then
draws several straight lines passing through that point. Initially, these are sharply very inclined with
respect to the bisecting line, and on the same side; then come other lines close to the perpendicular line
and finally lines on the other side that strongly diverge from the perpendicular line. Afterwards, the
student states: "It seems to me that the areas of the triangles decrease as they approach the position ...
the perpendicular line ...1 see triangles growing and growing on one side without any balance on the
other side." (She shades in one large triangle emerging from the isosceles triangle and the
corresponding smaller incoming triangle. Perhaps the conjecture is: if the passing through line is
perpendicular to the bisecting line, the area gets its minimum".

EX.1.2.: algebra, undergraduate students. Task: "Let ax+by be an expression where a and b are
positive integers, x and y integers; find out under what conditions on a and b the expression
ax+by can assume its minimum positive integer value.".

A student writes: "Let me try: a=4 and b=6: 4 *1 +6 *1 =10; 4*2+6*1=14; 4*2+6*2=20. The
results are increasing; but...I can also use negative values for x and y: for instance,
4*2+6(-I)=2; 4*2+6(-2)=-4; 4*3 + 6(-2)=0; 4(-4)+6*3=2. It seems to me that the results can not go
lower than 2. I try with 3 and 5: 3*1+5(-1)=-2; 3*2+5(-I)=1. I reached 1, which is the minimum
positive integer value. It is easy now, perhaps because 3 and 5 do not have any common divisor (but
1).
The conjecture: if a and b do not have any common divisor (but 1), the minimum value is 1."

Generally speaking, a PGC1 can be described as a time section in a dynamic
exploration of the problem situation: during the exploration one identifies a
configuration inside which B happens, then the analysis of that configuration
suggests the condition A, hence "if A, then B".

PGC2.
EX. 2.1.: the study reported in Boero & Garuti (1994) concerned VII - graders who had to

express in general geometric terms "Thales' discovery" (i.e. the anecdote concerning the
determination of the height of a pyramid by exploiting the proportionality between the heights of
objects and the lengths of the shadows they cast).
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The following kind of reasoning was identified in 3 out of the 34 students: "The length of the
shadows is proportional to the height of the sticks; sunrays are parallel. But straight lines might not be
parallel. If the straight lines are parallel, the lengths of the segments cut by another two lines will be
proportional"

EX. 2.2.: undergraduate students. Task: "Can we always represent fix)=sin(Ax+B) by finite
linear combinations of products of integer powers of sinx and cosx?"

"It seems so, by applying the trigonometric formulas. For instance, if A=2 and B=3,
I can write: sin(2x+3)= sin2x.cos3+cos2x.sin3= 2sinxcosx.cos3 4-(cos2x-sin2x).sin3.

But A might be also: we cannot write sin= in that way. And also A=112 does not work: we
would need roots. On he contrary, if A is an integer, it works".

Generally speaking, a PGC2 can be described as: noticing a regularity B in a
given situation, then identifying, by exploration performed through a
transformation of the situation, a condition A, present in the original situation, such
that B may fail to happen if A is not satisfied.

PGC3.
EX. 3.1.: algebra, undergraduate students. Task: "Generalize the followingproperty: the sum of

two consecutive odd numbers is divisible by 4". Demonstrate the property found".
"Let me consider 3 consecutive odd numbers, e.g. 3+5+7=15 or 5+7+9=21. It seems to me

that only divisibility by 3, which is the number of addenda, emerges. I shall try with 4 consecutive
odd numbers: 3+5+7+9=24; 5+7+9+11=32; 1+3+5+7=16. What do 24, 32,16 have in common?
They are divisible by 8. I shall try with 6 consecutive odd numbers: 1+3+5+7+9+11=36;
3+5+7+9+11+13=48. Both sums 36 and 48 are divisible by 12.

If there are 4, the sum is divisible by 8. If there are 6, sum divisible by 12. If there are 2, we
have seen that the sum is divisible by 4. It seems to me that what is emerging is that the sum of an
even number of consecutive (odd) numbers is divisible by its double, by the double of the numbers
of addends I am adding.

EX. 3.2.: V-graders (cf. Bartolini Bussi et al., to appear). Task: "Ascertain what happens when
the number of cog-wheels, engaged and arranged in a ring configuration, increases, having already
found that three can not turn all together, while four do".

"(One pupil draws 5 wheels and indicates the rotation direction with arrows) "5 wheels can not
turn; (draws 6 wheels) 6 can turn (draws 7 wheels). It could turn with 4 but with 3 it could not. So,
if the numbers of cog-wheels is even, they can turn. If it is odd, they can not".

Generally speaking, a PGC3 can be described as a 'synthesis and
generalisation' process starting with an exploration of a meaningful sample of
conveniently generated examples.

PGC4.
EX. 4. 1.:, (undergraduate students) In the task presented in EX. 3.1., a student begins

considering 8 consecutive odd numbers and finds out that the sum is divisible by 16. He writes: "It
may be that the double of how many numbers 1 am adding is influential in someway, but it might
depend on the fact that 8 is a power of 2". He considers ten consecutive odd numbers, and findsout
that their sum is divisible by 20. He concludes conjecturing that: "If n is even, the sum of n
consecutive odd numbers is divisible by 2n".

EX.4.2.: (V graders) In the task presented in EX.3.2. a student acts as follows: He draws 6
engaged cog-wheels, and marks each of them with a clockwise or counter-clockwise arrow
alternatively. "With 6 wheels, it all turns well, but if 1 put one more (he draws a small wheel between
one pair of wheels and draws two arrows beside it (one clockwise and the other counter-clockwise)
very close to the two wheels it is contacting; this wheel prevents the others from turning. It is an odd
number. It is like with 5 wheels with respect to 4. If they are odd, they can not turn."

Generally speaking, a PGC4 consists in a reasoning which can be described as
follows: the regularity found in a particular generated case can put into action
"expansive" research of a "general rule" whose particular starting case was an



example; during research, new cases can be generated (cf. Pierce's "abduction" ; see
Arzarello et al. 1998)

4.2. Some Comments
We may observe that PGC1 and PGC2 are, to some extent, dual processes.

Indeed, in the first case mental exploration (centered on B) leads to detection of A
as an arrival point, while in the second case the starting point is the regularity, and
then dynamic exploration starts (by transforming the situation where the regularity
occurs). We may wonder whether there is a common underlying cognitive
background. N. Douek (personal communication) suggests that in PGC1,
exploration leads to the "cause" that originates B, while in PGC2, exploration
reveals the "cause", whose lack may make B fail to occur. In this way links emerge
with the hypothesis of "causality" as one of the possible backgrounds of
conditionality (cf French, 1985).

PGC3 and PGC4 too are, to some extent, dual processes: in PGC3 extensive
exploration leads to intensive insight; in PGC4 intensive exploration leads to a local
insight, which in turn gives rise to extensive exploration that may confirm it and
make it more exhaustive. N. Douek (personal communication) suggests that PGC3
implies the passage from the analytical description of several cases to an expression
able to synthetize (some of) them while PGC4 involves the passage from a more or
less synthetising expression of a particular case to a more general one suitable for
wider application. In both cases, the passage from one representation to another
seems to play a major role.

Bearing in mind preceding descriptions of PGCs and comments, we may expect
that apriori analysis of the task (formulation and content) could to some extent
predict the PGCs that will be produced by students. In particular, in a task aimed at
discovering a singularity, we may expect that most PGCs will be of the PGC1 and
PGC2 type, while in a "generalization" task most PGCs should be of the PGC3 and
PGC4 types. The examined protocols confirm this prediction. For instance, in the
case of the "generalizing and proving" task of EX. 3.1 and EX.4.1. only PGC3 and
PGC4 were detected in the 43 protocols examined (with the exception of one
student who produced his conjecture through a PGC2-type exploration).

In the examples considered, students produce only one PGC; in general, we
observed that in many cases the same student tries and abandons different PGCs
before getting a conjecture he/she finds satisfactory. But in the case of the
undergraduate students we also noticed quite frequently that a generation of
conditionality can be reached through a sequence of coordinated steps, each of
which bears a peculiar PGC (possibly different from those found in the other steps).

4.3. Some links between PGCs and construction of proof
We have detected an important link between the PGCs described in the

preceding subsection and students' proving processes under the same task:
frequently the same mental exploration which leads to the conjecture is re-started
by the student with entirely different functions during their proving process.

For example, as concerns PGC1, exploration can move from a support to the
selection and the specification of the conjecture (in the conjecturing phase), to a
support for the implementation of a logical connection (in the proving phase): some
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examples are reported in Garuti et al (1996). Here is reported the beginning of the
proof produced by the student of EX. 1.1.:

"I draw again the situation in a careful way. (qhe draws angle, bisecting line and the
perpedicular passing by the chosen point, then another straight line passing through this point. She
shadows the outcoming and incoming triangles) I see that the outcoming triangle is much bigger that
the incoming triangle. But why is it bigger? Let us see. The area is base multiplied by height (she
draws the heigths coming out from the vertex lying on the bisecting line). Yes, the heigths are equal
and the bases are very different (etc.) " (underlying puts into evidence the point where the resumed
exploration of the situation becomes explicitly functional to proving).

As concerns PGC4: during the proving process, some students re-start from the
particular case in which the regularity was detected, and then extend to other cases
in order to find appropriate links between the hypotheses and the thesis; the
function of the exploration changes from "what regularity this is a case of to
"what link this is a case of'. An example is the proof by the student of EX. 4.1.:

"We start again from 8 consecutive odd numbers; we try to write in that case the formula;:
2K+1+2K+3+2K+5+...+2K+15=(2K).8 + I+3+5+...+15. I see that I obtain the sum of 8
consecutive odd numbers; also this sum must be divisible by 16; but this fact remind me that in the
sum of 15 numbers there is the factor 16... No, here we do not have 15 numbers; but we have all the
odd numbers from 1 to 15. I have to find theformula that fits this case. I am remembering perhaps
that it is n2 . Let us check. With 2 odds it is 4. With 4 odds it is 1+3+5+7=16. It is OK The square
of 4. But how can the square of 8 be divisible by 16? Yes, it is. 64=16x4. Let us check if it is true in
general . n is even. Hence n2=(2m) 2 is divisible by 2n".
(underlining puts into evidence "abduction" phases during the proving process).

Some students who had produced conditionality through a PGC3 also revealed
this kind of behaviour in the same task; and (on the contrary) some students who
had produced conditionality through a PGC4 realized, during the proving process,
an exploration similar to that exemplified in EX. 3.2. This seems to confirm the
existence of deep links between PGC3 and PGC4 (as dual processes).

5. Possible research developments and educational implications
The content of the preceding subsection raises interesting research problems

about the links between the conjecturing process and the proving process in the
perspective of the cognitive unity of theorems (see Garuti et al, 1998). In general,
the exploration underlying a PGC and the exploration performed during the
proving process are very similar in "nature" but differ in "function". What is the
precise meaning of these two words? Another interesting research development
concerns modeling of the possible links between PGCs and proof construction
processes, especially when the task "Demonstrate that.." requires the appropriation
of a conjecture produced by others and then the production of new lemmas through
PGCs, with related demonstrations (a typical situation in advanced mathematics).

And, naturally, the problem of identifying possible PGCs that differ from the
four described in this paper still remains open.

Some connections with results produced by other researchers emerge from our
analyses. We would particularly point out the need for in depth comparison of
PGC2 and PGC4, and Balacheffs "crucial experiment" and "generic example",
although the two criteria of analysis, ("cognitive" in our case, and "epistemological"
in the case of Balacheff) are different. Emerging connections bear deep, potential
points of contact between epistemological and cognitive analyses.

As to the educational implications of this study, preceding analyses can be
exploited to find appropriate tasks for students in different grades, so as to allow
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them to experience processes which seem to be relevant in mathematical activities
concerning theorems. Indeed, we have remarked that the formulation and content of
the task may influence students' PGCs (see 4.2.). Naturally, the interest lying in
these considerations is related to an hypothesis of "educability" of the capacity to
produce PGCs by experiencing them (cf. Simon, quotation in Section 2.).
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Working with pupils' meanings: changing practices among teachers
enrolled on an in-service course in South Africa

Karin Brodie
Department of Education, Wits University

This paper reports on the second-phase ofa research project which investigates the changing
practices of teachers on an in-service course at Wits University in South Africa. The paper looks
at the teachers' mediational strategies, in particular how teacherselicit and work with pupils'
mathematical meanings. It focuses in detail on the teachers' use of groupwork, their responses
to pupils' ideas, and their use of questioning, highlighting some of the difficulties they
experience. It reflects on the role of the courses in facilitating teachers changing practices.

Introduction

In this paper, I will present some interim results from an ongoing research study which focuses
on the changing practices of mathematics teachers who are studying on an in-service course, the
Further Diploma in Education Programme (FDE), at Wits University. The main aim of the study
is to investigate the influence of the FDE programme on teachers' practices. This paper will focus
on some of the teachers' mediational strategies, in particular those that might be seen to be
aspects of a learner-centred approach, and will reflect on the ways in which the FDE programme
influences teachers' development of more learner-centred practices.

The FDE Programme

The FDE Programme is a two-year, mixed mode (distance and residential), in-service programme
for mathematics, science and English teachers, and school managers. Students enter the
programme with a 3-year, post-matric, teaching qualification. Successful completion ofthiscourse
gives equivalence to a 4-year qualification. An aim of the course is to enable teachers to improve
their qualifications through undertaking studies which are of direct relevance to their teaching.
The programme's goals are to contribute towards improving teachingand learning in South Africa
through: extending teachers' educational, subject and subject teaching knowledge; developing
teachers as competent, reflective professionals; and enabling teachers to work with curriculum
innovations (among others). The programme started in 1996, and about 130-150 teachers register
each year.

Mathematics teachers on the FDE programme take five courses over a period of two years. Three
of these are mathematics courses, two of which focus on mathematical content and one on
teaching approaches. The other two courses are general Education courses, which all FDE
students take as core courses.

In the next section, I will give an overview of two of the courses. "Theory and Practice of
Mathematics Teaching" (Dikgomo et al, 1996) was developed and is taught by a team of
mathematics educators. Its focus is on the teaching and learning of mathematics from theoretical
and practical perspectives. "Curriculum and Classrooms" (Brodie and Purdon, 1996) is a core
education course which was developed by two members of the Wits Education Department and
is taught by a team of education tutors, led by myself. It focuses on generic issues (across
subjects) relating to curriculum, curriculum innovation, and teaching and learning.
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The FDE courses

A broad overview of the course materials for these two courses shows that both take a broadly
social-constructivist view of learning. They attempt to counter behaviourist approaches to learning
and present some of the ideas of Piaget and Vygotsky (to different extents) as alternate ways of
understanding learning.

"Theory and Practice of Mathematics Teaching" deals explicitly with classroom management,
and with groupwork under the title of "co-operative learning". The section on classroom
management attempts to develop a sense of a classroom culture where the learners are disciplined
and take responsibility for their own learning, and where mathematical thinking is developed. It
includes a section on classroom questioning, pointing out the benefits of open questions and
giving examples of them. Much practical advice is given to teachers on how to develop a culture
of mathematical thinking and learning in the classroom. The section on co-operative learning
provides a short justification for co-operative learning based on social-constructivist theories, and
then gives different ways in which teachers might use and develop groupwork and co-operative
learning in the classroom. Other issues dealt with in the course are the use of resources
(blackboard, OHP, textbooks, "manipulatives", calculators, computer software); problem-solving
and investigations; and professionalism.

"Curriculum and Classrooms" deals with the notion of learner-centred teaching as teachers
eliciting, listening to and attempting to understand pupils' meanings and building on these to
develop pupils' knowledge. This notion is developed out of Piagetian and Vygotskian theories,
and examples ofteachers engaging and not engaging with pupils' meanings are discussed. Bruner's
notion of scaffolding is developed in detail, whereby teachers listen to and work with pupils' ideas
and provide guidance and support to help pupils develop their ideas. Questions are seen as part
of scaffolding and the kinds of questions and responses that might be useful are discussed. Many
examples are given and teachers are asked to identify examples of good and poor scaffolding in
their own lessons. Both courses emphasise the role of the teacher in learner-centred classrooms.
The teacher is seen as mediator of knowledge and as crucial to the development of mathematical
meaning on the part of pupils. Both courses also work substantially from transcripts and case
studies, and students have reported that these are very helpful as models for their own teaching
(Adler, Lelliott and Reed et al, 1998, pg 156-157).

The FDE teaching staff attempt, very consciously, to model teaching approaches that we think
are useful. During the residential session, students work in groups for much of the time,
particularly where there are classes with large numbers of students. However, lectures are also
given, even in classes of up to 200 students. We structure tasks carefully, ask open-ended
questions and attempt to give time for students' interests, difficulties and concerns to be taken up
in tutorial sessions. Mathematics content is taught in investigative and problem-solving ways, in
disciplined and relaxed environments.

The research

The research project is a three-year study of a sample of mathematics, science and English
teachers who enrolled on the FDE programme in 1996, the first year in which we ran the
programme. Data was collected by a team of researchers. We visited the teachers in their
classrooms in August 1996, 1997 and 1998. The 1996 visit provided for baseline data (Adler,
Lelliott and Slonimsky et al 1997) and the 1997 visit focussed on changes and continuities in
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teachers' practices, in the context of their schools (Adler, Lelliott and Reed et al, 1998). This
paper focuses on data from the 1997 analysis.

The school contexts in which the teachers work vary considerably, both materially and in relation
to the culture and atmosphere established for teaching and learning. Some schools, predominantly
those in urban areas, are relatively well -off, with electricity, laboratories, and functional
classrooms, where there is usually enough space for the number of pupils. Most rural schools do
not have electricity nor running water, and many classrooms are without windows, floors or
ceilings. In many cases there is not enough space to accommodate the number of pupils. Some
schools function well, with clear time-tables and procedures. At others, pupils and teachersare
not always in class, with much late-coming and absenteeism. During the data-collection week at
least two days of teaching were lost in some schools, due to cultural events, teacher- and civil-
service strikes.

There are ten mathematics teachers in the sample', five primary and five secondary teachers.
Observations of 3 lessons of each teacher were made according to a structured observation
schedule, and narratives of each lesson were written. A video was taken of each teacher teaching
one lesson. Each teacher was interviewed at length about her/his teaching and about conditions
in the school. Principals in each school were also interviewed. Pupils' books were examined in
order to get a sense of coverage throughout the year, and to see whether written work differed
from oral work in any way. Tests and/or exams were also looked at in order to investigate formal
assessment strategies.

The data for each teacher was analysed qualitatively by different members of the research team
according to a set of categories developed by the team. An overview was then written looking
across the teachers'. This paper will report on part of the overview, looking across the teachers
through the category of mediation, with subcategories: groupwork, working with pupil responses
and questioning.

A shift to groupwork

Perhaps most significant among the mathematics teachers in 1997 was a shift to groupwork. In
1996 only one teacher included organised group activities in her lessons, and three others had
pupils seated in rows but working in pairs'. In 1997, seven teachers explicitly organised
groupwork and nine teachers, in at least one of the observed lessons, had learners either seated
in groups and working together, or seated in rows but working in pairs. Only one teacher was
coded as having pupils work individually in all three lessons. All teachers expressed positive
attitudes towards groupwork, though they varied in whether and how groupwork is
implementable in their classrooms.

Ways in which groupwork is structured and mediated varied across levels and teachers. The

See Adler, Lelliott and Slonimsky (1997) et al for details about how the sample was chosen.

2 The mathematics data was analysed by myself, Mamokgethi Setati, Philip Dikgomo and Jill
Adler. An overview analysis was then written by myself and Jill Adler.

3 Interestingly, the one teacher who used groupwork last year, did not do so this year. She had lost
a lot of school time, and was working to try to catch up with her Grade 11 and 12 classes.
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secondary teachers who used groupwork did so with standard textbook tasks. In one case these
were written up on the board, and in the second a worksheet was distributed, one to each group.
The groups were relatively small, with four to six pupils in a group. In most cases, the pupils
interacted substantially with each other in the groups, there was a "buzz" in the classroom, and
most pupils seemed to be on task. The two teachers circulated and interacted with the groups,
clarifying instructions and helping with difficulties. One of these teachers had 68 Grade 10 pupils
in a classroom built for 40. She was able to organise the class very quickly into groups of four,
indicating that pupils were used to groupwork. Her pupils involved themselves in the task set, she
circulated among them (not easy with so little space), and in so-doing demonstrated that
successful organisation of group work is not necessarily a function of class size. In the smaller
class, pupils from each group wrote their solutions on the board, these were compared and
discussed, and mistakes corrected.

Groupwork in the primary school was very different from the secondary school. Groups were
more explicitly organised and structured, pupils generally sat in their groups most of the time, and
there were usually at least 6 pupils in a group, sometimes more, depending on the size of the class.
The primary teachers' ways of working with groups also differed from the secondary teachers,
and were worrying in some ways.

In one lesson, a Grade 3 teacher called one group up at a time to her desk to demonstrate
measuring the table. While she worked with each group, the rest of the class sat unoccupied. She
only managed to work with two groups during the lesson. So, although she explicitly organised
the class into groups, her method of working with the groups ensured that there was very little
pupil participation or pupil-pupil interaction in the lesson, and that very few pupils actually spent
time on the task. In this teacher's second lesson, each group worked on a different pen and paper
task (standard algorithmic tasks such as long subtraction, fractions etc). There was absolute
silence while only one pupil in each group worked on the task. The children who were not
working watched the child who was. This means that the benefits of interaction were not
achieved, while the benefits of individual work, ie each child getting a chance to work on a task
were diminished. Report backs from these groups involved a pupil from each group writing up
the solutions on the board. Some were repeated by the teacher and mistakes were corrected. No
comparisons were possible because the task done by each group was different. Moreover, each
group's work was rubbed off before the next one began. So most pupils had no record of the work
in their own group nor the work of the other groups.

A second primary teacher (Grade 7) also had pupils sitting in groups with very little working
together and interaction. At times pupils interacted with each other covertly, by whispering, which
suggests that pupil-pupil interaction is frowned on in this class. The pupils had cuisenaire rods,
and there were enough for each pupil, but many did not do anything with them. Thus again, many
pupils were not on task.

The other three primary teachers who used groupwork enabled more interaction between pupils
in the groups. Resources were shared between pupils, and they worked together. However, even
in these classes, it is not clear that all pupils benefitted. In one grade 7 class, where about 40
pupils were divided into 6 groups, it was clear to the observer that at most half of each group was
on task and contributing at any time. The teacher knew this, but her only way of mediating in the
classroom was to tell everyone to contribute and listen to each other (advice which comes from
the FDE courses). This advice was not very helpful for pupils who did not know how to
contribute or how to allow others to contribute.
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In looking across primary and secondary teachers, the following features of groupwork are
evident. Primary teachers have clearly organised groups who sit together. They tend to give less
standard tasks, using resources brought in from outside the classroom (measuring tape, cuisenaire
rods etc...). None of the primary teachers intervened to deal with the mathematics while the pupils
were working. They preferred to wait for report-back sessions to do this, ie they are concerned
with maintaining a particular form of organisation of groupwork, rather than with the substance
of what happens in the groups. In the following section, I will show that they struggled to deal
with unexpected responses from pupils which makes it difficult to mediate effectively in groups.
The secondary teachers on the other hand, mediate the work in the groups more actively. They
seem more able to deal with pupils' productions, probably because they have not attempted to
vary the tasks substantially, and because they are more confident mathematically. However, even
in secondary classrooms, there are questions about actual pupil-participation in groups. In the case
of one of the secondary teachers (Grade 12), the observer noted that the teacher did not know
how to enable girls to participate, even though she was aware of less participation from girls.

The above analysis suggests that although most of the teachers are taking up the use of
groupwork from the courses, they may be doing so without attention to the details of how to
work with groups, particularly how to intervene mathematically. Moreover, none of the teachers
spoke explicitly to pupils about how to work in groups during the observations, and it is not
evident that they had done so previous to our visits. None of the techniques for co-operative
learning discussed in "Theory and Practice of Mathematics Teaching" (eg jigsaw, think-pair-
share or pairs-check) were evident in any of these lessons. This suggests that teacher education
programmes need to think carefully about how to work with teachers so that they don't only "do
groupwork", but use it well. We need to identify difficulties and concerns that teachers have, such
as those described above, and deal with them explicitly in our courses.

Working with pupils' meanings

In the above section we have seen teachers who did not attempt to work with the pupils'
constructions, for example the Grade 3 teacher in the report-back session. Other teachers
however, did attempt at times to mediate and work with pupils' ideas during report-backs or in
whole class discussions. Here too, they experienced difficulties as the following example will
show.

The teacher is working in Grade 7 with cuisenaire rods. She has structured the activity bygetting
the pupils to make up a bigger rod with a number of smaller rods. Afterone has been made the
pupils chant: "two yellow rods make one orange rod". The teacher then asks what fraction the
yellow rod is of the orange rod and the answer "half' is given. Then, working in theirgroups, the
pupils make up other combinations of rods and the teacher asks some pupils to show the class.
Here is an example which was discussed in the whole class:

green
white I white I white white I white

yellow

The pupil who constructed these rods said: "one green and two whites makes one yellow", and
"the green is a "third" because "it takes three whites". This pupil demonstrated a particular
understanding of the task, ie put any combinations of smaller rods together to make a bigger rod,
they do not necessarily have to be equal. He also displayed some confusion relating to naming
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fractions, ie he called the green rod a "third", rather than the white. The teacher reinforced his
contribution with "very good" and asked the other pupils what he had said. Here she got: "The
green rod is a third because three white rods are equal to the green rod", which emphasises the
conceptual confusion. At this point the teacher tried to work with the pupils' meanings, by saying
that the "green rod is now the whole" and the "three whites stands -for the parts". In fact she
reversed their meaning in order to bring them in line with her understanding. Then she concluded
with "one whole and three parts, therefore this is a third" (and it is not publicly clear what 'this'
is - but given the prior articulations, pupils could think that "this" refers to the green).

In this lesson, the use of concrete apparatus in the groups did not enable the development of
mathematical concepts because the teacher's way of talking about the part-whole relationships
obscures the fraction concept. Moreover, she did not explain the prior conceptual link: between
the number of small rods that make a big rod, and the name of one of the small parts. Given some
of the pupils' mistakes, this link was not understood by the pupils. Evenmore worrying is that the
mathematics that is spoken about is incorrect. The teacher and some pupils might well understand
that it is the whites that are the thirds of the green and not the other way round, but this is not
explicitly dealt with. An incorrect way of naming mathematical relationships in English remains
in the public domain, and was moreover confirmed by the teacher.

Although this teacher manages to achieve some pupil participation in the class, she doesnot know
how to deal with offerings that she does not expect, for example the fact that one green and two
whites make a yellow. She does not take this opportunity to work with the notion of fractions as
equal parts of a whole. This teacher cannot utilise pupils' offerings to deal with aspects of the
concept that they are struggling with. The teacher confirmed in her interview that she was aware
of a problem with this example, and had tried to turn or shift the expression around, but nowhere
was there any clear rearticulation of appropriate and relative wholes and parts.

Similar examples were observed in at least three other classrooms, two primary and one secondary
(Adler, Lelliott and Reed et al, 1998). In all cases, the teacher struggled to know what to do with
pupils' ideas and meanings. The "Curriculum and Classrooms" course explicitly deals with
engaging pupils meanings in the section on learner-centred teaching. The students often use the
examples presented there to illustrate points about learner-centred teaching in assignments and
exams. However, when they are confronted with similar situations in their classrooms they
struggle to manage them. An important question for the study is why this is the case. Is what
teachers do and don't recognise and admit into classroom discussion related to their own
mathematical knowledge? Or are they still working with conceptions of teaching which suggest
that they must give the pupils the knowledge? If the latter is the case, then they will be working
with two contradictory notions simultaneously, that of the courses which says they should elicit
and hear pupils meanings, and another, more transmission-oriented view which does not facilitate
their making use of pupils meanings. Perhaps the courses do not focus enough on how to work
with pupils' ideas, focussing rather on the fact that this is important.

"Opening up" and "closing down"

In the Grade 7 example above, we have seen a teacher who attempts to allow meaningful
participation in her class, but struggles to deal with the responses that pupils give. "Opening up"
the classroom to pupils' meanings does not ensure that the discussion will remain open. Teachers
can easily "close down" what started as open-ended discussion.
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Our findings overall regarding questioning were that most teachers' questions remained narrow
and required one word answers, factual recall or procedural explanations. Two of the primary
teachers and three of the secondary teachers did ask questions that required elaboration or
explanation, but these were generally answered procedurally by pupils. Four teachers (three
primary and one secondary) did ask more open-ended questions or set open-ended tasks.
However, even in these cases, only the secondary teacher was really able to probe the pupils'
understandings through these kinds of questions. Even in this case, the pupils' explanations were
often about definitions or were procedural, so deep conceptual thinking was not probed.

The following example of "closing down" occurred in one of the primary lessons. The teacher was
trying to make links between tessellations and tiles in pupils' houses, and asked pupils where they
see shapes outside of school. One pupil answered "tins", meaning that he saw circular shapes in
coldrink tins. This was so different from what the teacher wantedto hear, that she thought he was
struggling to express himself and asked him to explain in his main language, TshiVenda.
Eventually, after much prompting by the other pupils, she acknowledged hisanswer and gave her
answer, "tiles". So her open question had a closed answer, a perfectly acceptable response from
a pupil could not be heard by the teacher because she was expecting something different.

In one of the secondary classrooms, the pupils were working on a problem on the board and
obtained the solution -0. This happened twice and the pupils were interested in finding out about
it. However, the teacher ignored their questions and continuedto explain how to cancel algebraic
fractions. In this case a possibility for interesting discussion was closed.

In contrast to this are two other secondary teachers. One teachers' questions are not open-ended,
however she uses them effectively to scaffold pupils' knowledge. She does work with pupils'
meanings, although these are more likely to be what she expects, because her questions are less
open. Another teacher encourages pupil questions and therefore enables pupils to set the agenda
for discussion. This teacher listens to pupil questions and answers them, which may qualify as
"closing down", but since it is in response to pupils' own questions, he is working with pupils'
meanings.

The teachers' use of open and closed questions suggests that the situation requires more complex
analysis and practice than a mere shift from closed to open questions suggests. Two teachers use
closed questions effectively and teachers who try to use open questions encounter difficulties.
Wood (1992) argues that research (in the Northern hemisphere) has shown that teachers struggle
to raise the level of cognitive demand of questions. This research confirms this finding in a
different context, and suggests that a more nuanced view of what questions actually do and don't
achieve and the range of purposes for asking them, may help teachers to use them more
effectively.

DisCussion and Implications

For the FDE Programme there is much to reflect on. The most commonly used 'new' approach
is groupwork, which is used with varying success. Secondary teachers seem to use it more
effectively, perhaps because they keep the tasks standard. Primary teachers, and some secondary
teachers, struggle to deal with pupils' meanings. Important questions for the programme are: why
does this happen and are the courses able to deal with it. Can we anticipate teachers' difficulties
in our courses or can we only provide a basis from which teachers can embrace the difficulties
they experience along the way as a natural part of changing? On the basis ofmy analysis here it
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seems clear that some "fine-tuning" of ideas, introducing nuances and texture are important.

This paper provides evidence that teachers who have been involved in almost two years of an
INSET programme which attempts to help them to develop their practice, experience difficulties
in doing so. They certainly do manage to try out some new ideas. In relation to learner-centred
practices, some elements are easily taken up, for example organising pupils into groups, while
others are more difficult to deal with, such as asking open questions and dealing with pupils'
meanings without closing down the discussion. The difficulties that these teachers experience
suggest that teachers with less time to think about change or less input as to what it might mean
would struggle even more. This adds to my argument (Brodie, 1998a) that it is not helpful to
exhort teachers to change to learner-centred practices without clarifying what these might be.
More work has to be done, with teachers, based on research into their teaching, on what new
concepts and practices might mean in a South African context, and what happens as teachers
begin to try them out in their classrooms.

All of the teachers in our research study showed strengths and weaknesses in their uptake of the
ideas in the various courses and in their practice. Some of the differences across teachers can be
explained by the levels at which they teach, what other aspects of change they are trying to
manage simultaneously, their own personal preferences for which courses are the most useful (for
example some teachers found mathematics content courses empowering while others found the
education courses more useful), and by their contexts, some contexts are clearly more enabling
of change and development than others (see Adler, Lelliott and Reed et al, 1998). How they have
managed to work with certain ideas in their classrooms will come from an interaction between the
individual teacher, her context, what she has learned from the courses, and what she has learned
from other sources, including the prominent new Curriculum 2005 discourse. It is not possible
to untangle the effects of all the disparate influences on a teacher, to be able to attribute particular
changes to a particular programme or course. Nor is it desirable to do so, because the teacher-in-
context is always part of and contributing to a range of influences on her practice. However,
research into teacher practices can be formative for the development of courses, identifying what
can be assumed and what needs to be further developed in more sophisticated ways.
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NEEDING TO USE ALGEBRA - A CASE STUDY
Laurinda Brown, University of Bristol, Graduate School of Education

Alf Coles, Kingsfield School, South Gloucestershire, UK

In the UK there has been a move away from teaching algebra to pupils aged 11. Kieran (quoted in
Sutherland, 1997) has suggested three components of algebraic activity: generational,
transformational and global meta-level. A comparison of the work of two high achieving 15 year olds
with two high achieving 18 year olds gave evidence for Kieran's model as a useful way of describing
algebraic activity and prompted the question: would it be possible to work meaningfully with 11 year
olds on all three components of algebra? We link this question with Sutherland's (1991) call 'Can
we develop a school algebra culture in which pupils find a need for algebraic symbolism to express
and explore their mathematical ideas?' This paper analyses, as part of a project funded by the UK
Teacher Training Agency (TTA), the work of one 11 year old pupil who has needed to use algebra.

Background

Issues relating to algebra have formed conclusions to two recent reports (Winter et al.
1997, Sutherland, 1997) into mathematics teaching and learning at secondary schools
in the UK. Winter et al (1997) is a national report in which algebra is identified as a
key component in facilitating a smooth transition for pupils between school and higher
education in mathematics. Pupils' algebraic skills were often found to be in need of
attention by teachers at the start of higher education courses. The Sutherland (1997)
report was the outcome of a Royal Society (RS) and Joint Mathematical Council
(JMC) working group, set up in 1995 to make recommendations about the teaching
of algebra (p. ii), partly in response to the apparent lack of articulation between
mathematics taught at school and that required by higher education (p.ii).

In the RS/JMC report a key conclusion is that: the National Curriculum is currently
too unspecific and lacks substance in relation to algebra. The algebra component
needs to be expanded and elucidated indeed rethought (p.iii). A further conclusion
is: that more research is needed to understand the relationship between what algebra
is taught and what is learned (p.iii).

Both these conclusions sparked our interest in looking at algebra in secondary schools.
In particular, we wanted to explore Sutherland's (1991) challenge:

Can we develop a school algebra culture in which pupils find a need for algebraic
symbolism to express and explore their mathematical ideas? (p.46).

What is algebra?
In asking ourselves the question: what is algebra? we wanted to find a definition with
which we could work to try to understand what pupils actually did which could be
described as algebraic activity when they were engaged in doing mathematics. In
reviewing current research on algebra strands emerged to do with context, meaning-
making, complexity and control which we found useful in our thinking. Introducing
and using algebra in a context is talked about from a view which we support that:



Traditionally, algebra in schools has been dealt with at a syntactical level; the
students have no `meta - control'; they know that they are allowed to do some things
and not others, and obviously they sometimes make mistakes ... to improve the
situation one can call to mind an algebra which is always linked to a context; not
necessarily to the (often unreal) 'real world problems', but to the properties of
numbers, or to the manipulation of functions, in all cases where it is necessary to
interpret the result (Menghini 1994, p.13).

We see the important task as making symbol representation meaningful rather than as
a submission to the Cockcroft report (1982) expressed that: Mathematics lessons are
very often not about anything. You collect like terms, or learn the laws of indices,
with no perception of why anyone needs to do such things (para 462).

... it was the lack of this (linking symbols to the situations they represent) that led to
failures in the past teaching of algebra: the children who failed thought of x and y as
meaningless marks that had to be played with by peculiar rules (Sawyer, quoted in
Anderson 1978, p.20).

One argument is that this meaning might be achieved through working with pupils on
thinking mathematically, where algebra is one component:

One major part of the effort to reform secondary school mathematics is the project of
changing the goal of studying school algebra from mastery of symbolic
manipulations to the ability to reason mathematically (Yerushalmy 1997, p.431).

Pupils need some fluency in symbolic manipulation, however:

The manipulation of symbols is only a small part of what algebra is really about, the
traces that are left behind after mathematical thinking has taken place (Mason 1992,
P.5).

One implication of this is that:

symbolic manipulation should be taught in rich contexts which provide opportunities
to learn when and how to use those manipulations (Arcavi 1994, p.32).

In other words algebra should arise from complex situations:

Algebraic symbolism should be introduced from the very beginning in situations in
which students can appreciate how empowering symbols can be in expressing
generalities and justifications of arithmetical phenomena ... in tasks of this nature,
manipulations are at the service of structure and meanings (Arcavi 1994, p.33).

There is never an end-point in this conception of learning mathematics. If I am learning
to reason mathematically to structure my thinking about problems, then what I learn is
in an ongoing state of complexification and enrichment.

Here we had our link to the challenge (Sutherland, 1991) of creating a school algebra
culture in which pupils find a need for algebraic symbolism. The need we envisage
here is for expression of awarenesses within complex situations. This clearly places
onus on us as teachers to create a classroom culture in which there is the possibility for
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pupils to work at and attempt to express what they are aware of. What we are
prepared to notice and able to perceive is to a large extent dependent on the culture
around us, and the language available to us.

We view the developing culture and ethos of our classroom as a community of
practice (Lave and Wenger, 1991), where the practice is mathematical inquiry
(Schoenfeld, 1996). The learning of algebraic thinking is part of learning mathematics
and is situated in the classroom interactions.

A unifying strand through all these quotes is the sense of algebra as an evolving
language that can emerge from situations and contexts that are already laden with
meaning. Algebra can be used to express and offer insights into those situations. It is in
this emergent expression and consequent empowerment that pupils can discover
need for algebra.

We have taken the following defintion of algebraic activity from the Sutherland (1997)
report:

(i) Generational activities which involve: generalizing from arithmetic, generalizing
from patterns and sequences, generating symbolic expressions and equations which
represent quantitative situations, generating expressions of the rules governing
numerical relationships.

(ii) Transformational activities whch involve: manipulating and simplifying
algebraic expressions to include collecting like terms, factorizing, working with
inverse operations, solving equations and inequalities with an emphasis on the
notion of equations as independent 'objects' which could themselves be manipulated,
working with the unknown, shifting between different representations of, function,
including tabular, graphical and symbolic.

(iii) Global, meta-level activities which involve: awareness of mathematical
structure, awareness of constraints of the problem situation, anticipation and
working backwards, problem-solving, explaining and justifying (Kieran, quoted in
Sutherland, 1997, p.12).

Within the discussions of the working group set up to write the report (Sutherland,
1997) this definition was the one which covered every member's interpretation of
what algebra is. Such a broad definition allows us, as teachers, to work on our
recognition of what algebra is in what the pupils do.

Methodology and methods

The definition of algebraic activity that we have chosen supports our need for a way of
looking at what pupils do which will in turn transform our perspectives of how to
work with the pupils in the culture of the classroom. We work within what Bruner
(1990) called a 'culturally sensitive psychology':

(which) is and must be based not only upon what people actually do but what they
say they do and what they say caused them to do what they did. It is also concerned



with what people say others did and why ... how curious that there are sofew studies
that (ask): how does what one does reveal what one thinks and believes (p.16-17).

We are interested in focusing on what we and the pupils in our classroom do and,
consequently, we use an enactivist methodology (Reid, 1996, Brown and Coles, 1997,
Hannula, 1998) the two key features of which are firstly: the importance of working
from and with multiple perspectives, and the creation of models and theories which
are good-enough for, not definitively of (Reid, 1996, p207).

theories and models ... are not models of. That is to say they do not purport to be
representations of an exisiting reality. Rather they are theories for; they have a
purpose, clarifying our understanding of the learning of mathematics for example,
and it is their usefulness in terms of that purpose which determines their value (Reid,

1996, p208).

The second key feature of enactivist methodology is that we take multiple views of a

wide range of data:

The aim here is not to come to some sort of "average" interpretation that somehow
captures the common essence of disparate situations, but rather to see the sense in a
range of occurrences, and the sphere of possibilities involved (Reid, 1996, p207).

We see our research about learning as a form of learning (Reid, 1996, p208) where
our learning is gaining a more and more complex set of awarenesses about our
teaching of mathematics.

In a pilot project two pairs of high achieving pupils, one pair of 15 year olds and one
pair of 18 year olds were interviewed as they worked on a problem set by Alf. This
problem could be tackled algebraically. The major difference between the two pairs of
pupils was the control with which the older ones first explored the problem
numerically, until they had some sense of what was going on, and then moved
effectively to an algebraic representation and solution showing evidence of all three of
the components of algebraic activity. The 15 year olds, on the other hand, reached for
the symbolism quickly but became bogged down in the transformational work.

This experience led to our asking the question: would it be possible to create a
classroom culture of 'being a mathematician' with 11 year old pupils so that when
they themselves were aged 15 they would be operating as the 18 year olds did? We
started work in September, 1998 on a project, funded by the TTA, to investigate this
question with one mixed ability class taught by Alf. In order to gain evidence of the
pupils' developing algebraic awarenesses we have stressed their need to write about
their ideas and conjectures when doing mathematics and periodically we have asked
them to write about 'what I have learnt?' both in terms of mathematical content and
`being a mathematician'. We have been surprised at the sophistication with which this
class has developed and extended the culture of 'being mathematicians' but that is part
of a larger project and not our concern here. In this paper we focus on the evidence of
developing algebraic competence within one child as mathematician.



The case of Alex: needing to use algebra

This case study, told in three stages, illustrates one eleven year old pupil's developing
use of the three components of algebraic thinking (Kieran, quoted in Sutherland, 1997)
over the first term in secondary school, specifically leading to an example of the pupil
(Alex) finding their own need for algebra. The interviews with Alex at the beginning
and end of term, his exercise book, his writing on what I have learnt?, a half-term
review, base-line entry test data and notes from observations of class lessons form the
data set from which the following three incidents have been selected.

The first activity the class tackled was a rich numerical problem that lasted for seven
lessons. In that time the teacher was using strategies to allow pupils to raise many
questions within the group although everyone also had a lot of practice with the
processes of basic addition and subtraction.

Stage 1: Algebra introduced by teacher but not used by pupil

Some of the questions pupils raised involved wanting to know why 9s fell in particular
places in the calculations. The teacher recognised that one way of answering these
questions was to use an algebraic demonstration, since no pupil was using algebra.
Alex had not used algebra before. On being interviewed after the seven lessons he
remarked that basically all of it in my primary school was sums and further that ideas
of proof were not used at primary school. After the demonstration 11 out of the 27
pupils could recreate the manipulations and 8 were able to extend the techniques to
show other similar results within the problem. We did not, however, expect pupils to
be able to reach for algebraic technique in a different context (the situatedness of
learning, Lave and Wenger, 1991) nor were we concerned that the majority of pupils
might not be able to reproduce the original demonstration at this time. The possibility
of using algebra to know why things work as they do was now within the community
of practice (Lave and Wenger, 1991) and from another viewpoint the zone of
proximal development (Vygotsky, 1978) of the pupils and this was our main purpose
in introducing the algebra. At this stage Alex thought of thinking like a mathematician
as you've just got to ask yourself why is it doing this?

In the first interview Alex was invited (by All the interviewer), to try numbers in a
problem which he had not seen before. He quickly spotted a difference of 3 (Fig 1):



When Alf asked: You said that being a mathematician is about asking questions so
what's your immediate question? Alex replied: Does that happen with every number
you put in? In working on this question he tried out 'minus numbers' and decimals. It
was evidently not natural to let a letter stand for any number and explore the
consequences.

There is evidence of generational activity here since the pattern of 'there's always a
difference of three' was spotted. But despite recognising 'why' as being a
mathematical question Alex does not ask himself why in this context and consequently
does not display global meta-level awareness within this problem. Algebraic symbolism
was not used so there was no evidence of transformational activity either.

Stage 2: Algebra used by pupil in response to teacher's question

Fig 2 below is taken from a half term review given to the class which involved some
questions to explore how they were getting on with algebra and an end of half-term
`what have I learnt?'. Here, in response to the prompting in the text of the question,
Alex is able to work through the problem using a general letter N (even though there
is no explicit invitation to use N in the statement of the task) demonstrating some
transformational skills. We believe he is able to share 2N + 4 by 2 to get N + 2
because of awarenesses formed through the numerical process of trying a few
examples first. Alex is effectively using the skill of multiplying out brackets, but no
algorithm for this has yet been taught. Alex recognises that the sequence of
instructions always results in 2 and so uses generational activity.

3) Try out this trick with different numbers ... write down anything you notice ...
can you prove anything about this trick?

Think olif a number / 5 100

Double it

Add 4

Halve your answer
(share by 2)

Take away the number
you first thought of

ANSWER

2. 90 2.00

6 1' 10*

3 7 902

2. 2. 2

2. 2. 2.

Fig 2: Question 3 from Alex's half term review

N The Answer always
comes out as two. If

20/ you look at the
sequence most are

24144 atimaneting Its se(ve
es Think of a number,

f142 Take away the numer
you first thought on!!
same with Double it

42. and Halve your
answer, if there was
no "add Jr it would

2. come to 0 but there
is a "add 'P when

that is halve it (eaves
you with "2." the answer.



In commenting: most are alimaneting its selve (we think this means 'eliminating
themselves') we would intepret a global meta-level appreciation of the structure of the
trick and in reaching for the N also a global meta-level awareness of the power of
using symbols, although this happens in response to another's questioning.

Stage 3: Algebra needed to answer a question posed by pupil

In the second interview with Alex, at the end of the first term, Alf posed the same
problem as in the first interview, but with different numbers. Alex tried one more
example and commented: The one I've just done was 6 difference and the same for
that one there. As in the first two incidents, Alex displays generational activity in
noticing a numerical pattern. In response to: What questions are around for you as
you notice a pattern like that? He replies in a similar way to before: Does it work for
all of them? Previously this statement led him to try out decimals and 'minus
numbers' but after one more numerical example, without speaking, this time he
produced the following algebraic solution (Fig 3):

There is certainly evidence here of
transformational activity and this feels like
the 18 year olds' interview because Alex
gains control of the process before using
algebraic skills. Even more surprisingly
Alex returned to a numercial problem and
said: I know what's making it 6 difference
now, with the N. Because the bottom way
I can't say it. But that 7 it's going to be

more than just timesing it by 4 straight away and adding two on the end. Really
you're timesing the 2 plus the 5 by the 4 that way. It's hard to explain. So, that one
would be 4n plus 8. So, these two cancel out each other leaving 6 behind. So now
you know every one's going to go to 6.

Alex clearly shows evidence here of insight into the structure of the problem, a global
meta-level awareness, which, unlike at the half-term review, is also articulated. The
difference that strikes us here, compared to the first two incidents, is that the algebra
has arisen from a question of Alex's. In recognising a pattern and asking himself
`why?' in this new context he creates a need. His experiences over the term allow him
to answer this need with the use of a letter N to stand for a general number. As he
worked through the general case the structure of the problem was illuminated: I know
what's making it 6 difference now, with the N.

In commenting on the process of his solution, Alex recognised the power of N
standing for any number: I should have done that first off. Alf, in reply during the
interview, tells him that it is good to start with the process and we would argue that
Alex's need for algebra came through the posing of his own question: why? and that
this came out of a pattern spotted (generational activity) after the process of doing a
few examples.



His transformational skills, in contrast to the second stage, appear less dependent on
numerical awarenesses since it is in the transforming that he gains structural insight. It
is beginning to feel as though Alex will not need to be taught algorithmically many of
the transformational skills needed in secondary school eg how to multiply out brackets.

Conclusion
The question we are working on for the TTA is whether 11 year old pupils would be
able to operate algebraically like thel8 year olds in our pilot study by the time they
were 15 years old. Evidence so far would suggest that some of the pupils will be able
to achieve this facility much earlier than age 15. Alex has developed over 15 weeks
from no experience of algebraic thinking to using algebra to illuminate his thinking in
relation to a problem. The cognition here is in the developing practices and language
of 'being a mathematician' and the theories for our practice as teachers are in the
stressing of the importance of writing to encourage the pupils' awareness of awareness
and working together on why the patterns within problems and structures exist.
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TEACHERS' DOUBTS ABOUT INVENTED ALGORITHMS

Anne Buzeika and Kathryn C. Irwin

Auckland College of Education and University of Auckland

Two teachers experimented with allowing their students to invent ways of doing
multi-digit calculation. The students showed considerable success and number
sense in doing this, impressing their teachers. The methods that the students chose
were closely related to teachers' statements or example. Despite seeing the value of
this to the children, the teachers were uneasy about continuing to allow them this
opportunity in the face of existing socio-historical practice and beliefs. We argue
that the strength of socially and institutionally sanctioned mathematical practices
prevented them from seeing this activity as central to children's developing number
sense.

In many parts of the world, the concern that children understand calculation has led

to an emphasis on developing number sense rather than mere fluency in the use of

algorithms. It has been well documented that children develop a meaningful

understanding of numbers if given the opportunity to use their own procedures (e.g.

Carpenter, Frenke, Jacobs, Fennema & Epsom, 1998; Kamii, 1989). However,

teachers vary in their willingness and ability to teach in a manner that encourages

children to understand numbers rather than use an algorithm.

This study followed two teachers as they encouraged their children to develop their

own ways of doing multi-digit computation. It views not only the classroom as a

site of social construction of concepts, but also the teachers' wider community as a

site in which beliefs and pedagogical practice are constructed. We argue that the
beliefs of this wider community had a strong influence on their ability to allow

children to develop their own calculation procedures. Using a Vygotskian analysis,

the group knowledge of teachers in this country is of a pedagogy that leads only to

use of a traditional algorithm. The underlying number sense behind this pedagogy

has not become sufficiently individualised for individual change. This point is
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related to that made by Ensor (1998) who discusses teachers' belief systems as

social rather than individual.

New Zealand has had a mathematics curriculum since 1992 that suggests that

students develop their own ways of calculating and develop flexibility and creativity

in applying mathematical ideas (Ministry of Education, 1992). No where does it

recommend teaching the traditional algorithm. However, the vast majority of

teachers continue to teach algorithmic methods for multi-digit addition, subtraction,

multiplication, and division. The debate in teaching circles in this country continues

to centre on the use of regrouping as opposed to the equal additions method that the

teachers themselves used as students. This persists despite the fact that the work of

authors recommending emphasis on number sense and invented algorithms is well

known by mathematics educators in this country.

For many years in New Zealand it has been the tradition to teach children how to do

multi-digit calculation through the use of place value blocks. The method of

instruction required students first to add double-digit numbers where no regrouping

of the blocks was required. The next step was to solve a problem in which there

were too many unit blocks, which then needed to be regrouped. Although educators

were initially exited about this teaching procedure, it appears to have become an

algorithm in itself rather than being seen as one way that place value could be

demonstrated.

Discussion of Procedure

The first author volunteered to provide professional development for a school,

demonstrating invented algorithms as a way of encouraging number sense. The

school had a policy of encouraging independent thought, the principal welcomed the

offer, and two teachers volunteered to introduce multi-digit computation in this

manner. This professional development took place over six months, with three

initial meetings with interested teachers followed by a period in which teachers were
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observed and aided in their classrooms, with interviews and less formal contacts

thereafter. The two classes that are the focus of this report were a Year 3 class

(aged 7 8) and a Year 3 & 4 class (aged 7 9).

Both of the teachers were experienced. Ms N, who taught the Year 3 class (Class

1), had 14 years of experience, but relatively low confidence in her ability to teach

mathematics. Mr C, who taught the Year 3 & 4 class (Class 2), had 20 years of

experience and an above average level of confidence in mathematics. He was a

popular teacher who could be described as having a certain charisma with the
children.

The methodology of the study was a case study of two classrooms, with a

participant observer. Classes were videotaped and audiotaped for a five-week

period when the children were working on multi-digit computation. Samples of

children's work were collected every 3 or 4 school days. These samples form the

basis of the data in Tables 1 and 2.

Ms N chose to introduce this unit of work through revising basic facts and recording

various ways a number could be written, for example 9+10=19. She then discussed

two-digit place value with the class (52 is 5 tens and 2 ones). She presented

problems for the children orally, primarily as word problems. Initially she asked

children to add two-digit numbers in which the units always summed to less than 10.

Children were encouraged to use any method that worked to get the right answers,

and to share their methods with their peers. She then focused the children's

attention on how basic facts could be used to solve problems with larger numbers,

for example if 3+4=7 then 30+40=70 and 300+400=700. Only after she saw that the

students were successful with their own methods of addition did she give the

children problems for which the units equaled more than ten. Similarly, she only

introduced subtraction after children had been working with addition for four weeks,

and even then, because it was suggested to her. When introducing subtraction she
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said, "Part of me wants to get out the equipment and show you how to work it out,

but I'm going to let you have a think about it first".

It is interesting to note that in her planning she was restricted by the same factors

that would have governed her introduction of multi-digit calculation with the

conventional algorithm using place value blocks. She had always used the place

value blocks to model this exercise, and her thinking continued to follow this

pattern. She doubted that the children would be able to do more difficult

calculations, and did not want them to fail. She did not support flexible thinking in

which addition and subtraction were seen as inverse operations. However, she

expressed considerable interest in children's methods of working, encouraging them

to demonstrate different methods to their peers.

Mr C started his program at a more advanced level. He initially assessed multi-digit

addition and subtraction through word problemsthat required combining quantities

such as 53 and 39 or taking a group of 27 from 62. These weregiven as homework,

and Mr C emphasised that the children could get the answer in any way they chose.

Next he had them work on different ways in which numbers could be decomposed

through an exercise in which children thought of four numbers that could be added

to make a given number, such as 42 = 14+12+10+6. After this exploration with

numbers he went on to practice with basic facts in all four operations, emphasising

the inverse relationship of multiplication and division. This was followed by a

discussion of the strategies that many peopleused, based on knowledge of doubles,

derived facts and decomposing numbers to the nearest tens. He gave verbal

problems or provided a Lucky Dip from which children picked numbers for

addition, as well as some open-ended problems from a common text. He

encouraged students to use mental methods as well as record the way in which they

worked, and the students took delight in being able to do problems mentally.

Although he said that he was committed to students developing their own ways of

calculating, he lost his confidence and commitment at the time of the fourth data
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collection point. He was concerned that he was wasting time and that parents and

the next teacher would find his children ill prepared in their algorithmic skill. At
this point he demonstrated the way that he would do a problem, on the board. This

demonstration had a marked effect on students' methods.

From his plan it appears that this teacher was much more flexible and connectionist

in his use of numbers than was Ms N. He was not tied to the procedures used with

place value blocks. However, his students became less flexible in their operations

than were the children in the other class.

Discussion of Results

Children in both classes demonstrated a range of strategies in their calculation:

counting on, addition by place value, using compensation, various types of
decomposition, etc. Some children in Mr C's class used conventional algorithms in

their first sample, done as homework. Tables 1 shows the way in which children

placed the numbers to be calculated, and Table 2 shows whether the students started

with the tens (or larger values) or the units when calculating.

Data Collection Point 1 2 3 4 5 6 7
Class 1 Horizontal 91% 100% 100% 95% 95% 77% 95%
Class 1 Vertical 9% 0 0 0 0 0 4%

Class 2 Horizontal 39% 70% 78% 43% 43% 56% 56%
Class 2 Vertical 57% 30% 17% 57% 57% 43% 43%

Table 1. Percent of children using horizontal and vertical formats for calculating at
each data collection point, over 5 weeks. Class 1: n=22, Class 2: n=23.

Most of the children in Class 1 used a horizontal format throughout, with a slight

dip at point 6 when subtraction was introduced and several children did not show

their working. The children in Class 2 started with work done as homework, and

about half of them turned in standard vertical calculations, presumably taught by

parents or siblings. The percentage using this method decreased when developing
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individual ways was praised in class, but as soon as their teacher demonstrated the

way in which he worked, the percentage of children using his vertical format

increased.

Data Collection Point 1 2 3 4 5 6 7

Class 1 Tens before units 59% 82% 82% 73% 77% 27% 41%
Class 1 Units before tens 14% 4% 4% 0 0 0 4%

Class 2 Tens before units 39% 22% 35% 4% 0 0 0

Class 2 Units before tens 26% 22% 0 4% 13% 17% 26%

Table 2. Percentage of children in each class who calculated the tens before the
units versus the units before the tens in each class, at each data collection point,
over 5 weeks. Class 1: N = 22, Class 2: n=23.

Table 2 demonstrates dramatically the effect of the teachers' statements or

demonstrations on children's working and accuracy. The majority of children in

Class 1 operated with tens before units until they started subtraction, when the

majority stopped showing their method of working. An example of their method

of working was, for 47 + 28: "I put the 40 and the 20 = 60 and 7 + 8 = 15 and the

10 from the 15 = 70 and 70 + 5 = 75 ". At Point 6 when Ms N expressed her

doubts about the students' ability to do subtraction, they attempted to use the same

strategy that they had used for addition. This direct transfer led to a drop in

accuracy from a range between 86% - 100%, to an accuracy of 59%. Despite the

encouragement of the author and students' subsequent improvement, she felt that

her doubts about children's ability were confirmed.

In Class 2, 22% - 39% of the children worked with the tens before the ones on the

first three samples. The marked change came at the fourth data collection point,

when he demonstrated how he would do vertical calculation, starting with the

units. After one demonstration of the conventional algorithm no one showed

working with tens before units. Students were eager to calculate in his way, which

probably was that demonstrated by their parents. While the accuracy of these

students had been 91%-100% at the first three data collection points it dropped to

2 - 166

5 9 5-



35%-82% for the next three points. Few children showed their working, making it

very difficult for the teacher to gauge their number sense.

Discussion

Despite the fact that the teachers had seen the benefit of children basing their

multi-digit calculation on their own number sense, neither teacher was sufficiently

convinced of its usefulness to change their traditional way of teaching. This

appears to have been because the method was in opposition to that expected by

their wider community. Both teachers feared that future teachers and especially

parents would be displeased if students did not know how to use conventional

algorithms. As Yackel, Cobb and Wood (1992) point out, teachers work in a

context in which procedures must be institutionally sanctioned. Teachers construct

their own beliefs about teaching practice in their wider community, just as children

construct their own mathematical concepts. These constructions must be useful to

them, in this instance, more useful than the need to please parents and other

teachers. Despite the support of the principal and some of the other teachers in this

school, these teachers did not see this pedagogy as useful to them, despite

acknowledging its usefulness to the children.

They were also concerned by new political demands for national assessment of

numeracy at age 9, which translated in their minds and that of the parents to the use

of algorithms. One year later, Ms N had reverted to teaching the traditional

algorithm for multi-digit calculation, using her previous methods. Although she

was very impressed with the number sense that her children showed, she felt more

confident in using the institutionally sanctioned methods based on place value

blocks rather than encouraging wider number sense. Mr C had the confidence to

understand the children's number sense, but he saw more disadvantages than

advantages to altering his teaching style.
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It may be important to note that this was not an extended teaching experiment

similar to those of Carpenter et al (e.g. 1998) or Cobb, Wood & Yackel (e.g.

Yackel, 1998) and did not have the same degree of external support. The fact that

the teachers' commitment to the beliefs of the wider community was greater than

their commitment to the development of number sense in their children emphasises

the need for any change to be the focus of a much wider community than that of

the classroom.
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THE AMBIGUITY OF MATHEMATICS

BILL BYERS
DEPARTMENT OF MATHEMATICS AND STATISTICS

CONCORDIA UNIVERSITY
MONTREAL, CANADA H4B 1R6

This paper deals with mathematical rigor and the notion of ambiguity in
mathematics. It takes the counter-intuitive position that ambiguity is of central
importance to the mathematical endeavorthat it is essential and cannot be
avoided In our view, rigor and ambiguity form two complementary dimensions of
mathematicswhat we characterize as the surface versus the depth dimensions of
the subject. This position has major implications for the teaching of mathematics
since we hold that the philosophical position of the working mathematician is the
single most important impediment to the improvement of the teaching of mathematics
at the university level.

Introduction

One of the most intractable teaching problems faced by university mathematics
departments revolve around the appropriate role of rigor in the undergraduate
curriculum. Hovering around the teaching of university mathematics is the
unquestioned axiom which holds the that there is a definitive version of any area of
mathematics and that this definitive version of the subject is more or less identical to
its rigorous presentation. In her interviews with mathematicians Sfard (1994)
concludes that "there seems to be another mode of thinking about mathematical
concepts, a mode which has little to do with systematic deduction." Nevertheless, in
their role as classroom teachers, mathematicians often revert to a formal, rigorous
presentation. Even if a teacher of an elementary course, such as calculus, teaches
little theory, nevertheless, in the background there is the rigorous theory which is, for
the teacher, definitive. This notion that rigorous mathematics is definitive infiltrates
the classroom in many ways and contributes to making it the sterile learning
environment that it unfortunately often is.

In some other writing (Byers 1983, 1984) I have tried to address the discrepancy
between the subject as it is taught and the subject as it is understood. In particular,
the rigorous, static, formal version of the subject does not match the dynamic and
human dimensions of learning, understanding and creating mathematics. One
eminent mathematician said that what we are doing as mathematicians is
"constructing better ways of thinking," (Thurston 1994), thus thrusting to the fore the
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idea that mathematics is something that cannot be understood independently of the
human beings who create and use mathematics. Attempts to demystify mathematics
(and Platonism is surely a myth) and bring it back into the human realm is an
important tendency in mathematics education (Triadafillidis 1998). It is consistent

with the movement to revive the philosophy of mathematics by setting aside
questions of foundations and focusing instead on actual mathematical practice

(Hersh 1997, 1998).

To the working mathematician it is evident that mathematics is not merely

tautological. Thurston's statement that, "...what we are doing is finding ways for

people to understand and think about mathematics" (1994), raises the question of

where this understanding comes from? Surely it cannot be derived from the formal

structure of the subject. As a consequence when the mathematician, as teacher,
identifies the subject with its formal presentation he often does not consciously make

a goal of developing understanding or of providing a fertile ground in which insight

might flourish.

In order to dramatize the point that mathematics is not logic and to indicate an
approach to the subject which would include understanding and to what I call below

the depth dimension of mathematics, I have, in all seriousness, put the word
ambiguity into the title of the paper. Mathematics is deep and powerful because it is
multi-faceted. Thus mathematics transcends logic yet logic is an essential ingredient

in it. Similarly one could say that mathematics is neither completely objective (as a

formalist or a Platonist would claim) nor is it completely subjective or constructed by

the individual (c.f. Lakoff and Johnson 1980).

Ambiguity and Depth

Anyone who has done some creative work in mathematics will agree that some
pieces of mathematics are "deeper" or more profound than others. Often in a piece

of mathematics or in a proof one asks questions like, "What is really going on here?"

or "What is the basic idea?" These questions go in the direction of depth. The most
complimentary thing that one can say about a mathematical idea is that is "deep." So
mathematics has more than one dimension. On the one hand there is the dimension

of the logical structure, what we will call the "surface structure", (which we will take

to include instrumental or algorithmic aspects) but on the other there is the
dimension of depth. Of course the division between the two is not so simple but for

the purposes of this discussion the distinction is clear enough to talk about. When

one says that mathematics is basically tautological or that logic is the essence of
mathematics one is referring to the surface structure (which mathematicians usually
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take for granted). The power of mathematics clearly comes from the other
dimension, that of depth. When we ask what mathematics is we must specify which
dimension we are talking about. When we teach mathematics we must also specify
in which domain our teaching objectives lie. When we talk about the ambiguity of
mathematics we are trying to get a handle on the phenomenon of depth.

What is ambiguity?

People often take ambiguity to be synonymous with incomprehensibility. However
we shall primarily focus on the following part of the dictionary definition of
ambiguity: "admitting more than one interpretation or explanation: having a double
meaning or reference."(Oxford 1993). The definition of ambiguity also has a
secondary meaning, that of being "indistinct, obscure, not clearly defined". The kind
of obscurity we are thinking of is, for example, when one is doing research and one
feels that there is a theorem lurking somewhere but one doesn't yet see exactly what
it is. The sense in which we use the term "ambiguity" will be further clarified by the
examples which follow. To return to the notion of depth, the relationship between
ambiguity and depth can be understood by considering the metaphor of binocular
vision. Seeing through one eye produces only a flat, two-dimensional image; it
requires two images to produce depth. The existence of a double perspective creates
a situation which may lead to understanding or even creativity.

Ambiguity in mathematics: strength or weakness?

We often understand ambiguity as mere confusion or lack of clarity which we
consider to be undesirable. Sometimes this confusion is unnecessary and should be
clarified (Hillel 1989). But is it always possible to avoid ambiguity? We tend to
react to every presence of ambiguity by attempting to remove it rather than by
working with it. We maintain that ambiguity, viewed as the existence of a multiple
perspective, can be an opportunity and not just a problem. Ambiguity functions in
mathematics in a way which is analogous to the poetic function in language (James,
Kent and Noss 1997). Consider the following situations:

Square roots

42 is ambiguous. Is it an arithmetical, counting number or a geometric, measuring
number? Which world does it belong to? The irrationality of J2 is one instance of
"a continuous feature of the history of mathematics. . .the prevailing tension between
the arithmetic and the geometric" [Dunham 1990] We claim that the tension arising
from the fundamental arithmetic /geometric ambiguity was a spur to the development
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of much of mathematics. Though the irrationality of 42 destroyed once and for all
the hope of the Greek mathematician/philosophers for a "rational" universe, it was an
opportunity as well. The problem which the ambiguity of I2 presented to the
mathematical world was ultimately resolved by the creation of the real number
system.

Matrices

A matrix leads a double life. On the one hand it is a collection of numbers arranged
in a rectangular array, on the other, it is a function, a linear transformation. ( It also
has many other interpretations but these two are sufficient for us to make our point.)
Whereas we add matrices as though they were collections of numbers, we multiply
matrices in the way that we do because we are composing them as functions. Often,
in linear algebra, we jump back and forth between these two points of view. Rank,
for example, can be looked at from both points of view. Or, think of the
representation of a linear transformation, T, as a matrix relative to a certain pair of
bases. Since T is usually given by a matrix the whole situation is fraught with
ambiguity. It is the existence of this multiple perspective which gives the student so
much trouble. They often ask: "When do you think of a matrix in one way, when in
the other? How do you know which way to think of a matrix in a given problem?"
However, it is precisely this ambiguous point of view which gives the concept of a
matrix its depth. The successful student has learned to alternate easily between these
two ways of looking at a matrix. In fact when we think of a matrix it has become a
mathematical concept with an independent existence which can be looked in a
multiplicity of ways. No one of these ways is the exclusive or the correct way of
understanding what a matrix is.

Infinite Series and Real Numbers

Even the notation for an infinite series is ambiguous. The summation notation, y an
n=1

conventionally stands both for the formal series and for the sum of the series (if it
converges). Even the word "sum" is used ambiguously since it describes both an
operation, the verb 'to sum', and a thing, the noun, 'the sum'. This ambiguity is
compounded when we write real numbers as infinite decimals, as in .999... . As

above the real number is a thing, either a quantity or a point on the real line. But it is
also a process, the sum of a series or a series of successive approximations. (Sfard
1994) would refer to this as the problem of reification, of "treating a process as its
own product" but we would add that the problem is not only that the "process" of the
infinite sum is replaced by the "product" of the real number but that process and
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product are equated (as in .999... = 1) in a statement which is ambiguous. One could
say that .999... is only a representation for 1 but then how can one write that this
representation is "equal" to 1. If you say that the numeral "1" is also a representation
for 1 then this gives rise to yet another ambiguity: that between the numeral and the
number represented by that numeral.

The difficulty here is similar to the difficulty that has been pointed about by various
authors (e.g. [Kieren 1981]) concerning children's propensity to understand the
equality sign in simple sums like '2 + 3 = 1 + 4' in operationtherms. Gray and Tall
[1994] have discussed these "process-product" ambiguities in mathematical noLation.
They stress that the learner's grasp of these ambiguities is central to their success or
failure in mathematics.

Functions

The notion of a function is ambiguous. There are many equivalent definitions but let
us focus on two . There is the ordered pair, graphical definition of a function. This
is a static definition: the function is a set (of ordered pairs) or a picture (the graph)
or a table.. However there is also the mapping definition, which is related to the
black box, input-output definition. This latter is a dynamic definition. Here the 'x'
is transformed into the This definition is the one which is used in thinking of a
function as an iterative process or a dynamical system or a machine.

Again mathematicians go back and forth from one of these representations to the
other. New developments in mathematics may entail looking at a concept in a new
way. The input-output model was crucial to looking at functions as the generators of
iterative processes. It came into its own with the development of computers. The
graphical representation of a function is of little value when one wishes to study the
orbit structure which the function generates.

At a higher level one puts sets of functions together to form function spaces. In fact
one of the conceptual breakthroughs in analysis is the idea that a function may be
considered a point in such a function space. Here again the initial barrier to
understanding, namely that a function could also be thought of as a point, turns into
an insight. That is, it is precisely the ambiguous way in which a function is viewed
which is the insight. Once a function is seen as a point in a metric space, we can talk
about the distance between functions, the convergence of functions, about functions
of functions, etc. This sort of dual representation is often present in situations of
mathematical abstraction.
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Fundamental Theorem of Calculus

The fundamental theorem is a non-trivial application of the above discussion on
ambiguity. Differential Calculus and Integral Calculus can (and historically were)
developed independently of one another. The Fundamental Theorem says, of course,
that these processes are inverses of one another. This means that differentiation is
not more fundamental than integration nor is the opposite true (at least for functions
of one variable). Actually the theorem says that there is, in fact, one calculus process
which is integration when we look at it in one way and differentiation when we look
at it in another. That is, there is a multiple perspective which is essential to an
understanding of calculus.

How is this multiple perspective used? Consider, for example, the proof of the
existence theorem for the differential equation

dy
= f(x,y); y =yo when x =x 0

dx
One proof proceeds by rewriting the equation as an integral equation

y(x) = yo + ff(t,y(t))dt
X0

and then seeing that the solution is a fixed point of the contraction mapping

T(y)(x) = yo + If(t,y(0)dt .

.0

This proof is possible because of the dual representation of the calculus as
derivative/integral. Mathematics is full of such dualities . Each of them adds depth
and power to mathematics.

In summary these examples bring out the following points:

1. Many familiar mathematical concepts have an ambiguous or multi-dimensional
nature. For example Thurston in the above quoted paper lists eight different ways of
"thinking about or conceiving of the derivative." He insists that these are not
different logical definitions. They are, however, different insights into the concept
of derivative. Importantly Thurston warns us that "unless great efforts are made to
maintain the tone and flavor of the original human insights, the differences start to
evaporate as soon as the mental concepts are translated into precise, formal and
explicit definitions." I interpret his comments to mean that the concept of the
derivative is ambiguous. We may have many insights into the notion of derivative
each of which teaches us something new about what a derivative is. These different
insights may reduce down to the same formal definition but in doing so something of
value is lost. That is, while the precision of formal, logically precise mathematics is
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valuable, it is obtained at the expense of the loss of some insight or intuition which is
also mathematically valuable.

2. This ambiguity is neither accidental nor deliberate but an essential characteristic
of the conceptual development of the subject as well as of the person attempting to
master the subject.

3. The ambiguity is not resolved by designating one meaning or one point of view as
correct and then suppressing the others (although this is- usually the student's
preferred course of action). The ambiguity is "resolved" by the creation of a larger
meaning which contains the original meanings and reduces to them in special cases.
This process requires a creative act of understanding or insight.

4. Thus ambiguity can be the doorway to understanding, the doorway to creativity.

Conclusions

In conclusion let me point out that the whole of the above discussion is
self-referential: not only is ambiguity part of mathematics but mathematics itself is
ambiguous. Its nature is also multi-dimensional. There is the logical surface
structure and the deeper dimensions of understanding, insight and creativity. It is not
possible to imagine mathematics without its computational and formal aspects but to
focus exclusively on them destroys the subject. Ambiguity, even paradox, push us
out of our air-tight logical mental compartments and open the door to new ideas, new
insights, deeper understanding.

Even the implicit "model" which might seem to be lurking in thesepages is not
correct. The different aspects of mathematics which we have described are in
continual interaction, continual evolution. An idea like derivative is formalized.
Thus in a sense the multiple possibilities contained in the informal idea are reduced
to one. Then the formal idea can be understood in various ways, some of these
retrieving some of the viewpoints that were inherent in the original preformal
situation, others arise out of the interpretation of the formal definition of derivative.
These new ideas can themselves be formalized and so the whole chain is set in
motion again. So a more complete way of looking at the situation is to say that
though logic does tend to rigidify a situation, it also contains the seeds of further
development.

Logic moves in one direction, the direction of clarity, coherence, structure.
Ambiguity moves in the other, that of fluidity, openness, release. Mathematics
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moves back and forth between these two poles. Mathematics is not a fixed, static
entity which can be structured definitively. It is dynamic, alive: its dynamism a
function of the relationship between the two poles which we have described above.
It is the interactions between these different aspects which gives mathematics its
power, its "unreasonable effectiveness." (Wigner 1960).
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DISCOVERING THE STORY BEHIND THE SNAPSHOT: USING LIFE
HISTORIES TO GIVE A HUMAN FACE TO STATISTICAL

INTERPRETATIONS

Jean Carroll RMIT University, Melbourne, Australia

This paper reports on a study of primary school teachers' views of their own knowledge
of and feelings about mathematics teaching and learning. A survey and statistical
methods of analysis were used to gain a broad view of the different dispositions of 100
teachers in suburban schools in Melbourne, Australia. Eight different teacher types were
identified and represented in a teacher type table. Life histories were then collected from
five teachers, representing five of the teacher types, in an attempt to further understd
the professional development of the teachers and the origins of their current cognitive
and affective views. The interaction between the qualitative and quantitative methods of
data collection and analysis are discussed in the process.

Not all questions that an educational researcher might be interested in answering
can be answered by statistical study designs. Even where statistical methods are
applicable, the educational researcher will often want to use qualitative data to help
formulate interpretations of any particular statistical analysis. Interpretations of
statistical studies in education are generally interpretations about the experience of
actual people. This is a major reason for some form of qualitative data analysis to be a
part of any educational study. The researcher's understanding of the lived experiences
of the people she is researching is a significant contributor to the relevance of the
findings to the practice of teaching.

The study presented here was designed to investigate the question: What are
primary school teachers' views of mathematics and mathematics teaching and how do
these views change? The importance of primary school teachers' understanding of and
feelings about mathematics and mathematics teaching have been widely discussed
(Carroll, 1997; Fennema and Franke, 1992; Kanes & Nisbet, 1994). One of the
constructs at issue in this study was, what is the relationship between cognitive and
affective factors in the teaching and learning of mathematics for primary teachers?
Relevant literature (Leder, 1993; McLeod, 1992) and the research reported in this
paper suggest that cognitive and affective studies remain incomplete and are
theoretically reductive if the interaction of the two isn't acknowledged.

The initial phase of this research was quantitative and the results were presented
in the form of a teacher type table (Table 1) that shows tendencies in primary teachers'
perceptions of their ongoing professional ongoing learning and feelings about teaching
mathematics. To understand the actual experiences referenced by the teacher type
table, I collected a number of personal life stories which, when read in conjunction
with the teacher types, gave a very human face to the teacher type table.

It is the process of seeing the human face behind research results that I wish to
illustrate in this paper. To do this I will: briefly outline a methodological rationale for
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taking life histories; describe the collection of the data; give the thematic analysis of
the life histories; present the teacher type table; and then give a reading of the table in
terms of the themes uncovered in the life histories.

Taking Life Histories

The stories of our experiences that we tell ourselves or others are a large part of
what we take as our identity. There are a great many problems for a researcher in
fmding useful and controllable ways of accessing these stories. No person's full story
is going to be exhausted in one interview session or indeed in the fullest written
autobiography. In approaching the problem of collecting this data I made use of the
methodology offered by Van Manen (1990). The method of data collection I chose was
what Van Manen called "protocol writing". He defined protocol writing as, "the
generating of original texts on which the researcher can work" (1990, p. 63). These
"original texts" are ideally descriptions of experiences without causal explanations,
generalisations, or abstract interpretations. They are not meant to be works of
literature. How adequate the data is will depend on how well the researcher has
conveyed her intentions for the piece to the participant and how able the participant is
to respond.

Five teachers who worked at suburban primary schools in Melbourne expressed
their willingness to participate in this study. They were asked to write a mathematical
life history (Chapman, 1993) and given the following instructions:

I would like you to write about your mathematical life history. Could you describe your
experiences and feelings as you were learning maths at school and college/uni (etc) and
your feelings about teaching mathematics to children over the years. I am interested
particularly in the times when your feelings or understanding changed (either for the
better or worse) and what or who you attribute the changes to. If you can remember any
events that seem significant to you, please describe them in as much detail as you can
remember. The mathematical life history is like a story of your recollections about maths
and maths teaching. You should make it as long or as short as you feel is suitable.

Thematic Analysis of Life Histories

I analysed the data using a thematic approach. The notion of what a theme is
and how one actually identifies it is not at all straightforward. Indeed themes, as used
here, are as murky as lived experience itself. Uncovering a theme in a piece of protocol
writing requires the empathetic understanding of the researcher. To understand why
two humans can understand each other is to enter to the very heart of the present
debate about the validity of human science research. An interpretation of text may, in
fact, say more about the interpreter than the text or its author (for example, see Pimm,
1994). Thankfully, there is a practical solution to these concerns: if the meaning I see
in a text, you also see in the text then we will take it to be there. What I'll mean by a
theme is a phrase or word that seems to capture the point of a sentence or group of
sentences as they are found in a number of stories.
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Van Manen gave three practical approaches to discovering themes: the holistic
or sententious approach; the selective or highlighting approach and the detailed or line
by line approach. (Van Manen, 1990, pp. 92-93). The approach I adopted was what he
called the hiellighting approach. For each of the stories I would read them quietly and
highlight key phrases, that is, the phrases I found to be particularly apt in expressing
the experience being described.

Before presenting the analysis of this data I will give a summary of the results of
the statistical analysis of a questionnaire, the Mathematics Attitude and Knowledge
Scale (MAKS), designed for and administered to 100 Melbourne primary school
teachers (88 females and 12 males). The MAKS was constructed to probe the
interrelationships between cognitive and affective factors in the mathematics teaching
of primary teachers (for a detailed account and analysis of this questionnaire see
Carroll, 1998).

The Development of a Teacher Type Table

Factor analysis of the questionnaire data led to a four factor solution (using
oblimin rotation on the pattern matrix of the factor analysis) which provided
information about how the teachers: felt about mathematics teaching (Factor F);
viewed their knowledge and feelings about mathematics (Factor M); perceived their
knowledge of mathematics teaching (Factor K) and conceived of mathematics and
mathematics teaching (Factor C). The teachers' scores on each of these factors were
used to develop a teacher type table which identified different types of teachers and
described tendencies related to mathematics teaching and learning. Only the first three
factors (Factors F, M and K) were considered in developing the teacher types because
these three contributed to the underlying construct; knowledge and feelings about
mathematics and mathematics teaching, as identified in a principal components
analysis. Factor C relating to the teachers' conceptions of mathematics and
mathematics teaching was not included in the analysis of teacher types, since the items
included in it showed little correlation with the principal construct.

The teachers' scores for each factor were said to be positive if they were above
the mean factor score and negative if they were below the mean. These statistics were
used to allocate teachers to one of eight teacher types which are shown in Table 1. The
percentages indicate the proportion of teachers in each type.

Themes in the Life Histories

Life histories were collected from Ann, Betty, Cathy, Dot and Ellen who
represented the teacher types; F-M-K-, F-M+K-, F-M-K+, F+M+K- and F+M+K+
respectively. These were the largest categories. The small size of the other categories
made selection of teachers willing to participate difficult. The five teachers were
female as none of the male teachers volunteered to take part in this aspect of the study.
To report on the data contained in the life histories is a verbose procedure. To
accommodate this to the present space constraints, I will briefly illustrate the themes
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Table 1 Teacher Type Table
F-M-K- (23%)

F- Negative feelings about teaching
mathematics including lack of confidence and
enjoyment and finding it threatening
M- Knowledge and feelings about doing or
studying mathematics are negative; have not
done well at maths, maths is not the best
subject and find doing maths problems
frustrating.
K- Lacking in knowledge about the
approaches for teaching mathematics to
primary school children

F+M-K- (3%)
F+ Positive feelings about teaching
mathematics including confidence, enjoyment,
excitement and finding it non threatening.
M- Knowledge and feelings about doing or
studying mathematics are negative; have not
done well at maths, maths is not the best
subject and find doing maths problems
frustrating.
K- Lacking in knowledge about the
approaches for teaching mathematics to
primary school children.

F-M+K- (13%)
F- Negative feelings about teaching
mathematics including lack of confidence and
enjoyment and finding it threatening
M+ Knowledge and feelings about doing or
studying mathematics are positive; have done
well at maths, better in maths than other
subjects and find maths problems interesting
and challenging
K- Lacking in knowledge about the
approaches for teaching mathematics to
primary school children

F+M+K- (8%)
F+ Positive feelings about teaching
mathematics including confidence, enjoyment,
excitement and finding it non threatening.
M+ Knowledge and feelings about doing or
studying mathematics are positive; have done
well at maths, better in maths than other
subjects and find maths problems interesting
and challenging
K- Lacking in knowledge about the
approaches for teaching mathematics to
primary school children

F-M-K+ (11%)
F- Negative feelings about teaching
mathematics including lack of confidence,
lack of enjoyment and finding it threatening
M- Knowledge and feelings about doing or
studying mathematics are negative; have not
done well at maths, maths is not the best
subject and find doing maths problems
frustrating.
K+ Knowledgeable about the approaches for
teaching mathematics to primary school
children

F+M-K+ (6%)
F+ Positive feelings about teaching
mathematics including confidence, enjoyment,
excitement, challenging and finding it non
threatening.
M- Knowledge and feelings about doing or
studying mathematics are negative; have not
done well at maths, maths is not the best
subject and find doing maths problems
frustrating.
K+ Knowledgeable about the approaches for
teaching mathematics to primary school
children.

F-M+K+ (5%)
F- Negative feelings about teaching
mathematics including lack of confidence and
enjoyment and finding it threatening
M+ Knowledge and feelings about doing or
studying mathematics are positive; have done
well at maths, better in maths than other
subjects and find maths problems interesting
and challenging
K+ Knowledgeable about the approaches for
teaching mathematics to primary school
children.

F+M+K+ (31%)
F+ Positive feelings about teaching
mathematics including confidence, enjoyment,
excitement, challenging and finding it non
threatening.
M+ Knowledge and feelings about doing or
studying mathematics are positive; have done
well at maths, better in maths than other
subjects and find maths problems interesting
and challenging
K+ Knowledgeable about the approaches for
teaching mathematics to primary school
children.
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found in the data. A summary of the key dispositions expressed in each of the life
histories in respect of each of these three themes is presented in Table 2.

Experiences as Students Each of the teachers wrote of significant experiences which
occurred during their own school years in which their remembered perceptions of an
event has seemingly influenced their self concept. For example, Ann wrote, "I
remember reciting tables, however, to my father, and I know I knew them well...My
father said I knew them well, but only because I had a good memory - he was right! -
and I really didn't have a mathematical mind, as he did." Betty spoke about her school
experiences, "My early years at the local technical school give me memories of
challenging and enjoyable maths sessions and I seemed to 'breeze through'. I think in
about year 9, I undertook Maths A and B and did very well in both."

For Ann, who has been teaching for over 30 years, the experience of learning
tables with her father seems to have left her feeling that even though she could do her
tables she couldn't do maths. On the other hand Betty's report gives the impression of
thinking herself capable mathematically.

Personal Philosophy "Personal philosophy" in this context is considered here to be the
expression of positions that convey a sense of coherence in self-understanding
regarding teaching practice and personal history. For example, Betty says, "In
conclusion, I think that it wasn't until I was teaching maths myself that I realised that
there were better ways to teach/learn maths. As a student myself I don't think I knew
any different... Maths skills are essential to our everyday lives so we have to ensure
that students want to participate and learn the concepts involved." Betty's belief that
mathematics should be personally relevant appears to stem from the lack of relevance
of her experiences as a learner.

Ellen, in discussing the student teachers who work with her, says, "Comments
from student teachers are interesting. 'I never knew why you did that until being here',
is a common one and applies to basic concepts such as subtraction (decomposition).
People still don't know why they do things! Rote still goes on!" It seems that Ellen
does not believe in rote learning and is continually surprised that student teachers
unquestioningly accept their own rote learning until being shown the reasons for
procedures they have learned. Each of these quotations expresses a position and a
reason for giving it. Insofar as position and reason are connected I take these
quotations to be expressions of personal philosophies.

Significant Influences Significant influences are taken here to mean the descriptions
of experiences that the writer takes as having informed an on-going change in her
teaching practice and consequent self-understanding. For example, from Dot,
"Lecturers during my teacher training were quite influential in helping me to develop
in my teaching of maths, the qualities and approaches which had lacked in my own
maths teachers." Ann commented on notable events that had improved her teaching,
"Really getting into the team teaching area, guided by a very gifted and tactful
coordinator. We did this for terms at a time, and although he took the maths
measurement component,... he explained his operation in detail, and gave us such
useful notes, that we were able to follow a similar model in future years, when he had
gone into admin."



Interaction of themes In any particular piece of writing the themes are often woven
very closely together and it would be a mistake to see them tied to particular sentences
or paragraphs. The nature of a life history as a present expression of a complex past is
illustrated well in this longer quote from Cathy:

I also remember very clearly being very frightened in my maths in grade 4
because the teacher would come around with a ruler and the ruler was on its
side and if you got things incorrect he would take the ruler and smash it
against your knuckles so what I tended to do was be very very quiet, and try
not to participate too much so that he would forget I was there, because I was
very very scared of making a mistake. So of course, there was no push to
have a go at it, like making mistakes are a part of life and I think that is
something that I have learnt through my own experiences and its something
I'm very conscious of in my own 'class - actually encourage the kids to be risk
takers and they get rewarded for the tries that they have even if they're
nowhere near correct, because otherwise they're going to do what I did and
just go into the background and that's the end of that.

In this quote we see woven together the themes of "Experiences as Students" (grade
4...) "Personal Philosophy" (making mistakes is part of life...) and "Significant
Influences" (in my own class...).

Table 2 Summary of Life Histories

ype _ , _ v _ t + +- en + +'+
Training 2 years 4 years 2 years 3 years 2 ears
Years
teaching

31 years 7 years 17 years 10 years 30 years

Highest
maths

Year 10 Year 12 Year 11 Year 12 Year 12

School
expenence

Negative
episode
recalled
vividly.
believes she is
not
mathematicall
y minded

Positive, did
well

Felt that she
did not
understand
maths, all rote.

ng, vividlearning,
recollection of
upsetting
expenence.

Positive
experiences at
school left
feeling
confident of
her knowledge

-Loved maths
and did well
although she
didn't always
understand

Personal
philosophy

Not evident Has ideas
about how
maths should
be taught but
finds them
difficult to
implement

Clearly
developed
based on own
negative
experiences a
learner.

Reflection of
lecturer's
philosophy

Evident, well
developed

Significant
influences

Colleagues,
team teaching,
inspiring
ENll C tutor,
gifted.tactful
coordinator,
the expenence
of teaching

lnservices,.
team teaching,
publications,
own
experiences as
a learner

Teachers'
college,
expenence as
a teacher,
experiences as
a learner,
curriculum
documents

Lecturer at
teachers'
college, own
experiences as
a learner
EMIC
program

-Loved maths
at school, very
involved in
professional
development,
her role of
maths
coordinator
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A Reading of the Teacher Type Table in Terms of Selected Life Histories

The data collected in the life histories and thematised in Table 2 allows us to see
the complex procedure of identity formation which is reflected in the snapshot of
dispositions caught in the teacher type table. Connecting the themes with the types is
necessary if the teacher type table is to be of use as an instrument of change for
practising teachers. The life histories give a human underpinning to the scales
expressed in the teacher types.

The life history data suggests that school experiences were important
determinants of the teachers' present attitudes towards mathematics and views of their
knowledge of mathematics. Ann and Cathy, whose scores were negative on Factor M
(knowledge and feelings about doing or studying mathematics) in the teacher type
table, described negative experiences of learning mathematics at school and described
themselves as lacking in confidence in their knowledge of mathematics. They recalled
mathematics learning as a predominantly negative experience involving memorising
procedures of which they had little understanding. The frustration and lack of
enjoyment that stemmed from these experiences was apparent in their histories which
were written years later. Betty, Dot and Ellen, who were positive on Factor M, recalled
school mathematics learning as involving more enjoyable experiences and rated their
mathematical knowledge more highly. They also inferred that their knowledge of
mathematics today is adequate or better.

S chuck (1997) identified different voices when teachers speak, which are
apparent in the words of these teachers. She discussed "self as student" and "self as
teacher" as two of the voices that teachers use. It is evident from the life histories and
the teacher type data that the "self as student" continues to speak many years after the
teachers have ceased to be students. The feelings about the "self as student" of
mathematics appear to remain relatively unaffected by subsequent experiences of " self
as teacher". Professional development for teachers like Ann and Cathy may need to
allow them to acknowledge and understand this voice which continues to influence
their views so strongly.

These views of mathematical knowledge and the associated feelings described by
the teachers reinforce the notion that affective and cognitive factors are interwoven in
the learning of mathematics. The interaction of cognitive and affective factors was also
evident in the factor analysis when items loading on factor M consisted of those
concerning feelings about learning and doing mathematics and as well as items related
to knowledge of mathematics.

In discussing the influences on their professional development, the five teachers
described situations in which significant personal relationships were established
between themselves and a more knowledgeable person. The histories suggest that
effective professional development occurs in a context of personal interaction. The
interactions described were with lecturers, presenters, tutors, coordinators, peers,
principals and other colleagues and were mostly the result of ongoing relationships,
which ranged in duration from several months (in the case of lecturers and tutors) to
several years (for relationships with peers and colleagues). These relationships were
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important when they valued the teachers' experiences, included a climate of mutual
respect and enabled learning to be collaborative.

The development of a personal philosophy appears to be linked to the
development of the teachers' confidence in their knowledge of the approaches for
teaching and learning mathematics. The life histories of Cathy and Ellen contain
clearly enunciated personal philosophies for teaching. These two teachers were
positive on Factor K (Knowledge of the approach for teaching mathematics). Ann,
Betty and Dot's philosophies were less well developed and their teacher type indicated
they lacked confidence in their knowledge of mathematics pedagogy.

Conclusions

The teacher type table was built from a statistical analysis. As pure research it
could have been left as a completed entity. What I hope I have shoWn in this paper is
that reading the table in terms of the actual lived experience of some of the teachers
who participated in the study, gives the teacher types a meaning beyond the abstract
and has the power to make the types personal for other teachers and provide
information for those interested in professional development. Personal stories bring an
understanding beyond the cognitive and their affective dimension often gives access to
changed practice where a purely cognitive understanding does not.
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RESEARCHING MATHEMATICS TEACHER THINKING
Olive Chapman

University of Calgary

This paper is a theoretical essay on researching mathematics teacher thinking. The focus
is on a humanistic perspective of defining and researching teacher thinking and research
tools that can be used to gain new insights about mathematics teachers= thinking and
actions from the teacher. perspective. Data collection using story and role play and the
analysis process are highlighted and illustrated This research approach has potential
to contribute to understanding teachers and the teaching of mathematics in ways that
could lead to more meaningful and effective teacher development experiences in order
to facilitate meaningful reforms in mathematics education.

Introduction
If we accept that teacher thinking determines how the curriculum gets interpreted

and delivered to students, then the nature of mathematics teachers= thinking becomes a
key factor in any movement to reform the teaching of mathematics. A shift to a
problem-solving approach to the teaching of mathematics, for example, will unlikely
occur if teachers= thinking about the nature of mathematics and the teaching and learning
of mathematics, consciously or unconsciously, is different from the intended theoretical
perspective of such an approach. In recent years, there has been significant recognition
of the teacher as the ultimate key to educational change. Teachers are not inert conduits
through which the curriculum is delivered. Instead, it is what teachers think and do in the
classroom that ultimately determines the kind of learning that students acquire. At a time
when major reforms are being advocated in mathematics education it is, thus, of
significant importance to focus on the mathematics teacher in order to facilitate the
successful implementation of these reform recommendations. This paper is a theoretical
essay on researching mathematics teacher thinking. The focus is on a humanistic
perspective of defining and researching teacher thinking and research tools that can be
used to gain new insights about mathematics teachers= thinking and actions from the
teacher=s perspective.

Research on the Mathematics Teacher
Studies on the mathematics teacher have traditionally focused on deficiencies in

teachers= behaviors and knowledge, i.e., what teachers do not do or do not know. One
limitation of many of these studies is that they employed universal measures of teachers=
knowledge that were not directly related to instruction in the mathematics classroom.
Thus, it was often easy to find deficiencies since teachers= actions and knowledge were
not necessarily considered in the context of the explicit goal of the curriculum or
standardized assessment of students. For example, teachers would be tested on their
conceptual understanding of mathematics when they came from a system that taught and
tested computational skills. In recent years, most of these studies have focused on
preservice teachers (e.g.; Ball, 1990; Even, 1993; Graeber, Tirosh & Glover, 1989;
Simon, 1993). But there has also been a shift to focusing on the beliefs of inservice
teachers ( Ernest, 1989; Thompson, 1992).
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There now seems to be growing interest in understanding the mathematics teacher
in terms of her or his beliefs/conceptions and the relationship between these beliefs and
her or his teaching. But the tendency is still to judge the teacher by highlighting what are
considered by researchers to be inappropriate and inconsistent beliefs. Although these
studies produce useful insights about the mathematics teacher, they tend to provide a
fragmented and decontextualized view of mathematics teachers= thinking. One reason
for this is the narrow scope in which teacher thinking is defined and the nature of the
research process being used. The intent of this paper is to suggest alternative ways for
considering teacher thinking and its investigation that could make a meaningful
contribution to our understanding of the teaching of mathematics as a lived experience
in classrooms.

Defining Teacher Thinking
The description of what constitutes teacher thinking is not simple because of the

philosophical and psychological considerations involved, and the growing number of
viewpoints that are being adapted. In mathematics education, teacher thinking seems to
be be equated with teacher beliefs/conceptions and teacher knowledge. But more
generally, from a humanistic perspective, teacher thinking is defined to reflect the lenses
teachers construct and use to make sense of their teaching. It refers to ideas in the mind
of the teacher and ideas in practice. These ideas are the meanings the teacher uses to
organize his or her knowledge of teaching and his or her behavior in the classroom. Thus,
in addition to beliefs/conceptions, teacher thinking has been described in a variety of
related ways, for e.g., frames (Barnes, 1992), images (Clandinin, 1985),personal practical
knowledge (Connelly & Clandinin, 1988),practical knowledge (Elbaz, 1983), perspective
(Janesick, 1982), and personal knowledge (Lampert, 1985).

Barnes defined frame as the clustered set of standard expectations through which
all adults organize, not only their knowledge of the world but their behavior in it.
Clandinin defined image as something within our experiences, embodied in us as persons
and expressed and enacted in our practices and actions. Connelly and Clandinin defined
personal practical knowledge as a moral, affective, and aesthetic way of knowing life=s
educational situations. Elbaz defined practical knowledge as theoretical and practical
components of teacher=s knowledge; knowledge as experiential, embodied and based in
the narrative of experience. Janesick defined perspective as a reflective, socially derived
interpretation of experience that combines beliefs, intentions, interpretations, and
behavior and serves as a basis for subsequent actions. Finally, Lampert defined personal
knowledge as knowledge used by a teacher in accomplishing what she/ he cares about,
what students want, and what the curriculum requires. The underlying assumption to
these viewpoints, then, is that what teachers do and think within their professional lives
depends on the meanings they hold and interpret within their personal, social, and
professional realities.

Humanistic Perspective of Research on Teacher Thinking
Research on teacher thinking can be considered in terms of an analytic/positivistic

perspective or a humanistic perspective (Brown, Cooney, & Jones, 1990)where the
former focuses on discovering reality in the form of value-free theory and the latter on
understanding the contexts that shape a person=s perception of his or her reality. The
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focus in this paper is on the humanistic perspective (e.g., Ellis & Flaherty, 1992).
Genuine humanistic studies on teacher thinking tend to focus on a teacher=s

perspective of his or her classroom behavior, instead of a theoretical researcher=s
perspective, in order to make sense of teaching. The theoretical researcher=s perspective
considers teacher thinking in terms of predetermined categories imposed by the
researcher.It focuses on a researcher=s view of how teachers think about their classroom
behaviors based on models of teaching and teachers generated by researchers independent
of teachers.These categories or models are generally embodied in surveys, questionnaires,
observation instruments, and coding schemes. Teachers are generally seen to fit well
within these models that are often set prior to data collection.

Studies based on the teacher=s perspective, in contrast to the theoretical
researcher=s perspective, seek to understand teachers from their own perspective. The
intent is to understand how particular individual teachers understand their work, for e.g.,
how does a teacher makes sense of the teaching of mathematics or of implementing
mathematics reform? In this context, Chapman (1997) investigated how three teachers
made sense of the teaching of mathematical problem solving. In general, studies based
on the teacher=s perspective view teachers in a humanistic way, i.e., as persons who have
something of value to contribute and not as objects of study. Teachers= actions are seen
to have meaning in their situations or contexts. Thus, the focus of these studies is on
conceptualizing the experiential knowledge of teachers and providing plausible
explanations of teaching processes as they are for the teacher. In particular, teaching
behaviors have to be understood in relation to the intentions of the teachers and to the
situational complexity. For e.g., it is not the frequency of the questions in the classroom
that is important, but, rather, what questions about what content is asked at what moment
to what student.

Humanistic Research Process
In this section, the humanistic research process used in the studies on mathematics

teacher thinking on the teaching of problem solving (Chapman, 1997; 1998) and an
ongoing project investigating teacher thinking in teaching mathematical word problems
will be used as a basis to consider some specific aspects of this process in the context of
mathematics education. Given the constraint on space, the focus will be on general
descriptions of two humanistic tools for collecting data (i.e., stories and role play) and of
the analysis process.
Data collection

Whereas teachers= actions are observable, their thinking is not and must be
inferred from what they say they do, what they say about what they do, and what they
actually do in their classrooms. Thus, studies tend to depend on in-depth, open-ended
interviews and classroom observations. Interviews are used, for e.g., to probe the
constructs or meanings which teachers bring to their teaching and the relationships among
these constructs. The teachers give their account on their own terms and not on terms
imposed by the researcher. However, since taken-for-granted, underlying meanings of
teachers= thinking are not readily accessible by the teacher and have to be accessed
indirectly, it is important that these accounts include situations that embody such implicit
meanings. Two ways found to be useful in the Chapman studies in this endeavor are
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story and role play.
Story as Data: Story has been described as a Asymbolized account of actions of

human beings that has a temporal dimension.=:- (Sarbin, 1986, p. 3). A[It] is concerned
with the explication of human intentions in the context of actionLt(Bruner, 1986, p.100).
Based on this view, in recent years, story has been promoted as a relevant form for
expressing teachers' practical understandings because teachers' knowledge is event
structured and stories would provide special access to that knowledge (Carter, 1993).
Story/narrative has also been conceptualized as, Aa [cognitive] scheme by means of
which human beings give meaning to their experience of temporality and personal actions
... a framework for understanding the past events of one's life and for planning future
actions(Pollcinghorne 1988, p.11). In general, then, the stories we tell reflect who we are
and what we may become. They provide a basis for meaning recovery and meaning
construction of our act-ions. Thus, they can facilitate interpretation and understanding of
teachers= experiences.

Participants of a study could be asked to write or tell stories (and anecdotes) about
past, present, and future experiences with mathematics and the teaching of mathematics.
The stories should focus on the teachers-, learning/doing of mathematics and teaching/
facilitating the learning of mathematics in the classroom. The participants could tell
stories of their choice, for e.g., from different periods of their teaching career; of personal
experiences with Agood.=L. and Abath:-. teaching of mathematics; of mathematics lessons
they enjoyed/liked/did not like teaching. They could also tell stories to support
generalized claims they make during the research interview.The stories should describe
a specific situation or event as they lived through it. So they should avoid causal
explanations, generalizations, or abstract interpretations and describe the experience from
the inside, i.e.,including feelings, emotions, and thoughts in action. These stories should
include accounts of complete mathematics lessons that involve the teaching of a
mathematics concept for the first time to a particular set of students. Such accounts
should describe the lessons from beginning to end and provide as much detail as possible
on what the teacher and students did and said in dealing with the mathematics and how
the mathematics content was dealt with or presented.

Role Play as Data: Role play has similar characteristics to story telling in that it
involves acting out the story and not just telling it. Thus instead of living out a situation
only mentally by telling the story, one lives it out physically and mentally. The role play
allows the teacher and researcher to experience and capture the teacher=s thinking and
instructional strategies from different angles. It also provides opportunities to magnify
specific aspects of the teacher=s classroom behaviors that could reveal underlying
meanings of the behaviors. The role play, then, should follow observations of the
participant=s behavior in the classroom. Such observations should be used to get a sense
of the tone of the participant=s classroom and teaching and to identify specific situations
that set this tone. Examples of such situations are:

(i) teacher modeling a mathematics concept or procedure;
(ii) teacher-student discourse used to develop a mathematics concept/procedure;
(iii) teacher intervention: (a) when students are not experiencing difficulties with the

concept or procedure, (b) when students are experiencing difficulties with the
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concept or procedure,(c) during individual student work, (d) during group work.
These situations become themes for the role play. Thus the role play is guided by the
participant=s lived experiences. For example, one participant=s teaching may involve
situations (i) and (iii) a, b, c, while another may involve (ii) and (iii) a, b, d.

Using situation (i) (i.e., modeling a mathematics concept) as an example, the role
play can unfold as follows: First, the participant teaches a mathematics concept from her
or his curriculum in the way she or he would to a whole class. The researcher observes
the teaching process focusing on what he or she would do in order to reproduce it.
Second, the researcher plays the role of teacher and teaches the same concept under the
direction of the participant in order to teach the lesson like him or her. Third, the
researcher re-teaches the lesson without any help from the participant, the
participant=s approach. The participant observes the teaching process focusing on points
of conflicts with his or her expectations. Finally, the researcher teaches the lesson using
an alternative approach while the participant focuses on identifying points of conflicts
with his or her teaching. Each of these stages is accompanied by a discussion with the
participant on his or her intentions or reason behind his or her thinking.
Analysis

Making sense of the data collected is a crucial and difficult aspect of qualitative
inquiries. One large area of choice is that of level of interpretation to be employed.
However, to be prescriptive regarding the analysis process is problematic because, for
humanistic studies, the context of a particular case significantly influences how the
analysis actually unfolds and such contexts cannot be generalized (i.e., to generalize will
be to revert to a positivistic framework). Thus, what is presented here is one way in
which the analysis can unfold based on the approach that evolved from Chapman=s work
on the mathematics teacher. This approach consists of four related phases.

The first phase makes explicit the researcher=s original meanings. These meanings
are the researcher=s initial, spontaneous interpretation of how the teacher thinks and acts
in the classroom in teaching mathematics. This interpretation tends to evolve during data
collection while the researcher is listening to or observing the participant, and before
reflecting on the transcripts. It is usually judgmental, based on a view unintentionally
imposed by the researcher in response to an apparent, familiar pattern of behavior that
seems to be obvious. Thus this interpretation attends to surface meanings and does not
take into account the teacher=s assumptions and intentions. It forms a baseline beyond
which the researcher aims to reach in order to understand the teacher=s meaning and not
simply to justify that of the researcher. The second phase of the analysis focuses on the
participant=s explicit or espoused meanings. These meanings are determined by
reviewing the data in order to identify explicit statements about the teacher=s beliefs,
intentions, and expectations. These statements are then clustered to form themes that are
characteristic of the teacher=s thinking and behavior. These themes become the basis for
understanding the teacher=s perspective but are not in themselves necessarily the
underlying meanings.

The third phase of the analysis focuses on the participant=s implicit meanings.
This involve reflecting on the data in order to identify plausible explanations and
descriptions of the meanings underlying the themes from the second phase. Since these
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meanings are implicit, the stories and role play become very important for providing
indirect access to them and to make them explicit. Thus, the stories, anecdotes, and
role-play transcripts are reviewed in order to identify, for e.g., similarities in plots for
different stories, points of strong emotions, and statements and actions that convey
personal meanings (e.g., those that reflect personal judgement, intention, expectations and
values of the participants) that reoccur in the various events described. During this
review, new themes can emerge from the data in addition to those in the second phase.
This review leads to particular meanings behind the teacher=s instructional behaviors and
understanding of the themes in terms of the teacher=s lived experiences in the classroom.
Finally, the fourth phase of the analysis focuses on the configuration of meanings and
themes. This involves identifying coherent patterns from separate meanings and themes,
as understood by the researcher, in order to provide a holistic perspective of the teacher=s
thinking.

It is important that the participants play a role in the data analysis if the goal is to
gain understanding from their perspectives. This role can be very involved, as in
Chapman (1997), or minimally involved, as in Chapman (1998). In the former, the
researcher collaborates with the participants in the third and fourth phases. Thus, for
example, the participants can independently identify meanings/themes implicit in their
actions, which the researcher use to compare with hers or his and negotiate differences
with the participants. In the minimum involvement, the participants comment on the
findings by the researcher in the third and fourth phases. In general, the outcome of the
analysis should make sense to the participants in that if it provides a plausible way of
understanding their thinking, they should be able to resonate with it explicitly and
implicitly/intuitively.

An Example
This section presents a very small part of Tad=s case as an example to illustrate

the methodological considerations previously discussed, focusing on the four phases of
the analysis process. Tad is one of the participants in an ongoing project on teacher
thinking in the teaching of mathematical word problems. Tad is an experienced high
school teacher who is considered to be a very good teacher.

Phase 1 of analysis: The focus of the researcher=s original meaning was that
Tad=s teaching seemed to be very traditional. He would model two examples of the word
problems then have students work individually on practice questions while he circulated
and provided help. During the modeling he seldom asked questions but students could
ask questions for which he provided the answer.

Phase 2 of analysis: One of Tad=s explicit meanings was that his teaching was
interactive, i.e., he liked to get the students involved in the lesson. Tad=s explanation of
what he meant by interactive was that it involved getting students to ask questions. In
general, Tad saw himself as a student-centered teacher. What interactive meant from
Tad=s perspective was considered a theme for further investigation.

Phase 3 of analysis: Tad=s implicit meaning for this theme was determined by
examining teacher-student discourse in the data, e.g., the nature of questions he
asked/encouraged, the nature of his responses to questions, the nature of his intention of
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his responses, and his emotions associated with questioning. The outcome of this
examination included the following:

Tad viewed interactive teaching in terms of the quantity and nature of questions
asked by the students and not by the teacher. He felt good when the students asked a lot
of questions about the mathematics concept being presented and disappointed when they
did not. He liked to be asked questions that involved higher level thinking, e.g., Awhy.--
questions. The role play created conflicts for him when no Awhy_ questions were asked.
Although Tad did not ask questions to reveal students= thinking during the presentation
of the mathematics concept, his teaching was dependent on the students= questions that
he encouraged. Tad used the nature of the students= questions as an indication of:their
thinking. But he also wanted to be asked questions in order to display his thought process
and not just factual knowledge. He wanted students to learn from his thought process and
not just his telling. He expected students to resonate with his thought process in order
to compare their thinking, but not to just mimic a specific set of procedures. Students
could use their own procedures that made sense to them. Thus it was during individual
work, when students needed help, that Tad would ask them to reveal their thinking in
order to allow him to intervene effectively. The Awhy:4 questions asked by students
allowed Tad to elaborate on his thinking in terms of what the students wanted to know.
In this sense, his teaching was student-centered in that the students determined the scope
of what he presented. From his perspective, students will learn mathematics with
understanding by seeing the thought process of the teacher in solving a problem in terms
of what both the teacher and students considered to be important. Thus his teaching was
a collaboration between him and the students.

Phase 4 of analysis: The analysis of Tad=s case is still in progress, therefore a
configuration of themes has not been determined. However, in Chapman (1997), the
configuration of themes was presented in the form of metaphors. For e.g., Aadventurea,
was used to portray one of the participants= teaching ofproblem solving in a holistic way
in terms of the underlying meanings framing her classroom behavior. The configuration
of themes could also be presented in the form of case narratives.

This sample of the analysis of Tad=s teaching, although only a small part, suggests
that while his teaching seemed to be traditional on the surface, the underlying meanings
provided a different understanding that begins to reflect how and why his approach was
considered successful in helping students to learn senior high school mathematics. Tad=s
case also begins to provide insights about teacher-student discourse that could contribute
to understanding teaching approaches for high school mathematics and form a basis of
future research or teacher development activities.

Conclusion
A genuine humanistic perspective to researching mathematics teachers aims at

understanding the teaching of mathematics from a teacher=s perspective. Thus it requires
the researcher to not be judgmental, but to seek understanding of the teacher in a holistic
way. This research approach has potential to contribute to understanding teachers and the
teaching of mathematics in more realistic ways than research that studies the teacher as
objects. It can also provide insights to enhance professional development experiences of
mathematics teachers in order to facilitate meaningful reforms in mathematics education.
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Note: This paper is based in part on a project that is being funded by the Social Sciences and
Humanities Research Council of Canada.
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WHAT KIND OF MATHEMATICAL KNOWLEDGE SUPPORTS TEACHING
FOR "CONCEPTUAL UNDERSTANDING"? PRESERVICE TEACHERS AND

THE SOLVING OF EQUATIONS

Daniel Chazan, Cesar Larriva, & Dara Sandow

Michigan State University

In this paper, we explore the appropriation of categories for
describing classroom activity and student understanding which
exist in the literature for use in the task of describing qualities of
teachers' substantive knowledge of the mathematics they teach. In
characterizing the resources which teachers have for use in their
teaching, such a description of teachers ' mathematical
knowledge seems potentially more useful than cataloguing the
amount of coursework taken. In particular, we use tasks which
have been explored in the existing literature on the solving of
equations and questions about teaching students to solve linear
equations in order to surface preservice teachers' substantive
knowledge of this sort of task. In the paper, we raise the question
of whether finer distinctions are necessary for describing
teachers' substantive knowledge of the mathematics they teach.

Objectives/purpose

When discussing the mathematical preparation of teachers, the amount of
coursework taken is often used as a crude measure of prospective teachers' content
knowledge (Ball, 1992) and of the mathematical resources which they bring to
teaching tasks. This exploratory study builds on work describing students'
understandings of mathematical topics with the goal of learning to describe qualities
of teachers' substantive knowledge of mathematics (not their pedagogical content
knowledge or their knowledge about the nature of mathematics). As part of a larger
study of the impact of different clinical settings on the nature of preservice
mathematics teachers' substantive mathematical knowledge, we seek a vocabulary
for describing differences in the qualities of teachers' knowledge of a particular
mathematical topic, rather than relying on the quantity of coursework they have
completed. In this part of the study, we raise questions about categories currently
available in the literature for this task.

We have chosen to examine the issue of the qualities of teachers' knowledge
of mathematical content by exploring preservice teachers' knowledge related to
teaching the solving of equations. We would like to explore connections between the
nature of a teacher's own understandings of solving equations and systems of
equations and their notions of how to help students understand why some linear
equations have no solution or infinitely many such solutions (for example, why
solving such equations symbolically results in equations like 0 = 0 or 2 = 0). With
the current North American secondary school focus on graphing calculators and

2 - 193

622



functions-based approaches to algebra, preservice teachers may choose to view the
literal symbols in such equations as either variable quantities or unknown numbers;
they may have seen approaches to solving linear equations by graphing each side of
the equation, as well as methods which focus on the writing of equivalent
expressions. As a result, this particular topic challenges us to develop descriptions of
teachers' content knowledge which are applicable across different approaches to
conceptualizing the same content, rather than simply assuming that a particular
approach necessarily is an indication of a particular type of mathematical
understanding (Masingila, 1998). For this reason, this topic is especially valuable
and challenging as a locus for the study.

Perspective or theoretical framework

As part of attempts to change the nature of mathematics classrooms, there have
been efforts to indicate ways in which mathematical activity in classrooms can differ.
Skemp (1976) proposes that there are two sorts of understandings of mathematics
that are the goals of classroom activity (Incidentally, this reading was used with the
preservice teachers (interns) studied in this project and influences some of the
interview comments presented below.). For Skemp, relational understanding
includes an instrumental understanding of what to do in order to solve mathematical
problems plus an understanding of why such procedures work. In passing, he
suggests that "nothing else but relational understanding can everbe adequate for a
teacher" (p. 13). Hiebert and Lefevre (1986) use different terms. They suggest that
conceptual knowledge "is characterized most clearly as knowledge that is rich in
relationships" (p. 3), while procedural knowledge consists of knowledge of the
representations systems used in mathematics and algorithms for completing
mathematical tasks (p. 6). They view these two types of knowledge as intimately
connected. Similarly, in order to describe differences in classroom discourse and in
teachers' instructional goals, Thompson, Philipp, Thompson, and Boyd (1994)
distinguish between calculational and conceptual (as well as, in passing,
computational) orientations in the teaching of mathematics. Building on this work,
Cobb (1998) uses the terms calculational and conceptual discourse to describe
differences observed in classrooms.

All of these sets of terms are aimed at creating categories to describe
differences in classroom activity which are experientially vivid to the authors. And,
in general, they have been used to encourage greater attention to issues of relational
understanding or conceptual knowledge. Perhaps because examples of attention in
classrooms to such understanding is relatively rare, it is easier to describe the
instrumental, procedural, or calculational part of the divide. These adjectives
describe orientations towards teaching, individual knowledge, understanding, or
classroom discourse which are prevalent in many classrooms and focus on
procedures for calculating the solutions to given mathematical tasks. It is the
relational, or conceptual, side of the divide whose definition is more complex. But, it
is precisely this side of the divide that we require in order to understand whether
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teachers have subject matter knowledge which will support teaching for conceptual
understanding. For example, Skemp (1976) and Hiebert and Lefevre (1986) use a
criterion of interrelationship. Yet, this criterion is clearly not sufficient for
distinguishing conceptual from procedural knowledge. Procedures can become quite
complex and related to a host of other procedures and symbols systems without
necessarily involving a conceptual understanding or orientation.

When faced with this difficulty, Thompson et al. (1994) use vignettes
involving a traditional word problem to distinguish between calculational and
conceptual orientations to mathematics teaching. In the context of this sort of
problem, they point to ways in which one teacher continually asked students to refer
their calculations back to the situation described in the word problem. The other
teacher let the classroom discourse focus on the calculations and not their meaning in
the situation (p. 86). However, these criteria are limited to discussion of classroom
activity that results from a problem that is situated in some sort of
extra-mathematical context.

Chazan (in press) takes a different approach. In discussing standard exercises
not situated in an extra-mathematical context, he focuses on whether or not an
approach to teaching a particular content area identifies the mathematical objects of
that content area and provides students with task instructions that identify the goal of
the task in terms of these objects.

Methods of inquiry

In this study, we explore whether the sets of terms proposed in this literature
seem useful in describing preservice teachers' understandings of tasks involving the
solving of equations and their notions of how to help their students with such tasks.
To explore these issues, we have created an interview focused on the solving of
equations and systems of equations. The interview consists of two parts. The first
part focuses on a phenomenon of teaching. Early in their internship year, the
preservice teachers were asked how they might help a student who does not
understand why one sometimes gets 0=0 or 2=0 as the solution of a linear equation
when solving with algebraic symbols.

The second part of the interview asks the preservice teachers to tackle
mathematical problems which have been used in research on student understanding
of the solving of equations (From Sfard & Linchevski (1994, p. 218): Will the
following system of equations always have a solution? k-y=2 and x+y=k; from
Schoenfeld (1985): What is the solution set for x2y+y2x = 1?). This part of the
interview attempts to elicit whether the prospective teachers view the x's and y's in
equations as variable quantities or unknowns and to explore the nature of the
representations which they feel can be used to solve such problems.

A final question asks the interviewees to indicate what equations are and what
it means to solve equations.
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This paper will describe the data from one interviewee whose understandings
are difficult to categorize. We will use this data to raise questions about the utility of
distinctions made in the literature for the task of identifying qualities of teachers'
content knowledge.

Presentation and analysis of the data

At the end of the interview, when the intern was asked what she would tell
students an equation is or what solving equations means, this intern's perspective
was based in the interpretation of literal symbols as unknown numbers. She said:
"...that's how I define an equation, is that it has an equal sign in it." and similarly
"To solve an equation means you find the unknown value that makes both sides of
your equation equal, that's what solving an equation is.... You're looking for the
unknown value ... that makes both sides of the equation true." Yet, in other parts of
the interview, she used techniques that might be viewed as in tension with this
perspective.

When faced with the question of helping a student understand the meaning of
the solution to 3x+7 = 2(x+5)+x-1, this intern indicated that such questions were
about to come up in one of the classes she is teaching. Her responses involved the
use of graphical representations using a two dimensional Cartesian plane. Such an
approach was suggested by her textbook, but she had her own preferences which
differed slightly from the book:

... what the textbook does is teaches them to subtract everything over
so that one side is zero and then graph it so that the solutions will be
the x-intercepts.... Actually, just the x coordinates.... I'm going to be a
rebel, I think and I'm going to make my students do this instead, graph
y equal to this side as one equation and y equal to this side as one
equation and see where the lines intersect.... That's where the x and
the y are both the same. If the y's are the same, then these two have
outputs that are the same.... So looking at these two [the expressions
on either side of the equation as she's rewritten it, 3x+7 = 3x +9], I
have parallel lines. I have both slope 3 and different y intercepts. So
that's how I'm getting, how I'm not getting the solution for x.

Her focus on graphical representations seemed to flow from a desire to help
students develop a deeper understanding of the solving of equations: "If they were
solving this equation, I think they're just solving for an unknown, and if they're
doing this algebraically, it's really procedural and I don't know if they have a great
understanding of what's going on." She seemed aware that the use of this sort of
graphical technique involved a different interpretation of literal symbols. On the
other hand, the notion of functions was not explicitly part of her discussion; y=3x+7
and y=2(x+5)+x-1 are both viewed as equations and not as functions. Thus, in her
view, when graphing these two "equations," one now has a system of equations.
However, by considering the solution to the "system" of equations
3x+7=2(x+5)+x-1 as the x coordinate of the intersection of the two "equations," she
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is treating the "system" like a single equation whose solution is a set of values, rather
than a system of equations whose solution would be the coordinates of a set of
points.

I guess it's thinking about a variable in a really different way, so. But
when you're solving this kind of a system, the x is an unknown, but
when you're graphing, you're thinking about y and x, all possible
solutions, kind of different concepts. I wonder if that makes it
confusing at all for students.... Now [ indicating y=3x+7 and y=3x+9],
I have a system of equations.

But, it wasn't that these sorts of graphical techniques were a "trick" that was
somehow new to her repertoire. Graphing seemed a strong and integrated part of her
approach to the solving of equations that were more complex' mathematically. Thus,
when approaching a system of equations in two variables with one literal coefficient,
k-y=2 and x+y=k, she solved the problem graphically. Her solution was quick and
confident, though she only answered the question as posed and did not go on to
characterize the nature of the solution set (as do some of the interviewees in Sfard
(1994)).

... what you're asking is for every k, is there a solution x and y? Okay,
well I was looking at this and thinking this is a system of two lines and
then I just noticed that I have k - y=2. That line is a specific y equals
line... y= k-2. ... if this one has a slope zero, so that's going to make it
a lot easier to think about this one as y = -x + k. So if I'm thinking
about graphing this ... that hits, my intercept is k and the slope is
negative, so I'm going to get a line like this, so there is a specific point
of intersection. So there is a solution, now is there a solution for every
k? Well, if I vary k along the y axis, it seems like there would always
be a solution to me.

Similarly, when approaching the single equation in two variables in which the
variables cannot be untangled, x2y + y2x = 1, she immediately thought of graphing
each side on a three dimensional coordinate system. Though she did not produce a
solution, she was not overwhelmed by the problem and made productive strides
towards describing the nature of the solution set.

...either one of them can't be zero, so I'm never going to have that type
of a solution. Okay, this looks three-dimensional.... It does because,
well then I can graph this [the left side of the equation] and it's some
kind of plane intersecting with a plane So maybe if I fooled
around, I could figure out, you know, what x and y would have to be to
equal one, but maybe there' s not any solutions, or maybe there's a lot
of different ones that occur different places. Cause this type of thing
being z = x2y + y 2x, might be really wavy. I'm not really sure what it
looks like. Because I have, my variables are multiplied together, so
that's kind of something that I'd have to sit and think about (laughs)
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for a really long time before I could get a picture. I think that I would
go right to my computer and graph that... I have a 3-d graphing
calculator on my computer at home.... It would probably be easier if I
chose certain planes for y. Say, y equals one, and then look at what
I'm left with, I'm left with x2+ x and x2+ x is just a parabola, so I have
for the plane y = 1. That's this plane, I get some kind of a parabola. I
think I did that right. And if I chose x =1, then I would just be getting
in the x =1 plane, I would be getting y + y2, which is also an upward
parabola. So it looks like there is a couple different places where it's
going to cross.

Frustrated by her inability to present the interviewer with a solution, the intern then

said:

I am thinking maybe I did some stuff like this in multivariable
calculus. And that I am just not clicking with remembering the
procedures for figuring out. I think that I have a relational
understanding of what's going on with the situation.

To what extent does this intern's substantive mathematical knowledge support
teaching for a conceptual or relational understanding of the solving of
equations?

At the level of espoused beliefs, this intern has a conceptual orientation
towards teaching. In discussing the solving of equations, she explicitly refers to a
relational understanding and would like to offer her students more than what seems
to her to be procedural skill. Though we may argue about exactly where to draw the
line for conceptual understanding, arguably this intern has a conceptual
understanding of this topic. She is able to solve a variety of problems involving the
solving of equations. In doing so, she makes use of a similar strategy throughout and
seems to have a well-connected understanding of relationships between problems of
different types. She strives to answer the question of why a particular equation in one
variable would not have a solution and why a particular system of equations will
have a solution for any value of k. She can explain the goal of solving linear
equations and how graphing both "sides" of the equation helps one find the unknown
number for which one was searching. Though there are some tensions between the
method that she chooses to solve equations and the way in which she defines the
nature of the task, perhaps this is only natural. After all, Sfard and Linchevski (1994)
suggest that competence in algebra involves versatility and adaptability in the
interpretation of symbols. They suggest that in solving algebra problems a person
oscillates between operational approaches and a variety of structural ones.

However, we are concerned that this intern's substantive mathematical
knowledge does not provide sufficient resources for the development of her students'
conceptual understanding. As she pointed out, and we concur, one might be
concerned that her students will become confused. If any string of symbols with an
equal sign is an equation, and thus some functions can be represented by equations,
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how does this fit with the notion that only some equations are functions? If one
solves an equation in one unknown by adding an implicit unknown and then solving
a "system" of two equations in two unknowns by looking at the intersection point of
two lines, how will students understand why the solution to such "systems" are
different than the solutions to problems which begin with a system of equations in
two unknowns?

In addition to the potential for confusion, we wonder whether, by teaching this
graphical strategy, this intern would simply be teaching a new procedure for the
solving of equations, rather than helping her students develop a conceptual
understanding. Would she be able to articulate why this procedure works and why it
is a legitimate way to seek the solution to an equation? We are not sure. We might
argue that though this intern may have a conceptual orientation towards teaching,
there is a fundamental confusion within her conceptual understanding. Contra Sfard
and Linchevski, we might argue that there is a contradiction between her definition
of an equation and its solution and her methods for solving equations.

Is it that a functions-based approach reduces simply to a different procedure
for solving equations and doesn't offer a qualitatively different understanding of the
domain (as we felt in reading Massingila, 1998)? We would disagree (see Chazan, in
press). Perhaps, in this case, if the intern had made more explicit connection of this
graphing technique to functions rather than equations, we might be more sanguine.
Alternatively, perhaps our interview's focus on a particular problem type was too
limited. Maybe if we had asked the intern how instruction over the course of the year
would help students become prepared for this sort of task, then she might have been
able to articulate how they would come to learn this technique in integrated way and
not as an isolated procedure.

These concerns make us wonder about using descriptions like conceptual or
procedural understanding for an examination of teachers' substantive knowledge of
mathematics. Perhaps the difficulty is that conceptual understanding is not an
"achievement," that is, something that one either has or does not have. Instead maybe
one can have conceptual understandings of different kinds, including partial, or
confused, conceptual understandings. Perhaps, discussions of the sorts of
understandings useful for supporting teaching for conceptual understanding might be
more usefully organized around a set of dimensions, for example: To what degree is
the teacher able to articulate the goals of a problem in terms of relevant mathematical
objects? To what degree is the teacher able to relate situations and the mathematics
used to model situations? To what degree is the teacher able to provide justification
for why procedures work? To what degree are there matches between the teacher's
definition of the goal of a task and the procedures used to reach those goals? To what
degree is the teacher aware of inconsistencies in his/her own understandings? In this
sense, having a conceptual orientation to teaching and a conceptual understanding of
a topic might not mean that one has sufficient subject matter resources for teaching
that topic.
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A RECIPROCAL MODEL RELATING SELF ESTEEM AND
MATHEMATICS ACHIEVEMENT

Constantinos Christou*, George Philippou*, Maria Heliophotou**
*University of Cyprus, P.O Box 537, Nicosia Cyprus, **Cyprus College

In this study we developed a model relating general self-esteem and mathematics
achievement through basic intervening variables supported by social cognitive
theory. A structural equation model was developed to examine the paths from
mathematics achievement to general self-esteem and vice versa trough mediating
variables. The data, collected from 308 preservice primary school teachers,
provided a good fit to the developed model, indicating an indirect reciprocal
causal relationship between self-esteem and mathematics achievement.

Background and aims

Knowledge, skill, and prior attainments are often poor predictors of subsequent
success because self-perceptions powerfully influence behavior. The beliefs that
people have about themselves are key elements in personal self-evaluation and
behavior prediction. Bandura (1986) considered self-reflection and self-evaluation
to be the most unique human abilities and believed them to include perceptions of
self-esteem. The concept of self-esteem is not uniquely defined in the literature.
Kahne (1996) considers self-concept (SC), self-esteem (SE) and values to
comprise the three dimensions of self-perception. SC refers to the descriptions we
hold for ourselves and SE refers to the level of satisfaction we attach to those
descriptions. Similarly, Kohn (1994) defines SE in terms of the "personal
judgement of worthiness that is expressed in attitudes the individual hold for
himself' (p.273). On a rather different line, Byrne seems to equate SC to
"perceptions of ourselves" and in specific terms as "our attitudes, feelings and
knowledge about our abilities, skills, appearance and social acceptability" (1984,
p.429).

Self-esteem judgements reflect evaluations that can be either task oriented
or ego oriented (Kahne, 1996). Task oriented evaluations are based on self-
efficacy beliefs while ego oriented beliefs derive from perceived social differential
characteristics. The issue in the former case is to enhance skills, while in the latter
case, the issue is to establish superiority over one's mates. In either case SE is
postulated to affect behavior, as people tend to engage in tasks in which they feel
competent and avoid tasks in which they do not. High SE helps to create an
environment in which individuals choose to undertake difficult tasks and
activities, while feelings of low SE develop a sense that the obstacles are
insurmountable, foster stress, and narrow the vision. Consequently, SE can be
considered both as a determinant and a predictor of the level of accomplishment
that individuals finally attain".

Studies of the causal relationships between academic achievement (AA) and
general self-esteem (GSE) have tended to focus on connections between AA and
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GSE via academic self-concept (ASC). Early research reports have mentioned
causal connections leading from AA to ASC and then to GSE (Byrne, 1984). On

the other hand, causal paths have also been found flowing from GSE or ASC to
AA (Marsh, 1990). An increasing number of reports have come to agree that the
causal relationships are reciprocal rather than unidirectional (Marsh, 1993).

For some time attempts to examine reciprocity paid little attention to subject
specificity (Marsh & Yeung, 1997). Though a generalized academic affect may be
appropriate in some situations, there is an implicit underlying assumption that
measures of affect vary substantially over different school subjects. Marsh and

Yeung (1997) rejected the idea of a model that posited a single higher order
dimension of academic self-concept, and described a model in which SC is subject
specific. Moreover, Marsh (1993) referred to a growing body of research showing
that verbal and mathematics SCs are nearly uncorrelated. He concluded by
rejecting the usefulness of measures of general academic self-concept as a
summary of SCs in specific school subjects, when there is no correlation among
them.

In this study, we examine the reciprocal relationships between MA and GSE
of preservice teachers, considering that the relationship between AA and SE is
subject specific. What is new in this study is the inclusion of intervening variables
that refer to preservice teachers' confidence in doing and teaching mathematics.
Thus, the main purpose of this study was to examine how specific variables of
teaching mathematics influence the GSE of teachers by including intervening
variables that are more suitable for the pre-service teachers. To this effect, we
developed another construct, the teacher's self-esteem of mathematics, which is
hypothesized to influence their GSE. Specifically, the study addressed the
following questions: Are the relationships between MA and GSE reciprocal? If
yes, what variables mediate this reciprocal relationship? Are there differences in
the structure of pre-service teachers' GSE in terms of their gender? The latter
question is related to earlier findings that general and academic self-concepts are
more highly correlated with the mathematics SC for boys and more highly
correlated with the verbal SC for girls (Marsh, 1993).

Method

To answer the research questions we estimated a theoretically informed
multivariate causal model in which the hypothesized reciprocal relationships are
decomposed through the introduction of mediating psychological constructs. The

proposed model is based on the theoretical assumption that views SE as both a
"social force" and a "social product". In the context of mathematics learning and
teaching, SE is seen both as influencing and being influenced by the mathematics
achievement of pre-service teachers. The model assumed that MA (F4) affects
students' GSE (F1) through four intervening latent factors:

Students' perceptions of teachers' appraisals about their own capabilities in
mathematics (F5),
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Students' perceptions of their comparative performance in mathematics (F6),
Students' perceptions of their ability to teach mathematics as compared to their
classmates (F7),
Students' confidence in teaching mathematics (F8).

Similarly, we proposed that GSE enhance MA through two mediating factors:
motivation (F2), and anxiety (F3).

The model was tested against the data collected from all freshmen and
sophomore preservice teachers admitted at the University of Cyprus in 1977 on
the basis of competitive examination scores. Using listwise deletion of missing
values, the final sample included 308 students. Of these 28% were males and 72%
females. Mostly we used three observed variables to identify each latent variable
(F1 to F8), since a larger number is technically unnecessary. Table 1 shows the
latent variables, and the loadings on each item for males and females.

Results

All indicators load strongly and distinctly on each of the latent constructs for both
groups. Table 1 shows that the standardized loadings are all above .35 with the
exception of the first variable on the Motivation factor, which are quite low for
both groups (.142 for females and .114 for males). These findings indicate that the
hypothesized structures can be adequately represented through the first-order
factors. More precisely, we found that the reciprocal relationship between GSE
and MA can be represented by the hypothesized 8 first order factors. The negative
sign of the third indicator of the GSE factor, which holds true for both the male
and the students, reaffirms previous results that students' GSE is lower when they
feel that they should respect themselves more than they do.

The analyses were conducted with covariance matrices, since the focus of
the study was on the testing of the invariance of factor loadings and factor
regressions across the male and female pre-service teachers. We began with the
least restrictive model in which only the form of the model, i.e., the pattern of
fixed and non-fixed parameters is invariant across groups. The initial baseline
model is "totally non-invariant", as no between-groups invariance constraints were
imposed on estimated parameters (Table 2). This model provided the basis for all
subsequent models in the invariance hierarchy.

In the first stage we tested the ability of the model to fit the data separately
for each of the two groups with no invariance constraints. The parameter estimates
were reasonable for both groups in that all factor loadings were large and
statistically significant and the patterns of correlations were logical and consistent
with previous research. Moreover, the goodness of fit index was good in relation
to typical standards. Table 2 shows that the Comparative Fit Index (CFI) for the
total sample was .914, which indicates a "good fit".

We pursued two more specific tests imposing invariance constraints for sets
of parameters (factor loadings, and regression correlations and factor variances)
across the two groups, to test for gender differences. We began with tests of the
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Table 1: The Factors, and the Factor Loadings of the Observed Variables

Factors Items Factor Loadings

Females Males

F I : General
Self-esteem

On the whole, I am satisfied with myself

I take a positive attitude toward myself.

I wish I could have more respect for myself.

.666

.689

-.427

.736

.756

-.436

F2: Motivation I have had the feeling of wanting to quit school.

I have had the feeling of wanting to quit university.

I was not interested in school maths at high school.

.142

.445

.771

.114

.450

.791

F3: Anxiety I feel nervous when doing mathematics.

I feel my hands sweating when working with
problem solving.

During the past year, I felt that I was going to have
a nervous breakdown due to mathematics.

.890

.864

.764

.886

.860

.787

F4:
Mathematics
Achievement

Grades in mathematics at high school.

Grades in mathematics in university math courses.

.747

.365

.709

.228

F5: Perceived
Teachers'
Appraisals

My math teachers were not interested in what I did
in maths.

By my teachers' standards I was not good in maths.

My teachers did not appreciate my abilities in
maths.

.355

.751

.606

.325

.924

.614

F6: Perceived
Comparative
Performance in
Mathematics

I believe that in maths I am better than many of my
classmates.

I believe that I can understand mathematics better
than my classmates.

I believe that I am one of the best students in maths

.797

.940

.741

.857

.911

.673

F7: Confidence
in Teaching
Mathematics

I feel confidence in teaching maths.

I feel confidence in explaining maths.

I believe that I will become a good math teacher

.677

.884

.758

.658

.876

.777

F8: Perceived
Comparative
Ability of
Teaching
Mathematics

I believe that I can teach mathematics better than
my colleagues.

I believe that I will become a better math teacher
than my colleagues.

.883

.909

.911

.890

equality of factor loadings across the two groups, followed by tests of regression
correlations and factor variances. The "totally non-invariant" model indicated a
good fit for the whole sample as well as for each of the two groups separately: x2 =
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648.9, with 426 df (degrees of freedom) for the total, x2 = 335.7 with 213 df for
females, and x2 = 313.3 with 213 df for the male model (p < 0.001 in all cases).
The introduction of factor loadings invariance resulted in a change of x2 by 2.796
and a change in df of 15 (p>.001) with a good fit (CFI = .919). Finally, the
introduction of the invariance of regression correlations resulted in a change of x2
by 11.694 and a change in df of 14 (p>.01) with a better fit (CFI = .920). The
conclusion is that the measures between the two samples are equivalent, meaning
that the model has an equally good fit for females and males.

Table 2. Goodness of Fit for Separate Solutions for Each Group with no
Invariance Constraints and for Invariance Constraints Imposed across the Two
Groups (males and females).

Model x2 df CFI p X
2d dfd p

No invariance

Males 313.259 213 .909 .001

Females 335.689 213 .918 .001

Total 648.948 426 .914 .001

FL invariance 651.744 441 .919 .001 2.796 15** p > .001

FL, FC,
invariance 663.438 455 .920 .001 11.694 14** p > .001

Overall, the fitting indices are almost the same for each step in the hierarchy, none
of the changes in the chi-square values were found to be statistically significant.
This means that the constrained model can adequately explain the structure of
interrelationships among the factors and the directions of the paths in both groups.
In other words, the restrictive model seems to be identical in the two groups.

Figure 1 shows that the teachers' GSE is influenced by their MA through
the four intervening variables. The first path indicates that GSE is influenced
indirectly by MA through the perception of teachers' feedback so that high MA
elicits positive teacher appraisals: regression correlations (RC: .760 and .780 for
females and males, respectively). These responses contribute to positive feelings
with respect to the mathematics SC and perceived comparative performance in
mathematics (RC: .850 and .930), and also through the teaching confidence (RC:
.486, .369). The former leads to positive math teaching SC (RC: .800 and .901),
though the perceived relative MA leads to GSE through the confidence in teaching
mathematics (RC: .870 and .780) and to the perceived comparative ability of
teaching (RC: .985 and .990). The latter factor (relative teaching ability) leads
directly to confidence in teaching mathematics (RC: .416 and .369) and indirectly
to GSE. What is interesting to note is that all the three intervening variables:
teachers' appraisals, perceived relative performance in mathematics and perceived
relative ability of teaching mathematics, lead directly to teaching mathematics
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confidence, which in turn leads directly to GSE. The direction of each indirect
causal path is consistent with the hypothesized positive effect of MA on GSE and
confidence in teaching mathematics.

.800 (.901)

Teachers'
Perceptions

.486 (.369)

.870 (.780) .782 (.895)

Self
Esteem

.274 (.247) Math

930 (.860) F2
Achievement

Motivation

(-.493)

Anxiety F3

Figure 1: The Model with Regression Correlations.(Numbers in parentheses
indicate males' parameters).

The hypothesized paths involving GSE, mediating variables, and MA are all
significant. GSE has a significant negative effect on anxiety (RC: - .467 and - .442
respectively) so that low general self-esteem leads to high anxiety. Anxiety in turn
has a direct effect on MA, indicating that high anxiety contributes to positive
mathematics achievement, reaffirming previous studies. GSE has a significant
positive effect on motivation (RC: .930 and .860), which in turn affects MA
indirectly through anxiety. Specifically, motivation has a significant negative
effect on anxiety (RC: - .490 and - .493 respectively) meaning that low motivation
leads to high anxiety. Furthermore, GSE affects MA in a direct way, indicating
that high GSE leads to high MA (RC: .274 and .247). The directions of all these
paths are again consistent with the hypothesized effect of GSE on MA.
Examination of the modification indices suggests an indirect effect of teachers'
appraisals on mathematics anxiety through motivation (RC: .782 and .895)
reflecting the idea that negative feedback from teachers results in an increase in
the mathematics anxiety of students.
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Conclusions

In summarizing the results of the present investigation, the most important
findings are the critical paths relating mathematics achievement and general self-
esteem of pre-service teachers through intervening variables that are closely
related to the professional development of teachers. The present study is in line
with the results of previous studies indicating that self-esteem is formed and
influenced by evaluations of significant others for one's own behavior (Marsh &
Yeung, 1997). In this context, the results provide a strong case for the role of
educators in the formation of pre-service teachers' perceptions of themselves both
as students and future teachers of mathematics. These perceptions are the outcome
of mathematics achievement and consequently influence the way pre-service
teachers think about themselves as mathematics learners and mathematics
teachers.

In agreement with this perspective, the nature of the model developed in the
present study indicates that general self-esteem is important for pre-service
teachers both as an outcome and as a mediating variable that helps to explain other
outcomes such as mathematics achievement. The results of this study are
consistent with most longitudinal studies which support the model in which prior
academic achievement influences subsequent self-esteem and prior self-esteem
influences subsequent achievement (Byrne, 1996). However, the present study is
more specific than previous ones in that it examines the nature of a particular
school subject and general self-esteem, and explores the specific intervening
variables through which general self-esteem influences mathematics achievement.

A major finding of the present study is that pre-service teachers' general
self-esteem is formed in relation to an external social comparison reference point
on the basis of which teachers compare their self-perceived performance in
mathematics with the perceived performance of other students in the same subject.
The relationships found are consistent with principles of social comparison and
reflected appraisals, which postulate that one's self concepts and self-attitudes are
outcomes of social relationships and processes. The principle of reflected
appraisals argues that people are to a great extent, influenced by the evaluations or
judgments of significant others (Bishop, Brew, Leder, & Pearn, 1996). In social
interaction, not only do people tend to perceive themselves on the basis of
feedback received by others, but they are also likely to internalize these responses
and evaluate themselves, in part influenced by the responses of others that are
communicated to them. In the same way, their feelings and attitudes towards
themselves will be gradually formed on the basis of perceptions and observations
made by them. In mathematics achievement, students tend to perceive their own
successes or failures from the various approvals or disapproval of teachers as these
are reflected in grades and comments. These in turn become the bases on which
the students judge themselves and form their self-concept as students. The specific
judgment that the students form of themselves, based on their academic
achievement, will also contribute to their overall self-feelings. For many pre-
service teachers the mere possession of high ability signifies self-worth, which in

2 - 207

63G



turn leads to a high mathematics teaching self-concept and mathematics
confidence.

The second important finding of the present study is that the reciprocal
nature of pre-service teachers' relationships between self-esteem and mathematics
achievement is the same for both males and females. Self-esteem and self-concept
researchers evaluate gender effects in mean levels of self-esteem and self-concept
(Hattie, 1992), but insufficient attention has been given to gender differences in
the factor structure of self-esteem and mathematics achievement among pre-
service teachers. Thus, one of the main concerns of the present study was a more
fundamental issue relating to the factor structure underlying self-esteem and
mathematics achievement, i.e. as to whether responses to the same instrument
have the same meaning for male and female pre-service teachers. It was found that
the same reciprocal model represents the responses of both male and female pre-
service teachers as far as mathematics achievement and self-esteem are concerned.
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Abstract: Pupils' collaborative work has recently regained attention due to an increase in
classroom use of modes of group and project work often required by computer based environments.
The significance of this type of social structuring in lessons has been appreciated as an important
factor for teaching and learning mathematics. The present paper discusses the issue of
`collaborative work-from the teachers' point of view and focuses on identifying and interpreting the
types of teacher's views concerning the collaborative work of pupils. In particular, it examines how
teachers themselves describe pupils' collaboration and how they see their role in shaping
interactions and managing collaboration amongst pupils within a group situation.

1: Theoretical Orientation
Learning in collaborative settings has attracted a lot of interest as researchers are
moving on from constructivist to interactionist and socio-cultural viewpoints to
interpret mathematical teaching and learning processes and are appreciating the role of
the social setting in which learning takes place. Recent studies, however, attempt to
combine Piagetian and Vygotskian perspectives, rather than to generate theory focused
on learning in specific collaborative situations (Kynigos and Theodosopoulou, in press,
Yackel and Cobb, 1996). In this study we espouse a socio-cultural view of teaching
and learning in the sense that we conceptualise this double process as a set of social
interactions taking place within the cultural environment of a classroom. Learning is
seen as culturally embedded and it occurs in dialogic exchanges between peers and
more knowledgeable members of culture (Bauersfeld, 1990, Lerman, 1993 and
Confrey, 1995). We address learning situations where small groups of pupils
collaborate in computer-based mathematical projects with their normal teachers within
a school based innovation programme. Collaboration in computer based learning
environments can be used to augment ways of acting which generate common
meanings regarding the activity. For instance, in a study carried out by Hoyles et al.
(1992), pupil activity generated by groupwork based on the use of exploratory software
for mathematics included the negotiation of goals and processes, the need for
justification of ideas and actions to partners, the development of a shared language for
communicating actions to be taken and the brainstorming of solution strategies. In this
study we focus on the meanings for the nature of pupil collaboration created by their
teachers during their involvement in this school innovation programme, as they express
them in the course of a set of semi - structured interviews combined with extensive
lesson observationl.

1 The study was carried out in the framework of project YDEES: "Development of Popular Computational
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In the last decade there has been a major shift in research paradigms involving the
teacher and the teaching profession (Hoy les, 1992). Early studies took the stance that
teaching is the technical implementation or conveying of a curriculum or pedagogy
designed outside the classroom and that the study of teaching is directly informed by
the extent to which the process and the results are close to the prescribed ones. The
studies were also restricted to studying the teacher-pupil dyad rather than settings
involving a variety of social interactions in the classroom. These studies were followed
by ones addressing the teacher as a reflective practitioner directly shaping teaching
process and content, and took teacher beliefs, views and epistemologies seriously into
consideration (Olson, 1989, Lerman, 1992). Teachers' personal images (thinking,
views, beliefs, intentions, ideologies), are influencing the shaping of the context of
teaching and learning. The reason for studying the views of teachers is grounded in the
assumption that these have a significant influence on their planning and actions during
lessons. Views and attitudes act as a sort of filter and they can be indispensable in
forming and organising the meaning of things, but on the other hand they can block the
perception of new realities and the identification of new problems and solutions. As a
result, researching into how teachers themselves conceptualise pupils' collaborative
learning may offer insights concerning the motives they carry along to their interactions
with the pupils. One could then be in a position of making some sense about the
potential type of collaboration that teachers can ultimately structure for their pupils.
Adopting this theoretical orientation in the present study, we look at the views on the

nature of pupil collaboration, formed by teachers involved in implementing pedagogical
innovation in a weekly course on computer based mathematical projects.

2: Research setting
The research took place in a Greek primary school project which has been going on for

over a decade and involves the use of computer technology for a weekly
"investigations" hour from year 3 to 6. From the start, the project was seen at the

school level as the infusion of a pedagogical innovation together with the use of
computer technology. The researcher played the role of teacher educator and
consistently held seminars at the beginning and the end of the school year and meetings
of a varying frequency during the year. The project set off explicitly focused on the

idea of providing pupils with the opportunity to collaborate in small groups, gain some
autonomy from the teacher and become more active in their thinking, constructing and
problem solving (Kynigos, 1992). This was socially mediated and agreed upon by the
school's direction and staff and all teachers took part with their own class. They used
Logo as a means of expressing ideas, constructing and experimenting and a word

processor and a drawing application for composing reports on their projects. A study

Tools for General Education: The Computer as Medium for Investigation, Expression and Communication for

All in the School", General Secretariat for Research and Technology, #726, E.P.E.T. II, 1995-1998.
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of teacher strategies six years into the project showed that it was informative to
describe these in terms of a) the aspects of the learning situation addressed by the
teacher and b) the kind of pupil activity their comments intended to encourage
(Kynigos, 1996). For instance, more than half of the teachers' comments (54%) did not
focus on specific mathematical content but dealt with process related issues (such as
social interactions, use of tasks and resources).

We thus felt that it was important to ask how the teachers themselves interpreted and
experienced the meaning of their pupils' collaborative work. We did this by means of
semi structured interviews with five of the more experienced teachers, at a time when
in the framework of a larger project we were participating in teaching experir'ents in
the classroom. This shared experience of planning and delivering lessons helped us
increase our understandings and insights concerning the meaning of their narratives and
minimised the effect of contextual factors (i.e. the nature of different tasks) on
interpretations. The interviews aimed to address questions of the type: What is the
`mental context' of collaborative learning that teachers construct through their
narratives about pupils' work and interactions? What different styles of descriptions
about collaboration exist amongst teachers? How do they view their interaction with
pupils in collaborative activity? Coding of teachers' answers was oriented about the
two main interview questions: a) what collaborative work meant to them and b) how
would they explain their interventions in group settings so that to encourage
collaboration. More details concerning the methodology for data collection and
analysis can be found in Chronaki (1998).

3: Three ways of viewing pupils' collaboration
All teachers were relatively confident in using the computer as a tool for teaching, but a
few still expressed reservations about using this medium at all times. Difficulties with
various technicalities and lack of time in planning and organising lessons were
mentioned. When asked about their views regarding the value of collaboration, they all
agreed that it is a vital component for pupils' learning (this can also be attributed to an
influence of their training). However, looking in more detail at the answers provided,
one can discern variations in their mental images about what true collaborative work
may mean for them. In terms of differences, three modes of teachers' talking and
thinking over their pupils' collaborative work were identified through the data of the
interviews (collaboration as aiming towards the work-outcome, as based on human
relations and as a common-sense activity). There is always a difficulty with putting
textual data (transcripts of interviews) into neat categories. Hence, there is no claim
here that the three distinctive clusters of views, discussed below, are in any way
exhaustive in describing teachers' perceptions about collaborative learning in a general
sense. However, these three modes characterise the main themes of teachers' thinking
met in the particular school community studied.



4.1: Collaboration is geared towards the work-outcome
Kostas and Michalis are both senior teachers, well respected by the pupils and both
can be described as firm and formal in their relations with pupils. These two teachers
perceive collaboration as a means to accomplish a particular mathematical activity. For
them, pupils' goals within collaboration should be the completion of mathematical
tasks in the lessons. Kostas: 'Collaboration is based on effective work relations, and
Michalis: 'They have an aim, and they use the views and help of the others so as to
achieve this aim. The aim and the task need to be the focus and not the relations'.
Both stressed, as can be seen in the extracts below, that pupils need to learn to
distinguish between friendship and collaboration and they felt strongly responsible for
assisting them in realising this. For example, Kostas said: 'Pupils need to realise the
difference between friendship and cooperation. Cooperation means that I can work
with somebody on a particular subject even though s/he is not a friend : Their belief is
that the pupils in the group need to put their feelings and sentiments aside and to get on
with organising their roles and activities. For them collaboration is solely devoted
towards the completion of the tasks in hand. The goal needs to be oriented towards
work. Moreover, they saw this as a main pedagogical gain, implying that people need
to collaborate almost at any cost. The view of collaboration as a gathering of people
working towards the end product was also reflected in the ways they saw their
intervening role in fostering pupils' collaboration, which can be described as a
managerial one. Kostas explained: 'My role is to show them that friendship is different
from collaboration. This is very stressful for children. For example, it's very difficult
for them to realise that they haven't dealt well with a situation, they are not mature
enough for controlling their emotions : And Michalis: 'I see my role as supporting the

pupils to carry out their activities. In terms of the team's structure, I believe that the
teacher needs to control its function. The teacher needs to make sure that things work
smoothly and the pupils work towards achieving something : In short, they saw
themselves as providing explicit explanations, as redirecting and focusing pupils'
energy towards the goals and objectives of the activity. However, their focus is on
managing pupils' work as end-product, not managing the relations of the pupils who
work (i.e. the process of working).

4.2: Collaboration is about human relations, too.
Petros and Natasa took a different stance. They described 'collaboration' as deeply
rooted in pupils' relations and feelings. Although, they have different experiences in
teaching, Petros is a relatively new teacher (less than 5 years of teaching experience)
whilst Natasa is more senior, they both are creative teachers who like to get involved
with new ideas in their teaching. They have relaxed and friendly relations with their
pupils and at times they are not hesitant to express affection. These two teachers
talking about collaboration was lengthy and they used a rich and sophisticated



vocabulary to describe their thoughts. They saw collaboration as being based on
pupils' human interactions, but they also talked about the work as a core of attention in
the collaborative activity. For example, Petros said: 'It's very difficult to define
collaborative learning, to describe it. It is never the same. It changes and develops all
the time. There exist interactions and relations between pupils and the participants
need to get new roles. Many times these roles are not stable during the lesson. They
change (and they need to change) depending on what a particular pupil has to offer
and also on what the specific task demands. One basic drawback is that pupils
hesitate to make decisions and to organise their roles. Effective collaboration for me
is to encourage the listening and discussion of all different views. To give equal
opportunities to different voices. It is important that all pupils have the opportunity
and also the responsibility to make explicit and communicative their thoughts with the
other members of the team. These thoughts and views then need to be respected by the
others, they need to find processes, ways and routines for making decisions. It is true
that it is not easy to reach some consensus. It is difficult for all three pupils to agree.
There are always diverging views. But, the issue is that with the realisation of these
differences, they can find specific mechanisms and methods so as to synthesise and to
construct a commonly agreed line. Then, they all need to follow this line without
feeling rejected. And this is the most difficult part : And Natasa: `Collaborative
learning means that there is no pupil who tries to control the team at all times. It is
important that all participants discuss the problems of the task and also the problems,
the difficulties of their collaboration. In this way they are called on to provide
solutions through their collaboration. These solutions need to be the outcome of
discussion and not the imposition of the pupils or even the teacher

With regard to their role in structuring pupils' collaborative work, these two teachers
seemed to possess a repertoire of skills and tools for intervening with groups and
showed a flexibility in their approaches. During observations, they talked using
examples from their teaching in varied lessons and narrated a variety of ways they had
tried in the past to encourage collaboration in groups. Amongst the tools that they often
used they mentioned: restructuring the groups when necessary, focusing their pupils
attention on the process of collaboration, its change and development, discussing with
pupils, listening to their concerns, encouraging the opening up of personal aims,
thoughts and motives to others, and respecting each others feelings. Overall they
emphasised a strong and genuine concern about pupils relating to each other.

4.3: Collaboration is collaboration
Erato, is also a senior teacher who describes herself as a traditional teacher with
modem ideas. By this she means that she prefers to mix and match new and old
methods in her teaching according to what fits better into her lessons. Talking with her
about collaboration, it was difficult to get her to articulate and unpack a description of
the term. Her response was along the line of, 'collaboration is really collaboration',
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implying that collaboration is a common sense word (everybody should really know its
meaning) that does not need further explanation. Erato says: 'It is very simple. If you
are not able to collaborate, you cannot produce. And this is something that all kids
need to realise very well, especially when they cannot achieve their goals during the
lesson. The lesson depends on their cooperation, and there are times that they were
not able to finish their project because of their inability to collaborate 1..1 had to
rearrange the teams many times. They couldn't fit. They couldn't. It was impossible.
They were too competitive with a negative sense. This resulted in them being very
mean to each other. For example, one would say to the others. I am clever! You, stop
talking now! You are stupid! Stay out!. Further more they are often unable to sustain
their roles or they mix up their roles. They cannot organise themselves winin the
team'.

Talking more with her about her ways for intervening with pupils in assisting them to
collaborate one could notice that although Erato was aware about the difficulties that
pupils have in collaboration, she is not confident with her ways for dealing with these
difficulties. She spoke very emotionally about her attempts (or even struggles) to put
pupils into order when they worked in a group. She confessed that helping them
cultivate good relations with each other was almost an impossible task.

4: Discussion
Three modes of teachers' viewing of collaboration were presented in the previous
section; collaboration as work-outcome, as relations and as common-sense activity. A

common theme all teachers talked about was how difficult, stressful and painful the
experience of collaboration was for pupils. For instance, they noted that pupils can be
harsh to each other, immature and sometimes irresponsible for work and feelings. They
held the view that constructive collaboration amongst pupils in group settings is rare,
and they emphasised the difficulty, the complexity and also the importance for
encouraging collaboration as a tool for fostering mathematical exploration and
discussion. This commonly expressed concern about the problematic status of
collaboration (and communication) in maths lessons in this educational setting suggests
the need for further study into the nature of teachers' views on such social interactions
in classroom situations. Apart from this common concern about pupils' difficulty to
collaborate, teachers differed in their views about the nature of collaboration and about
their role in coping with this situation, which they portrayed as one where the
unexpected reactions of pupils within the group, 'disturbed' the smooth process of the
mathematical activity during the lesson. Some would portray a work-oriented view of
collaboration and see their role as 'managers' who need to employ clear-cut methods,
preferring to distance themselves from pupils' personal lives and to focus on doing the
mathematical tasks instead (e.g. as in the case of Kostas and Michalis). Others, like
Petros and Natasa, would adopt a 'human relations' orientation manifested by getting

G '
2 - 214



involved with their pupils' lives and feeling enthusiastic about exploring possibilities
for dealing with challenging situations. Finally, others like Erato, held a non-explicit
and non-articulated view of collaboration conveying feelings of frustration about the
dead-ends presented by difficult pupil interactions.

The first and third mode are 'work-outcome' oriented and teachers seemed to have a
certain 'agenda' in mind about how the pupils should do tasks in the group (i.e. not
being disruptive, not wasting time, producing what is required). Teachers in the first
mode (the 'managers') felt they knew the tricks for dealing with pupils and through
exercising their authority could eventually manage to get the groups sitting quietly and
producing the expected work. The 'ground rule' that they make explicit for their pupils

is of the type: 'I want you to finish the task : Their structuring of pupils' collaboration
is mainly focused on allocating tasks and making sure that the group completes the

work. And even though the work will finally be produced by the group, they placed no
emphasis on guaranteeing that all pupils have contributed. Other studies have shown
that it may well be the case that: a) pupils are seated as a group but work individually
(Bennett, 1991), or b) pupils rely on a few competent ones in the group to do the work
for all (see Hoy les and Sutherland, 1989). These teachers seemed to adopt a role of
directing their pupils rather than collaborating with them, focusing on the end product

of their activity and thus de-emphasising the importance of collaboration itself. The
teacher in the third mode, not knowing what to do with pupils' disruptive behaviour,
got very disheartened. Apart from her statements that she did not want to be directive
(or authoritative) with pupils, she did not have any explicit strategies to foster their
collaboration. As a result, she felt frustrated because she realised that she could not
`control' the situation (i.e. get the group working smoothly together). This could be
due to a) her interpersonal relations with the pupils in the group and b) her own
perception about collaborative work itself. In the first and third mode 'ground rules'
about collaboration itself are not expressed explicitly to the group and attempts to
communicate them with pupils were not made. The reasons for this can be either a)
lack of awareness about its features and therefore not being in a position for making
them explicit (see Erato) or b) non-appreciation of the importance of talking and
exploring collaboration due to over-focus on the end product (see Kostas and
Michalis).

The views of teachers in the second mode could be described in terms of the notion of
`communities of practice' coined by Lave and Wagner (1991). In this case, an
important part of the object of teacher-pupil discussion was collaboration itself. Both
teachers (Petros and Natasa) realised the importance of exploring collaboration with
their pupils and revealed their enthusiasm and willingness to learn more about their
pupils' lives, relations and problems. Teachers in this mode have an explicit, wide-
angled, image in mind about pupils' collaboration and expressed an ability to talk about
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its features and explore its complexities. Placing sensitivity on the process of
collaboration itself suggests that these teachers are in a better position to encourage
pupils' exploratory activity.

This study is part of an ongoing research into teachers views on aspects of learning
situations and is thus used to generate further enquiry into their view of collaboration
and the respective nature of their teaching. Knowing more about how teachers
themselves view such situations (through their experience) and how they perceive their
role in dealing with the entailed complexities 1) may be used as instruments for
reflection and re-orientation of perceptions and conceptualisations about collaboration
and 2) may enable them to identify and suggest instructional intervention.
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Using the Peircean construct of abductive reasoning, this paper examines the novel
problem solving actions of a college student. The analysis documents and explains
how the solver's solution activity is constituted by an intermingling of problem
solving and problem posing, with the solver's abductions providing the "cognitive
fuel" needed to sustain their co-evolution.

Introduction
Accounts of mathematics learning have long acknowledged the importance of

autonomous cognitive activity, with particular emphasis on learners' ability to
initiate and sustain productive patterns of reasoning in problem solving situations
(Cobb, 1988; Mason, 1995; Schoenfeld, 1985). Nevertheless, most accounts of
problem solving performance have been explained in terms of inductive and
deductive reasoning, containing little explanation of the novel actions solvers often
perform prior to introducing formal algorithmic procedures into their actions. For
example, cognitive models of problem solving seldom address the solver's
idiosyncratic activity such as the generation of novel hypotheses, intuitions, and
conjectures, even though these seen processes are seen as crucial tools through
which mathematicians ply their craft (Anderson, 1995; Burton, 1984; Mason, 1995).

In contrast to inductive and deductive reasoning, Charles Saunders Peirce
(1839-1914) asserted the existence of another kind of reasoning, abduction, which
furnishes the reasoner with a novel hypothesis to account for surprising facts. It is
the initial proposal of a plausible hypothesis on probation to account for the facts,
whereas deduction explicates hypotheses, deducing from them the necessary
consequences, which may be tested inductively. Accoi-ding to Peirce, abduction is
the only logical operation which introduces any new ideas, "for induction does
nothing but determine a value, and deduction merely evolves the necessary
consequences of a pure hypothesis" (Peirce, 1891, p. 303).

The Generation of Hypotheses to Facilitate Problem Posing and Solving

While few studies of mathematical problem solving have specified precisely
the role of abductive actions in the novel solution activity of solvers, the research
on problem posing (Silver, 1994; Brown and Walter, 1990) suggests ways that
hypotheses play a prominent role in solvers' novel solution activity. According to
Brown and Walter (1990), problem posing and problem solving are naturally related
in the sense that new questions emerge as one is problem solving, that "we need not
wait until after we have solved a problem to generate new questions; rather, we are
logically obligated to generate a new question or pose a new problem in order to
solve a problem in the first place" (Brown and Walter, 1990, p. 114). Furthermore,
Silver (1994) asserted that this kind of problem posing, "problem formulation or
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re-formulation, occurs within the process of problem solving" (Silver, 1994, p. 19).
Finally, the cognitive activity of "within-solution posing, in which one reformulates
a problem as it is being solved" (Silver and Cai, 1996, p. 523) may aid the solver to
consider "hypothesis-based" questions and situations (Silver and Cai, 1996, p. 529).
This illustrates both the dynamic, yet tentative nature of solvers' solution activity as
well as the propensity of solvers to abduce novel ideas about problems while in the
process of solving them.

Objectives

The purpose of the study was to analyze the problem posing and solving
processes of learners in mathematical problem solving situations, with particular
focus on ways that the learner's emerging abductions or hypotheses help to facilitate
their novel solution activity. The perspective taken here is that problem solving
situations are self-generated by solvers, arising from their interpretations of the
tasks given to them. Their interpretations of a particular task may suggest to them
additional questions and uncertainties, the consideration of which helps them
construct goals for purposeful action. Successful completion of the task may
involve many such problem posings, all generated by the solver in the course of
their on-going activity and each having the potential to alter the solver's current
goals and purposes. In the course of generating problems, the solver may monitor
potential solution activity for its usefulness. In this way, problem solving can be
viewed as a form of abductive reasoning through which solvers mentally reflect
upon and contemplate viable strategies to relieve cognitive tension, involving no
less than their ability to form conceptions of, transform, and elaborate the
problematic situations they face.

In an earlier study (Cifarelli and Saenz-Ludlow, 1996), examples of abductive
reasoning activity were discussed, highlighting its mediating role in the
mathematical activity of learners. This work has been elaborated and extended in a
series of research studies which have analyzed the qualitatively different kinds of
abductions that mathematical learners demonstrate (Sdenz-Ludlow, 1997), the
evolving structure of solution activity that results from abductive reasoning in
problem solving situations (Cifarelli, 1997a), and the transformational influence of
abduction in problem solving situations (Cifarelli, 1997b). The current study sought
to extend these results by explaining the ways that learners' abductions foster an
intermingling of problem posing and problem solving activities.

Methodology
Five graduate students in Mathematics Education participated in the study.

The students were enrolled in a class, taught by the researcher, the Use of
Technology to Teach Middle and Secondary Mathematics. The students were
interviewed on 3 occasions throughout the course. These interviews took the form
of problem solving sessions, where students solved a variety of algebraic and
non-algebraic word problems while "thinking aloud". All interviews were
videotaped for subsequent analysis. In addition to the video protocols, written

64' 2 218



transcripts of the subjects' verbal responses as well as their paper-and-pencil activity
were used in the analysis.

Based on the analysis of the verbal and written protocols, a case study was
prepared for each solver. The solvers' protocols were examined to identify episodes
where they faced genuinely problematic situations. Previous studies conducted by
the researcher characterized abduction as a structuring resource utilized by problem
solvers (Cifarelli, 1997a, Cifarelli, 1997b). Specifically, while resolving
problematic situations, the solvers were inferred to have generated abductive
inferences which served to organize, re-organize, and transform their mathematical
actions. These structuring actions, which often introduced the formation of new
problems or re-organization of previous problems, were interpreted as acts of
problem posing that had profound influence on the solvers' overall solution activity,
thus establishing a connection between solvers' problem posing and problem
solving (Brown and Walter, 1990).

The current study examined more thoroughly the novel actions of solvers,
with particular focus on identifying additional interconnections between problem
posing and problem solving processes.

Analysis

The following paragraphs contain episodes from interviews conducted with
Jessica. Jessica was a secondary mathematics teacher in her second year of teaching
and proved to be among the strongest mathematics students in the class, achieving
high scores on all class exams and assignments. She demonstrated strong problem
solving activity throughout the interviews, as indicated by the novelty of her actions
in completing the tasks.

Jessica's Abductive Activity. Jessica was required to solve a variety of
non-algebraic problems during the initial interview. One of the tasks involved a
person paddling a canoe on a river:

Sally, an avid canoeist, decided one day to paddle upstream 6 miles. In 1 hour, she
could travel 2 miles upstream, using her strongest stroke. After such strenuous
activity, she needed to rest for 1 hour, during which time the canoe floated
downstream 1 mile. In this manner of paddling for 1 hour and resting for 1 hour,
she traveled 6 miles upstream. How long did it take her to make this trip ?

Upon reading the problem, Jessica commented that she had seen a similar problem
before but had not solved it.

Jessica: I have had one like this ... and I'm not sure. I had a similar one in Dr. L's class. Upstream-
downstream, airplane flying with the wind behind them. Professor L gave us a list of 100
problems. I looked them over and did not choose this one. I didn't do it, but I did watch other
students do it. So I have not technically done this problem. (appears confident she can do
its). (re -reads the problem; several seconds of reflection)

1 Comments in boldface describe the non-verbal actions of the solver as inferred by the researcher.
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Jessica: Okay, distance is 6 miles. Let's see ...total time is 2 hours ... we have to modify this because
upstream means you are getting help and downstream means you're not ... Oh, wait ...
(reflection) 1 hour she travels 2 miles up ... and she rests I hour ... so it is not total is 2
hours. I read the last sentence ... and I totally forgot what I was supposed to find .. the total
time . Okay ... distance equals rate x time, so 1 hour, okay the distance is 2 miles, time is 1,
and rate ... (long reflection) ... resting distance is -1, equals rate ...1 um ... so (reflection,
appears frustrated) ...I know I have to set up an equation then ... I could ... (reflection; facial
expressions suggest she is puzzled)

Jessica's comments indicate that even though she had seen others solve the
problem before, she still had some difficulty solving the same problem. She
continued to reflect upon the situation and then had an idea to do something
different to solve the problem:

Jessica: (long reflection, makes motions with her hands) Okay! So she paddles first, then she rests.
She goes +2, then -1, she goes +2, -1, she goes +2 and 1, 3, and she goes + 2 again. So that's
1,2,.. .9 hours she makes the trip. That's not how they did it in class.

The interviewer questioned Jessica about her reasoning:
Interviewer: Ah, so you were thinking back to how they did it ?

Jessica: Well this reminded me of that problem. I was trying to do what they did. But when I tried to
do it their way, and try to get some equation going, it didn't work. I had to try something
else. So just apply logic to it, it's +2, -1, +2, -1, then set up an equation (sic) to see if it
works.

In summary, Jessica experienced cognitive tension when her initial strategy of
generating an equation did not appear to work. Her explanation indicated both the
provisional aspect of her reasoning as well as the belief on her part that her ideas
still needed to be verified to "to see if it works". More precisely, she abduced an
idea of what the problem might be about and then initiated appropriate solution
activity to test her abductive hypothesis.

To further probe her understanding, the interviewer asked Jessica to solve an
extension of the canoe problem:

Suppose after 4 hours on the river, Sally took a lunch break for 1 hour, during
which time she floated downstream. How long did it take her to go the 6 miles up
the river ?
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Jessica solved the follow-up task routinely. However, her solution surprised
her and she demonstrated abductive reasoning in "making sense" of her solution.

Jessica: Okay, ... so paddling is +2, resting is -1, so she rests another hour for lunch that's another -1
so first hour is +2, -1, +2, -1, and she did lunch, so that's another -1. So, 1 there ....she rests
an hour, and another hour, so those 2 cancel out going back to 1 hour. So we have +2, -1,
+2, -1, ... 1, 2, ... 6 ... 11, 12 hours to make trip with lunch break.

Jessica: What!? (She appears surprised by her result; long period of reflection) Yeah, I guess that 1
hour sets you back (several seconds of reflection)

Interviewer: What are you thinking ?

Jessica: Well, I was going to say that it would have been 10 hours, but I guess ... maybe you have to
add a whole `nother cycle? (reflection) Let's see. (she annotates her diagram) Yeah, you
add +2, -1 to make up for that resting time, that one -1, to put an extra 2 plus -1 in there,
cause that just cancels that whole one out there, and gives 3 more than 9 total. So I guess it
is 12, yeah! ... Sally's crazy! 12 hours.

While Jessica's interpretation of the problem posed no difficulty for her in
generating a solution, her results clashed with what she had initially expected (i.e.,
that the one hour of rest would add only one additional hour to her previous
solution, making the solution to the follow-up task 9 + 1 = 10 hours). Her
expression of surprise was followed by her abduction that the discrepancy (between
what she initially expected, a solution 10 hours, and what she actually computed, 12
hours) had to do with the cumulative effect of inserting the one hour rest period in
the middle of the schematic she used as a diagram. She commenced to test her
hypothesis and verify her hypothesis and confirm some certainty on her solution.

In solving both the Canoe and extension tasks,. Jessica's abductions helped
her make sense of surprising results. Specifically, in solving the initial task, her
abduction helped her make sense of her realization that the way she had seen others
solve a similar problem would not work. And upon solving the extension of the
canoe problem, her abduction helped her make sense of the surprising fact that
inserting a one-hour rest time into the previous task changed the solution by 3 hours
(and not a mere 1 hour like she initially expected).

Jessica was asked to solve several algebraic and proportion problems during
the second interview, including the following proportion problem:

At a Chinese dinner every 4 guests shared a dish of rice, every 3 guests shared a dish of
vegetables, and every 2 guests shared a dish of meat. There were 65 dishes in all. How
many guests were there ?

Jessica: Okay, let's see. (reflection) Every dish of rice has 4 guests, every dish of vegetables has 3
guests, every dish of meat has 2 guests. (draws diagram and reflects on it) Okay, let's see ...
Um ... That doesn't help. (re-reads) Okay, so rice plus vegetable plus meat is 65.
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After reflecting on the situation, she commented:

Jessica: I have no idea what to do, how to start this. (reflection) I guess my problem is that I feel like
I need another relation between rice, vegetables, and meat. I'm trying, in my own version to
set-up a system of equations, then I could get something out of it. But with 3 of them (points
to diagram of the 3 dishes), I'm not sure where I'm going ... because I don't know ...

Interviewer: We can come back to this one later if you like ?

Jessica: Wait. (more reflection) ! Let's see. If I have 12 guests that
means ... I have 3 dishes of rice, 4 vegetables, and 6
meat dishes, ... Ah! (smile appears on her face)

Interviewer: What are you thinking ?

Jessica: Um ... I'm trying to find a nice even number of guests, so that I can figure out exactly how
exactly how many dishes of rice, vegetables, and meat they need. I'm going backwards from
the way I thought ... I thought I needed to start with the number of dishes. But i f I have 12
guests, then I have (Points to her diagram and counts) 3, 4, 5, 6, ..., 12, 13 dishes. So if
there's 13 dishes, ... then that means 13 times 5 is 65 dishes. So I multiply guests by 5, that
would be 60 guests. So I have 65 dishes ... (long reflection) ... that doesn't seem right.

Jessica: Let's see. 13 went into 65 5 times, if I just multiply that by 5, I get 65. So, I should just be
able to multiply that (points to number guests on her diagram, 12) by 5 to get 60 guests.

Jessica: Yeah! .. But it seems like you should have more guests than dishes .... (reflects, appears to
"run through" her reasoning) I guess not!

As was the case in solving the canoe problem, Jessica generated abductions to
both solve the problem as originally stated and, upon having constructed a solution,
to make sense of her solution.

Discussion

Table 1 summarizes the researcher's inferences about Jessica's problem
posing and solving for the Canoe task.

Table 1: Jessica's problem posing and solving

Task Goals and Purposes Result of action

Canoe construct equations of form d = rtsurprised when she cannot
(no expectation of problem) construct viable equation

(she has a problem!)

Ht: the problem might involve uses linear iteration scheme to
linear displacement compute distance traveled

(hypothesis testing -- problem solved)

Follow-up integrate new information into
into linear scheme
(no expectation of problem)

H2: the problem might involve
ways incremental lengths
were computed

1: 2 - 222

confident of her reasoning
but surprised with result
(she has a problem!)

re-constructs prior solution activity
incorporating new information
(hypothesis testing -- problem solved)



Table 1 characterizes Jessica's solution activity in terms of a series of
episodes that involved problem posing, problem re-formulation, hypothesis
generation, and hypothesis testing. Jessica experienced problems whenever her
expectations of how she would proceed clashed with her actual computed results.
For example, when her initial goal of generating a viable equation to solve the
Canoe task was not achieved, she re-formulated, or re-posed the problem, whereby
she transformed the original problem situation into one that involved linear
displacements. With this re-formulation of the problem Jessica also expressed a
hypothesis, H1 (of what the problem might be about), which was followed by her
intention to explore the implications of adopting her hypothesis ("to see if it
works"). The results of her 'testing' served as feedback to her hypothesis, t:.;:reby
contributing to her subsequent solution.

Jessica's solution activity to complete the Canoe task was interpreted as
involving within-solution problem posing, whereupon she re-formulated her goals
and purposes in the course of her on-going activity, transforming the situation into a
new problem for her solve. This result is compatible with previous research on
problem posing (English, 1997; Silver, 1994; Silver and Cai, 1996). However, in
solving the follow-up task, Jessica demonstrated a form of novel problem posing
that has not been addressed in the problem solving research literature. Specifically,
in completing the follow-up task, Jessica computed a result that was a surprise to
her. In particular, when she incorporated the new information (that Sally rests for a
one-hour period after 4 hours on the river) into her linear iteration scheme, she
computed a result of 12 hours, which clashed with what she initially expected (a
solution of 10 hours). She then hypothesized the possible reason for this apparent
discrepancy (H2), in the process formulating a novel problem for her explore. She
commenced to test her hypothesis by re-exploring her prior solution, focusing on
the implications of incorporating the new information into her linear iteration
scheme. This scrutinizing and evaluating of her prior solution in view of the new
information was interpreted as a case of Jessica achieving a heightened awareness
concerning the efficacy of her prior solution activity. This type of problem posing,
which lead Jessica to re-examine her prior solution in the face of a new problem
situation, suggests that problems are never completely solved; new situations
present opportunities for solvers to connect directly with previous problem solving
through the generation of and consideration of new questions and problems.2
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The purpose of this paper is to develop a means to illustrate and analyse the
cognitive paths taken by students in solving problems. The approach is built
upon the notion of cognitive unit (small enough to be consciously
manipulated). Our interest is in the nature of the student's cognitive units and
the connections between them. We find that a student may have an overall
strategy and even formulate goals to achieve all or part of a solution.
However, if conceptual structures are too diffuse, the student may concentrate
on procedures that occupy most of the focus of attention. This may cause them
to lose touch with the ultimate goal and be faced with sequences of activity
that are longer, more detailed, and more likely to break down.

Introduction

Why is it that some students find algebra so essentially simple, yet others struggle so
badly that they fail in school and need to take remedial algebra courses in college? The
literature abounds in distinctions between the conceptual thinking of some students and
the procedural thinking of others (e.g. Hiebert & Lefevre, 1986). But why does this
occur? What is the nature of procedural thinking that makes it the default position for so
many? Hiebert and Carpenter (1992) suggest two metaphors for cognitive structures, as
vertical hierarchies or as webs:

We believe it is useful to think about the networks in terms of two metaphors ... structured
like vertical hierarchies or ... like webs. When networks are structured like hierarchies,
some representations subsume other representations, representations fit as details
underneath or within more general representations. Generalisations are examples of
overarching or umbrella representations, whereas special cases are examples of details. In
the second metaphor a network may be structured like a spider's web. The junctures, or
nodes, can be thought of as the pieces or represented information, and the threads between
them as the connections or relationships. Hiebert & Carpenter (1992, p. 67)

Such ideas have long been part of mathematics education. However, they are often used
as general philosophical structures rather than explicit techniques to analyse empirical
evidence. Our plan here is to extend these ideas and use the extended theory to analyse
the specific solution processes for specific individuals in specific contexts. Here we
focus on the activities of students working in college algebra.

Varifocal webs and cognitive units

Skemp (1979) proposed a "varifocal learning theory" in which the nodes of webs are
themselves subtly connected schemas when viewed in detail. With this in mind, webs
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and hierarchies may occur within the same model. As an example, consider the equation
"y=mx+b". As a concept it can be viewed in more detail with a network of internal
ideas: that m is the slope, b the intercept; that any linear equation can be represented by
substituting numbers for the parameters m and b; that the graph can be drawn if one
knows two points on it, or one point and the slope, etc. Some students therefore may see
"y=mx+b" as a single structure with rich connections easily brought to the focus of
attention.

Barnard & Tall (1997) introduced the notion of "cognitive unit" as "a piece of
cognitive structure that can be held in the focus of attention all at one time". We see
cognitive units as forming the nodes of a cognitive structure linked to other units using
the web metaphor of Hiebert and Carpenter, incorporating the varifocal element of
Skemp. There is a great deal of flexibility as to how the units and their connections may
be laid out in a diagram. The notion of whether a link is "internal" within a unit, or
"external" between units is largely a matter of personal choice. The actual connections
within the brain are not topologically divided into an inside and an outside.

However, there are situations in which the idea of "inside" and "outside" can be
helpful as a metaphor to represent the different strengths of connections, as we now
consider. For instance, any of the following:

the equation y = 3x +5,

the equation 3xy = 5,

the equation y-8 = 3(x-1),

the graph of y = 3x+5 as a line,

the line through (0,5) with slope 3,

the line through the points (1,8), (0,5),

may be considered as cognitive units which can be linked together as representing the
same underlying conceptthe single straight line or equivalent linear relation between
x and y. This may be represented diagrammatically as six separate nodes with
appropriate connections between each. In this sense the connections are external to the
six cognitive units. However, an alternative, more powerful, view is to consider all six
ideas to be various aspects of the same phenomenon, the linear relation/equation or
straight line which all of them represent. This allows the separate ideas to be seen as
different aspects of a single entity that is itself a single node in a larger network.

The move from conceiving of separate ideas to a single idea with different aspects is
called "conceptual compression" (Thurston, 1990, Gray & Tall, 1994). For conceptual
compression to occur, the individual's cognitive structure must have matured in such a
way that the separate elements have an intimate connection enabling the individual to
move flexibly from one to another. It is not just that there is a cognitive link between,
say, the line through (0,5) with slope 3 and the line with equation y = 3x+5, but that both
describe exactly the same thingthey are different aspects of the same entity.
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In terms of Skemp's varifocal theory, this entity is itself a concept which has internal
links as a schema in its own right. What is important to be able to compress a collection
of related ideas into a cognitive unit is that the whole entity can be conceived as a unit
that is "small enough" to be considered consciously, all at one time. The way that the
human mind usually copes with this is to give it a name or symbol. The name or symbol
(assuming it is "small enough") can be held in the focus of attention and manipulated.
Such a concept has rich interiority through carrying "within" it many powerful links that
enable it to be manipulated and invoked to solve problems.

If the diverse elements are not connected sufficiently fluently, then it may be
impossible for the individual to regard the totality as a cognitive unit. It follows that it
may be impossible for the individual to make links to it, simply because there is no "it".
Any links that are made by such an individual are not made to a flexible conceptual
entity but to one element in a loosely connected structure. We conjecture that it is this
situation that underlies the often-heard cries of the remedial student saying "don't
explain it to me, just tell me how to do it." An explanationwhich may be perfectly
clear to the teacher with a rich personal cognitive structureis not perceived as an
"explanation" to the student hearing words which do not link to adequate cognitive units
in the student's mind.

Focus of attention and working memory

The way in which the human brain works enables certain ways of thinking and
constrains others. Crick (1994) views the brain as a complex, multi-processing system
which can be used coherently only if much of its activity is suppressed at any given time
to focus consciously on a small number of important ideas (cognitive units). These in
turn are linked to others that can be brought into focus as appropriate. This idea was
expressed succinctly over a century ago:

There seems to be a presence-chamber in my mind where full consciousness holds court,
and where two or three ideas are at the same time in audience, and an ante-chamber full of
more or less allied ideas, which is situated just beyond the full ken of consciousness. Out of
this ante-chamber the ideas most nearly allied to those in the presence chamber appear to be
summoned in a mechanically logical way, and to have their turn of audience.

(Galton, Inquiries into human faculty and its development, 1883)

The "presence-chamber" of Galion is the current focus of attention and its "ante-
chamber" extends it to the working memory consisting of closely linked cognitive units
that can be evoked for problem-solving. However, it is important not to allow the
physical metaphor of a "chamber" to suggest a single fixed area of activity in the brain.
The "focus of attention" may be spread over many disparate areas currently resonating
together in conscious thought. It therefore remains susceptible to other activities that
can interrupt and override the current thought process. Such interruptions may result
from unrelated external sensations, such as hearing a school bell ring to end the
mathematics class, or more intimately linked strategic activities, such as a mental
process monitoring whether a longer-term goal is being achieved.



Skemp (1979) theorizes that a specific problem-solving context provides a goal to be
achieved, in which sub-goals may be formulated to achieve parts of the solution process.
He hypothesizes that a comparator activity occurs at various times which considers
whether the solution process is getting suitably close to the goal or to one of the
intervening sub-goals. When following a routine sequence of actions we conjecture that
the focus on successive remembered steps may be so great as to temporarily fill the
focus of attention and suspend the activity of any comparator. This would suggest that
the inflexibility of procedural thinking can become so dominant as to cause the
individual to lose sight of the goal and so fail to solve the problem. Skemp also suggests
the dual idea of an "anti-goal", something to be avoidedsuch as the anti-goal of
avoiding failurebringing with it a sense of anxiety that may negatively affect creative
activity.

We therefore hypothesise that the difficulties encountered by remedial students relate
to the nature of their ideas: that powerful conceptswhich others can compress into
manipulable cognitive unitsremain, for them, as more cumbersome structures too
diffuse to employ in a novel context. Our empirical evidence reveals that remedial
students may have goals to achieve, indeed may articulate sub-goals, but the dominant
procedures they use to attempt to achieve these goals seem to take up so much
conscious thought as to prevent them from making necessary cognitive links to
complete the exercise. While the successful mathematical thinker may have flexible
cognitive units with powerful internal relationships which allow them to be used in
diverse productive ways, the less successful may therefore be faced with longer
procedural routes which actually make the mathematics harder. In other words, the
weaker students are following longer more detailed cognitive paths that cause greater
cognitive stress and further increase the chance of failure.

An example

As an example consider the following problem from a college algebra course:
Find the x-intercept and y-intercept of the graph with equation 3x+4y=12.

For students with a sense of the symmetry
between the occurrences of x and y in this
equation, it may be possible to "see" the answers
in the equation itself. For instance, to obtain the y-
intercept, imagine the "3x" part to be zero and
focus on 4y=12 to see the solution 12/4=3 (Figure
1). A similar route for the other intercept gives a
compressed solution of the problem as two
immediate links without any need to write down
intermediate steps. However, students who do not
see this instant solution may resort to formulating
sub-goals using lengthier procedures.
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Kristi

Kristi is a community college student taking a remedial Intermediate Algebra course
using a graphing calculator to produce tables and graphs. She needs to pass it before she
can attempt the college mathematics courses required for her degree in psychology. She
had met the concept of a straight -line equation in its various forms before the course and
when interviewed afterwards she was able to discuss problems dealing with lines, their
equations, slopes, graphs, etc. However, she had a strong focus on the equation in the
form ".}mx+b", not least because she had been taught to use it to type into her graphing
calculator to draw a graph. She could also read off the slope as the number before the x,
and the y-intercept as the number at the end. So when asked for the slope of y = 3x+5
she could see this as 3, and the y-intercept as 5. For her, this standard form was the
starting point for many solutions to problems, and she was frequently successful using
it. She therefore began to use the sub-goal of "putting the equation into the form
y=mx+b" before attemptihg the question under consideration, whether or not this was
appropriate.

Her second major strategy stemmed from the first. If the standard form is known, it
can be typed and the graph drawn on a graphing calculator. Kristi frequently used a
grapheither a mental one, a graph on a piece of paper, or one on a calculator screen.

If I were to just look at it, to visualize it in my mindit's a line ...

The interviewer said, "what's the y-intercept on the graph?" Kristi responded
that's where the . . . it intercepts the y- I know it's just a line, so I know it's going to
have to cross up here somewhere.

She had a piece of paper with axes drawn on it and pointed to a spot on the y-axis of the
grid on the paper, above the origin. Kristi tried to visualize itshe had a mental
graphbut seemed unable to use it to solve the problem at this point. The interviewer
said "Can you graph it?" and she replied:

Yes, if I have my graphing calculator ...

She has had success graphing with her graphing calculator, and was comfortable with it.
Without it, however, she could still have some success . . .

it's like . . . I need a point. ... zero? [she seems to seek support, but then proceeds on her
own] . . . if x is zero, then . . . okay, x is zero. Zero, five. Okay.

She plotted the point (0,5). Implicitly she had found the y-intercept she was seeking, but
she failed to recognise it. Either her comparator is failing to operate or she does not (at
this moment) link the point she has found to her ultimate goal, the y-intercept. She
continued in her strategy to produce a line by evaluating a second point. She let x be 1,
and wrote the point (1, 4). She plotted the points, drew the line through them, and
decided that the y-intercept was 5.

The interviewer then asked her to find the y-intercept for 2y + x = 6. Using her
"general strategy", Kristi began to put it into slope-intercept form, "move the x over",
"divide by 2". When asked to do it without putting it into slope-intercept form, she said
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I don't know what to do . . . I can't visualize it in my mind . . . like, if I get back the value, I
don't know what to do unless I divide everything by 2. So f a r , that's what I know to do . . .

put it into slope intercept.

Asking her to do the problem without putting it into slope-intercept form severed her
links with her coping strategies. She attempted once more to graph the equation by
plotting points.

Later in the session the researcher asked her to find both the x- and y-intercepts of
3y+ x 12 = 0. When asked, "What would you do here?" she replied:

Divide everything by 3. In my mind I'm visually moving everything, and dividing x by 3,
its ... one third x plus ... , so the y-intercept is 4.

Once again she put the equation into slope-intercept form to find the y-intercept. Had
she had the conceptual link to do so, it would have been much simpler to set x to zero to
find the y-intercept. She was then asked, "What are you trying to do? What do you
graph?" and she immediately plotted the point (0,4). When she was then asked how to
find the x-intercept, she replied:

on the calculator screen, where x is . . . if y is what, then hit intersect and try to find where
the x is.

Her general strategy of attack is represented diagrammatically in figure 2.

j, intercept is 4

0 0 0 0 0 thinks...

)11011.
manipulate symbols

immediate link

use calculator

use INTERSECT

Figure 2: Kristi's strategies for finding x- and y- intercepts of 3y+x-12=0.
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This interview shows the complications that can appear when the student uses perfectly
legitimate procedures to solve a problem. In this case, a compressed solution to find the
x and y intercepts need involve only two very short computations in a symmetrical
manner. However, the student's experience of the graph as a function provides an
asymmetric relationship in which the roles of x and y (as input and output) are radically
different and in which the methods of finding the corresponding intercepts are radically
different. Kirsti thinks about the sub-goal of putting the equation into her favored slope-
intercept form, itself a procedure requiring effort. From this the y-intercept is easily read
off but the x-intercept requires a second lengthy procedure. The structures of the
compressed solution and the more lengthy procedure are represented in figure 3.

goal sub-goat

(Set each variable
W zero

direct comps? seed wham:

precedtcral saurian. with stth-goed

Figure 3 : compressed and procedural solutions for finding intercepts for a specific equation

This use of familiar uncompressed processes with sub-goals occurred repeatedly in
Kristi's work. For example, she was asked to write the equation of the line through (1,4)
and (4,-2), which she did successfully. She was then asked whether the three points
(1,4), (4,-2), and (5,2) were on the same line. Rather than check (as the interviewer
expected) whether the third point satisfied the equation of the line she had just found,
she calculated the line through (1,4) and (5,2) and compared it with the one she had,
saying:

The way I know how to do it is to take the slope that I got, and get the line through these
two points, and see if they are the same. That's the only way I know how to do it.

She used the idea of a line through two points again, repeating a familiar activity that
had just been successful. However, she did not exhibit the flexibility that she needed to
cope with different problems in new contexts.

ST COPY VAL 111:



The inflexible use of procedures occurred in many other students. Sometimes they were
even more diffuse and error-prone than those attempted by Kristi. Kim, for instance,
solved the equation 3y+ x 12 = 0 to obtain:

- +.11y = 3I X
3 '

For this student the equation was doubly difficult; it involved not only fractions, but
also negative numbers. We can hypothesise that the notions of fractions and negatives
have not become cognitive units that can be used fluently. Kim therefore compounds (at
least) two levels of difficulty. First there are the uncompressed, inflexible procedures
that are onerous to handle. Within these are uncompressed conceptual structures for
negatives and fractions that render the difficulties even more burdensome.

Summary and reflections

In this paper we have highlighted the difference between the use of flexible cognitive
units on the one hand and more diffuse uncompressed structures on the other. We give
evidence that a student who has yet to compress external relationships between concepts
into tight cognitive units with strong internal links will find it more difficult to cope
with problems requiring their use. The case studied here showed that a simple problem
of finding intercepts of a linear equation contains subtleties easily handled by a student
with a compressed cognitive unit encompassing the properties of algebra and the graph
of a linear equation. The student with a more diffuse cognitive structure is at a serious
disadvantage; this places a strain on the focus of attention at this stage and may prevent
powerful theory building for the future. In this way there develops a spectrum of
performance in which those who are struggling use even more complicated solution
processes that place them in greater danger of failure.
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MEASURING STUDENTS' PROVING ABILITY BY MEANS OF HAREL
AND SOWDER'S PROOF-CATEGORIZATION
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In this paper proving ability - according to the Lakatosian sense of proof -
refers to the ability to make something evident. A test of proving ability was
administered to 2572 students in Hungary. A dichotomous evaluation system allows
for both hierarchical and non-hierarchical evaluation of proving ability. An
hierarchical evaluation can be based on Harel and Sowder's proof-categorization.
The results show that there is a positive correlation between proof types of different
content domains (using the above-mentioned hierarchical model), suggesting that
Harel and Sowder ' taxonomy can be a powerful tool for measuring proving ability.

AIMS

Proofs are used in mathematics, in philosophy, in jurisprudence, and in
everyday life. This study addresses the evaluation of proving ability. In this paper the
term 'proof will be used in the Lakatosian sense of 'making something evident'
(Lakatos, 1976), and proving ability will refer to the ability to construct proofs.

There can be different approaches to characterizing proving ability. Proving
ability processes can be defined as a combination of `simplier' human abilities. On
the other hand they can be a metacognitive-metadeductive ability. For the purpose of
this study, proving ability will not be thought of as either a combination of abilities
appearing in different well-known taxonomies (see Johnson-Laird and Byrne, 1991;
Carroll, 1993), or as the results of `meta-` processes (Johnson-Laird and Byrne
(1991). Instead, it is the structure of proofs that is used to characterize proving
ability.

The structure of proofs can be characterized by three variables: 1) the
statement to be proven, 2) the axioms and other (formerly proven) statements used in
the proving process, and 3) inference rules used in the proving process. With regards
to the first variable, 'making something evident' may require similar reasoning
processes regardless of the great variety in the content of the statement to be proven.
Similarly, there is great diversity among proofs with respect to the number and type
of axioms and other (formerly proven) statements which are used in the proving
process.
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Finally, the third source of variability in the structure of proofs is the use of
deductive versus inductive inference rules. Models of human reasoning often use
deductive inference rules to describe reasoning processes (Braine, 1978, 1990; Rips,
1983, 1994). However, even in mathematics it is not only permitted but suggested to
let students have the joy of discovery" (Saul, 1992, p. 11.; see also Polya, 1954),
that is, to encourage inductive reasoning. Thurstone (1995) went so far as to criticize
the use of the DTP-model (definitionqheoremTroofs) because it does not allow
for inductive inferences. Also Mariotti, Bartolini Bussi, Boero, Ferri & Garuti (1997)
emphasized the importance of 'dynamic exploration' in learning mathematical
proofs. The three variables described above indicates a wide spectrum of proofs from
axiomatic mathematical proofs to everyday verifying arguments. Even within
mathematics there is a disagreement on what criteria a proof must meet. Hanna
(1995, 1996), Martin and Harel (1989), Hersh (1993) and others emphasized the
importance of distinguishing formal and informal proofs in mathematics.

The basic assumption of this study is that, regardless of the content of the
statement to be proven, different proofs constructed by the same person will be
similar with respect to the second and third variables of the structure. It is also
hypothesized that students can use the reasoning skills necessary for constructing
mathematical proofs in other contexts as well; the better mathematical proofs a
student can construct, the better he/she can construct everyday proofs.

There are at least three approaches to the evaluation of proving ability. One
means of evaluation is to start out from the so-called 'paradigm task' approach
(Girotto & Light, 1993). This approach uses well-defined experimental tasks to study
the nature and development of human reasoning, e. g., the Wason selection task, or
logical puzzles (Johnson-Laird & Byrne, 1991; Rips, 1989). Another evaluation
approach is the above-mentioned inference rule approach which concentrates on
universal mental inference rules. In this study a third approach is used: Harel and
Sowder (1998) proposed a model for classifying mathematics proofs that can be
considered to be a combination of the approaches referred to above. There are other
holistic evaluation methods for mathematics proofs (see, for example, Thompson &
Senk, 1993), however, Harel and Sowder's proof categorization seems to be the most
widely generalizable for non-mathematical contents.

The evaluation of proving ability calls forth special problems and difficulties.
All of these approaches presume some kind of hierarchy of cognitive abilities:
certain inference rules are more difficult to use, certain patterns of solutions are more
advanced than others. However, in mathematics, as in other fields, there can be more
than one proof of a certain theorem, and these proofs cannot be easily ranked in a
hierarchy of difficulty. Hoyles (1997) pointed out that any hierarchy in evaluating
proving ability can be a methodological artifact.

The aim of this study is to investigate the relationships between proof types of
different contents, mathematics achievement, and school marks. It is hypothesized
that there is a correlation between proving ability (using Harel and Sowder's
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hierarchical classification), mathematics achievement, and school marks. The
existence of a positive correlation between proof types of different contents may
support the basic assumption that Harel and Sowder's proof categorization for
mathematical proofs is a powerful means for measuring proving ability.

METHODOLOGY

Within a larger investigation called 'Development of mathematical abilities'
six tests were administered to 2572 students, in 3 counties in Hungary, between April
and May, 1998. The sample consisted of children of the 5th, 7th, 9th, and 11th grades
(with ages ranging from 11 to 17 years). There were two additional questionnaries
assessing personal data, school marks, and mathematics and physics academic self-
concept. The tests were developed for this study, and two of them were previously
piloted.

Table 1. Arrangement of the Development of mathematical abilities"
investigation

Test Grade

5th 7th 9th 11 th

Personal data (including
school marks, sex etc.)

Mathematics and physics
academic self-concept

Creativity

Mathematical problem
solving

Proving ability

Mathematics word
problems

Physics achievement

Mathematics achievement

Among the tests of abilities, one measured proving ability. It consisted of six
tasks of various types. One version of the test was administered to 5th and 7th grade
students, and a second version to 9th and 11 th graders, however, there were tasks
common to both versions enabling better comparisons between groups.



Example I (task for 5th and 7th graders): How can you prove that 6332 is not divisible by 3?"

(task for 9th and 11th graders): Prove that 2 is the only prime number which is an even
number!"

Example II (task for all grades): For a long time people did not know that the Earth is round.
How can you prove this for a person who does not believe this?"

Example III (task for all grades): In an imaginery town there are people of three types: The
truthful people always tell the truth, the liars always lie, and the
mixed people alternately tell true and false sentences. One night
somebody phones the fire-department:

- Hello, fire department.
- The city hall is burning.
- Are you truthful?
-1 am mixed.

Is the city hall burning? Give your reason!

A dichotomous categorization system has been developed for each task, by
which both hierarchical and non-hierarchical evaluations of students' proofs can be
performed (see Figure 1).

NO

I

IS THERE ANY ANSWER?

YES
IS ANY RULE OF DIVISIBLITY

MENTIONED?

NO YES
DOES THE STUDENT IS THE RULE OF SUM OF THE

WRIT: BY DIVISION"? FIGURES MENTIONED?

NO
IS THE DIVISION

PERFORMED?

YES
IS ITRIr?
INO

3
YES

YES
IS THE DIVISION
PERFORMED?

YES
NO

IS THE RULE
OF THE LAST TWO

FIGURES MENTIONED?
CT?

YES

IS

4 INSI

5 6 7
YES YES

(s)

NO

Figure 1. Dichotomous evaluation of proof types for the task How can you
prove that 6332 is not divisible by 3 ?"

The nominal categories of this dichotomous system can serve as a basis for an
hierarchical evaluation of proof types: An ordinal scale measure can be developed
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based on Harel and Sowder's proof-categorization system. Three hierarchically
ordered stages can be identified in their model: 1) externally-based proofs, 2)
empirical proofs, and 3) analytic proofs. The categories of our dichotomous system
were transformed into ordinal scale categories on the basis of agreement among
experts. Three expert raters independently recoded the nominal categories using an
ordinal scale derived from Harel and Sowder's taxonomy. Kendall's coefficient of
concordance (W=.909, p<.001) indicates a high level of agreement. In each case it
was possible to recode the nominal categories into ordinal scale in 3:0 or 2:1 rate.

Table 2. Result of the recoding process for the task How can you prove that
6332 is not divisible by 3?

nominal category ordinal category

(0=no response, 1=extemal,
2=empirical, 3=analytic)

0 0

1 1

2 1

3 2

4 2

5 2

6 2

7 1

8 3

9 1

Additional data collection is in progress investigating mathematics teachers'
judgements of certain frequent proof-patterns. The ordinal scale measure constructed
on the basis of teachers' judgements will provide another method for the hierarchical
evaluation of proving ability.

RESULTS

Currently available data suggest that there are large within- and between-age-
group differences in response-patterns: from external to analytical (using Harel and
Sowder's taxonomy), and from social rule-based to logical rule-based (using a non-
hierarchical taxonomy).
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Kruskall-Wallis and Jonckheere- Terpstra analyses were computed on the
ordinal scale measure of proof types, where the grouping variable was the grade
level.

Table 3. Results of Kruskall-Wallis and Jonckheere-Terpstra analyses of proof
types measured by Harel and Sowder's taxonomy

Task Kruskall-Wallis
analysis

Jonckheere-
Terpstra analysis

N X2 p std. J-T p
Round-shaped Earth 1178 7.39 .060 2.07 .038
Burning city-hall 2327 68.43 .000 8.01 .000

The results suggest that there is a tendency to construct higher-order proofs
even in non-mathematical domains as a fuction of school grades.

Spearman correlation coefficients were computed to investigate relationships
between proof types of different domains, and school marks in mathematics. Table 4
shows that results on the round-shaped Earth and burning city-hall tasks are
significantly correlated with school marks in mathematics (p<.001 in each case)

Table 4. Spearman correlation coefficients between results on two tasks, and
school marks in mathematics

Round-shaped Earth Burning city-hall

Burning city-hall

Marks in mathematics

.176 (N=1178)

.149 (N=1120) .242 (N=2225)

Note: p values for all correlations are less then 0.001.

Additional analyses (including latent trait analyses) will be conducted to
investigate relationships between proving ability and background variables (e. g.,
mathematics achievement, mathematics self-concept, school marks, sex, etc.).
Further non-parametric analyses will be conducted as data collection is completed.



THEORETICAL AND EDUCATIONAL IMPLICATIONS

The results presented here support the use of Harel and Sowder's proof-
categorization as an effective measure of proving ability. By means of this taxonomy
proofs from various content domains can be evaluated. The developmental curves of
proving ability drawn from this cross-sectional study have different inflection points
which appear to be determined by the content of the proof, e. g., whether the proof is
a mathematical, a scientific, or an everyday proof Further studies should address the
hypothesis that mathematics proofs are the 'leaven' to foster the development of the
general proving ability.

Acknowledgments - The data collection was supported by the Hungarian National Science
Foundation (OTKA T 22441). I am grateful to my colleagues, Tibor Vidakovich, Krisztian Rasa
and Jozsef Kontra who collaborated in this project.

REFERENCE

Braine, M. D. S. (1978). On the relation between the natural logic of reasoning
and standard logic. Psychological Review, 85, 1-21.

Braine, M. D. S. (1990). The "natural logic" approach to reasoning. In W. F.
Overton (Ed.), Reasoning, necessity, and logic: Developmental perspectives (pp.
133-157). Hillsdale, NJ: Erlbaum.

Carroll, J. B. (1993). Human cognitive abilities. A survey of factor-analytic
studies. Cambridge University Press.

Evans, J. St. B. T. (1982). The psychology of deductive reasoning. London:
Routledge.

Girotto, V. & Light, P. (1993). The pragmatic bases of children's reasoning. In
P. Light & G. Butterworth (Eds.), Context and cognition (pp. 134-156). Hillsdale,
NJ: Erlbaum.

Hanna, G. (1995). Challenges to the importance of proof For the Learning of
Mathematics, 15, 42-49.

Hanna, G. (1996). The ongoing value of proof Proceedings of the 21th PME
Conference (vol. 1), Valencia, Spain, 21-34.

Harel, G., & Sowder, L. (1998). Students' proof schemes: Research from
exploratory studies. In E. Dubinsky, A. Schoenfeld, J., & Kaput (Eds.), Research
issues in collegiate mathematics education, Vol. 7 (pp. 234-283). Washington, DC:
American Mathematical Society.

2 - 239

6 6 Q



Hersh, R. (1993). Proving is convincing and explaining. Educational Studies in
Mathematics, 24, 389-399.

Hoy les, C. (1997). The curricular shaping of students' approches to proof. For
the Learning of Mathematics, 17, 7-16.

Johnson-Laird, P. N., & Byrne, R. M. J. (1991). Deduction. Hillsdale, NJ:
Erlbaum.

Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University
Press.

Mariotti, M. A., Bartolini Bussi, M. G., Boero, P., Ferri, F., & Garuti, R. (1997).
Approaching geometry theorems in contexts: From history and epistemology to
cognition. Research Forum presentation at PME-XXI, Lahti, Finland.

Martin, W. G., & Harel, G. (1989). Proof frames of preservice elementary
teachers. Journal for research in Mathematics Education, 20, 41-51.

Polya, G. (1954). Induction and analogy in mathematics. Princeton University
Press.

Rips, L. J. (1983). Cognitive processes in propositional reasoning.
Psychological Review, 90, 38-71.

Rips, L. J. (1989). The psychology of knights and knaves. Cognition, 31, 85-
116.

Rips, L. J.(1994). The psychology of proof Deductive reasoning in human
thinking. Cambridge, MA: Massachusetts Institute of Technology Press.

Saul, M. (1992). Jewels in the crown. The beauty of inductive reasoning.
Quantum , July/August, 10-14.

Thompson, D. R. & Senk, S. L. (1993). Assessing reasoning and proof in high
school. In Assessment in the mathematics classroom (pp. 167-176). Yearbook of the
National Council of Teachers of Mathematics.



WHAT CAUSES IMPROPER PROPORTIONAL REASONING:
THE PROBLEM OR THE PROBLEM FORMULATION?

Dirk De Bock* **, Lieven Verschaffel*, Dirk Janssens* and Rebecca Rommelaere*

University of Leuven* and EHSAL, Brussels**; Belgium

Because of its wide applicability both in everyday situations and in scientific con-
texts proportional reasoning is a major topic in mathematics education. But accor-
ding to several researchers and educators, the attention given to the proportion.' (or
linear) model may have a serious drawback: it may develop in pupils a tendency to
use the linear model also in situations in which it is not applicable. In three related
studies by De Bock, Verschaffel & Janssens (1998a, 1998b) this "illusion of lineari-
ty" was empirically investigated among 12-16-year old pupils working on non-linear
scaling problems. But what caused these pupils' improper use of linearity? Did they
incorrectly believe that the linear model was appropriate or were they simply misled
by a problem formulation which they associated with the proportional scheme? In this
study we found a significant influence of this formulation factor: pupils confronted
with non-linear scaling problems resisted more easily the trap of proportional reaso-
ning when these problems were formulated as unfamiliar "comparison problems"
than when formulated as traditional "missing-value problems", which they have
learned to associate with proportional reasoning throughout their school career.

THEORETICAL AND EMPIRICAL BACKGROUND

Pupils' tendency to apply proportional reasoning in non-proportional problem situa-
tions has been frequently described and illustrated in the literature on mathematics
education. Examples of this "illusion of proportionality" relate to different domains
of mathematics, such as algebra (Bead, 1993), probability (Fischbein & Schnarch,
1996; Freudenthal, 1973) and geometry (De Blocq-Docq, 1992). Best-known is the
misuse of proportionality in scaling problems (Feys, 1995; Freudenthal, 1983; Rou-
che, 1989). In order to determine the area or volume of an enlarged (or reduced)
geometrical figure with the same shape, it appears that pupils frequently use the
linear scale factor instead of its square or cube. In the American Standards, for
instance, we read in this context that "... most students in grades 5-8 incorrectly
believe that if the sides of a figure are doubled to produce a similar figure, the area
and volume also will be doubled" (NCTM, 1989, pp. 114-115).

Recently, this tendency towards inappropriate proportional reasoning as well as
its resistance to change were empirically investigated in three related studies by De
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Bock, Verschaffel & Janssens (1998a, 1998b). Large groups of 12-13- and 15-16

year old pupils were administered the same set of proportional and non-proportional

items about length and area of similar plane figures under different experimental

conditions. The experimental items were constructed around different types of plane

figures (regular figures such as squares and circles, and irregular figures) and formu-

lated as traditional word problems. From a structural point of view, all items were
"missing-value problems" in which three of the four data were given and the task

was to find the missing one. Table 1 lists an example of a proportional item (item 1)

and a non-proportional item (item 2) both dealing with square figures - used in

these studies.

1. Fanner Gus needs 4 days to dig a ditch around his square pasture with a side

of 100 m. How many days would he approximately need to dig a ditch around

a square pasture with a side of 300 m?

(Answer: 12 days)
2. Farmer Carl needs 8 hours to manure a square piece of land with a side of

200 m. How many hours would he approximately need to manure a square
piece of land with a side of 600 m?
(Answer: 72 hours)

Table I. Two examples of missing-value problems (De Bock et al., 1998a)

The major results of these studies can be summarized as follows. First, the tendency

to apply the linear model in the solution of non-linear scaling problems proved to be
extremely strong in the age-group of 12-13-year olds, and was still very influential

among 15-16-year olds: overall percentages of correct responses on the non-propor-
tional items varied between 2% and 7% in the group of 12-13-year olds and between

17% and 22% in the group of 15-16-year olds. Second, the type of figure involved

played a significant role: pupils performed better on the non-proportional items when

the figure involved was regular (a square or a circle), but as a drawback they perfor-

med worse on the proportional items about these regular figures because they some-

times started to apply non-proportional reasoning on the proportional items too.

Third, the provision of adequate visual as well as metacognitive support, respectively

in the form of given drawings made on squared paper and an introductory task that

forced the pupils to read and solve one representative non-linear item in a mindful

way, yielded a significant, but unexpectedly small effect on pupils' performance on
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the non-proportional items and, once again, this positive effect was compensated by

worse performances on the proportional items in the supported conditions.
While these studies revealed pupils' almost irresistible tendency to apply propor-

tional reasoning in problem situations for which it was totally inappropriate, the

question remains why so many pupils fell into this "proportionality trap", even in the

case of visual and/or metacognitive support. Most likely, there is no unique nor
uniform explanation for this phenomenon. As in many other subdomains of mathe-
matical thinking and problem solving, it seems that pupils' errors were the result of

the interaction between several task and subject variables. The present study focuses

on the role of one particular task variable on pupils' tendency towards unbridled
proportional reasoning - namely the problem formulation in interaction with some
of the subject and task variables from our previous studies. As already mentioned, in
these previous studies all proportional and non-proportional items were presented as
missing-value problems (see, e.g., Reiss, Behr, Lesh & Post, 1985; Tourniaire &
Pulos, 1985). In this problem type, three numbers (a, b and c) are given and the
problem solver is asked to determine an unknown number x. In a proportional mis-
sing-value problem (such as item 1 in Table 1), the unknown x is the solution of an
equation of the form alb = clx. Arguably, non-proportional tasks of the missing-
value problem type (such as item 2 in Table 1) are rather unusual for most pupils;
the vast majority of the missing-value problems they encountered in the upper grades
of the elementary school and the lower grades of secondary school, are problems for
which the linear model suits perfectly. Therefore, it could be argued that pupils'
extremely weak results on the non-proportional items may not be due to intrinsic
difficulties with the mathematical concept involved in these problems namely

understanding the effect of a linear enlargement on area but merely the result of a
misleading problem formulation (namely the missing-value type which calls up the
overlearned solution schemes and procedures of proportional reasoning). In order to
find out to what extent pupils' weak performances on the non-proportional items can
be due to this formulation issue, we set up a new study in which the formulation of
the problems was experimentally manipulated while keeping their intrinsic conceptual
difficulties constant.

METHOD

Hundred-and-sixty-four 12-13-year old pupils and hundred-and-fifty-one 15-16-year
old pupils participated in the study. All pupils were administered the same paper-and-
pencil test consisting of 12 experimental items (4 proportional items and 8 non-
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proportional items) about the relationships among the lengths, areas and volumes of

similar figures of different kinds of shapes, and 3 buffer items. In both age-groups

we worked with two equivalent subgroups of pupils that were matched on an indivi-

dual basis and that were given a different version of this test. In the first subgroup
(the MV-group), all 12 experimental and all 3 buffer items were presented as mis-

sing-value problems, while in the second subgroup (the CP-group), the items were
formulated as comparison problems. Table 2 contains the "comparison problem"

version of the two missing-value problems from Table 1.

1. Farmer Gus dug a ditch around his square pasture. Next month, he has to dig

a ditch around a square pasture with a side being three times as big. How
much more time would he approximately need to dig this ditch?
(Answer: three times more)

2. Farmer Carl manured a square piece of land. Tomorrow, he has to manure a
square piece of land with a side being three times as big. How much more
time would he approximately need to manure this piece of land?
(Answer: nine times more)

Table 2. Two examples of comparison problems

HYPOTHESES

First, in line with the results of De Bock et al. (1998a, 1998b), we hypothesized that
the vast majority of the pupils would suffer from the "illusion of proportionality",
and that they would therefore apply proportional reasoning to solve not only the
proportional items but also most of the non-proportional items. Consequently, we
predicted that the pupils' performance on the proportional items would be very high,
while their scores on the non-proportional items would be very low.

Second, we assumed that four extra years of mathematics education should have
a positive effect on pupils' ability to resist and overcome the tendency towards
improper proportional reasoning. Moreover, the Flemish mathematics program for
the ninth and the tenth grade (15-16-year old pupils) offers several opportunities to
bring pupils into contact with non-proportional reasonings and problem types. There-
fore, we predicted that these 15-16-year olds would perform better on the test in
general and on the non-proportional items in particular than the 12-13-year olds.



Third, we hypothesized that the pupils of the CP-groups would perform better on

the non-proportional items than those from the MV-groups. When a non-proportional

task is formulated as a familiar missing-value problem, it's more likely that pupils

will associate it with the kind of proportional thinking which proved to be the ade-
quate solution strategy for the vast majority of the missing-value problems they en-
countered in their school career so far. With the unusual formulation as a comparison
problem there is a greater chance that pupils will no longer fall back on this kind of
routine-based, superficial thinking and invest more mental effort in the analysis of the
problems, leading to better performance. Besides, in this "comparison condition"
each problem is given with only one number, so pupils cannot take refuge the

execution of all sorts of arithmetical operations; so to speak, they have no other
choice than putting their minds on the mathematical content of the problem. In line
with our previous studies in which better performances on the non-proportional items
in a given experimental condition were always parallelled with weaker performances
on the proportional items, we hypothesized as well that the pupils in the comparison
condition would perform worse on the proportional items. Accordingly, we predicted
for both age-groups higher scores on the non-proportional items and weaker scores
on the proportional items for the CP- than for the MV-group.

ANALYSIS

The hypotheses were tested by means of a "2 x 2 x 2" analysis of variance with
"Proportionality" (proportional vs. non-proportional items), "Age" (12-13- vs.

15-16-year olds) and "Group" (MV-groups vs. CP-groups) as independent variables,
and the number of "Correct answers" as the dependent variable. In addition to this
quantitative analysis, in which no distinction was made between different types of
correct and incorrect responses, we also executed a fine-grained analysis of pupils'
errors and solution strategies, but, because of space restrictions, this more qualitative
and process-oriented part of the study will not be reported here.

RESULTS

Table 3 gives an overview of the percentages of correct responses for the two groups
of 12-13- and 15-16-year olds on the proportional and the non-proportional items in
the test.



12-13-year olds 15-16-year olds

Proportional
items

Non-proportional
items

Proportional
items

Non-proportional
items

MV-group 87 12 86 34

CP-group 62 31 75 52

Table 3. Percentages of correct responses for the two groups of 12-13- and 15-16-year olds

on the proportional and the non-proportional items in the test

The results provided a very strong confirmation of the first hypothesis. Indeed, the

analysis revealed a strong main effect of the task variable "Proportionality"

(p < .01): for the two age-groups and the two experimental groups together, the

percentages of correct responses for all proportional and for all non-proportional

items were 78% and 32%, respectively.
The second hypothesis was confirmed too: the factor "Age" had a significant

main influence (p < .01): the 15-16 year olds performed better on all experimental

items than the 12-13-year olds; percentages of correct answers were, respectively,

62% and 48%. Furthermore, the predicted interaction effect between the "Age" and

"Proportionality" was found too (p < .01): while the 15-16-year olds answered

nearly twice as much non-proportional items correctly than the 12-13-year olds (43%

and 22% correct responses, respectively), they outperformed the 12-13-year olds

only slightly on the proportional items (81% and 75% of correct responses, respecti-

vely).
Third, the analysis of variance did not reveal a main influence of the factor

"Group" on the pupils' performance: in both experimental conditions the overall per-

centage of correct responses on the test as a whole was exactly the same (55%).

However, a significant "Group x Proportionality" interaction effect (p < .01) was
found. The MV-groups performed considerably worse than the CP-groups on the
non-proportional items (23% and 41% correct answers, respectively), but this worse

performance of the MV-groups on the non-proportional items was parallelled with

much better scores on the proportional items (i.e. 87% correct answers versus 68%

in the CP-groups). Apperently, the item-formulation used in the CP-groups prevented

pupils for falling into the proportionality trap, but as a result these pupils sometimes

began to question the correctness of the proportional model for problem situations in

which that model was appropriate a finding that is very similar to the one obtained

in our previous studies and that has been observed in several other studies about
strategic and conceptual change (Siegler & Jenkins, 1989; Vosniadou, 1994). Finally,

7 5 2 - 246



the analysis of variance did not reveal an interaction between the factors "Group"
and "Age". Nor was there a "Group x Proportionality x Age" interaction effect,

which means that the reported interaction between Group and Proportionality mani-

fested itself equally in both age-groups.

CONCLUSION

Recently, the omnipresence, strength and resistance to change of the "illusion of
proportionality" with respect to scaling problems presented in a school context was
demonstrated in three related studies (De Bock et al., 1998a, 1998b). In these ascert-
aining studies, the majority of the pupils failed on the non-proportional items, be-
cause they routinely applied proportional reasoning in a situation wherein it was not
at all appropriate. However, these studies did not allow to provide an explanation for
pupils' alarmingly strong tendency towards improper proportional reasoning.

The present study involves a first step in our effort to unravel the factors foste-
ring the occurrence of this illusion of proportionality. Typically, this phenomenon is
qualified as a wrong belief, as exemplified in the quotation taken from the American
Standards, mentioned in the Introduction of this research report: pupils apply the
linear model because they incorrectly believe this model is appropriate for a given
problem situation. In the present study, we demonstrated that pupils' tendency to
apply proportional reasoning in problem situations for which it is not suited, is - at
least partially - caused by particularities of the problem formulation that pupils
learned to associate with proportional reasoning throughout their school career. The
significantly better results of the CP-groups on the non-proportional items made it
clear that for a lot of pupils, what lured them into the trap of proportional reasoning
was not their belief in an overused mathematical model in this case the linear func-
tion but rather their illicit confidence in a link between that model and a certain
type of problem formulation in this case the missing-value type.
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ASPECTS OF AFFECT:
MATHEMATICAL INTIMACY, MATHEMATICAL INTEGRITY
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Affect may be regarded as an internal system of representation,
interacting meaningfully with cognitive representation during learning and
problem solving. This paper provides a concise theoretical overview, and
then explores two aspects of affect that we propose as fundamental to the
development of mathematically powerful processes: "mathematical
intimacy" and "mathematical integrity." Illustrative examples are drawn
from videotapes of elementary-school children solving problems during
task-based interviews.

"Thus, in a way, there is a value problem here. You can even consider it
as a moral dilemma: to pretend and to get some credit or not to pretend and

get zero credit? The vast majority of people that I know, including myself,

will solve this dilemma without much hesitation: We will pretend. ... I

would like to return now to the above situation in which an individual is

not aware of the fact that he or she uses pseudo-knowledge in order to get

credit. ... [This] is harder from the cognitive point of view, because the

individual has no idea what a true knowledge is. He does not pretend. He

assumes." (Vinner, 1997, p. 69)

Researchers of mathematical learning and problem solving increasingly recognize the

importance, complexity, and depth of the affective domain. This domain goes beyond

personal traits such as attitudes, beliefs, and self-concepts, and beyond the fleeting
emotions accompanying cognition. We see affect as a highly structured system that

encodes information, interacting fundamentally--and reciprocally--with cognition
(Zajonc, 1980; Rogers, 1983; Goldin, 1988; McLeod & Adams, 1989; DeBellis &
Goldin, 1993, 1997; Leder, 1993; DeBellis, 1996, 1998). Other cognitive psychologists,

neuroscientists, and even information processing theorists are reaching similar
perspectives: e.g., Picard (1997) suggests computers cannot achieve "genuine
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intelligence" unless designed with capacity to build knowledge through "emotional"
connections. But "mathematical affect" is complex and difficult to study -we have as yet

only a preliminary theoretical framework. In this paper we discuss and refine the
characterization of two sorts of affective structures we have inferred from observing

elementary school children in task-based interviews: "mathematical intimacy," and
"mathematical integrity." We offer definitions and illustrative examples, hypothesizing

that these two aspects of affect are essential to the development of powerful
mathematical ability.

Affect as Representation: Theoretical Framework and Interview Data

McLeod (1989, 1992) describes three components of the affective domain: emotions
(unstable, intense), attitudes (reasonably stable, moderately intense), and beliefs (slowly

developing and highly cognitive). Ortony, Clore, and Collins (1988) regard emotions

essentially as reactions to cognitively construed events. The eliciting conditions of
emotions include the cognitive representations resulting from such construals--a perhaps

obvious but nevertheless essential cognitive basis for emotion. We agree this far, but we

see the emotional system as much more than a reaction to cognitive inputs. Emotions

occur in structures that themselves have a symbolic function--i.e., the eliciting conditions

of cognitions in turn include affective representations. For instance the emotion of
curiosity (crucial in our view, but essentially omitted by Ortony et al.) makes immediate

sense as a condition eliciting cognition. Goldin (1987, 1988, 1998a) considers affect as

one of five kinds of interacting internal systems of representation in the mature

individual; the others are (1) verbal/syntactic, (2) imagistic (including visual/spatial,
auditory/rhythmic, and tactile/kinesthetic), (3) formal notational (structured mathematical

symbol systems), and (4) heuristic planning/executive control. Affective configurations

have in our view representational capability--they can stand for, evoke, and generally

interact with cognitive configurations as well as other affect, in highly context-dependent

ways. The affective system includes changing states of feeling (local affect), as well as

more stable, longer-term constructs (global affect). Individuals construct complex

networks of affective pathways (sequences of states with accompanying meanings).

These form complex networks including, but not limited to, what we call meta-affect

( DeBellis, 1996; DeBellis & Goldin, 1997): emotions about and within emotional states,

emotions about and within cognitive states, and the monitoring and regulation of emotion.

The resulting structures influence mathematical problem-solving ability throughaffective

interactions.
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For example, feelings of frustration with a mathematical problem may evoke anxiety and
fear in some students; in others, frustration may be associated with renewed or deepened
determination. Frustration feelings may encode cognitively-essential information
regarding the outcomes of strategies to that point--e.g., failure in a succession of trials
to fulfill problem conditions, or the absence of effective record-keeping of information.

The frustration feelings may in some students evoke heuristic strategies involving
self-distancing and "pseudo-knowledge" (as in the quote above from Vinner). In others,
they may trigger constructive heuristics for problem understanding, such as "solving a
simpler related problem." Local frustration may sometimes reinforce global constructs
regarding the student's sense of self or ability to do mathematics--e.g., "Nothing I ever
do is going to work anyway." The immediate feelings of frustration during problem

solving may occur in a meta-affective governing context of fear of failure; alternatively,

the context may be the anticipation of success, so that the sense of frustration actually
increases the problem solver's enjoyment as s/he realizes that the problem is a deep and
interesting one. Our earlier research led us to extend McLeod's description to include
a component of values/ethics/morals (Kohlberg et al., 1983), that provides the
psychological sense of what is good and bad in doing mathematics, feeling in the right

or justified, feeling wrong, or judging others. This assists the problem solver to evaluate

internally if a mathematical argument is convincing, a proof valid, a solution correct, an
understanding adequate, or an expression of approval deserved. The aspects of
"mathematical intimacy" and "mathematical integrity" addressed in this paper relate to
the values component of the affective domain.

We draw our illustrative examples from a series of 5 specially-designed individual
task-based interviews with children aged 8 to 12, part of an exploratory longitudinal

study (DeBellis, 1996; Goldin, 1998b). Inferences about affect are difficult, and no claim

of reliability is made. We used ten different sources, each a kind of "window" on affect:

(1) individual general background information, (2) affective verbal expression (tone of

voice, timed pauses in speech, interjections, exclamations); (3) affective non-verbal
expression (hand and body movements, posture, facial expressions; (4) instances of
affect interacting with executive control, inferred from protocol analysis; (5) overall

impressions about affect from mathematics educators who viewed the tapes; (6) cognitive

analysis, with special emphasis on affective interactions, in a non-routine problem; (7)

an independently-developed affective coding scheme for facial expressions; (8) evidence

of instances of meta-affect; (9) evidence relating to the construct of mathematical
integrity; and (10) inferring and describing affective pathways.
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Mathematical Intimacy

Psychological literature on intimacy usually considers it to be interpersonal, but for some

researchers the focus is on intrapsychic experience (Maslow, 1970). For us
"mathematical intimacy" describes a possible intrapsychic psychological relation between

an individual and (internally represented) mathematics, that connects with his or her
sense of and value of self. It entails deeply-rooted engagement, not as an observer but

as an emotional participant, that builds personal meaning and purpose. It involves
intimate engagement through interaction, and eventually intimate relationship built on

multiple intimate interactions (Prager, 1995).

Intimate mathematical interaction (DeBellis, 1998) is characterized by behaviors
indicative of intimacy, and by intimate experiences inferred from behaviors. The former,

depending on context, may include: the problem solver's self-placement especially close

to the physical work, cradling the work with the arm or hand as if to say "this is mine,"

hesitation in sharing the work, closihg the eyes as if to "feel" the mathematics, breathing

deeply, tending with great care, or speaking in an especially halting, quiet, or excited

way. Intimate experiences may include feelings of warmth, excitement, amusement,

affection, sexuality, time suspension, deep satisfaction, "being special," or esthetic
appreciation accompanying understanding. They may involve the person's internal

representation of loved or respected ones, e.g., a sense that "My father would be proud

of me for this." They are more than enjoyable; they build a bond between the learner and

the mathematical content. To relate intimately to mathematics is ultimately to have access

to and comprehend its "inmost" structures in a personal way. Mathematical intimacy may

foster positive outcomes through powerful affect: a willingness to take risks (since
intimacy may provide a sense of safety); perseverance (since intimate experiences may

include feelings of loyalty, devotion, and passionate commitment); and confidence (since

intimacy enhances a sense of well-being).

But intimate engagement does not guarantee a positive long-term relationship. The
problem solver may feel disappointed, angry, or betrayed in the intimacy by unexpected

mathematical outcomes, failures, negative reactions from loved ones, rebuke from a

trusted teacher, or scorn from peers. Such "intimate betrayal" does not distinguish
between the mathematically talented and the mathematically challenged individual. Even

among professors, graduate students, and professional scientists--and certainly in
mathematically gifted children--one finds a great deal of pain in relation to mathematics.

An illustrative example is Jerome (children's names are changed), male, age 10, in the
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5th grade. In the third of five interviews, an extra videocamera recorded his facial
expressions. [Small corrections to DeBellis & Goldin (1993) and additional important

affective observations are included here.] Two glass jars, one with 100 green and one

with 100 orange jelly beans were placed on the table. Clinician (C): "Suppose you take

10 green jelly beans from the green jar and put them into the orange jar and mix them up.

Then suppose you take 10 jelly beans from the mixture and put them back into the green

jar. Which jar would have more of the other color jelly beans in it?" Jerome initially
indicated there would be more green jelly beans in the orange jar. Later on, he
conjectured that if the number of jelly beans in the transfer is even the numbers would

be the same, but if the number of jelly beans in the transfer is odd then one container will

have more of the opposite-colored jelly beans than the other. Jerome then does
experiments. Transferring 10 jelly beans, he finds each container has the same number

of opposite-colored jelly beans. Later transferring 11 jelly beans, he counts: "Now two,

four, six, eight, nine. Well they're both, they're both ... they keep on equaling the same

amount even if they're odd. But ... two ... two" [inhales deeply, brushes back his hair]

"green went over ... and ... two green with that and nine orange and then so nine green

are left ... well, they, they still stayed the same. The same amount in each one." [4-second

pause, raises his eyebrows, opens his eyes wide, shrugs his shoulders, smiles] C: "How

can that be?" Jerome: "I don't know." [15-second pause, stares at jelly bean containers,

raises his eyebrows, shakes his head from side to side, sits back in the chair] C: "What

do you think is going on?" Jerome: "I dunno ..." C: "What are thinking about?" Jerome:

"Uhhh I'm just trying to figure Out how did this happen." [17-second pause, raises

eyebrows, furrows his eyebrows, presses his lips, looks upward, shakes his head from

side to side] "I dunno." Jerome's interactions, from which we infer intimate
engagement, include his close proximity to the jelly beans when performing the
experiments, his raised voice, his deep breaths, the gesture of brushing his hand through

his hair, his shrugging of shoulders, his smiling, and the silent pauses. He sits back in his

chair as if to push himself away from the experiment, to distance himself when the

outcome contradicts his expectation.

Mathematical Integrity

Mathematical integrity describes an individual's affective psychological posture in

relation to when mathematics is "right," when a problem is solved satisfactorily, when

the learner's understanding is sufficient, or when mathematical achievement is deserving

of respect or commendation. Integrity is associated with insistence on sufficient
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understanding and resolution of uncertainties, and reliance on understanding in justifying

the "rightness" of the work or the adequacy of a solution. It entails honesty and a degree

of openness. In our view, a strong integrity structure of has the potential to enable

powerful learning and problem solving--especially in interaction with mathematical

intimacy.

The notion of "mathematical self-acknowledgment" (DeBellis, 1996; DeBellis and

Goldin, 1997) refers to the person's ability (or willingness) to acknowledge insufficiency

of mathematical understanding. Important components of this affective construct are:

recognition of the insufficiency, a possible decision to take further action, and the nature

of the action. The problem solver may admit that something does not make mathematical

sense only to himself or herself, or to someone else (e.g., a teacher or another student).

Either acknowledgment may pose specific value, moral, or ethical dilemmas.

Mathematical performance may be hindered orhelped by the choice of action in response

to an acknowledged insufficiency: surface-level adjustments (e.g., "mathematical

bluffing"), explicit efforts at deeper understanding, or a combination of both. Vinner

(1997) describes "pretending" as a behavior of students trying to get credit when they

"know [they] do not know," and the moral dilemma posed by educational systems that

reward rapid obedience to mathematical rules over understanding. When "an individual

is not aware of the fact that he or she uses pseudo-knowledge in order to get credit," the

issue of integrity is more difficult. In our view, the student is not sufficiently intimate

with the mathematics to recognize insufficiency in understanding.

An example is Jacqueline, female, age 9 in the 4th grade, in her first task-based

interview. She was asked what the 50th card would look like, in a certain card sequence

containing dots in a chevron pattern. Prior to this question she had correctly given the

numbers of dots on the 4th, 5th, and 10th cards (7, 9, and 19 respectively, obtained by

repeatedly "adding two" to previous cards). She appeared intimately engaged, but had

not created the geometrical chevron pattern when asked to "show" what she meant. C:

"How many dots do you think would be on the 50th card?" Jacqueline: [opens eyes wide,

raises eyebrows] "Fifty?" C: "A huh, 50th card?" Jacqueline: [6-second pause, sits back

in the chair, arches her back, opens eyes wide, raises eyebrows, presses lips together]

"I think we're gonna have to multiply" ... "because we can't write 50 cards." [raises

eyebrows] ... [smiles] "because that's too much. And you can't do this all the time.

Sometimes you got to multiply to get finished easier." She decides to multiply 19 x 5 (19

dots on the 10th card) ... [11-second pause] "This is what I'm not good at." [smiles] ...
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"Think that's right?" C: "What do you think?" Jacqueline: "I don't think so." ... "Maybe

if we tried um ... maybe divide it" [looks up] "no ... this is 19." [points to the 10th row

of her figure] C: "A huh." Jacqueline: "We got to 19 by 5 so it should be like" [furrows

brow, sighs] "... this is ..." [points to the 5th row of her figure] "00000hh, so like each,

each 5 you add 10 to the 19." As the interview proceeds Jacqueline acknowledges an
insufficiency of understanding (with integrity), makes a change, proposes a new strategy,

and tries to use it, a total of 10 different times--showing great perseverance though
ultimately she is persuaded by an incorrect solution: "Keep adding two and two and two

and it came to a hundred, all that easy and I did all that for nothin'." [writes 100]

The Interplay between Intimacy and Integrity

Mathematical intimacy and integrity confer mathematical power, and interact to foster

perseverance. With them the problem solver no longer needs cognitive and affective
capacity for dissembling about insufficiencies, and no longer avoids but favors heuristics

that lead to deeper understanding. Absence of integrity is a huge obstacle to intimacy.

Bluffing (or pretending) blocks the individual not only from understanding but also from

the experience of intimacy in relation to mathematics. Similarly the absence of intimacy

reduces the individual's need for integrity, as non-intimate interaction is less likely to be

experienced as posing a moral dilemma or value conflict. Lack of mathematical intimacy

may also impede the problem solver's ability to distinguish knowledge from
pseudo-knowledge.

To sum up, powerful affect is complex and consists of far more than positive feelings or

high confidence levels. It entails structures of intimacy, integrity, and meta-affect that

promote deep mathematical inquiry and understanding. Excellent teachers ofmathematics

appreciate, at least tacitly, the need for attention to their students' affective development.

In our own research we have come to view affect as the most fundamental, and the most

unrecognized in importance, of internal representational systems.
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The function concept is often used as an organizing principle for algebra and
beyond. Here we consider its value as a cognitive root (a concept which serves
as a basis for cognitive development). current theories of multiple
representations and theories of encapsulation of process as object are use,: to
build a view of function in terms of different facets (representations) and
different layers (of development via process and object). Results of interviews
with three students in developmental algebra will be used to highlight the model
and to discuss the value of the function concept as a cognitive foundation to
growth in mathematical understanding.

Introduction
The function concept is often suggested as an organising principle in mathematics:

We believe that function is the fundamental object of algebra and that it ought to be present in
a variety of representations in algebra teaching and learning from the outset.

(Yerushalmy & Schwartz,1993, p.41)

It has become a central concept in school and university curricula around the world. We
agree that the function concept can be a powerful foundation for logical organisation, but
we question its suitability as the basis for a cognitive development.

Tall (1992, p. 497) defined a cognitive root as a starting concept with the "dual role of
being familiar to students and providing the basis for later mathematical development".
He considered the function concept as a possible cognitive root, counselling that there
were serious obstacles such as the encapsulation of function as a manipulable object (eg
Dubinsky & Harel, 1992; Sfard, 1992) and the complexity of coordinating alternative
representations (Cuoco, 1994). Here we consider these two dimensionsthe links
between various representational facets of the function concept, and the layers or levels
of compression in process-object encapsulation (Demarois & Tall, 1996). These are
traced through a remedial college algebra course based on the function concept.

Framework
The facets studied will include the function notation (including the meaning of f(x)), the
colloquial use of a function machine as input-output box, the standard symbolic
(algebraic formulae), numeric (table) and geometric (graphic) facets, with the written
and verbal. These will be represented as sectors of a disc (figure 1) in which movement
towards the centre is seen as compression through the layers pre-procedure, procedure,
process, object, and procept. Pre-procedure denotes that the student has not attained the
procedural layer. Students at the procedure layer are dependent on carrying out a
sequence of step-by-step actions. Students at the process layer can accept the existence
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of a process between input and output
without needing to know the specific steps,
and see two procedures with the same
input-output as the same process. The
object layer denotes the capacity to treat
the idea as a manipulable mental object to
which a process can be applied. The
procept layer indicates the ability to move
between process and mental object in a
flexible way.

To allow each facet to be linked directly
to any other, the picture should be seen as
having individual slices (facets) that can be
moved and connected in any way.

An alternative representation (figure 2)
is used to show the direct links between
selected facets, some of which may be non-
existent or in one direction only for
individual students.

Student Conceptions of Function

numeric

colloquial

process
procedure

(pre-procedure)

Figure 1: facets and layers of the function concept

Equation
[symbolic]

Table
[numeric]

Machine
[colloquial]

Graph
[geometric]

Figure 2: possible links between function facets

DeMarois (1998) studied students taking a developmental algebra course at a community
college. The students completed pre- and post-course function questionnaires and several
participated in a post-course interview. Her, we focus on three students AF, BF and CM,
where the first letter denotes the grade achieved (A, B, C) and the second denotes the
gender (M or F). AF is a liberal arts student between 21 and 25 years of age. BF is a
business student between 26 and 30, CM is a biology student over 30. AF had studied
1.5 years of algebra before college, BF and CM had taken 1 year. AF and BF were
taking their first college mathematics course, CM had previously attended a basic
mathematical skills course
. Function machines were used to analyse the colloquial facet. The majority of students
displayed some understanding of function machines on the pre-test. In the individual
post-course interviews, one question provided data on colloquial, verbal, numeric, and
symbolic facets (figure 3).

Input

4TFunction I I Function
Chris Multiply by 3 Lee

Add 6

I

Output Output

Figure 3: equivalent functions

Students were asked to write expressions for each function machine and asked whether
the two function machines represented the same function (table 1).

Input

I

Add 2 to the input
Multiply the sum by 3
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Chris Lee Are the functions Chris and Lee equal?

AF 3x + 6 3(x + 2) Yes, if I distribute the 3 in Lee, I get the same function as Chris

BF x3 + 6 (x + 2)3 Yeah, but different processes

CM 3x 6 x + 2(3x) No, you come up with the same answer, but they are different processes

Table 1: Function machines as procedure, process and mental object

The three responses show AF speaking in terms of a mental object, BF in terms of

process and CM in terms of procedure. AF easily links the colloquial and algebraic

facets. BF gives a literal translation of both function descriptions showing less flexibility

moving from colloquial to algebraic. CM sees Chris and Lee as different procedures (in

our terminology). He also gives a literal translation of the second function as "x+2 three

times", revealing that he is less comfortable relating the colloquial facet to the algebraic.

Further research into links between symbolic, arithmetic, geometric and colloquial
facets was performed by asking the students to respond to the following questions:

given a specific equation, create a table, a graph, and a function machine;
given a specific table, create an equation, a graph, and a function machine;
given a specific function machine, create a table, a graph, and an equation; and,
given a specific graph, create a table, an equation, and a function machine.

They were encouraged to create the other forms in any order they wished. Tables 2-4
display the results where "1" indicates a successful attempt and the numbers indicate the
order in which the representations were created.

AF
From i to 9

Equation
(symbolic)

Table
(numeric)

Function machine
(colloquial)

Graph
(Geometric)

Equation q (1) q (2) 4 (3)

Table -4 (2) 4 (3) 4 (1)

Function machine -4 (1) '1(2) 4 (3)

Graph 4 (2) 4 (1) 4 (3)

Table 2: Creating representations: AF

Although AF was able to start with any representation and eventually get to any another
the routes taken were not always direct (see figure 4). Given the equation, AF said:

I am much more comfortable with the function machine and the table as opposed to creating a graph
on my own. I'm not as comfortable doing a graph on my own.

Given the table, AF first created the graph, but went back to the table to create the
equation. She used the graph to determine the
type of equation but then used the table to
determine the slope using finite differences:

I'm trying to find the finite difference. I know
from the graph it looks like it will be a line so I
think it will be linear which I know is y(x) =
So for that I need the slope and the 0 input which I
already have which is 3. It looks like the slope is
2 so I get y(x) = 2x-3.
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[symbolic]

Table
[numeric]

Machine
[colloquial]

Graph
[geometric]

Figure 4: direct links between facets for AF



BF
From L to -4

Equation
(symbolic)

Table
(numeric)

Function machine
(colloquial)

Graph
(Geometric)

Equation (2) -4 (1) 4 (3)

Table 4 (3) 4 (1)

Function machine 4 (1) 4 (2) 4 (3)

Graph 4 (1)
. ` ";F

Table 3: Creating representations: 13F

BF proceeded as in table 3. She could start
from equation or function machine and
generate all other facets, but was only able to
move between table and graph when starting
from one or the other. She kept trying to
generate equations or function machines
using only one point. She was thus unable to
find the slope and could not make other links
to equation or function machine (figure 5).

CM was also able to start from the equation or function machine and generate all other
facets. Starting with a table he drew a graph, but could not cope the other way (table 4).

Equation
[symbolic]

Table
[numeric]

Machine
[colloquial]

Graph
[geometric]

Figure 5: direct links between facets for BF

CM
From J' to *

Equation
(symbolic)

Table
(numeric)

Function machine
(colloquial)

Graph
(Geometric)

Equation q (1) 1 (3) 'J (2)

Table -4 (1)

Function machine 4 (2) 4 (1) 4 (3)

Graph

Table 4: Creating representations: CM

He had a limited ability to pass directly from one facet to another (figure 6). He said:
I'm not real sure on equation or function machine.
If you had to choose between the two, which would you prefer?
It doesn't matter. I don't like either. I really don't like anything that has to do with math.
[The pained look on his face and the nervous body language speak volumes.]
You like tables?
Yeah. Tables are a little bit easier for me. I trust those more than having to figure out stuff.

Given a graph he drew a table outline and said:
No. I can't do it.
You started to do a table.
Yeah ummm. If I were to sit down and think about
it for a while I probably could. That's the way a lot
of math is to me. I just keep trying different ways
until I hit upon one that works. To save my life I
probably could, but I'm not real sure.
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Equation
[symbolic]

Table
[numeric]

Machine
[colloquial]

Graph
[geometric]

Figure 6: direct links between facets for CM
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struggled throughout the course using inflexible procedures and limited connections

e!ween representations. He became frustrated and gave up easily, particularly where

oohs were involved.
Overall, AF's performance on this series of questions was flawless. BF demonstrated

ood connections between symbolic and colloquial and between numeric and geometric,

ut only from the first of these pairs to the second. CM established a connection between

yibolic and colloquial, but any connection to graphs was tenuous at best.

tudent profiles
isual profiles (Figure 6) of the concept
ages of function at the end of the course

*ere created for each of the three students
-4hrough analysing all the collected data The

llading indicates layers of each facet attained
by the end of the course.

AF demonstrated knowledge during the
1.nterview that was at least equivalent to that notational

displayed on the post-course survey. Her
itniowledge of the verbal facet matched her
Written facet since her verbal and written
descriptions of function were identical. She
'as able to assimilate alternate definitions
ea ily into her own concept image. AF did
0 ibit difficulty during the interview dealing
with implicit equations as functions of one
variable in terms of the other. She did not use
lie "uniqueness on the right" condition
Breidenbach et al., 1992, for example) in her
election of functions from a set of equations.
he initially denied the constant function is a
unction, but later changed her mind. She
iSplayed proceptual abilities working with
oth tables and function machines. She is

easily able to think of them as functions (static
objects) and as processes (dynamic objects).
Her understanding of graphs was developing
even as we conducted the interview. She did
(not need to know a specific procedure,
repognizing each graph as representing a set of
inOut-output pairs. She was not prototype-
driven and although she did not initially seem
to know how to apply the "uniqueness to the
right" condition, after some instruction, she

numeric

symbolic geometric

colloquial

rocep

object
process

procedure

AF

numeric

written

verbal

colloquial

rocep

object
process

procedure

BF

numeric

colloquial
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object
process

procedure
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was able to use it coherently. She was not placed in the object layer for the geometric

facet because she demonstrated a process-orientation looking at graphs rather than to
seeing it as a function object. Her knowledge of the notation facet (for instance the

meaning of y=f(x)) appeared strong and consistent except for an occasion when she was
asked to substitute 44 for y in an equation containing y(x) and said "44 of x." She quickly
withdrew this statement and described 44 as replacing y(x). AF was the only student
interviewed able to distinguish between 3f(2) and 2f(3).

Of the three students, BF exhibited the most growth during the course. At the
beginning she was judged to be at the procedure layer only on the symbolic facet. By the
end, she appeared to be at or near the process layer on all facets surveyed. The numeric
and colloquial facets showed some difficulties with process. She was highly procedural
in creating an equation from a function machine writing down the steps of the function
machine literally. This result carried over to the interview. Her choice of tables that
represent functions focused on those tables in which a clear procedure or pattern was
present. Her strongest facet seems to be notation which she interpreted flexibly in both
post-course survey and interview although she exhibited difficulty interpreting 3f(2) and
2f(3) and substituting 44 for y in an equation involving y(x). In the interview she was
placedin the object layer for notation because of her ability to discuss the notation as an
object. On the symbolic facet, she accepted the constant function as a function, but had
trouble with piecewise-defined functions. She was the only student of the three that was
able to correctly apply the vertical line test to graphs both on the post-course survey and
during the interview. While consistent in her verbal and written definitions, BF was not
as comfortable as AF in adopting alternate definitions. She had more difficulty crossing
boundaries between facets. She did not easily move from a function machine to an
equation and was procedural in using equations. This caused difficulty when given a
variable input. She was unsure what to do and was not sure the output made much sense.

CM was the least successful of the three. At the beginning of the course he
demonstrated procedure layer knowledge in both numeric and colloquial facets placing
him slightly ahead of BF. By the end of the course, he was procedural in every facet
except for some movement into the process layer of the symbolic facet. On the post-
course survey he showed some ability to reverse a table and some hints of process when
selecting tables as functions. The interview suggested that CM was at the procedure layer

on all facets except geometric where he remained pre-procedural. In addition, his
interview answers in the symbolic, geometric, numeric, and verbal facets were highly
inconsistent with those on the post-course survey. He looked for specific procedures
when identifying equations or tables as functions and was unable to identify any usable
rule when looking at graphs. His written and verbal definitions of functions varied and
he could not assimilate any alternate definitions of function into his own. At best, he
indicated some use of prototypes when looking at graphs and demonstrated some
knowledge of function notation relating only to procedural aspects of equations and the
function machine. Neither written nor geometric facets seemed connected to any other

facet at all.
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Quantitative Data
The class as a whole reflected this spectrum from procedure to mental object conceptions
of function. On the pre-test in the colloquial, symbolic and numeric facets, around 70%
were able to cope with input-output as procedure or process but only 3% were at this

level handling graphs (table 5).

(N = 92)

Colloquial
(Function Machine)

pre post

Symbolic
(algebra)

pre post

Numeric
....(Table)

pre post

Geometric
....(Graph)
pre post

pre-procedure 32% i
:

10% 26% i 8% 30% 9% 97% 50%

procedure 20% 18% 54% 51% 14% 11% 2% 21%

process 49% 72% 20% 41% 55% I 80% 1% I 29%

Table 5: Changes in levels of responses for four facets between pre-survey and post-survey

The table reveals improvement in all four facets. Other data collected during the project
implies a corresponding improvement in the verbal, written and notational facets. This
suggests that the function concept is accessible as procedure or process for many of these
remedial students. The function machine appears to be a sufficiently primitive structure
to serve as a cognitive root on which to build the function concept However, the manner
in which these students link the function machine to other facets suggests real difficulties
in building sophisticated ideas upon it. All three students AF, BF and CM moved to
other facets via algebraic symbolism and only AF used standard algebraic expressions.
Many others in the class exhibited similar difficulties moving from the function machine
to other representations. Although the function machine is a good candidate as a
cognitive root for the full function concept, for many of these students the total concept
is too complex to allow a full development.

For instance, student competence with the geometric facet was almost non-existent at
the beginning of the course and difficulties persisted throughout even though (or perhaps
in part because) students had regular access to graphic calculators. While there was a
significant increase in response handling graphical problems, by the end of the semester
less than half the students were able to use a graph to find output given input and only 19
percent were able to reverse the process. Of our cross-section of students, AF showed
good depth in understanding of this facet, but BF and CM had enormous difficulty.

Function notation was also interpreted inconsistently, with many students (including
AF) using it correctly in some settings yet unable to translate it to a new, similar setting.

Students are often competent at "plug and chug" mathematics and use this ability to
hide weaknesses in their understanding. CM, for example, used the more abstract
symbolic facet when the more primitive table failed him. He indicated little
understanding of the symbolism, but demonstrated several times that he could evaluate a
function. This appears to be an example of "pseudo-conceptual" understanding where he
attempted to respond in a manner he sensed was desired by the teacher, yet failed to
make appropriate internal connections (Vinner, 1997).
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Summary and Reflection

This study underlines the complexity of the function concept. Its inherent richness allows

it to be considered as an organising principle in mathematical courses such as algebra.

The use of function machines provides a new approach in remedial algebra which does

not simply reproduce the procedural errors of earlier experience, There are gains in

moving students to procedural and process levels of thinking in several facets, but the

graphic facet and some of the links between different facets remain problematic. The

function machine provides a primitive idea that the majority of the students recognised at

the beginning of the course, at least at a procedural level. Theoretically it contains the

basic idea of long-term growth as an input/output procedure and potentially as a mental

object that can be operated upon. However, for many students, the complexity of the

function concept is such that the making of direct links between all the different

representations is a difficult long-term task and, in the case of this course using graphing

calculators, the development of graphical ideas had to start almost from nothing and only

partial progress was made. An organising principle in theory: yes, but is it a cognitive

root for general long-term development? In our judgement the jury is still out.
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CREATING A TOOL: AN ANALYSIS OF THE ROLE OF THE GRAPHING
CALCULATOR IN A PRE-CALCULUS CLASSROOM

Helen M. Doerr and Roxana Zangor
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Abstract

In this paper, we report the results of a qualitative, classroom-based study on the
relationship and interaction between the role and beliefs of the teacher and the
patterns and modes of students ' use of graphing calculators in support of their learning
of mathematics. This interaction led to the creation and development of a set of ways
the tool was used in the classroom and related mathematical norms. We found that the
teacher's confidence, flexibility of use and her awareness of the limitations of the
technology, led to the establishment of (a) a norm that required results to be justified
on mathematical grounds, (b) multiple ways for visually checking hypothesized
relationships between variables, (c) a shifting role for the calculator from graphing to
checking, and (d) the use of non-calculator strategies for periodic transformations.

Introduction

Functions and graphs have been the focus of numerous research studies over the past
decade. The study of students' understanding of the concept of function, and their
abilities to create and interpret graphical representations, was given strong impetus by
the advent of computers and their ready availability in some classrooms. This led to
many computer-based studies that analyzed students' reasoning with and about linked,
dynamic multiple representations of functions (e.g., Confrey & Doerr, 1996;
Yerushalmy, 1991). Furthermore, while the graphing calculator has limitations when
compared to a full-screen computer program, its low cost, portability and ease of use
have resulted in its widespread use for teaching about functions and graphs in
secondary schools in the United States.

Teachers, as well as the developers of standardized tests (such as college
entrance examinations), have moved to adapt the graphing calculator into theirpractice.
The National Council of Teachers of Mathematics's (NCTM) curriculum standards
(NCTM, 1989) recommend using the graphing calculators to provide students with new
approaches, including the use of multiple representations, to the investigation of
mathematical ideas. While it might appear that practice has moved independently of
and more quickly than research, there is in fact no shortage of research studies on the
use of the graphing calculator (Dunham & Dick, 1994; Penglase & Arnold, 1996).
However, many, if not most, of these studies are quasi-experimental in design and seek
to answer the question of whether or not graphing calculators are effective in achieving
certain instructional objectives, which are often left unchanged from traditional



paper-and-pencil approaches. Many of these studies compare the use of the graphing
calculator to the use of paper and pencil on the same set of tasks. Such studies give
little insight into how and why students use graphing calculators. Furthermore, few
studies have attempted to understand the role of the teacher in a classroom where
students have ubiquitous use of the graphing calculator and where the tasks have been
changed to potentially take advantage of the graphing calculator's functionality
(Penglase & Arnold, 1996). Teachers' attitudes and beliefs about the use of the
graphing calculator in classroom practice are largely unexamined in the research
literature (Tharp, Fitzsimmons & Ayers, 1997). In this paper, we report the results of a
study on the relationship and interaction between the role and beliefs of the teacher and
how students used graphing calculators in support of their learning of mathematics.

Theoretical Framework

Changes in curriculum are necessary to create an environment in which students
can develop the new problem solving strategies that graphing calculator technology
makes possible. Such curricular changes must be accompanied by changes in
instruction so that teachers can develop new pedagogical strategies that are appropriate
for the learners, the curriculum and the technology. In this research, we see teachers'
pedagogical strategies as integrative of their views of how students learn, the
mathematical content as embodied in the curriculum, and capacity of the technology to
support learners in understanding mathematics.

The theoretical framework guiding this research follows the perspective
described by Cobb and Yackel (1996) in which psychological and sociological aspects
of learning are coordinated as an active process in which students reorganize their
thinking through their interactions in the social context of the classroom. This social
context includes the tools and representational systems which are shared among
students and teachers. The meaning and the role of the graphing calculator as a tool for
mathematical learning within the classroom are constructed by both teacher and
students through their interactions, communications, and shared use of the tool. As
Hiebert et al (1997) have observed, "Students must construct meaning for all tools. ...
As you use a tool, you get to know the tool better and you use the tool more effectively
to help you know about other things." (p. 54,emphasis added). In this study, we seek to
describe how the teacher's beliefs about the graphing calculator were reflected in her
pedagogical strategies. We then describe how these strategies led to the
co-construction, with the learners, of a particular set of ways in which the graphing
calculator became a tool for mathematical learning in the classroom.

Methodology and Data Analysis

A pre-calculus curriculum based on modeling problems in an enhanced
technology environment (using graphing calculators, calculator-based measurement
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probes for motion, temperature and pressure, and computer software) provided a rich
setting for studying the role of the teacher and the patterns and modes of graphing
calculator use by the students and the teacher. This classroom-based, qualitative case
study took place in two classes of pre-calculus students in a suburban setting, taught by
the same teacher. The classes were observed over two units of study on exponential
functions (ten weeks) and trigonometric functions (seven weeks). The teacher had 20
years of teaching experience and was skilled in the use of the graphing calculator.

In this study, all of the students had either 11-82 or TI-83 graphing calculators.
These devices are rich in graphing and statistical functionality, although lacking in
symbolic algebra capability. In general, the students had used their calculators for well
over a year before taking this course and were quite familiar with its features. The
classroom was equipped with a computer, printer and a "graph link cable" that could be
used to transfer pictures of the calculator graph to the computer for printing. The link
cable could be used to transfer data and programs between the computer and calculator,
but this feature was rarely used. On the other hand, students readily transferred data
and programs between calculators using the calculator-to-calculator link cable. The
classroom was equipped with a view screen that allowed the calculator screen (but not
the keystrokes) to be projected using a standard overhead projection unit. The view
screen did not allow for individual student's calculators to be projected, but only the
particular calculator that was attached to the view screen. The students and the teacher
both used that calculator during class discussion.

Classroom instructional activities regularly alternated between modeling
problems investigated by the students within a small group and whole class discussion
for sharing progress, discussing solution methods and extending results. All class
sessions were observed by two or more members of the research team. Extensive field
notes, transcriptions of audio-taped group work, transcriptions of video-taped whole
class discussion, and interviews and planning sessions with the teacher constituted the
data corpus for this study. These data were analyzed and coded for the patterns and
modes of graphing calculator use by both the teacher and the students throughout the
instructional units. In this paper, we present some of the results of this analysis,
beginning with a description of the role and beliefs of the teacher as they were reflected
in her pedagogical strategies. We then present some of patterns and modes of graphing
calculator use that emerged as the students interacted with the teacher, with each other
and with the problem situations.

Results

The teacher was particularly skilled in using the graphing calculator, as was
demonstrated during both instructional units by her own use of the calculator and by
her ease in answering the students' occasional questions on how to use the calculator
for some particular task. The teacher's confidence in her own knowledge about the

2 - 267

9}'6.



calculator's capabilities and its potential uses was reflected in the willingness with
which she encouraged the students to use the calculator in their individual and group
work. She actively encouraged the students to take over the use of the calculator on
the overhead projection unit during class discussions.

The teacher showed flexibility in her use of the calculator, as she would shift
among the different representations of functions as tables, graphs, or equations, or
shift from various lists to different kinds of regression equations. The teacher had a
special preference for table - graph switching, particularly in conjunction with setting
the viewing window for the graph. The settings for the window were generally
determined via table values. An explicit decision to set the window for a better view
of the "complete" graph was often made through an interpretation of the table for the
given function. In this way, the table served as a scaling tool for the calculator's
viewing window.

The teacher used the table for examining the numerical patterns that identified
the structural features of a function. For example, she would ask the students to
identify either the constancy of first order differences or the constancy of successive
ratios as the defining characteristic of the linear or exponential structure for a given
numerical relationship. The teacher also used the table to determining pointwise or
local behavior of a function by looking for the intercepts with the axes or for the
coordinates of extreme points. This table - graph switching by the teacher
constituted opportunities for mathematically normative discussion with the students
about the meaning of a complete graph of a function. This meaning came to include
the local and global behavior of the function such as zeros, y-intercept, numerical
patterns, symmetry, asymptotes and end behavior.

The teacher also believed that the calculator presented certain technological
and mathematical limitations. In some instances, she talked about incompatibilities
between the two different kinds of calculator, differences in how expressions were
evaluated and limitations related to storage space such as the number of lists and the
number of elements in one list. But the most important issue she raised concerned the
validity of the calculator results. She asked questions such as "Does the calculator
always tell the truth?" and "To what extent should we believe the calculator?"
These kind of questions were most often posed by the teacher in specific situations
when the calculator provided results in contradiction with the mathematically
accepted truth. As an experienced teacher and a skilled user of the calculator, she
was always aware of the calculator-generated errors and she pointed them out every
time, especially because the students were tempted, as some of them said, "to go with
what the calculator says."

Over the course of several months, the students became increasingly aware of
these "mismatches" between the calculator results and mathematically accepted truth.
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They started to develop a skepticism about calculator results. For example, in
investigating a decay experiment where approximately half of the M&M candies
were removed in each trial (Doerr, 1998), the students decided that an exponential
function models this decay process. One student observed that even though in their
experiment they ended up with zero candies, the exponential model did not attain a
zero value since "you can divide by two infinitely without getting zero." But another
student, who was manipulating the calculator with the overhead screen, scrolled
down the table for their exponential function until, for very large values of x, the
function appeared to take the value zero. This generated considerable discussion
about the calculator having limitations and "not always telling the truth." From this
situation as well as others, the students developed a reasonable skepticism and
learned to interpret attentively and critically calculator-based results. The students
began to see the calculator as a tool that should be checked based on their own
understandings of mathematical results. Maintaining a reasonable skepticism about
the mathematical truth of calculator results thus became established as part of the
socio-mathematical norms of this classroom culture.

The teacher believed that the calculator would be a helpful tool for the students
to use in finding meaningful responses to problem situations and for extending their
mathematical thinking. The norms of the classroom culture came to define what kinds
of calculator-based responses were and were not acceptable within this classroom. Two
specific calculator-based methods (regression analysis and curve fitting by modifying
parameters) were regularly used to solve problems where part of the task was to find an
equation of a function to represent the data set of a given phenomena. These two
methods were not very popular among the students as a whole, but rather were used
extensively by three students. The teacher did not explicitly discourage these methods
by telling the students not to use them, but rather she required a meaningful explanation
of how the numerical results related to the problem situation. This meaningful
interpretation of the result could not be given by the students who used either
regression analysis or a curve fitting approach. These students did not see their
findings as estimates of a mathematically determined model or of particular parameters
directly related to the problem situation. Those students who used the calculator's
regression functions were focused on the immediacy of obtaining some numbers
(coefficients) to use in an equation and not on making sense of the result's meaning
through a more mathematical analysis of the problem situation.

The calculator took on a role as a visual checking tool to evaluate how well an
equation matched a data set from an experiment. The students developed three
approaches for visual checking; these approaches depended on how they found their
equation in the first place. In the first approach, the students had determined a
function through a meaningful mathematical analysis. Graphical mismatches
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between their hypothesized function and the data set of the phenomena often led the
students to discover mistakes in their symbolic representation or in a computation.
In some instances, the students evaluated the "goodness" of the match through the
number of points from the original data set that actually lie on their graph. When
they found that this graphical checking was not entirely convincing, the students
usually switched to table checking. They then compared the numerical values of
their relationship with the data set of the phenomena and evaluate their "closeness".

A second approach (taken by only a very few students) was used when an
appropriate regression had minor graphical mismatches with the data set. The
students dismissed these mismatches and tended to use "what the calculator says."
The third approach for visual checking was that taken by those students who solved
this kind of problem through a parameter-based curve fitting strategy. These
students started with an equation of some general form, such as y=Asin(B(x+C))+D,
and then systematically varied the parameters. In this case, graphical mismatches
were crucial in their decision to reject the current graphical representation and search
for a better one. This process was iterated until the students were satisfied with the
goodness of their match. We found that students varied widely in their persistence in
attempting to find a good fit. Criteria for the adequacy of a fit were not made
explicit. Occasionally when the data set was small and discrete, some students were
explicit about their criteria for the closeness of a fit. In that case, the adequacy was
usually judged by the number of points actually on the visual representation of the
curve.

The use of the calculator as a visual checking tool also supported the students'
thinking about the idea of the non-uniqueness of an algebraic representation for an
exponential or trigonometric graph. The activities on transformations of functions in
both units were designed bi-directionally, going from the equation to its graph and
from the graph to a non-unique equation. Initially, in exploring the relationship
between graphs and their equations, the students used the calculator as a efficient
graphing tool. The students quickly graphed the equations on their calculator and
then sketched the graphs on paper. Later, as the teacher actively encouraged the
students to use their knowledge of transformations to sketch a graph or find an
equation, they relied more on their knowledge of transformations and of the shape of
the parent function to sketch the graph on paper. The calculator's use then shifted
from a graphing tool to a visual checking tool. The students merely graphed the
equation on their calculator, traced the graph on the screen through relevant points
and checked if those points matched the given or expected values.

This shift in the role of the calculator from a graphing tool to a visual
checking tool was even more pronounced in the case of the trigonometric functions.
The "look alike" feature of the graphs of these functions and the infinite number of
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possible algebraic representations became particularly problematic with the periodic
functions. (We note, of course, that the exponential functions studied earlier have
these same features. However, these features were much more salient for the
students with the class of trigonometric functions.) An artifact of the calculator
screen is that the scaling on the axes of the graphs is not labeled. This made it
particularly difficult for the students to visually identify what portion of the graph
they were looking at. This in turn led to a shift to a limited use of the table and
sometimes of the "Trace" command to numerically check crucial values on the graph.
But this too became problematic for the trigonometric functions, since the values that
are most often used for the independent variable are integer or common fraction
multiples of 7C. But in the table these values appear as decimal numbers, which
cannot be directly compared to the multiples of 7E, without a numerical conversion.
Hence in exploring the transformations of the trigonometric functions, the teacher
and students came to rely on their shared knowledge of transformations, with only
the most limited use of the calculator.

Discussion and Conclusions

The teacher and the students in this study created a set of ways in which the
graphing calculator supported their mathematical investigations and reasoning. The
teacher was confident in her own knowledge of the calculator (especially table -
graph switching) and believed that it could be a helpful tool for the students to use in
finding meaningful responses to problem situations. She also believed that the tool
presented certain technological and mathematical limitations. As a consequence of
these beliefs, as they were enacted in her interactions with the students and the
mathematical problem situations of the curriculum, the graphing calculator became a
particular kind of tool in this classroom.

We found that the teacher and students developed a flexible use of the
graphing calculator as a tool that could be used to investigate the complete view of
the properties of a function's graph. Both teacher and students easily switched
between the table and the graph to find local and global properties of a function.
This in turn led to discussions about what constitutes a "complete" view of a graph.
The teacher's emphasis on meaningful mathematical reasoning in problem situations
led to a de-emphasis on the use of regression equations by all but a few students who
did persist in their use. But the norms of the classroom came to require that
meaningful coefficients had to be justified in terms of the problem's context, leaving
little room for regression equations or trial and error curve fitting.

The teacher's recognition of the limitations of the graphing calculator led the
students to develop a reasonable skepticism about calculator-generated results. This
in turn led to the establishment of a norm that required results to be justified on

T C PY VAIN. LE

2-7100



mathematical grounds, not simply taken as calculator results. The students'
interactions with the tool led to the development of a set of ways of visually
checking hypothesized relationships between variables. The role of the graphing
calculator was an emerging role, as the students' use of the tool shifted from using it
as a graphing tool to using its table and trace features as a checking tool. In the case
of periodic functions, the teacher and the students came to rely on their shared
strategies for transforming functions rather than use the calculator.

The graphing calculator was not a tool with some independent role and
existence in this classroom. But rather, the teacher's attitudes and beliefs, as
reflected in the role she took in the classroom, led to the calculator being used by the
students and by the teacher in a particular set of ways that created and then reflected
the graphing calculator as a tool that supported the mathematics learning in this
classroom.
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ARGUMENTATIVE ASPECTS OF PROVING: ANALYSIS OF SOME
UNDERGRADUATE MATHEMATICS STUDENTS' PERFORMANCES

Nadia DOUEK
I.U.F.M. Creteil

Abstract: This paper examines conjecturing and proving in mathematics through analysis of
texts written by undergraduate mathematics students. These students reported their-
reasonings while trying to generalize a property concerning natural numbers and prove the
generalized property. Important reference knowledge remained implicit, and non-
standardised, appropriate representation of explicit reference knowledge played an
important role in students' performances. Referring to semantically rooted arguments was
crucial for many students. Subordinating the proving process to the formal requirements of
proof as a final product had negative consequences for some students.

1.Introduction
During this century, the specificity of mathematical proof has frequently

been an object of heated debate among mathematicians and philosophers.
Particularly, keeping mathematical proof (and, more generally, mathematics) free
from recours to "meaning" has been upheld as a possibility or even a necessity by
someone (see Whitehead, 1925: 'Mathematics is thought moving in the sphere of
complete abstraction from any particular instance of what it is talking about'). By
contrast, others opposed it as an illusion or even a danger (see Hardy, 1929:"A
formal proof is a kind of X-ray picture of an actual or possible piece of reasoning,
revealing the bones [the form] but making the flesh [the content, the meaning]
invisible."). Cognitive aspects of mathematical proof were not so extensively
investigated. And in mathematics education it was only in the eigthies that a
systematic effort was made to establish links between epistemological, cognitive and
educational perspectives while tackling the specificity of mathematical proof in
relationship with argumentation (see Balacheff, 1988; Hanna, 1989; Duval. 1991).

The study reported in this paper is part of a personal research project
concerning the comparison between argumentation and mathematical proof and its
implications for teaching. In Douek (1998) I sought to outline some possible
guidelines for this kind of investigation, mainly considering a modern-day
mathematician's reflection about his own work (Thurston, 1994) and Duval's
analysis of the cognitive functioning of formal mathematical proof (Duval, 1991).
In doing so, I considered the distinction between ordinary mathematical proof and
formal mathematical proof (i.e. proof reduced to a logical calculation): and the
distinction between the process of proof construction and its product (the final text
of proof- see section 2. for more details),I sought to support the following position:

In spite of the undeniable epistemological and cognitive distance between ordinary
argumentation and formal mathematical proof argumentation and ordinary mathematical
proof have many aspects in common, both as processes and as products.

In particular, I sought to show analogies between argumentation and ordinary
mathematical proof, especially as concerns the use of both implicit and explicit
reference knowledge, its dependence on social (and historically evolutive)
constraints, and the need for semantically rooted arguments. Concerning the
processes (arguing and proving), I sought to show how both are generally built up
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through 'transformational reasonings' (Simon, 1996) and heuristics. The analyses
were mainly based on "evidence" from the history of mathematics, mathematicians'
testimony or from what usually happens in school.

The aim of the research reported in this paper is to analyse in depth the
mathematical activity of conjecturing and proving by exploiting a corpus of texts
written by Italian undergraduate mathematics students; they wrote their reasonings
while trying to generalize a property concerning the system of natural numbers and
then prove the generalized property. In particular I will try to seek for the ways
students exploited and represented their mathematical knowledge.

2. Theoretical Background
In this paper I will analyse students' protocols concerning production of

conjectures and construction of proofs in an open-ended problem; in addition I will
study how students exploit their mathematical and meta-mathematical knowledge in
this activity. For these purposes the theoretical construct of Theorem, by. M. A.
Mariotti, seems to be appropriate. According to her (see Bartolini et al., 1997) a
"theorem" is a statement, its proof and the reference theory distinguishing
between axioms, definitions and theorems of the specific theory in play, on the one
hand, and general meta-knowledge about proving and theorems, on the other. In
the same perspective I will consider "Cognitive unity of theorems": this
theoretical construct of Garuti's (Garuti & al, 1998) concerns the links that exist
between the activity of conjecturing (especially as concerns the production of
arguments for the plausibility of the conjecture) and the activity of proving.

I will consider argumentative aspects of proving. We cannot accept any
discourse as an argumentation. Henceforth in this paper, the word argumentation
will indicate two things: the process that produces a logically connected (but not
necessarily deductive) discourse about a given subject (from the Webster
Dictionary: " 1. The act of forming reasons, making inductions, drawing
conclusions, and applying them to the case under discussion"); and the text
produced through that process (Webster: "3. Writing or speaking that argues"). On
each occasion, the linguistic context will allow the reader to select the appropriate
meaning. The word "argument" will be used as "A reason or reasons offered for or
against a proposition, opinion or measure" (Webster), and may include verbal
arguments, numerical data, drawings, etc. So, an "argumentation" consists of one or
more logically connected "arguments".

Argumentation is frequently opposed to formal proof, i.e. a proof reduced
to a logical calculation. According to Duval (1991), in argumentatative reasoning,
"semantic content of propositions is crucial", while in deductive reasoning
"propositions do not intervene directly by their content, but by their operational
status" (defined as "their role in the functioning of inference").

But what are the relationships between formal proof and what has been in the
past and is today recognized as mathematical proof by people working in the
mathematical field (for this reason, I will refer to it as "ordinary mathematical
proof")? My research work has been strongly influenced by the position of
Thurston (1994):
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"We should recognize that the humanly understandable and humanly checkable proofs that we
actually do are what is most important to us, and that they are quite different from formal
proof For the present, formal proofs are out of reach and mostly irrelevant: we have good
human processes for checking mathematical validity."

In the analysis of students' protocols I will distinguish between the process
of proof construction (i.e. "proving") and its product (as a socially acceptable
mathematical text): for a discussion, see Douek (1998, Section 4). Ordinary
mathematical proof can be considered as a particular case of argumentation.

Argumentation and proof use references, and I will analyse how students do
it. The expression reference knowledge will include not only reference
statements but also visual evidence, etc. assumed to be unquestionable (i. e.

"reference arguments", or, briefly, "references", in general). In Douek (1998,
Section 4.1.) I have discussed the necessary existence (in ordinary argumentation as
well as in ordinary mathematical proof) of references which are not made explicit.

3. Method
3.1. The educational context

I study written production of conjectures and their proofs in a task related to
elementary number theory. The output in question was produced by 43 university
students over four consecutive years (from 1995 to 1998) while completing their
undergraduate studies in mathematics at the Genoa University. At this level, the
students are capable of mastering the mathematical knowledge and the rules of
algebraic calculation they must deal with. They are following a mathematics
education course and work under a contract (explicitly established with their
teacher) that requires them to write down every idea that come to them during their
work, even if they change their mind about its validity or its usefulness. This
contract is intented to obtain productions regularly for use by the whole group for
didactical and cognitive analyses of problem solving activities.

3.2. The task
The students were to generalise a proposition ("The sum of two consecutive

odd numers is divisible by four"), then prove the generalised proposition. The fact
that they had to build up their own conjectures makes their work very different
from ordinary school proving, where students have to gather arguments to support
a proposition they might never have thought of before. In our case we may suppose
that the act of forming a conjecture fixes the conjecture very firmly in their minds,
and the proof can be strongly influenced by the steps that led to the insight of the
conjecture (see Garuti et al., 1998: "cognitive unity of theorems").

3.3. Modes and criteria of analysis of students' performances
I considered 14 texts (by the 1997/98 students) in particular detail, and then

checked analogies and possible differences with the whole set of 43 texts. Reference
will only be made to the 14 texts analysed in detail, but the aspects described are
recurrent in the other texts as well. Some excerpts from two texts (by Students [1]
and [2]), chosen as representatives of opposite behaviours, are reported(see Annex).

Bearing in mind the aim of this study and the theoretical framework, each
text has been analysed according to the following modes and criteria:
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A) overall account of student's conjecturing and proving (global effectiveness
of their performance, etc.);

B) implicit and explicit reference knowledge backing students'
argumentation. I distinguished (see Bartolini et al, 1997: "theorems") between:

content reference knowledge;
meta-knowledge about the operations that the task called for (generalising, etc).

I also analysed the external representation of explicit reference knowledge.
Concerning this issue, our attention focused particularly on personal (verbal,
schematic, etc) expressions that would be unusual in a normally acceptable written
mathematical production.This kind of analysis was needed in order to explore in
depth how these undergraduate mathematics students used their knowledge;

C) occurrence of algebraic-syntactic or semantically based steps of reasoning
and the relationships between them. This analysis was needed in order to understand
better how the two kinds of reasoning are functionally interlinked and connected to
the solution of the problem.

D) relationships between the proving process and the proof as a product (and
the consequences of matching the former to the latter).

4. Students' behaviour
4.1. Overall account of students' work

Within the 14 texts, only four (Students [1], [2], [11], [13]) tried to prove
something distinctly: two (Students [1] and [11]) prove their conjectures; and
Student [13] a partial result of a confused conjecture. Student [2] (see Doc. 2) tries
to prove a result that is stronger than the conjecture expressed in words; his proof
lacks a fundamental step (justification of the formula used, which derived by
generalisation from numerical examples). Let us call these four students the "proof
group". But as we can hardly distinguish the processes of construction of
conjectures from construction of proofs in the work of the students, we may as well
study more texts from the perspective of proof construction. Another important
argument to support this shift in the study from proof to conjecture construction is
that five students do not achieve their proofs (even though they were on the right
track) probably because of a lack of active mathematical practice combined with the
unusual situation of having to build their own conjectures. So we can consider the
constructive work of nine students (we may call "conjecture group", which includes
the "proof group") and take, as comparative examples, elements of the work of the
other five ("failure group").

4.2. Reference knowledge and its representation
The task called for elementary content reference knowledge: elementary

arithmetics, algebraic language and its rules of calculation. Some students tried to
use other reference knowledge such as functions and series. Concerning algebra, we
may remark that the process of formalisation (i.e. the passage from content to
formula) was not easy for many students, especially when they wanted to write the
sum of K odds: for instance, some of them wrote (2n+1) + (2n+3) + ...+ (2n+ ?)
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and then stopped; few were able to express ? as 2K-1: see (E) in Doc.l. Writing
the result of the sum was not easy either: it demanded a semantically rooted
conversion of a known formula (the formula for the sum of the first n natural
numbers - cf. Szeredi & Torok, 1998), or the re-construction of an ad-hoc
formula: see (F) in Doc. 1

As concerns the external representation of content reference knowledge, I
have found many organisations of data and schemas with visual effects that reveal
regularities and help to express algebraically some arithmetic relations; we also
found symmetries in the disposition of data and formulas, which provide hints for
the calculus (see figures in Doc. [1] for two examples).

We may remark that these behaviours are related to knowledge which is not
always recognised as an important tool for solving problems, though it is itself
constructed knowledge (cf. Briand,1993, for similar remarks concerning counting
strategies). We may also remark that in other fields of mathematics (such as
numerical analysis or category theory) schemas and organisational schemes are
crucial tools.

Meta-mathematical knowledge was made explicit especially when it was
almost algorithmic (see Student 2) or referred to the task ("What does it mean 'to
generalize"), but appeared only implicitly when it was complex (actually richer)
and nearer to the mathematicians' behaviour (see Thurston, 1994). Summing up the
analyses performed, I may say that, concerning meta mathematical, knowledge,
shared explicitable knowledge was much narrower than the actual knowledge used
globally by the group. I found that eight students referred explicitly to methods for
solving problems of this kind, but, to take an example, "organisation of data" was
never mentioned even in partial explicitations of methods though it was a key
strategy for four students and useful for three of them. Only one of the fourteen
students (Student [12]) seemed to have no idea of possible strategies for solving
problems of this kind: she seemed lost, mixed up different steps undertaken and
produced several unfinished propositions. For Students [1] and [13] ("proof group")
I detected very rich implicit meta-mathematical knowledge about how to solve the
problem.

The implicit problem-solving methods I could detect globally were: change
of representation; interpreting calculations in words and vice versa; visually
organising data and calculations, up to a geometrical regularity. I could also detect
changes of mathematical frames: arithmetic, algebra, series, etc: this is common in
the process of proving for mathematicians.

4.3. Algebraic-syntactic or semantically based steps of reasoning
I have listed numerous breaks during calculations, which were needed to re-

interpret the mathematical content of calculus in words. This can be seen as a sign
of the primacy of semantical content over algebraic calculation during the process
of conjecture and proof construction. As an example, we can consider the need of
Student [1] to express algebraic propositions in words when seeking to recognise
possible conjectures. This attitude displays the search for a semantically consistent
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grasp of the algebraic signs. We can interpret it by saying that constructive work in
mathematics cannot evolve only within formal expression.

On the other hand, if we observe the students who did not express the results
of their calculation in words richly ( five of the fourteen students), three (Students
[3], [4], [12]) are in the "failure group" of five students and two ([2] and [13]) in the
"conjecture group" of nine students. So the majority of the "conjecture group"
(seven out of nine) needed semantic interpretations to pursue their work. I recall
that Student [2] did not recognise the strong result obtained, and that [13] was
confused in expressing his conjecture - it was not clear to this student what was
proved by the calculation.

4.4. Proof as product and proof as process
Let us compare two examples that are representative of some others in the

whole group of 43: in the first, proof as a product is close to proof as a process,
while in the other the distance is very great.

Student [2] is considered skillful (good notes, etc), but sticks very closely to
her explicit method and her presentation is very close to that of a formal
presentation. This approximation to a formally correct mathematical text (cf Hanna,
1989) bears negative consequences on the productivity of the student's work: her
research is linear and no change of strategy is found at any level. There are long
repetitive arithmetic calculations, quite astonishing for the only student in the group
who usually managed algebraic tools very well; more remarkably, the student
arrives algebraically at a strong conjecture and interprets it in words as much
weaker. And finally she does not produce a complete proof.

Analysing the text of Student 1, we can observe frequent changes of strategy,
organisation of data and calculations, as well as a frequent effort to interpret in
words. This variety, this need for change might help technically, but these were
also "interpretation" efforts. They helped understanding and often stimulated the
developement of new ideas. This could be called a "transformational reasoning
attitude" (see Simon, 1996; Harel and Sowder, 1998). Some of these very useful
forms disappeared in the final draft of the proof (P), where the logical link
between the propositions became a priority. In addition, justification of the research
method disappeared from the product (while examples of the interwoven presence
of meta-mathematical arguments in mathematical reasoning were frequent in the
construction stage). Her conjecture is strong and her proof is almost complete.

5. Conclusions
We have seen that important reference knowledge remained implicit in the

students' proving processes and that some of the different references concerned the
content, while others related to the meta-knowledge about the activity to be
performed. We have also seen how non-standardised, appropriate representation of
explicit reference knowledge had an important role in the students' performances.
We have seen that when elaborating a productive process many students found
syntactic arguments insufficient, and so semantically-rooted arguments became
critical. Finally, we have collected some experimental evidence about the negative
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consequences of subordinating the proving process to the formal requirements of
proof as a final product.

As concerns the educational implications of the analysis performed in this
paper, it can be argued that formal proof (which is sometimes imposed or proposed
to students of any school level as a rule of construction of mathematical proof: see
Hanna, 1989) is very distant from the effective activity of conjecturing and
proving. This is true even for undergraduate mathematics students facing a new,
challenging situation. Furthermore, the effectiveness of their activities seems to
depend on intellectual qualities that are fully developed even during ordinary,
demanding argumentative activities other than proving.
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ANNEXE.
DOC.1: Excerpts from the text of Student [1]; it contains seven large, spatially organized

pieces, like the two reported below, and many arrows, connecting lines and encirclings.
"I have some difficulties in understanding in what direction I must generalize. It might

be: 'by adding two odd or even consecutive numbers I get a number divisible by 4' [she performs
some numerical trials]. This does not work. I shall try to generalize in another way:
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[other trials, with a rich spatial organisation: two consecutive even numbers, two consecutive odd
numbers - here she gets divisibility by 4; then three, four, five, six, seven consecutive odd numbers.
By performing calculations, she gets the following formulas: 3(2K+3); 8(K+2) 10K+25=5(2K+5);
12K+36=12(K+3); 14K+49=7(2K+7)]. Is the result of the addition of n consecutive odd
numbers (n odd) divisible by n? (2K+1)+(2K+3)+..(2K+ What must I put here?
(E)
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[she performs an unsuccessful trial by induction; then she considers n numbers in general]
n numbers: (2K+1)+(2K+3)+...(2K+(2n-1))=2nK+1+3+5+...+(2n-1)=2nK+ (I am thinking of
the anecdote of "young Gauss":
(F) it makes 2n.n/2=n2) = 2nK+n2= n(2K+n) OK!!
[Trials performed by applying the preceding formula 2nK+n2 in the cases n=2, n=4, n=6, n=8: she
gets: 4K+4 divisible by 4; 8K+16 divisible by 8; 12K+36=12(K+3); 16K+64=16(K+4) divisible
by 16]. Then if I add n consecutive odd numbers (n even), I get divisibility by 2n. Let us try a
proof: (P) (2K+ 1)+(2K+3 ) +...(2K+2n- 1)=2nK+( 1+3 +....2n- 1)=2nK+(2n.n)/2=2nK+n2
1..4= 2n(K +n/2); n even implies that n/2 is an integer number: so I get divisibility by 2,z. 1...]

DOC.2: Excerpts from the text of Student [2]; spatial organization is almost linear. like that
in the following trascript.

Student [2] starts her work by checking (on numerical examples: 3+5; 5+7; 101+103) the
validity of the given property, then proves it. Then she writes: "When I must tackle a problem, 1 try
to see how it works in particular cases and then I generalize, as I have done in this case -
although I knew the solution. I reason in this way because the particular case allows me to
understand better how I can reach the solution of the problem in general (and this method works
even when I do not know the solution). Thinking in arithmetic terms and then in algebraic terms
helps me to solve the problem. For the original property the generalization conies fairly
automatically, because [she explains why in detail].
What does it mean 'to generalize' ? It means considering a property in which there are some
closed variables (two odd numbers, or divisibility by 4) and getting a property in which
variables are open. I change the number of odd consecutive numbers to add. For instance, I
consider 3 [crossed out] 4 consecutive odd numbers 2n+1, 2n+3, 2n+5, 2n+7 and make the
addition: 2n+1+2n+3+2n+5+2n+7=8n+16=8(n+2)=4(2n+4). Then I find a number that is
divisible by 8, so it is divisible by 4. I perform the addition of 6 consecutive odd numbers
[similar calculations]=24n+37=6(2n+6).
Then I find a number which is divisible by 12, so it is divisible by 6. I try with 8: [similar
calculations]=8.2n+64=8(2n+8) Then I find a number that is divisible by 8, so it is divisible by
4. Following my reasoning, for an even number K of odd consecutive numbers I get:
2n+1+2n+3+....+2n+15+....=K(2n+K)=2K(n+K/2); but K is an even number, so it is divisible
by 2 and (n+K/2) is an integer number. Then 2K is divisible by 4 (because K is odd). So I have
found that the given property is still valid if I add up an even number of odd consecutive
numbers.
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Students Views of Learning Mathematics in Collaborative Small Groups

Julie-Ann Edwards and Keith Jones

The University of Southampton, United Kingdom

Approaches to mathematics teaching which offer an alternative to stating facts
and demonstrating procedures have been criticised for undermining the base for
teachers' sense of their own effectiveness. Data from an ethnographic study of
the classroom practice of an experienced teacher of mathematics who has
developed an inclusive (or emancipatory) pedagogic approach indicate that
while establishing collaborative groups in the classroom may take some time,
students across the attainment range come to appreciate the effectiveness and
efficiency of working in such a way. This is in some contrast to research findings
about using cooperative groups, a quite different method of teaching. Such
findings may support other teachers of mathematics developing an alternative
pedagogic approach.

Introduction
The ways in which the actions of the teacher impact on the learning of the students in
their class is reasonably well-documented, at least in general terms (see Brophy 1986
or Sylva 1994 for reviews). The development in mathematics education of a model of
inclusive pedagogy (Murphy and Gipps 1996, Solar 1995) entails the teacher
employing such actions as open-ended, problem-based learning within collaborative
small groups. This pedagogical approach is designed with the intention of securing the
success of all pupils in mathematics.

Such an approach is quite different from what Smith (1996) calls teaching by "telling",
where the teacher's main role is stating facts and demonstrating procedures. Smith
argues that teaching by "telling" provides a clear-cut basis on which teachers can build
a sense of efficacy, the belief that they can affect student learning. Basing teaching on
"telling", Smith suggests, builds a sense of efficacy for teachers by defining a
manageable mathematics content and providing clear prescriptions for how to teach
that content. In Smith's terms this means that adopting an inclusive pedagogy
"undermines the base for teachers' sense of efficacy that teaching by telling provides"
by de-emphasising "telling". This suggests that research is needed on how teachers
who have adopted an inclusive pedagogic approach build new foundations for their
sense of efficacy in teaching mathematics.

The research results presented in this paper may contribute towards what Smith has
called a central question for empirical studies of mathematics teaching: how teachers
who have moved away from teaching by telling are able to "reconceptualise their
causal agency in teaching mathematics". The conclusions also point to what might be a
fundamental difference between collaborative and cooperative group work in
mathematics. The data come from a collaboratively designed and carried out
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ethnographic study of the classroom practice of an experienced teacher of secondary
mathematics (see Edwards and Jones, under consideration). The aim of this component
of the study was to document the views and opinions of students who had experienced
collaborative small group work as a means of learning mathematics through being
taught by a teacher who had an inclusive pedagogical approach. In this paper we show
how well the full range of students understood the effectiveness and efficiency of
collaborative small group work as a means of learning mathematics. Yet, it seems,
such understanding took some time to develop. These findings may prove useful for
other teachers of mathematics seeking to adopt an inclusive pedagogy by suggesting a
basis upon which they can judge their efficacy.

Theoretical Framework and Related Research
In attempting to understand the complexities of learning in schools, knowledge of the
student perspective has come to be seen as crucially important. As a result, children's
understanding of classroom processes and their own role in learning have become an
area of increasing study (for examples, see Brown 1995, Christou and Philippou 1998).

An inclusive (or socially-just or emancipatory) pedagogy is being developed from
work in feminist and other emancipatory endeavours. With such an approach, the
teacher is intent on recognising and valuing a plurality of forms of knowledge and
ways of knowing (Becker 1995, Povey 1996, Solar 1995). In the mathematics
classroom, this might entail using open-ended, problem-based learning based on social
and environmental curriculum contexts using collaborative team approaches within a
diversity of teaching and assessment methods.

Some of the theoretical basis for this pedagogic approach comes from the socio-
cultural, Vygotskian field. For example, collaborative group work, in which students
work jointly on the same problem at all times, is linked with ideas such as situated
cognition, scaffolding, and the zone of proximal development. As Damon and Phelps
(1989) make clear, this is fundamentally different from cooperative learning which
refers to distinct principles and practices such as specific role assignments in a group,
and goal-related accountability of both individuals and the group.

A good deal is known about cooperative small group learning (for reviews, see Good,
Mulryan and McCaslin 1992, or Cohen 1994). Much less is known about collaborative
small group work (Lyle 1996). As a result, little has been reported about a range of
issues such as how the composition and dynamics of groups affects their ability to
function effectively (for a recent report, see Barnes 1998), or whether-the students
themselves find it an effective way of working. What is known is that the composition
of collaborative groups needs careful consideration, and that there is a vital role for the
teacher in establishing collaborative group practice, planning such work, and choosing
and structuring appropriate tasks.

The study reported in this paper was designed to elicit the views on collaborative
group work from secondary school students who had been taught for varying lengths of

711 2 - 282



time (from two to four years) by a teacher who had developed an inclusive pedagogical
practice. A study of students' perception of cooperative small group work in
mathematics by Mulryan (1994), which involved interviewing students in secondary
mathematics classrooms, was designed to gauge the consistency of their understanding
of the processes of cooperative work with that of their teacher. Mulryan found that
with cooperative group work the perceptions of high achieving students were more in
line with those of their teacher than those of low achieving students. Such a finding
might suggest that cooperative group work could increase the separation between high
and low achieving students, a possibility implied in other studies of cooperative
learning (Good, Mulryan and McCaslin 1992 p172-173 and 176-177). One aim c),.. the
study we report in this paper was to examine the perspectives of both high and low
achieving students who had experienced collaborative group work in secondary
mathematics for a considerable period of time to see whether there was a difference in
their perceptions of working in such a way.

Methodology
An ethnographic case study using semi - structured interviews was most suitable for this
research for two reasons. First, it allowed the students to say what they wished about
their experiences of collaborative group work within the framework of the interview
schedule (Hammersley and Atkinson 1995 p25). Secondly, semi-structured interviews
are known to be suitable for gathering information and opinions and exploring people's
thinking and motivations (Dreyer 1995). Strict procedures were adopted for the
interviews in order to minimise any potential bias introduced by the interviewer.

The sample
A random sample of seven students were chosen for the study, selected from the
classes of a teacher who taught in a UK inner-city comprehensive secondary school
whose mathematics results in national testing were approximately in line with the
national average. The classes from which the students were chosen were a Year 11
low attaining class (students aged 15-16) who had experienced small group
collaborative work in mathematics for the previous four years, a Year 10 high attaining
class (students aged 14-15) who had experienced small group collaborative work for
the previous three years, and a Year 8 middle attaining class (students aged 12-13)
who had experienced two years of small group collaborative work. The seven students
were selected in the following way: two from the low attaining Year 11 group, three
from the high attaining Year 10 group, and two from the middle attaining class Year 8
class (attainment was defined by the school in terms of performance on standardised
non-verbal reasoning tests). All the students had been taught by the same mathematics
teacher throughout their experience of collaborative group work in mathematics.

The interview
An interview schedule based on the headings used by Mulryan (ibid) was utilised as a
set of general prompts. Questions were based around the following pupil perceptions:

perceptions of the purpose and benefits of collaborative small group work in
mathematics

2 - 283

712



perceptions of teacher expectations for appropriate student behaviour during
small group work
perceptions of the characteristics of small groups that are important for
successful groups
perceptions of the extent to which individual and group accountability exist in
small groups
perceptions in relation to the stability of membership of small groups

The opportunity was also offered to the students for more open comment on their
experiences of collaborative small group work.

Analysis of data
Following transcription of the audio tapes, each response was systematically coded for
a particular category or categories. These categories were developed in an on-going
way as new student respondents contributed different categories until there was a
stable set of categories. This process of grounded theorising was necessary as the
sample size was too small to use the particular categories devised by Mulryan, who,
even with a sample of 48 students, had no more than 5 responses in any one category.
As part of this analytical process, some categories were grouped to reflect similar
themes.

The following grouped categories were amongst those identified from the interview
transcripts:

Benefits of working together/ collaborating/ working as a team/ working as a group.
This theme was evident in all seven respondents' descriptions of their
experiences of collaborative group work. For example, R (low attaining Year
11) said "I think its really good, because we're able to work ... as a team ... you
just understand more about maths than you do just by writing down on pen and
paper". S (high attaining Year 10) said "you might only look at a problem one
way, but ...if you give lots of different people a problem, and they look at it in ..
different ways". V (middle attaining Year 8) said "it's lot easier to work in a
group because you can help each other and you can find out the answers and
make sure yours are right".

Putting ideas together/ contributing/ using different skills (described as a process).
As for the theme above, this was widespread throughout the transcripts. R
(middle attaining Year 8) said "you put all your ideas together, and by putting
everyone's ideas together, you come up with good ideas and just get good
knowledge". R (low attaining Year 11) describes a similar experience, "and
even if one person did say ... this is the right answer, we wouldn't just write it
down, you'd, you know, make it more deeper and everybody'd put more to
extend the answer". J (high attaining Year 10) related that "K came up with an
idea once, and then we .. started working on that, and then other people ... put in
other ideas on top of it, so we were always building up".

Listening to/ respecting others in the group/ sharing knowledge.
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This theme is distinct from merely recognising the skills offered by others. It is
described by R (middle attaining Year 8 class) in the following way: "We can all
listen to people's ideas, which I think is good and ... we all bring up our own
ideas," and in the high attaining Year 10 class by S: "people come up with
different ideas ... and you get to explore other people's ideas which helps". Z
(low attaining Year 11) said "someone would say [something].. and then we all
would .. put our different words in and talk about it".

Confidence building/ feeling successful/ being motivated
Some pupils, including the higher attaining students, described collaborative
group work as a vehicle for increasing their mathematical confidence. For
example, L (high attaining Year 10) said "I think in my case, ... if I know
someone else thinks the same thing, I'm more confident about what I think".
There were several instances of pupils describing the experience of group work
as making them feel more successful. J (also high attaining Year 10) explained
"I just think its better than working by yourself, really. I think you learn a lot
more". Pupils also seemed to find the group dynamics a more motivating
learning environment. Z (low attaining Year 11) affirmed "we just didn't want to
leave it ... we used to stay behind lessons ... we wanted to get the work done ... I

prefer doing maths ... with group work ".
Friendship/ knowledge of collaborators/ stability of groups.

Questions about group structure revealed that all the pupils believed that their
performance in a group was positively affected by working with others who
were well known to them. Friendship seemed to provide successful working
relationships in the view of all those interviewed. V (middle attaining Year 8)
explained "If you're not friends with somebody, ... you might not get along with
them, and they might start getting into a bit of an argument about the answers".
R (low attaining Year 11) said "no others could be as good as working with
some friends". S (high attaining Year 10) said "well, obviously, you've all got to
get on quite well, you've got to know ... I think it's easiest if you know each
other first".

Speed/ volume of learning.
Students across the age and achievement range thought that collaborative
learning in small groups allowed learning to happen more quickly and that they
could learn more. J (high attaining Year 10) summed this up: "I think you learn a
lot more, ... I think if people ... work together you can get a lot more done and
you ... understand a lot more I think its probably quicker, because if you're
working by yourself, it's you that does all the work,". R (middle attaining Year
8) said "it's easier if you do group work because you can get through it quicker
and .. get to know a lot more". R (low attaining Year 11) offered a more
reflective comment "I don't think it's quick or slow, it's in the middle, but
because it's like that, you get a deeper meaning, you know what you're doing,
you don't just skim it over the top".
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Other categories of student response included: helping one another, thinking hard,
enjoyment, autonomy and independence, and awareness of the possibilities of
distraction. All the students were also aware of the expectations of the teacher in terms
of what was appropriate for successful collaborative group work in mathematics.

Discussion
This analysis of the interview transcripts for the categories described above allows
some comment to be made, both on emerging global patterns in the student responses
and on local patterns within groups. Examples of such local patterns relate to the age
of the students and the length of their experience of collaborative small group work.

Overall, the full range of students in this study seemed to recognise the benefits of
collaboration. They realised the necessity of listening to one another, felt collaborative
working made them confident and successful, and judged that they learnt more
mathematics more rapidly by working in that way. There also appears to be clear
indications that working with friends, that is working with those with whom you get on
well, is important. It may be that this helps with the sharing and respecting of each
others ideas and that, in the end, this helps with learning. These benefits of working
with friends are noted by Zajac and Hartup (1997) in their review. Whicker and
Nunnery (1997), in their study of cooperative groups in secondary school mathematics,
found that their students "disliked having groups pre-assigned and permanent, and
suggested alternating group membership".

Yet the responses of all the groups were not identical. In particular, the responses of
the younger students from the Year 8 class, who had only experienced collaborative
small group work in mathematics for two years, were different in several respects.
These students found it more difficult to articulate their perceptions of collaborative
group work. Overall, their responses during the semi-structured interviews were much
shorter, less reflective, and demonstrated less understanding of the pedagogic process,
than the older students. In addition, the younger students seemed more orientated
towards outcome, rather than process or understanding. For example, student V,
middle attaining Year 8, said that working in a group means "you can find out the
answers and make sure yours are right", and, later in the interview, that it was more
enjoyable to work in a group because "you can get more accurate answers from it".

Such responses from the younger students, and the contrasting answers from the older
students, may indicate that, in addition to maturation, it takes quite some time for the
teacher to establish fully collaborative groups. The research on cooperative groups has
already established that simply placing the students in groups does not mean that group
work will take place. Indeed a frequent complaint about common practice in UK
primary schools is that the pupils are arranged in groups in the classroom yet they do
essentially individual work. Training in cooperative working was found necessary for
successful cooperative group work, and research on collaborative learning suggests
that for collaborative group work some form of teaching of relevant skills is required
(Gillies and Ashman 1996). A range of other factors is likely to influence the
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successful development of collaborative group work, including, in secondary schools,
the experience of the students in other curriculum subjects.

Finally, unlike Mulryan (1994), we found no difference between the perceptions of
high attaining students and those of low attaining students. All the students in our
sample left that collaborative group work had a positive effect on their rate of learning
and depth of understanding. The reason for this difference, however, may not lie solely
with the grouping structure. In our study it is likely that the philosophical and
epistemological stance of the teacher, in developing a strongly inclusive pedagogy, is
the influencing factor.

Concluding comments
Smith (1996), in calling for research on how teachers, who have moved away from a
pedagogic approach based on "telling", build new foundations for efficacy in teaching
mathematics, suggests that studies should focus on "how teachers themselves see and
understand the effects of their practice on students" (emphasis in original). In the case
of the teacher in our study, one of the ways the teacher judges her efficacy is in terms
of the success of the collaborative group work for all her pupils. Hence our focus in
this paper on the student perspectives of working in collaborative small groups.

It is not the intention of this study to produce a typology of categories of student
responses, nor to test a theoretical model. Our aim has been to describe the
perspectives of secondary school students who have had considerable experience of
collaborative small group work in mathematics. It is, in both the sense of the case size
itself and in the sense of the time scale used, a "microethnography" (Hammersley and
Atkinson, ibid, p 46). The lack of comparative cases "necessary for developing and
testing an emerging set of analytic ideas" (Hammersley and Atkinson, ibid p205) is one
difficulty of using a naturalistic situation to study. Furthermore, the data comes from
one UK school and hence its generalisability is greatly limited.

Nevertheless, we hope we have provided a useful contribution to research both on
collaborative group work in mathematics and on inclusive and emancipatory
mathematics pedagogy. Such a pedagogic approach, given its coherent philosophical
and epistemological basis, provides the teacher in this study with a strong anchor with
which to judge her efficacy.
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PLAYING OR TEACHING?

THE INFLUENCE OF DYAD FRAMEWORK ON CHILDREN'S NUMBER
EXPERIENCES IN MATHEMATICS GAME PLAYING AT HOME

Fiona R. Ell and Kathryn C. Irwin

University of Auckland

Families' use of a Maths Games Library was investigated using a socio-cultural
framework. The Maths Games Library was a home-school communication project,
initiated by parents and teachers in a primary school of 421 pupils. Analysing the
interaction between parents and five-year-olds on audio tapes revealed two frameworks
for game playing activity: a game-focused framework and a mathematics-focused
framework. The characteristics of these frameworks resulted in differential experiences
with number for the children playing the games. Teacher-pupil dialogue suggested an
evaluative framework. The study highlights the significance of activity as the agent of
development, indicating that the nature of interaction between players in a game can
make a difference to children's learning in mathematics.

Introduction

A Maths Games Library is used as the focus of this study. It is a collection of games and
activities which children take home weekly to share with their parents. This Maths Games
Library was established in 1996 at North Primary, a predominantly white, middle-class
school in Auckland, New Zealand. A committee of parents and teachers worked together
to make the games, and a class set is used in every classroom from Year 1 to Year 3. This
study was conducted in 1998 and the use of the Maths Games Library had become an
established routine for parents and teachers. North Primary emphasised home-school
communication and was eager to meet parents' needs for information.
Parents of children in New Zealand primary schools receive a reading book to share with
their child each day. This provides an important link between home and school. The
Maths Games Library was intended to provide a similar link for communication about
children and their matkrnatics learning. What was unknown was what the parents and
children did with the games in their home.. As a joint activity between an adult and a
child, the game playing setting appears to have rich potential. This study aimed to look
beyond whether or not the games were used at home and consider what happened
between the parent and child as they used the games, using a socio-cultural framework.



Theoretical Framework and Literature Review

Lerman (1998) describes the use of a cultural, discursive psychology to view
mathematics education. He presents the 'zone of proximal development' as a research
tool "...for analysis of the learning interactions in the classroom (and elsewhere)"
(Lerman, 1998, p. 71). This study employs Lerman's proposed psychology in
considering the interaction of parents and children in the zone of proximal development.
Lerman (1998) hints at this in his addition of 'elsewhere' to places for analysis, but
describes mathematics education as beginning in classrooms. Literacy research
conducted within the socio-cultural framework outlined here suggests that the family is
a powerful site for the development of emergent understandings and for the support of
learning after entry to formal schooling. This study explores that notion, using a
school-based initiative to explore children's experiences at home.
A theoretical viewpoint which highlights the importance of social interaction in
development sees this game-playing setting as a potentially critical site for the formation
of concepts and the growth of cognition. It involves an expert and a novice working
together to construct meaning from materials. Language is used to establish
intersubjectivity and to construct new ideas. Parent and child work together,
co-constructing understanding through the progress of the game. The interaction of the
three key elements parent, child and game result in a unique pattern of activity. This
activity is situated within the home organisation and routine, and may constitute a family
practice.

The social interaction between the players may be internalised as personal understanding
through the game playing (Vygotsky, 1978; Wertsch & Stone, 1985). The role of
participating in activity as the agent of learning is defined by Rogoff (1995), who
suggests that settings such as the game playing described here can be seen as guided
participation. This guided participation leads to participatory appropriation by
individuals, who each form their own ideas about the activity based on their experience.
Learning can thus be seen in the activity, rather than within the child. Activity therefore
becomes the unit of analysis.
The game playing activity described in this study has several important features in terms
of this framework. The presence or absence of an adult expert will affect the way the
learning is mediated. There is potential to observe the transfer of responsibility from the
expert-adult to the novice-child, or to see the use of scaffolding to support the child's
learning. Establishing intersubjectivity through activity and language, as discussed by
Lerman (1998) should be evident. Situating the game-playing within the home may have
a key influence on how it proceeds; using the same materials at school might invoke a
different set of rules.
Abreu (1998) explores this in considering Brazilian children and their home and school
mathematics. While she focuses on the mathematics of 'real life' outside school, rather
than on game playing, within the culture under investigation in this study game playing
is a common form of interaction between parents and children (Wylie & Thompson,
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1998). Abreu (1998) notes the diversity of the children in their engagement with home
mathematics and their success in mathematics in school, despite apparent similarities in
the community. The study presented here begins to look for the origin of such differences
within activity; in culturally and situationally determined interaction patterns and
systems, which may critically influence children's mathematics learning.

Analyses of adults and children working together suggest that contingent responsiveness
may be a key element in exchange which results in development. Pratt, Green, Mac Vicar
and Bountrogianni (1992) view parents solving division problems with their children.
Although more directive than teachers, results show parents as responsive to the child's
level of ability and to the difficulty level of the material. Lehrer and Shumow (' 997)
investigate the alignment between home and school after teachers have completed
inservice to reform practice. While parents agreed with many of the new techniques, as
viewed on video, they did not use them with their children. They provided more direction
and instruction while solving word problems than the children's teachers did.
Responsiveness to everyday mathematics has been found to be important in developing
mathematical understandings. Young-Loveridge (1989) describes a literacy-oriented
family with a child who is making slow progress in mathematics. This family had focused
on literacy to the exclusion of numeracy, and did not utilise the opportunities presented
by the environment or the child. Observing interaction rather than using an interview
(Young-Loveridge, 1996) revealed that very little contingent responding about
mathematics occurred in the context of cooking. This highlights that it is not involvement
in cooking which builds mathematical understanding, but having mathematical ideas
posed and responded to in this context. This may hold true for the Maths Games Library

it may not be using the materials that promotes understanding, but the interaction that
takes place. Examining the nature of this interaction is therefore crucial.

Methodology

This study used activity as the unit of analysis, as proposed by the socio-cultural
framework (Wertsch, 1995). The activity of game playing was captured using small tape
recorders, which were unobtrusive and resulted in collection of the verbal interaction
between players. This interaction formed the basis of the analysis, being the evidence of
activity and the proposed mode of learning and development, as this social interaction
becomes internalised. V, studies of problem solving (Lehrer & Shumow, 1997; Pratt,
Green, Mac Vicar & Bountrogianni, 1992, stave used hierarchal analysis of support in
order to show scaffolding, a game does not necessarily have this structure. Thus
categories of utterance, with distinct purposes, were derived, rather than a measure of
directiveness.



Method

Participants

Thirteen families recorded their game playing. Five of the target children were boys and
eight were girls. The study child's place in the family varied from being an only child,
to being the sixth of six children. Only two of the children had no pre-school experience,
with seven children attending private pre-school in addition to public kindergarten. The
children were all aged five at the time of the study, and had been at school no longer than
two terms prior to the study.
Materials

Two games were selected from the Year One Maths Games, Library. 'More Dots' -was
selected as an easy game, and `Oops!' as a hard game. The games were brought home in
a brightly coloured bag, complete with equipment and instructions. Isomorphs of the
games were made for play with the teacher. These used dice instead of cards, but followed
the same rules.

Families were provided with a small tape recorder and audio tape on which to record their
game playing. They also completed a questionnaire after playing the game.
Procedure

The games were sent home as part of the usual routine for sending home games. Tape
recording equipment was added to the bags of the target games, and the researcher
specified which families should receive the games each week. The teacher played the
games with two of the target children during a mathematics teaching session. This was
recorded in the same way as the families'.
Data Analysis

Both games proceeded by the players turning over a card. This was used as the unit of
interaction, and utterances after each card turn were coded and numbered. Contributions
were numbered and attributed to the parent or the child. Thus the interaction could be
reconstructed from the coding, in terms of the purpose and order of the utterances. The
length of interaction after a card turn could be determined, as could the format of the
interaction be it turn-taking or several utterances by one person.

Results

.Analyses of the families' tape recordings revealed two distinct patterns of interaction,
or frameworks. These are summarised in Table 1. A case study example illustrates
that the tone and content of the exchanges while the game progressed also reveal the
characteristics of these two frameworks. These examples are from the same tape,
where the child plays the game with her mother and her father. Her father is in a
game-focused framework, her mother in a mathematics-focused framework. In
game-focused play over half the time was spent playing in silence. In
mathematics-focused play turns are punctuated by comment and discussion.
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Game-focused play - Examples of interaction
Example 1.
P: What do you think this helps you with T.? Does it help you with counting?

C: Yup.
Example 2.
C: Dad, this is how you learn numbers isn't it?
P: (no response)
Example 3.
C: Two and two. Look Dad!
P: (no response)
Example 4.
C: Who wins that one?
P: It's two pairs.
These examples indicate the type of interaction occurring during game-focused play.
These examples represent the additional mathematics talk undertaken by the father
and daughter. The father attempts once to link the game as a whole to his daughter's
mathematics learning (example one). This is done in an abstract way, rather than as
part of the game play. T. later reflects this back to her father by asking if this is how
you learn numbers (example two). This is not picked up on by her father. T. attempts
to initiate dialogue in the two other examples. Both instances go no further than the
examples given here, despite openings for further dialogue, such as what two and two
might be, or what a 'pair' is. From the laughter and other talk present on the tape, it is
clear that both father and daughter are enjoying the game, and enjoying it within a
game-focused framework.
Mathematics-focused play - Examples of interaction
Example 1.
P: How come I win that?

C: 'Cause you got 3 and I got 1.
P: And how many more do you need to make 3 dots?
C: 3 more.
P: No.

C: 2 more.
P: Good girl. So if you had two more dot, many would you have?
C: 3
P: And how many would I have? Three as well. I've got three as well.
Example 2.
P: You've got to say how many there are
C: 4.
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P: Four dots.
Example 3.
P: How many dots does that make altogether?

C: Five.
P: So 4 plus 1 equals
C: Five.
P: OK. So four plus one equals five. Right? So if I take one away, how many does
that leave?
C: Four
P: If I take four away, how many does thit leave?
C: One.
These three examples from the mathematics-focused play of the mother and daughter are
typical of a pattern of exchanges which continue throughout their playing of 'More Dots'.
The mother poses questions for T. to answer, using the cards turned over. These questions
relate only superficially to the playing of the game, but use the cards to expand T.'s ideas
about addition and subtraction. The mother then alters the rules of the game, to make it
the lower card that wins on each turn. This leads to discussion about what 'the lower' is,
and who will now win. T. and her mother work towards clarifying the language and the
concept behind the idea of the 'lower number' over several turns. This drive towards
making the game more difficult and drawing the mathematics out of it is not seen in
game-focused play. The mathematics-focused play described here results in a different
experience for the child.
Table 1: Characteristics of the game-focused and mathematics-focused frameworks.

Game-focused
There are may one-contribution turns

and fewer long turns
Few questions are asked.

The inherent mathematics content is
covered.

Silent turns are common.
There is a low percentage of turns with

contingent contributions.
Players take their own turns, doing their

own 'work' on their turn.

Mathematics-focused
There are a greater proportion of long
turns and fewer one-contribution turns.

Many questions are asked.
Additional mathematics content is

covered.

Few, if any, silent turns.
There is a high percentage of turns with

contingent contributions.
Parents ask children to help them with

their turns.

This overall pattern reveals a trend in parent support that is not obvious in closer analysis.
The two target games were chosen to be of different difficulty levels, but in practice the
children found them both easy. There is thus little failure by the children, and therefore
no chartable pattern of adjustment in adult level of support. However, parents who rated
`Oops!' as less than very easy for their child on the questionnaire, all adopted a
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mathematics-focused framework for their interactions in this game. While some parents
adopted the mathematics-focused framework in games that their child found easy,
no-one adopted a game-focused framework with anything other than a very easy game.
Twelve playing sessions followed a mathematics-focused framework, and thirteen
followed a game-focused framework.
In the game-focused framework, players simply play the game. Issues which are directly
related to the game's progress are discussed. Many turns pass unremarked, or are
punctuated by laughter or sighing. There is less discussion, and each turn of the card is
more likely to yield a short exchange. Players who are working in a mathematics-focused
framework use opportunities to introduce and discuss aspects of mathematics which are
not essential to the game's progress. More questions are used, and the playing of the game
is commented on frequently. A 'running commentary' develops between the players.
Longer exchanges occur more frequently, and play partner's comments are more often
followed by a contingent response.
The teacher data is limited, as she was only able to play with two of the target children,
but her interaction pattern suggests a third framework - an evaluative framework. It
follows the performance of the child closely and includes elements which allow the
teacher to view independent performance. The teacher in these interactions does not
attempt to teach anything. She follows the lead of the child's responses to explore their
knowledge, but does not add to this. Her stance is evaluative, and responsive to the child.

These results suggest that children have different mathematical experiences with these
games, depending on the framework selected. Children who play the games in a
mathematics-focused framework are exposed to more mathematical concepts, explain
their ideas and are questioned more often. Language is used by both parents and child to
discuss ideas. Other analyses not presented here suggest that key influences on
framework selection are the difficulty level of the game and the child's attitude. Further
work with teachers and other groups of parents needs to be undertaken to consider issues
of 'fit' between home and school. While games are used here as the 'bridge' between
home and school, other issues of cultural, language and experience can be considered in
a similar way. What is taken to and from school may be less visible than a maths game
bag, but may have important consequences. The use of the socio-cultural framework to
view this game playing reveals that important differences in interaction do occur, and that
these may impact on children's learning.
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Profiles of Development in 12-Year-Olds' Participation in a Thought-
Revealing Problem Program

Lyn D. English
Queensland University of Technology

Abstract
Five classes of 7th-grade students participated in an 11-week program of thought-
revealing problem activities, comprising problem-posing and model-eliciting
experiences. This paper presents profiles of development of three students who
displayed different levels of achievement in number sense and novel problem solving.
Among the issues addressed are developments in the students' facility with problem
structures, including recognising related structures and posing new problems from
given structural elements, students' development of divergent and flexible ways of
thinking, and their processes in conceptualising and working a model-eliciting task.

Introduction
The ability to reason and converse mathematically in a range of problematic
situations is becoming increasingly important in students' development. As
highlighted in the recent Principles and Standards for School Mathematics (discussion
draft; NCTM, 1998), students need to develop a mathematical disposition to analyse
situations more carefully in mathematical terms, to formulate new problems, to
explore mathematical structure, to investigate situations, and to make and test
conjectures. Such development requires learning experiences which go beyond the
usual scenario of students applying learned strategies to produce a "short-answer,"
predetermined solution to a well-defined word problem. While such problem
experiences have an important place in the curriculum, they nevertheless are
inadequate for students' problem solving and decision-making in the forthcoming era
(Burrill, 1998; Greeno & Hall, 1997).

Thought-Revealing Activities
One approach to redressing this situation is to incorporate "thought-revealing" (Lesh
et al., in press) problem activities within the mathematics curriculum. Such activities
require students to externalise their thinking and reasoning processes by describing,
explaining, constructing, modifying, and refining their mathematical understandings
and viewpoints, while they are dealing with a problem situation. Thought-revealing
activities thus enable us to learn more about the nature of students' developing
mathematical knowledge and the thinking processes that produce this knowledge. At
the same time, these activities promote development because they support the
"productivity of ongoiii: learning or problem solving experiences" (Lesh et al., in
press).

The thought-revealing activities of the present program encompassed problem
posing and model generation. The importance of mathematical problem posing in the
curriculum has been well documented, yet research in the domain is limited (English,
1998; Silver, 1994; Silver & Cth, 1996). Likewise, model-eliciting activities have not
received the attention they warrant. These activities engage students in important
mathematical processes (such as quantifying, organising data etc.) and require them to
produce a model that describes certain relationships, patterns, and operations inherent
in a real-life situation. A variety of concrete, graphic, symbolic, or language-based
representation systems may be used to portray these relationships and patterns.



Model-eliciting activities provide rich learning experiences because they (i) require
students to develop explicit mathematical interpretations of meaningful situations, (ii)
develop important mathematical understandings (e.g., proportional ideas), (iii)
emphasise the kinds of problem understandings and abilities that are needed for
success in real-life situations, and (iv) cater for, and promote, a broader range of
mathematical competencies (Lesh et al., in press).

Theoretical Framework
The program was designed within a framework that has been developed and refined
over several years of research (e.g, English, submitted). This socio- cognitive
framework has three main components, as follows:
(i) Understanding and Reasoning (e.g., understanding and utilising problem
structures, and recognising related structures; understanding problem design;
thinking and reasoning in mathematically constructive ways, including reasoning by
analogy (English, in press) and thinking in flexible and divergent ways);
(ii) Mathematical Self-Awareness (e.g., students' perceptions of, and dispositions
towards, problems, problem solving, and problem posing; expressing mathematical
ideas, opinions, and beliefs; and applying metacognitive abilities such as planning
and monitoring one's actions); and
(iii) Participation in Philosophical and Inquiry-Oriented Communities (e.g., where
students engage readily in open questioning and mathematical inquiry, participate
freely in constructive dialogue and debate, provide constructive feedback on one
another's creations, and work collaboratively in group situations; Baroody, 1998;
English, Cudmore, & Tilley, 1998; Stein, Silver, & Smith, 1998). Establishing this
learning community was considered essential to the program. Such an environment
has the potential to motivate students to explore mathematical situations that are
intriguing, problematic, challenging, and inviting. Students have opportunities to
build on, shape, and modify one another's ideas, to offer and analyze reasons for
arguments put forward, and to help one another formulate questions and generate
mathematical problems and models (cf. Splitter & Sharp, 1995).

Methodology
A qualitative research paradigm was followed in this study, with videotaping as the
primary means of data collection. Small groups of students, individuals, and teacher-
led classroom discussions were taped. Iterative refinement cycles for videotape
analyses of conceptual change are being used in the data analyses (Lesh & Lehrer, in
press). In addition to the videotape transcripts, data sources include students' journals
documenting their responses (including their critical analyses of one another's work),
other student artefacts, classroom field notes, notes from informal interviews with
students and teachers, and feedback on the program from the students and teachers.
The components of the above theoretical framework provide the windows through
which the data are being analysed.
Participants and Selection of Case Studies
Five classes of seventh-grade students (12 years) from a non-state boys' school
participated in the study, which was conducted during 1998. Nine students were
selected for case studies. These students were selected on the basis of their
responses to assessments of number sense and novel problem solving, which were
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administered during the second term of the school year prior to program
implementation. The tests were modelled on examples that had been used
successfully in previous, related studies (e.g., English, 1997, 1998). The number
sense test focused on facility with number and routine computational problem
solving, while the novel problem-solving test included problems that required a
range of reasoning processes (e.g., deductive, combinatorial, spatial reasoning), as
well as general problem-solving processes.

The nine students chosen for case studies displayed one of three types of
achievement on these tests: (i) high in number sense, but low in novel problem
solving (i.e., at least one SD above/below the mean), (ii) low in number sense 1-ut
high in novel problem solving, and (iii) high in both number sense and novel
problem solving. Prior to commencing the program, each of the nine students was
individually interviewed on a comprehensive set of problem activities. A parallel set
was presented after the program. These sets addressed several of the components of
the framework (e.g., students' attitudes and perceptions, their problem preferences,
recognition of problem structure and related structures, problem posing).
Program Implementation
During the first half of the school year, meetings were conducted with the class
teachers to discuss the philosophy and content of the program, and to seek their
feedback. The program was then implemented in each class during the third and final
terms of the school year (1.5 hours per week). Individual work, small-group activities,
and whole-class discussions were incorporated in the program. The students maintained
journals of their responses.

The.program commenced with a strong focus on developing the students'
mathematical self-awareness, which was maintained throughout. The first two weeks of
the program were devoted to problem exploration and general discussions on
problems, problem solving, and problem posing. Problem sorting (according to
structural similarity) was also included. These beginning weeks were designed to
improve students' understanding of, and attitudes towards problems and problem
solving, to improve their confidence in dealing with mathematical problem situations,
to help them become more creative and flexible in their approaches to problems, and
to increase their confidence in, and willingness to talk openly about mathematics.

During weeks 3-6, the students explored the structures of a wide range of
problems, identified similar structures, discussed how structures differed, why some
structures were more difficult than others .nd so on. The students then posed new
problems based on familiar structures (use of analogical reasoning), and progressed to
posing problems from selected structural components (i.e., from open-ended
statements, such as, "Mrs Mack has a blue pot, a red pot, and a green pot for her new plants. Her new
plants are a rose bush, a gardenia, and a gerbera," and from other sources, such as travel
brochures and newspaper items.) An important part of the students' problem posing
was completing critical analyses of one another's problems. These analyses were
followed by problem improvement and extension.

The remaining weeks of the program engaged the students in model-eliciting
activities, where they worked on real-life situations (e.g., those reported in the print
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media) to construct models that would deal with these situations mathematically.
Three activities were included, with the first one, "The Good Old Daze," based on a
timely newspaper report comparing the cost of living today with that of a previous
era. Related tables of data on the costs of everyday items now, and 12 years ago, were
also supplied for the students. Based on their discussions and research, the students
were to write a short article for their school magazine where they debated whether or
not 12-year-olds have a better standard of living today than their counterparts of a
selected bygone era. In supporting their arguments, the students were encouraged to
make use of effective representations (e.g., tables, graphs, student-generated
mathematical procedures /rules). The main reasoning pattern required in working this
activity is proportional reasoning, of the form, a/b = c/d.

After deciding on a bygone era, the students had to determine which issues to
address in framing their argument. They then had to determine how to examine these
issues. In doing so, the students were faced with decisions such as, "Which items will
we consider?" "Why?" "What has happened to the cost of items? Have all items
increased in price?" "How will we organise our data?" "What kinds of patterns or
relationships appear to exist?"

Profiles of Development
Profiles of development of three case studies are addressed here. The students are (1)
Nathan, who displayed high achievement in number sense, but low achievement in
novel problem solving, (2) Tom, who was the reverse of this, and (3) Homer, who
achieved highly in both domains (all names are pseudonyms). Data are drawn from
the two sets of problem activities (presented to each student before and after the
program) and from one of the model-eliciting activities completed during the
program (samples of student artefacts to support the following will be included in the
paper presentation).
Nathan (High in Number Sense, Low in Novel Problem Solving)

Nathan's views on his mathematical competence reflected his levels of
achievement. For example, Nathan claimed that he enjoys mathematics and thinks "it
is fun doing all the sums and working all the answers out," but did not enjoy solving
mathematical problems very much, "because I usually get them wrong." Following
the program, Nathan stated that he enjoyed the program because "it is very
interesting to actually do maths differently." He also considered he was "definitely"
better at problem solving after participating in the program, "because I find them
easier to do; I have never been really strong at problem solving but it is starting to
get easier now." Likewise, Nathan felt he was better at problem posing because he
now knows "how to write a question."

Not surprisingly, Nathan preferred problems that involved computations and
was adept at doing quite complex problems mentally. Prior to the program, he
displayed competence in explaining the structural features of such problems, yet when
asked to sort a set of problems, Nathan focused on contextual features. That is, he
grouped problems that "asked the same question," irrespective of the operation
required for solution. He was, however, able to correctly match the two
combinatorial problems. On the post-program activities, Nathan still had trouble
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sorting the computational problems into groups of similar structure, and displayed
some difficulty in distinguishing addition from subtraction in comparison situations.
Nevertheless, Nathan could match the two deductive and the two combinatorial cases.

After participating in the program, Nathan displayed a distinct improvement in
his ability to turn open statements into problems, and to model a new problem on a
given problem. Initially, Nathan lacked diversity of thought in his problem creations,
was unable to pose a division problem, and could not create problems from a travel
brochure. After the program, however, Nathan showed diversity of thought in his
use of both mathematical structure and context.
Tom (Low in Number Sense, High in Novel Problem Solving)
It was interesting to note that Tom was very confident in his mathematical abilities,
despite the fact that his number sense was rather poor. Tom claimed he liked
mathematics because, "mostly, I am pretty good at it." In particular, he enjoyed
solving mathematical problems the most, but "not ones with fractions." In reflecting
on his participation in the program, Tom stated that he had not improved in problem
solving because "I already knew all the problems," but felt he had improved in
problem posing because he had not done any of this before.

Tom developed his ability to identify and work with problem structures during
the program. On the pre-program interview, Tom sorted most of the problems by
context (e.g., "They're about collecting."). After completing the program, however,
Tom could readily match the corresponding deductive and combinatorial problems,
and could clearly justify his actions. Interestingly, though, Tom placed all of the
remaining problems in the one group because they all involved operations: "Well, we
are given information and you have to work it out--like you have to minus $63 or
times it or something like that to get another number that you need, like how much
did class 7c raise." It was evident that Tom was sorting the problems according to
whether or not computational procedures were needed, as he could clearly explain the
structures of each problem and could show how they corresponded. Tom was no
doubt influenced here by a previous class discussion on ways of classifying problems.

Developments were also noted in Tom's ability to pose problems from open
statements. Prior to the program, Tom had some difficulty in posing such problems,
and displayed quite convergent thinking in doing so. On the other hand, although
Tom interpreted a multiplication situation in terms of repeated addition, he
nevertheless was able to create two different division problems from a given division
statement (e.g., A ruler was 56 cm long. If someone chopped it into quarters, how
long would each piece be?). While Tom was also unable to generate a problem from a
travel brochure, he could model a new problem on a given problem (albeit, retaining
the same context). After completing the program, however, Tom was readily able to
pose problems from open statements, and showed great diversity of thought in doing
so. Likewise, Tom could easily pose problems from a travel brochure, and created
diverse contexts when modelling new problems on given examples.

It is particularly interesting to note that the problems Tom posed were more
diverse and more structurally complex than those generated by other members of his
group (e.g., Tom was the only member to incorporate fractional ideas in some of his
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problems). In fact, one of the problems that Tom generated from the travel brochure
was chosen to be critically analysed by all class members. The nature of Tom's
responses reflect previous findings, in which children classified as low in number
sense and high in novel problem solving displayed divergent thinking and posed
problems that were structurally complex (English, 1998; English, submitted).
Homer (High in both Number Sense and Novel Problem Solving)
Homer was a keen student who adopted leadership and monitoring roles in group
activities. However, when his team members would not cooperate, he would
withdraw and work independently. Homer was an enthusiastic participant in class
discussions on problems and problem solving.

When questioned initially on whether he enjoys mathematics, Homer said that he
does not enjoy it all the time, especially "when we are going over something, over,
and over again; I don't like That." However, he did like working all types of
mathematical problems, but stated that he does not like problems involving fractions,
because "I am no good at vulgar fractions. I like decimal fractions though." Homer
also considered he was "not very good at spatial problems."

It was pleasing to see Homer express a good deal of satisfaction with the
program, stating that he liked the problems because "they are real life and were on
paper." He felt more confident in both solving and posing problems after
participating in the program, "because I have had a look at the different types of
problems. . . and we have all done lots of better problems."

Homer's responses to the problem sorting activity were interesting, as was the
case with Tom. Homer was easily able to sort the problems prior to the program, and
could justify his method. Following the program, however, Homer sorted the
problems into two groups, namely, the deductive examples and those involving
operations (including the combinatorial problems where he stated, "You could use a
tree to work these out, but it is a lot easier just to times it.") In justifying his
grouping method, Homer explained, "I put all these together because you can use a
number sentence to work them out." In other words, Homer sorted the problems into
routine and nonroutine problems, as did Tom. Nevertheless, Homer was able to
identify and explain corresponding structures, improving on his initial performance.

Homer also improved in his ability to pose problems from open-ended situations.
Although prior to the program, Homer was able to pose deductive and combinatorial
problems from the open statement, "Mrs Mack has a blue pot . . .," he had difficulty
in making other open-ended situations into problems. For the problems he could
create initially, Homer displayed little divergent thinking. After completing the
program, though, Homer was readily able to construct different types of problems
from a given open-ended statement, and could clearly explain the problem's structure
and its solution. Furthermore, Homer was far more divergent and flexible in his
thinking when creating several problems from other open-ended statements.
Model-Eliciting Problem Activity During the Program
Of the three case studies, Homer was the only student who expressed initial interest in
working such problems. Like many of his peers, Nathan found it difficult to accept
these as mathematical problems, and did not consider himself to be competent in
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working them ("because I'm not a very good imaginer"). Tom considered these
model-eliciting problems to "take too long, and you have to explain everything, and
you have to put it down on paper, which is very boring."

Consideration is now given to the beginning responses of the students to the
model-eliciting task, "The Good Old Daze." These responses reflect elements of the
modelling cycles described by Lesh et al. (in press). It is only possible here to address
the first two phases of problem conceptualisation, in which the students attempted to
(1) determine which bygone era to address and the issues to examine, and (2) draw
comparisons between selected items of data.

During the first phase, the teams in which Nathan, Homer, and Tom wor!-Fxl,
began the task with a good deal of unconnected and, frequently, off -task discussion.
The goal of the task was quickly ignored as the students became bogged down with
irrelevant detail and procedural considerations. It was also during this phase that the
students established roles for each member of the team, as can be seen in the
following excerpt from Nathan's and Homer's team (Homer's role is clearly evident.)
Lachlan: What year do we want to talk about?
Nick: Let's talk about last year because that's when I turned 12. I'm older than you.
Homer: Let's talk about a reasonable time.
Alex: Let's talk about when Lach was born!
Homer: When are we going to decide on a time?
Following further irrelevant discussion, Homer stated: Order in the court." "What
are we going to do? Are we going to do the 1950s or the 1960s?
Nick: You make the decision, Homer.
During this phase, the students also spent time trying to decide which issues they
should address in developing their arguments:
Greg: Let's look at university education, and health too.
Tom: OK, or life expectancy.
Greg: Do life expectancy.
Chris: Like expectancy for a male today is 75, or is it 70?
Greg: Tell me what to write down.
Chris: Life expectancy for a male is 70
Tom: So what are we doing? Oh, male expectancy. I could do a bar graph that goes
up, to show this (his intention was to compare it with life expectancy in the 1960s).
Tom: The male expectancy is one more year than a female life expectancy in 1960.

When Homer and Nathan's class teacher intervened in the team discussions, the
students identified issues such as crime, the cost of basic commodities, and wages as
worthy of examination. Using the data sheets provided, the students began identifying
various items for comparison, such as the cost of a loaf of bread in the 1985 with the
cost today. Discussion then led to the students commenting that, to compare the
prices, they needed to look at "the amount of pay." One student further commented
that "you have to look at the ratio." The students then resumed their team discussions,
which led them into the next phase of conceptualisation:
Alex: Oh, let's look at the Coke and the lollies! (off-task discussion followed)
Lachlan: Men's dress shoes in 1985 were $49.95 and in 1997, $140.
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Homer: Hey guys! Look at the miscellaneous items. Some of the things have gone
down! This one's (Fuji film) gone down by a dollar!
Chris: CD players have gone down by $300.
Alex: A microwave was $359 and now it is $140. . . . well, it's gone down because
most of the time when it first came out, everyone thought it was a success and they
bought it, but now there is a better range . . .

Lachlan: Wow, the US Open tickets were $500 and now they are $2500! That's a
really big jump! (Students in other groups also noticed that some prices
remained the same.) To this point, the goal of the task was still in the background for
these students. They were more interested in comparing prices per se, rather than
considering these in relation to the wages of the two eras, that is, the students were
still engaged in primitive pre-proportional reasoning.

In sum, the program appeared to be a positive and productive learning
experience for the students. Given that most of the activities were new to the students,
it would seem that such a program can be effective in fostering some of the
understandings and processes required for their success in the coming years. At least
this appeared to be the case for the present sample of students.
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THE RELATIONSHIP BETWEEN PROFESSIONAL KNOWLEDGE AND

TEACHING PRACTICE : THE CASE OF SIMILARITY.

Escudero, I., Sanchez, V. (Universidad de Sevilla. Spain)

Abstract: This is part of a research study into the relationship between
professional knowledge and teaching practice for the secondary school
Mathematics teacher, when he/she teaches specific mathematical topics, in our

case, similarity. Here, we show what happens when a mathematical content

appears in mathematics classes other than the one scheduled by the teacher, the
reasons and justifications provided and how the teacher handles this content.

The results highlight the strong interrelation between the structure of the lesson
and the way of understanding the mathematical content, allowing us to observe

the cognitive integration of the different domains of knowledge in decision-

making.

The relationship between the professional knowledge of the Mathematics
teachers and their practice is one current research topic that has been dealt with
from different perspectives. From a cognitive perspective, Leinhardt and her
collaborators consider teaching as a "complex cognitive skill", that is supported by

two basic systems of teacher knowledge: knowledge about the structure of the

lesson and knowledge about the subject matter that he/she teaches (Leinhardt and
Greeno, 1986). For these authors, the first system of knowledge includes "the
skills needed to plan and run a lesson smoothly and to pass easily from one
segment to another, and to explain material clearly" (Leinhardt and Smith, 1985, p.

247). They use the term schemata to refer to knowledge about the set of organised

actions relating to activities of teaching. The schemata for activities of teaching
includes structures that these authors call information schemata, which allow the

teacher to retain and subsequently use the available information in the course of the

lesson. For these authors, the lessons in mathematics classes are not homogeneous

with respect to teacher or student activity. They are segmented into discernible
parts, called "segments" or "activity structures" (Leinhardt, 1989; Stodolsky,

1988).

The second system of knowledge considered by these authors is subject-
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matter knowledge. This knowledge is understood by Leinhardt as: "the knowledge
that a teacher needs to have or uses in the course of teaching a particular school-
level curriculum in mathematics" (Leinhardt et al., 1991, p.88). The teacher's
knowledge about the subject matter that he/she teaches influences his/her
explanations. In this sense, they consider that the two systems of teacher
knowledge proposed are interconnected and integrated. These authors propose that
the conduct of a lesson is based on the teacher's agenda, understood as "the
teacher's dynamic plan for a lesson. It is a mental plan that contains the goals and
actions for the lesson" (Leinhart et al., 1991, p. 89). We may consider the agenda
as a dynamic plan whose components may be modified during the course of the

instruction.

We have also taken into account the studies that conceptualise practice as

the work that the teacher faces when performing his/her professional tasks
(Bromine, 1994; Bromine and Tillema, 1995), and the works by Llinares (1995)
that consider teacher knowledge to be within the framework of the situated
cognition (Brown et al., 1989). We admit teacher knowledge is generated and
developed through the interaction with the situations, with a cognitive integration

of different domains of knowledge being performed (Garcia, 1997). All of the
above-named is a reference framework in which to situate our work in relation to
the teacher's professional knowledge.

This paper forms part of a research work which aims to obtain information

about the relationship that exists between the professional knowledge and teaching

practice for the secondary school mathematics teacher, when he/she teaches
specific mathematical topics, in our case, similarity. Here, we are going to show: a)

what happens in mathematics classes when mathematical content appears different

to that scheduled by the teacher, b) the reasons and justifications provided and c)

how the teacher handles this content.

METHOD

The participants in the research were two secondary school mathematics

teachers, deemed as "expert" teachers by their peers, who offered to collaborate
voluntarily. The pupils belonged a two classes without any special characteristics

(3rd and 4th years of Obligatory Secondary Education, 14-15 and 15-16 years of

age, respectively). The mathematical content of the teaching was similarity.

In the design of the research the following were used: video recordings of all

the lessons about similarity, observations of the classroom and several interviews:
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interview for planning, interviews prior to and after each recording and a final
interview. The interviews and the video recordings were transcribed in full. The
teacher's agenda was described from the interviews. Using the transcriptions of the
video recordings and of the screening of the videos, we identified different
segments of teaching. We characterised these segments in relation to the notion
introduced and the specific actions that he/she carries out. This allowed us to
observe different aspects of the teacher's handling of the mathematical content,
such as: use of an example for achieving a definition, a property, a theorem, with
the constant intervention of the teacher and pupil, explanation through an example
for reaching the definition, a property ..., with minimum or nil intervention from
the pupils, amongst others. It also allowed us to observe the way in which the
teacher incorporates the information that is generated during the course of the
lesson for keep the class flowing, in order to achieve the objective of the scheduled
mathematical content.

In relation to the subject matter, we identified the aspects of the concept that
are relevant for the teacher (similarity as a teaching-learning object). Henceforth,
we describe and analyse the content of the different components of the teacher's
professional knowledge that take part in the situations studied. The form in which
the teacher handles the mathematical content, during the teaching, may show us the
role played by the different components of teacher knowledge. We consider the
appearance in the class of a mathematical content other than that originally
scheduled by the teacher to be a suitable space for obtaining information about the
relationship between professional knowledge and the teaching of Mathematics.

Teaching episode: Emergence of radicals in the
teaching of the ratio of perimeters in similar
polygons.

The class starts out with the correction
of some tasks that the pupils had to do at home.
The tasks consisted of the construction of
shapes similar to an irregular polygon drawn on
a square grid. Once the tasks had been
corrected, the two similar figures that are shown

(see Figure) were drawn on the blackboard. The teacher asks the pupils to
calculate the perimeter and the area of both figures. His objective is to introduce
the ratio of perimeters and the ratio of areas for similar figures.



T. Calculate the area and the perimeter of the figure [..] in the original and for
that one. We shall see the area, do you remember last year in the grid how we
did it? How did we get the area?
S I. By dividing the biggest squares in other squares.
T. By counting the little squares that were left inside, that was the easiest way for
the figure that was strange ... counting nothing more than ...

(The pupils start working on the problem, whilst the teacher carries on answering

any questions from the pupils who had not used the grid in previous academic
years).

S2. Is this the way we did it?
T. What? These are the square root of five, ... one, two, three, four square root of
five. Don't be scared of the radicals that you haven't studied yet ... don't be
frightened, those of you who studied them with me last year shouldn't have any

problem ... the only thing is that you can measure ... if you do this ... these
diagonals are not a single one, it is the diagonal of a square ... what is the square

root of ...? What will this be?

From then on, the teacher applies Pythagora's theorem to explain how the
diagonal of a square and a rectangle can be calculated. Carrying out calculations
with radicals takes up the main part of the presentation. After this explanation, the
pupil who had known how to carry out the calculations, jointly with the teacher,
calculates the perimeters of the two polygons. To do so, he counts on the grid,
using the side of the small square as a unit of measurement for the length, and
using Pythagora's theorem for the measurements between points that are in a
diagonal position. The teacher finishes off this process with the following

comment:

T. You can all see it, can't you? Well, he got it right ... look carefully, What ratio

is there between the two perimeters?. What are the perimeters like?. The

figures were ... What were they like? (On the blackboard the pupil has written

the values: P1 = 10 + 442 + 2 45; P2 = 20 + 8 42 + 445).

In this way, he establishes the ratio between the perimeters as a quotient.

The previous example shows us how the teacher handles some pupils'
difficulty in dealing with the grid and the appearance of radicals.

2 - 308



As he states in the interview for planning, the teacher knows that the pupils
may have difficulties with the grid, since only part of the pupils studied with him in
the preceding academic year, in which they worked with grids. According to the
teacher, one of the problems that the pupils may encounter is how to keep on the
grid the equality of the corresponding angles. However, he considers the use of the
grid to be useful. This may be the reason why in the correction of homework, the
task selected uses precisely the grid as the "medium". Hence this episode shows
how the teacher starts off a new segment of the presentation for the introduction of
the ratio of the perimeters and the ratio of areas in similar figures. In the interview
for planning, the teacher had already pointed out: "I'll start off by telling them to
draw a two similar figures and that they should choose the size that they want ..."
That is to say, the teacher has planned to use different figures that the pupils
themselves may choose, without any type of restriction, though he foresees: "... I
think that they will draw squares and rectangles".

However, either because the teacher feels pressurised by the time already
used up or by the difficulties with the grids provided by the pupils in the correction
of the tasks (information that the teacher receives through the schemes for
information), he takes the decision to use the two similar figures that had come out
in the corrected task (drawn on the grid), asking them to calculate the perimeter
and the area for them both.

This decision changes the way of introducing these concepts, and it has
several knock-on effects:

1) When trying to obtain the perimeter, the pupils continue to have
difficulties when using the grid. Although the teacher tries to make these
difficulties disappear, he ends up converting the use of the medium (the grid) into

the objective. This gives rise to the introduction of contents that the teacher had
not scheduled: use of Pythagora's theorem, the appearance of radicals and the
operations with them. A new segment of presentation appears with a new
mathematical content in order to account for an objective that was not originally
scheduled (measuring in the grid and work with radicals). This new segment of
teaching has some characteristics for the management of the mathematical content
by the teacher (explanation using an example) different to that of the main segment

(use of an example for achieving it).

The teacher justifies, in the interview following the recording, the decision
to introduce the new content because "it seemed to me that since we were already
dealing with grids that they could see, those who had not had classes with me last
year, how you can calculate the area on a grid without having to use any formula...
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that could be used to study at home and that the others would see something that
they had not seen before". Moreover, he also justifies it to establish connections
with the calculation with radicals, that "the fact of putting the radicals on the
blackboard again is to remind them a little, because later we are going to study
radicals ...". That is to say, "he unifies" the pupils' knowledge in relation to the
grid and tries to connect it to a content that he is going to introduce later.

2) The teacher uses a great deal of time in dealing with this new content
(measuring on the grid and work with radicals). This implies that the introduction
of the ratio of perimeters and ratio of areas does not stand out very much (which is
noted in the development of subsequent classes).

DISCUSSION:

All that we have showed till this point is an example of how the "action"
developed in the classes is not a linear process. It does not involve assessing the
quality of the planning by comparing what has been planned and what has been
taught, but rather it means studying the reasons why new contents appear, how the
teacher handles this and the arguments given by the teacher himself. The teacher's
knowledge about the difficulties that the pupils may encounter with a specific
teaching material, and the possibilities that he sees in that material, makes him
select, for the correction of homework, a concrete task. In the pupils-content-

teacher interaction, the difficulties that arise provide data that the teacher
incorporates in his schemes of information and that, on the one hand, corroborate
the difficulties foreseen and, on the other side, tell him that these difficulties have

not been solved when correcting the tasks.

The teacher's action in the subsequent presentation highlights the fact that,
either because he is pressed for time or through the information incorporated
beforehand, he changes in the action the scheduled way to introduce the ratio of
the perimeters, opting for a different introduction. The teacher for introducing the
scheduled content and, at the same time, for going deeper into the difficulties
perceived, he takes advantage of part of the same task that had been corrected.
This indicates the teacher's capacity to adapt to the situation that is posed.

In the subsequent interaction, the teacher carries on adding information
(from the schemes of information), which tell him that there are still difficulties

with the calculations of the lengths of the -segments on the grid. In order for the
flow of the class continues in the proper 'manner, the teacher takes the decision in
the action to go on to introduce the content that is causing the difficulties
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(measuring in the grid used as a medium) as a new content (measuring on the grid
and calculus with radicals), not scheduled originally. The way of handling it has
the usual structure that he uses for contents that he deems that the pupils do not
know. His curricular knowledge also intervenes in this decision, since the teacher
knows that that content will be used later.

In relation to the main objective, the decision taken meant a Change in the

way for introducing the concept (for presenting the ratio of perimeters and ratio of
areas in similar figures through different examples proposed by the pupils
themselves to presenting it through a given example, selected by him), that differs
from that stated in the original planning, and that shows the difference between
what was "espoused" and what was "enacted".

To sum up, so far we have shown how the different systems of teacher
knowledge are interconnected and integrated, and the strong interrelation between
the domains of teacher knowledge and practice. It has been observed how
decision-making in action, in relation to the mathematical content, is one of the
basic skills for a teacher, with some characteristics of the integration of the
different domains being noted in that decision-making.
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STUDENTS' UNDERSTANDING OF REGRESSION LINES'

Antonio Estepa, Franciso T. Sanchez-Cobo University of Jaen (Spain)

& Carmen Batanero University of Granada (Spain)

In this paper we present and discuss undergraduates' difficulties in finding
the mean of a variable from the following data: mean of a related
variable, slope and intercept of the regression line. Difficulties of the
students in interpreting regression lines are described and implications
for the teaching of regression are finally suggested.

1. INTRODUCTION

Correlation and regression are highly relevant in the Statistics curriculum for
introductory level University students, not just in itself, but as a prerequisite in
understanding other statistical concepts and procedures, such as multiple regression,
analysis of variance and most multivariate methods. Despite this importance,
mathematics education researchers have carried out very little research on this topic,
though some research work on correlation can be found in Psychology.

Most psychological research has only concentrated on 2x2 contingency tables.
Some psychologists have studied people's ability to estimate correlation from scatter
plots or from a set of paired values of two variables (Erlick, & Mills, 1.967; Jennings,
Amabile, & Ross, 1982; Lane et al., 1.985). The general conclusion is the adult's poor
ability to estimate correlation, the better performance with positive and strong
coefficients and the effect of previous beliefs on intuitive estimates. Within
mathematics education, Estepa & Batanero (1994, 1996) studied the students'
strategies in judging correlation in scatter plots, as well as their misconceptions
concerning association. Truran (1997) described the understanding of association and
regression by first year economics students. Morris (1997, 1998) studied the
conceptions and understanding of correlation by undergraduates, as well as changes
after a teaching experiment based on LINK (a computer assisted learning program for
correlation). Evolution of students' understanding of association after teaching
experiments based on computers have also been described in Batanero, Estepa, &
Godino (1997), Batanero & Godino (1998), and Batanero, Godino, & Estepa (1998).

In this paper we analyse the students' performance in solving a problem about
regression and their understanding of the regression lines. This is part of a wider study
on the meaning of the correlation and regression in undergraduates (Sanchez, 1999),
which include the assessment of conceptual and procedural knowledge on this topic.

' This research was supported by the Direccien General de Enseiianza Superior grants
PB97-0851 and PB96-1411 M.E.C. (Spain)
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2. RESEARCH AIMS AND METHODOLOGY

In Estepa & Sanchez-Cobo (1998) we found scarce attention in textbooks as
regards the centre of gravity in scatter plots, and the distinction between dependent
and independent variables. This distinction was a main difficulty in our previous
studies of understanding of association in contingency table (Batanero, Estepa,
Godino, & Green, 1996). The current research was aimed to confirm our previous
fmdings, and assess the learning of these concepts, as well as of the meaning of the
parameters in regression lines after an introductory statistics course in the first year of
University studies.

The content of course included the fundamentals of descriptive statistics,
distribution tables and graphs; location, spread and order statistic; skewness and
kurtosis; two-dimensional statistical variables, contingency tables, covariance and
correlation, linear and polynomial regression, sampling, sampling distribution, interval
confidence and hypotheses testing. Planning of the lessons by the lecturer and notes
taken from two students along the course were analysed to get an insight of the type of
teaching received by the students. This followed a traditional approach based mainly
in lecturing and solving computation problems. Scarce time was devoted to
interpretative and application problems.

Sample:

104 University students in their first year of Business studies (37 boys and 67 girls)
and 89 University students in their first year of Nursing studies (20 boys and 69 girls)
answered a written questionnaire. There were a total of 193 20-year-old students
(average age). 109 of them had followed a scientifically oriented curriculum at
secondary school, whereas the remaining 84 students had followed a humanities-
oriented curriculum. Most students (117 or 60.6%) had not studied statistics in their
secondary education. We asked the students about whether they consider statistics to
be useful for their future professional work. 162 students (83.9%) found statistics to
be sufficient, quite or highly interesting for their professional training; 155 students
(80.3%) found correlation and regression to be sufficient, quite or highly interesting as
a component of statistics.

Questionnaire

The complete questionnaire consisted of 12 multiple- choice items, 6 tasks where
the student should estimate the value of the correlation coefficient and two application
problems. In this paper we discuss the results concerning one of these problem:

Problem. The slope of a regression line is 16 and its intercept is the point y = 4. If the
mean value of the independent variable is 8, which is the mean value of the
dependent variable?

This problem was taken from Cruise & al. (1984, p. 288). As the students had
never solved a similar problem along the course, this could be considered to be an
mathematical problem, for them, as it was "a situation that involves a goal to be

7 4 3
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achieved, has obstacles to reaching that goal, and requires deliberation, since no
known algorithm is available to solve it. The situation is usually quantitative or
requires mathematical techniques for its solution, and it must be accepted as a
problem by someone before it can be called problem" (House, Wallace and Johnson,
1.983, p. 10).

In the Problem the students were asked to find the mean of the dependent
variable, from the following data: i) the regression line slope, ii) the regression line
intercept, and, iii) the mean of the independent variable. Since the students had not
been explicitly been taught a standard procedure to solve this type of problem, they
had to use their statistical, algebraic and geometric knowledge to find the solution. In
particular students needed to remember the meaning of the parameters in the equation
of the right line, and Cartesian representation, and to relate them to the notions
acquired in the teaching received on linear regression. They had also to remember that
the point with co-ordinates (x, y) belongs to both regression lines and discriminate the

meaning of the independent and dependent variables, as well as interpret correctly the
meaning of the slope and intercept (Truran, 1997).

Table 1. Frequencies and percentages of correct and incorrect solutions,
according to solving procedures

Solutions
Solving Procedures Correct Incorrect Total

1. y = bx +a 31 50 81
38.3 61.7

a 8 15 232. y y = (x 34.8 65.2

3. Using both 1) and 2) 2 2
100.0

4. x =b'y+a' 2 7 9
11.1 88.9

_ a 4 4
5. x x = 100.0

Y

6. Using both regression lines Y/X and X/Y

7. Using a parameter

2 1 3

66.7 33.7
7 7

100.0
Total 45 84 129

34.9 65.1

Below, we analyse the students' answers, grouping them according to the
procedures used. We then discuss the obtained results, where percentages are referred
to the 129 students that provided a solution (67% of the total sample). The remaining
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students gave no answer, which is indicative of the task difficulty for these students.
Results are shown in Table 1.

4. RESULTS AND DISCUSSION

Results in Table 1 show that the majority of the 129 students answering the
problem used one or both regression lines to solve the problem (94.6%). 106 students
(82.17%) chose the correct regression line Y/X, while 13 students (10.1%) confused
the regression line and used X/Y instead. Finally 3 students (2.3 %) used both lines.
Below we analyse the student's errors and misconceptions depending on the procedure
followed.

4.1. Use of the regression line Y/X.

From the 106 students using only the regression line Y/X (the first three rows in
table 1), 81 students used, exclusively, the explicit equation y = bx+a, 23 students

used only the point-slope expression y y =
a,

(x x) and 2 students employed both

equations. Below we describe the thinking process involved in each of these
procedures and the difficulties involved in the same.

Using the explicit equation of the regression line, y = bx +a

Giving the data in the statement of the problem, this procedure can lead to the
immediate correct solution which was reached by 31 students (38.6% of those using
this procedure), in the following way:

"a= 4 =intercept, b= slope= 16, y= a +bx, =8,-y =4 + 16.8 = 132;"

The main cause of failure with this procedure was confusing the dependent and
independent variables, which led 27 students (33.3% of those using this procedure) to
exchange the mean of X with that of Y, and, consequently, to an incorrect solution.
This confusion was also described in the studies by Batanero, Estepa, & Godino
(1.997) and Batanero, Godino, & Estepa (1998). An example of this confusion is

"a=4, b=slope=16, y=a+bx, y=8"
shown in the solution given by the student n. 46:

A second difficulty arises when the student did not realise that the gravity
centre (x, y) is a point belonging to the regression line, and, consequently, this point

must verify the equation y = bx + a . In the teaching carried out, this fact was not

explicitly taught, though the gravity centre was defined as being the intercept of the
two regression lines.

745
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A third main difficulty was exchanging the meaning of the parameters b and a
in the equation y = bx + a, as well as assigning them incorrect values (9 students). For
example, the student 146 gave the following solution: "y = a + bx, y = 4, a = 16,
b=8, x = ?, 4 = 16 - 8x, 12 = 8x, x = 12 / 8 = 1.5".

_ a
Using the point-slope expression y - y = (x x)

a .

a
Because in this case = 16, we obtain 4 y =16(0 8) =128; y = 132 . The

cr

main difficulty when using the point-slope equation of the regression line of Y/X was
finding the point (x, y) needed. Only 8 students (34.8% of those using this equation)
realised that this point was the intercept with the ordinate axis. Other difficulties arose
from using an inadequate equation of the regression line Y/X, with a frequency of 7
students. For example student number 4 gave the following answer, where the slope
and intercept of the equation are also confused:

-" y y = (x x), x = 8, y = 4, y y = 16 8, y = 8 4, y = 4"
a x

Here we found again the confusion between the dependent variable and
independent variable in 7 students, as Student number 57, who gave the following

solution: " = 16, (0,4), y = 8, y 8 =16(0 7x), -4 = = "
ax 4

The type of the equation of the regression line used seemed to influence the
interpretation of the slope, since when the equation used was y = bx + a, we found

more difficulties in interpreting the slope than when using y y =
a
--T(x x), where

most students seemed to understand that the slope is expressed by
ax

Other procedures

Two students use both the explicit and point-slope equations. These students
did not realise that the gravity centre belongs to the regression line y = mx+n.
However, they observed that the mean of the dependent variable can be found from
the point-slope equation. Then the students compared both equations and determined
the mean of the dependent variable, like in the following case (Student 33):

- - a.y
"y= bx + a, y =16x+ 4,y y=

2
x),b = =16
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- - _a =y x,a= y-16.8,y =132"

4.2. Use of the regression line X/Y

13 students (10.1% out of the 129 answering the problem) used the regression
line of X/Y. From the 9 students who used the explicit equation of the regression line,
x = b'y + a, only 2 got the correct answer, with the following procedure: "x=a' + b 'y;
y=8; 0 = 16 . 4 + a',. a'. 64, .X = 64 + 16.8, .; = 64"

Four additional students used the point-slope equation of the regression line
o-

xx= -2:(yy). The difficulties described in the previous section were repeated,
ax

such as the confusion between dependent and independent variable. Below we
reproduce this difficulty in Student 105's answer, who, also confuse the meaning of
the intercept:

"x = a' + b' y, x = 8, y = 4, b' = 16 8 = a' + 16.4, 8 = a' + 64, a' = 64 - 8 = 56"

Other mistake was exchanging the meanings of the intercept and the slope, such

as shown in Student 89's answers: "a'= x b' y, 16 = 8 4y, y =
8

4

-16
= 2"

With respect to the point-slope equation of the regression line X/Y, the only
confusion shown was that between the dependent and the independent variable, such

oC v(X ,Y)
as in student 122: "x = 0,y= 4,x = 8,x x = (y y), x 8 = 16(4 y),

ay

0-8 =16(4 y),16y =16.4 +8= 72, i= 4.5. The equation of the line is defined as

x - xi = b' (y - yd being m the slope of the line. As we know the slope, the value of y,
and we know that the line intercept the axis Y in the point 4, where x = 0, when
substituting, the answer is 4.5"

4.3. Use of both regression lines Y/X and X/Y

Three students used both regression lines Y/X and X/Y. We consider that this
is the best procedure, since, both variables X and Y can play the role of dependent or
independent variable if the context of the problem is not specified. Thus Student
number 67 provided both solutions:

" Lets suppose we take the line Y I X :then,x =0,y = 4, y = bx + a,4= 0 + a,a = 4, a =3, bx,

4 = y 16 8, 4 = y 128,y =132. Lets suppose we take the line X/Y : in this case,

x = b' y + a' ,0 =16.4+ a' ,a'= 64,a'. - 64 = -8, x =64"
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Finally, 7 students out of the 129 who attempted to solve this problem used
other statistical concepts, such as those of mean or covariance getting an incorrect
solution.

5. FINAL REFLECTIONS

From the above analysis we conclude that the most frequent difficulty for the
students in our sample was distinguishing the role of dependent and independent
variables. This lead to failure to 36 out of the 84 students who got incorrect solutions
(42%), which confirms our previous findings that this is a main problem in
understanding association (Batanero, Estepa, Godino, & Green, 1996). The fact that
correlation ignores the distinction between independent (explanatory) and dependent
(response) variables, whilst in regression this difference is essential might have
received not sufficient attention in the teaching received by the students. This teaching
should take into account that relationship in regression depends of the type of
covariation presented in the problem context. If there is a causal dependence, the
explanatory and response variables are univocally determined. However in other type
of covariation - interdependence, indirect dependence, concordance and spurious
covariation - the student must decide the best regression to employ.

Though both the explicit and point-slope equations of the regression line are,
formally, equivalent, the later served better to our students to identify the slope that in
the explicit equation; their more frequent use of the explicit equation was probably
due to stated of the problem. Confusions about the meaning of the parameters and
unability to relate the problem data to the regression line equation was also found.

We fmally conclude that more research on the teaching and learning of
association and regression is needed for achieving a teaching of quality. This research
should be based on the didactical an epistemological analysis of the topic for searching
their internal structure, emphasising the fundamental contents, and relating new
fmdings to previous research work. Thus we can contribute to a better planning of the
teaching that facilitate students' construction of a meaningful learning.
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The Motivation to Learn Mathematics
David Feilchenfeld

The Hebrew University of Jerusalem

This paper characterizes the motivation to learn mathematics among first year
practical engineering students studying electronics. The motivation is directly
measured by the students' self evaluation, relatively to their motivation to study other
subjects. In addition, an analyze has been held of the manner in which students
attribute the reasons of success in mathematics studies in comparison with the
reasons of success in studying electricity. It was discovered that the motivation to
study electricity is higher than the motivation to study mathematics. This result is
ascribed to two reasons: I. The incentive value of achievement in electricity is
considered to be higher than the incentive value of achievement in mathematics,
because of its immediate relevance to electronics. II. According to the students,
success in electricity is dependent on effort, more than success in mathematics. This
is why it is more appropriate to devote to electricity more time and effort than to
mathematics.

Introduction
Motivation, Attribution of Causes for Success, and Self Esteem

The motivation to learn mathematics is not different from the motivation to achieve in
any other domain. The motivation to achieve is usually ascribed to three factors: the
incentive value of the achievement, the subjective expectation for success, and
achievement-related needs (Atkinson, 1957, 1964). The achievement-related needs are
individual emotional drives and will not be discussed here. The incentive value of
achievement is based upon the manner it is perceived: as a trifling matter or as
something of importance. For example, the value of winning a chess game against a
weak or inexperienced opponent is lower than the value of winning chess game against
an excellent opponent. Weiner suggested that self-esteem following the incentive value
of success are determined by the locus of the source of a cause (locus of causality)
(Weiner, 1986 p. 128; 1992 p. 271). When the source of a cause is internal (within the
student) the incentive value of success is higher, and when the source of a cause is
external the incentive value of success is lower. As the incentive value of success is
growing up, there is a tendency to attribute the cause of success to oneself, and thereof
the pride and self-esteem improve. The success in a mathematics exam in which
everybody succeeded (because it was easy, or because the grades were distributed
generously) is considered to be of low value. On the other hand, success in a
mathematics exam in which everybody failed is considered to be of high value, since
the cause of the success is attributed to oneself, thus improving one's self esteem. In
this principle, Weiner suggests that the effect of success or failure on self-esteem is
due to the locus of causality.
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Weiner had also treated the expectancy of success proposing what he called the
"Fundamental Psychological Laws" (Weiner, 1985 p. 558). Weiner's Expectancy
Principle says: "Changes in the expectancy of success following an outcome are
influenced by the perceived stability of the cause of the event." As the expectancy of
success is considered to be an important factor of motivation, Weiner's principle
deserves some attention. This principle has three corollaries: "1. If the outcome of an
event is ascribed to a stable cause then that outcome will be anticipated with increased
certainty, or with increased expectancy, in the future. 2. If the outcome of an event is
ascribed to an unstable cause, then the certainty or expectancy of that outcome may be
unchanged or the future may be anticipated to be different from the past. 3. Outcomes
ascribed to stable causes will be anticipated to be repeated in the future with a greater
degree of certainty than outcomes ascribed to unstable causes." In this principle and its
corollaries Weiner suggests that an individual subjective expectancy for success or
failure is a consequence of his perceived stability to the cause for success or failure.

In order to analyze more finely the casual attribution, Weiner suggested an additional
dimension to those two which were described (Weiner, 1979). This dimension of
controllability was formed mainly to separate the causes perceived both as internal and
stable into two sub-groups. Controllable causes were separated from arbitrary causes.
The controllability level of a cause is linked to the level of responsibility it imposes
upon the individual, and to the level of intentionality of the cause.

The manner in which a cause for success or for failure is perceived, is illustrated
accurately and in all simplicity with the aid of the three dimensions of controllability,
stability and locus of causality. The categorization of a cause has implications on the
achievement's incentive value, the subjective expectation for achievement, the
individual's motivation, and the arousal of emotions. The attribution of successes and
failures to causes arouses various emotions depending on the category the cause is
related to (Weiner, 1986), as described in table 1.

Attribution to Emotions Aroused
Following Success

Emotions Aroused
Following Failure

External Controllable
Cause

Gratitude Anger

Internal Controllable
Cause

Pride and High Self Esteem Guilt and Low Self Esteem

Internal
Uncontrollable Cause

Pride and High Self Esteem Shame and Low Self Esteem

Stable Cause Hope Fear and Hopelessness

Table 1: The emotions which are aroused following a casual attribution
(according to Weiner, 1986).
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Method
A. The construct is a combination of three different and independent questionnaires.
The motivation to learn mathematics may be changed for a concrete persona in
different conditions. Thereof, it was only natural to try to examine the way the students
themselves estimated their own motivation to learn mathematics. This was done by the
students' estimations of their actual effort, in the variety of topics they learn, and
grading them. Every student was requested to grade the first three subjects in which
his attendance at class was highest. Similarly, he was requested to grade the first three
subjects to which he dedicated the longest duration of studying, the first three subjects
in which the largest amount of work was demanded, and the first three subjects which
were most challenging.

B. The second questionnaire was based on a former one written by Fennema
(Fennema, et al. 1979) which relied on what was then considered to be Weiner's
Theory of Attributions (Weiner, 1974). I introduced few changes in respect of
Fennema's questionnaire. Some changes are due to bringing it up to date according the
changes which went over Weiner's theory (i.e. introducing the controllability
dimension). Other changes are a consequence of emphasizes in this research. The
questionnaire is related to eight events, half of which describe success in mathematics
and half describe failure. Five causes have been attributed to each event. The five
proposed causes for each event are considered to be part of five distinct categories as
described in table 2.

Category Locus Stability Controllability

1 Aptitude of Deeper
Understanding

Internal Stable Uncontrollable

2 Procedural Aptitude Internal Stable Uncontrollable

3 Long Term Effort, Laziness,
Industriousness

Internal Stable Controllable

4 Objective Task Characteristics,
Friends, Lecturers

External .

5 Temporary Exertion, Mood,
Chance and Luck

Internal
External

Unstable

Table 2: The five categories of causes for success and failure in mathematics,
which were included in this research, and their classifications according to the
locus of causality, stability and controllability.

The separation between the first two categories was not held in reliance on the
attribution theory, but rather on a distinction, which exists among the mathematics
teaching researchers community, between conceptual versus procedural
understandings. (Different researchers relate to it in a variety of terminologies).
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The students were asked to write down the degree of their consent to each of the forty
causes (8 events x 5 causes) regarding the learning of mathematics, and the degree of
their consent to the same causes regarding the learning of electricity. The answers
were given on a four level scale. Attribution rates were extracted from the two levels
of agreement (i.e. agree and absolutely agree). The differences in attribution rates of
the causes regarding mathematics and electricity have been calculated.

C. The third questionnaire was destinated to map the characteristics the students
attribute to each of the 40 causes. It is customary to assume that the causes fall within
discrete and dichotomic categories such as internal or external, stable or unstable, and
controllable or uncontrollable. This assumption may oversimplify the model because
different people attribute to any concrete cause different values for the locus of
causality, the stability and the controllability. In order to check how, in the students'
view, each cause falls within a category, there were eight types of a second
questionnaires distributed, each concerning one event (of success or failure in
mathematics) and five possible causes for it. The questionnaire was based on Russel's
Casual Dimension Scale (Russel, 1982). This scale, which relates to a unique cause,
contains nine items, three of which are pertinent to each of the casual dimensions.
Russel has demonstrated that this scale has the properties of an "acceptable
psychometric instrument." For each of the nine items, a nine level scale (1 9 ) was
presented to the students with opposite statements attached to the two ends.

Results

I. Motivation
Four parameters were used in order to evaluate the motivation to learn mathematics:
attendance at class, duration of studying, amount of work demanded, and challenge.
The picture received from all four parameters was similar. In all parameters the two
dominant subjects were electricity and mathematics, and electricity over dominated
mathematics. According to the students, the rate of attendance in electricity class was
higher than in mathematics class. Likewise, the actual duration of studying electricity
was higher than mathematics, the amount of work that was demanded in electricity
class was higher than in mathematics class, and electricity was found more challenging
than mathematics. This trend was observed throughout the whole population
examined.

The group of students that perceived themselves as successful both in mathematics and
electricity (75% of the population) deserve special attention. When looking at the
grading of these students, a more powerful picture is obtained. These students have
graded their attendance in electricity class in first or second places in a higher rate
(85%) than the rest of the students (69%). At the same time these students have graded
their attendance in mathematics class in first or second places in a lower rate (48%)
than the rest of the students (64%). While there is no meaningful difference (5%) in
attending electricity and mathematics classes among other students, there is one (16%)
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among the students, which perceived themselves as successful both in mathematics
and in electricity. Among these successful students there is a remarkable preference of
attending electricity over mathematics classes, and utilizing more time in favor of
electricity than in favor of mathematics studies, despite all lecturers of these subjects
were very much appreciated by the student& Within the limits of their resources, they
have actually spent less time on mathematics and more time on electricity, compared
to the rest of the students. Within this group, the rate of grading first the time spent on
studies of electricity was more than three times the rate of grading first the time spent
on studies of mathematics. In spite of this powerful and impressive picture, it is
impossible to evaluate, on the ground of these gradings, the extent of which electricity
studies are more time consuming than mathematics. This is due to the questionnaire
itself, which does not relate to the differences' values, but only to the gradings.

II. The Effect of the Hedonic Bias

The most striking result from the third questionnaire was the difference in the students'
attitudes towards causes for success and causes for failure, particularly in the
dimension of stability and to a lesser extent in the dimension of locus of causality. The
average perceived stability of causes for success was 5.05, in contrast to a 2.93
average of causes for failure. In addition, the causes for success were treated by the
students as more internal (average of 6.41) than the causes for failure (average of
5.43). This result may evolve from the well-established phenomenon known as The
Hedonic Bias. This term relates to the tendency people have to credit themselves for
successes, in contrast to their unwillingness to accept responsibility for failures. It is
generally accepted, among the psychologist's community, that this behavioral pattern
maximizes the pleasure of success as well as it minimizes the pain, which derives from
failure. This is the source of the term. On the basis of this bias, it may be expected that
students will perceive the causes for success as internal and stable, while the causes
for failure will be perceived as external or as unstable. The students' desire for hope,
and their reluctance from fear or helplessness, may have brought the students to
perceive all the causes for failure as unstable, and all the causes for success as stable.
The dominance of the Hedonic Bias in the stability and locus of causality dimensions
overshadowed possible differences which may have been found out between
attributing causes for success in mathematics and in electricity.

Average Perceived Stability of Causes:

Regarding Aptitude of Deeper
Understanding

Procedural Aptitude Effort

For Success 6.13 5.83 5.57

For Failure 3.56 3.21 2.68

Table 3: Averages of perceived stability for different categories of causes
according to the students' views.
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In spite of the above, it was found that the perceived stability of causes (for success or
failure) regarding aptitude of deeper understanding was higher than the perceived
stability of causes regarding procedural aptitude, which itself was higher than that of
causes regarding effort, as is shown in table 3. Although the differences in perceived
stability between the three categories are less meaningful then those between success
and failure, they exist and seem to be consistent.

III. The controllability Dimension
The controllability value of each cause is an average of the students' perception of the
extent the cause is controllable, intentional, and imposes responsibility. It has been
clarified that the longer a cause for success concerning effort is lasting, the more it is
perceived by the students as controllable and responsibility imposing. In addition to
that, meaningful and consistent differences have been found in all three parameters
between causes concerning aptitude and effort. The causes concerning effort were
perceived as more controllable, more intentional, and more responsibility imposing
than the causes concerning aptitude. This result is illustrated in chart 1, where the
controllability values (averages of the three parameters) of causes concerning effort are
higher (6.50-7.50) than of the causes concerning aptitude (4.94-6.51).

More 25

Attributed to
Math 15

5

Difference in
Attribution -5

Rates -15

More _25

Attributed to
Electricity -35

o Effort

I Aptitude

z

Uncontrollable 0 Controllable
0

3 5
0

Controllabilty Value
0

9

Chart 1: The relation between the controllability level (average between the
students' perception of the extent the cause is controllable, intentional, and
imposes responsibility) of internal causes for success and the rate differences (in
percentage) in attributing the causes to mathematics or to electricity studies.

An interesting result (that is illustrated in chart 1 too) is the tendency to attribute
causes concerning effort more to the studies of electricity, and causes concerning
aptitude more to the studies of mathematics. Regarding the causes concerning effort
and aptitude I found a relation between the controllability value and the differences in
attributing them to electricity and to mathematics studies. The higher the perceived
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controllability value of a cause, the less it is attributed to mathematics, compared to
electricity studies. Because the results came from two different questionnaires,
correlation between the two series of results could not be calculated. Nevertheless the
correlation between the two series of averages (i.e. the average difference of
attribution rates for every cause, versus the average perceived controllability value of
the same causes) was calculated and found to be 0.86. These results show that
students attribute causes concerning aptitude (which are perceived as less controllable)
more to success or failure in mathematics, than to success or failure in electricity. On
the other hand, students attribute causes concerning effort (which are perceived as
more controllable) less to success or failure in mathematics, than to success or failure
in electricity.

Discussion

As one of the research aims was investigating the motivation to learn mathematics, it is
interesting to compare the results concerning mathematics with a different subject. The
objective level of motivation to learn mathematics, the degree of affection towards
mathematics, and the importance the students attach to it, beyond the rhetorical
declarations, are not measurable. The reason to it is not the absence of an acceptable
measure, but a more essential one. When a student has a high motivation for
mathematics, it means he prefers studying mathematics to other alternatives available
to him at that moment. The mathematics motivation level should therefore be relative
to the motivation levels of the alternatives, and should not have absolute values. It is
more than reasonable to compare it to other topics and their motivation levels. The two
subjects, for which the highest motivation levels were found, among practical
engineering students in electronics during their first year of studies, were electricity
and mathematics.

It can be concluded that the motivation for 'studying electricity is higher than the
motivation for studying mathematics. This difference is partly due to the higher value
of importance attributed to electricity compared to mathematics, and to different
strategies needed for success in the different areas. According to the students, success
in electricity is more effort dependent than success in mathematics, while success in
mathematics is more aptitude dependent than success in electricity. It is appropriate
therefore to exploit in favor of electricity studies a larger slice of the limited resources
of time and energy, and only a smaller slice in favor of mathematics studies.

Whereas the strategy taken by the students who perceived themselves as successful
both in mathematics and electricity had proved itself, it should be closely examined.
These students attended electricity classes more than mathematics classes, and spent
more time studying electricity than mathematics. The students in this group have taken
this strategy, in a more extreme route than the rest of the students, in spite of their
estimation of the amounts of work that were demanded in the courses, which was
similar to the other students' estimations.
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It is only natural to perceive causes regarding aptitude and ability as more stable than
causes regarding effort. Aptitude is usually considered to be a constant personal trait,
and sometimes even as an inborn trait. On the other hand, effort is an outcome of
personal traits like laziness or industriousness, as well as unstable conditions like
motivation or social milieu, and is therefore considered to be less stable. Of special
importance is the differentiation made by the students in the way they perceive the
stability of causes concerning different kinds of aptitude. The perception of aptitude of
deeper understanding as more stable than procedural aptitude (in mathematics) is an
evidence for a distinction ability, as well as an evidence for a whole trend of
perceiving different personal traits in different degrees of stability. Regarding Weiner's
Expectancy Principle, it may be concluded that success as a result of causes
concerning aptitude of deeper understanding, is expected by the students more than
success as a result of causes concerning procedural aptitude. This corollary is very
interesting considering the fact that it came out of students that most of their
mathematics studies are procedural.
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ABSTRACT

Relying on Marx's maxim "human anatomy contains a key to the anatomy of the
ape" we argue that the relation between arithmetic and algebra is a difference
of essence, hence a dialectical discontinuity much more radical than is conveyed
by words such as "gap" or "cut". We argue that the transition from arithmetic
to algebra is impossible, and we characterize arithmetic as an obstacle to
algebra. We present a manipulative and computerized puzzle to introduce linear
systems as a possible alternative approach to the teaching of introductory
algebra.

Introduction
The literature about mathematics education seems to indicate a discontinuity

between the arithmetic and algebraic domains. Filloy & Rojano [1989] consider "cut
points" separating the two kinds of thinking; Linchevski & Herscovics [1996] indicate
a "cognitive gap" that they endeavor to "cross" and overcome"; Schmidt&Bednarz
[1995:84] refer to a "dichotomy" between arithmetic and algebra. Kieran [1981]
distinguishes between arithmetical and algebraic uses of the equality sign.

However, the vocabulary used to express the relation arithmetic/algebra also
indicates continuity. At least in one case, the word continuity appears explicitly: the
Argentinean school programs "emphasize continuity with arithmetic" [Panizza,
Sadovski & Sessa, 1996:107]. Continuity is also hinted at by signifiers such as
"progress" (from informal to formal level of doing algebra) [Reeuwijk, 1995:1-143],
"transition" (from arithmetic process-oriented thinking to proceptual algebraic
thinking) [Graham & Thomas, 1997:10], "evolution" (from arithmetic to algebraic
language) [Filloy & Rojano, 1989:19], and "transition from arithmetic to algebra"
[Bouton-Lewis et al 1997:185]. In spite of arguments that "algebra cannot be
considered as a arithmetical generalization" [Bodin & Capponi, 1996: 587],
expressions denoting continuity like "generalized arithmetic" are still current [Wong,
1997:285; Graham & Thomas, 1997:9; Sfard & Linchevski, 1994:195,197; Kutscher
& Linchevski, 1997:169].

The aim of this paper is 1) to argue that the discontinuity between arithmetic and
algebra and, in general, between operational and structural ways of thinking [Sfard,
1991], is more radical than announced by words such as "cut", "gap", "dichotomy" or
"duality"; 2) to argue that attempts to teach algebra starting from arithmetic
[Linchevski & Herscovics, 1996] lead to difficulties, if not to impossibility; 3) to
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argue in favor of a manipulative-computerized puzzle to solve linear systems of two
equations in two unknowns to teach introductory algebra courses.

The dialectical discontinuity: a difference of essence

According to Sfard [1991] the literature on epistemology of mathematics teems
with allusions to various dichotomies: abstract/algorithmic, declarative/procedural,
process/product, dialectical/algorithmic, figurative/operative, conceptual/procedural,
instrumental/relational. She proposes another opposition, operational/structural, that
should be considered not as a dichotomy but as a duality. She argues:

"The structural approach should be regarded as the more advanced stage of
concept development. We have good reasons to expect that in the process of concept
formation, operational conceptions would precede the structural" [10]. "The history
of numbers is "a long chain of transitions from operational to structural
conceptions" [14].
We have some difficulty in conceiving of a duality relation in terms of

"precedence" and "transition". However, if we take the idea of precedence in the
sense of ancestry, hence of genesis, we cannot avoid verging upon Marx's famous
aphorism: "Human anatomy contains a key to the anatomy of the ape" [Marx,
1973:105]. Can we infer that structural thinking contains a key to operational thinking
that "precedes" it? What does this mean?

"Although it is true that the categories of structural thinking possess a truth for all
forms of thinking, this is to be taken only with a grain of salt. They can contain them
in a developed or stunted, or caricatured form etc., but always with an essential
difference. The so-called presentation of cognitive development is founded, as a rule,
on the fact that the latest form regards the previous ones as steps leading up to itself;
and since it is only rarely and only under quite specific conditions able to criticize
itself (...) it always conceives them one-sidedly" [The paragraph is a parody of
Marx, 1973:106] (1).

Since "twentieth-century mathematics seems to be deeply permeated with the
structural outlook" [Sfard, 1991:24], and since the structural way of thinking is "the
more advanced stage of concept development" [ibid. 14], we infer that structural
thinking (for example, developed algebraic thinking) will tend to regard all forms of
computational thinking preceding it (for instance arithmetic) as steps leading up to
itself. From this point of view, algebraic thinking contains arithmetic regarded as a

'. Here is the original text. "Although it is true, therefore, that the categories of bourgeois
economics possess a truth for all other forms of society, this is to be taken only with a grain
of salt. They can contain them in a developed or stunted, or caricatured form etc., but always
with an essential difference. The so-called historical presentation of development is founded,
as a rule, on the fact that the latest form regards the previous ones as steps leading up to
itself, and since it is only rarely and only under quite specific conditions able to criticize
itself leaving aside, of course, the historical periods which appear to themselves as times of
decadence it always conceives them one-sidedly" (...)" Although Marx's categories refer
to political economy, the parody is valid because only its logical content is considered here.
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step leading up to itself (hence continuity) but also as a caricatured form essentially
different from itself (hence discontinuity). In order to overcome this one-sided view of
arithmetic as a step leading to itself, the upper form will have to "criticize itself".
What does this mean? We resort to another author who has thoroughly discussed the
quote from Marx cited above from Hegel's perspective.

"This essential difference and here is the decisive point should be considered as
crossed by destruction and generation. The movement from a continuity to a
discontinuity perspective corresponds to the movement from a naive to a critical focus
on the upper form" [Fausto, 1987:18].
Therefore, in its self-criticism, structural (algebraic) thinking should recognize

itself as being generated insofar as the previous operational (arithmetical) thinking is
being destroyed as such, and incorporated into it as something essentially different.
The mathematician's movement back and forth from computational to structural
approaches to a problem is not autonomous because the structural outlook is not
reversible.2 According to this argument, no "progress", "transition", "evolution" or
"generalization" can lead from arithmetic to algebra. Simultaneous destruction-
genesis (death/birth is just a non-simultaneous approximation) is the decisive
dialectical concept to understand how arithmetic is embodied in algebra: the tree has
to die so that the flower can be born from its rotting trunk. This conclusion will be
important for teaching.

Looking at the continuity/discontinuity ambiguity pointed out at the beginning,
from the point of view of the Piagetian theory of equilibration, what our argument
amounts to is that instead of thinking about the relation arithmetic/algebra as a
completive generalization [Piaget and Garcia, 1984, p. 10] we should think of it as an
abstractive reflection [Piaget, 1975, p. 39] which implies a difference of essence.

Didactical difficulty of the continuity point of view

The prevalent teaching strategy in introductory algebra courses is to conduct the
student step by step from procedural to structural thinking following a supposedly
continuous path. Research is then organized to observe, evaluate and encourage
progress along this path using teaching experiments, mathematical ability tests and
interviews [Linchevski & Herscovics, 1996]. Instructional materials are supplied as
needed: geometric models [Filloy & Rojano, 1989], balances [ Linchevski &
Herscovics, 1996, Aczel, 1998, da Rocha Falai:), 1995] or spreadsheets [Arzarello,
Botazzini & Chiappini, 1995].

In their teaching experiment, Linchevski & Herscovics [1996] adopted a clear
continuity strategy. They accepted the initial, use of the inverse operations in reverse
order naturally employed by the students for solving equations with a single
occurrence of the unknown and let them proceed until their method became "lengthy
and tedious". Then they assumed that the students were "ready to be exposed to new

2 This is clear from Sfard's examples [p. 25, 26]; once we take a look into the structural
solution, we cannot pretend that we have not seen it and just come back to the computational
approach. The relation is not of duality but of irreversible spiral.
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points of view" [40] and started teaching them a decomposition-and-cancellation
method to solve equations with two occurrences of the unknown on the same
member. Next, they introduced equations with the unknown on both sides. To the
students they "pointed out that none of the methods they knew could effectively solve
this type of equation" [53] and introduced the balance model to help them. However,
in spite of all efforts, the students continued to solve the equations with only one
occurrence of the unknown by performing reverse operations in reverse order. "It
should be pointed out how stable this procedure remained in the seven months since
our initial assessment" [59]. So, the step by step strategy did not lead to the expected
change. Why?

How much do these students praise the arithmetical undoing strategy that they
have learned for solving one-unknown equations? When they found it "lengthy and
tedious" and claimed that "there must be another way" [62], were they actually ready
to be "exposed" to another point of view? What is the effect of "pointing out" to a
student that his/her method is not "effective"? What is the nature of the change
expected by this strategy?

The authors do not seem to acknowledge that the students may have a special
taste for wrong answers as long as they are their answers, obtained by their methods
and make them big, strong and worthy of love for the gaze that they imagine to be
cast upon them. Will they recognize in the instructors eyes the referential gaze for
which they are willing to play the scene of their lives? What should be the nature of
the demand provoked by these eyes if the expected change is to be produced?

Drawing on previous research, the authors attribute certain students' answers in
ability tests about first degree equations to a "limited view of algebraic expressions",
"failure to grasp the meaning of operations", and "inability to spontaneously operate
with or on the unknown" [39-40, emphasis added]. Next, inability is identified with
an obstacle: "This inability to spontaneously operate on or with the unknown
constituted a cognitive obstacle" [41]. The teaching experiment was designed to cross
this obstacle.

Thus, a too restrictive conception of obstacle [Brousseau, 1997:82] considered to
be a mere "failure", seem to have presided over the whole teaching experiment. The
students had to conform to new methods or... fail. Would they be willing to recognize
in the instructors eyes the referential point of their imaginary identifications? Or did
they recognize in these eyes the gaze of the school system, always ready to classify
their answers as "failure" and "inability"? "The students experience we conjecture is
not of a straightforward switch from arithmetic to algebra; their storying backdrop
needs to be extended at the same time" [Brown & Wilson, 1998:171].

"So far as obstacles appear as repetitions of failure, they provide a measure of the
persistence of the subject's jouissance organization: the subject hesitates to abandon
what worked well in previous situations and insists on justifying his statements in
terms of the notions that he does not want to give up. This is why the nature of the
demand makes a big difference in the didactic situation" [Baldino, 1997: 237].



So, not only did Linchevski & Herscovics' [1996] teaching attempt based on
continuity assumptions reveal itself to be difficult but it also indicated that the
obstacle to pass from arithmetic to algebra is arithmetic itself. Arithmetic is the
knowledge that the students refuse to destroy in order for structural thinking to be
generated. For the students, learning has the dimensions of death, this is why it is
difficult. Insofar as the authors' teaching method started by recognizing the students'
arithmetical procedures, they could only reinforce the obstacle and make students
more confident of their arithmetical knowledge, more attached to their past life
stories, instead of developing the courage of reformulating these stories from an
algebraic point of view. Paradoxically, the more we focus on the supposed "gap" in
order to consciously try to bridge it, the wider it becomes. If there is a "gap" Htween
arithmetic and algebra, it is not to be crossed; it has to be ignored, forgotten,
dissipated. If we want the students to think algebraically, we have to start by
assigning them typical tasks of the algebraic domain. We have to seriously take into
account that reflective abstraction implies that "every cognitive system relies on the
following one for guiding, and the achieving its regulation" [Piaget, 1975:40]. There
is no path to the top of the mountain; we have to parachute the students up there. This

is the objective of the following puzzle in its settings: manipulative and
computerized.

An algebraic puzzle: the doublequal

The material consists of a board with two pairs of squares connected by equality
signs, and black and white pieces of three different shapes, say black and white stones
(A, A), black and white buttons (, 0), and black and white Montessori cubes
(CI, III). To start the activity, four handfuls of randomly chosen pieces are spread in
each of the four squares. This will be called the initial situation. Examples of initial
situations are in figures I a and lb.

I I
0° n 1
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A 0

0 0
=

-
P000

.=

.000
IA Boltb

0° a°
AA 0 0

meEgo a opoo

(a) (b) (c)

Fig. 1 - (a) Randomly chosen initial situation
(b) Simplified initial situation
(c) Final situation

The objective is to pass from the initial situation to a final situation through a
series of intermediate situations. In the final situation, square A must contain only
white stones (A), square C must contain C only white buttons (0) and squares B and
D only Montessori cubes, either white or black OD or U). See figure lc.
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The activity abides by this one single rule: one passes from a situation to the next
by simultaneously adding (or removing) equivalent handfuls of pieces to (from)
squares A and B or to (from) squares C and D.
The equivalence of handfuls is given by the following rules:
1. two handfuls of pieces are equivalent if they are made of the same number of

pieces of each shape and color (general equivalence) or if:
2. they occupy squares A and B or squares C and D in any of the situations (local

equivalence).
3. A handful of pieces consisting of equal number of pieces of different colors is

considered equivalent to the empty handful (cancellation).
4. Dividing or multiplying the number of pieces of two equivalent handfuls by the

same integral number leads to equivalent handfuls.

r

2A 3o So=

=

4A 20 20 2X 3Y 5 4X 2Y 2 -2X+3Y -5 =-4X+2Y+2

=36 3A 90 5a 40 3 X 3Y 9 5X 4 3X-3Y +9 5X +4

In rl CI CI gll Cl X Y N + X Y N +
I

Fig.2 - Computerized settings 11, III and IN I.

Besides the manipulative, there are four computerized settings. The first one
reproduces the manipulative setting (fig. 1). The following settings are shown in
figure 2. Notice that in the last setting, predicative signs are turned into operative
signs.

Discussion of pilot studies
Unlike Dienes and Gategno, we are not "trying to realize a perfect correspondence

between the structure of the mathematical knowledge involved and the structure of the
educational material" [Szendrei, 1996:420], nor are we assuming that the puzzle hides
any kind of "hidden or frozen mathematics" [Gerdes, 1996:914]. We are assuming
that buttons, stones and cubes are three-dimensional signifiers whose meanings are
given by positions, movements and gestures. The material should be regarded as an
amplifier of language resources, nothing else.

Pilot studies on the manipulative material were carried out with mathematics
teachers, pedagogy and computer undergraduate students and high school Ohgraders.
The aim of the preliminary studies was to: 1) adjust the written form of the rules;
2) verify the amount of extra help that should be given for the players to understand
the rules; 3) verify whether the students became engaged in solving the puzzle

The single rule of the doublequal is the pivotal point offered to the students
around which they can start developing a new life story; a story of operational
proficiency instead of one of failure. Further studies may determine what will become
of the arithmetical domain for students who have passed through the doublequal: will
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they use algebraic strategies to solve former arithmetic problems? Will they
spontaneously group multiple occurrences of the unknown and operate
simultaneously on both sides?

The pilot studies3 revealed that the nature of the demand makes a big difference.
In the first experiments, we made reference to a balance in order to introduce the
operational rules. Whenever we tried this simplification, most of the groups started
developing trial and error strategies. We tried to assign more difficult tasks to these
groups, forbade them to use pencil and paper, and proposed situations where the
solutions would not be integers. Instead of looking for another method, they
stubbornly went on specializing their method of systematically investigating solutions
with denominators 2, 3, etc. When we finally showed them the substitution methods,
they revolted and complained that we were "cutting their creativity". However, even
in groups with expert mathematics teachers, it took quite some time to identify the
presence of a linear system behind the idea of the puzzle

The computerized setting is programmed according to the mathematical rules of
the linear systems, not according to the step-by-step manipulation to pass from one
situation to the next, as stipulated in the rules. Therefore, the players may skip
situations by condensing several transformations into one. Mathematically, this
amounts to performing composition of operators in action. Operations on operators
are necessary in order for them to become reified as objects.

"A person must be quite skillful at performing algorithms in order to attain a good
idea of the 'objects" involved in these algorithms; on the other hand, to gain full
technical mastery, one must already have these objects, since without them the
process would seem meaningless and thus difficult to perform" [Sfard, 1991:32].
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COGNITIVE PROCESSES

IN A SPREADSHEET ENVIRONMENT

Alex Friedlander

The Weizmann Institute of Science, Rehovot, Israel

This paper investigates the way two students used spreadsheets to solve an
algebra task and analyzes some cognitive aspects of their work.. Frequent
attempts to generalize the problem situation and to justify these attempts
and repeated revisions of their solution, led the students along a rather
intricate solution path. Some cognitive skills seem to have been
promoted, but also some difficulties were raised, by the use of
spreadsheets.

Introduction
Various studies have reported on significant cognitive processes that occur when
students work with spreadsheets in the early stages of learning algebra. Sutherland
and Rojano (1993), from their own and colleagues' findings, found that processes
such as naming a variable, representing and testing mathematical relationships,
generalizing from arithmetic, and extending informal arithmetic strategies, are
facilitated by work with spreadsheets. Rojano (1996) concluded that current studies
on learning algebra in a spreadsheet environment "show that spreadsheets can be a
substantial support in the development of essential aspects of algebraic thinking".

In this study, I examine cognitive and metacognitive processes supported by the use
of spreadsheets, as students solve investigative algebraic tasks. The analysis is based
on the observation of a pair of students in a beginning algebra class, working with
spreadsheets (Excel) on an activity. The particular videotaped section was selected
from fifteen videotapes of pairs of seventh graders working on algebra tasks,
recorded during a whole year of weekly observations. The section is taken from
three lessons considered by the four observers as representative of both the nature
of the tasks, and of the learning, processes observed throughout the year, and
therefore worth analyzing in depth. I will focus on processes of generalization and
justification, in general, and of algebraic modeling and explaining in a spreadsheet
environment, in particular. In addition to the role of the computer, the social
interaction between the two students was an important factor in the development of
the solution path. However, due to the limits of this paper, the social aspect of the
students' activity will not be analyzed.
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Background
The spreadsheet environment described in this study is part of a beginning algebra
course in a technology-based curriculum development project for grades 7 to 9.
The course for grade seven includes the use of Excel, at the rate of one or two (of
five) lessons per week. Most of the learning units are based on open-ended
problem-situations. The use of computers in this project in general, and of
spreadsheets during the first year of learning algebra, in particular, is aimed to
support

students' active construction of knowledge and cognitive abilities such as
experimentation, prediction of results, modeling, generalization of patterns and
justification of outcomes (Friedlander et al., 1989).

students' ability to produce and analyze a variety of representations of a problem
situation and of its solution.

the development of students' metacognitive abilities, such as reflection upon
observed phenomena, awareness to their own thought processes, self-regulation
and control (Hershkowitz & Schwarz, in press).

The cognitive and metacognitive processes involved in working with Excel will be
discussed by analyzing the videotaped work of two 13 year-old students (a boy and
a girl) on a quite complex problem. The two students attended an urban, selective
(although not aimed for the mathematically gifted) school, and were described by
their teacher as having high mathematical ability.

The twenty-minute section discussed here occurred during the last period in a
sequence of four lessons, devoted to the Chocolate Cake problem-situation. Figure
1 presents the problem and a generalized pattern of its solution.

A baker in the Land of Oz bakes cubical cakes.
The edge length of the cube is called the cake
number. He covers the cakes with chocolate number: (a-2) 12
icing (including the bottom...), cuts them up into price: (a-2) 12

unit cubes (called slices) and sorts them into four 3-sided slices

categories,
covered by icing. Then, for each cake, the baker 1011°1

number.
price: 12

according to the number of sides 8

°1°0packs all the slices of the same kind into a bag. 0
one-sided slices

The price of a bag is determined by the number number. (a-2)26
of slices and by their kind. The chocolate is the price: (a-2)2 6 415
only expensive ingredient, and it costs 1/2 zooz

(an extinct, ancient currency) per A.U. (area unit). The completely uncoated slices are "given away to

charity" and will not be considered.

Figure 1. The Chocolate Cake Problem and its generalized solution for an
axaxacube.

2-sided slices
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During the first three lessons, the students investigated the structure of a cube and
the location and the number of slices in a whole cake. The goal of the last lesson in
this sequence was to use previously obtained results about the number of slices, to
model and investigate ways of pricing slices of different categories. Figure 2
presents possible expressions (written in spreadsheet syntax) that students are
expected to use in order to complete the price table.

A B C D E

Cake No.
Price of
sided slices

Price or Z-sided
slices

Price of one-sided
slices Total price

2 1 0 0 0 3
3 2 12 =(A3-2)*12 =(A3-2)^2*6*0. 5 =B3+C 3+D3

3

Figure 2. Price table for The Chocolate Cake Problem.

COinitive Processes

The observed students worked relatively quickly and their familiarity with general
expressions was apparent, as expected. However, they followed a rather "zigzag"
solution path, in which the repeated attempts to generalize the price of the slices of
a certain kind were not followed through systematically. Figure 3 presents an
overview of their solution -- the formulae produced, their rationale and the reason
for each revision. The task required the students to make four generalizations
three for the price of different kinds of slices and one for the total price. For each
generalization the students made two to four revisions, until they obtained a
formula which they considered satisfactory. The revisions were caused by a variety
of reasons, such as unreasonable computer output, peer discussion or intervention
by a neighbor or by the teacher.

In the following, I analyze cognitive aspects of the students' work, in three
categories: (a) generalizing, (b) analyzing results and (c) explaining and justifying.
The numbers in square brackets refer to the versions of the formulae in Figure 3.

a) Generalizing. The activity took place after two months of weekly sessions with
Excel. The students were familiar with the language of Excel and employed it
naturally in their work and for communication. The observed pair produced
their expressions in Excel format, from the start. Occasionally, the discussion
of a formula was accompanied by verbal interpretations, as in [2.2]:

Boy: Equals [parenthesis] A2 minus 2 this gives the... what's on each
edge... and now multiplied by 12...

Girl: and divided by 2, because this is the price.
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Even constant numbers were sometimes introduced as formulae (e.g., =8 in
[1.1]). In most cases, however, the students employed the language of Excel as a
means of communication, without further interpretation. From their
discussions, it is clear that both students were aware of the general nature of
their expressions. Sometimes, they stated this specifically (G: For the three-
sided slices, the price is always 8.) The students' awareness of the general
nature of their solution can also be deduced from their copying of the formulae
for Cake Numbers 2 to 20, as opposed to their separate handling of Cake
Number 1.

However, the students' familiarity with generalizing in a spreadsheet format did
not prevent some technical errors. Thus, the use of cell names as variables
caused some difficulties. During their first steps, the students used A2, rather
than A3, as a variable in their expressions [2.1, 2.2]. This shift in the referred
cell was probably due to previous experiences in which the students wrote their
formulae in the second row (with the first row containing the column headings).
Later on, the boy also attempted to find the cakes' total price by summing the
numbers in columns A, B and C [4.1], rather than those in columns B, C and D.

Some of these errors could be prevented, by pointing and clicking with the
mouse to the referred cell, rather than keying the referred cell's name into the
formula. Sutherland and Rojano (1993) observe that pointing at cells can be
advantageous and cognitively easier. However, our project staff frequently
observed that a pair of students working together on a computer tend to divide
between them the manipulation of the mouse and the keyboard. This division of
work makes the method of reference by pointing and clicking almost impossible.

b) Analyzing results. The students scrutinized the numbers produced by each of
their expressions. If the numbers seemed reasonable, they moved on to the next
step of their solution, without any further remarks. There were two instances,
however, when numerical results in the table created conflicts. In one case, the
girl noted that the total price of Cake Number 2 should be 12 and not 14, as it
appeared on their screen. This triggered a further inquiry that led to the
necessary correction of the formula for the total price [4.1, 4.2].

In the second case, both students were puzzled by the negative numbers
produced by their (wrongly referenced) formula for the price of the two-sided
slices [2.2] First they wrote it in the cell corresponding to Cake Number 2.
When they received a negative number (-6) they attributed this to the fact that,
in this case, the number of two-sided slices is zero. They replaced the formula
by zero and wrote the same formula again [ =(A2 2)*12/21 in the next line for
Cake Number 3, and copied it downwards. Again, they received a sequence of
numbers increasing by 6 and starting with -6. The following conversation took
place at this stage:



Both: Why -6 !?!
Girl: Let's see, 3 less 2 is 1, multiplied by 12 it's 12, divided by 2 it's 6.

Why -6?
Boy: I'm sure that the computer is wrong...
Girl: [Pointing at the lower part of the same column] Look... look.

here it's positive.
Boy: Let's see till where it's negative.
Girl: What's this negative?
Boy: This doesn't make sense. Here it's zero? At [Cake No.] 4 it's

zero?!
Girl: 4 less 2 is 2, multiplied by 12 it's 24, divided by 2 it's 12.
Boy: [Looking at the edit section of the spreadsheet that shows the

formula for Cake No. 4] A3... A3... Why A3?!
Girl: Wow!! because A2 is this [points at the top of the first column]
Boy: Then, we should have done here...
Girl: [Referring to Cake No. 2] Right! Write A3.

As a result of this revision, they wrote a formula that had the correct reference
and produced positive numbers, but still gave an incorrect price [2.3].

The episodes described above provide additional evidence that problem solving
with a computer, naturally shifts the traditional emphasis from computational
work to the design of a corresponding model for the problem situation, and to
monitoring the out coming results (Heid, 1995).

However, as shown in three of the cases described above [2.3, 3.1, 4.1],
monitoring and reflection on the nature of the numerical output is not always
sufficient. For example, the pair did not detect their error regarding the price
of the one-sided slices [3.1], since the formula produced positive and reasonably
sized numbers. This error was corrected only as a result of teacher
intervention. In this and many other cases, we have seen that the fact that
computers provide large quantities of data in a short time may cause an over-
reliance on "reasonable" data, as opposed to monitoring solution processes and
reasoning.

c) Explaining and justifying. During a relatively short period of 20 minutes, the
observed pair produced 26 explanations of various kinds and length. About two
thirds of these explanations were given by one of the students as answers to the
other's question, or in order to help the partner understand a certain aspect of
the solution. The issues discussed in these explanations can be categorized as
follows:

General explanations -- relating to the (correct or incorrect) generalizations
made about the price of different kinds of slices. These explanations
employed general terms relating to the cube's structure, the pricing policy etc.
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For example, when dealing for the third time with the price of the two-sided
slices, the boy realized that there is no need to divide by 2, as they had done
before, when they considered the price of 1/2 for one unit area, but
disregarded the fact that these slices are iced on two area units. He provided
the following explanation:

Boy: Why divide by 2?
Girl: To find the price.
Boy: Why do we have to divide by 2? Are we stupid!!
Girl: Why not?
Boy: Because each of them is 1 in any case.
Girl: But thus we get the number of slices right?
Boy: But each of them equals one A.U. [He means one zoozJ and this is

how it should be without dividing by 2.
Girl: Right, right...

Local explanations -- relating to Cakes Number 1 and 2. The first case
requires a separate solution. The general formulae can be applied for Cake
No. 2. However, whenever a general formula did not produce a reasonable
output, the students used numbers and tried to generalize for Cake No. 3.
They explained their local solution by the fact that Cake No. 2 has "zero" one-
sided, and two-sided slices -- thus implying that these are exceptions.

Explanations of context were provided as reasons to correct errors that
resulted from disregarding the characteristics of the problem (for example,
when they considered the price of any slice to be 1/2 or disregarded the fact
that the cube has six faces), or to remind the partner about a context-related
conclusion, already reached in a previous stage of the solution (for example,
the girl constantly reminded the boy to divide by 2, to get the formula for the
price).

Technical explanations relating to some computer technicalities (e.g., how
to drag two cells in order to get the sequence of natural numbers), the change
of the variable from A2 to A3 (see the section on generalizations), or the
boy's passing remark that "the computer is wrong", since it produced negative
numbers.

More than 40 percent of the explanations were of a general nature (i.e., they
referred to all the cakes, they employed general terms and many of them were
related to algebraic expressions) and the rest were equally divided among the
three other categories. The large number of explanations can be attributed to
the complex nature of the investigative task and to the pair's interactive work,
but a main cause for their high level is the nature and the requirements of a
spreadsheet environment.
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Conclusion

The observation of the cognitive processes involved in solving an algebraic problem
with Excel, showed some significant advantages for using spreadsheets in algebra.

Work with Excel allows a natural transition between the world of particular
numerical cases and the general world of algebra. The need to use formulae as a
means to produce many numerical examples, emphasizes the general nature of the
algebraic expressions. The observed students considered spreadsheet formulae a
natural tool, that creates numerical data needed to understand, analyze and solve a
problem situation. As a result of using spreadsheets, they could develop cognitive
and metacognitive skills (transitions between numerical and algebraic
representations, generalization and justification of patterns, discussions of solution
methods, analyzes and evaluation of outcomes) of a wide variety and at a high level.
The students were also released from the burden of calculations and algebraic
manipulations.

Besides these advantages, the observed students encountered some cognitive
difficulties. Some of these can be attributed to spreadsheets. The spreadsheet
syntax, although relatively simple, seemed to cause some difficulties such as the
use of an incorrect reference as a variable. Spreadsheet capabilities can also turn
out to be obstacles. Thus, the creation of numerical data in large quantities can
cause an over-reliance on the "reasonability" of the output and diminish the need
for an in-depth understanding of the problem at hand.
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EXPLORING STUDENTS' IMAGES AND DEFINITIONS OF AREA
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ABSTRACT. This study examines several aspects of the images and definitions that
eight students of high school (16 years old) have regarding area. The analysis is
performed through 10 open questions to which students answered through written
statements, drawings, concept maps. The protocols shed light on the ways used by
students to communicate their ideas and on the role they ascribe to definitions in
their mathematical experience.

INTRODUCTION

In studying the various aspects of proof we became aware of the crucial role of
definitions. In particular, we have often observed that some cause of failures are
due to the role students ascribe to them and how they deal with them. What happens
can be explained considering the statement to prove as having a hypertext structure:
it contains 'hot words' that the student has to single out and on which to 'click' when
necessary. The operation of clicking establishes a link between hot words, concept
images and concept definitions (henceforth called images and definitions) behind
them to get the information useful to go on in proving. If one of these procedures
(recognising hot words, clicking on them, getting information) is not activated the
statement is obscure and to prove is a hard task. The research reported in
(Furinghetti & Paola, 1997) may be an exemplification of this hypertext metaphor.
We have found that the statement 'Prove that the product of any three consecutive
natural numbers is divisible by 6' resulted difficult to prove for most students (aged
from 14-17) because they did not recognised that 'divisible' was a 'hot word' in the
statement to prove or, when they did, were not able to use the definition of
`divisible' that has been introduced to them previously. In that case we had the
impression that students did not ascribe cognitive value to definitions, they seemed
to perceive them only as labels which are not relevant to the mathematical work.
Other authors have observed analogous students' behaviour. Rasslan and Vinner
(1998, p.33) write that the student 'does not necessarily use the definition when
deciding whether a given mathematical object is an example or non example of the
concept. In most cases, he or she decides on the basis of the concept image, that is,
the set of all the mental pictures associated in his/her mind with the name of the
concept, together with all the properties characterising them'. Bills and Tall (1998,
p.105) have introduced the expression 'formally operable' for a given individual to
indicate a (mathematical) definition or theorem which an individual is able to use 'in
creating or (meaningfully) reproducing a formal argument'. We can say that for
our students the definition of 'divisible' was not operable.
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We quote the following passage, taken from Wheeler (1991, p.1), to summarise
some important points on the role of definitions in proving:
`When we talk about proof, it seems very often that we shift quite unconsciously between talking of
proof as something technically proven and proof as a sign for formalism. I wish we would give more
attention to the business of definition rather than that of proof per se, or at least that we would really
take into account of the act of making definitions, because if one's talking about the normalization of
mathematics it seems to me that it's in the definitions that we find the vectors of mathematics: these are
things that we choose to define this way because they have a future, because they will go somewhere,
because we can do something with them. Now, proof when it's finished, is finished. Of course, there
are proof techniques that we can apply in other cases, so I mustn't be unfair to proof and say that we
can't do anything with it other than just prove one particular theorem, but definitions always have to
be shaped in order to point us onwards, so that we can go somewhere, otherwise they would be bad
definitions that we would abandon, that somebody subsequently would change'.

OUR STUDY: METHODOLOGY AND AIMS

On the ground of the previous observations we consider very important to explore
students' behaviours in defining and to promote classroom activities which lead
students to reflect on definitions. In the present paper we report an activity of this
kind centered on the concept of area. In carrying out this activity our aim was
twofold: from one hand it was to investigate which images students have elaborated
of the concept of area and how make them explicit, from the other hand our aim
was to promote cognitive activities about area. The concept considered is recognised
as very difficult, see (Douady & Perrin, 1989), but is not studied so much from the
educational point of view, in particular at the level of high school.

The population is constituted by eight 16 years old students of a Scientific Lyceum,
an Italian high school in which mathematics plays an important role. They were
requested to answer the questions reported in Table 1 (next page), using written
statements, drawings, concept maps. We explained them our purposes and asked for
an active collaboration. They worked with good willingness and fulfilled our
expectation. The allowed time was 50 minutes.

We tried to structure the questionnaire in such a way that students' thoughts and
possible inconsistencies could emerge. Question Q.1 is aimed at verifying whether
students' images of plane regions are only based on elementary patterns (polygons,
circle) or include any kind of shapes. The distinction is significant since in the first
case students may have difficulties in thinking to situations in which a formula to
compute area based on elementary operations does not exist. Question Q.2 is aimed
at outlining the nature of the concept in question through links established with
other mathematical concepts. Questions Q.3, Q.4, Q.5 and Q.6 were conceived to
stress the specificity of the languages used in different school situations. These
questions were inspired by Austin and Howson (1979) who observe that in
classroom there are different mathematical languages: the language used with mates,
with the teacher and the language of mathematics. The remaining questions are
mainly aimed at orienting students towards activities of metacognition, that is to say,
using the Schoenfeld (1987) expression 'thinking about thinking'. In particular
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Question Q.8 is focused on the possible origin of students' misunderstandings.
Question Q.9 is addressed to see whether new forms of representation of knowledge
may act as a stimulus to make explicit concept images.

Q. 1. When one talks about the area of a plane figure, which images are evoked
to you? Represent some of them (three or four) in your protocol.
Q. 2. Which parts and which topics of mathematics do you link to the notion of
area of a plane figure? Write in your protocol and try to give an explicatory
example for each issues you refer to.
Q. 3. To explain to a fourth-fifth grade student what area of a plane figure
means, what would you say?
Q. 4. To explain to an eighth grade student what area of a plane figure means,
what would you say?
Q. 5. To explain to a mate of yours what area of a plane figure means, what
would you say?
Q. 6. To say to your teacher what area of a plane figure means for you, what
would you say?
Q. 7. Are you surprised about the questions 3, 4, 5, 6? In other words is it
possible to use different characterisations of the same concepts according on the
person you are addressing to?
Q. 8. Are there analogies and differences between the use and the meaning of the
word area in the common and in the mathematical language.
Q. 9. Construct a concept map about the concept of area.
Q. 10. Reconstruct the didactic path followed in your school career until now as
for the concept of area.

Table 1. The questionnaire on the students' images and definitions of area

ANALYSIS OF THE ANSWERS ..

In analysing the protocols we have singled out key elements and orientations. We
have reported them in Table 2 (which takes the next two pages) to give a synoptic
view of answers. In abbreviating and translating sentences some nuances of
meanings are lost, but we feel that the basic issues of the students' reactions are
kept. Table 2 has two entries: reading horizontally we have the answers to the same
question by the eight students, reading vertically we have the picture of each
student's images and definitions as emerged from protocols. In the following we
give our interpretation of the findings reported in Table 2.

Question Q.2 offers insights on the students' difficulties about area. Only two
students (Protocols 3 and 6) mention the 'measure'. Nobody refers to real numbers,
which for us was the most obvious association. Another missing link for all students
except one (Protocol 7) is that with the concept of function. In comparing the
answers to Q.1 and Q.2 we find inconsistencies (see rows referring to Q.1 and Q.2
in Table 2) which are generated by the passage from the simple geometricallvisual
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context to richer contexts encompassing arithmetic, algebra, analytical geometry. In
Protocols 1, 2, 5 the geometrical shapes mentioned in the row of Q.1 are not in
relation with the answers to Q.2. In principle, we consider important to encourage
students to go across different parts of mathematics: this could promote the
flexibility advocated by Tall and Gray (1993). Our findings show that this process
needs of careful control. Going across contexts does not always create meaning, in
some cases may cloud the existing one so that what is generated is not fruitful
communication between contexts, but rather contamination of contexts.

Questions Q.3, Q.4, Q.5, Q.6 shed light on the evolution of the way used to
communicate mathematical ideas according to the interlocutor. At the primary level
there are manifest references to concrete elements: 'space occupied by the figure'
(Protocol 2), 'quantity of substance covering up the figure' (Protocol 3), 'to hatch
the figure' (Protocol 4), `to colour the figure with pencil' (Protocol 8). There is a
precise use of efficient `ostensives' (hatching, colour). Things change when the
school level increases: already in the statements addressed to eight grade students the
language is more formal, which does not mean necessarily more precise, nor more
oriented to generalisation and abstraction. Students do not add useful information,
they only paraphrase the statements addressed to younger students eliminating
ostensives and concrete ideas and adding negligible details. For example, in Protocol
2 the expression addressed to the fourth-fifth grade student 'space occupied by a
figure', which evokes a physical situation, is substituted by 'portion of plane
contained at the interior' when addressing to the eight grade student. The loss of
spontaneity is evidenced in Protocol 8 where we observe a real escalation: the
ostensive for the fourth-fifth grade (coloured pencil), - the semi-intuitive for the
eight grade ('what is contained in the segments') the formal expression (It is
called'). It is curious to observe that to use the words 'It is called' was advocated by
Smith (1911) in his famous treatise on mathematics teaching to 'mark the statement
at once as a definition' (p.158), that is to say to distinguish it from a theorem.
Protocol 8 evidences a different behaviour according to the age of the interlocutor:
with the youngest the student tries to make understandable his message using the
`common sense', with the oldest and with the teacher he is only interested in
conveying the idea that he is defining something, no matter if what he is saying is
understandable or not. Another aspect of the evolution in the way of communicating
according to the school level is the relationship general/generic/particular. In
Protocol 8 the student adds the adjectives 'concave or convex' to the word 'figure'
for mates and for the teacher. In Protocol 1 we find a similar behaviour: to the
fourth-fifth grade student it is said 'portion of plane contained in lines', while for
the older students the sentence becomes T..] segments or curved lines' [emphasis is
our].

As for Question Q.7 all students agree that there has to be a distinction between the
languages used in the four different situations of Questions Q.3 to Q.6, but from
their explanations we infer that the difference is in the form, not in the substance.
Advancing in the age there is no gain in generality, abstraction or elegance, while
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there is loss in meaning. The creativity seems inhibited along the years; the students'
behaviour can be referred to the ritual and symbolic schemes discussed by Harel and
Sowder (1996) in their studies on proof.

Question Q.8 adds further information about the relationship between mathematical
knowledge and common sense. In Protocol 1 it is pointed out that in the common
language the area is considered only [emphasis is our] as a measure. The student is
not able to accept the right suggestions coming from the common sense, even more
it seems that the common sense is perceived as something against mathematics.

Analysing our findings we feel that the students' capacity to
grasp mathematical meaning through personal and
autonomous elaboration of ideas has the asymptotic trend
illustrated in the figure beside. At the age of the students
examined (16 years) the upper bound seem to be already
reached. In Protocol 2 we found the statement

co

school level

`At the lyceum the teacher tells us where formulas come from', which is not the
same as saying that the teacher explains how to find formulas. Freudenthal (1973)
has criticised the teachers' practice of providing students with definitions given a
priori instead of constructing them together with students. May we interpret the
student's statement as a criticism in this direction?

Concept maps

At the moment of answering questions students did not know what 'concept map'
means. We simply explained them that it is 'a graphical representation of domain
material generated by the learner in which nodes are used to represent domain key
concepts, and links between them denote the relationship between these concepts',
see Jones (1998, p.161). To analyse the students' protocols we have considered:

the number of issues reported in the concept map
- if arrows are single or double, how arrows go in and out at the nodes
- the presence and the kind of explanations of links

the presence of the word definition or its derivative
- the type of iconic representations used (only words, words in boxes, etc.)
To single out the differences when using the verbal language or concept maps we
have compared the number and the type of issues in the answers to Q.2 (that about
the links with parts of mathematics) and in the concept map. Protocol 4 has the same
number of issues (six, the highest among the eight students examined) and of the
same type in both cases. The concept map of this protocol is very rich and it is the
only in which links have a written explanation. In Protocol 7 there is the same
number of issues (four) in Q.2 and in the concept map, but the issues mentioned are
different. In Protocol 5 there is one issue in the answer to Q.2 and there is not the
concept map. In the other protocols the number of issues appearing is higher in
concept map than in Q.2.

About the different styles we can distinguish:
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those who simple translate into the iconic form their word statements (for
example, Protocol 1)

those having a linear pattern to approach the concept ((for example, Protocol 3).
The arrows are single, at most one arrow arrives to and leaves from nodes. The
focus is on the order of facts more than on links between them. The word definition
appears among the nodes
- those who really add information making the links more explicit and finding new
issues ((for example, Protocol 4).

PRELIMINARY CONCLUSIONS

The concept of area, through its epistemological and conceptual aspects and its
character of being a cross-roads of different parts of mathematics has revealed itself
suitable to show that students have in their mind a jungle of concept images, concept
definitions, which are not completely under their control. Moreover for them the
problem is not only to elaborate images which can flow into definitions
mathematically acceptable, but to find means which may make them explicit,
consistent and clear to others and to themselves. From our study we have obtained a
number of indications for the classroom practice as well as topics which deserve
attention for future research. A point we would like to stress as a first preliminary
conclusion is the importance of making students to reflect not only on their way of
thinking, but also on the way of representing their thoughts, so that to the
Schoenfeld's expression 'thinking about thinking' we may add its paraphrase
`thinking about representing'.
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A NUMERACY ASSESSMENT FRAMEWORK

FOR THE INTERNATIONAL LIFE SKILLS SURVEY

Iddo Gal

University of Haifa, Israel

Abstract. This paper describes a conceptual framework for defining and assessing
numeracy of adults as part of theplanned International Life Skills Survey. The paper
reviews some differences between assessment ofmathematical knowledge of adults
and younger students, discusses the notion of numerate behavior, presents a
definition used to guide construction of assessment tasks, and outlines some
dilemmas involved in conducting a large-scale assessment of adults' numeracy.

Background

This paper describes a conceptual framework developed for assessing numeracy of

adults as part of the International Life Skills Survey (ILSS) planned for the year 2001.

This comparative survey is being jointly developed by Statistics Canada and by the

United States' National Center for Education Statistics (NCES), in cooperation with
the Organisation for Economic Cooperation and Development (OECD). This paper is
based on a report prepared for the ILSS project by the NumeracyWorking Group,
comprised of individuals from Israel, Australia, Holland, United States, and Canada.

The ILSS project is a follow-up to the International Adult Literacy Survey (IALS), the

world's first large scale comparative assessment of adult literacy. In the first phase of

IALS, almost 21,000 adults from 7 countries, including the U.S., Canada, Germany,
the Netherlands, and others, were tested based on survey methodology that combined

household survey research and methods of educational testing. Key reports from the

IALS were published starting in 1996 (e.g., Statistics Canada and OECD, 1996).

Using a similar approach involving home interviews, ILSS will test nationally
representative samples of adults aged 16 and over in multiple countries. Tasks will
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assess performance in several skill domains, including Numeracy as well as Literacy,
Problem Solving, and Practical Cognition; other variables will be assessed via a
background questionnaire. The domain of Numeracy is planned as an elaboration on
the domain of Quantitative Literacy previously included in IALS and in prior studies. .

Feasibility studies involving sample tasks from the Numeracy scale have started and
results are expected in summer 1999. At this point, this paper is presented to share
with researchers and educators interested in mathematics education the
conceptualization of Numeracy planned for the ILSS, and to outline some of the issues
involved in the development of a scale for assessing Numeracy of adults.

Introduction

Numeracy is becoming a growing concern for diverse education sectors, following its

apparent low profile for many years. As countries increasingly attend to topics such as
improving workplace efficiency and quality processes, to resulting continuous learning

needs, and to civic participation (European Commission, 1996), it is seen as vital that
nations will have infonnation about their citizens' numeracy, among other skills, if

they want to plan effective education and lifelong learning opportunities.

The concept of numeracy is specifically related to the dialogue about the goals and

especially outcomes and impact of school mathematics education. More educators

now encourage links between knowledge gained in the mathematics classroom and

students' ability to handle real-life situations that require mathematical or statistical

knowledge and skills (Gal, 1997; Packer, 1997). However, while numeracy may be a

key skill area, its conceptual boundaries, cognitive underpinnings, and assessment,

have not received much scholarly attention so far.

With the above-in mind, this paper is organized in five parts. Part 1 contrasts some

ideas behind assessments of school-based mathematical skills and of adults

knowledge. Part 2 outlines key knowledge bases used to inform our conception of

adult numeracy. Part 3 presents a working definition of numerate behavior to be used

to guide item development for the ILSS. In Part 4 we comment on several decisions

that underlie scale development, such as task range, scoring, and difficulty of items.

Lastly, a Summary section outlines resulting challenges in conducting a credible

assessment of adult's numeracy in a large-scale context. (Due to space limitations, the

discussion of all topics in this paper is understandably brief).

1. On large scale assessments of mathematical knowledge

The IALS, following on a framework established in prior studies in the U.S. and

Canada, made use of three literacy scales, Prose Literacy, Document Literacy, and

Quantitative Literacy, to operationalize its conception of literacy. Quantitative Literacy

(QL) was defined as: The knowledge and skills required to apply arithmetic

operations, either alone or sequentially, to numbers embedded in printed materials,
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such as balancing a cheque book, figuring out a tip, completing an order form, or
determining the amount of interest on a loan from an advertisement.

Some key distinguishing features of all three IALS scales were: (a) Respondents have
to deal with information embedded in text. (b) Tasks involve genuine or realistic
stimulus materials such as those found in newspapers or official forms and documents.
(c) Tasks require performance that is "realistic", i.e., what may be expected of a
person in real life. (d) Use of "correct/incorrect" scoring scheme. These features,
especially the emphasis on the embedding of all tasks in text, including of Quantitative
Literacy tasks, were an outgrowth of IALS' mission to assess dynamic and functional
perspective of literacy as a purposeful skill area in adults' life.

In contrast, large-scale assessments of mathematical skills aimed at school-age student
populations have taken quite different approaches. A review of large-scale assessments
of mathematical skills is beyond the scope of this paper (see Robitaille & Travers,
1992). Yet, we reiterate here that large-scale assessments made in a schooling context
usually start from the assumption that students should have learned symbol-
manipulation competencies (and hopefully understood underlying "big ideas" along the
way). Such assessments (legitimately) use a certain degree of formalization of math
symbols, may employ tasks which are quite contrived or relatively devoid of a realistic
context, and expect some memorization of formulas and notations. This is true, for
example, of the mathematical tests included in the National Assessment of Educational
Progress in the U.S., of the recent TIMMS study, or even of many existing
nationally-recognized tests used to qualify knowledge of adults, such as the national
vocational qualifications system in the U.K, or the GED in the United States.

The above, of course, is not a criticism of such assessment initiatives, but just a
reminder that designers of all assessments make conscious decisions regarding what it
means to "know math" or "be able to do math", in light of their overall mission and the
information needs of the end-users of the assessment. School-based assessments
concentrate on how students understand, use and apply mathematical skills and
mathematize problems which are related to their formal mathematics curriculum. An
emphasis on realism of tasks is secondary, given that most students have limited world
experience. Though word problems are used, large-scale assessments are not explicitly
interested in performance on text-rich tasks. (Yet, many quantitative situations adults
face involve mathematical or statistical information embedded in diverse and
sometimes complex or terse texts).

The notion of numeracy, however, implies a bridge that links mathematics and the real
world. Our goal was to develop a conceptual framework of "numeracy" that is couched
in assumptions about how adults "know" and "do" math in the real world, using not
only their formal knowledge (of mathematics, of literacy, and so forth), to the degree it
exists, but also other, experience-based knowledge.



2. Perspectives on adult numeracy

Our thinking about the nature and scope of adult numeracy, and about approaches to

its assessment, is informed by prior work and publications in five interrelated areas:

1. General developments in continuing and vocational education in many countries,

such as in the U.S., U.K, Denmark, and Australia, showing that educational systems

now recognize the need to employ skills frameworks that include numeracy.

2. Work on the nature of adult literacy and on the different life functions/needs served

by adults' literacy and numeracy skills. In one project (Kindler, Kenrick, Man, Tout, &

Wignall, 1996), for example, numeracy is organized according to its different

purposes: Numeracyfor practical purposes, Numeracy for interpreting society,

Numeracy for personal organisation, and Numeracy for knowledge.

3. Recent thinking about the goals of learning mathematics and about "good"

assessment in this domain. Influential perspectives were, e.g., those presented
following the Realistic Mathematics Education movement in the Netherlands,
emphasizing the need to develop (and assess) use of formal and informal reasoning

strategies (Groenestijn, 1998), the curriculum and assessment frameworks of the

National Council of Teachers of Mathematics (NCTM, 1995), or suggestions from

those interested in school-work links (e.g., Packer, 1997).

4. Research on the nature of adult's mathematical thinking, mathematical practices, the
cognitive processes underlying how people cope with out-of-school quantitative
situations (Nunes, 1992), and the impact ofattitudes and beliefs on performance.

5. Current thinking about adult numeracy, both at the conceptual level as well as in

terms of needed skills and needed curriculum. Various views in this area have emerged

from diverse workers and groups. Two key examples are:

Work as part of the Numeracy Project at the National Center for Adult
Literacy (NCAL) in the U.S. has began to formulate the processes that may
comprise numerate behavior, based on an assumption that "numeracy" refers to

the capacity for effective management of quantitative situations (Gal, 1997). It

has been proposed that adults manage situations, using both generative and

interpretive skills and supporting knowledge and dispositions, and that adults

do not necessarily cope with problems in ways that can be classified as right or

wrong, in contrast to how students solve word problems, even if these are

supposed to simulate real-life situations. Cumming, Gal, & Ginsburg (1998)

have argued that several aspects of numerate behavior are not reflected in how

tests aimed for adults are created, scored, and interpreted.

Work conducted by the Adult Numeracy Network (Curry, Schmidt, &

Waldron, 1996) in the U.S. consolidated perspectives from the NCTM
Curriculum Standards (NCTM, 1989), the U.S. Secretary's of Labor

Commission on Achieving Necessary Skills (Packer, 1997), and results of



interviews with adult learners, numeracy teachers, and employers. Seven broad

themes emerged, consistent with those offered by NCTM and using similar

titles, but with numerous adaptations to adults: relevance/connections; problem
solving/reasoning/decision-making; communication; number and number sense;

data; geometry: spatial sense and measurement; algebra: patterns and function.

3. A working definition of numerate behavior

Based on the above and other related literatures, we have sought a view of numeracy

that acknowledges the diverse purposes served by adults' mathematical (and statistical)
knowledge, that encompasses the different suggestions regarding the skills adults need

to effectively function in home, work, community, and other contexts, and that takes

into account the cognitive, metacognitive, and dispositional processes that support or

affect adults' numeracy.

However, one cannot assess numeracy, but behavior (broadly defined). We have thus

chosen to focus on numerate behavior, which is revealed in the response to
mathematical information that may be represented in a range of ways and forms. The

nature of a person's responses to mathematical situations critically depends on the

activation of various enabling knowledge bases, practices, and processes.

Table 1 (next page) presents our working definition of numeratebehavior. It will be

used to guide development of items for a Numeracy Scale for the ILSS. The definition
in Table 1 distinguishes five facets, each with several components. (Space limitations

prevent the presentation of further explanations of the logic behind the choice of these
facets, and sample items. Further information is available upon request).

4. Scale development, scoring, and background data issues

Range of tasks. An item pool is being developed to span different combinations of
the components in each numeracy facet. (Not all tasks will be given to all respondents:

the ILSS will use a "task-spiraling" design, as in TIMSS, where each respondent will
be given a subset of the tasks in the item pool for each ofthe scales). Regarding the
fifth facet, "Enabling knowledge," the main component we will utilize is the first,
'Mathematical knowledge and understanding'. This is so the content of the tasks can be
understood by users of the assessment results in terms of common school based
mathematics topics (i.e., whole numbers, basic operations; percents, decimals and
fractions; measurement; geometry; algebra; statistics and probability, etc.).

Contexts. All tasks will be derived from real life situations and embedded in a real

life context. In the ILSS there will be no context-free tasks, which do appear in many
school-based math surveys. Stimulus material will be chosen to have different levels of
embeddedness in text, from text-rich to almost text-free. (As the assessment is based

on a home interview format, verbal instructions will be pre-arranged for some items).



Table 1: Numerate behavior and its five facets

Numerate behavior involves...

...Managing a situation or solving a problem in a real context...
(contexts include: everyday life; work; societal; further learning)

...By responding...
(responses to quantitative situations can involve: identifying; interpreting;

acting upon; communicating about)

...To mathematical information...
(this information may involve: numbers; statistical data; measurements;

money; time; shape; direction; pattern and relationships)

...That is represented in multiple ways...
(the actor in a given situation may encounter: objects; pictures; numbers;

symbols; formulae; diagrams & maps; graphs; tables; math information in

text) (separately or in some combination, possibly with surrounding text)

...And requires activation of a range of enabling knowledge,
behaviors, and processes.

(people's thinking about and actual behavior in response to quantitative
situations is supported or influenced by: mathematical knowledge and

understanding; mathematical problem solving skills; literacy skills; beliefs

and attitudes; background world knowledge).

Scoring. Many math surveys use a "correct/incorrect" scoring scheme. In ILSS,

selected numeracy tasks will use a 3-level "correct--partial credit--incorrect" scheme,

to accommodate answers to some interpretive questions, as well as for cases where

adults adopt reasonable strategies but reach incorrect answers.

Difficulty. To ensure a distribution of items at different difficulty levels, the

complexity of items will be pre-estimated on the basis of five general factors gleaned

from prior assessments of adult literacy or of mathematical skills: (1) complexity of
Mathematical information/ data; (2) Type of operation / skill; (3) Expected number of

operations; (4) Plausibility of distractors (including in text); (5) Type of match /
problem transparency. These factors can determine, separately and in interaction, the

difficulty level of most numeracy tasks. For some tasks, such as those that are more

interpretive in nature, other factors that affect complexity will also be considered.

Background variables. To shed a broader light on factors related to the distribution

of numeracy skills across the adult population, additional data will be gathered through

a background questionnaire, regarding three topics: school mathematics experience;

numeracy practices (e.g., use of calculators, getting help from others, activity



structures); and dispositions (e.g., anxiety, confidence, interest). This is in addition to

information about demographic variables and about literacy practices at home and at

work that will be collected to support interpretation of results from all the ILSS scales.

5. Summary

Key motivations for conducting the ILSS are: to inform policymakers and educators

regarding levels (distributions) of various skills, including of numeracy; to explore

factors associated with observed skill levels (e.g., literacy); and to examine links

between numeracy (or other skills) and important social variables, such as earnings,

labor-force participation, unemployment, or health-related behaviors. However, the

inclusion of a Numeracy scale in the ILSS also offers a significant opportunity to

develop a new conceptual framework of adult numeracy, which should be of interest to

educators and researchers interested in the development and application of
mathematical knowledge in purposeful contexts.

Overall, numeracy is a multifaceted and sometimes slippery construct. Our basic

premise is that numeracy is the bridge that links mathematical knowledge, whether

acquired via formal or informal learning, with functional and information-processing
demands encountered in the real world. An evaluation of a person's numeracy far from

being a trivial matter, as it has to take into account task and situational demands, type
of mathematical information available, the way in which that information is

represented, prior practices, individual dispositions, cultural norms, and more.

Numerate behavior obviously includes the ability to calculate or manipulate symbols

but is far from being limited to it. In a large-scale survey context, assessment of

numerate behavior can be accomplished through tasks couched in realistic non-school
settings, with limited usage of formal notations (unlike school-based assessments), and
with significant presence of text-rich tasks (given their ubiquity, at least in industrial

countries), as well as of some tasks where opinions rather than computation are called

for (e.g., when interpreting statistical messages). Yet, while the scale we envision may

cover a broad mathematical terrain, it may still fall short of encompassing the full

scope of numerate behavior, due to pragmatic considerations. Some aspects of
people's numeracy skills, such as those pertaining to problem-solving strategies, or to

interpretive responses and their underlying reasoning processes, cannot be fully

reliably and validly assessed with the methodology presently available in the ILSS.

Full assessment of adults' numerate behavior requires further work on the

conceptualization of some the facets and components of adult numeracy, as well as

grappling with a host of pragmatic challenges, such as translation to different
languages that will retain task characteristics, training of interviewers regarding
follow-up questions or scoring of partial responses, and more. It is hoped that this brief

report will facilitate a dialogue on these and other issues raised in this paper among

researchers and educators interested in mathematics education.
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"What can we all say?" Dynamic geometry in a whole-class
zone of proximal development.

John Gardiner, Brian Hudson, Hilary Povey
Sheffield Hallam University,UK

This paper first considers aspects of the literature relevant to class and group
teaching in a social context. Ideas of socio-mathematical norms and argumentation,
on the significance of local communities of practice and on the development of a
whole-class ZPD are examined. These ideas have been used to influence classroom
approaches to the use of dynamic geometry (Cabri II on the Ti 92 with 11-14 year
old pupils in the UK) and analysis of classroom observation is presented.
Conclusions are drawn about the interaction of these ideas with the technology and
how the alignment of mathematical meaning-making might be promoted.

Introduction
There are bodies of current research which consider, from different perspectives, the
dynamics of social meaning-making in classrooms. Cobb and Yackel (1996),
Winbourne and Watson (1998), and Hedegaard (1990) and Lerman (1998) all have
viewpoints which can be used to inform an analysis of classroom interaction. This
paper reports on the development and use of classroom material using dynamic
geometry on the T192 in lower secondary classrooms (age 11-14) in the UK.
Classroom dialogue from lessons taught by the researcher was transcribed from
audio recordings. This dialogue is analysed from a socio-cultural perspective, making
reference to the viewpoints referred to above, and seeking to illuminate the ways in
which students make mathematical meaning in areas such as construction and proof.

Literature and Theoretical Background
Vygotsky(1962) proposed a social background to learning and formulated the
Genetic Law of Cultural Development, with learning moving from the social to the
personal. He took up the idea of the Zone of Proximal Development as the area
where interaction between the individual and the social leads to development.
Lerman (1998) says of the ZPD 'it provides the framework, in the form of a symbolic
space , for the realisation of Vygotsky's central principle of development.'(p71)
Of particular interest here is a definition of the ZPD which includes the classroom as
a whole, in this case incorporating the teacher, the pupils and the technology
Hedegaard (1990) has reported in terms of the development of a whole-class ZPD
rather than the consideration of an individual's learning:

This activity, in principle, is designed to develop a zone of proximal development for
the class as a whole, where each child acquires personal knowledge through the



activities shared between the teacher and the children and among the children
themselves (p 361).

Hedegaard reports in the same paper a motivational shift in children's focus, from an
interest in the concrete to interest in the derivation of principles which can be applied
to the concrete. Lerman (1998) takes the discussion further.

The ZPD is the classroom's, not the child's. In another sense it is the researcher's: it
is the tool for analysis of the learning interactions in the classroom (and elsewhere)

(P 71).

Insights into factors which might influence meaning-making in a whole-class or
group ZPD can be drawn from the literature and indicate socio-cultural vectors which
may operate for meaning-making. These include Local Communities of Practice,
Socio-mathematical Norms and Choice of Materials.

Local Communities of Practice and Telos
Drawing on work by Lave and Wenger (1991) and Lave (1993), Winbourne and
Watson (1998) have used the idea of 'local communities of (mathematical) practice'.
They identify features of a local community of (mathematical) practice :

pupils see themselves as functioning mathematically within the lesson;
within the lesson there is public recognition of competence;
learners see themselves as working together towards the achievement of a
common understanding;
there are shared ways of behaving, language, habits, values and tool-use;
the shape of the lesson is dependent upon the active participation of the students;
Learners and teachers see themselves as engaged in the same activity.'(p 183)

They examine classroom interaction in terms of such a community and go on to
discuss the idea of 'telos', of the meaning-making of the whole class being aligned in
directions generated by social interaction. They see telos as a unification of small
scale 'becomings' by which many learners join a community of practice. They see:

a link between our notion of LCP and the situated abstraction of Noss and Hoyles
(1996). Just as they claim the computer provides domains which support students'
abstraction, so we claim LCPs support students' growing image of themselves as
someone who is legitimately engaged in mathematical practice, as someone, in other
words, who is becoming a mathematician. (p183)



Socio-mathematical Norms and Argumentation
This approach is echoed in the work of Cobb and Yackel (1996), who have analysed
mathematics classrooms in terms of the negotiation and maintenance of social and
socio-mathematical norms. Social norms include

insistence on explanation of answers
respecting the contribution of others
making clear agreement as well as disagreement.

Socio-mathematical norms would include

some notion of what constitutes a valid, complete solution
agreement on the worth of alternative solutions
negotiated agreement between teacher and students on the mutual acceptability of

solutions.

Social norms will exist in all classrooms, and will bear a direct relationship to the
society in which the classroom is situated. Because social norms will affect the
negotiation of socio-mathematical norms, Apple (1992) has argued that the
classroom is firmly situated in the wider context of the practices of school and
society. Yackel and Cobb (1996) discuss the influence of socio-mathematical norms
on argumentation in the classroom. They draw on the ideas of Toulmin (1969) as
developed by Krummheuer (1995), seeing argumentation as made up of conclusion,
data, warrant and backing. Yackel (1998) says of argumentation:

it clarifies the relationship between the individual and the collective, in this case
between the explanations and justifications that individual children give in specific
instances and the classroom mathematical practices that become taken-as-shared. As
mathematical practices become taken-as-shared in the classroom, they are beyond
justification and, hence, what is required as warrant and backing evolve. Similarly,
the types of rationales that are given as data, warrants and backing for explanations
and justifications contribute to the development of what is taken-as-shared by the
classroom community, that is to the mathematical practices in the classroom. (p210)

Thus argumentation is seen as a social, rather than a logical process, a means of
establishing that which is held in common about the topic in question and moving
forward the 'held in common' by classroom interaction. Voigt (1995) discusses the
reflexivity between learning and interaction and speaks of this reflexivity
contributing to a classroom microculture which in turn affects the meaning-making
which is taking place.
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Choice of Material
Lave and Wenger (1991, pp102,103) address the issue of the transparency of a
resource, and this is further examined by Adler (1998, pp8-11). A resource used in a
mathematics classroom can be so visible to students that it obscures the mathematics
and prevents meaning making. At the same time some visibility is necessary. We
want the resource to be visible in the sense that it should direct the gaze of students,
so enabling their meaning-making.

Invisibility of mediating technologies is necessary for allowing focus on, and thus
supporting the visibility of, the subject matter. Conversely, visibility of the
significance of the technology is necessary for allowing its unproblematic- invisible -
use. This interplay of conflict and synergy is central to all aspects of learning in
practice: it makes the design of supportive artifacts a matter of providing a good
balance between these two interacting requirements.(Lave and Wenger, 1991 p103)

Clearly the familiarity of students with technology such as the TI 92 governs its use,
in a way which is informed by arguments such as this. As they become more familiar
with the software the teacher will be able to introduce the use of more complicated
functions without losing transparency.
It is proposed here that these approaches, of a whole class ZPD, of a recognition of
local communities of practice, and of negotiated socio-mathematical norms and
argumentation have much to offer in looking at how technology, appropriately
transparent, can be used in the classroom. In this study such approaches are used, in
particular, to analyse social meaning-making in the area of construction and proof
using Cabri with the TI 92 hand-held computer with lower school (11-14 years)
pupils.
Methodology and Data Collection
A qualitative and ethnographic approach to research has been adopted, with case
studies used to provide instances of rich incidents for subsequent analysis. These
were subjected to microethnographic interpretive procedures (Erickson, 1986 and
Voigt, 1990) Classroom interaction between teacher/researcher and individuals in
whole class and group situations was audio recorded and the transcriptions of these
recordings analysed. In addition, field notes of memorable incidents were recorded.

Each student had a TI 92 hand-held computer and used the dynamic geometry
environment Cabri as available on this machine. An overhead projector version was
available for demonstration by pupils and the teacher to the whole class. The
following examples were an attempt to set up possibilities for whole class meaning-
making with the minimum of previous knowledge of the TI92. The pattern followed
was for the class to generate and discuss a simple dynamic image, and to record the
result in exercise books as a diagram after the dynamic image had been appreciated.
The hand-held nature of the T192 is particularly suitable for pair discussion and,
indeed, for consigning to a corner of the desk when work on paper is preferred.
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Collection and Discussion of Data

2.83cm2

MAIN & DEG AUTO rUNC

Fig 1

1. The class was asked to draw a circle and a triangle with its vertices on the circle,
then to measure the area of the triangle (Fig 1).They were then asked to investigate
the effect of dragging one of the vertices, and to look for the maximum area of the
triangle. In jointly exploring the same screen in this way, but each on their own
machine, a telos is created and students are aligned in the domain provided by the
technology.

The following dialogue ensued.'

JG What area have you got?

Class General response There was no restriction on the
original diagram, a wide range of
areas was possible.

JG Why do we all get different answers?

Alison Because we all used different circles Use of 'we' suggests the possibility of
an LCP

Barry And different points

JG Look at mine while I move the point.
Tell me when it will be greatest. What
can we all say about our diagrams?

Barry It's across from the centre Later discussion showed that Barry
appreciated the co-linearity of the mid
point of one side of the triangle, the
centre of the circle and the other
vertex. Leanne had realised that the
triangle was isosceles

JG Yes, good.
Anyone else?

Leanne It's in the middle

Throughout this paper the teacher/researcher is JG and pseudonyms are used for pupils.
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Here the technology could be said to be driving along the LCP. Spontaneous
concepts are developed by the participants by looking at the dynamic image, which
can then be used by the teacher to interact with scientific concepts (Gardiner and
Hudson, 1998), so that that which is 'taken as shared' is moved forward.

61311011ECIMEilla: rgpin,

41)
65.,40°

MAIN DEG AUTO ID

Fig 2

2. Another exercise which is available after only the briefest of introductions to the
technology is based on a diagram such as Figure 2. Here pupils were asked to define
and measure an angle in a circle as shown and to investigate the effect of dragging
any one of the defining points along the circumference of the circle.2 Transcription of
classroom audio recordings resulted in the following dialogue.

JG Does anyone want to tell me what
they have found?

Sonia As you move this down it stays
the same angle until you reach
this point, then it changes to a
completely different angle and
stays the same.

In this version of Cabri, if
the vertex is moved round
the circle until it passes
one of the other points, the
angle in the other segment,
the supplement of the first,
is measured

'conclusion'

Nigel Oh Yeah (Wonderingly) Drawn into a community of
practice

JG Will you come and show us
Sonia It might not work you know... it

might just be because of the shape
of this one

In order to demonstrate
the OHP version of the
machine had to be used.

Tom It will work.. I got it to work Supporting the community
of practice

JG Watch while she drags this.
Watch the angle. Moving up

angle getting bigger

Dragging one of the non-
vertex points

2 An idea suggested by Geoff Wake of Manchester University
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Nigel If you change the middle one,
watch the middle one, it stays the
same and after a certain point it
changes

Now a more assured
member of the practice

JG What's going to happen now? Dragging the vertex point
Chorus Stays the same
Nigel Until you pass the point, then it

will stay the same again
JG Look at the angle, it stays at 52.77

degrees, doesn't matter that the
line goes through the centre, stays
at 52.77. Now changes
to ..127.23
(to Sonia at front)Can you make it
flip between those two angles?
(to class)What can you tell me
about those two angles?

Anne Does it add up to 180? 'conclusion'
David Ooo (realising)
JG Check that those results are true

for your diagram

Referring to criteria mentioned earlier for an LCP (Winbourne and Watson. 1998),
here pupils can be said to be sharing tool use and purpose by being aligned in the
task and their use of the technology. They are functioning and participating
mathematically and recognising the competence of others. There is also, in this
dialogue, a sense of telos, in which the pupils are aligned by the technology in a way
which drives forward the meaning-making of the community.
Socio-Mathematical Norms and Argumentaion
In the passage quoted above there is evidence of two 'conclusions' (Yackel, 1998
p210) being reached (as indicated), without oral evidence of warrant and backing.
However it appears that, in this dynamic geometry environment, warrant and backing
are supplied by the shared experience of data generated by the technology.

Conclusion
This research has indicated how, with a background of individual and class
development within a Zone of Proximal Development, the ideas of local
communities of (mathematical) practice, telos, socio-mathematical norms and
argumentation can be used to indicate how mathematical meaning making in the
classroom might be analysed. In particular it demonstrates the benefit of suitably
transparent use of technology in promoting alignment of pupil becomings within a
whole-class ZPD.

Thanks are due to pupils and staff at Hope Valley College, Hope, Derbyshire
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BRINGING THE VOICE OF PLATO IN THE CLASSROOM
TO DETECT AND OVERCOME CONCEPTUAL MISTAKES

Rossella Garuti Paolo Boero Giampaolo Chiappini
Scuola Media "Focherini", Carpi Dipartimento Matematica I. M. A. C. N. R.

I. M. A. - C. N. R., Genova Universita di Genova Genova

Abstract: The capacity of detecting conceptual mistakes and overcoming them by general
explanation is important in the approach to theoretical knowledge, and its development in
students calls for the teacher's intervention. Our working hypothesis is that the "voices and
echoes game" can function as an appropriate methodology to this end. In order to explore
this perspective in depth, a teaching experiment was performed in six classes (grades V
and VII). This report provides a partial account of this complex experiment, presents some
results and highlights some open research questions.

1. Introduction
Since 1995, the problem of approaching theoretical knowledge in compulsory

school has been of major concern for our research group. We have produced an
innovative methodology, the "voices and echoes game" (VEG), which is mainly
based on Vygotskian elaboration concerning common and scientific concepts and
Baktin's idea of "voice". This has been used as a guideline to plan and analyse
teaching experiments intended to mediate crucial aspects of theoretical knowledge
(see Boero et al., 1997, 1998; Garuti, 1997; for a brief account, see Subsection
2.1).

The research reported in this paper focuses on one aspect of the mastery of
theoretical knowledge not yet considered in preceding papers and that is especially
relevant to mathematics education: the capacity to detect conceptual mistakes and
overcome them by general explanation. The development of this capacity in
students calls for the teacher's intervention; our working hypothesis is that the VEG
is an appropriate methodology for achieving such development (see Subsection 2.2).
In order to explore this perspective in depth, a teaching experiment was performed
in six classes (grades V and VII). The object of the experiment was a well known
piece of the Plato's "Meno", that concerning the problem of doubling the area of a
given square by constructing a suitable square (this means overcoming the mistake
which consists of doubling the side length). This report provides a partial account
of this complex experiment (see Section 3), presents some results (see Section 4)
and puts some open research questions into evidence (see.Section 5).

2. Theoretical background
The purpose of this section is to provide essential background information, as

well as (in Subsection 2.2.) some development of the theoretical framework related
to the issue dealt with in this study.

2.1. About the VEG
What is the VEG? Some verbal and non-verbal expressions (especially

those produced by scientists of the past) represent in a rich and communicative way
important steps in the evolution of mathematics and science. Referring to Bachtin
(1968) and Wertsch (1991), we called these expressions 'voices'. Performing
suitable tasks proposed by the teacher, the student may try to make connections
between the voice and his/her own interpretations, conceptions, experiences and
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personal senses (Leont'ev, 1978) and produce an 'echo', i.e. a link with the voice
made explicit through a discourse. The 'echo' was an original idea through which
we intended to develop our new educational methodology. What we have called the
VEG is an educational situation aimed at activating students to produce echoes
through specific tasks, for instance: "How might.... have interpreted the fact
that...?"

Students' echoes: students may produce echoes of different types
(depending on the tasks and personal adaptation to them). In Boero et al. (1997),
individual and colletive echoes were classified. In this report we will focus
particularly on individual resonance echoes. In this case the student appropriates
the voice as a way of reconsidering and representing his/her experience; the
distinctive sign is the ability to change linguistic register or level by seeking to
select and explore pertinent elements ('deepening'), and finding examples,
situations, etc. which actualize and multiply the voice appropriately
('multiplication').

What are the aims of the VEG? Our general, initial hypothesis on this
issue was that the VEG might broaden the students' cultural horizon, embracing
some elements of theoretical knowledge that are difficult to construct in a
constructivist approach and difficult to mediate through a traditional approach (see
Boero & al, 1997). The need to exploit the potentialities that emerged in the first
series of teaching experiments led us to try to characterize better the elements ()f

theoretical knowledge to be mediated through the VEG (cognitive strategies,
methodological requirements, speech genre, etc.), in order to organize and analyse
better their interiorization by students (see Boero & al, 1998)

2.2. Conceptual mistakes and the VEG
The research reported in this paper concerns another important potential of

the VEG, namely the possibility of intervening in aspects of the student's mastery of
theoretical knowledge those related to detecting conceptual mistakes and
overcoming them by general explanation.

The Vygotskian elaboration about consciousness as a condition for accessing
scientific concepts, clearly pointed out by Vygotskij in his seminal work about
"common concepts" and "scientific concepts", seems to be useful to frame this
complex operation. According to Vygotskij (1990, chap. VI), consciousness is
related to mastery of scientific concepts for different reasons: "scientific" concepts
are not isolated (and consciousness is needed to control connections and inner
coherence of the system); "scientific" concepts are explicit (and consciouness is
needed to manage explicitation and especially the relationship between mediating
signs and meaning); "scientific" concepts are in dialectic relationship with common
ones (and consciousness is needed to be aware of the borders between them).
During an activity in which students participate effectively in examining their
conceptual mistakes, all these aspects where consciousness intervenes can come into
play: contradictions with known properties are frequently a motive the teacher
advocates for helping students recognize a conceptual mistake; explicitation of some
concepts is needed in order to point out ambiguities that may be the root of
mistakes; in many cases the teacher must point out that common intuition is a
possible source of mistakes.
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But how can productive classroom activities concerning students' conceptual
mistakes be organised? According to Bache lard (1977) many conceptual mistakes
come from ancient knowledge that is appropriate in earlier situations but which is
no longer suitable. The teacher must take the responsibility for selecting and
proposing appropriate tasks (those which lead to crisis of the ancient knowledge)
and for helping the student to overcome his/her mistakes. The teacher's role is
central for other conceptual mistakes as well: for instance, those related to
misunderstandings or ambiguities. What's more, the student must be aware of the
role played by the teacher and his own role as a condition for being able to
reproduce by himself, in the future, the sequence of actions needed to detect and
overcome conceptual mistakes (cf. Brousseau, 1997).

Our working hypothesis was that the VEG could intervene as an appropriate
educational methodology for attaining both the aims pointed out in preceding
analyses: to develop students' consciousness about the functioning of theoretical
knowledge when conceptual mistakes come into play; and to promote awareness of
the teacher's and student's roles during classroom activities concening conceptual
mistakes. Indeed, detecting and overcoming conceptual mistakes plays a crucial role
in the evolution of mathematics and science. It is therefore natural that the history
of mathematics and, more generally, the history of culture should offer "dialogical
voices" that speak about this issue (exchange of letters, imaginary debates, etc). The
production of "echoes" of well chosen "dialogical voices" during suitable tasks
could lead students to participate consciously in the process of detecting and
overcoming conceptual mistakes as a preliminary step towards interiorization.

The teaching experiment reported in this paper was planned and performed
in order to test and develop our working hypothesis.

3. Method
3.1. The choice of voice

Plato's "Meng" presents some crucial aspects of Plato's theory about learning
(how the "learner" can reach truth) and teaching (how- the "teacher" can help the
"learner" to reach truth). Plato's general, underlying hypothesis is that forgotten
truth can be restored ("recollection") through an effort by the "learner" led by the
"teacher" and motivated by the fact that "now not only is he ignorant[...] but he will
be quite glad to look for it". The crucial mediational tool is the "socratic dialogue",
i. e. a dialogue intended to provoke crisis and then allow it to be overcome. In this
framework, the excerpt concerning doubling the area of a given square is crucial as
a practical demonstration:

Phase A) Socrates asks Meno's slave to solve the problem of doubling the
area of the square by constructing a suitable square; the slave's answer (side of
double length) is opposed by Socrates through direct, visual evidence (based on the
drawing of the situation).

Phase B) Then the slave is encouraged to find a solution by himself but he
only manages to understand that the correct side length must be smaller than three
halves of the original length. Socrates' comment is that from this moment on, the
slave can learn: "Nor indeed does he know it [the solution] now, but then he thought he knew
it [...] Now however he does feel perplexed. Not only he does not know the answer; he doesn't
even think he knows".



Phase C) Socrates interactively guides the slave towards the right solution
(achieved through a construction based on the diagonal of the original square).

We may remark that in Phase A) the slave's answer is similar to those usually
produced by young students when they tackle the same problem this fact offers an
opportunity to involve students strongly in the VEG! And we may recognize in
Phases A), B), C) a sequence of activities not dissimilar from some present-day
views about how to guide students towards taking into charge and overcoming their
conceptual mistakes. This is true especially from a Vygotskian perspective, where
the teacher takes a strong mediating role in the evolution of students' culture.

We chose to ignore "recollection theory" in classroom activities. This entails
a violation of the authenticity of the historical source. But our aim was to lead
students to grasp that a general explanation must be reached in order to definitively
overcome a mistake. And, in general, compromises of this kind appear unavoidable
if we want to exploit historical sources in the classroom (cf. Fauvel, 1991).

3.2. The choice of classes
Six classes (114 students) took part in this teaching experiment: five fifth-

grade classes and two seventh-grade classes.These classes belonged to different
school settings (four primary school classes and two junior high school classes) and
to different educational contexts (in particular, three fifth-grade classes were
following the Modena Group Project on "mathematical discussion", one was
following the Genoa Group Project). Their socio-cultural backgrounds were
extremely different. This set of classes was chosen in order to reveal "invariant"
elements and significant conditions for the productivity of the methodology.

As concerns the mathematical background, the students were able to measure
lengths and construct squares; they had met the concept of area of a plane surface in
the preceding months and knew how to calculate the area of a given square.

3.3. Teaching sequence planning and observations
The teaching sequence can briefly be described as follows:
i) students are briefly informed about the whole activity to be performed;

then they individually try to solve the same problem posed by Socrates to the slave.
The aim of this activity is to involve students in the problem dealt with in the voice;

ii) students approach the voice under the teacher's guidance: firstly, they read
and try to understand (with the help of the teacher) the three phases of the dialogue;
then they read the whole dialogue aloud (some students playing the different
characters); finally, they discuss (Disc. I) the content and the aim of the whole
dialogue, trying to understand (under the teacher's guidance) the function of the
three phases. After negotiation with students, a wall poster is put up summarising
the three phases in concise terms. This suggests the structure of the following echo;

iii) the teacher presents the students with some, possible mistakes that could
become the object of a dialogue similar to Plato's, and they are invited to propose
other mistakes. The aim is to negotiate and agree on a mistake that is appropriate
for the echo (i.e. a relatively frequent student mistake that is recognized as a
mistake by students and can be exhaustively explained through a discussion guided
by the teacher). Here is a sample of the 5 mistakes that were chosen in the 6 classes:

"By dividing an integer number by another number, one always gets a number smaller than the
dividend" (the two seventh-grade classes: see Annexe for two examples of echoes).
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"By multiplying an integer number by another number, one always gets a number bigger than the
first number" (one V-grade class).
"By multiplying tenths by tenths, one gets tenths" (another V-grade class).

iv) students discuss (Disc. II) about the chosen mistake, trying to detect
(under the teacher's guidance) good reasons explaining why it is a mistake, then
trying to find partial solutions, and finally arriving to a general explanation. The
aim of this discussion is to create the common base of mathematical knowledge
needed to construct the echo, and prepare its three phases;

v) students individually try to produce an echo, i.e. a "socratic dialogue"
about the chosen mistake;

vi) students compare and discuss (under the teachers' guidance) some
individual productions.

All the individual productions and recordings of the Disc. I and II are
available; for the other discussions the teachers took notes.

3.4. Analysis of students' behaviours
In line with the educational aims of the teaching experiment we drew up the

following guidelines for the analysis of students' protocols:
I. How the student keeps to the roles of Socrates and the slave in each phase

of the dialogue. This point is related to the aim of developing awareness about the
teacher's and the student's roles in the activities concerning conceptual mistakes;

II. How the student appropriates the roles of the phases of the dialogue in
detecting and overcoming the mistake. This point is related to the aim of promoting
consciousness about the mechanisms of detecting and overcoming mistakes;

III. How the targeted mathematical content (the knowledge allowing the
students to overcome the mistake) is appropriated by the student: are the choice and
presentation of counter-examples appropriate? Is the guiding of the slave
performed through general, theoretical considerations about the knowledge in play?

4. Some Results
This section reports a selection of results we consider to be of interest.
Here we will consider only the 102 students from grade V to VII who took

part in the whole activity. Only 6 students completely fail their echo (do not
produce a dialogue, or mixed up Plato's original dialogue with the new situation).

Roles in the echo: Among the other 96, 10 show serious difficulties in
keeping to the roles of Socrates and the slave in Phase I. Appropriate "deepenings"
(including original expressions intended to highlight the mistake and provoke the
slave's crisis) and "multiplications" (including choice of appropriate counter-
examples not presented in Disc. II) are found in almost all the other students' texts.

Detailed comparison between fifth- and seventh-graders is inappropriate, as
different mistakes were tackled in different classes. However, the percentages
related to success in keeping to the roles in Phase I do not differ much.

It is not easy to detect Phase 2 in the students' protocols: students were not
asked to separate the three phases. And for some of the mistakes chosen it is
objectively difficult to create a specific Phase-II dialogue!

At least 67 (out of the 96 students ) have serious difficulties keeping to the
roles of Socrates and the slave in the last phase of the echo. In many cases the
quality of the interaction between Socrates and the slave suddenly changes from
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Socrates' questioning in order to make the slave understand, to Socrates' presenting
some formulas or procedures in order to avoid the mistake, (see end of TEXT 1)
with the slave reduced to a passive role of listener. In the same cases the quality of
deepenings and multiplications falls: the expressions become "assertive", not
"explanatory", and the examples (if any) stick closely to those discussed in Disc. II.

Consciousness about how to detect and overcome mistakes: We
obtained good overall results about the consciousness of the fact that appropriate
counter-examples can reveal the mistake. This kind of consciousness was attained by
practically all the students (86) who kept to the roles in the first phase of the
dialogue, as shown by the "multiplications" and "deepenings" in their echoes.

At least 50 students out of these try to give a general "explanation" of the
mistake or find a general "rule" in the third phase of the dialogue, showing to be
aware of the necessity of doing it.

Mathematical content: We must distinguish between: I) consciousness
about the fact that a statement is false; II) consciousness about the reasons that may
provoke the mistake; and III) consciousness about the theoretical reasons "why it is
false" and how to overcome the mistake in general (i.e. the connection with
systematic mathematical knowledge that can frame the mistake and the correct
solution). As remarked above, the first level of consciousness seems to be reached
by all the students who keep to the roles during the first phase of the dialogue. One
half of these students reach the second level of consciousness (see TEXT 1 and
TEXT 2),It is interesting to note that there is also an almost complete coincidence,
across tasks and classes, between the students who are able to attain the third level
of consciousness and those who are able to keep to the roles throughout the third
phase of the dialogue (see TEXT 2). The breaking point in reaching the third level
is well exemplified in TEXT 1: the student tries to explain why the result of the
division is larger than the dividend if the divisor is smaller than one. An
appropriate geometric example (similar to those considered during Disc. II) is
provided. The interactive structure of the presentation is kept. Then the student
tries to move to a general explanation. Some lines are written and then crossed out.
At the end, a rather confused rule is provided and Socrates takes the role of he who
"gives the rule". Compare with TEXT 2: here a real interaction is maintained in the
last phase as well, and seems to be perfectly functional to the development of a
complex inner discourse concerning the mathematical knowledge in play.
Remarkably, "Socrates" considers both the operational side (how to divide an
integer number by a fraction) and the explanatory side (why it is necessary to
behave in such a way). The dialogue allows these two sides to be represented in a
clear way.

5. Discussion
The above description of students' behaviours raises an interesting research

question about the reasons why there is an almost complete coincidence between
students who keep to their roles during the different phases of the discussion, and
students who reach the different levels of consciousness about the knowledge in
play. A possible interpretation refers to the dialogical nature of the acquisition of
theoretical knowledge (cf. Brown, 1997, Chapter 2, for some hints in this
direction) and could be summarised as follows: Plato's voice presents a model of
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dialogical treatment of mistakes; at the beginning, by echoing this voice, students
are forced (during both the discussions and the individual production of the echo)
to make explicit the knowledge which originated the mistake. Indeed the need to
keep to the roles can entail a shift to an inner questioning: "What idea about the
knowledge in play should the slave bear". This interpretation is justified by the fact
that (as happens in TEXT 1 and in TEXT 2: see (°)) the "idea about the knowledge
in play" is expressed in most cases by the slave and not by Socrates. In this way the
transition to the second level of consciousness about the knowledge in play is
realised. The passage to the third level is performed in two steps: first, by
considering examples (with the dialogical function of bringing the slave to see how
the appropriate knowledge could work, and the inner function of better
understanding how it does work); and second, by shifting to theoretical framing of
the examples. Here, the breaking point described at the end of Section 4 could be
interpreted as follows: under the necessity of posing appropriate questions to the
slave, some students are able to answer the inner question: "How is the correct rule
related to the meaning?"- i. e. to the examples tackled by the slave. Indeed in these
cases (see TEXT 2) Socrates keeps to his questioning role: the inner question is
transformed into appropriate questions posed to the slave. The other students are
not able to keep to the role of Socrates: perhaps because the shift to the inner
question "How is the good rule related to the meaning?" is too difficult. Or, more
probably, because it no longer concerns the slave in an immediate way and it is
difficult to find appropriate questions for him, and so a traditional model of
teaching prevails (it is the teacher who provides the rule!).

Further experiments (possibly with on-the-spot interviews with students who
fail at the "breaking point") are needed to test the validity of this interpretation,
whose research and didactical implications might be significant as concerns the
potential of exploiting dialogical voices for the VEG.
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Annexe
Seventh graders. Mistake chosen: "Dividing an integer number by another number, one

always gets a number smaller than the dividend." Two texts from the same classroom.
SO=Socrates, SL=Slave
TEXT 1 (mean level production)

SO: Tell me, my boy, do you know the result of this division: 15:5? SL: It is simply 3, Socrates.
SO: And now try to perform the following division: 15:3 What is the result? SL: Clearly 5,
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Socrates. SO: Look at the results and try to tell me how they compare to the dividend. SL:' They
are smaller, Socrates. SO: In your opinion, does this happen for all divisions? SL: Yes. surely
SO: Could you explain why? SL:(°)Naturally: this happens because if I divide one thing I do
not have it, but only one piece of it, so the part is smaller in relationship to the whole. SO:
Fine. Can you tell me the result of the following division: 15:1 ? SL: Fifteen, Socrates. SO:
Look at this number and think. How does it compare with the dividend? SL: It is equal,
Socrates. SO: So then a division does not always generate a result smaller than the dividend!
SL: My Zeus! It is true. SO: Now try to perform the following division: 15:0.5. What is the
result? SL: Thirty, Socrates. SO: But 30 is greater than the dividend 1. SL: It is true!
II- SO: Tell me, slave: which divisions generate a result that is smaller, equal to or bigger than
the dividend? Smaller: 15:3=5; equal: 15:1=15; bigger: 15:0.5=30
SO: How do the three divisors compare with one? SL: In the first division, greater; in the
second, equal; in the third, smaller. SO: Is there any link? SL: There may be. SO: Could you say
what it is? a: For Zeus, no! SO: You see, Meno: before your slave was sure in answering,
while now he finds himself in difficulties. Before he was convinced he knew, while now he
does not know. But he knows his mistakes and will no longer fail.
III SO: Slave, could you say how many times 0.5 is contained in 1? SL: Twice, Socrates.
SO: And 0.25? SL: Four times, Socrates. SO: Try to write the decimal number 0.5 as a fraction.
SL: The fraction is 1/2. SO: But how much is 12 compared to 1? SL: It is one half. SO: Then if
1 is contained an integer number of times in another number, how many times one half will be
contained? SL: Double, Socrates. SO: But in your opinion is it correct to divide a division by
another division? SL: No. SO: Indeed you have now seen that one half of one is contained
twice. It will be sufficient to turn over the division, i.e. to perform the multiplication of the
given integer number by the denominator and we will got the result. What we have performed
shows us how many times a decimal number can be contained in an integer number, SO we
have got a ratio between them. a: Now I understand my mistake. Bye, Meno is calling Inc.

TEXT 2 (High level production)
SO: Tell me, my boy, what is the result of 15:3? SL: Five. SO: Is it smaller than 15? SL: What a
question! That is clear! SO: And yet, how much is it 20:5? SL: Obviously 4, Socrates SO: Then
is it smaller than 20? SL: Exactly. SO: Then, how do you think that results of the divisions are?
SL: I think that they are always smaller than the dividend. SO: Are you sure? SL:(°) Yes,
because "to divide" means "to break in equal parts."SO: Now perform this division: 15:1. SL:
Uhm, ...it makes 15. SO: But 15 is equal to the dividend. SL: It is true. SO: Why is it equal? SL:
Because dividing by one is how to give an amount to one person, it remains equal. SO: So does
your theory still work? SL: Not completely. Now I see that in some cases it does not work. SO:
Are you still sure you are right? SL: Yes... Pehaps... No... Perhaps there is one case in which the
result is larger...or perhaps not... My Zeus, I understand nothing! (five minutes elapse). SO:
What is the result of 2:0.5? SL: These are difficult questions. I am no longer able to answer. SO:
Take this square (drawing)and divide it into small squares! SL: This way?(the drawing is
divided into 16 pieces by drawing 3 horizontal and 3 vertical lines, all equally spaced) SO: Yescood.
Now the unit is the small square [drawing]. How much is 0,5 compared to 1? SL: One half SO:
Now make one half of the small square. SL: Done. SO: Do the same for all the small squares.
SL: Just a moment...Done. 5D: How many halves? SL: 1,2,3... 32, Socrates. SO: How many unit
squares, at the beginning? SL: Sixteen, Socrates. SO: Then you got a result greater than the
starting number. SL: Uhm... Of course. SO: And how is one half written as a fraction? SL: Uhm...
perhaps 1/2. SO: Good! Are you able now to divide a number by a fraction? SL: Yes, surely!
SO: Then divide 2 by 1/2. How many times is 1/2 contained in 2? SL: According to the
preceding rule, I must invert the fraction and then multiply. OK, it makes 4. SO: How can you
represent this? SL: I'll try... Two squares..[drawing] One half twice for each [drawing]. It
works: 4. SO: Good! n: I understand:- the division is not only "breaking into equal parts", but
also seeing how many times a number is contanined in another! SO: Make an example by
yourself! SL: 1:1/4 [he performs and illustrates it]

813
3 -16



MALE AND FEMALE CALCULUS STUDENTS' USE

OF VISUAL REPRESENTATIONS

Elizabeth Ann George

Ball State University

The frequency with which mathematically capable high school students
utilized visual representations in their written solutions to applied
calculus problems and the nature of the visual representations they
created were analyzed in this study. Several gender differences with
respect to visual representation use were identified. Females drew
diagrams more often than did males and were more likely to create
complex visual representations by moding given diagrams. Males,
who were more successful in solving these problems, tended to
construct fewer and simpler diagrams.

Students encounter visual representations throughout their study of
mathematics. Diagrams, figures, and graphs are frequently components of
instructional explanations offered by teachers and in textbooks. In addition, many
mathematical problems found in written curricular materials or on tests include an
accompanying visual representation which students must interpret or may modify. In
solving problems in which no visual representation is given, construction of a visual
representation is often helpful, advantageous, or, moreover, an essential component
of the solution process. There is great diversity in the types of mathematical
problems whose solutions require or are facilitated by reasoning with visual
representations and in the ways that students can use visual representations when
solving these problems.

Reasoning with visual representations is particularly crucial in understanding
the theories and applications of calculus. Understanding fundamental calculus
concepts (e.g., limit, derivative, and integral) requires significant use of
visualization, and the ability to successfully solve many problems using calculus is
dependent on visual images, either in the form of diagrams or graphs (Zimmerman,
1991). Yet throughout their study of mathematics, students' demonstrate a reluctance
to visualize (Eisenberg & Dreyfus, 1991), and this behavior is particularly
disturbing when displayed by students studying calculus (Vinner, 1989).

Though reasoning with diagrammatic representations offers many potential
benefits, students who use visual representations are not necessarily more successful
in their mathematical studies. Presmeg (1985) observed that high school students
who preferred to use visual methods in solving mathematical problems often
experienced difficulties in learning mathematics, while students who were identified
as higher achievers in mathematics classrooms were almost always nonvisualizers.
This pattern may prevail in college-level mathematics courses as well. College
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calculus students who indicated a stronger preference for using visual methods
achieved lower scores in calculus, while those students who showed less preference
for visual methods achieved higher scores (Galindo, 1995).

Differential mathematics achievement of male and female students has been
studied at various age levels and in many areas of mathematics during the past
twenty-five years (Fennema & Hart, 1994). Gender differences in mathematics
learning appear to be more pronounced for older than for younger students, most
notably on problem-solving tasks and application problems (Friedman, 1989).
Significant gender differences in mathematical achievement have been identified on
national assessment tests (i.e., NAEP), as high school males consistently
outperformed their female classmates (Fennema & Carpenter, 1981; Silver et al.,
1988). Observing that the magnitude of the difference between male and female
students' performance increased in relation to the amount of mathematics studied,
Meyer (1989) suggested that gender differences in mathematics achievement
resulted from the best males performing at a higher level than the best females.
When examining mathematical achievement in actual classroom settings, Seegers
and Boekaerts (1996) found that tests reflecting classroom content also showed
marked gender differences, with males outperforming females. They also observed
that the differences increased when the items covered topics that were more
complex.

Several studies have identified gender differences when investigating the

relationship between mathematics achievement and the use of visual
representations. When solving tasks where males were more successful than
females, fethales reported a greater use of pictures, though the pictures that males
drew were more accurate and contained more pictorial information than those drawn
by females (Fennema and Tartre, 1985). A stronger relationship between high
spatial visualization ability and mathematical problem-solving success was found
for females than for males. Battista (1990) concluded that males were more
successful than females in solving geometry problems and that spatial visualization
and logical reasoning were important factors in geometry problem solving for both
male and female students, but that they contributed in different ways to
achievement, depending on gender. Gender differences in visualization skills and
the calculus achievement of college students were also identified by Ferrini-Mundy

(1987). Explicit training in spatial skills, particularly in visualizing a
three-dimensional solid of revolution from a two-dimensional representation,
positively affected female students' abilities to draw visual representations of the
solids of revolution and improved their mathematical problem-solving performance
in the applications of integral calculus. No such effect was identified for male
students.

Further research regarding gender differences in mathematics learning has
been advocated (Leder, 1992), particularly the need for studies that focus on young
women who have been successful in their mathematical studies (Becker, 1991). This
study, whose purpose includes an investigation of the ways that mathematically
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capable male and female students reasoned with visual representations in solving
applied calculus problems, aspires to provide further insight into gender similarities
and differences in mathematical problem solving.

Specifically, this study investigated the frequency of visual representation use
and the nature of the visual representations created in students' written solutions to
five free-response problems presented on the 1996 BC Level Advanced Placement
Calculus Examination. Gender differences in achievement favoring males were
significant for each of these free-response problems, as well as for overall scores on
this examination (Morgan, 1996). Therefore, differences in the frequency of visual
representation use and in the nature of the diagrams, figures, and graphs cre-ted
were analyzed for subgroups of students, based upon gender and problem-solving
success.

Frequency of Visual Representation Use in Solving Calculus Problems

Randomly selected from the approximately 21,000 high school students
who took the BC level Advanced Placement Calculus Examination in May 1996

were 600 students' written solutions to the free-response questions. This sample was
partitioned into subgroups along two dimensions, gender and overall performance
level on the Advanced Placement Calculus Examination, as shown in Table 1. For
purposes of this study, the five levels of overall AP scores were collapsed into three
performance levels. There was no significant difference in the gender distribution
between the sample and the population.

Table 1

Number of Students Achieving at Each Performance Level

Males Females
High scorers (5 or 4) 251 97

Moderate scorers (3) 82 65

Low scorers (2 or 1) 56 49

Students' solutions to five free-response problems were coded with respect to
visual representation use. Three of the free-response problems included a given
diagram in the problem statement; therefore, visual representation use included
modification of the given diagram or construction of a new diagram. Construction of
a new diagram constituted visual representation use in the other two free-response
problems whose problem statements did not include a given diagram. A visual
representation use (VRU) score was computing for each student, measuring the
number of free-response problems for which evidence of diagram use was identified
in the written solutions. The distribution of VRU scores for the 600 students in the
sample is shown in Table 2.
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Table 2

Distribution of VRU Scores

VRU score
5 4 3 2 1 0

Number of students 44 147 169 134 84 22

Percent of students 7.3 24.5 28.2 22.3 14.0 3.7

The mean VRU score for the sample was 2.78, and the mean VRU scores for
various subgroups of students are shown in Table 3. Using a two-factor analysis of
variance and an alpha level of .05,_differences in the frequency of visual
representation use associated with gender ( (1,594) = 36.51, p < .001) and with
performance level (F(2, 594) = 4.42, P = .012) were significant. The interaction
effect of gender and performance level was not significant.

Table 3

VRU Score Means and Standard Deviations for Subgroups of Students

Males Females Total

High scorers 2.73 (1.24) 3.26 (1.16) 2.88 (1.24)
Moderate scorers 2.33 (1.28) 3.09 (1.20) 2.67 (1.29)
Low scorers 2.23 (1.31) 3.04 (1.15) 2.61 (1.30)
Total 2.57 (1.27) 3.16 (1.17) 2.78 (1.27)

Determination of whether the pattern of visual representation use identified
from the aggregated VRU score held for each free-response problem prompted
further investigation. Thus, a within-question analysis of the frequency of visual
representation use was conducted and revealed that, when solving each of the five
free-response problems, the written work produced by females included use of
visual representations more often than did the written work completed by males
(George, 1998). The differences in frequency of visual representation use between
male and female students were statistically significant at an alpha level of .01 in
three of the five free-response questions. Recall that for both this sample and the
population of students who took the 1996 BC Level Advanced Placement Calculus
Examination, males significantly outperformed females, as measured by mean
scores achieved on the examination and mean scores achieved on each free-response
problem. Therefore, female students demonstrated more evidence of visual
representation use in their written solutions and were less successful in solving the
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posed problems than were male students, who produced fewer visual representations
and were more successful.

Descriptive Analysis of the Visual Representations Students Created

Gaining further understanding into the relationship between students' visual
representation use and problem-solving success required that the wide variety of
diagrams, figures, and graphs modified or constructed in their written solutions be
described and compared. Therefore, a qualitative analysis was conducted to more
closely examine the visual representations students produced in solving selected
free-response problems. The written solutions of 180 of the 600 students were
further analyzed with respect to visual representation use. Specifically, similarities
and differences were identified in the ways visual representations were modified and
constructed by 45 students in each of four subgroups (i.e., high- and low-scoring
males and females). Results of the analysis of one of the free-response problems is

presented below.

One application of differential calculus which depends heavily on reasoning
with visual representations is the solving of related rates problems. A common
feature of this type of problem is the implicit variable of time. In these problems,
several piece of descriptive information are given: the relationships of quantities in
general regardless of time, the relationship of quantities at a specific moment in
time, and information about the direction and rate of change. The dynamic nature of
such problem situations often must be represented in diagrams that are static.
Initially, such diagrams are drawn and labeled to illustrate only one moment in time.
Subsequently, the problem solver must impose motion on these drawn diagrams in

deciding whether specific quantities remain constant or change over time.

The following related rates problem was presented on the 1996 BC level
Advanced Placement Calculus Examination (College Board, 1995):

An oil storage tank has the shape shown above, obtained by revolving
9y=-_144

the curve 825 0 from x = 0 to x = 5 about the y-axis, where x and

y are measured in feet. Oil weighing 50 pounds per cubic foot flowed
into an initially empty tank at a constant rate of 8 cubic feet per
minute. When the depth of the oil reached 6 feet, the flow stopped.
Let h be the depth, in feet, of oil in the tank. How fast was the depth
of oil in the tank increasing when h = 4? Indicate units of measure.

Although all the information necessary to construct a visual representation of this
problem situation was stated in words, an accompanying diagram was given. The
graph of the function was drawn on the coordinate plane and reflected over the
y-axis. Perspective was added to illustrate the oil tank and its radius of 5 feet and
height of 9 feet were explicitly labeled.

A frequency distribution of the ways in which visual representations were
used by the four groups of students in solving this related rate problem is displayed
in Figure 1. Overall, the written solutions of females indicated use of a visual
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representation significantly more often than did the written solutions of males (68%
and 41%, respectively). Eighty-eight given diagrams were modified and 20 new
diagrams were constructed in students' solutions. Female students were significantly
more likely to only modify the given diagram than were males (58% and 29%,
respectively). More high-scorers than low-scorers both modified the given diagram
and constructed a new diagram within their written solution.
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Figure 1. Frequency of visual representation modification and construction by high-
and low-scoring male and female students in solving the oil tank problem.

A closer examination of the nature of the visual representations created by
male and female students was accomplished by identifying the features which
students highlighted when modifying the given diagram or which they included
when constructing a new diagram. Four categories were identified in the oil tank
problem to describe students' modification of the given visual representation: adding
pictorial elaboration, labeling with numerical constants, labeling with variables, and
marking of cross-sections. Overall, half of the students who modified the given
diagram did so by simply adding pictorial elaboration and/or labeling with
numerical constants; the other 50% produced more complex diagrams by labeling
with variables and/or drawing a cross section. Females produced more complex
diagrams than did males, as 56% (31 of 55) of the females and 39% (13 of 33) of the
males who modified diagrams labeled the given visual representation with variables
and/or drew cross sections. Of the four subgroups of students, high-scoring females
produced the largest number of complex modified diagrams (61%); their solutions
often included both labeling of variables and drawing of cross sections. While 50%
of low-scoring females' solutions also contained complex modified diagrams, only
42% of high-scoring males and 36% of low-scoring males demonstrated this level of
complexity in their modified diagrams.

Three categories were used to describe the new visual representations
students constructed: a graph of the function on the x-y plane, isolated
three-dimensional figures, and isolated cross-sections. Nearly half of the students
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who only constructed a new diagram (9 of 20) produced a graph of the given
function on the coordinate plane, then labeled and marked this graph in various
ways. The others drew isolated figures, either three-dimensional solids or cross
sections which were removed from the coordinate plane. Males tended to construct
simpler diagrams than did females.

Similar analyses conducted on other free-response problems revealed that the
nature of the visual representations used by males and females differed primarily in
the complexity level of the diagrams they created (George, 1998). Males tended to
focus more narrowly on the graph of the function or the geometric figure on which
the problem situation was based. More females than males chose to only mod;ed
the given visual representations, often combining actions of pictorial elaboration,
highlighting of cross sections, and algebraic labeling to create more complex visual
representations. For all students there was greater diversity displayed in the ways
they modified the given diagrams than in the ways they constructed new diagrams.

Results of this study show that mathematically capable high school students
frequently used visual representations in their solutions to applied calculus problems
and that there was great diversity in the visual representations they created.
Recognition of the gender differences identified in this study can lead mathematics
educators to make more explicit and informed decisions about visual representation
use in curriculum materials, classroom instruction, and assessment both prior to and
during the study of calculus, providing opportunities for all students to become more
successful mathematical problem solvers.
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Abstract

In this paper, we are presenting the results of a quantitative study concerning the
effect of an innovative teaching model, based on Problem Solving approach, on the
ability of 1 I th grade students in solving Real Problems and purely Mathematical
Exercises. The research indicates that emphasis on this kind of teaching improves not
only students' abilities in handling Real Problems themselves, but also it improves
their abilities in dealing with pure mathematical ideas.

1.Introduction

The general goal of this research is to examine under which conditions, high school
students can use their acquired mathematical knowledge in solving Real Problems.
More precisely the research intends to study:

a) The effectiveness of Modelling Orientated Teaching, described below, as a general
frame of learning mathematics, in the development of mathematical concepts and the
ability of handling Real Problems.

b) The role of the Context of Real Problems at student's performance.

2. A theoretical framework

Questions concerning the adoption of applications and real problems have attracted the
attention of many researcheri the last years. Some of these questions are about the
educational philosophy and goals that are served by mathematical applications. Others
are about the way we will be able to incorporate mathematical applications in the
schoolbooks and in everyday educational practice, in order to achieve specified goals.



Berry et al (1984), Berry et al (1986), Berry et al (1987), Blum, Niss, Huntley (1989),
Blum et al (1989), Niss et al (1991), De Lange et al (1993), have been concerned with
these questions.

Blum (1991), in order to accommodate Applications and Modelling in schoolbooks,
put forward three aims of mathematical teaching, (see also Blum and Niss (1991)):

1. Pragmatic aims: Mathematics helps us describe, comprehend, explain and handle
real situations.

2. Formative aims- Mathematics help us develop general skills, for example, the
formulation of a mathematical model for a real situation, or attitudes, such us the desire
for mental work.

3. Cultural aims- Mathematics as a reason for philosophical and scientific thought, as a
science and as a part of the human history and civilization.

Blum and Niss (1989,1991) categorized the various approaches in organizing the
teaching of Problem Solving, Modelling and Applications as follow:

1) The Separation Approach

2) The Two Compartment Approach

3) The Island Approach

4) The Mixing Approach

5) The mathematics Curriculum Integrated Approach

6) The Interdisciplinary Integrated Approach.

We are particularly interested in the Island Approach, since it is quite widespread and
it is the approach used in throughout Greek high schools. According to this approach
the book is organized in units, each one introducing the material in a definition-
theorem-proof-corollary-exercise scheme, and then applications follow, directly
connected with the material just presented. According to Blum and Niss (1989,1991),
in this approach « the closer in time and content the relationship is between pure
mathematics sections and subsequent sections concentrating on problem solving,
modelling and applications, the more the latter sections tend to assume the character of
being traditional exercises».

In an attempt to improve upon the Island Approach, Klaoudatos (1994) developed a
teaching model, which he calls "Modelling Orientated Teaching". Klaoudatos' model
consists of three stages:

1. Conceptual modelling:

In this part, mathematical modelling develops the conditions in which the need arises
for the introduction of a concept. For this purpose we select the appropriate problems,
the solution of which calls for the introduction of the concept we want to teach, while
the didactical activities and in particular the didactical situations we design for the
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occasion are aimed at developing a conjecture about the hidden concept.

2. Abstraction and formalization of mathematical concepts:

This part includes the development, the mathematical processing and the formationof
a mathematical theory for the concept we want to teach about. This part is not a
substitute for the traditional theory, as we know it, but attempts to ensure the
independence of the concept from the specific contexts in which it was presented in
part 1. In particular, the concept we have developed in part 1, must become a
mathematical object, i.e. it must be viewed in mathematical context, regardless of any
specific problem or individual. This aim is achieved by means of control and
verification of the conjecture, as well as through deductions, generalizations and
proofs. Consequently, the didactical activities are aimed at institutionalizing the
knowledge.

3. Applied modelling:

Part three brings into focus all the possibilities of the modelling circle and it is here
that the ideas and concepts we have taught are consolidated, reinforced and extended.
In this part the concept or concepts are considered as already known and we use them
in order to solve problems and applications.

Klaoudatos' model is an extension and elaboration of a teaching model proposed by de
Lange (1987, 1989) within the realm of "Realistic Mathematics Education", in which
the "abstraction and formalization of mathematical concepts" does not appear as a
special part.

3.The methodology of the research

The research was designed for students of the 1 1 th grade. It was realized at a senior
high school in Athens during the school year 1997-98.Four sections participated,
sections A, B, C, D (a total of 97 students). A teacher experienced in practicing the
Modelling Oriented Teaching taught students of sections C and D (experimental
group), by this teaching method, through the whole year. On the other hand, an
experienced teacher who used the traditional Island Approach way of teaching taught
students of sections A and B (control group). Both the assignments of students and
teachers to the various sections were completely random. Throughout the previous
academic year 1996-97, the same students were taught in a homogeneous fashion,
following the Island Approach.

We gave two tests to the students. The tests were administered one month before the
end of the school year 1997-98. Test 1 deals with "raw" Real Problems (R.P.), taken
from real situations, described in layman's language, where Test 2 was composed of
typical Mathematical Exercises (M.E.) stated in a formal mathematical language. Test
1 was given first and Test 2 followed one week apart. The questions of these two tests
were in a strict one to one correspondence, corresponding questions were requiring
exactly the same mathematical tools for their solution. Just the language used was
different. Here are two examples:
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R.P.2 (the second question of test 1): The problem of handcraft

In the next diagram the lines el and e2 have been drawn. Line el represents the cost of
a handicraft in relation to the number of shirts produced and line e2 represents the
corresponding rewards. Find the number of shirts that the handicraft has to produce in
order to start receiving a profit.

e2

200 Number of Shirts

M.E.2 (The second question of test 2)

Solve the inequality f(x) > g(x), by using the diagram below.

f(x)

y

2. i g(x)

00 x
-1 0 1 2 ,3 0 S 7

R.P.5 (the fifth question of test 1): Children go to school

"It was a warm day. A student's team started walking to school from the usual meeting
point. They were talking to each other loudly, on their way to school. When they
realized that they were getting late, a student suggested to the others to hurry up. Then
the students started walking faster. But the day was really warm and the conversation
quite interesting, so after a while they started walking slowly again..."

Try to depict the above story in a diagram, in which the horizontal axis will represent
the time t and the vertical axis the distance d.

M.E.5 (the fifth question of test 2)

The numbers al, a2, a3 with al< a2< a3, are representing the gradients of the lines, of
the following diagram. Find the line corresponding to each number.
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4. Some sample and results

The statistical analysis was based on linear regression, of the form Y-130+131X1+132X2,
where Y is the dependent variable and X1, X2, are the independent variables.

The major dependent variables of the regression analysis we were interested in are:

TOT_R.P. is the cumulative grade of a student in Test 1

TOT_M.E. is the cumulative grade of a student in Test 2

The major covariate independent variable was

MATH_97, which is the grade that the student received in Mathematics in school in
the year 1997, while

TREAT is the nominal independent variable taking the values 0 and 1 depending
whether the student belonged in the control group or in the experimental group.

The main interest of the research lies in the coefficient of TREAT. If the coefficient of
TREAT is positive and big, that means not just that the experimental group performed
much better, but that the treatment produce a tangible increase of the students
performance. The variable MATH_97 is the grade that student received at the end of
the previous academic year in Mathematics, on the basis of his/her performance
throughout the year. It is an objective homogeneous and very rigorous measure of
student's performance throughout the school, and in our statistics MATH_97 serves as
a measure of student's mathematical capabilities before our tests. We note that both the
Mann-Whitney test and the Two-Sample Kolmogorov-Smirnov test, at 95%
significance level, do not reject the hypothesis that the experimental group and the
control group have the same mathematical capabilities before the administration of our
tests. Nevertheless the Linear Regression model, by itself takes care of the fact that the
control group and the experimental group, could have not the same mathematical
capabilities before the tests. Because in the Linear Regression equation, the coefficient



of TREAT provides the added value to the student's mathematical capabilities through

the problem solving teaching.

Linear regression of the dependent variable TOT_M.E. vis a vis the independent
variables MATH_97 and TREAT, gives the coefficient of TREAT lying in the interval
[2.423, 5.999], at 95% significance.

Linear regression of the dependent variable TOT_R.P. vis a vis the independent
variables MATH_97 and TREAT, gives the coefficient of TREAT lying in the interval
[2.448, 5.551], at 95% significance.

The above two regressions show that the experimental group performed
significantly better, not only in the Real Problems Test 1, (something that may
not constitute a surprise), but also in the Mathematical Exercises Test 2.

The above analysis provides strong indications that the Modelling Orientated Teaching
offers a more complete teaching approach, in comparison with the Island Approach. In
the Modelling Orientated Teaching, the student approaches the concept intuitively, via
a real problem close to his experiences. Subsequently the concept is incorporated in
his broader mathematical structure, and connected with other related concepts. This

way the student becomes an active participant in the mathematical discovery, which
results to an in depth understanding of the concept. Actually through interviews that
we had with students, we realize that many good (in the sense of MATH_97) students
of the control group, had difficulty in grasping the interplay between the real situation
at hand and the underline mathematical structure. It was exactly in this domain that the
experimental group was more at home.

5. The Context of the Real Problem

Up to now, the arrangement of having the questions of Test 1 and Test 2 in one to one
correspondence, corresponding questions requiring the same mathematical tools for
their solution, has played no role. It is our intention in a different paper to study
conclusions connected with this very arrangement. For the purposes of this paper, we
would like to point out a phenomenon that we observed, which in one hand stresses
the superiority of the Modelling Orientated Teaching, on the other hand indicates a
direction for further improvement of it.

The common sense would indicate that each question of Test 1 would be more difficult
for the students to tackle than the corresponding question of Test 2, since the purely
mathematical content was the same and the questions of Test 1 have the extra burden
of a real situation scenario. Actually the grading of the tests indicated exactly that in

most of the cases, but not in all cases. Among the notable exceptions were the
questions R.P.2 and M.E.2, and R.P.5 and M.E.5, that were mentioned earlier in the
paper, where students performed better in the Real Problem question instead of the
Mathematical Exercise counterpart. Detailed tables are presented below.



Group 0-Control

Questions

Experi
mental

R.P.2 49.0% 78.0%

M.E.2 19.6% 46.0%

Group o.

Question

Control Experi
mental

R.P.5 36.4% 54.0%

M.E.5 35.3% 44.0%

(Percentage of correct answers in each group)

It seems to us that an interesting kind of conjecture is in order: If the Context of the
Real Problem is familiar to the students, that enhances their understanding of the
mathematics of the situation. This deserves further investigation.
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PEDAGOGY AND THE ROLE OF CONTEXT IN THE DEVELOPMENT
OF AN INSTRUMENTAL DISPOSITION TOWARDS MATHEMATICS

Simon Goodchild

College of St Mark and St John, Plymouth UK

A student's response to a routine task set in a 'real world' context raises
questions about the origins of instrumental approaches to learning
mathematics. In particular the unconvincing application of mathematics to
contexts that contradict students' experience is conjectured as a possible root
of a disposition towards mathematics that interferes with learning.

The Scene
Paul (15 years old, below average attainment) is working out the gradients of
railway tracks; in each question the track is shown along a viaduct crossing a
valley, the diagram is drawn on a one-centimetre grid.

(School Mathematics Project, 1986: 50)

When I asked Paul how he had worked out his answer he explained:

Paul I've got my ruler and then I've measured along there [along the
track] or I could have counted the squares.

The first part of his response suggests that he is working out the sine of the
angle of inclination rather than the tangent, but as he continues he reveals a
misconception. When I asked Paul to measure both lengths he does indeed find
them to be the same within the limits of accuracy of his ruler; applying
Pythagoras' rule reveals the sides to be: 1 cm, 9 cm and 9.055 cm. The
evidence appears to confirm Paul's misconception, but does he really believe it?

I Does that surprise you?
Paul Yeah, a bit because I would've thought that there ... but if you

add that black one [the track] down on to there [horizontal line of
the grid] they're longer.

I suggested that he tested the three other similar questions in the exercise, the
triangles' sides are 3 cm, 7 cm, 7.615 cm; 6 cm, 8 cm, 10 cm; and 1 cm 14 cm,
14.035 cm. Paul observes the difference he expects for two but not for the last
one.

To explore how Paul accommodates this discrepancy between his expectation
and experience I try to get him to reflect on the evidence:
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I Do you think that really is the same, that length there [the track in
the first question] really is the same as that length [horizontal on
the grid] there?

[pause, 18 seconds]
Paul It must be really.
I Why must it be?
Paul Because it's from there to that line there it's nine centimetres and

you measure up there from there to there, it's nine centimetres.

In Piagetian terms I interpret Paul's statement as confirmation of his conception
of the conservation of length. He has used his ruler to measure both line
segments and this has revealed their lengths to be the same. Does this make
sense to Paul, or is he experiencing `disequilibrium'?

I Does it make sense?
Paul No. Them two there, if you done the same as done there, on there

it's totally different it's that there smaller along the bottom than it
is going up the hill.

I Does that bother you?
Paul I just think, figure out one way to work this out and then you go

on to the next one and then you have to find another way to work
it out.

From a constructivist perspective, in this episode Paul reveals a disposition
towards mathematics (NCTM, 1989) that enables him to dismiss experiences
that might result in cognitive conflict, reflection, accommodation and learning.
He merely needs to find the new rule to work out each type of question.
However, before continuing with the discussion about Paul's response and the
possible roots of his 'disposition' I will outline the circumstances in which the
conversation arose.

Methodological context
The conversation with Paul arose during a longer research programme in which
I spent almost one complete school year attending every mathematics lesson of
a class of 14-15 year old students. The students, described by the school as
`intermediate tier,' revealed a wide variation of attainment across the class; Paul
was at the lower end of the attainment range of the class. The research adopted
an ethnographic style of enquiry following Eisenhart (1988). During my time
with the class I observed and audio-taped periods of whole class teaching and
when students were engaged in individual activity or small group work I
conversed with them about their work and tried to elicit evidence of the goals
towards which they were working. Lessons followed a regular pattern of short
teacher expositions and prolonged periods of individual or collaborative activity
during which the students worked on exercises in the SMP 11-16 texts (School
Mathematics Project, 1986) widely used in the UK. Key features of the
students' experience were the teacher's attempts to familiarise novel tasks
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(Doyle, 1986) and the fragmentation of mathematics into discrete, unconnected
routines (Ernest, 1996). The students' response was to adopt an instrumental
approach to their work (Skemp, 1976; Me llin-Olsen, 1981).

I spent substantial periods of time (10 20 minutes) observing, listening and
conversing with students about their work; the time spent with individual
students enabled me to expose their beliefs, attitudes, goals and understanding.
The background and school experience of the students was remarkably similar
to those at 'Amber Hill' in Boaler's study (Boa ler, 1998), it is unsurprising,
then, that the outcomes also matched those reported by Boa ler, in her words,
`the students developed an inert, procedural knowledge' (1998: 59).

In the following discussion of Paul's responses to my probing I want to
consider what associations there may be between his experience and disposition
towards mathematics, especially I want to suggest that setting mathematics in a
`real-world' context may be a contributory factor.

Paul's beliefs about mathematics
Paul's response to my probing is remarkably reminiscent of 'Benny' described
by Erlwanger in his seminal paper (1973).

Benny believed that there were rules for different types of fractions,
as illustrated by the following excerpt:
B: In fractions we have 100 different kinds of rules ...

Erlwanger goes on to remark:

(Benny) has developed consistent methods for different operations
which he can explain and justify to his own satisfaction. He does not
alter his answers or his methods under pressures.
... learning mathematics has become a "wild goose chase" in which
he is chasing particular answers. Mathematics is not a rational and
logical subject ... (Erlwanger, 1973: 10, 12, 16)

Commenting on the influence of Erlwanger's paper Steffe and Kieren (1994)
observe "In one ingenious stroke Erlwanger was able to falsify the
behaviorisitic movement in the practice of mathematics teaching." (1994: 717).
Erlwanger's paper may have been influential in guiding curriculum planners,
text book writers and teachers, it does not however, appear have led to
developments in learning. And although we might not describe Paul as having
a 'behavioristic' approach to learning, in Mellin-Olsen's terms Paul displays
characteristics of 'instrumentalism' (Mellin-Olsen, 1981).

I want to conjecture that Paul has acquired a disposition towards mathematics
that makes cognitive conflict or unanticipated interruptions to the flow of
activity (Raeithel, 1990) that might provoke reflection problematic. In the
conversation with Paul the basis for conflict has been laid but he is able to
dismiss the contradiction he perceives when he claims: "I just think, figure out
one way to work this out and then you go on to the next one and then you have
to find another way to work it out."
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Possible sources of instrumentalism
Boa ler (1998) suggests that it is the approaches adopted by the two schools in
her study that account for differences between students' progress and attitudes
towards mathematics. Additionally, Schoenfeld (1992) relates students' beliefs
about mathematics to classroom practice. My own research supports this and I
want to look more closely at a number of features of traditional approaches to
mathematics, and one feature in particular, that may provide an explanation for
Paul's disposition.

First, I want to consider what similarities there may be between Paul and
Benny's experiences of mathematics. Benny's class was 'using Individually
Prescribed Instruction' (Erlwanger, 1973: 7); Paul had followed an
individualised scheme for the first two years of his secondary education, using
the small booklets of the SMP 11-16 scheme (School Mathematics Project,
1986). Many teachers using this scheme continue to use an individual approach
into and beyond the third year despite the scheme's transition to more
traditional textbook format; I cannot, however, be certain that this was Paul's
experience. The teacher of Paul's class approached the subject through short,
whole class, introductory expositions with the major part of class time spent by
students engaged in individual and collaborative activity as they worked at their
own pace through the exercises. However, Boaler's research (Boa ler, 1998)
suggests that the earlier influence of an individualised learning scheme may not
be a crucial factor in accounting for student performance beyond the immediate
experience of the individual scheme.

Secondly, as noted above, a significant feature of the teacher's approach was to
familiarise the work for the students. This action has been discussed by Doyle
(1986). To facilitate students' activity in their tasks the teacher breaks them
into small steps that provide little or no challenge. Students are left with the
task of memorising the sequence of steps without necessarily understanding the
orchestration or meaning in the context of the task. Doyle has explained how
teachers are under pressure from pupils to familiarise tasks as a means of
maintaining control. Woods' studies of schools confirms this, he observes "for
pupils ... the most important attributes of good teachers are that they should ...
be able to 'teach' and make you work and keep control." (Woods, 1990: 17).

Thirdly, and possibly related to the above is that students experience
mathematics as a fragmented collection of discrete rules, routines and skills. An
analysis of the mathematics experienced by the students in the class I studied
revealed little sense of coherence between different topics studied; the only
common themes that ran throughout the year were elementary number
operations (supported by calculators) and measuring skills. Ernest (1996)
attributes this fragmentation, in part, to the notion of the 'spiral curriculum'.

Fourthly, the regime of the National Curriculum (in the UK) and the pressure
upon schools to raise standards which are narrowly defined in terms of test and
examination results, has an impact upon students' experience of mathematics.
Hoy les explains: "Regular assessment is also expected to enhance pupil
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motivation through mastery of short term goals, and 'knowing clearly where
you are and where you are going.'" (1990: 116). The effect of assessment on
learning styles has been demonstrated in the research of Entwistle who remarks:

... the type of questions given in a test can induce a surface approach
to studying and that the factual overburdening of syllabuses and
examinations may be responsible for the low level of understanding
exhibited by students when prevented from reproducing answers by
well-rehearsed methods. (Entwistle, 1981: 81).

The fifth feature of students' experience that may contribute to their
instrumental approach to learning, which I will examine in more detail than the
foregoing, is the contextualisation of mathematics. I want to argue that rather
than making the mathematics meaningful or, possibly, demonstrating its
application, context can often persuade students that the activities of the
classroom have little to do with their everyday experience outside the classroom
and this leads them to lay aside their expectations of rationality, meaning and
consistency for the duration of mathematics lessons. The use of 'real world'
contexts merely serves to convince some students that they are situated in a
practice that is remote from their lives outside the classroom. And rather than
providing a tool that might be called upon to provide a superior rationality, as
Lave (1988) observed in her subjects, school mathematics is perceived by some
students as a set of meaningless routines to be memorised.

Negative reactions to context
When questions are set in contexts in which students may have 'expert'
knowledge the simplification of the context to make the mathematics accessible
may help to convince the student that mathematics has little to do with 'real life'
and does not make 'sense' because it does not fit with their understanding or
experience. Consider, for example, another episode that arose from my time
with Paul's class. A student was confronted by a question about the probability
of a football team winning successive matches. The student was a keen soccer
player and he could not engage meaningfully with the problem because it did
not fit with his experience. The task suggested that the probability of winning
successive matches remained constant irrespective of what happened in the
matches. The student argued that this would not be the case because the result
of the first match would influence the team's morale for the second match, also
the comparative strengths of the teams would differ between matches. The
question that, I guess, was intended to demonstrate an application of the
mathematics studied served rather to convince the student that mathematics has
little to do with his 'reality'.

Alternatively the contextualising may introduce complication and make a
familiar situation inaccessible. An example of this is provided by Goodchild
(1995) who illustrates his discussion using an episode with a student who is
confronted with a question based on purchasing a quantity of fertiliser. The
student is given the price of 4 kg, told that the cost is proportional to the
amount, and asked to calculate the cost of 20 kg. Goodchild argues that the
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student finds this question inaccessible in part because of its use of technical
vocabulary, 'proportional,' thus setting the question in a classroom context in
which the student has to know the 'special rule'. The context does not
contribute towards the student's construction of a conception of proportionality.
Instead, the language and classroom context separates the question and
mathematical activity from a 'real' situation in which the student would have
little difficulty.

Contextualising mathematics may convince the student that special rules are
invented for the classroom. A fascinating example of this is provided by Brink
(1991) when discussing the 'realistic mathematics programme.'

All the children (aged 5-6) had recently travelled on a city bus; it had
stopped repeatedly at bus-stops. In the Wiskobas project the bus is
an important model for introducing addition and subtraction. We re-
created the bus situation in the classroom: one pupil is the driver and
wears a cap; the other children, standing in a line behind him, are the
passengers.
At the first stop all the children got off, which was not what the
teacher expected. Some of the children thought they were on a
school-trip and not on the city bus. Others thought they were on the
city bus and were going to 'granny' but they failed to notice that the
bus had stopped repeatedly. That did not matter to them on their real
way with mother to see 'granny'. Others wondered whether the
`game' had finished at the first stop
Each child had his or her own particular idea which fitted into the
play-situation of getting off. The surprise shown by the teacher
however quickly put an end to the confusion. The children revised
their ideas and quickly hopped on to the bus.

Brink remarks:

With the help of such instructional manoeuvres (play acting and
showing surprise) we can develop meaningful knowledge in children,
in the sense of knowledge that fits into a situation as envisaged by
radical constructivism. (Brink, 1991: 197)

The point I want to make here is that for the context to work in support of the
didactics the teacher had to impose a special rule. In doing so the situation was
not merely enacting a bus journey, it had become relocated as a 'classroom'
activity. A similar situation became evident in the conversation with Paul from
which the extracts above are drawn. I wanted Paul to reflect upon the meaning
of change in height, as used in the formula presented in the text for calculating
gradient: change in height/horizontal distance. Because he does not give me
the answer anticipated I rephrase the question several times. Paul is consistent
with his explanation, I reproduce just two, out of his five attempts:

Instead of the going along the flat it'd just, it's going up the hill

885
3 - 38



... the train's coming along, and along a flat surface and then it
comes to a hill which it climbs but it needs more speed to get up the
hill and if it's a steep hill it will need quite a lot of speed to get up to
the top

I conjecture that Paul is interpreting change in height as 'changing' height. His
experience of hills is partly dynamic, which is evident from his references to
motion, and partly it arises from looking at road and track surfaces rather than
the cross sections conveniently arranged in the mathematics text. The
mathematics requires Paul to adopt an alternative meaning for change in height.
He might be able to accept this meaning and remember it for the classroom
context but it removes the context from his real, lived-in-world experience
outside the classroom.

English and Halford (1995) draw attention to how stereotypical views can
interfere with students' problem solving. In one example they explain how a
female student attempted to solve a logic problem making the assumption that
women do not play chess or golf. Again, if it is necessary for the teacher to
contradict the stereotype in support of the mathematics, the possibility exists
that students might listen to their teacher and follow the 'rules' within the
classroom and, rather than adapting their expectations outside the classroom,
they will develop a belief in two non-intersecting practices. In particular, the
`real life' practice of their lives outside the classroom and a 'classroom' practice
where 'normal' beliefs and rules must be suspended and the teacher's rules
followed and memorised.

I believe few would want to argue that instrumentalism has roots in traditional
pedagogy but that contextualising mathematics may also be a root is a
conjecture that may be contentious. Setting mathematics in contexts to reveal
applications and facilitate meaning-making appears to be widely accepted
without question. Admittedly my argument rests, largely, on the idiosyncratic
responses of one student (as, we note, did Erlwanger's seminal and influential
paper). However, I hope I have demonstrated that it is possible to interpret
other evidence to support the argument; I believe the significance is such as to
require further investigation.
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THE ENCULTURATION OF MATHEMATICIANS IN GRADUATE
SCHOOL

A Research Report Proposal for PME 23

DANIEL L. GOROFF
HARVARD UNIVERSITY

Abstract" Earning a Ph.D. changes people's attitudes and values in ways that
reverberate throughout the educational system, especially because the graduate
students who become professors also end up teaching teachers. Many public
policy issues, for example about the balance between research and teaching at
research universities, also focus on graduate education. The many suggestions
for reforming the Ph.D. therefore require careful analyses that discuss both
philosophical underpinnings and empirical data. Recent studies expose some of
the myths, realities, and mysteries of the enculturation process that turns
graduate students into faculty.

1. Focus

One surprisingly effective way to understand complicated systems is to examine
extreme cases. Analyzing behavior when parameters are pushed towards their
limits can establish boundary conditions that help explain how the system
functions under more typical circumstances. This paper argues that certain
features of the highly complicated system of education in the United States can
be understood as reflecting what does and does not go on in the special case of
graduate education.

Graduate study represents the outer limits of educational activity along many
dimensions. Compared to other degrees, earning a Ph.D. simultaneously
involves more specialization and breadth, more time and pressure, more
maturity and infantilization, more isolation and socialization, more research and
teaching, more prestige and risk, more freedom and tradition, more intimacy
and anonymity, more convention and originality, etc. By stretching people to
their limits, these tensions of Ph.D. study end up powerfully enculturating those
who survive to the norms and expectations of their discipline.

Both the process and content of graduate student enculturization have far
reaching consequences. For example, graduate students become the professors
who teach undergraduates in general, and who teach teachers in particular.
Pedagogical practices picked up in graduate school can therefore propagate
easily throughout the educational system. This is the argument that "teachers
teach as they were taught," which may or may not be entirely true in
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mathematics. Attitudes towards the history and philosophy of mathematics
especially do seem to play a large role in teaching decisions in any case, and
these attitudes do get passed on implicitly or explicitly. Most graduate students
are enculturated to be Platonists on weekdays and Formalists on weekends.
Both these philosophies are at odds, though, with the explicit Constructivism
that is popular among K-12 teachers and teacher educators. This helps explain
the rift many feel between mathematicians and mathematics educators.

Thinking about graduate student socialization not only reveals much about the
internal workings of the educational system, but also about its treatment by
outside policy makers. American research universities are often described as
products of an uneasy marriage between the British college system and the
German research institute system. The integration of research with education
makes a great slogan, especially among government agencies seeking to protect
budgets for either purpose (though not when the same agencies calculate
indirect cost reimbursement rates). Yet no one seems able to, articulate precisely
what this slogan is supposed to mean in practice, and it is an especially
important question concerning graduate programs. Whether Ph.D. candidates
who teach and conduct research should be treated as employees or students
when it comes to grants, taxes, and unionization rights are matters currently
being thrashed out in American courts. At a time when consumerism, for-profit
competition, and political expediency also pose threats to the traditional role
and funding of research universities, a great deal may depend on how we
describe what graduate study is supposed to accomplish.

2. Framework

Like much educational research, this project seeks to illuminate some current
policy debates. Despite or perhaps because graduate school occupies an
extremal position in the education system, many of the standard reform
recommendations for K-12 seem designed to make students from kindergarten
onwards behave more like Ph.D. candidates. For example, reformers often
emphasize the importance to children of inquiry, group projects, constructing
concepts, data gathering, standing on a par with teachers, and learning to think
like scientists and mathematicians. Conversely, many of the standard reform
recommendations for Ph.D. programs seem designed to treat those students
more like school children. For example, reformers often emphasize the
importance to graduate students of hands-on learning, of practical problem
solving and real world experiences, of work on communications skills like how
to write and speak, and of better supervision, mentoring, and help with decision
making.
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However well-intentioned, recommendations like these seem confusing and
misdirected. Whereas it was once popular to discuss the stages that individuals
and institutions pass through as they learn, the reforms as presented seem not to
acknowledge the idea of progress over time. Such a stance is fundamentally
uneducational, and particularly at odds with the cumulative nature of
mathematics and science education. To help make sense of what might be valid
in these recommendations, it is therefore necessary to reexamine what we mean
by progress beyond just accumulating more content knowledge. For
individuals, this project entails an investigation of epistemological development
through schooling that locates kindergarten at one end of the spectrum and
graduate programs at the other. For institutions, this project entails an
investigation of historical development that locates current calls for reform
within the context of previous successes and failures.

3. Literature

American graduate education is often touted as the best in the world. Especially
in science and mathematics, professors often say that it is the one part of the
educational system that works well and attracts the most able students from the
world over. Yet prominent critics of the Ph.D. date back as far as the degree
itself, including the article by William James entitled "The Ph.D. Octopus."
There is no end of serious reports, panels, and studies filled with sober
recommendations. Samples are listed in the bibliography below. The same
themes run through nearly all of them: Ph.D. training is too narrow; it does not
prepare people well to become faculty, let alone anything else; there is an
overemphasis on research at the expense of teaching; there are not enough jobs;
Ph.D. programs are exploitative, expensive, elitist, demeaning, and drawn-out;
etc. In short, the critics maintain that Ph.D. programs enculturate graduate
students too well in ways that society does not need. It is hard to tell if these
critics are representative of academia, employers, or society, or if they are
merely the most vocal, since those who are relatively content with graduate
education may have little incentive to write about it.

Most of the statistical studies of Ph.D. education concern the supply and
demand for academic jobs. As well, there is also a great deal of controversy
about methods of ranking graduate programs, especially in science and
mathematics. Research into broader questions about the attitudes, expectations,
and experiences associated with graduate education, however, is just beginning
to produce intriguing results. Maresi Nerad at UC Berkeley, for example, has
conducted a comprehensive survey of Ph.D. recipients ten years after
completing their degrees in seven fields including mathematics. Her statistics
permit comparative analysis not only of their employment patterns, but also of
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rich qualitative data about the strengths and weaknesses of their graduate
experiences as seen with a decade of perspective. Another survey by Chris
Golde at the University of Wisconsin asks current graduate students and faculty
about their socialization with respect to teaching, ethics, and service. Moreover,
Jody Nyquist at the University of Washington is collecting and synthesizing
both written and interview data concerning Ph.D. reform in general. These
results can be contrasted with a recent OECD study that places such efforts in
an international context.

Background data concerning the attitudes of mathematicians in particular
towards academic culture and priorities has been collected by the Joint Policy
Board for Mathematics in their unusual "Recognition and Rewards" study.
Shirley Malcom of AAAS has compiled powerful interviews and statistics
concerning the graduate experience of traditionally underrepresented groups in
science and mathematics. There are also several volumes that document and
promote specific kinds of reform projects in mathematics departments, mainly
about either the mentoring of graduate students or their training as teachers.

4. Position

At a time when there are so many forces for change acting on the American
educational system, the one sector of it that seems most successful should
proceed with caution. Especially because changes in graduate education
resonate throughout the system, it is important to tease out myth from reality
concerning Ph.D. programs and the ways they enculturate future faculty. For
example, the integration of research and teaching on university campuses in the
United States has clearly helped shape graduate education. Thus while
reformers oppose one with the other too quickly and easily, it might be better to
reexamine and reconcile research with teaching more carefully. Lee Shulman,
for example, has pioneered one approach for accomplishing this by giving the
"scholarship of teaching," as advocated by Ernest Boyer, a subject matter that
Shulman calls "pedagogical content knowledge."

To make better decisions, graduate students need to understand issues like the
balancing of research vs. teaching in mathematics programs, both in theory in
terms of the purposes of higher education, and in practice in terms of career
consequences. Although most reform efforts target the enculturation future
faculty do or do not receive in graduate school, receiving institutions arguably
have an even greater responsibility, and should more actively orient and mentor
new hires. While many senior faculty perhaps are not yet well-equipped to take
on this role, this situation is changing. For example, Project NExT and Project
Kaleidoscope are two highly successful national efforts to provide such support
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to young mathematics and science professors who are unlikely to receive it
locally.

5. Implications

Investigating the enculturization of mathematicians in graduate school should
help with clarifying and evaluating the many calls for Ph.D. reform in particular
and higher education reform in general. Viewing the problems and successes of
graduate programs through this particular lens not only highlights certain results
and questions in educational research, but also suggests the need for further
experiments, examinations, and explanations. Establishing a stronger sense of
the direction and range of cognitive development in schooling through the Ph.D.
could help organize better thinking about the entire educational system.
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This paper explores the relationship between children's numerical understanding
and the frames of reference of their images. Embedded within psychological
approaches that evoke imagery through verbal and visual cues, the study explores
the different kinds of imagery identified from elementary school children's
responses to such cues and links them to levels of numerical achievement. The
results suggest that images with descriptive qualities manifest through specific
and/or episodic references are common to both high and low achievers. However,
the images of high achievers, in contrast to those of low achievers, display a
spectrum of quality that have a more generic core. Such differences may have
consequences for successive processto-concept encapsulations.

INTRODUCTION

Our efforts to gain insight into why some succeed in mathematics and others fail has

consciously taken a route that considers cognitive development. Whilst
acknowledging the existence of a wide range of social and cultural influences on this
development, (see for example Cobb, 1987; Gruszczyk-Kolczynska & Semadeni,
1988) our interest is manifest in seeking answers to the question "What are children
really doing in their heads?"

This paper reports part of a wider study designed to investigate the ways in which
different kinds of mental image may influence children's approaches to elementary
arithmetic. It is not the purpose of the paper to become caught up in the format of
mental image from a propositional or visual point of view. A guiding principle is
that, irrespective of such format, there are other aspects of mental imagery that
requires further discussion. These may prove to be important to our understanding
of cognitive development and in particular to our understanding of divergence in
numerical thinking.

Drawing upon work in cognitive psychology, the paper initially considers the
existence of different kinds of image with particular reference to those identified by
De Beni & Pazzagalia (1995). It continues by broadening the debate and illustrating
how these different kinds of image may be associated with different levels of
arithmetical achievement. Images children project when stimulated by single verbal
and visual cues, in concrete and abstract form, suggest that those of children with
lower levels of numerical achievement are of essentially of a descriptive kind. In
contrast, those who are more successful project, in an 'integrated' way, a spectrum
of the different kinds of mental images that reflect descriptive and relational
characteristics.
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THEORETICAL BACKGROUND

Setting the Scene
The concept of image has become less clear as more progress is made on the
research front (Cooper, 1995) and this paper recognises that human cognition
requires different representational constructs to describe it. Consequently in our
context the term image may be seen as a mental reference which is a product of
imaging in any modality whether it be visual, verbal, olfactory, auditory or
kinesthetic.

Images are significant components of cognition and the notion of mental reference
has particular relevance for the study of mathematics. Its association with a
conception of 'thing' or 'object' draws our attention to a quality of abstraction that
ranges from a mental analogue of a real object to a linguistic description or a
symbol (see also Pavio 1986). Such a distinction would seem to be particularly
relevant for cognitive development in elementary arithmetic which, it is suggested,
is grounded in successive process-to-concept encapsulations (Tall (1995)

The issue for this paper is whether those who are less successful appear to have a
disposition towards particular kinds of image that are qualitatively different to those
projected by children who are more successful.

Different Kinds of Mental Representation
Thomas, Mulligan and Goldin (1996) have suggested that children's internal systems
of representation of numbers go through a series of changes, from a semiotic one in
which meaning is established through previously constructed representations, to an
autonomous stage in which a new system of representation functions independently
of its precursor. Pirie & Kieran (1994) indicate that a learners strong early
attachments to particular dominant images can seriously influence the development
of understanding The relationship between the understanding and imagery suggests
that abstract imagery appears to dominate amongst relational thinkers, concrete and
memory images amongst relational thinkers (Brown & Presmeg, 1993). In
elementary arithmetic such differences may emerge because those who
predominantly use procedures display less inclination to filter out information
(Gray & Pitta, 1997). Relational thinkers appear to reject information or, to put it
another way, are more able to select the information that is more relevant to a
particular situation. This would suggest that the different images identified amongst
children at extremes of numerical achievement have their roots in a qualitative
abstraction governing the individuals active mental process of making sense of data
through personal and/or impersonal involvement.

These forms of involvement have featured as some of the attributes which guide the
classification of different kinds of imagery explored by Cornoldi, De Beni and Pra
Baldi (1988) and De Beni & Pazzagalia (1995). The former suggest that images
spontaneously evoked from a single verbal cue may be identified as general, specific
and autobiographical in decreasing proportions. General images represent a concept
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without any reference to a particular example or to specific characteristics of the
item. For example, the cue 'table' may evoke the response "I can see a table".
Reference to a single well-defined example of the concept without reference to a
specific episode characterised specific images. Autobiographic images, seen to be
special cases of the 'specific' category enlarged to include the involvement of the
self-schema, were those which involved either the subject without a precise episodic
reference or objects belonging to the subject.

De Beni & Pazzagalia questioned the meaning that may be given to the
autobiographic image category. They suggested that there is a distinction between
images referring to a single episode in the subject's life (episodicautobiographic)
and those that actually involve the subject without a precise episodic reference
(autobiographic images).

METHOD

Within this study images are inferred from the words of subjects. Thus, two
features governed the framework for the development of cues that formed the basis
for an interviewee's response. The first is embedded in psychological approaches
which evoke imagery through a verbal and visual stimulus (see, for example,
Stillman & Kemp, 1996). The second is that the relationship between imagery and
numerical achievement should focus on two issues:

the existence of different kinds of image identified through distinct generation
processes, and the likelihood that these can be grouped into categories.

the relationship between an emphasis on one or more of these categories and the
level of numerical achievement.

Visual and verbal cues were presented to a sample of 16 children representing the
extremes of numerical achievement within each of four year groups of a primary
school within the UK. Numerical achievement was measured by criterion based test
results available in the school and a numerical component which formed part of a
larger study of which this paper is a part. The final sample had 8 'high achievers'
and 8 'low achievers', 2 of each drawn from children aged 8 to 11.

A modified version of the defining feature approach (see, for example, Roth &
Bruce, 1995) was used to gain a sense of whit it is children feel is important to
communicate when faced with cues in verbal form. These included concrete words
and conceptual labels that had more abstract meaning. The former, seven items
which denoted things that could be perceived by one of the sense modalities and had
shown they could evoke images more readily than other words (see Pavio, 1969)
included the cues 'dog', 'table', 'dots', 'football'. The latter, more clearly associated
with elementary arithmetic, had eleven items including 'five', 'thirty-three', 'half,
`three-quarters', `three eighths', 'naught point seven five', 'number' and 'fraction'.

Sixteen cues were presented visually, nine being visual representations of verbal
cues The item bank was subdivided into two sections, pictures and icons, for
example, a 'football', 'dots', a 'table', and symbols for example, 5, 99, 34-4, 0.75.
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Each verbal and visual cue was presented with the following instructions:

Verbal/visual: What is the first thing that comes to mind when you hear the word (or see)...?

Verbal: Talk for 30 seconds about what comes in your mind when you hear the word...

Visual: Look at this, when I tell you close your eyes and put this in your mind. Talk to
me for 30 seconds. Do it now.".

Children were interviewed over two separate occasions approximately 8 weeks
apart. All interviews were video-recorded, linked to field notes and transcribed.

RESULTS

Classifying Responses
Children images were classified as general when responses indicated that they were
not talking about a specific item. For example:

"It's a surface on metal or wooden sticks" (Y4+, verbal, `table' )t

"Part of (Y6+, verbal, `fraction')

The criteria for responses identified as specific were extended to allow for multiple
examples which were qualitatively similar. For example:

"... a cheetah is one, a rabbit is one, a dog is one a cat, a Labrador, Dalmatian, owl, eagle,

buzzard, etc." (Y3, verbal, 'animal')

"Like one, two, three, four, five, six, and ten are numbers". (Y4, verbal, `number')

De Beni and Pazzaglia suggested that some images could be seen to be
`contextualised' since they had distinctive and relational characteristics. However,
the way in which contextualised mental representation were identified as 'item
specific' and 'relational', did not satisfy the clear distinctions observed in the
responses of the subjects within the current study. They could be descriptive
through association with a scene or a sequence of scenes or they could have a higher
order quality more in tune with Skemp's (1976) notion of relational. After detailed
analysis of responses it was decided that the notion of a contextual image would be
better served if there were a distinction made between episodic and generic images.

Episodic kinds of image were associated with some scene or sequence of scenes and
were most often narrated in continuous speech:

"Boys can kick it around and sometimes it can get lost over the field." (8, verbal, 'ball')

"Number five. I think of a row of numbers and light shines on number five. A light goes

along and stops over the number five." (Y5, verbal, `number')

1 The indicators at the end of each example provides the age of the child and their level of achievement, the phase of

items and the item iteself. Thus (Y4+, verbal, 'table') indicates a 'High achieving' nine-year-old responding to the

verbally presented item 'table'. Low achievers are denoted by the symbol
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Other responses that implied the existence of a context were more fragmentary;
more a collection of disconnected, seemingly arbitrary, generic statements. These
originated from the same general concept that served as the basis for explicit
relational connections. They were not descriptions of a sequential event with a clear
beginning and end but more often a collection of statements that seem to have the
potential to produce new ideas. Though they had a 'general' quality, the statements
diverged to produce different ideas related to the item. For example:

"Keeps you fit. An exciting game. Millions of fans. Important in every nation. Children and

adults play it. Different types of football and balls." (Y4+, verbal, 'football')

"... maths and writing. Seven... you could be doing some adding or times and the number

seven might come up. Seven is also played in sport... seen on the back or shirt... has one

digit... in a phone number." (Y5+, verbal, '7').

The 'autobiographic-episodic' category, which allowed for the "occurrence of a
single episode in the subject's life connected to the concept" (De Beni and Pazzaglia,
1995 p. 1361), was noted infrequently but identified as follows:

"My friend wasn't good at fractions and she had to take extra work home."
(Y4+, verbal, 'fraction')

'We have recently done reflections and they had lots of halves in them. We had to put our
mirror down the side and see the rest of it. I saw lots of those." (Y4+, visual, `half )

Though De Beni and Pazzaglia's approach requested subjects to construct 'good and
vivid images' of 'high value nouns' given as cues, the current study involved
reporting images of abstract nouns and of symbols or icons representing them. Such
stimuli could evoke mental representations of a proceptual nature (Gray & Tall,
1994), for example:

"It's divisible by nine" (Y6+, verbal, '99'),

"3 parts out of 4, fraction, 0.75, more than half." (Y6+, visual '3/4')

Analysis of Results
Here we present results relating to the 30-second response that allowed children to
contribute as much as they felt able to. Consequently, from each child, there may be
a sequence of responses that embrace different kinds of image. All responses from
each child were classified. Figures 1 and 2 display the different kinds of
representations recorded as a proportion of the total number of child responses
given (N). To provide a clearer sense of the more dominant mental representations
classifications identified in less than 8% of instances are collated in the category
`Other'. This figure may be regarded as quite arbitrary, but careful consideration
of the summarised results suggested that percentages up to this level frequently
indicate more idiosyncratic and less common behaviour.
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Figure 1: Occurrence of the different kinds of mental representation as a proportion of
the number of items considered in the second response of the visual phase

Figure 1 provides a
summary of responses
to the visual items.
The dominance of
specific images may be
clearly seen amongst
the low achievers.
These, together with
the episodic form, are
clearly dominant in
reactions to each set of
_cues: the pictorial,
iconic and symbolic.

Images from the
numerical cues by
high achiever's
covered a wide
spectrum of the

different kinds. However, like the low achievers, high achievers appeared to have
had difficulty detaching themselves from mental representations associated with
specific and episodic content when cued by icons. These had easily distinguishable
surface features but were less easy to name and connect with different experiences.
It is suggested that these features militated against the abstraction of the intrinsic
qualities that would have lead to the projection of generic and proceptual kinds of
image.
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Figure 2: Occurrence of different kinds of mental representation as a percentage of

the number of verbal items in the second response of the verbal phase.
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Figure 2 summarises
images associated with
the verbal cues. The
proceptual and generic
images identified from
high achievers when
responding to these items
suggest they have an
ability to link the cues to
different experiences so
that intrinsic similarities
may be abstracted. In
contrast low achievers
continue to project
specific and episodic
images but the symbols
evoke a relatively high
proportion of general
ones.
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DISCUSSION

This study supports the notion that different kinds of imagery may be identified
amongst children of elementary school age. Additionally, it suggests that these may
be identified through responses to both verbal and visual cues of either concrete or
abstract nature and the evidence points to qualitative differences in the kinds of
imagery projected by children at extremes of numerical achievement. Both groups
projected imagery underpinned by descriptive qualities in that they are specific
and/or episodic. However, whilst low achievers consistently project features
embedded in such images, high achievers projected more relational imagery to
display a spectrum of quality which, it is conjectured, has a more generic core.

Such differences, pivoting as they do around tendencies to project descriptive
and/or relational images, are made apparent by the inclusion of generic and
proceptual kinds of image. Perhaps it is no surprise to see that children who are
selected on the basis of achievement, with the implications this may have for their
proceptual/procedural interpretation of symbolism at an operational level (Gray &
Tall, 1994), reflect such differences. However, the paper goes further than this. Not
only do children at different levels of arithmetical achievement project qualitatively
different images when prompted by numerical cues, they also project qualitatively
different images of other conceptual ideas that are presented free of context through
verbal and the visual cues.

It is hypothesised that the high achiever's reactions to the different phases may be
accounted for by the processing differences that apply between the presentation of a
visual stimulus and the presentation of a verbal stimulus. Though the invitation to
consider the 'first thing that comes to mind' has not been considered in this paper,
its analysis suggests that high achievers initially provide a general mental
representation, often through naming or by giving a general comment about the
item without any reference to other characteristics. It is conjectured that this needs
to be done before a mental search to retrieve generic or proceptual qualities is
carried out. When it was too difficult to project a general mental representation
high achievers did not give a response but low achievers supplied a specific image
associated with the surface characteristics or a specific example of the item.

Age differences have not featured in the analysis as presented. However, it does not
appear to have much influence upon the quality of mental representations projected
by low achievers. However, those of high achievers, being of a more generic
nature, operate at a more relational level that seems to grow in complexity.

CONCLUSION

The results would seem to have important implications for our understanding of the
way in which children view the development and use of numerical activity in the
context of repeated process-to-concept encapsulations. The limited spectrum of
mental representations projected by low achievers suggest they are either unable to,
or simply choose not to, see through actions and objects to embrace more abstract
qualities. It may even be that early teaching has influenced their focus of attention.
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The development of elementary number requires an ability to concentrate the mind
and give careful thought to an act or idea to filter out irrelevancies and separate
notions from their context. It involves the construction of relationships between and
amongst objects and of the actions on them. It would seem that such a process might
work to the advantage of the high achievers. Their disposition towards the
formation of images that integrates descriptive and relational characteristics seems
to ensure the construction of number concepts through the synthesis of pseudo-
empirical and reflective abstraction Tall (1995). It is conjectured that this follows a
very different cognitive development from that of children whose disposition
towards descriptive images arises from their concentration upon empirical
abstractions and direction, through teaching, towards the pseudo empirical.
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THE ROLE OF UNCERTAINTY

IN CONSTRUCTING AND PROVING IN COMPUTERIZED ENVIRONMENT

Nurit Hadas & Rina Hershkowitz

The Weizmann Institute, Rehovot, Israel

The role of uncertainty in promoting the need to prove, in the sense of
explaining and convincing in geometry, has been discussed by many researchers
(e.f., Chazan, 1993; Dreyfus & Hadas, 1996; Goldenberg, Cuoco, & Mc -.7z,
1998). We demonstrated (Hadas & Hershkowitz, 1998) that uncertainty stems
from a geometrical situation in which students cannot find any example
confirming their intuitive conjecture, because such an example does not exist. In
the present article we describe a case in which students are engaged in a
construction task in a situation of uncertainty: the construction was possible, but
was opposed to students' intuitive conjectures.

Background
Yerushalmy, Gordon & Chazan (1993) distinguish two kinds of geometrical
problems in computerized learning environments: construction problems and
conjecture problems. In both, one has also to consider the different roles of proof;
i.e., as a tool to show the universality of a statement and as a tool to explain (Hanna,
1990). In many conjecture problems students feel that the universality of the
conjectured attribute of the geometrical object is confirmed by the computerized
environment. The dragging operation on a geometrical object enables students to
apprehend a whole class of objects in which the conjectured attribute is invariant,
and hence they are convinced that their conjecture will be always true (De Villiers,
1998). Therefore the only motivation driving students to prove is to explain. We
have already described (Hadas & Hershkowitz, 1998) an example of a conjecture
problem, in which the conjectured attribute does not exist, hence the dynamic tool
does not play a convincing role. Such a problem is a good didactic opportunity to
make the student aware of the role of explaining by proving, as a convincing tool.

In construction problems the universality and the explanation are interwoven.
Schoenfeld (1986) has described two construction problems to support his claim
that "empiricism is an essential component of the machinery of deduction,
conversely, however deduction makes possible a discovery that is inaccessible to
insight or empiricism" (p. 249). In common construction problems in computerized
environments, students are asked to construct a figure whose existence is obvious.
In the following, we will show students working on a problem in which they are
asked to investigate by construction, the existence of a figure satisfying given
conditions.



The problem Congruent Triangles

In this activity, we will investigate if and when, two triangles having several equal elements,
are congruent.

Task I. Given a dynamic triangle ABC, build another triangle having two angles and the included
side equal to two angles and the included side of AABC.

Task 2. Is it possible to build a triangle with one side and two angles equal to those of a dynamic
triangle ABC, but not congruent to dABC? If it is possible, build such a triangle; otherwise

explain why .

Task 3. Is it possible to build two non-congruent triangles, with five equal elements? Create a
hypothesis.

Task 4. Is it possible to build two non-congruent triangles with six equal elements? If yes construct
two such triangles, otherwise explain why .

Task 5. Is it possible to build two non-congruent triangles, with five equal elements ? If yes
construct two such triangles, otherwise explain why .

Problem analysis: a. Task 1 prepares students for Task 2: they realize that
congruence is an invariant attribute under the dragging operation. This means that
when one changes the original A.ABC by dragging, the second congruent triangle
changes accordingly. But, the second triangle cannot change when it is itself
dragged by one of its vertices.

b. When students complete Task 2, they are asked to identify the equal elements,
and to their surprise, discover 4 equal elements in the two non-congruent triangles.

c. The task of constructing a triangle non-congruent to AABC, with 5 elements
equal to elements in DABC, is quite complex. We consequently decided to
decompose it into three stages: a conjecture stage (Task 3), a discussion of the case
of 6 equal elements (Task 4), and finally the construction of a triangle with 5
elements equal to elements of AABC, although non-congruent to it.

Problem Characteristics: (i) As in all other construction problems in such an
environment, the computerized tool elicits empirical actions followed by a prompt
feedback from the tool. But, for complete success, deductive considerations are
needed. (ii) The problem provokes surprise followed by uncertainty. (iii) Students'
construction processes depend on their ability to analyze the problem deductively,
leading to the elaboration of an existence proof. The last two characteristics are
discussed in detail in our analysis of some students engaged in this activity.
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The Interviews
Pairs of Grade 10 students with ability in the upper half of the population, were
interviewed while working on the problem. The interviews were videotaped and
analyzed. The students were towards the end of a two year geometry course, and
were familiar with ways to prove. In the following, we describe two representative
pairs of students.

The first pair

In Task 1 a girl and a boy, Gili and Nadav, constructed a triangle non-congruent to
AABC with two angles and the included side equal to the same elements in AABC.
They discovered that the new triangle can be modified only by dragging the vertices
of AABC, and explained this modification by invoking the relevant congruence
theorem. They then struggled with Task 2 for 15 minutes. First they constructed the
second triangle (see Figure 1) where: DE=AC; <D=<A; and <F=<B.

The following excerpt expresses the dialectic process the pair underwent.

Nadav: They were supposed to be non-congruent but they are [congruent].

[F is a random point on the line DF, They drag F in such a way that FE remains the
triangle side. When they change AABC, they had to adjust F again by dragging.]

Gili: It's the same again.

Nadav Ah! It is like that because if this one [pointing at <D and <A] and that one
[pointing at <B and <F] are equal, the third must be equal as well...If two
angles are equal even if they are not at the two ends of the side, the third is
equal too.

So what is your conclusion?

Nadav: When we have two (equal) angles and side, and they [the triangles] are not
congruent, it is impossible.

[Gili starts looking for a way to show that the construction is possible. The
interviewer suggests analyzing all possibilities for locating the "second angle".]

Nadav: If we copy it [pointing at <B] here [pointing at a point on DF] we get stuck!

Gili: If we copy <C here [she points at a point on DF, and starts to construct].



[Nadav who was hesitating so far, starts watching Gili, and after she copies the
second angle, exclaims:]

Nadav: Ahh! you did it the opposite [meaning not correspondingly].

[The pair complete the construction and check it by dragging. Nadav explains what
they did explicitly. The discussion continues.]

Gili: So, we succeeded?
Did you discuss the idea of correspondence between two triangles in the
context of congruence in the class?

Nadav: No, we didn't. The teacher did and now I understand why.

[To their surprise, the students find that the two non-congruent triangles have even
4 equal elements.]

In Task 3, the pair hypothesize that a triangle with 5 elements equal to elements of
&ABC, but not congruent to AABC, can be constructed in a way similar to that in
Task 2. The interviewer does not let them try to construct such a triangle and asks
them to move to Task 4. They discuss the issue of 6 equal elements in non-
congruent triangles. Gili claims that it is impossible to construct such a triangle, but
did not justify her answer. In contrast Nadav argues that it is possible and applies
the strategy used successfully in Task 2, on a piece of paper (see Figure 2).

The interviewer asks them to analyze their drawing using their geometrical
knowledge. Nadav answers immediately: In fact there are 3 equal sides so the
triangles are congruent, hence it is impossible with 6 equal elements.

Their investigations on Task 5 are based on: (i) considerations they raised in the
previous task, (ii) their hypothesis in Task 3 that it is possible to construct a triangle
with 5 elements equal to elements of AABC, but not congruent to AABC. They try
to apply similar methods to those they used in Task 2. First they plan the
construction by erasing the "equal signs" of one pair of corresponding sides, on
their drawing in Task 4 (Figure 2). They then try to construct ADEF according to
this drawing. They succeed in this endeavor, but with 3 equal elements only. They
use measuring and dragging operations to try to obtain all the 5 equal elements, but
without success.

The students then discuss what they have done with the interviewer and conclude
that it is difficult or even impossible to obtain the 5 equal elements in the two
triangles by dragging, even if such a triangle exists. They initiate deductive
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considerations as following: the triangles can have only two equal sides, so they
must have 3 equal angles. This means that the triangles are similar, and therefore
the ratio between corresponding sides in the two triangles must be constant.
Following a suggestion by the interviewer, the students construct an example of two
such triangles by choosing (with the help of the interviewer) particular lengths for
two of the sides in each triangle (see Figure 3). They deduce that the invariant ratio
between the corresponding sides in AABC and ADEF must be 1.5, and hence that
AB must be 4 and DE, 13.5.

C D

Figure 3

The pair then constructed the two triangles with the software. The following
discussion took place.
Nadav: But the angles should be equal as well. [He thought for a while and added:]

but it is O.K.
Why are you sure that the angles should be equal?

Nadav: Because they [the triangles] are similar.

The second pair

Two boys, Asaf and Asher answer Task 1 in the same way as the first pair. They
also start Task 2 by constructing a second triangle (see Figure 1), in which DE=AC,
<D=<A, and <F=<B. Once they realize that they obtain congruent triangles, they
immediately conclude that they did it wrong, and replace the third equality by
<F=<C. They then succeed in constructing the two non-congruent triangles. The
following excerpt came at the end of their discussion concerning 4 equal elements:
I: So, how many equal elements do you have in the two triangles?
Asaf: Three
I: No more?
Asaf: The third [pair of] angles cannot be equal because then they [the two

triangles] will be congruent.
Asher: No because if the third [pair of] angles [are equal] they will be similar and

not congruent.
I: Can you construct two triangles with two pairs of equal angles in which the

third pair is not equal?
Asaf: Yes!
Asher: No!



Asaf: Wow! It's impossible!...Only the sides are not equal, because the sum of the
angles in a triangle is 180'. Wow! four equal elements and the triangles are
not congruent.

In Task 3, they hypothesize that triangles with 5 equal elements are always
congruent. This assumption is elaborated in Task 4, for 6 equal elements. The
interviewer does not let them leave this issue too quickly, and brings the idea raised
by the previous pair of students at this point by asking: Maybe one can construct
equal angles not opposite to the equal sides? The students seem intrigued by this
idea and draw a sketch similar to Figure 2, discuss it for a while, and conclude that
because the triangles have 3 equal sides they must be congruent.

They come back to the issue of 5 equal elements in Task 5, and conclude that if such
triangles do exist they must be similar, because the three angles are equal, and thus
the ratio between corresponding sides must be constant. After a long dialogue
between the two students, in which the interviewer suggests they focus on one
special pair of triangles, they succeed in sketching one example, by calculating the
ratio between the sides and applying it to calculate the third side in each triangle, -
in the same way as the first pair (see Figure 3).

The interviewer checks their awareness of their own actions by asking: What do
you think about the angles, must they be equal as well? This pair of students is
unable at this point, to refer back to the similarity of the triangles in order to justify
the equality of the angles, in spite of their intuitive feelings that this is true. So, they
construct the two triangles with help of the software, measure the first pair of
angles and find them equal. In the process, the similarity of the constructed
triangles becomes visually obvious (see Figure 4).

9

Figure 4

This visual clue leads the pair, after a while, to deduce the triangles' similarity,as
we can see from Asafs concluding remark: If the ratio between the sides is fixed,
then they [the triangles] are similar and then the angles are equal. But, they [the
triangles] are not congruent. So, we did it!
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Discussion
The dialectic feeling of uncertainty.

As we mentioned above, one of the characteristics of this activity is the feeling of
uncertainty concerning the existence of examples fulfilling the constraints. In Task
2, in contradiction to their conjecture, both pairs were surprised to find a way to
construct the non-congruent triangle with the 2 angles and one side equal to those
given, and even more, to discover that the two triangles have 4 equal elements. This
way of copying an equal angle into ADEF in a non-corresponding position, is based
on deductive geometrical reasoning. By using it to construct the required triangle
and watching the result on the screen, students became confident that their
construction was correct. This confidence led them to .hypothesize that non-
congruent triangles with 5 equal elements can be constructed. The students went
even further to claim that when two triangles have 6 equal elements, they are not
necessarily congruent, and they even tried to sketch such triangles. However, when
they used a congruence theorem, they were confident that 6 equal elements always
implies congruent triangles. This raised their suspicion in Task 5, and uncertainty
characterized their first steps in this task. Only after they succeeded in designing
their construction deductively did they become confident again that such triangles
do exist, and insist on constructing them on the computer.

The deductive explanations.

Different kinds of deductive reasoning occurred in the various tasks. In Task 2,
students constructed the ADEF by copying the two angles to two vertices which are
not both on the given side, yet obtained a congruent triangle (see Figure 1). This
action led them to a different construction, based on deductive considerations. This
construction by itself is the deductive solution (an existence proof) to Task 2. The
situation in Task 4 is similar to the one we have already described (Hadas &
Hershkowitz, 1998), where students could not find any example confirming their
intuitive conjecture, because such an example does not exist. Here a non-congruent
triangle with 6 equal elements does not exist, so the only way to be convinced is to
give deductive explanations. Task 5 has the same characteristics as Task 2; the
construction is based on deductive considerations. And yet we saw that these
deductive considerations are very fragile. Students needed to reflect on the whole
process they underwent, before they became aware of the logical chain they
themselves elaborated.

Deductive explanations were not the first weapon used by students in justifying their
actions or their planned actions. This finding has been noticed by many researchers
(el., Schoenfeld, 1986; Hoyles and Jones, 1998) Examples: (i) When asked, after
accomplishing Task 2, how many equal elements the two non-congruent triangles
have, the second pair spent a long time at arguing before being able to use deductive
considerations, based on the sum of angles in a triangle. (ii) The two pairs had
difficulties in seeing the logic chain on which the construction of the triangles in

3 -63

660



Task 5 was based. It was even more difficult to recreate the opposite chain from the
constructed triangles to conclude that the triangles must be similar, and hence the
angles must be equal.

As described above, students gave deductive explanations of their actions, a fact that
made them confident in what they did and in the ways they justified why certain
constructions are impossible.
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Mathematics Education Research Project: Researching Teacher
Development Through Action Research

Anjum Ha lail, University of Oxford, UK.

The report is on a one-year action research project where university-based
researchers facilitated and studied the action research being conducted by a
group of mathematics teachers from schools in Karachi Pakistan. The research
design was qualitative in nature and used participant observation, field notes
from meetings, and reflective journals maintained by all participants as tnnls
for data collection.The study claims that action research promotes teachers'
learning and professional growth by enabling them to take a critical look at
their practice. However, also significant is the growth and learning of the
university-researchers, as helping teachers to inquire itself requires critical
reflection. The study has immense implications for inservice and preservice
teacher education initiatives and raises some important questions regarding the
structural changes that might be required in schools to allow them to become
communities of inquiring practitioners

The mathematics research project looked at teacher development through action
research. The research group comprised a team of eleven. Of this, six were
teacher- researchers who taught mathematics in schools from the public and
private sector in Karachi Pakistan. The remaining five were university-
researchers who both researched and facilitated the inquiry that the teacher-
researchers conducted into their practice. One of the five from the university
coordinated the project. I worked as university- researcher with one
mathematics teacher.

Action Research. The term 'action research' means different things to
different people. Smith & Lytle (1993) defined teacher research as systematic,
intentional inquiry by teachers. Carr & Kemmis (1986) saw action research as
undertaken by participants in social situations to improve the rationality and
justice of their practices, their understanding of these practices and the situation
in which these practices are carried out. The concept of a reflective practitioner
as defined by Schon (1983) and Stenhouse (1975) is consistent with the idea of
teacher as researcher. Action research is seen as a vehicle to promote reflection

and growth of the reflective practitioner entailing cycles of planning,
implementing, observing and reflecting on ones own practice. Grundy (1987),
describes three modes of action research i.e. technical action research which is
effective but product directed. Practical action research which emphasizes the
role of personal judgement in decisions to promote change and emancipatory
action research which promotes critical consciousness towards change

I Anjum Halal is currently on secondment from the Aga Khan University, Karachi (Pakistan), pursuing her

D.Phil in mathematics education from the University of Oxford, UK.
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initiatives. Hence if the project is directed by the university-researcher and
ownership of ideas is not taken up by the practitioner the research project will
remain in technical mode. However, if the participants take over ownership,the
project could become critical or emancipatory.

Similar to the project in Jaworski (1998), a central issue in this case was the
interrelationship and interdependence between teachers' research and the study
of the research. The university researchers provided a major support to the
teacher-researcher in conducting the research and worked in dual roles of
researcher and mentor. Given the nature of the project I see action research as
defined by Pedretti (1996) as a form of professional development which
encourages teachers to participate in cycles of planning, acting, observing and
reflecting thereby creating possibilities for change and transformation and in
which equally important are the transformations and growth experienced by the
facilitator (mentor) in an action research context.

The Context. The school was a private school for girls in Karachi with a staff
of about eighty teaching 1300 girls. The overall administration is in the hands

of the principal. All the class room activity in this project was based in one
particular section of Class Six (10-11yrs.) chosen because both the teacher-
researcher and I were jointly responsible for teaching mathematics to it. By
agreement I initially did most of the teaching and Zarina observed me. About
two months later she indicated her wish to teach and be observed. Each
provided feed back to the other.

The universiy-researcher. After teaching at this school for eight years, I
participated in a degree course in teacher education at a local university. The
programme selects and trains teacher educators, who then return to their schools
to work jointly with the university and the home school that sponsored them: in
university 6 months running courses for the visiting teachers, and in school for 6
months. In the school I taught mathematics to one class which was 1/3 of the
total teaching load that teachers in school had. For continuity to the pupils, one
other teacher (Zarina) was assigned to work with me in the same class so that
when I left for my university work the second teacher could take over and

continue smoothly.

The teacher - researcher. From all the mathematics teachers in school Zarina
accepted my invitation to join the project. She had been teaching mathematics in
the school for four years and 11 years elsewhere. She has a first degree in
biology but no professional qualification. I got to know, Zarina better when she
came to the university to attend the visiting teachers programme, which I was
conducting along with a group of other colleagues.
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The project team. The project team including the teacher-researchers,
university-researchers and the coordinator met once a quarter over a period of

one year to fmd out where each one was at, sharing learning, and raising issues.
These meetings provided opportunities of on-going cross analysis of emerging

data.

The Research Process. Over a period of one year Zarina and I met once a week
for 90 minutes to plan lessons, share ideas and expertise including doing the
mathematical activities that we wanted to carry out in the class. A regular
feature of these meetings was to reflect on the previous week's happenings and
discuss issues that had arisen.

Observation & post-observation conferences: After each classroom session a
post-observation conference took place between Zarina and myself to promote
reflection on key issues arising in the classroom.

Reflective journals: Writing and sharing journals raised an issue. If the journal
was written for an audience then the entries might be coloured by considerations
of what the reader might want to see in them. In order to let journal writing be

an exercise in genuine reflection and yet allow others to learn from them Zarina
and I decided to read, talk about and analyse portions of our journals that we
wanted to share with each other in our pre- and post observation conferences.

Analysis. For discussion of results, critical incidents have been selected from
our work together because they throw light on how Zarina was thinking about
planning for teaching, learning, mathematics and other emerging issues and how

my own understanding developed of teacher learning and action research. To
give a sense of progression these incidents have been described in sequence.

Action Research Focus. When I look at Zarina's initial journal entry I find her
thinking about lesson planning in conjunction with planning in-groups.

Planning lesson in-groups provides opportunities to learn from
others and we learn many things, which we did not know before.

Journal entry: 2-9-96

Later In a conversation she identified the focus of her action research by saying:

Z1: I want to know what a lesson plan is like.What should be in it.
I want to plan using the ways shown in the VT programme.
field notes: 28-9-96

I interpret from above that her action research focus is embedded in her recent
experiences of professional development in the VT programme. Her journal
entries indicate that she had realized the value of group work during her



experiences in the programme where working in groups provided opportunities
to exchange ideas, work out meaning of new ideas or take an in-depth look at
familiar concepts. So she links up the idea of planning with group work. The
VT programme may have inititated the process of critical reflection on her
practice but in action research that by engaging in cycles of planning, action and
reflection that she takes overt and systematic action on that critical reflection.
Does it mean that a springboard is needed to facilitate the action research
process? Rudduck (1991) suggests that a pre-condition for teacher research
may be that the teacher temporarily becomes a stranger in his or her own
classroom. Becoming a stranger would allow them to look at 'ordinary'
interactions and events with new eyes. My interpretation is that Zarina's
experience of participating in the VT programme allowed her this opportunity to
step back and look at her own practice with anew.

However, over the life of the project her question did not remain the same. I

saw that the questioning stance enabled by the research process got her to look
critically at other aspects of her practice. For example, she questioned the
traditional examination which usually assesses pupils' procedural knowledge of
mathematics but does not necessarily indicate pupil understanding of those
procedures. Hence the examination paper was modified so that questions were
not asked according to the set pattern.

An Example of Zarina's Learning.

The fraction lesson: This lesson on fractions had been planned together by
Zarina and myself. However, I taught while Zarina observed. I asked the pupils
to work in pairs on the problem given below and left them to choose their own
ways of interpreting the problem and recording its solution. Squared paper and
other manipulatives were made available to them.

Saima wants to divide three fourths of a cake into fifths so that she may send it
to five of her friends who could not attend her birthday party. How much will
each friend get?

A number of issues arose from this lesson. It was apparent that students were
not sure which strategy to use and why. Some had got the solution through the
routine rule 1/5 of 3/4=3/20 but could not explain the reasoning behind it.
Naima had used 3/44-1/5=15/4 and could also not explain the use of the strategy
or what the answer 15/4 signified.

In a subsequent conference talking about her action research Zarina referred to
this lesson and the following conversation took place:

15: Then what do you want to do?
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Z6: Show it (lesson plan) to you so that my lesson plan is not such
that when I go to the class I get confused myself

17: i.e. you then want to teach yourself?

Zg: and you then tell me

19: Tell what?

Z10: feed back-what was right what was wrong-my language my
questioning-

Explain confusion some more

Z12: Like Naima's question today. Which I had also asked you
yesterday (refers to the planning meeting)-whatever I am taking in
the plan that I should also know and then what questions come out
of it I should know the expected answers.

113: This confusion that Naima had what do you think about it?

Z14: When you explained then I understood otherwise I also used to
think like Naima---lesson plan should not be such that I do not
know what answer to give the child-child will get confused but we
should satisfy her-this question that Naima asked many should
have asked-if children ask a question and we cannot satisfy them
we are putting them in greater difficulty. Field notes: 1- 10 -96,
Translated from Urdu

Her journal entry regarding her action research question read:

In action research I want to learn to make a lesson plan which is
correct i.e. its application is not difficult and neither is my plan
such that the pupils are confused by it. Instead it should be clear
and it should not require too much time to apply neither should it
confuse pupil thinking. Zarina's journal: 3 -10 -96 Translated from
Urdu

A number of questions arise as a result of the above conversation & journal
entry. My interpretation is that Zarina is struggling with the question 'how does
learning take place?' Hence when she says 'the child will get confused' she is
talking about 'cognitive conflict'. She is saying that in the process of learning
some confusion does arise and sees the teacher's role in facilitating learning by
alleviating confusion. But she also regards confusion as a sign of weakness and
so something to be avoided by the teachers. Hence, she insists on a perfect plan
which would somehow help her avoid confusion. The question arises how does
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Zarina anticipate creating cognitive conflict if she does not see a place for
confusion in her teaching. Is she holding conflicting beliefs that confusion is
necessary for learning and that confusion is something wrong and to be avoided.
The above conversation with Zarina also raised questions regarding her
perception of a teacher. Perhaps, it is her perception of the teacher's role as a
source of all knowledge and authority, which makes her shy away from
confusion. It could also be due to her feeling of inadequacy in dealing with the
confusion that she tried to avoid it in her classroom.

In the above conversation, it was not clear what it was that Zarina did not know
but had understood after our planning meeting. On asking, she said that like
Naima (in the lesson above) she was also not clear about the rule of division of
fractions. It was when we had worked through some of the mathematical
activities in our planning meeting and discussed the reasons behind the rule that
she became clear about the division rule in fractions. I found like
Shulman(1987), that teachers' subject matter understanding plays a significant
role in teaching mathematics. I was also convinced like Feiman Nemeser &
Parker (1990 ) that doing mathematics with the mentee is a way of making
subject matter a part of the conversation in learning to teach

My learning: I see that action research is suited to the purpose of helping
teachers question their practice, understand it better and take steps to improve it.
The reason as claimed by Smith & Lytle (1993) is that in teacher research the
questions asked and the interpretive frames used to understand and improve the
practice are owned by the teacher. For example, I saw Zarina identify lesson
planning as an area of concern for her. Perhaps, she felt that a perfect plan is
one that would help her improve her practice so that she could teach
mathematics for understanding. However, during the course of her research I
found her asking questions about her own understanding of mathematics. In the
fractions lesson she learns the rule of division of fractions. I saw her
questioning the process of pupils learning so that she thinks critically about the
role of confusion in aiding or inhibiting learning. Assessment and its related
issues and concerns also became part of her deliberations at the time of term
examinations. Action research takes the teacher beyond the immediate focus of
the research question so that the teacher focuses on almost all aspects of her
practice. Carr & Kemmis (1986) claim that the questioning stance enabled by
the action research made problematic the taken for granted aspects of the
teacher's practice. To this end action research seems to be a tool which enables
the teacher to look at her practice in a holistic way.

By breaking teacher isolation through creating opportunities of sharing ideas,
issues concerns and celebrating success it helped build morale and self
confidence of the teachers. For example, Zarina as I knew her in the VT
programme and what I heard of her from other colleagues had always been a
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retiring kind of an individual. But, during the course of the project Zarina
participated in almost all the group meetings. She increasingly contributed her
ideas whereas in the initial stage she had expressed her worry about speaking

out in-group meetings.

The opportunity to work as a mentor allowed me to deepen my own
understanding of the skills and attitudes required to be an effective mentor. I

realized that there were certain behaviours, for example, being non-judgmental,
encouraging, valuing ideas and respecting confidentiality. I also became
sensitive to the impact my actions might or might not have for the teacher. For
example, a constant question in my mind was will I create dependency if I do all

that she wants in terms of providing new ideas, support, and resources. Grundy
(1987) and Showers (1985) also indicate that issues of dependence and
autonomy are central to the role of the facilitator or critical friend in teacher
research. It would thwart the emancipatory spirit of action research if new
forms of dependency are created by the facilitators in their concern for directing
rather than facilitating action and reflection. This meant that I had to be very
sensitive when deciding when and how to act on judgment formed. Research by
Pedretti (1996), Carr & Kemmis (1986), and Jaworski (1998) also recognizes
the need for the mentor to use among other things sound professional judgment
to enhance the teacher inquiry.

Concluding reflections: For action research to be taken as model of teacher
development for the whole school would require greater and more visible
support from the principal including the building of a supportive infra-structure,
with time for teachers to meet and work collaboratively with other teachers. In
this case, the principal agreed to let us conduct action research but did not
provide any release time to the teacher to meet and work with me. Smith &
Lytle (1993) have indicated that participation in teacher research requires
considerable effort for teachers to carve out opportunities to inquire and reflect
on their own practice while fulfilling their other responsibilities in school.
Zarina gave her own time during lunch breaks or after school. In informal
conversations she indicated that she was learning so much that she felt it was
time well spent. But this does not mean that other teachers would be in a
position to give the kind of time that Zarina or I could.

An implication might be to introduce action research in all teacher education
programmes whether pre- service or in- service. This would have the advantage
of creating awareness regarding the procedure, value and implications of action
research as tool for teacher development. Involving head teachers in action
research projects would be one way to ensure support from them and bring
about awareness about the kind of time and other resources required. Another
implication would be greater involvement of head teachers in what goes on in
class rooms and reduced status differential between head teachers and teachers.
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Abstract: An important challenge faced by mathematics educators is to find
effective ways of using proof in the classroom to promote mathematical
understanding. We advocate the investigation of one very promising
approach that has been insufficiently explored: The use of arguments from
physics within mathematical proofs.

The first premise of this paper is that proof must be part of any mathematics curricu-

lum that aims, as it should, to reflect mathematics itself and the important role of proof

within it. The second is that the most significant potential contribution of proof in the

classroom is in the promotion of mathematical understanding, a role that it plays in

mathematical practice as well (Thurston, 1994). Some educators, proceeding from

these premises, have considered ways to make effective use of proof in teaching, and

especially in the last twenty years there has been a significant reorientation towards

intuition in the teaching of proof (DNrfler and Fischer, 1979). Wittmann and M? Her

(1988) speak of "intuitive proof' ( "inhaltlich- anschaulicher Beweis"), and Hanna

(1990) and Dreyfus and Hadas (1996) draw on the distinction between explanatory

and non-explanatory proofs.

These educators, however, have concentrated on the internal aspect of proof,

focussing in the main on its function within mathematics (Hanna and Jahnke, 1993;

1996). This paper seeks to redress this imbalance somewhat by investigating proof

primarily from the external viewpoint, with a focus on one of its important external

aspects: the relationship between physics and mathematical proof. Jahnke (1978) and

Winter (1983) have already argued that the usual opposition between "intuitive" and

"deductive" is unacceptable,' and that mathematical proof should not be seen as a

turning away from observation and measurement, but rather as a guide to an

intelligent exploration of phenomena. The specific question the paper poses is
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twofold: What is the possible role of arguments from physics within mathematical

proof, and how should this role be reflected in the classroom?

Previous scholarly work

The first part of this question has to do with mathematics itself. The close cooperation

between mathematicians and theoretical physicists has led to a heightened awareness

of the many benefits that mathematics derives from physics (Jaffe and Quinn, 1993).

Jaffe (1997) points out that physics has traditionally been a source of important

problems for mathematics, contributing in this way to its progress, and that in turn

mathematical results have helped in the solution of difficult problems in physics.

In a paper on the phenomenology of proof, Rota (1997) maintains that the benefits of

this close association are to be seen in mathematical proof in particular. Mathema-

ticians often remain dissatisfied with proofs that, though they establish without a

doubt that a theorem is true, provide no insight as to why it is true. Physical concepts

and models can make an important contribution to understanding in such cases, and

can even help mathematicians devise purely mathematical proofs of a more

explanatory nature. In addition, however, an argument from physics may form an

integral part of a mathematical proof.

The second part of our question relates to mathematics education. In approaching this

issue, we have taken our cue in large part from two publications that deal directly with

the role of arguments from physics in the classroom: Winter (1978) and Polya (1981).

The ideas contained in these works would be a good point of departure for the

suggested investigation. References to physical laws do appear in other educational

publications, but only as remarks in passing. Castelnuovo (1971), for example,

introduces projections and shadows when treating the notion of similarity. From a

theoretical viewpoint, Struve (1990) discusses geometry as an empirical science in

contrast to geometry as a theoretical system. In Bender and Schreiber (1985) one finds

a different conception of the relation of empirical and theoretical geometry, based on

the ideas of H. Dingler. The following paragraphs discuss work published on closely

related issues.

Some recent publications describe various approaches to making proof meaningful in
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the classroom with the help of empirical arguments. Dreyfus and Hadas (1996)

showed that an empirical approach to teaching geometry with dynamic software can

bring students to see that proof is required to explain results that are unexpected or

counterintuitive. De Villiers (1995), Mariotti (1995), and Mason (1993) discuss

several dynamic geometry constructions, illustrate problem-solving methods not

possible with pencil and paper and advocate the use of dynamic software for fostering

new insights into traditional geometry theorems. Greer (1996), as well, describes the

use of empirical arguments for proving.

Among mathematics educators there are also those who advocate basing the teaching

of mathematics upon its various applications. This movement includes suggestions for

a closer relationship between mathematics and the other sciences (OECD, 1991), a

theoretical framework for what is called Realistic Mathematics Education (RME),

which advocates using reality as a source for mathematization (Freudenthal, 1983;

Streefland, 1991), and other projects that in various ways seek to strengthen the role of

applications in mathematics teaching. For the higher grades of school teaching, one

must also take into consideration the publications of the ISTRON group (Blum, 1993).

None of these proposals deals explicitly with the teaching of proof, however.

What is meant by "arguments from physics within mathematical proofs"?

To explain better the concept behind the proposed investigation, we would like to

draw a clear dividing line between using arguments from physics within mathematical

proofs and merely using physical representations or illustrations of mathematical

concepts or theorems. An example of the latter is the representation of the laws for

natural numbers by geometrical configurations of pebbles. The underlying idea we

suggest, on the other hand, is to apply in a mathematical proof a complex law of

physics as if it were a mathematical theorem. For this there are historical as well as

educational examples.

To begin with the former, the application of physics to mathematics has a long history.

When a purely mathematical proof of a theorem proves elusive or awkward, mathema-

ticians have often found that the introduction of concepts and arguments from physics

yields a straightforward proof. A famous example is Archimedes' use of the law of the
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lever for determining volumes and areas (compare his work on "the method").

Another equally famous example, from the calculus of variations, is the so-called

Dirichlet principle, which asserts the existence of certain minimal surfaces as solutions

of certain boundary value problems. In the 19th century, Dirichlet and Riemann took

this theorem as obvious for physical reasons. Weierstra? later criticized its use,

however, forcing mathematicians to look for a purely mathematical proof of the

principle. This was quite hard to achieve, but in the end the effort led to considerable

progress in the calculus of variations (Monna, 1975).

As an example of the application of laws of physics to mathematical proofs in educa-

tion, we might first mention the construction of the Fermat point of a triangle, where

the most elegant method is to model the triangle by a physical system consisting of a

perforated plate and weighted ropes (Polya, 1981). Some theorems of elementary geo-

metry, such as the Varignon theorem that the midpoints of the sides of a quadrangle

are the vertices of a parallelogram, can be proved most easily by applying the laws of

the lever or the notion of centre of gravity. For these and numerous other examples see

Winter (1978). A final example is the mean value theorem of differential calculus. If

we interpret the derivative of a function as the velocity at a given instant, then the

mean value theorem follows directly from the observation that a car going from A to

B must have had, at least at one point, the mean velocity as its actual velocity.

Such applications of physics do much more than illustrate a theorem. By introducing

productive concepts, they make possible a more satisfactory proof of the theorem, and

one that, on the basis of an isomorphism between the mathematical and the physical

constructs, is no less rigorous. (In this they differ from much of what has come to be

referred to as "experimental mathematics," which in its essence consists of generali-

zations from instances.)

For the mathematician, indeed, the use of concepts and arguments from physics is

primarily a way to achieve a more elegant proof. But such a proof may also be illumi-

nating, in different ways. It may reveal the essential features of a complex mathema-

tical structure, provide a proof that can be grasped in its entirety (we call this the holis-

tic version), as opposed to an elaborate and almost incomprehensible mathematical

argument, or point out more clearly the relevance of a theorem to other areas of

mathematics or to other scientific disciplines.
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These broader benefits are invaluable even to the practising mathematician, so they

clearly have great potential for promoting understanding among students. Unfortuna-

tely this potential is not being exploited, however, because concepts and arguments

from physics have not been integrated into the classroom teaching ofproof to any

great extent and certainly not in any organized way. This is not surprising, since there

is no body of research work on this topic that might provide guidance and tools for

teachers and curriculum developers.

Prerequisites for success in using arguments from physics

The educational aspect of our question actually comprises two tightly linked issues:

How can the actual role of arguments from physics in mathematical practice best be

reflected in the curriculum, and how can such arguments best be used to promote

understanding?

To address the first issue, one would have to examine the epistemology of

mathematics implied by much of present classroom practice and compare it with

accounts of the nature of mathematics implied by the practice of mathematics itself or

espoused by mathematicians and philosophers of mathematics.

Implicit differences of epistemology are important. For example, students are often

taught that the angle sum theorem for triangles is true in general just because it has

been proven mathematically. Ignoring the fact that measurements have shown this

relationship to hold true for real triangles as well, this practice implies a very specific

and limited view of the nature of mathematics and its relationship to the outside world.

Students do not share this view, however, bringing to the classroom the belief that

geometry has something to say about the triangles they find around them. In this they

may unwittingly be closer than the curriculum to the broader view of the nature of

mathematics held by most practising mathematicians. For this reason it should come

as no surprise to educators when students are taken aback, misinterpreting the

assertion that mathematical proof is sufficient in geometry to mean that empirical truth

can be arrived at by pure deduction.

It would seem that educators themselves need to come to the classroom with a more

satisfactory understanding of the nature of mathematics, one that encompasses its
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relationship with the empirical sciences and everyday human experience. Of course

the curriculum itself should be informed by the same understanding.

The second issue is the use of proof for the promotion of understanding. Students

being introduced to mathematical proof come to the classroom with preconceived

notions and complex epistemological uncertainty. Educators need to understand both

much better than they do today. When confronted with the proof of a theorem, for

example, students quite often say that they have understood the proof, but still ask for

additional empirical testing. From a purely mathematical viewpoint such a request

seems quite unreasonable, and teachers usually take it as an indication that the

students did not really understand what a mathematical proof is. From the viewpoint

of a theoretical physicist, however, the same request would seem quite natural; no

physicist would accept a fact as true simply on the basis of a theoretical deduction.

Thus a consideration of the role of mathematical proof in theoretical physics may well

shed light on the way in which students view proof.

Keeping in mind the viewpoint of the theoretical physicist is useful when analysing

how students approach proof when using dynamic geometry software such Cabri

Geometry or the Sketchpad, which allow explorative work similar to experimental

physics. Comparing students with theoretical physicists also promises to be of help in

understanding how teachers might best cope with the questions that may be created in

students' minds by the use of concepts and arguments from physics in mathematical

proofs.

Broader educational aims

There are also broader educational reasons for studying the use of arguments from

physics within mathematical proofs. We will sum up these up in four statements.

As already mentioned, there is a trend in all Western countries away from using

proof in the classroom. In our view this development will undercut the educational

value of mathematics teaching and should be countered by fresh approaches to the

teaching of proof.

Of course the growing trend to experimental mathematics should be reflected by an

8 ..
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increased emphasis on experimental mathematics in the schools. But experimental

mathematics in the schools should not be just "mathematics with computers." From

an educational point of view, this would be a dangerous development. Rather, one

should be guided in the use of experimental mathematics by the question of how it

contributes to our understanding of the world around us.

The holistic aspect which many arguments from physics can bring to mathematical

proofs (see above) is an important part ofmathematical competence that is

frequently underestimated. Instead, there is a predominance of step-by-step

procedures. Seeking good examples of instances where arguments from physics are

useful to mathematics proofs will contribute to developing a way of teaching and

learning mathematics which is more balanced in this regard.

In Western countries physics is less and less a required subject. Physics is the

discipline nearest to mathematics, however, and to maintain meaningful and inter-

disciplinary mathematics teaching it will therefore become necessary to include

some elementary physics in the mathematics curriculum. In Germany there are

already proposals in this direction, as a consequence of the country's poor results

in the Third International Mathematics and Science Study (TIMSS), and the

"Konferenz der Kultusminister" intends to decide upon a large scale project

exploring new types of interdisciplinary teaching.
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GENERATING ADEQUATE MATHEMATICAL QUESTIONS
ACCORDING TO TYPE OF PROBLEMS

Shirley H. Har-Zvi, Bar-Ilan University
Zemira R. Mevarech. Bar-Ilan University

Levi Rahmani, Tel-Aviv University

In recent years, mathematics educators, researchers, and philosophers
have convincingly argued that students have to learn how to "do mathematics"
and communicate their mathematical ideas to others, rather than memorizing
formulas and applying procedures. It leads students to a deeper understanding of
the mathematical processes. For this propose The students have to learn how to
formulate and solve problems, look for patterns, make conjectures, examine
constraints, make inferences from data, abstract, invent, explain, justify and so
on (Stein, Grover & Henningsen, 1996).

The constructive theories of learning and teaching emphasize the
importance of student-generated problems as a tool of developing deeper
understanding. According to these theories, learning occurs when students
construct connections between exiting knowledge and new knowledge (Witrock,
1976).

Generating problems is assumed to lead students to look for additional
information, which in turn facilitates the constructions of these connections
(King, 1989, 1991, 1994; Mevarech & Kramarski, 1997).

Mathematical problem generating refers to creating new problems,
reformulating given problems (Polya, 1973), and generating questions based on
a given set of quantitative information. It is usually part of inquiry processes.

Silver (1994) argues that problem generating (posing) is a feature of (a)
Creative activity or exceptional talent (e.g., in mathematics- Kruteski, 1976;
Ellerton, 1986; in others areas- Getzels & Csikkszentmihalyi, 1976; Mansfield
& Buss, 1981;). (b) Inquiry oriented instruction (e.g., Brown & Walter, 1983 ;
Schoenfeld, 1985). (c) Mathematical activity (e.g., Polya, 1973; Schoenfeld,
1985; Mevarech & Kramarski, 1977; Simon, 1973). (d) A window into students'
mathematical understanding (e.g., Ellerton, 1986; Silver& cai, 1993). (e)
Mathematics learning activity (Healy, 1993; Streeflend, 1991; Yerushalmi,
Chazan, Gordon, 1993). (f) A Means of improving problem solving (e.g., Owen
& Sweller, 1985; Silver &cai, 1993). (g) A Means of improving student
disposition toward mathematics (Brown & Walter, 1983). (h) A Means for
improving information' processing and metacognition (e.g., in mathematics-
Mevarech & Kramarski, 1997 ; Schoenfeld, 1985,1987; in other areas- Grasser
& Person, 1994; King, 1989, 1991, 1994; Pressley & Pressley, 1985; Wong,
1985).
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What is eneratin ade s uate mathematical s uestions?

Students are given a mathematical word "problem" in which the question
sentence is missing and they have to generate questions that relate to the entire
story "problem". Generating questions in this case may vary in the degree of
their complexity as a function of the "problem" complexity: one question fits
one-step "problems", a series of two or three questions fits two- or three-step
"problems", respectively.

Rahmani (1994) developed software called "Pithagoras" (in Hebrew,
English and Italian versions), in which students are taught how to generate
adequate mathematical questions that are appropriate for various kinds of
"problems". It was designed for pupils from 4th-5th grade to the level of
elementary algebra problems.

The "Problems" were organized hierarchically, from one-step to
multiple-step problems. Students could not move to a higher level on the
hierarchy before they mastered the lower level.

The purpose of the software is to develop the ability of students to
understand and solve mathematical problems, which are part of their school
tasks and beyond.

The goals of the software

1. To develop the comprehension of a mathematical problem and mathematical
reasoning.

This software follows closely the topics taught in elementary schools
regular classes. The problems concerned with the underlying mathematical
concepts such as the four basic arithmetic proportions.

The software emphasizes the comprehension of the linkage, similarities
and differences, between the problems. The requirement for calculation is
secondary to that of posing the adequate question according to type of problem.

The program leads the student to grasp the relationships between given
items of information and ask questions about unknown items of information and
arithmetic operations. This implies the ability to extract the substance from the
story, the relations between quantitative values numbers, fractions, etc. and
distinguish between unknown yet reachable information, and unknown and
unreachable information.

2. To go beyond cognitive goals.

The software endeavors to increase students' motivation to confront with
word-problems. A learner who experienced repeated failures to handle
mathematical problems is encouraged to comprehend the problems while
working at the computer. The learner is prone to run more "cognitive risks".
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3. To develop the ability to categorize problems.

The program leads the student to categorize mathematical problems according to
given information about quantitative relations and to the additional information
that can be derived from it.

4. To lead the students from concrete to abstract.

The program progresses from rather concrete problems involving
information on definite quantitative values, to more abstract problems, involving
exclusive information on relations among quantities. Thus; the software
advances from numerically presented problems to encourage computation
problems that require the student to determine whether two sets of data are
quantitatively equal or not, while the quantities as such cannot be determined.
Quite frequently students initially claim that such problems cannot be solved.

5. To distinguish between definite and possible solutions.

Students are trained to discover the framework in which solutions are
possible and to understand which solutions are not possible.

6. To develop the ability to grasp an entire problem.

Frequently, students tend to grab a certain piece of information that
happened to catch their attention, and embark on the wrong track to the solution,
typically a series of casual trials and errors. The software promotes the habit of
seeking for the whole available relevant information before taking the first step
in the right direction and proceeding straight toward the solution.

7. To upgrade the comprehension of the text of a problem.

Students may fail to solve a problem because of misunderstanding a text,
a word or a sentence or because of linguistic poverty and words with
inappropriate and inaccurate meanings. The tendency of the software is not to
avoid these items. On the contrary, such lexical items are incorporated into the
problem story. Indeed, mathematical word problems are useful to enrich the
student's vocabulary.

The Bar - Ilan' study

A study was conducted at Bar-Ilan University with 6th grade Israeli
students. The hypothesis of the research was that training students to generate
adequate question on the basis of given word "problems" in which the question
sentence is missing would exert positive effects on students' ability to generate
problems, solve problems, and on their attitudes toward the learning of
mathematics. Moreover, there is reason to suppose that training students to
generate questions in cooperative setting will be more effective than training
them to generate questions individually.



Method

Participants were 122 sixth-grade students (63 boys and 59 girls) who
studied in two Israeli public schools. Both schools are located in the center of
the country and the students come from a similar background.

Treatments

The research was based on a 2X2 factorial design, as follows: about half
of the participants were trained to generate mathematical questions based on
"word problems" with missing questions, and then solve the problems. The
other half was trained to solve the same problems in which the questions were
provided. Under each treatment, about one third of the participants studied
individually, and the others in pairs. Students did not receive any special training
for enhancing cooperative behaviors.

The computer presented the problems under both conditions. The
"Question Generation" condition: under this condition the students used the
computer software- "Pithagoras", which was introduced before. Students were
asked either to select a question (or a series of questions) from a set of questions
or to generate a question (or a series of questions) based on all the quantitative
information or the relational terms that were presented in the "problem" text.
Students received immediate feedback from the computer telling them the extent
in which their responses were correct. Then, students were asked to solve the
problems.

The "Problem Solving" condition: Under this condition students were
presented the same problems, organized in the same way as under the "Question
Generation" condition. The two programs were identical except that in the
"Question Generation" software the questions for each "problem" were missing.
Thus, under the "Problem Solving" condition instead of generating questions,
students were administered a "complete problem" in which the question
sentence was included and were asked to solve the problems. The computer
provided immediate feedback referring to the correctness of responses.

Measurement and Procedure

The battery of examinations and questionnaire included three
measurements: Mathematical Word Problem Examination (MWPE),
Mathematical Question Generation (MQG) Examination, and Mathematics
Attitude Questionnaire (MAQ).

To get further information on the experiment, at the end of the study
eighteen students were interviewed. Prior to the beginning of the study, all four
groups were administered a battery of pretest. Then, each classroom was
assigned to study as planned: about third of the students worked individually and
the others cooperatively (in pairs). At the end of the study, all students were
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re-administered the battery of examinations and questionnaire. The duration of
the study was about three months.

Results and discussion

The findings of the present study showed that students' ability to
generate problems prior to being exposed to the training was rather low. In
particular, students faced difficulties in generating questions on the basis of two

and three-step problems. These findings are in line with previous studies that
focused on questioning skills in non-mathematics classrooms (e.g., Mevarech &
Susak, 1994). The findings further showed that training children to generate
questions improved their questioning skills, specifically on higher cognitive
questions that relate to two- and multiple-step problems.. More information
about the findings will be introduced in the conference.

These results are appropriate the constructivist theories of learning and
instruction. Generating a series of questions on the basis of a given complex
problem may lead students to focus on all the quantitative information provided
in the "story problem", which in turn may facilitate the solution of such
problems. An indirect support for this hypothesis comes from children's
interviews.

Several students emphasized the facilitative roles of generating problems
compared to solving problems. The following excerpt describes students'
responses:

"Selecting and generating the most appropriate questions and thinking why a
question is not appropriate increased the probability of solving the problem
correctly". "Generating questions helped me to focus and take into consideration
all the (quantitative) information mentioned in the story problem". "Generating
questions helped me to understand the problem better. It helped me to
understand complex problems".

Other students referred to the double roles of generating and solving
problems:

"In generating problems I have to think more, because I have to think on both
the questions and the answers (solutions)". "Being asked to find both the
questions and the solutions facilitates understanding more than being asked only
to write the solutions".

Some students mentioned the effects of the very nature of being exposed
to a new way of learning mathematics:

"In the past we repeated again and again problem solving. That did not help. In
generating questions, I succeeded better in understanding the problems".

Finally, several children had their own suggestions regarding question
generation training: "Moving systematically from easy to complex problem (i.e.,
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from one-step to multiple-step problems) facilitates learning". "Separating the
"problem" and the "question" helped a lot".

The finding further showed that students' positive dispositions toward
mathematics were rather stable for those who were trained to generate questions,
but decreased for those who were not exposed to the training. This finding
supports our hypothesis that being trained to generate questions enhances
students' disposition toward mathematics, as seen in following excerpts:
"Pithagoras can help children who are anxious in math classes because it teaches
them how to generate questions, and that helps them to understand the problems.
" Learning with Pithagoras made me like mathematics more because it helped
me to understand mathematics". "Pithagoras strengthened my self-confidence
because it taught me how to solve problems. I had to select and generate
questions and that's easier (than solving problems). Also, the teacher sometimes
loses her temper. Pithagoras never gets angry on me and therefore I am not
anxious when I study with computer".

Comparing the responses of children who were or were not exposed to
problem generation training indicated that "Pithagoras" helped them to (a) better
understand mathematics (71% vs. 64% respectively); (b) overcome mathematics
anxiety (100% vs. 70% respectively); and (c) strengthen their attitudes toward
mathematics (29% vs. 22% respectively).

Contrary to our hypothesis, overall no significant differences were found
between children who learned cooperatively versus those who learned
individually. Also, none of the interactions between question generation training
and learning environment (cooperative vs. individualized) were significant. This
finding may be explained by Slavin (1996) as well as other researchers (e.g.,
Cohen & Lotan, 1995; Johnson & Johnson, 1994). Cooperative learning is
effective under certain conditions, such as group reward, special training that
focuses on cooperative behaviors, or special training regarding social
cohesiveness of the small groups. Such training was not provided in the present
research.

The effects of such training on the effectiveness of question generation
and solving merits future research. It is also possible that, student with different
learning styles and entry behaviors benefit differently from cooperative vs.
individualized settings.

Summary and conclusions

The findings of the present research offer practical evidence that we can
successfully promote higher cognitive processes regarding adequate
mathematical question generation, word problem solving, and strengthening
students' positive attitudes toward mathematics.
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There is a need to continue this research for a longer period of time and
with more students in order to be able to generalize the findings. Examine the
effects of generative questions on the development of understanding of
mathematical problems merits future research.
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This paper reports changes in children's mental computation solution strategies for multiplication
and division applied word problems (rvolving 1, 2 and 3-digit members combinations). The study

followed 95 Queensland childrenfivm Year 4 through to the end of Year 6. The children's responses
showed a development from simple counting to use of derived or known facts for small number
combinations, and fivm counting to quite complex and creative strategies to algorithmic procedures

for large number combinations. There was some evidence of instructional dirty in the increased use
of the taught algorithms, the continued use of counting strategies. There was, at times, sustained use
ofwholistic.

Interest in mental computation as an important computational method for numbers of two or more
digits is not new. However, its significance is now seen in terms of its contribution to number sense as
a whole; for example, as a"vehicle for promoting thinking, conjecturing, and generalizing based on
conceptual understanding rather than as a set of skills that serve as an end of instruction" (Reys &
Baiter, 1994, p. 31). To achieve this contribution, it appears necessary to develop proficiency in
mental computation through the acquisition of self-developed or spontaneous strategies rather than
memorisation of procedures (Kamii, Lewis, & Livingston, 1993; Reys & Barger, 1994). Mental
computation in this hut teatimes in various models of computation (e.g., National Council of
Teachers of Mathematics, 1989; Trafton, 1994), although usually in combination with written, and
calculator methods.

There is research evidence that children can use self-developed strategies to efficiently and effectively
solve mental multiplication and division problems of two or more digits, even before instruction (e.g.,
Anghileri, 1989; Carpenter, Ansell, Franke, Fermema, & Weisbeck, 1993; Kouba, 1989; Mulligan &
Nfitchelmore, 1997). Even in studies of children's solution strategies for more difficult multiplication
and division word problems (Murray, Olivier, & Human, 1994), some self-developed strategies have
been used (e.g., repeated addition, decomposition and compensation for multiplication; and repeated
subtraction, use of multiplication and partitioning for division). There is also evidence for the negative
effect of traditional algorithm instruction on efficient mental strategies for multiplication and division
examples. For example, Kamii et aL (1993) reported that 60% of third grades who had not been
taught the traditional multiplication algorithm were able to mentally solve 13 x 11 (by thinking
13x1IM 30, 130+13=143); a problem which, in contrast, was only successfully mentally solved by
15% of fourth graders who had been taught the algorithm.

Research has also indicated that performance in mental multiplication and division problems is
influenced by the semantic structure of the word problem, with some problems being more difficult
than others (e.g., cartesian producit multiplication was found to be poorly attempted compared with
other types of multiplication - Mulligan, 1992). However, the solution strategy used did not always
reflect the semantic structure, particularly as children progressed (Mulligan, 1992; Mulligan &



Mrtchelmore, 1997; Murray et al., 1994); for instance, children rarely used sharing for partition
division (Mulligan, 1992). Similar results have been found for subtraction (Heirdsfield & Cooper,
1996).

Many researchers have categorised children's solution strategies for multiplication and division word
problems (e.g., Anghileri, 1989; Boero, Ferrari, & Fenoro, 1989; Bryant, Morgado, & Nunes, 1993;
Carpenter et al., 1993; Clark & Kamii, 1996; Kouba, 1989; Mulligan, 1992; Mulligan &
Mrtchelmore, 1997). Most of this research has been limited to small number combinations and,
therefore, has categorised strategies as counting types (Mulligan & Mrtchelmore, 1996). Some
research has focused on more complex number combinations, describing strategies in detail (Murray
et aL, 1994). However, little research has looked across all number combinations.

This paper reports on Years 4 to 6 children's responses to six multiplication and division word-
problem tasks which formed part of an Australian Research Council funded five-year longitudinal
study of Years 2 to 6 Queensland children's mental strategies for the four operations. Students were
tracked over the three years from simple 1 by 1-digit to more difficult 2 by 2-digit multiplication and 1
by 1-digit to 3 by 2-digit division word problems. Further, the study traced strategy changes from pre-
instruction in multiplication and division terminology and notation (for some children), through a
period of number-fact instruction, and finally until children were taught the written standard
algorithms for 2-digit by 2-digit multiplication and 2 and 3-digit by 1-digit division. It also differed
from previous research in that the emphasis was not on the semantic structure of the problems; rather,
the emphasis was on identifying strategy choice for simple semantic structure and increasingly
difficult number combinations.

Method

Subjects. The subjects were 95 children from 14 schools (Independent, Catholic and State). The
schools were representative of differing socioeconomic backgrounds. The children had been chosen,
when in Year 2, by their teachers to comprise one third of each of above average, average, and below
average ability. During the study on which this paper reports, the children progressed through Years
4,5 and 6.

The Queensland mathematics syllabus advocates that children be introduced to the concepts of
multiplication and division in Year 2, the multiplication symbol (up to 9x9=81) in Year 3, the
standard written multiplication algorithm (2 by 1-digit) and the division symbol (up to 81+9) in
Year 4, and the standard written multiplication algorithm (2 by 2-digits) and the standard partition
written division algorithm (2 by 1-digit) in Year 5. Although schools generally followed the
Queensland syllabus, there were classes that had not been formally introduced to the concepts of
multiplication and division by Year 4.

Instrument The instrument used was Piaget's clinical interview technique. The tasks, reported in
this paper, comprised three equal grouping multiplication word problems (5x8, 5x19, 25x19) and two
partition (24+4, 100+5) and one quotition division (168+21) word problems. The six tasks
represented a cr oss section of the possible multiplication and division problems and were the most
frequently attempted problems in the larger study. They involved contexts common to children
(money, lollies, and children in classes). They were given in picture form (the child listened as the
interviewer said the problem); no algorithmic exercises were presented. The numbers were chosen
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and the pictures used in the hope that it would maximise the use of children's own invented strategies,
and minimise the use of the traditional written algorithm.

Procedure. The students were interviewed in the second and fourth terms of Years 4, 5 and 6. They
were withdrawn from the classroom and interviewed individually in a separate room. The interviews
lasted for a maximum of 20 minutes and were videotaped. The word problems were presented
visually in the foliar of pictures, and orally as the interviewer verbalised the task Although all tasks
were presented to all children, not all children were able to attempt every task. If the children
attempted a task, further questions were asked to probe for the strategy they used

Results

Strategy categories. The videotapes were viewed, children's responses were analysed for
commonalities in relation to the procedures identified in the literature; and a list of initial strategies
developed. Then, the responses of each child for each task in each interview were classified in terms
of these strategies and recorded for each interview. Finally, the calculation strategies were considered
carefully, and after discussion among the researchers, five strategy categories were identified for each
of multiplication and division (see Table 1). All responses were then coded using these strategy
categories, and the results were analysed for trends across the three years.

Table 1. Mental multipliaation and division strategy categories
Ortcgory Description Examples

,Ication Any fran ot counting strategy, stop counting
Counting(CO) forwards and badcwaids, irepeated addition 5x8: 5, 10, 15, ...

and subtraction, and halving and doubling 5x8: double 5, double 16, +8.
strategies

Basicfact(BF) Using a known multiplication or division fact 5x8: 1016=80, so 5x8=40.
or a derived fact

RL separated Numbers are separated into place values, then 5x19: 5x9=45 0+5, 5x1M0, 50+4(90, 95.
(ILS) proceed light to left
LR separated Numbers are separated into place values, then 5x19: 5x1M0, 5x9=45, 50+45=95.
(IRS) proceed lento right.
Wholistic (WH) Numbers are treated as wholes. 5x19: 5x20-5=100-55.

25x19: 4x25100, 4x4=16, 4x100=100, add
3x25(75), so 475.

Division
Counting (0)

Basic. act(BF)

LR separated

(IRS)
RL separated

(RI S
Wholistic (WH)

Any form of courting stiategy, skip counting
foiwards and backwards, repeated addition and
subtraction, and halving and doubling
stiategies.
Using a known division fact or a derived fact

Numbers are separated into place values, than
proceed left to light
Numbers are separated into place values, then
proceed right to left
Numbers are heated as wholes.

24=4:4, 8, 12...
24+4: halfof24, halfof 12.

24+4: 4)0=24. 6
24+4: 5x4=20, so 6)(4=24.

100+5: 10+5=2 0+5q1, 20.

100+5; 0+541, 10+2 20.

100+5: 100+1M 0, 10x2=20.
168+21: 5x21=100 5)(21=105, about 601eft,

3x20=60 3x213, 63+105=168, ans. 5+34.

General trends within each task

The results for multiplication are presented in Table 2 and, for division, in Table 3. As would be
expected, the percent of children attempting and correctly attempting the tasks increased across the six
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interviews. Further, the multiplication tasks were easier for the children as evidenced by the higher
percentage attempted, and attempted correctly, than the division tasks.

Table 2. Multiplication responses forinte rviews 1 to 6 (n=95)
Question Inteiview % attempting

(% correct)
u/o attemptiag (% correct)

CO 13F RLS LRS WH
5x8 1 (Year 4) 92 (71) 54(34) 38 (37)

2 (Year4) 97(87) 23 (17) 74(71)
3 (Year 5) 99(87) 22(13) 77(75)
4 (Year 5) 99 (93) 17(15) 82(78)
5 (Year 6) 100(96) 6(5) 94(91)
6 (Yair 6) 100(97) 3 (1) 97(96)

5x19 1 26(18) 1(0) 11(7) 4(2) 10(8)
2 68 (51) 6 (2) 37(30) 12(7) 14 (12)
3 72(51) 4(1) 33(26) 17(7) 18(16)
4 86(73) 16(7) 44(42) 6(5) 20(18)
5 96 (85) 7 (4) 58 (51) 7(7) 23(23)
6 98(85) 4 (0) 56 (51) 11(8) 27(26)

19x25 1 2 (2) 1(1) 1(1)
2 16 (5) 2 (0) 7(0) 6(5)
3 28 (12) 7 (1) 8 (1) 2 (1) 11(8)
4 78 (32) 9 (3) 37(8) 5 (1) 26(19)
5 79(35) 9 (2) 28(7) 4(1) 37(24)
6 85 (45) 8 (2) 34 (13) 4 (1) 38(29)

For task 5x8, Counting was the initial dominant strategy (mcluded skip counting in fives and near
doubles, e.g., double 8, double 16, add 8). However, by Interview 2, the Basic fact strategy was
dominant and reasonably accurate.

A low of26% attempted task 5x19 in Year 4, while 98% attempted it by the end ofYear 6. From the
end of Year 4 to the end of Year 6, the RL separation strategy was dominant, with the Wholistic
strategy being used half as much (surprisingly due to the ease by which it applies to 5x19 (5x20-5).
The LR separation strategy was used by a significant minority and some children persisted in using
the Counting strategy into the last interview.

Task 19x25 was attempted by only two children in Interview 1. One child counted in 25s, the other
used a wholistic strategy ("10x25=250, another 250, take 25"). Both solutions resulted in correct
answers. From there, the number of children attempting a solution increased across the interviews,
until 85% attempted the problem in the last interview. However, only about half the solutions were
collect. Most errors resulted from the application of the RL separation strategy (which is not
surprising considering the memory load needed to remember all the interim calculations). Strategies
that were more successful in giving correct answers included Counting (counting in 25's and
grouping in 100's), Wholistic (20x25=500, 500-25=475), and even LR separation (10x25=250,
9x25=225, using 8x25=200 as known, 250+225=475).

For task 24+4, the dominant strategy for all interviews was Basic fact. Most children reported
knowing "twenty-four divided by four is six, because four sixes are twenty-four." The other strategy
used was Counting (halving, doubling repeated addition, skip counting and sharing). A very small
minority of children solved the problem by sharing one at a time (reflecting the semantic structure of
the problem), while another minority used halving accurately.

8
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Table 3 Division responsesforInterviews 1 to 6 (n=95)

Question Interview % attempting % attempting (% correct)
(% correct) CO BF LRS RLS WH

24+4 1 68 (57) 12 (5) 57 (52)
2 84(77) 10(7) 75(70)
3 88(82) 8 (6) 80(76)
4 97(91) 13 (11) 84 (80)
5 96(95) 3 (2) 93(93)
6 97 (96) 4 (4) 93 (92)

100+5 1 56 (48) 11(18) 18 (18) 2 (2) 25(23)
2 72(60) 8 (2) 26 (25) 6 (5) 31(27)
3 79(73) 6(5) 34(32) 2(2) 37(34)
4 90(76) 12 (6) 40(38) 2 (2) 36(30)
5 85 (81) 4 (4) 44 (42) 2 (2) 35(33)
6 94(90) 1 (1 ) 56 (54) 5 (5) 33(31)

168-21 1 1(1) 1(1)
2 6(3) 2(0) 2(1) 1(1) 1(1)
3 11(8) 5 (5) 1(0) 4(3)
4 38(26) 23 (13) 5 (5) 1(1) 7(6)
5 47(36) 21(13) 4 (2) 5 (5) 17 (16)
6 61(51) 27(21) 1(1) 2(1) 2(2) 28(25)

For task 100+5, accuracy levels were generally high, with Wholistic (ignoring the final zero, or using
4x25=100 or 10x10= 100) and Basic fact strategies (knowing that 5x20 =100 or 100+5=20) popular
throughout

Like 19x25, task 168+21 was attempted by a lower number of children, with less ac curacy,
throughout the interviews (one child in Interview 1 through to 61% by Interview 6) and elicited a
greater variety of strategies than the other four tasks. The Counting strategies included sldp counting,
repeated addition and doubling, and persisted across all interviews (only one child used repeated
subtraction). The Wholistic strategies included trial and error for multiplication (e.g., "21 times
something is 168. 7?No. I'll try 8. Yes.", "1 times something is 8, 8 times 2 is 16, so it's 8."), trial and
error for division (e.g., "Something goes into 16, 2 times, and into 8 once. That's 8.'), and partitioning
(e.g., "about 100 and the rest, because I know 5 x 20 = 100'). By Interview 4 (end of Year 5), some
children attempted to solve the problem using LR separation. Interestingly, a handful of these
children said that they wouldn't be able to attempt 168+21, because they had not been taught how to
divide with 2-digit divisors; yet prior to this interview, no such excuse was made for the inability to
solve the problem.

Discussion

Strategy use and preferences. Strategy use across the six interviews was influenced by number
combinations and students' available strategies. Tasks that were basic facts (5x8 and 24+4) tended to
be solved initially by the Count strategy and, then, later by the Basicfact strategy. Tasks that involved
more complex numbers were initially solved by a greater variety of strategies. Across the interviews,
the strategy category preferences of the children moved increasingly to the more efficient strategies,
specifically the Separation and Wholistic categories, except when the task was related to a basic fact
(e.g., 100+5). For multiplication With 2-digit numbers, the tasks were solved increasingly by RL



separation after Interview 2. For the division task with a 2-digit divisor(168+21), LR sejxration
began to be used, without success, in Interview 4.

There was little or no use of repeated subtraction or sharing one to one (contrary to recommendations
for teaching division in Queensland). A sharing strategy was used by weaker students, generally
unsuccessfully, seemingly because of the heavy load on working memory. The trial and enur
strategy (e.g., 4x?=24. 5?, check by skip count or doubles or basic fact no, try 6.) was found to be
more reliable and efficient (similar to Mulligan, 1992).

Instructional effects. During Years 4 and 5, the traditional written multiplication and division
algorithms are introduced to children. Their procedures are similar to the RL separation
multiplication and LR separation division strategy and, hence, should reinforce and reduce working
memory load for these strategies. Wholistic strategies appear to be less complex mentally than
separation strategies (requiring less working memory) because they do not require numbers in the
different place-value positions to be remembered and operated on separately, as is required by
separation strategies. The four tasks where numbers were 2-digits or more had numbers chosen so
that the Wholistic strategies were applicable. For example, 5x19 is close to 5x20, as is 100+5, while
19x25 is close to 20x25 (and involves 25 which is one-quarter of 100), and 168+21 is close to
160+20. Therefore, it seemed reasonable to predict that Wholistic should have been the most efficient
mental strategy for these four tasks, that separation strategies should have been little used, and that the
useoftheRL separation strategy involved some component of instructional effect

There is some evidence that there may be an instructional effect, at least for multiplication (similar to
the findings of Cooper, Heirdsfield, & Irons, 1996, for addition and subtraction). There was a trend to
the RL separation category in tasks 5x19 and 19x25, yet the use of the Wholistic strategywas a little
more accurate (particularly for 19x25). For division, there was not the same strength of support for an
instructional effect in the strategy trends. However, there was some extra support for an instructional
effect in division in the comments of the children. In Interview 4 and with task 168+21, some
children would not attempt the task because they "had not been taught to do long division with two
digit divisors". Previous to this, the children had been willing to "have a go" at many tasks they had
not covered in their mathematics classes. It seemed that the teaching ofthe division algorithm had
"coloured" their approach to arithmetic.

Conclusions

The findings of this study show children's changing accuracy and strategy preference for mental
multiplication and division across three years during which they were introduced to written
algorithms for these operations. The children improved in percentage attempting the tasks and
accuracy. However, there was not the expected change to more sophisticated strategies. Children
stayed with Counting and, where they could, Basic fact strategies, and there was some evidence of
movement to strategies based on the written algorithms. There was growth in the use of the Wholistic
strategies where it was appropriate, but not to the extent that might be predicted from the deliberate
favouring of these strategies in the choice of numbers in the tasks. There was little use of strategies
based on non-standard algorithmic procedures, which was different from addition and subtraction
mental computation (Cooper et al., 1996)
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In the world of computers and calculators, estimation appears to be a more useful human ability that
correct written calculation. Estimation seems better served by trial and enor strategies (one of the
Wholistic strategies), particularly when it is used mentally (as it so often has to be in real world
situations). This study shows that many children, by the end of Year 6, were able to use quite
advanced Who/Mc strategies for larger number combination multiplication and division. However,
another (although less efficient) strategy for these larger number combinations was Counting.
Considering the numbers involved, Counting was reasonably efficient, certainly more efficient for
168+21, than LR separation.

There appears to be a need, in multiplication and division mental computationas well as estimation,
for assistance to be given to children to use strategies different from those associated with traditional
computation (e.g., trial and enor and Wholistic, and, maybe, some forms of non-standard separation).
This would seem to imply a reduction of emphasis on written algorithms for multiplication and
division (even their removal from the syllabus), a growth in instruction time spent on arithmetical
properties and alternative computational strategies, and a change to more child-centred and flexible
approaches to teaching operations.
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A GOOD PUPIL'S BELIEFS ABOUT MATHEMATICS LEARNING
ASSESSED BY REPERTORY GRID METHODOLOGY
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Abstract: What kind of beliefs pupils have on being good or poor at mathematics?
What kind of characteristics does a good mathematics pupil have? How does the
pupil act? What are the most important things in mathematics learning? Teachers
are interested in responses to this kind of questions. In this case study, the ideas of
one pupil about what makes a good mathematics pupil are assessed. One girl at the
end of the lower secondary school was the informant. Her responses were used as
elements in the repertory grid interview. Constructs were then elicited. She
developed her own model how to act in studying mathematics. She thought that the
most important things in learning mathematics were her own attitude towards
studying and independent work she was ready to do.

This research is concerned with a pupil's beliefs about what is needed to be a good
mathematics pupil. Pupils have their own ways of coping with mathematics, and
their own ideas about how to succeed in learning mathematics. The objective of this
research is to assess one pupil's beliefs about her own mathematics learning. The
emphasis if the study is to find out a student's beliefs based on his own ideas and
expressed with her own words. The methodology is- based on personal construct
theory and utilised the repertory grid method (Kelly 1955).

Theoretical background

The methodology used to assess a pupil's ideas about mathematics learning is based
on Kelly's personal construct theory. In his theory, a person is like a scientist who
observes the world through transparent patterns built by himself. He makes
assumptions, tests them and creates his own theory of the world around. With these
patterns he wants to make sense of the word around. Kelly defines the central
concept construct of his theory, as follows:

"Let us give the name constructs to these patterns that are tentatively tried on for
size. They are ways of construing the world. They are what enables man, and
lower animals too, to chart a course of behaviour, explicitly formulated or
implicitly acted out, verbally expressed or utterly inarticulate, consistent with
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other courses of behaviour or inconsistent with them, intellectually reasoned or
vegetatively sensed." (Kelly 1955, p. 9)

An other concept in Kelly's theory is an element which is defined in the following
way: "The things or events which abstracted by a construct are called elements"
(ibid, p. 137). When a person is asked to categorise elements he is thought to
organise patterns. The categories are then called constructs. The constructs are
bipolar so that every construct has its opposite, e.g. honest vs dishonest. Persons
make sense out of their world by simultaneously noting similarities and differences.
In addition to the theory, Kelly developed a method for assessing an individual's
personal constructs. Elements and constructs which are core concepts in Kelly's
theory are also important in the method, the repertory grid technique.

Kelly's constructs can be understood as beliefs (e.g. Jones 1980, Williams & al.
1977). Schoenfeld (1992, p. 358) describes belief as "an individual's understanding
and feelings that shape the ways that the individual conceptualises and engages in
mathematical behavior". One of the main components of beliefs is 'beliefs about
mathematics learning'. It consists of 'beliefs about the nature of learning
mathematics', 'beliefs about how learning should be organised', 'beliefs about what
the role of the learner is', 'beliefs about what the degree of autonomy expected from
pupils is', and 'beliefs about who sets the criteria for correctness' (e.g. Pehkonen
1995, p. 20). E.g. Martha Frank has interviewed four pupils of the seventh and eight
grade. She reports as one of pupils' beliefs "the role of the mathematics pupil is to
receive mathematical knowledge and to demonstrate that it has been received"
(Frank 1988, p. 33), i.e. a pupil should sit and listen to his teacher's talk, and do his
routine homework. Garofalo (1989, p. 503) describes three common beliefs in lower
secondary schools. One of them is "only the mathematics to be tested is important
and worth knowing". Another widely held belief is "doing mathematics is simply a
matter of memorising and reproducing the fact, rule, procedures, and formulas"
(Mtetwa & Garofalo 1989, p. 611). These both deal with the nature of learning
mathematics. Understanding mathematics seems not to be important.

The repertory grid technique

The repertory grid technique is originally used in psychology. The informant is asked
to produce a list of persons, who are important to him (e.g. mother, father, sister,
etc.). The persons are then the elements in the method. After that he is given a triad
of persons and asked to think in what way two of them were similar to each other and
also different from the third. All the persons are included in one or more triads. The
categories obtained from this task are the constructs. According to Kelly's theory the
constructs are bipolar. A person makes sense of the world through categorising
elements. Nowadays the method is used in many different domains, and the elements
are objects or aspects of that domain.
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The elements in columns and the constructs in rows form a matrix, a grid, which is
important in analysing a person's ideas. In the method the person is asked to judge
the matrix. Fransella & Bannister (1977) have described this process of judgement,
as follows: "Behind each single act of judgement that person makes (consciously or
unconsciously) lies his implicit theory about the realm of events within which he is
making judgements. Repertory grid technique is, in its multitude of forms, a way of
exploring the structure and content of such implicit theories." Kelly (1955) used
factor analysis to analyse the grid.

The repertory grid methodology is a tool which has been used in mathematics
education to assess teachers' beliefs about mathematics (Jones 1990, Lehrer &
Franke 1992, Middleton 1995, Williams, Pack & Khisty 1997). With this
methodology, however, there are some research about pupils' beliefs on mathematics
(Chapman 1974, Thomas & Harri-Augstein 1985), but there seems to be none about
pupils' beliefs on mathematics learning. Thomas & Harri-Augstein (1985)
investigated college pupils' responses to certain 'command' words, as prove, define,
etc., used in mathematics. Pupils responses were emotionally loaded constructs:
engaging vs disinterest, reassuring vs despair, etc. In an other research (Chapman
1974) collage pupils of mathematics were asked to write down the one word which
best typified their reaction to mathematics. About one hundred first year college
pupils used constructs of which 70% were totally emotional. These pupils construe
their mathematics by emotional constructs.

Data collection process

This is a part of a pilot study the aim of which was to clarify a pupil's beliefs on
mathematics and its studying and learning. In this paper the focus will be a pupil's
beliefs on mathematics learning. The informant in the study is Brita, a talented ninth-
grader, who has done well in school and especially in mathematics. The author as her
teacher considered her as suitable research object, since she seemed to have a clear
and well-structured view of learned mathematics. Additionally, she was willing to
co-operate and share her beliefs. In mathematics Brita was interested in open-ended
problems, in problems which require a lot of thinking, and in project work. Right
from the beginning she did her homework, nevertheless how demanding they were.
She asked for help, if something was unclear for her, and in lessons she was ready to
present her solution process and, describe it to the whole class.

The method used for data collection was the repertory grid method. Its purpose was
to find out Brita's beliefs based on her own ideas and expressed with her own words.
The data collection began with an interview, where Brita was first asked to think
about a pupil who is good at mathematics. Then the following questions were put
forward: What do you think that it means to be good at mathematics? What is a good
pupil like? How can you describe such a pupil? Her answers formed a list of a good
pupil's characteristics, and these were called elements. She was also asked to
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describe a pupil who was poor at mathematics. Such characteristics were elements,
too. The elements were written on cards. When Brita had the cards on the table in
front of her she was asked to check that they were the same ones she described. She
was asked to chose the cards she thought could suit herself. She selected all the cards
that she had told to be a good pupil's cards except one, 'active'. These elements were
the attributes with which she seemed to make sense of the world around. The 20
elicited elements for a good mathematics pupil are given Table 1 (in certain groups
described below).

The first interview continued and Brita was asked to sort the cards in any way which
made sense for her. After she had finished the grouping, she had piles in front of her
and she was asked to describe the similarities of the elements in each pile. To sort the
cards was not an easy task for her: She began with 9 piles, but changed her mind in
the case of some cards, and resulted with 7 piles. In Table 1 you can see Brita's 7
categories of similar elements. The names of the categories originated from Brita.
Table 1 can be considered as Brita's first mental model for her thinking on studying
mathematics.

Pupil's own attitude towards maths: enterprising, does eager the homework, is not
afraid of the word maths, appreciates maths as a school subject, does not lose her
enthusiasm to maths studies if she fails in tests, understands what maths is, finds that
maths is interesting and challenging

Goal is to keep maths with in the future: receives a new matter easily, is interested
in learning new things, intends to continue and deepen her maths studies after the
comprehensive school

Studying in a group: studying in a group, is able to work in a group together with
others, considers all pupils equal

Maths belongs to the leisure-time: is ready to think about maths in her leisure-time,
tries to solve everyday problems by means of maths

Repetition and strengthening the former studied things: brush up old things; if
she hasn't learnt a new item during the lesson, she takes care of learning it at home;
asks the teacher for help if she has problems with learning new things

Adaptation to maths studies: is ready to learn maths in many different ways not
only in the old customary way

Appreciation the studying: is not only "hunting" good marks, but studying maths is
the most important thing

Table 1. Brita's first mental model consists of seven categories.

Further in the interview, Brita was asked to describe differences between the piles
comparing them two by two. The similarities and differences were both called
constructs. Since in the repertory grid technique constructs are considered bipolar,
Brita was asked to determine the opposite of each construct. At the same time, she
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should explain which of them, construct or its opposite, suited better for her and give
reasons for her choice. In the case of all constructs, she was not able to give its
opposite.

The construct / opposite pairs with Brita's words were:

"a pupil's own attitude towards maths / indifferent, maths hasn't much to do with
oneself

the goal is to keep maths with in the future / tries to get out of maths

studying in a group

maths belongs to the leisure-time / only at school

repetition and strengthening the former studied things / without repetition go
straight to a new thing

adaptation to the maths studies / no adaptation to the studies

appreciation the studying

a pupil's qualities which influence the studying / one does not pay attention to a
pupil's qualities

discussion and debate at school /pondering at home or elsewhere

tutored studying at school / independent studying

studying on one's own initiative / strictly guided studies

clearing up things to oneself / doesn't clear up things

studying for future / only for present time

different ways to learn / only one certain way to study

behaving in a classroom

relations between pupils

an important part in studying maths

how a pupil treats mathematical knowledge

studying in the leisure time / studying only at school

making things clear together in a group /making things clear independently"

The elements and the constructs are set into a grid where elements are in rows and
constructs are in columns. For data analysis, a form with the grid was given to Brita,
and she was asked to rate the grid on the scale 1 - 2 - 3 4 - 5 (1 = the construct was
not important to the element, 5 = the construct was very important to the element).
Thus, all the elements are rated on all the constructs.
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The main result

Since there was a big variety of information, the 20 x 20 matrix with loading from 1
to 5, factor analysis was selected to condense it. The completed grid was analysed
factorially to determine relationships among constructs and to condense the
information in a pupil's pattern. This is in coherence with the leading principle of
factor analysis, as one can read e.g. in Cohen & Manion (1994, p. 330): "Factor
analysis is a way of determining the nature of underlying patterns among a large
number of variables". In realising the factor analysis, two constructs 'Studying for
future' and 'Important part in studying maths' were not allowed to be with in the
analysis, since all their ratings were the same (5). Because of no variance, they
should be deleted in the factor analysis. When using the criteria "roots greater than
one", the factor analysis resulted five factors.

Since aims of the study was to find out a student's beliefs from her point of view,
Brita was asked to check the validity of the results. In the second interview, she was
inquired, whether the five-factor solution was meaningful for her. The task was a
difficult one for her, since it did not make any sense to her. Therefore she tried to
improve the solution by making a regrouping, and resulted four categories of the
constructs. Brita was asked to name the four categories. Furthermore, the ranking list
of the categories was expected from her.

Attitude towards studying (1)

Pupil's own attitude towards maths, Appreciation the studying, Goal is to keep maths
with in the future, Adaptation to the maths studies, Pupil's qualities which influence
the studying

Independent studying (2)

Studying on one's own initiative, Clearing up things to oneself, Repetition and
strengthening the former studied things, Different ways to learn

Skill to handle mathematical knowledge (3)

How a pupil treats mathematical knowledge, Studying in the leisure time, Maths
belongs to the leisure-time

Studying with support (4)

Studying in a group, Making things clear together in a group, Relations between
pupils, Discussion and debate at school, Tutored studying at school, Behaving in a
classroom

Studying for future, Important part in studying maths

Table 2. Brita's second mental model for mathematics learning.

The author realised the factor analysis with four factor, and the solution was shown
to Brita. Again, she was not satisfied, and wanted to make some changes. At the end
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she named the categories and arranged them in the order of their importance. The
results of Brita's evaluation of the four-factor solution is given in Table 2. This may
be considered as a mental model for Brita's beliefs on mathematics.

Conclusions

In the repertory grid interviews, Brita has told something of her ideas how to learn
mathematics, her beliefs about learning. She had to make her unconscious ideas
conscious. Through these ideas she told her main goal: "to keep maths with in the
future". To reach this goal she had to set some other goals and she told about the
ways how to cope with mathematics e.g. that she was interested in learning new
things. She thought that her own attitude towards the mathematics studying and her
relation to mathematics were the most important constructs. She told "my own
relation to mathematics is good". She appreciated the studying of mathematics and
did eager the homework. Brita was not like the pupils in the study of Frank (1985).
Independent studying was very important to her. She used to clear up the topics to
herself, to brush up and strengthen the former studied topics. "I definitely stand for
clearing up the things to myself. At the same time I repeat and learn the difficult
things. If I don't clear the things up to myself I might later tumble over them". It was
not enough for him only to sit, listen and do her homework. She wanted to
understand what she was doing. She was eager to do mathematics in a different way
as usual. "I am absolutely of the opinion that the teachers have to change their
methods. Then studying is more meaningful."

Mathematics was not just computation for Brita. "The use of mathematical
knowledge could be its application. If you have learned the thing, it is worth using
and revising now and then." Mathematics was everywhere in her world. "You should
take interest in maths in your leisure time, too. Mathematical applications could be
good in every day problems." She wrote: "I like learning in the leisure time. Then a
pupil has her own peace and a lot of time to study. The repetition for the test and
doing the homework belong to one's studying in her leisure time. Studying in one's
leisure time is an important part of all learning."

Studying in a group gave support to the members of the group. They could clear up
the topics together, discuss and debate in their group. "I like to study both
independently and in a group. You must get used to both of these. Different
situations need different ways to study." The group of students discussed problems in
order to understand them. "I stand for clearing up the things together. An
independent work is more responsible and then you need to work more, since there is
none who could give you advice." She thought that group work was good in a certain
kind of a group. "They greatly influence on the learning if the pupils are 'on the same
wave length' and have the same attitude to the studying. Therefore a good team spirit
is also important."
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LINKING INFORMAL ARGUMENTATION WITH FORMAL PROOF
THROUGH COMPUTER-INTEGRATED TEACHING EXPERIMENTS

Celia Hoy les and Lulu Healy'
Institute of Education, University of London, UK

Abstract: In this paper, we present the results of two computer-integrated teaching
experiments (one in algebra, one geometry) designed to help students connect formal
proof with informal argumentation. The results are interpreted from the basis of
findings from a large-scale survey of students' proof conceptions.

Background: Research in mathematics education has consistently highlighted
students' difficulties in engaging with formally-presented, analytical arguments and
understanding how these differ from empirical evidence (Balacheff, 1988, Bell, 1976,
Chazan, 1993 and more recently papers to PME 22, e.g., Arzarello et al, 1998,
Furinghetti & Paola, 1998). The current National Curriculum for mathematics in
England and Wales prescribes an approach to proving, partly as a response to these
student difficulties, in which the introduction of formal proof is delayed until after
students have progressed through stages of reasoning empirically and explaining their
conjectures largely in the context of data-driven investigations (see Hoyles, 1997).
This approach to introducing proof to school students has been the subject of
considerable criticism. To provide systematic evidence in this debate, we started a
research project in 1996 to describe how high-attaining students who have followed
this curriculum conceptualise proving and proof in mathematics and to explore ways
to address any difficulties through new teaching approaches.

The research comprised two phases: a paper and pencil survey of the conceptions
of proving and proof held by 2,459 students aged 14/15 years at a high level of
mathematics attainment, (about the top 20%), followed by two Computer-integrated
teaching experiments in geometry and in algebra. This paper is concerned with phase
2 and aims to present the principles underlying the design of the teaching
experiments and the major findings from their evaluation. It will incorporate
findings from phase 1 (see Healy & Hoyles, 1998) only in so far as they informed the
design and analysis of the teaching experiments.
Methods: Our phase 1 analysis showed that students, even in this high attainment
band, had a limited view of proof and this had a significant and negative influence on
their competence in proving. Yet the majority of students recognised that a valid
proof should be general and valued arguments they felt convinced and explained.
Most students felt that formally-expressed arguments would receive the best marks,
but few used deductive reasoning, with formal arguments occurring very rarely.

Our teaching experiments in algebra and geometry aimed to build on the evident
strengths of our students in narrative explanations and help them develop a multi-
faceted view of proof, which included verification, systematisation and deduction
(see de Villiers, 1990), along with more formal presentation. Given that to construct
on a computer2 requires explicit attention to the processes used, we hypothesised that
students would be better able to formalise explanations derived from computer-based
activities.

1 Research funded by ESRC, Project Number R000236178
2 In algebra, we built a microworld in Microworlds Logo; in geometry a dynamic geometry system, Cabri.
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Teaching experiments were piloted with 6 students in three schools (one mixed,
one boys, one girls) and modifications made on the basis of feedback from students
and teachers. These included more precise procedures for the collection of
systematic written data from the students and the imposition of a common structure
on both experiments; i.e. students were to construct mathematical objects on the
computer, identify and describe the properties and relations that underpinned their
constructions, use the computer resources to generate and test conjectures about
further properties, and make informal explanations as to why they must hold. This
was to be followed by a teacher-led introduction to writing formal proofs using paper
and pencil examples, where students would be helped to organise the arguments
generated during the computer activity into logical deductive chains in the
appropriate formal language. Finally, the students were given a challenging
computer construction to be explained and proved, followed by an opportunity to use
the properties proved to explain why a subsequent construction was impossible
(named here for reference the possible/impossible construction).

Each teaching experiment comprised 3 lessons and 3 homeworks and was
conducted by the two authors. A total of 15 students, 5 from each school, undertook
both experiments within a 5-month period3. The students were chosen by their
teachers according to our criterion of high-attainment, but also so that the group
experience would be beneficial both individually and collectively. All students
completed the phase 1 survey before the teaching experiments and were interviewed
immediately after them, when they were given the opportunity to review some of
their survey responses as well as to reflect on the teaching experiments.

The mathematics teachers of the student group in each school completed the
school survey' as well as the multiple-choice proof survey questions. They were also
interviewed to provide further contextualising data on the school, class and
mathematics curriculum followed, and the individual students involved in the
experiments.
Data analysis: To cope with the complexity of all the data collected (i.e. students'
and teachers' survey responses, worksheets completed by students during class and
homework sessions, students' computer work, two sets of observation notes,
transcripts of final interviews, school questionnaires and transcripts of teacher
interviews), we adopted a cyclical and iterative process of analysis, during which we
constructed student case histories, first by considering student and school variables,
and then weaving in consideration of group, task and software. We also documented
how students responded to the computer and how they viewed it as a tool to learn
mathematics. Finally, we sought to take account in assessing progress of how the
students interacted and worked together during the teaching sessions.
Results: Each individual student case history provides a rich research study in itself,
but here we focus on general trends and school differences rather than individual
responses and progress.

3 We planned to have 3 pairs of students per school, but in each case one student did not attend every session.
4

The school survey was used to find out about a school, its curriculum and the mathematics teacher of the class
selected to complete the proof survey.

903 3 - 106



Deductions from properties: As described earlier, in both geometry and algebra, the
students were asked to undertake a possible/impossible construction, as summarised
in Table 1 below.

Construction Necessary Property
(explained & proved)

New Construction

Geometry: Construct with Cabri
a quadrilateral in which the angle
bisectors of two adjacent angles
cross at right angles. Write down
its properties and prove them.

One pair of opposite
sides must be parallel
(i.e. trapezium).

Predict if you can construct a triangle
in which two adjacent angle bisectors
cross at right angles. Predict yes or
no, try to do it, and then explain why
your prediction was right or wrong.

Algebra: Construct 4 consecutive
numbers in Expressor, write
down any properties of their sum
and prove them.

Sum of 4 consecutive
numbers is even but
not divisible by 4

Predict whether you can find 4
consecutive numbers that add up to
44. If yes, write them down, if no,
explain why it cannot be done.

Table 1: Using properties to make predictions: possible/Impossible constructions
All the students managed to complete successfully the first construction albeit

after time and help. In geometry, 11 students predicted they could construct the
triangle. After trying to do this, all realised it was impossible and 13 could explain
why, using the parallel property identified in the quadrilateral construction. In
algebra, 6 students predicted it was possible to find 4 consecutive numbers adding up
to 44. After trying to find these numbers, all then realised it was impossible, but only
6 referred to the necessary property they had proved about non-divisibility by 4, and
4 of these still did not regard this as adequate refutation and went through a
calculation process, i.e. showed 4n + 6 was not divisible by 4.

Overall, we found the students' responses to be surprisingly consistent, i.e. despite
being utterly convinced of the necessity of the property in the initial construction,
few students used it to deduce the impossibility of the new construction. Having
noted this in respect to this particular task, we searched our observation data and
found numerous instances of similar problems in making inferences from deduced
properties, which will be shown in the presentation. Overall we conclude that the
students were poor at making deductions from properties they had discovered,
explained, and even proved.
Evaluation of visual arguments: In phase 1, we had analysed whether students
assessed a visual argument in algebra and in geometry to be general or specific and
found rather more thought them specific than general: 50%, 31% compared to 21%,
18%5. In analysing the responses of our 15 case study students, we found similar
proportions. Clearly many students were unfamiliar with the power of visual
representations and their potential to serve as generic examples, a conclusion
supported by our process data: for example, the presence of a picture in a request for
a geometry proof confused some students about whether it was general or not.
Visual arguments were also frequently attributed lower status than other forms, and
described as 'simple' or 'daft', even by those who acknowledged their explanatory
power.

5 First percentage is algebra, second geometry.
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Summarising the case studies: Apart from the general trends above, we found
differences in progress across the schools, so report other findings categorised by
school. First we present the school profiles, brief characterisations of each school,
mathematics department, and teacher.

School A: School A was mixed-sex and comprehensive with mixed-ability
teaching practised in the mathematics department. Students in Year 10 studied 3
hours of mathematics/week, and specialist interest in mathematics was encouraged
by additional after-school activities, in extra sessions, and visits to outside school
mathematics lectures. Proof was not taught as a topic until Year 11. The computer
was rarely used in mathematics lessons. The teacher clearly valued different
expressions of proofs, recognised students could construct good 'intuitive proofs' but
had difficulties with formalising them. It was also apparent that the students were
encouraged to take risks and challenge themselves mathematically.

School B: School B was a girls-only comprehensive where again mixed-ability
teaching was practised in the mathematics department from entry, but there were few
`extra' mathematics sessions. Students in Year 10 were taught 2.75 hours of
mathematics/week with proof addressed through investigations and coursework. The
computer was not used regularly in mathematics lessons, although there were two
machines in each classroom. The teacher thought of herself as an educator "not a
mathematician" and fostered a collaborative and nurturing approach where students
would not be faced with unnecessary challenge.

School C: School C was boys-only, with the boys set by attainment in mathematics
from Year 8. 95% of the top set sat the higher GCSE paper. The students studied 3
hours of mathematics/week and proof was taught through investigations. The
computer was not used in mathematics lessons, although there were well-resourced
laboratories in the school. The teacher was a highly-qualified mathematician with no
formal teaching qualifications, who described himself as computer-illiterate. He
fostered a strong emphasis on exams in his department, and discouraged coursework
as he felt the higher achievers spent too much time on this.

We then summarise the background, process and outcome profiles of the 15
students grouped by school. For the background profile (Table 2) we used five
dimensions to capture the most salient aspects: KS3 test score6; views of proof and
constructed proof score as assessed in the proof survey; and prior knowledge of
algebra and geometry as assessed in the survey and from teacher interviews and
classwork.

Though the process profile (Table 3) was harder to draw up, careful analysis of the
case histories led us to draw out 3 dimensions, which though overlapping, could
usefully be distinguished: reaction to the computer work as evidenced in observations
and student interviews; nature of interactions with the computer and with peers; and
modes of expression used in explanations and in proof (i.e. narrative, symbolic,
visual).

6 Level 8 is highest grade attainable in Key Stage 3 (KS3) tests (about the top 1/2%). These tests are administered
nationally at the end of Year 9 (ie age 13/14 year old students).
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School Summary Description
KS3 Test A

B

C

4 level 8; 1 level 7
5 level 7
3 level 8; 2 level 7

Views of proof A
B
C

Only referred to proof in algebra
Only described proof as verification
Unclear about proof and what it was for

Constructed
proof scores
(range 0-3)

A
B

C

6 0's; 2 l's; 5 2's; 6 3's. Highest score for a formal proof 3
11 0's; 6 l's; 1 2; 2 3's. Highest score for a formal proof 0
3 0's; 9 l's; 2 2's; 6 3's. Highest score for a formal proof 1

Algebra A
B
C

Mainly for expressing generality, and finding specific unknowns
Very little algebra
Some experience with algebra manipulation and finding specific
unknowns, very little in expressing generality

Geometry A
B

C

Very little geometry
Very little geometry
Knew a few geometry facts

Table 2 : Background profiles of school groups

School Summary Description

Reaction to
computer
work

A
B
C

Enjoyed the challenge of building and investigating computer constructions
Found computer constructions difficult and took a long time to build them
Focused on procedures "how to get it constructed" rather than structure of the
constructions

Nature of
interactions

A
B

C

Experimental and collaborative
Insecure when unsure, helped each other
Not very experimental, highly competitive

Modes of
expression

A
B

C

Used many modes of expression flexibly
Slow to adapt to new ways of working, dependent on others and teachers to
validate methods and outcomes; used variety of forms of expression but made
only fragile connections between them
Liked to finish quickly using only one mode of expression; generally
prioritised formal and rejected visual

Table 3: Process profiles of school groups
Finally, for the outcome profiles (Table 4), we distinguished five dimensions:

competence in proof in algebra and geometry as evidenced in homeworks and final
interviews, and reactions to the role of the computer and the teaching experiments as
evidenced in students' written evaluations following each teaching session.

EST PY AVAILABLF
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School Summary Description
Proof A

B
C

Ended with multi-faceted views of proof, geometry as well as algebra
Extended their views of proof to include explanation as well as verification
Limited "internal" sense of proof; "external conviction" view still
predominated

Algebra A

B
C

Split between those who learnt algebra routines and those who connected
algebraic to other forms of explanation
Began to express algebraic relationships in context of microworld
Learnt algorithmic approaches to constructing algebra expressions

Geometry A

B

C

Learnt geometry facts, could separate explicitly givens from properties to be
deduced, still some difficulties in constructing complete chains of argument
Learnt geometry facts, began to distinguish givens from properties to be
deduced, still experienced problems with local deductions
Still found it difficult to organise geometry facts into logical steps within a
formal proof

Evaluation
of role of
computer

A

B

C

Algebra: saw connection between programming and proof
Geometry: helped to identify and see properties but not prove them
Reaction same in algebra and geometry: i.e. helped to be accurate and locate
properties; few links between constructing and proving
Strong emotional reactions hated or loved software; allowed work to be
done more quickly and made it easy to construct things; few links between
constructing and proving

Evaluation
of teaching
experiments

A

B
C

Writing formal proofs described as hard with specific problems identified
but enjoyable

Writing formal proofs described as generally hard with no specific details
Learning to use computer described as hard and proof mentioned
infrequently

Table 4: Outcome profiles of school groups
School differences: The summary data shows that the teaching experiments were
most successful in school A, had some success in school B and were least successful
in school C. In school A, students made progress in algebra, geometry and most
crucially developed a multi-faceted and connected sense of proof. This is illustrated
in the case-history of one student,Tim from school A:

Tim enjoyed the computer work because 'it was different'. In his evaluations, he
described the most enjoyable parts in algebra as 'programming', 'watching the
programs work' and 'proving'. When asked he clearly saw a strong connection
between proving and the computer work on algebra.

T I liked the programming stuff - that helped [to write proofs] because it sort of showed how it
was constructed so... It helped prove because it showed you how they were made....how
that construction was made step by step.

In geometry, this link between informal and formal proof was more tenuous. The
computer work helped Tim 'see' relationships, but not to prove them formally,
although it may have performed an important role in satisfying his need to be
convinced.

T Well you could actually see if they were congruent you could take however much you
were allowed to take and actually make a triangle. If it was congruent then you could tell it
was.
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C Tell it how?
T Just by seeing....
C And did that help you write your formal proofs?
T Not really not the formal stuff. ....Well it made it more enjoyable.
We conjecture that factors in the overall success in school A were that students

were used to the experimental approach required by our activities, they had an
adequate knowledge base to engage with the activities, and they were willing to share
knowledge and help each other. In school B, the students started from a weaker
knowledge base than anticipated in the activities, and although they were beginning
to appropriate a broader conception for proof, they needed more time to consolidate
this and gain confidence in experimenting with the software to learn algebra and
geometry. This group of girls was much less secure they were willing to share but
lacked the competence and confidence to do so. Finally, in school C, the students
viewed the activities more as learning to use the computer software than to explore
the mathematics. They seemed more used to learning procedures and techniques
than striving for conceptual understanding. As a 'typical' group of high-achieving
boys, they were competitive and preferred to work on their own.
Individual variation: Clearly, individuals within a school group varied on all the
dimensions of the three profiles, but in each school there was at least one individual
(and rather more in School A) who adopted a flexible approach to proving which
interweaved verification with seeking understanding and explanation. From our case
histories, it was clear that interaction with the computer helped students to make and
maintain these connections they were able to reflect on the steps they had made in
constructing their explanations and re-use these steps in deductive arguments. In
these cases, internal conviction was achieved using a combination of empirical and
anaytical methods, logical arguments were constructed and expressed in a variety of
ways (including formal expression) while keeping narrative explanations in mind.
We also found that in each group there was at least one student (and rather more in
School C) who ended with a view of proof that prioritised 'external' over 'internal'
conviction. These students moved quickly from informal argumentation to the
production of a formal proof and in the process lost touch with the sense of the
problem to be proved. We also found (particularly amongst students who had
planned to drop mathematics after it was no longer compulsory), a tendency to be
satisfied with their narrative arguments and remain unconvinced of the need for any
formal proof. In both cases, we interpreted the responses to be a consequence of the
mismatch between our goals, teaching style and experimental activities and the
students' views of mathematics and of proof.

Our data also suggest that in part these individual variations can be accounted for
by reference to: the adequacy of an individual's knowledge base as evidenced in the
background profile particularly crucial in a group where sharing/helping was not
prevalent; a readiness to explore different ways of presenting mathematical ideas, an
attitude to learning mathematics which included problem-solving and
experimentation as appropriate learning strategies; and an approach to technology
that did not preclude seeing computer interactions as relevant to appropriating
mathematical ideas. Of course, fulfilling these conditions cannot guarantee success

the composition and dynamics of the group, and the nature of its interactions also
serve as intervening influences but not fulfilling them is likely to inhibit progress.
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Conclusions: Our results show that the computer-integrated teaching experiments
were largely successful in helping students widen their view of proof and in
particular link informal argumentation to formal proof a transition known to be
problematic. Not all students however made the anticipated progress, pointing to the
well-known complexity of the cognitive and metacognitive processes that need to be
appropriated in learning to prove.

Our research also highlighted rather particular problems our students had with
respect to local deductions and visual reasoning. Since these problems emerged in all
3 schools and in both algebra and geometry, we are led to conclude that these two
processes are given rather little emphasis in the current curriculum for younger
students a conclusion supported by an analysis of the National Curriculum and by
data from our teacher interviews. Our students are simply unused to making
deductions and predictions an unfamiliarity which our research shows inhibits
their capacity to engage with the demanding complexities of proof at higher levels.

Finally our study identified considerable variability in responses between students
and between students grouped by school despite identical activities and teaching.
We interpret this differential progress at the school level to be related to the match or
mismatch between our expectations of the students' prior knowledge and their actual
knowledge, and our goals and constructivist orientation and those of the mathematics
department as mediated through the student group. There were also other variables
that influenced success, such as attitude to computers and their role in learning
mathematics among students and staff, and the gender mix and internal dynamics of
the student group. Taken alongside evidence from previous research that more
`traditional' methods of teaching proof have variable success, our findings suggest
that teaching can make a difference to students' competence in proving but the same
activities and the same teaching approaches inevitably will not be equally effective in
all schools or with all students.
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Alternative Assessment for Student Teachers
in a Geometry and Teaching of Geometry Course

Bat-Sheva Ilany and Nurit Shmueli,
Belt Berl Teacher Training College, Israel

This work presents one of the assessment tools that we employed in the Geometry and
Teaching of Geometry course, named "Three-Stage". This tool is composed of a group test,
classroom discussion and individual test. With the help of the assessment tool we sought to
achieve the following aims: examine the ability of the students to present and argue their
solutions, and their ability to form links between various areas within the mathematical
framework. The findings show that in general the tool reflects the students' knowledge. The
tool examined understanding of mathematical concepts, methodological knowledge (such as
ability to prepare activities for students), while expressing the students' skills and diversity

and the processes of coping with working in groups.

With the appearance of the document Curriculum and Evaluation Standards for School
Mathematics (NTCM, 1989, 1991), an effort was made to transform mathematical
education and prepare it for the 21g century. This document proposed a new approach
to the teaching of mathematics, ascribing special importance to independent and
critical thinking, and recognizing that assessment and curricula standards could not be
fully implemented without changing the manner in which mathematics is taught.
The document stressed development of ways of thinking and problem solving
strategies, stressing the solution process (and not only the assessment of the finished
product). These trends affected the nature of the contents in teaching mathematics.
The changes in content and style of teaching mathematics necessitated corresponding
changes in the assessment process as well (MSEB, 1993). As a result, a variety of
methods and tools have been recently proposed for assessment of students in addition
to, or instead of, the customary assessment by testing (Stenmark, 1991).
Clarke and Sullivan (Clarke, Sullivan, 1992) believe that performance tasks are the
appropriate tool for guiding and assessing students in the area of unconventional
problem solving. In performance tasks, each student is able to choose the strategy
appropriate for the level at which he finds himself
Since performance tasks make it possible to achieve different and original ways of
solution, they make it possible to examine the student's mathematical ability, stressing
the solution process rather than focusing on the final result. In the assessing the
student's mathematical ability great importance is ascribed to monitoring the
solution process and the thinking processes guiding the student. Tasks of this type are
suitable to be used as an assessment tool in accordance with the new trends in
mathematics instruction. Since we are striving to base teaching and learning in the
classroom on the inquiry and discovery processes that take place in the course of
solving problems, student assessment should also be based on tasks ofthis type.
The tool presented here was constructed for the purpose of assessing the "Geometry
and the Teaching of Geometry" course. The course focused on acquaintance with
geometric shapes, the relationship between them, their characteristics, as well as
general didactic aspects. The course was given as part of a workshop while
employing demonstration means relevant to the subjects being taught. Moreover, the
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course incorporated various teaching means and didactic methods, and presented
various studies and theories, such as the theory of Van Hie le. Teaching methods
included work with heterogeneous groups emphasizing performance tasks requiring
inquiry and discovery, mathematical discourse, both within the group and in the
plenum.
We sought to adjust the assessment methods in the course to our teaching methods.
The object was to examine the students' mathematical and methodological knowledge
of geometry, to express the inquiry processes in the group and the individual
knowledge and diversity among the students.

Methodology
The population and the framework: Thirty-five student teachers and elementary
school and junior high school teachers attended the course. The course participants
were a very heterogeneous group, composed of students who specialized in
mathematics, those who did not specialize in mathematics, as well as teachers (both
Arab and Jewish) who attended the course to complete degree requirements or as part
of in-service teacher training.
Assessment tools: We employed for assessment the "Three-Stage" tool, developed by
a Weizmann Institute team.
The tool is composed of three activity stages:
Stage 1 The Group Test. Students worked on an activity in groups and write a
joint report on the work performed by the group. Each group writes a single report
and submits it to the teacher, without any intervention on the part of the teacher. The
group report reflects the process that the group went through, including erroneous
assumptions that were made. The students become accustomed to being aware of the
process they are going through, to express themselves within the group, to explain to
others and to conduct a mathematical discourse. Moreover, the group report can serve
as a protective grade for weaker students.
Stage 2 Classroom discussion, whose function is to summarize and consolidate the
work of the various groups. The discussion is based on mathematical principles
related to an activity prepared in advance by the teacher, as well as on the teacher's
impression of the group activity and difficulties that arise in the course of the work of
the various groups. The teacher's role in the discussion is to arrive together with the
students at a generalization, a global outlook and greater depth of understanding.
Stage 3 Individual test, the stage at which the students complete individual
questionnaires and submit an individual report. The questionnaire contains questions
related to the joint work carried out by the group at Stage 1. Each student is examined
at this stage as to the extent to which he is capable of answering questions based on
the group work. The personal report has two central aims:
1. To examine the students' personal knowledge of the subject matter worked on in

the group, but without help from the group. Information is thus obtained on what
the students learned in the group work and in the subsequent discussion conducted
by the teacher. Students who can achieve deeper and broader understanding by
themselves, can express such ability in their individual work.

2. Creating motivation for self-involvement of each group member in the group work,
with each student knowing that he will be personally questioned on the work.
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It is important to complete Stages 1 and 2 during the same lesson or in consecutive
lessons. Stage 3 is to be carried out in another lesson, after the teacher has had the
opportunity to study the reports of Stage 1.
For assessment of the course, we constructed a Three-Stage tool appropriate for the
subject covered in the course. Chosen for inclusion in the Three-Stage tool were
didactic and mathematical tasks in the subject matter dealt with in the course. In the
group test we included questions that examined mastery of mathematical concepts,
awareness of typical errors, familiarity with various demonstration means and their
integration in teaching. At the second stage, a discussion was conducted which was
primarily a summary of the mathematical and didactic principles related to the group
task, where we have chosen to focus on the advantages and disadvantages of each
model and to discuss additional demonstration means which could be used (some
already encountered during the course). At the third stage, the individual test, we
gave questions based on the group test and the class discussion. The remaining
questions were based on the group test tasks.
For examining the individual and the group tests we constructed specific criteria
typical of each question, where each criterion is assigned a value, with each of the
criteria detailed and explained in Tables 1 and 2. We defined various performance
levels in performing the task, and each of the reports was given a "genergrade" (100
maximum) according to the performance level. The assessment of each student was
based on a combination of his work in the group part (50%) and his individual work
(50%). The course grade was based on the performance of several tasks, one of which
was this assessment task.
Presented below are representative questions from the assessment tool (a variety
of demonstration tools means was available to the students):
Group Test
Question 1
Two teachers meet in the teachers' room. One holds straws and pipe cleaners, the

other a worksheet.
Teacher A: I understand that both of us are dealing with triangles.
Teacher B: Right, here is a worksheet suitable for this subject.
Teacher A: I prefer to use straws and pipe cleaners.
1. Propose an activity suitable for the "triangles" subject by using straws and pipe

cleaners (list each of the activity stages, aim of activity, what it examines, etc.)

2. Study Teacher B's worksheet. Add your comments, propose activities and discuss
both proposals: straws and worksheet. What are the advantages and disadvantages

of each method. Explain.
Student worksheet:
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Question 2
1. Record typical pupil errors regarding the concept of the diagonal.
2. Compose test questions whose aim is to examine the pupils' knowledge in respect

of each typical error.
Note alongside each question which typical error it examines, and why.
Class Discussion (following the group test): A discussion was conducted on the
advantages and disadvantages of using the worksheet and the straws. This point was
chosen for the class discussion as representing a central issue dealt with by the
students in the group report.
Individual Test:
Question 1
1. Propose an activity suitable for the "triangles" subject not using either straws, pipe

cleaners or a worksheet, but rather another aid. Specify for each stage the purpose
of the activity, what it examines, etc.

2. Assign two names to the following triangle (the students had various accessories
on the table before them, which they could use to examine the characteristics of the
given triangle):

3. Which of the two names was given by the majority of the class, and why?
Question 2
Construct a page of examples and non-examples of diagonals. Bring at least 5
examples and 5 non-examples, argue and explain.

Findings
To assess the work, we constructed criteria for checking the individual and the group
tests. The following tables list the criteria and the overall score. Scores are also listed
for two group tests (good and weak test scores), and two individual tests (good and
weak test scores).
An example of criteria constructed for Question 2 in the group test (the criteria for
Question 1 in this test are similar to the criteria for Question 1 in the individual test):
Criterion 1: List of Errors
Level Details Total

Score
Good
Score

Weak
Score

1 No list of errors or incorrect list 0
2 Partial list (less than five errors) 3 3 3

3 Complete list (at least five errors) 5

Criterion 2: Understanding Concept of Diagonal
Level Details Total

Score
Good
Score

Weak
Score

1 No understanding 0
2 ''Partial" understanding 3 3

3 Full understanding 5 5



Criterion 3: Sample Questions
Level Details Total

Score
Good
Score

Weak
Score

1 Samples unsatisfactory 0

2 Samples satisfactory no explanations 2 2

3 Samples satisfactory partial explanations 3

4 Samples satisfactory with explanations 5 5

Criterion 4: State the error examined by each example
Level Details Total

Score
Good
Score

Weak
Score

1 No 0 0

2 Yes 5 5

Analysis of the entire "good test score" shows that the students made correct use of
the various demonstration models and used them in the proper place and manner.
They were able to construct different and varied activities for the pupil, activities that
link inquiry and discovery and require using the demonstration means. They were
aware of the difficulties encountered by pupils in the subject being studied, aware of
the typical errors made by pupils in this subject, were familiar with their origin and
knew how to deal with them. They had mastery of the subject being studied
(mathematical as well as didactic), possessed good communication ability and used
mathematical language while reasoning and explaining.
From the analysis of the entire "weak test score", we found that students did not use
the demonstration models correctly. They failed to construct different and varied
activities for pupils and did not relate to the aims of the activity. Their
communication ability is faulty and they do not sufficiently reason and explain. Their
understanding of concepts is unsatisfactory and they are insufficiently familiar with
the difficulties encountered by students in the subjects being studied.
Example of criteria constructed for Question 1 of the individual test (Section 1)

Criterion 1: Understanding Concepts: Using mathematical concepts relevant to the
activity. namely the student mentions a concept and shows that he understands it.

Level Details Total
Score

Good
Score

Weak
Score

1 No use of mathematical concepts and/or
incorrect use of concepts

0 0

2 Partial use of concepts 3

3 Correct and full use of concepts 4 4

Criterion 2: Manner of Using Model (demonstration means
Level Details Total

Score
Good
Score

Weak
Score

1 No use of model 0

2 Attempt made to use model 1 1

3 Correct use of model
4 Correct full and sophisticated use of model 4 4
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Criterion 3: Communication
Level Details Total

Score
Good
Score

Weak
Score

1 Constructed unsuitable activity 1

2 Activity not detailed 2 2

3 Activity detailed but not fully 3

4 Activity fully detailed 4 4
Criterion 4: Manner of Presenting Task
Level Details Total

Score
Good
Score

Weak
Score

1 Unclear presentation of task 0
.

2 Certain parts of presentation are clear 2 2
3 Presentation clear but details lacking 3

4 Presentation clear, detailed and prepared in
an organized manner

4 4

Criterion 5: Relating to Activity Aims
Level Details Total

Score
Good
Score

Weak
Score

1 Aims of activity were not detailed or no
relating to aims

0 0

2 Activity partly relates to aims 3

3 Activity fully relates to aims 4 4

Criterion 6: Originality
Original work was awarded 2 points.

Analysis of the entire "good test score" (grade 100) showed that the student:
Is familiar with various demonstration models, knows how to use these in the right
place and manner and is capable of constructing different and varied activities for the
pupils, which link inquiry and discovery and require using different demonstration
means. The student is aware of the difficulties encountered by the pupils in the
subjects being learned, the typical errors made by pupils in this subject, the source of
these errors and how to deal with them. The student has mastered the subjects being
learned (from the mathematical and didactic aspects), possesses good communication
skills and uses mathematical language with reasoning and explanations. To
summarize, it is evident that this student has deepened and expanded her knowledge,
while extracting the most from her ability in the individual test, beyond the group test
(in which she received a grade of 89).
From the analysis of the entire "weak test score" (grade 55), we found that the student
is insufficiently aware of the pupils' typical errors in the subject of "diagonals in
polygons". Her work lacks reasoning and explanations, even though she was asked to
provide these. Moreover, she is unfamiliar with the different triangle types.
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Analysis
At the first stage (the group test), the students worked diligently, in cooperation, and
conducted mathematical discourse. They enjoyed this very much and one of the
students said: "It was really fun, even though I'm certain I didn't get 100, but I don't
care, because I learned a great deal and enjoyed myself very much." The students
noted that they prefer working in groups rather than individually "because it is much
more interesting and productive."
Analyzing the results, we found that the score obtained by 14 students in the group
test was higher than their score in the individual repor(by more than two points). The
score of 10 students in the group test was lower (by more than two points) than the
score in the individual test, while 9 students had a similar score in both.
In the group test, students at different levels worked together, mutually supporting and
enriching each other, and it appears that therefore weaker students scored higher in the
group test and lower in the individual test. The group score constituted a protective
grade for the weaker students. Examination of additional work submitted in the
course and the impressions gained in the classroom of this group of students whose
group score was higher than their individual test, indicated that it is the lower grade in
the individual test that reflects their knowledge.
As to the students whose individual scores were higher than their scores in the group
test, it can be assumed that they learned from the group test and the class discussion.
We found special cases such as: a student who attained 90 in the group test and 52 in
the individual test. Acquaintance with this student in the classroom and with her other
work showed that she has not mastered the material sufficiently. However, in the
group test she was together with students who have mastered the material well, and it
can be assumed that they dominated the group test, thus the gap between the grades.
On the other hand, another student received 65 on the group test and 98 on the
individual test. Upon examining the composition of her group, it turned out that it
included two students who have not mastered the course material. From an interview
with the student, it turned out that she is lacking confidence regarding her knowledge
and was thus unable to dominate the group.

Summary and Discussion of Results
It should be noted that the use of the Three-Stage tool achieved several objectives:
By examining the test results we learned about the central points in our work in
the course, such as:
Importance of the mathematical discourse. Importance of working in groups, which
develops skills of cooperation as well as supporting and helping others (beyond the
mathematical discourse). Importance of employing the various demonstrations means.
The various mathematical and didactic aspects.
The need to change the assessment methods in accordance with the teachingmethods.
This method of assessment provided the students with an example of how to
adapt the assessment method to the teaching method: Throughout the course, the
students raised the question of how they would be assessed in light of the new trends.
The question that was asked repeatedly was: "Since we are working in groups, will the

test be a group test?"



Reflecting the students' knowledge: We can see from the results that the tool
generally reflects the students' knowledge. The tool examined the understanding of
mathematical concepts, methodological knowledge (such as the ability to prepare
activities for pupils), understanding the task, originality and creativity, organizing the
work and communication. The students fully cooperated in the group work, held
discussions, made assumptions, and learning took place with mutual support. The tool
expressed the skills and the diversity among the students and the processes of coping
and working in groups.
Additional advantages in the group segment: Reduced test anxiety, support for the
weaker students and creating motivation toward cooperation.
The individual test reflected and balanced the results of the group test and related
differentially to each student in the group. Namely, information was provided on the
knowledge of the various students by their level, by what they learned working in the
group, and following the discussion conducted by the teacher. It was furthermore
possible to see that some students deepened and broadened their knowledge of this
subject by themselves, fully utilizing their ability in the individual work.
The individual test pointed out the knowledge gaps between the student teachers and
the teachers. For example, it was possible to detect among the student teachers
typical errors that occurred among pupils, such as in Question 1 of the individual
report, in which only the student teachers assigned the incorrect name to the triangle,
"acute angle triangle" or "equilateral triangle". In the question where they were asked
to point out typical pupil errors regarding the concept of the diagonal, only teachers
were able to link their answer to the thinking levels of Van Hiele.
To summarize, the "Three-Stage" is the appropriate tool for the new assessment and
teaching approaches. It reflects the students' knowledge and expresses the skills and
diversity among students, the processes of coping with working in groups, to
originality, creativity and mathematical communication.
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CHARACTERIZING UNDERGRADUATE MATHEMATICS
TEACHING

BARBARA JAWORSKI. UNIVERSITY OF OXFORD
ELENA NARDI, UNIVERSITY OF EAST ANGLIA
STEPHEN HEGEDUS, UNIVERSITY OF OXFORD

The Undergraduate Mathematics Teaching Project' (UMTP) is a one-year
study aiming to characterize, and identify issues related to, mathematics
teaching in undergraduate tutorials. It builds on earlier research into
mathematics learning in undergraduate tutorials and involves a research
collaboration between mathematics educators and mathematicians. From
participant observation, semi-structured interviewing, and group discussion, it
develops a set of qualitative data which is analyzed through repeated critical
scrutiny to distil characteristics and issues of the teaching experienced which
might be seen as germane to a wider variety of settings. Research is ongoing,
but issues and indications from analysis of pilot-study data are included.

Rationale

The broad aim of the Undergraduate Mathematics Teaching Project (UMTP) is
to explore, in a collaboration between mathematics educators and university
mathematics teachers, current thinking and practices in mathematics teaching at
first year undergraduate level. It seeks to elicit relationships between the
enacted teaching, the mathematics being taught, the aims and objectives for
students' learning, and the perceptions of those teaching (the tutors) and those
observing (the researchers). In doing so it will begin to provide a knowledge
base on which to make decisions affecting practice in university mathematics
teaching and illuminate an under-explored area of influence on mathematics
teaching more widely. The objectives of the study are:

1. To identify practices and processes in the teaching of mathematics at first
year undergraduate level, and the thinking and beliefs which underpin them.

2. To examine such practices and processes in a collaboration with university
mathematics tutors and develop a pedagogical discourse based on
collaborative reflection by both researchers and practitioners.

3. To inform university tutors about the nature and implications of existing
practices and processes, and the potential of alternatives. The research will
explore the impact of these implications on current thinking and beliefs.

The research develops from two previous studies. The first explored
undergraduates' mathematical learning difficulties in first year tutorials (Nardi,
1996) in particular students' appreciation of abstraction and formalism. The

' This project is funded by the Economic and Social Research Council (ESRC) Award
Number 8000222688.
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second study followed from the first: data, in the form of transcripts of tutor-
student dialogues, and analyses were presented to the tutors (whose tutorials
were observed in the first study) to explore their related thinking and reactions
(Nardi, 1998). The first study provided a rich account of students' difficulties
with mathematical abstraction in a range of topics. The second provided
insights into tutors' thinking about their students' learning, and, although very
small in scale, was encouraging as an indication of the value of further
exploration into the teaching of mathematics at this level. Both studies
provided strong evidence of the potential of tutorials as a source of rich data,
allowing insights into learning and teaching processes and practices.

Background and theoretical perspectives

The UMTP study should be seen in relation to key issues in mathematics
education currently in the UK. The number of students opting for
mathematically-oriented studies at university is decreasing and recruitment of
good mathematics graduates to mathematics teaching at school levels is at an
all-time low. Profound changes in secondary education, pedagogy and
curriculum have contributed to an increased gap between secondary and
tertiary mathematics teaching approaches and to a debate as to the
preparedness of undergraduates fir university study in mathematics. One
response to these changes has been to modify university mathematics curricula
to adjust to current needs of students. However, universities are now being
required to be accountable for the quality of their teaching and there is an
emerging realization that reform should be focusing on teaching. The above
imply that there is a need for a revision, of the underlying principles as well as
the practices in the teaching of mathematics at university level. The UMTP
study aims to explore critically the nature of undergraduate teaching and its
potential for the future of mathematical learning at a variety of levels.

The research is embedded in a growing theoretical area which focuses on the
development of knowledge in advanced mathematics, and the difficulties
students face in dealing with mathematical abstraction. The work in the area
of Advanced Mathematical Thinking (e.g. Tall, (1991) and Sierpinska, (1994))
is highly relevant and the work of Nardi, quoted above, fits into this tradition.
The current study seeks to relate these theoretical perspectives to issues in
teaching.

There is an extensive, curriculum-based, literature in this area, mainly in
North America, which seeks to relate undergraduate learning to methods of
teaching. For example, alternative approaches to calculus (e.g. Ferrini-Mundy
& Graham (1991) and Selden & Selden (1993)) and linear algebra (e.g. Leron
& Dubinsky 1995) reflect, in part, attempts to make these subjects more
engaging and meaningful for the majority of students. However a general
perception remains that the teaching of mathematics at the undergraduate level
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has not to date made sufficient effort to deal with the backgrounds and needs
of present day students. The research described here aims to go beyond
particular practices, to seek more general awarenesses and understandings of
the relationships between teaching and learning at undergraduate level. It
draws also on research at other levels of mathematics teaching, seeking
commonalities and differences. For example, it explores the use of the
Teaching Triad, a construct used to characterize and analyze mathematics
teaching at secondary level (Jaworski, 1994).

Project Initiation and Methodology

The UMPT is a one-year study (from October 1998) of a small sample
largely purposive and opportunistic of fidt year undergraduate tutorials. It
aims to study in depth the teaching of 5 university mathematics tutors from a
list of volunteers willing to collaborate in the project. Over a period of one
university term (the second of the year, January to March) data will be
gathered by observing one or two consecutive one-hour tutorials per week for
each tutor, and interviewing each tutor soon after each observation. Periodic
meetings of researchers and tutors will be held to establish a community of
practice within the project, to encourage open sharing and debate of practices
and issues, and as an alternative source of data for validation purposes.

The UMTP methodology might be described as critically qualitative with a
strong emphasis on participation, drawing on experience from previous
research by Jaworski (1994, 1998). Qualitative data is sought to allow access
to the complexities of tutors' epistemology and its relation to pedagogy. The
critical nature of the research is in its questioning of processes and practices at
all levels. Questions from researchers to tutors seek access to tutors' thinking
underpinning observed actions. The earlier research suggested that such
questions will lead to questioning by the tutors themselves of their own
practices and associated theories and beliefs. Meetings between all the research
participants are designed to encourage an airing of tensions and issues. As part
of the analysis, feeding back into data collection, researchers will reflect
critically on questions asked, to examine and expose their relation to
underlying theoretical perspectives, and influences on tutors' responses.

The participative nature of the research is designed to develop a community of
practice within which such questioning can take place. It is necessary to
recognize overtly the differing perspectives and objectives of tutors and
researchers (as identified in the aims of the project above), while fostering
trust and mutual respect. The relationship is designed to be one of "clinical
partnership" in Wagner's (1997) terms:

The researcher is clearly the agent of enquiry, and practitioners are the people
whose work is the focus of analysis and reform. But practitioners can also
engage in the enquiry, at least by assisting their researcher colleagues, and
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attention is given by both to the process of researcher-practitioner
consultation itself. (p. 15)

Analysis during data-collection involves scrutiny and annotation of observation
notes to produce observation-protocols and suggest questions for interviews.
Analysis after data-collection involves scrutiny of recorded interviews and
production of interview-protocols for use in extracting characteristics and
issues. Protocols act as second-order data to inform subsequent analysis which
involves a critical scrutiny of observations interviews and discussions to elicit
relationships. Discussions in research group meetings are recorded and
support the analysis of the interviews. Characterization involves seeking
processes, practices and issues which might be seen to be germane to a larger
number and wider variety of settings. Rigour is to be ensured through
triangulation between alternative data sources, and a transparency of
contextualization and critique (Delamont and Hamilton, 1984; Ball, 1990).

Indications and issues arising from pilot-study analysis

The pilot study focused on 7 tutors, which would reduce to 5 for the main
study, once timetables in the second term were known. The purpose of the
pilot was to try out observational and interview approaches, data gathering
techniques and analytical procedures; to induct tutors into research practices;
and to enable the researchers to adjust, critically, the mutuality of their
perceptions of the research methodology. We shall offer some insights into
the data emerging from one tutor and our preliminary analysis of it. In
addition we shall identify, tentatively, an emerging issue, that of the nature
and importance of interaction between tutor and students in the tutorial, with
reference to data from a number of tutors.

Tutor-1: Data and Preliminary Analysis

Tutor 1 talked about his teaching strategies. For example, heused a
(white)board to facilitate communication between tutor and students. He
valued "teaching by example", offering reasons for providing his own
examples. He emphasized the importance of "explanation skills". Developing
students' confidence was one of his main aims.

In parts he was critical of his own teaching: for example, suggesting that he
was "going too fast when student K was struggling", that he needed to be sure
of basic understanding, that he had produced a "poor" diagram it
represented three vectors in the plane, but might have been seen as a set of
three orthogonal axes in R3. He said, "I should have been more careful ...".
He recognized his emphasis on the importance of "the formalizing process", or
"proof', saying "I'm the only source of rigour they have". He indicated a
tension between "getting ideas right" and "giving them a feel for rigour".
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Analysis involves critical scrutiny of the data, seeking links to other data
items, and recognizing patterns which might be judged characteristic. In the
pilot study, only two tutorials were observed from each tutor. Thus, pattern
seeking is at a very early and elementary stage. Nevertheless there are
analytical remarks to make about the above data. We provide, as exemplars
here, three points which may be indicative of forthcoming characterization.

1. Teaching strategies: It is interesting that the tutor refers to various
strategies he uses in his teaching. With regard to use of examples he says

I like teaching by example, especially when you've got something abstr.-:: to
say and certainly I think ... I consider it quite important. The reason I like to
give my own examples sometimes is you quite often get the student who's
done the ones on the sheets' and a student who hasn't done the ones on the
sheet, so you don't want particularly to set the examples on the sheet3.

`Use of strategies' might become a characteristic. It will be important in other
data to look out for tutors' references to strategies they use. In this case, one
example of a strategy is the tutor's use of 'his own examples' to provide
alternative experience from that offered by the lecturer, and for discussion
purposes in the tutorial. With this tutor it will be important to explore further
his construction and use of such examples.

2. Developing students' confidence: The tutor's words were:

I think the biggest thing to developing confidence is to make them not feel at
all uneasy about being wrong. I mean ...you don't have to have a wonderful
rapport but just enough of a ...never be patronizing and you know, just, er,
OK, OK, tell them the question's hard, whether it is or not because that's
sticking with them, tell them it's hard and [as] such it's, it's just a matter of er,
getting your, your confidence to, to, to be wrong, you know is is a very good
thing.

Some of the hesitation is left in here to indicate the tutor's struggle to
articulate his perception of dealing with students' confidence. This statement
points towards a 'sensitivity to students' on the part of the tutor a teaching
concern directed at the students' needs, in this case in the affective domain. It
suggests that doing what he can to encourage confidence is going to help the
student to tackle concepts more effectively. His criticism of his misleading
diagram might be seen as sensitivity which is more cognitively focused: he
suggested the diagram might have been construed by students in an alternative
way to that intended, potentially leading to misunderstanding by the student.

2 He refers to the lectures which are open to all students, and the problem sheets, set by the
lecturers, for students to tackle questions related to the lecture material.
3 Quotations are edited slightly to take out hesitations and repetitions, unless these seem crucial
to the sense with respect to the analytical point being made. Analysis, however, looks
carefully at the whole data and considers the relevance and import of pausing, hesitation etc.
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Sensitivity to Students (SS) is one of the elements of the Teaching Triad
(Jaworski, 1994, Jaworski & Potari, 1998), the others being Management of
Learning (ML) and Mathematical Challenge (MC). The teaching triad
research suggests that SS is closely allied to MC which characterizes a
teachers' interaction with the student in the domain of mathematics, attempting
to encourage the student's cognitive development. The tutor's use of the
diagram could be seen as a means of challenging students, which was
unsuccessful because of the inadequacy of the diagram. Thus there are
indications in this very early data of the inter-relationship of SS and MC
leading to issues about teaching for students conceptual development.

3. Ensuring Rigour: A longer extract seems worth inclusion to indicate
the potential of this data in early analysis:

T1 Yes. Well, I mean (pause). My role is to have them... I mean my role is an
important one is that the, er, I am their only source of rigour that they have in
the, really in the, in the, the first year. They'll, it, it's me explaining things and
introducing style and er proof. But at the same time ideas I'd like to get er,
it's it's a balance between getting ideas right, er, and giving them some feel
for them but then also being able, being somehow being able to (pause)
convince them that they feel they have to do er... concept is the same as the
rigorolis definition that might be on the board.

Ten lines omitted. Then:

I think, I think the important role of the tutor is to make sure the, try and give
them handle on both things but that's often difficult. I mean one way is
usally geometric and one way is analytic and a lot of people only think one
way and not the other but er, at the same time I usually tell them as long as
they can do it one way it's a good thing but it's always nice to have two
ways of thinking about it. ...

Scrutiny of the transcript shows that this statement is one of Tutor l's longest
statements in the interview. Although very hesitant, perhaps unused to
articulating his personal principles or theories, Tutor 1 presents a clear
rationale for his emphasis on, and approaches to, rigour. This length and
clarity are interpreted as indicating issues of significance to the tutor in
particular, perhaps, the issue of "getting ideas right" versus "giving [students]
some feel for them" (our emphasis). In this case, the mathematics in question
is linear algebra. It will be important to follow up further references to
'teaching for rigour' in subsequent data, and to question their relationship to
particular topics, or their cross-topical generality. (c.f. Nardi, 1996).

An emerging issue, the nature and importance of interaction

Interaction in tutorials, unsurprisingly, is perceived and enacted in different
ways by different tutors. Many students are typically silent unless asked to
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speak, and so their uttering a word indicates interaction. In some cases the
interaction is little more than a question from a student, followed by a
monologue by the tutor. In others it involves a student in presenting ideas to
the tutorial group, with comments and questions from other student(s) and
tutor. Some tutors seem to see interaction as little more than an unfortunate
necessity for discovering what is problematic, especially with weaker students.
Others see it as a tool for empowering students' mathematical communication.

From the current data, we have identified elements of tutor 'inciting'
interaction and 'empowering' interaction. In the first case, it is necessary to
recognize a need for interaction. In the following quotation, a tutor
recognizes that inappropriate imagery is a barrier to understanding, so that
exposing this imagery "you need to listen" is essential for the tutor in
judging appropriate support.

I think they have just utterly different pictures in their heads sometimes. They
have, they have completely the wrong picture in their head and you, you need
to listen to what that is to push them in the right direction. So if there's the
wrong picture in their head and you start talking about something based on
the picture you have in your head or that you think they have in their head
you, you just confuse them more. (Tutor 2)

The following quotation emphasizes the belief that interaction is a necessity
for helping weaker students "I very often ask them to explain it to me"
but unnecessary for "rather better" students where a monologue suffices.

Um, I think it's actually more to do with the students ... because they are very
weak. In trying to find out whether they understand something I very often
ask them to explain it to me or say something about it. Because, er if I just say
OK this is a Cauchy sequence and they nod I don't actually know whether
they're just nodding to just to be polite ... Er, my Monday afternoon students
are, are rather better and tutorials tend to be much more of a monologue. Um, I
don't, I don't need to ask them what a Cauchy sequence is because they've
demonstrated in their work that they know. (Tutor 3)

Using tutorials to empower students has emerged from some of the current
data. For example, Tutor 1, above, spoke of the importance of building
students' confidence, for example, of acknowledging that certain concepts are
"hard", and of seeing "being wrong" in positive terms. Although these ideas
were not expressed explicitly in terms of interaction, it might be believed that
this tutor would engage his students in dialogue to expose "wrong"
perceptions, to cut through hard mathematical concepts.

Another tutor (Tutor 4) talks explicitly of using dialogue for empowerment in
students' learning "how to do mathematics" "I want them to actually be
doing it rather than me telling them how to do it".
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I think I view it that the point of a tutorial is for them to learn how to do
mathematics so I want them to actually be doing it rather than me telling them
how to do it because I think they learn less by me telling them the answer to a
dozen questions instead of, OK, how do I think of these solutions, how do
you think of these solutions? How do you think of these solutions now and
when you're back in your room without me prompting you how to do it?

In Conclusion

It is important to emphasize that we have as yet only a small set of data to
analyze, so that the issues indicated above only just start to suggest
characteristics which might be seen as more widely germane. However, the
pilot has fulfilled its purpose in clarifying methodology and establishing initial
relationships, quite apart from its promise regarding issues and characteristics.
We look forward to presenting results from our main study at the conference.

References
Ball S.J. (1990) 'Self doubt and soft data : social and technical trajectories in ethnographic

fieldwork'. in Qualitative Studies in Education, Vol 3 no 2, 157-171
Delamont S. and Hamilton D.(1984) 'Revisiting classroom research: a cautionary tale' in

Delamont S. (Ed) Readings on interaction in the classroom Methuen, Londonpp
3-24

Ferrini-Mundy, J. & Graham, K. G. 1991. 'An overview of the calculus reform effort: issues
for learning, teaching, and curriculum development.', American Mathematical
Monthly, 98(7), 627-635

Jaworski, B. (1994) Investigating Mathematics Teaching: A Constructivist Enquiry. London:
Falmer Press

Jaworski, B. (1998) Mathematics Teacher Research: Process, Practice and the Development of
Teaching. Journal of Mathematics Teacher Education, 1: 3-31

Jaworski, B. & Potari, D. (1998) 'Characterising Mathematics Teaching using the Teaching
Triad, in A. Olivier and K. Newstead (Eds.) Proceedings of the 22nd Conference of
the International Group for PME, Volume 3, pp 88-95

Leron, U. & Dubinsky, E. 1995. 'An Abstract Algebra Story', American Mathematical
Monthly, 102(3), 227-242

Nardi, E. (1996) The Novice Mathematician's Encounter With Mathematical Abstraction:
Tensions in Concept-Image Construction and Formalisation. University of Oxford:
Doctoral thesis.

Nardi, E. (1998) Tutors' Reflections Upon the Difficulties of Learning and Teaching
Mathematics at University Level: A Report of Work-in-Progress. Proceedings of
the Conference of The British Society for the Research into Learning Mathematics.
Birmingham 1998.

Selden, A. & Selden, J. 1993. 'Collegiate mathematics education research: what would that be
like?', The College Mathematics Journal, 24(5), 431-445

Sierpinska, A. (1994) Understanding in Mathematics. London: Falmer Press
Tall, D. 1991. Advanced Mathematical Thinking, Dordrecht / Boston / London: Kluwer

Academic Publishers
Wagner, J. (1997) The Unavoidable Intervention of Educational Research: A Framework for

Reconsidering Researcher-Practitioner Cooperation. Educational Researcher. Vol.
26, No. 7. Pp. 13-21

-9 25 3 - 128



CAS, CALCULUS AND CLASSROOMS

Margaret Kendal and Kaye Stacey
Department of Science and Mathematics Education

The University of Melbourne

Abstract

Three teachers helped design and then taught an experimental program of
introductory calculus in which students had full access to calculators with
a computer algebra system (CAS) in the classroom, at home and during
tests. Each class obtained similar mean scores on the test. However they
made very different use of the CAS and performed very differently on
items. One class frequently used the CAS. The second preferred by-hand
algebraic techniques. The third group of students, with weaker algebraic
skills, used CAS more selectively and demonstrated good understanding
built from illustrating algebraic ideas graphically. The study
demonstrates how teachers "privileging" impacted on student learning.

Introduction and Background

Computer algebra systems (CAS), incorporating graphical, numerical and symbolic
algebra capabilities, have much to offer in the teaching of calculus. By reducing the
obstacle of manipulative algebraic skills, they can release time in calculus courses to
spend on concept development, problem solving and investigations (Hillel, 1993). In
addition, the capacity to provide multiple representations and the ability to move
freely between them makes CAS a teaching tool to enhance conceptual development.
Several experimental studies now support these expectations. For example, Heid
(1988), O'Callaghan (1998) and Repo (1994) have claimed that students using a CAS
developed better conceptual understanding although they differ about whether this is
accompanied by a loss of computational skills. There is also some research evidence
to support the belief that students become better problem solvers while using a CAS
(Heid, 1997). The availability of symbolic algebra on calculators, rather than on
standard computers only, and the attendant reduction in unit price has stimulated
even more interest in teaching calculus with CAS. Cappuccio (1996), for example,
describes specific ways to teach calculus using the TI-92, a Texas Instrument
calculator which incorporates a CAS similar to the desktop DERIVE.

The study reported in this paper is part of a larger study conducted with colleagues
Barry McCrae and Gary Asp which explored the implications for state-wide
assessment of teaching and learning calculus with CAS. In this paper we describe
how three different classes of students used CAS in different ways while learning
introductory calculus using the same teaching program. As such it is a study of the
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type recommended by Peng lase and Arnold (1996, p.'79) "which directly attempt[s]
to address the issues of graphics calculator use within particular learning
environments."

The data reported here show how the outcomes for students in the three classes were
quite different and we attempt to link these to the personal style and philosophy of
each teacher. A wide variety of factors may affect the impact of an innovation such
as new technology in the classroom. Amongst these are teacher-related socio-cultural
factors such as attitude towards technology, prior experience teaching with
technology and personal beliefs about the ways students should be taught (Thomas,
Tyrrell, & Bullock, 1996). Of particular interest in this paper is Wertsch's concept of
"privileging" which Berger (1998) describes as "the social setting and values which
may elevate one form of mental functioning over another and in this way privilege a
particular form of mental operation such as algebraic or graphical reasoning (p.19)."

The teaching trial, research methods and data collection
Early in 1998 a team including McCrae, Asp, the first author and three volunteer
teachers designed a twenty-lesson introductory calculus program that aimed to use
CAS to enhance conceptual understanding, connections between representations and
appropriate use of the technology. Subsequently the teachers each taught the program
to one class. In total there were 59 students in three Year 11 classes (students aged
approximately 17 years) from two schools. The three classes had similar distributions
of mathematical ability, but Class C had the weakest algebraic skills. All the students
were familiar with the TI-83 graphical calculator. For this study, they were given a
TI-92 graphics calculator for use during lessons, at home and for most testing. The
three teachers were experienced in teaching mathematics with the TI-83 graphical
calculator but inexperienced with the TI-92.

Students regularly completed questionnaires, challenging questions and log sheets to
describe their feelings and progress with the calculus and technology. All students
completed a written test (sample items below) and for each item they indicated
whether they had used the calculator. Seventeen students were given a task-based
interview by the first author, who also observed approximately half of the lessons and
maintained a journal. The teachers wrote a brief reflective evaluation after each
lesson and completed questionnaires and Likert items before and after the program.

Results
Table 1 shows the mean scores for each class on the written test (maximum possible
score was 70). Although the absolute scores seem low, the results were very pleasing
because of the difficulty of the items for Year 11 students. One third of the written
test items were taken from state examination papers for Year 12 students and the
study classes performed well in comparison to Year 12 classes.

Table 1 shows that the three classes performed similarly overall. However, the item-
by-item analysis in Tables 2 and 3 shows differences. Table 2 indicates the relative
amount of calculator use. For each class, it shows the number of items where that
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class made the greatest or least percentage use of the calculator. For example, on 25
items, use was made of the calculator by a greater percentage of students in Class A
than in Class B or C. Clearly Class A students used the calculator to a much greater
extent than Classes B and C. Class B students used it least.

Table 1. Mean scores and standard deviation for total test by class.
Class A
(N=15*)

Class B
(N=18*)

Class C
(N=13*)

Mean
Standard Deviation

24.1
9.4

26.7
12.0

27.9
10.3

* Not all students participated in all tests, so the numbers in the Tables vary.

Table 2. Number of items where each class made greatest and
least use of the calculator.

Class A
(N=15)

Class B
(N=19)

Class C
(N=16)

Greatest % caic use
Least % calc use

25
5

3
17

5

11

Table 3. Number of attempted items correct and incorrect by calculator use and
by class.

Class A (N=15) Class B (N=19) Class C (N=16)
calc no calc calc no calc calc no calc

Correct 152 61 156 124 147 101

Incorrect 111 86 78 129 47 92
Total 263 147 234 253 194 193

Table 3 shows the total number of items attempted by students in each class broken
down by calculator use or non-use and by success. This item-by-item analysis
confirms the results in Table 2 that Class A students chose to use the CAS most
frequently (64% of items attempted) and Class B least (48%), slightly less than Class
C (50%). The Table 3 analysis shows more difference in overall success than does
Table 1, with Class A correct on 52% of items attempted, Class B 57% correct and
Class C 64% correct. This shows that there is no simplistic conclusion that greater
use of CAS leads to better results. Class C achieved a higher success rate on items
attempted both with and without the calculator. The percentages of items correct
where students had used the calculator were 58% (Class A), 67% (Class B) and 75%
(Class C) and without the calculator 41% (Class A), 49% (Class B) and 52% (Class
C). This indicates that Class C made best strategic use of the CAS calculator, as will
be explored in the next sections.



Conceptual and procedural errors
Despite the program's emphasis on conceptual development using technology, many
students had difficulty with fundamental concepts, particularly rates of change and
distinguishing between the gradients of secants and tangents. Test responses were
analysed and errors were classified as conceptual and procedural. We classified as
conceptual errors those which occurred when understanding was not demonstrated or
the process to use was not correctly formulated. This is similar to Orton's (1983)
definition of structural errors which "arose from some failure to appreciate the
relationships involved in the problem or to grasp some principle essential to solution"
from Donaldson in 1963. Procedural errors were algebraic, graphical, and numerical
in origin or related to incorrect use of the calculator. Conceptual errors cannot be
eliminated with CAS use; procedural errors may be avoided with CAS use. On a
group of items attempted by all but a few students, the conceptual error rate per
student was 7.3 for Class A, 5.7 for Class B and 4.9 for Class C. However, the
procedural error rate was similar for all classes despite varying CAS use: 2.3 per
student for Class A, 2.4 for Class B and 2.8 for Class C. In the CAS environment,
procedural errors were less frequent than conceptual errors.

Success on specc item types
Many of the test items were grouped for analysis into "core", "symbolic" or
"options" groups. There were approximately 5 items of each type. Core items were
characterised by high conceptual and low procedural demands. In these items, using
CAS is no advantage. One example is an item that gave the graph of a function and
asked the student to select the graph of the derivative from five possible graphs.
CAS would not be useful as no symbolic representation of the function was given.

Symbolic items have high demands on algebraic procedures and low conceptual
demands. In these items, the symbolic manipulation capability of the calculators
could be useful. One example on the written test was "Find dy/dx for y = x3(2x+1)2
giving your answer in factorised form". With CAS, an item like this is nearly trivial,
but without it, remembering the differentiation rules and the algebraic manipulation
can be difficult.

The options items are those that present the student with a choice between graphical
and algebraic approaches. Using CAS may be advantageous. The following example
item was accompanied by a diagram which gave a graph of the equation over a
relevant domain:

Given that a rider on the track of a super roller coaster follows the
curve with equation y = 1/720(x3 + 20x2 1200x), find the
maximum height above the ground reached by the roller coaster.

This problem is an options item because it can be solved algebraically or graphically.
The graphical route is conceptually easier than the algebraic pathway, which requires
several conceptual formulation steps. With CAS the algebraic and graphing
procedures are easy but not without it.
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Taking the results for core items as indicating conceptual understanding shows that
Class C students demonstrated the highest level of understanding (53.9% of
approximately 80 attempts were successful) and Class A the least (40.0% of attempts
were successful). We believe that the high score on these core items in Class C was
due to the way the teacher demonstrated concepts in both graphical and algebraic
terms. In total there were only 13 attempts to use the calculator (inappropriately) on
these items, mostly from Classes A and C and they were mainly unsuccessful, as
would be expected.

In contrast, on the symbolic items many students sensibly chose to use CAS. Class A
had the highest CAS use and was most successful. Classes B and C both under-
utilised CAS, making unnecessary mistakes in algebraic manipulation. In the
interviews, students from Class A and B showed greater proficiency than students
from Class C in using the algebraic facility on the calculator. For example, to find a
gradient at a point, over half of the students interviewed from Classes A and B used a
one-line instruction to differentiate the function and substitute the value. In contrast,
nearly half of students from Class C attempted a graphical approach.

The options items could be solved algebraically or graphically. More Class B and C
students used the calculators here than for the symbolic items. However, Class C
students more often used the graphical facility in contrast to the algebraic route
favoured by Class B students. This observation is supported by the student
interviews. For example, on an options item used in the interviews, a graphical
approach was selected by one out of five Class A students interviewed and by one out
four Class B students but by 3 out of 5 Class C students. Confirming the previous
result about choice of CAS, all 5 Class A students used the calculator, whereas half
of the 4 Class B students worked by hand.

The differences between the behaviours of the classes that have been derived from
the analysis above are summarised in Table 4. The terms used in the table express
relative achievement only. For example, "higher" is relative to the other classes and
is not an absolute judgement.

Table 4. Stu/unary of the behaviours of the three classes in the study.
Behaviour Class A Class B Class C

Use of calculator
Decision to use calculator
Preferred approach
Algebraic proficiency
Graphical skills
Procedural competence
Conceptual understanding

most frequent
too frequent
algebra by calculator
moderate by hand
lower
good
lower

least frequent
discriminating
algebra by hand
higher by hand
moderate
good
moderate

frequent
discriminating
graphical
lower by hand
higher
good
higher



Classroom influences
Teacher predictions
Prior to the teaching trial the teachers used a Likert scale to describe their own
students' competence and probable reaction to using the new calculators. Table 5
shows their ratings. Again, the table entries express relative positions rather than
absolute judgements. The table is highly consistent with the profile of each class that
emerged by analysing the test results above. In particular, Class C has an orientation
to graphical approaches and Class B to algebraic approaches.

Table 5. Teachers' predictions about class abilities and reactions.
Class characteristic Class A Class B Class C

Algebraic competence moderate higher moderate

Graphical competence moderate moderate higher

Reaction to new
technology

likely to succeed will probably succeed very likely to succeed

Teaching styles
During the teaching of the CAS program, about half of the lessons were observed by
the first author and these observations lead to the descriptions summarised in the first
half of Table 6. Table 6 also reports responses to three key indicators from a set of
Likert-type items completed by the teachers (with additional written comments) at
the end of the program. We summarise these observations as follows. Teacher A had
a very positive attitude to technology, encouraged his students to use it as often as
possible and gave priority to algebraic strategies. Students were taught efficient
calculator procedures for standard tasks. Teacher B preferred the traditional
algebraic approach using graphs when essential. He emphasised by-hand algebra,
being wary that students might not otherwise develop adequate skills. Teacher C
encouraged his students to use both algebraic and graphical methods and to explore
connections between them. His explanations used the links between representations.

Discussion
The mean scores for each class on the written test were very similar and a casual
observer would assume that learning outcomes for all students were similar. In fact
this is not the case. During the teaching trial, the students in each class had very
different cognitive experiences evidenced by the different ways the calculator was
used. Each class acquired different conceptual understandings, a different set of
competencies and different abilities to discern whether or not it would advantageous
to use the various features of the calculator. These differences can be linked to the
different teaching styles, personal philosophies and cognitive preferences of the
teachers, even though they all helped plan the program and were thoroughly aware of
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Table 6. Comparison of teacher characteristics
Characteristics Teacher A Teacher B Teacher C

Classroom observations
Teaching style Direct Guided Guided

instruction discovery discovery
Direction of lesson Followed Controlled Open

lesson plan exploration exploration
Attitude to using CAS Enthusiastic Reserved Enthusiastic
Structured lesson around use of calculator Mostly Sometimes Mostly
Used algebraic explanations Very often Very often Often
Used graphical explanations Sometimes Sometimes Often
Used both algebraic and graphical Rarely Rarely Often

Teachers' own perceptions
My usual teaching style suited the CAS Agree 0 Disagree # Agree *
Calculus project
There was little formal emphasis on by-
hand skills and using pen and paper
techniques

Agree Disagree Less
emphasis, not
little

Students enjoyed learning calculus while
using CAS

Most yes,
some
enthusiastic

Some yes,
some no

Most yes,
a few no

0"I did not find it difficult to incorporate the changes" #"I found it difficult to monitor student work"

*"I have already used graphic calculator technology (especially with the view screen) for demonstration in

classes."

the aims of the project and taught with the same guidelines. Teacher A privileged
technological and algebraic approaches. Teacher B privileged conceptual
understanding and by-hand algebraic approaches and Teacher C privileged graphical
approaches and conceptual understanding built from illustrating algebraic ideas
graphically. As a consequence, Class C's conceptual error rate was lowest. These
students understood what to do in algebraic contexts so they could compensate for
poor algebraic skills by appropriate use of the calculator and by substituting algebraic
with graphical procedures whenever possible.

As we noted in the introduction, many authors have drawn attention to the great
potential of CAS in providing multiple representations of mathematical concepts and
objects. Multiple representations provide opportunities for students to employ
different methods of problem solving and support students finding individual ways of
understanding. However, the capacity to provide multiple representations will also
lead to greater diversity of teaching methods. The three teachers in our study
intended to teach the same material in the same way, according to the lesson
guidelines that the whole team prepared. Yet the implementations of the lesson
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guidelines varied significantly and the differences translated into substantial
differences in how their students solved problems and what they understood.

This research raises two questions for our future research. Firstly, the teachers
judged their students' abilities and attitudes to technology quite accurately. Did they
adapt their teaching practices to take into account the abilities of their students or did
they project their own mathematical preferences onto the students and teach in
accordance with these? Secondly, the mean scores on the test were very similar, so is
there a privileging or teaching style that should be recommended to teachers?
Perhaps each particular privileging enhances development in certain directions and
constrains it in others. What privileging (if any) constitutes the most advantageous
learning environment for students?
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"Calculus in context": A study of undergraduate chemistry
students' perceptions of integration

Phillip Kent and Ian Stevenson,
University of London, U. K.

ABSTRACT. We have carried out a formative evaluation study of a computer-based
"mathematics laboratory" programme for chemistry undergraduates, where the
intention is that students will develop their mathematical understanding as a
natural part of doing chemistry. We report in this paper on one particular episode
from the laboratory, when the students had to calculate the total energy of a
chemical system by mobilising and interconnecting their knowledge of mathematics
(integral calculus) and science (ideas of work and potential energy). By means of
observations and interviews, we have analysed the "breakdowns" in the students'
problem solving activity, and we discuss what this analysis reveals about the
students perceptions of integration in context.

Introduction
The mathematical training of scientists and engineers has come under increasing
scrutiny in the last decade. Whilst computer technology is allowing working
scientists and engineers to make use of more and more sophisticated mathematical
techniques (normally hidden away beneath convenient interfaces), there is growing
evidence (in the UK and elsewhere) of a general decline in the mathematical
preparedness of science and engineering undergraduates. Responses to the resulting
pressure on the mathematical content of science and engineering degrees have taken
several forms: one has been to simply reduce the mathematical content, and to rely
on computer-based tools to do much of the mathematical computation involved in
scientific work. However, there is a growing recognition that this approach is
unsatisfactory for both mathematicians and engineers since it misses the notion of
mathematics as "a precise analytic tool" (LMS 1995, p. 7). An alternative is to
increase the mathematical content, but challenge the students to develop their
understanding in the context of their subject specialism. However, a set of difficult
questions emerge at the intersection of cognitive and epistemological domains: to
what extent must the structure of mathematics be understood in order for it to be
used effectively as a tool? Can mathematical procedures be learned effectively
without appreciation of their place in the structure of mathematics? What is the
impact of new mathematical technologies when they are used to highlight
mathematics in the context of a science specialism rather than hide it?

In this paper we want to probe the connections between mathematics and science in
the context of a computer-based "mathematics laboratory" programme for first year
undergraduate chemistry students, which one of us (P.K.) has been involved in
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developing at Imperial College (University of London) since 1994. (For a general
history of this work, see Templer et al. 1998.) The laboratory makes use of a
particularly powerful piece of mathematical software, Mathematica (Wolfram
1996), and in so doing plays down the teaching of the large body of mathematical
methods which comprise the traditional mathematical training of a science or
engineering student. The thinking behind the "maths lab" programme has been
described by our colleagues as follows:

We are trying to introduce mathematics as a natural, integral part of
chemistry; Mathematica's power gives the students the opportunity to do this
in an authentic, uncontrived way, with something of the flavour of real
research. ...

As one might expect, students experience a mixture of emotions when
presented with this sort of challenge. One of these is certainly shock. We have
deliberately set out to stretch students, but not in a way that they would
expect. Their anticipation is that they will learn the techniques and tricks
which most perceive as being the proper realm of mathematical experience.
Instead we present them with the sort of chemical problems found in research,
and with the help of a powerful mathematical toolbox, ask them to investigate
the chemistry using those tools. That is not to say that they are not learning
any mathematics, far from it. The problems are designed in such a way that
they have to understand the mathematical processes that are being performed
and the limitations that these may impart on their results.

(Ramsden & Templer 1998)

We report here on a formative evaluation of the "maths lab", focussing on one of
the "chemical-mathematical" coursework assignments that required students to
think explicitly about how mathematics is used in chemistry to model chemical
processes.

A student assignment: Modelling the dynamics of ion collisions
In this assignment, the students study the different possible interactions between
three ions (two chloride, Cl-, and one sodium, Na+), in a Newtonian model, where
the ions are treated as charged point particles, and the equations of motion are
solved numerically. Although this problem is somewhat simplified from a "real"
research problemit is restricted to one dimension, so the particles are moving on a
straight linethe students are explicitly working with a sixth-order, nonlinear
differential equation system. The solution of the equations is treated a "black box"
operation by Mathematica (it would be very difficult to do otherwise, and
fortunately it turned out that Mathematica's code is highly reliable). However, the
students are asked to check on the reliability of the numerical solutions (and hence,
in part, the validity of the Newtonian model) by showing that the total energy of the
ion system is (or is not) conserved. Calculating the energy required the students to
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integrate force equations to find potential energies, and in the process they needed
to mobilise and interconnect mathematical knowledge (integral calculus), physics
knowledge (work and energy) and chemistry knowledge (ionic interactions). We
wanted to analyse this process, as an entry point to a more extensive study of the
cognitive and epistemological aspects of the "maths lab" approach.

Our study data consisted of (i) observations of six volunteer students in the second
term of their first year as they carried out the ions activity, and (ii) follow-up
interviews which examined the students' experiences of doing the activity. The
observation data suggested that focussing on the students' understanding of
integration in the context of energy conservation might be particularly rewarding.
Integral calculus is an interesting example of an important mathematical idea that
has both a complex structure and multiple uses. Our aim in analysing both data sets
was to map out how integration was understood in this chemical context, and how
that understanding might be related to integration as an "object of mathematical
study".

Following Noss et al. (1998), we looked for (and in the interviews tried to provoke)
"breakdowns" in the students' activities, in an attempt to reveal the potentially
hidden connections between mathematics and the context. Breakdowns represent
"the interrupted moment[s] of our habitual, standard, comfortable `being- in -the-
world'; breakdowns serve an extremely important cognitive function, revealing to
us the nature of our practices and equipment, making them 'present-at-hand' to us,
perhaps for the first time" (Winograd & Flores 1986, pp. 77-78). From this point of
view, the present study represents the beginnings of work in an "academic" setting
that is comparable with recent work on mathematics in "vocational" situations, such
as banking and nursing (Noss et al. 1998, Pozzi et al. 1998).

Observations: Working with Mathematica
We observed three pairs of students altogether, usually for one two-hour session
each week, over a period of three weeks. Our data collection consisted of video
and/or audio recordings, computer "dribble files" (an automatic record of the
students' inputs to Mathematica, from which we could later reconstruct both inputs
and outputs) and the students' Mathematica working documents from each session.

The energy conservation task caused the major breakdowns in the students'
understandings of what they were doing. It was intended as a 10 or 20 minute task,
30 at the most; the students had been given all the necessary ideas in a lecture
course several months earlier, in addition to encountering the principles of force and
potential energy in school physics and chemistry. But as it turned out, all the
students that we observed, with mathematical backgrounds ranging from basic
matriculation to pre-university specialists, spent around 2 hours on it. Whilst the
kinetic energies were calculated in a couple of minutes, calculating the potential
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energies generated significant confusions that took much effort for the students to
resolve.

The task involved using the positions and velocities of the three particles as
functions of time, as output by the numerical equation solver, to construct a
function for the total energy as a function of time. The students also knew the
expressions for the force between like-charged or oppositely-charged ions (i.e.
Cl-or Na+), separated by a distance r:

8e2 e2 1 (ro)
Flike = F =

1r
-4

ore °PP 4e0 r2 r'0

where to is a constant.

In activity, the students are focussed on solving the given problems, and not,
necessarily, on clarifying the definitions and relationships of the concepts that they
are making use of. Thus, they are not necessarily thinking about mathematics,
physics or chemistry with any clear separation. This explains, for example, why a
student, highly qualified in mathematics, when faced with the need to write down an
expression for potential energy, initially proposed, and then immediately rejected,

1 (r0)8 1 (ro) 8

r`
the statement that the integral with respect to r of is +

5 'ri0 r
because "half of 10 is 5". Whereas this kind of breakdown is most likely a
temporary mistaking of an integration "fact", other kinds of breakdowns may be far
more subtle in nature.

For example, it is true that the total force on an ion is the sum of all the individual
forces, each of which arises from pair-wise interaction with another ion; it is also
true that "energy is the integral of force"; but it is not true, as several students tried
to assert, that a "total potential" can be assigned to each ion. Such thinking leads to
the construction of a total potential energy expression that contains only equal and
opposite terms which sum, at all times, to zero. A characteristic of this kind of
breakdown is the lack of detail in the knowledge that the students fall back on as
they attempt to correct an error or find a solution. But the breakdown can also be a
means to develop a correct understanding, and, for two of our student pairs, this
zero result provided the stimulus to make the final, correct construction of the
energy expressions.

Another reason for factual breakdowns in algebraic calculation may be that the task
largely requires working in a graphical mode, where graphs tell a story about ion
interactions. For example, Figure 1 shows the total kinetic energy of the 3-ion
system against time for an interaction in which, at time zero, a single (C1 -) ion is
fired at a pair of ions that are bound into a molecule (NaC1); there is a collision
during which there are large variations in energy, and then a molecular bond is re-
established with a free ion travelling off to large distances (hence the repeating
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pattern of energy variations as the molecule vibrates). A fact which all of our
students missed, but which would have helped them considerably, is that if total
energy is conserved then the total P.E. as a function of time must be the reflection
of this K.E. graph in the straight line which represents the total energy. Instead of
this, the students were faced with having to produce an elusive P.E. graph whose
shape they had little idea about.

1 . 1 .10-18

1.10-18

9.10-19

8.10-19

7.10-19

6.10-19

5.10-1

Figure 1: Student graph for the total kinetic energy of the system (in Joules), as
a function of time (in seconds).
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Figure 2: Student graph for the total energy of the system.

In fact the total energy graph is not quite a "straight line" after allsee Figure 2.
The limitations of the numerical calculation, as well as the choices made by the
graphing algorithm of the software, lead to a graph whose appearance is counter-
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intuitive. It requires a critical reading with attention to scales and numerical
magnitudes: the variations, apparently huge, are just ±0.01%!

Interviews
Some weeks after completing the ion collision assignment, each of the six students
were interviewed for about one hour, and the interviews were audio taped and
transcribed. The students were asked about their perceptions of the ion activity, its
purpose, and what they felt they had gained from the experience in terms of their
chemical or mathematical knowledge. The students were then asked to explain the
ion activity to the interviewer (I.S., a non-chemist). Our interest was in how they
viewed the "intersection" between mathematics and chemistry, which we hoped to
trace out by probing their ideas about how energy and integration are connected.

All the students, as they talked about the energy conservation aspect of the activity,
described the potential energy as the integral of force with respect to distance. In a
sense, one might be surprised if they had not expressed this connection, since it
represents a principle that forms part of the general background of "physical"
discourse. The interesting question is what the students meant by this description,
and how it related to the chemistry context. In the following interview extract, A (a
male student with a strong mathematical background) articulates his understanding
of the connection. Although the extract is continuous, it has been broken down into
three parts to aid analysis.

In response to the question of why integration gives energy, A begins by connecting
the ion interactions to energy:

Interviewer: Why integrate to give you the energy?

A: erm.... to change potential you're having to do work. If you have two ions that
are bonded, simply because they have ... out of the nature of their charges, if you
remove one you are doing work on it, and, hence you get the, urn, energy.

Next, he connects energy with the area of a graph:

A: You have a force-distance graph, you're then, urn, have the work done is the
force times the distance... It's the area under that graph will be the, err, work
done and hence the change of potential [energy].

Finally, when A is pressed, he connects area and integration:

I: So why is it the area?

A: Why the area? It's because you are multiplying the two axes together.

I: How then does that connect with integration?

A: Integration is a method of determining that area under a curve.

So what has A connected? In this sequence he articulates clearly an identification
between energy and its representation as the area of a graph. First, A relates the
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abstract concept of energy with work and its visual representation on a graph. Next
he takes a feature of the graphits areato express the connection between force
and distance, finally introducing integration as a mathematical(?) "method" for
calculating the area.

When pressed, the other interviewees also made the connection between energy and
the area of a graph, but varied in the degree of coherence and detail of their
explanations about their notion of integration. One student tried to describe the
process of approximating the area under a graph by the "trapezium rule where you
just take loads of rectangles and stuff... eventually until you get to infinity, where
you have an exact approximation, rather than an approximation, you get an exact
answer". Another studentwho had just been trying to revise the mathematics
spoke about limits as "the sort-of value that you are allowing the size of your delta's
[displacements] to be". However, neither of these students could explain why the
limiting process actually gave the exact value for the area in every case or why this
might be an important question, from a mathematician's point of view.

Discussion
Most of the students seemed to have developed a working principle from their
previous experience that "integrating the force gives the potential energy". This
encapsulates a combination of scientific and mathematical knowledge: the change
in potential energy is equal to the work done by a particle against a force, and the
work done is the integral of the force with respect to distance. The principle
"anchors" to borrow Noss et al's (1998) termthe students, both in the sense of
providing them with a secure approach to problems, and in fixing their knowledge
in specific chemical contexts.

What can be said about this working principle at the intersection of mathematical
and chemical knowledge? The process of trying to break down students'
understandings revealed a connection that they made between energy and "area
under a graph". It displays an understanding tied to visual images and qualitative
arguments, but with varying degrees of analytic content, recalled mostly from
somewhat distant school experience. The central role that energy plays in making
the connections between chemical and mathematical knowledge suggests that
integrationwhere it is seen as relevantis understood in a purely functional, tool-
like manner. One of the defining characteristics of tool-like behaviour is the
transparency of the tool to the userits "ready-to-handness"--with a consequence
that tools become apparent as entities to the user only when they fail to be tools
(Heidegger 1962, p. 98). The evidence from the observation and interviews suggest
that, unless one provokes some kind of breakdown in the functionality of
integration, the students will not focus their attention on integration as a concept.
This is particularly significant if one is considering how mathematical ideas might
be developed in the context of a scientific specialism.
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As many others have noted previously (e.g. Harel & Papert 1991, Noss & Hoy les
1996), the demands for formal precision which a programming environment places
on its user serve both to expose any fragility in understanding, and to support the
building and conjecturing activities required for the (re)construction of concepts by
learners. An important difference for our relatively sophisticated undergraduate
students, compared with the younger students that have mostly been studied in the
literature, may be that the learning experience seems to be largely one of anti-
climax, a rather gruelling reorganisation of previous knowledge. We asked the
students on several occasions what they felt that they had learned, and the typical
response was that they didn't feel that they'd learnt any mathematics or chemistry
except "in this particular area". We think that their perception is rather accurate, and
that understanding the relationships between knowledge domains is precisely about
establishing connections in a sequence of "particular areas".
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CHANGE PROCESSES IN ADULT PROPORTIONAL REASONING :
STUDENT TEACHERS AND PRIMARY MATHEMATICS TEACHERS,

AFTER EXPOSURE TO RATIO AND PROPORTION STUDY UNIT

Yaffa Keret

Levinsky College of Education

Abstract

The reported study* examined change processes in knowledge and proportional reasoning among
87 student teachers and 20 teachers. A study unit on "ratio and proportion" was designed for this
purpose, following a gradual developmental approach to the proportional scheme, based on the
work of Fischbein (1975), Noelting (1980) and others. This approach, as opposed to Piaget and
Inhelder's (1958), assumes that the proportional scheme does not mature of its own accord during
adolescence. To elicit the maturation of the potential proportional scheme, a process of training is
required. The present findings were obtained by means of individual tests, interviews and
observations, and they led to the conclusion that since most learners had mastered the concept
subsequent to studying the unit they could be considered "proportional reasoners".

Introduction

Proportional reasoning is a person's ability to effectively use the proportional scheme.
This ability plays a central role in the development of mathematical thinking while also
being of practical importance in so far as it functions as an action plan that supports
problem solving in a variety of fields, eg, mathematics, the sciences, and economics.

Much like any other type of mathematical activity, solving proportional problems
requires three main knowledge components: intuitive, formal, and algorithmic
knowledge (Fischbein, 1993). Acquisition of these components, and the ability to
combine them, equips a student with the concept of proportion by means of which she
or he will probably correctly solve ratio and proportion problems (Hare & Confrey,
1994; Thompson & Thompson, 1994).

Let us define a "proportional reasoner" as a person who makes intelligent use of the
proportional scheme when solving ratio and proportion problems. This requires a
three-step action program: (a) identification of the direct or the inverse proportional
relation between the relevant factors - intuitive aspect ; (b) presenting the relation in
the form of a mathematical model formal aspect, and (c) use of this model in finding
a quantitative solution to the problem - algorithmic aspect combined with the intuitive
and formal aspects.

Piaget and Inhelder (1958) were the first to find that the proportional scheme develops
in three stages. They also claimed that, like any other operational scheme, it suddenly
develops during adolescence. This may lead to the conclusion that adults are

* This study is part of a doctoral dissertation, written under the supervision of the late Proof E. Fischbein at

the School of Education, Tel Aviv University, Israel.



universally in the possession of the proportional scheme, which they spontaneously
and intelligently use as an action plan for the solution of ratio and proportion problems.
Numerous studies, however, have revealed that reality looks different: adults, at
different levels of education, encounter difficulties when solving this type of problem
(Fisher, 1988 ; Keret, 1994 ; Tourniaire & Pulos, 1985).

Studies on the development process of the proportional scheme subsequent to the work
of Piaget and Inhelder have upheld the existence of the three stages, but contested
these authors' developmental approach. Most of the criticism is directed to the types of
tasks chosen, and their dependence on physical knowledge. Moreover, it has been
argued that Piaget and Inhelder's relative lack of attention to judgement strategy and
explanation led them to draw over-generalized conclusions, thereby leaving the
developmental process insufficiently elucidated. .

Already in the seventies, Fischbein, Manzat, and Barbat (1975) delineated a
gradual-continuous developmental process which depended on learning of the
proportional scheme, mainly among children in the concrete stage. These findings were
then confirmed by Noelting (1980a,b) and others, who gave children tasks that did not
require physical knowledge (Tourniaire & Pulos, 1985). In the nineties, researchers set
out to study young children's thinking to reveal patterns that develop prior to the
acquisition of formal strategies and the proportion formula. Findings suggest that the
strategy quality develops from additive thinking through qualitative to quantitative
proportional reasoning. And that the same learning process that makes the
development of these patterns possible, also assists in the development of proportional
reasoning (Hanel & Confrey, 1994; Lamon, 1993; Thompson & Thompson, 1994).

The above studies all share a developmental approach which, in contrast to Piaget and
Inhelder, assumes that proportional reasoning develops gradually rather than making
its sudden appearance in adolescence. As the child grows older, she or he acquires
new action plans on a higher level of difficulty. Learning requires appropriate training -
thus the potential proportional scheme comes to mature.

In the present study, this approach was examined with reference to adult participants.
For this purpose, a study unit on ratio and proportion was designed which encouraged
the development of proportional reasoning. We examined the processes of change in
the knowledge of learners of this unit; whether, and to what extent, the study unit
improved participants' ability to make intelligent use of the proportional scheme. That
is to say, our question was : Did learning transform a dormant proportional scheme
into an actualized one?

Methodology
Subjects

The study included 107 participants, subdivided into two groups : (a) 87 student
teachers and teachers who were enrolled in two educational colleges, training to be
primary mathematics teachers; 55 of these participants studied the study unit and 32



served as controls; (b) 20 primary school math teachers who all studied the subject as
part of their inservice studies.

Instrument

1. A diagnostic test on ratio and proportion.

The test was administered both prior and subsequent to exposure to the study unit and
was divided into two parts : The first part included 27 ratio and proportion problems of
three general types : 13 proportion problems involving direct ratio, 9 with inverse ratio,
and 5 problems referring to other "ratio" problems. Respondents were asked to solve
each problem by means of more than one solving strategy, and to write down every
stage in the solving process. An unexplained quantitative response was considered
incorrect.

Problems referred to a variety of knowledge areas, referring to both daily situations
and to more particular phenomena like balance and scale. These problems were
content analyzed to represent problems involving proportional relations that were
either obvious, or suggested or concealed, as well as problems including different
types of numbers, i.e. integers, rational numbers, and percentages.

The second part included 10 open questions that required respondents to define, and
explicate the following concepts : ratio, proportion, the relation between two parts of a
whole (e.g. the relation between profit and investment or the number of boys and girls
in class), balance, speed, the difference/similarity between ratio, percent and division.

2. Individual, 20-30 min. interviews: these were conducted following exposure to the
study unit among a sample of learners: 15 student teachers and teachers from the
colleges and five practicing teachers.

Interviewees were asked to give verbal explanations to how they had gone about
solving the problems in the first part of the diagnostic test. This made it possible to
determine whether, and to what extent, they had been using the proportional scheme,
i.e., whether they had been consciously aware of a direct/indirect proportional relation,
and whether they could intelligently explain their choice of a mathematical model and
its working. The interviews also offered an opportunity to investigate the source of
typical errors.

3. A specially designed study unit on ratio and proportion, requiring eight weekly
hours of teaching- learning.

The study unit was constructed on the basis of two main principles : (a) mastery of the
intuitive, the formal, and the algorithmic components of knowledge in this topic and
the ability to combine them, may assist to develop proportional reasoning, and (b) the
importance of inclusive, extensive presentation of the topic that refers to both its
mathematical and psychological-didactic aspects (Even & Tirosh,1995).

Learners were exposed to problems relating to different knowledge areas and to
various solving strategies (preferably more than one strategy per problem) using



proportional reasoning. Learners were introduced to published research concerning
proportional reasoning proposing different teaching techniques for conceptualization of
ratio as a part of the development of mathematical thinking.

Results

Two types of results were yielded: (a) solutions to problems and verbal written
statements, generated both before and after learning, and (b) interviewees' verbal
statements, post learning.

The statements were content analyzed and the solutions were examined with reference
to four categories :

I. Correctness of solution

Results generally indicate substantial improvement in ability to solve ratio and
proportion problems following use of the study unit, while controls showed no change.
Post-study unit, 86% succeeded to produce correct solutions. This is true for a variety
of problems, relating to both standard and non-standard contexts, and including both
obvious, submerged and concealed proportional relations.

We shall present a sample of problems (Table 1), which were solved correctly by only
a small proportion of participants before exposure (not exceeding 30%, and sometimes
less than 20%), and which, subsequent to learning, were answered correctly by a much
larger percentage of participants (an increase of 50% or more).

Table 1: Distribution (percents) of a sample of problems and correct answers (pre/post course)
No Type Problem content Pre Post

1
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For each 2 turns of the wheels of a bike, its pedals turn 5 tunes. What is the speed of
the wheels, if we know that the pedals are turning at 60 times per minute?

2 The shortest, air-distance between two villages is 40 km. What would be the length
of the straight line representing their distance on a map whose scale is 1: 200,000 ?

16 76*
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If 6 workers can paint a hall in 7 hours, how long will the same hall take 4

workers? (All workers have the same output and they all work all ofthe time.)
30 92*

4 On an antique bike, the front wheel is large, with a circumference of462 cm, while
the smaller back wheel measures 132 cm. What distance has the bicycle covered if
we know that the back wheel has made 30 turns less than the front wheel?

19 77*

5 w

,..4. OE

- -o
,-. 2

0.

TheThe ratio between the areas of two circles is 1: 9. What is the radius of the larger
one, if we know that the smaller one is 5 cm ?

10 73*

6 We have a chart whose scale is 1:400. If you photocopy the chart and reduce it by
two, what will be the scale of the resulting chart?

15 64*

*p< .01

2.Solving strategy

Both teachers and student teachers, pre- and post-exposure, select from the same wide
variety of solving strategies. All chosen strategies share a multiplicative orientation, as
suits proportion problems (Tourniaire & Pulos, 1985). While the unit did not affect the
variety of strategies in use, it did influence two other aspects:



(a) Post-learning, most participants succeeded to solve at least some of the problems
by means of more than one strategy - 22% of the problems received more than one
solution. This was especially pronounced for the direct ratio problems (41%). And (b)
post-learning, the quality and correct usage of chosen strategy improved significantly
(see Table 2). Even though 71% of the participants chose proportional strategies
before the study unit, most of these were at the pre-formal stage (58%). Post-learning,
89% of correct answers used proportional strategies, with about half (43%) using
proportion formula correctly.

Table 2: Distribution (percents) of correct use of strategies (pre/post course)

Chosen type of strategy in learners group Pre course Post course Difference

Proportional
Strategies

Pre-formal Qualitative 40 31 9

Quantitative 18 15 3

Total of pre-formal strategies 58 46 12

Formal Proportion formula 13 43 + 30
Sum total of proportional strategy choices 71 89 + 18

Other strategies Algebraic equations 12 6 6

Other arithmetic operations 17 5 12

Sum total of other strategy choices 29 11 18

The change in the quality of strategies used (i.e., more correct applications of the
proportion formula, especially as related to inverse ratio problems) suggested that this
finding might serve as a useful indicator of proportional reasoning.

3. Extent of intelligent use of proportional scheme -proportional reasoning

Proportional reasoning is a mental process, which is put into operation when a person
solves a proportional problem. We looked at our findings concerning solving
strategies, correct solutions, and content analysis of written and spoken explanations to
solutions to examine this process. All these data were needed because correct answers
alone do not always provide unambiguous information about intelligent use of the
proportional scheme. Correct technical use, for instance, of the formulas might lead to
successful solution of direct ratio problems, despite the absence of proportional
reasoning. The same cannot be said about inverse ratio and other types of ratio
problems, where correct solutions are not so likely to ensue from technical ability
alone.

To examine degree of proportional scheme use we examined the findings with
reference to three measurable features that can be derived from our above definition of
a 'proportional reasoner' : 1. ability to identify a proportional relation (intuitive and
formal aspects interacting) - reflected in choice of solving strategy with a
multiplicative rather than an additive orientation ; 2. ability to differentiate between
inverse and direct ratio (intuitive and formal aspects interacting) - reflected in
application of solving procedure fitting each type of relation, and 3. ability to find a
quantitative solution (algorithmic aspect) - reflected in the appropriate algorithmic
activity for particular problem.



As regards (1), the findings that indicate the absence of any attempt to employ an
additive strategy suggest that all participants, both pre- and post-training, are able to
identify a multiplicative relation, whether consciously or unconsciously. In regard of
feature (3), after exposure to the study unit, 86% of the participants, on average,
correctly solved most of the problems. We may therefore conclude that they have good
algorithmic ability, which helps them find a correct, quantitative solution to the
problem.

In the case of (2) ability to distinguish type of ratio - it was more difficult to draw
conclusions. We combined three types of findings : 1. The finding that after training, in
63% of correctly solved inverse ratio problems the participants used the proportion
formula allows us to conclude that these participants correctly distinguished between
the two types of ratio. They must have consciously used this ability when they referred
to the proportion formula, because without this ability they most likely would have
failed. Their high rate of success can be taken to indicate high correct use of this
ability. 2. We used content analyses of statements accompanying correct answers
illustrate that participants are aware of the need to check the type of ratio prior solving
problems. Classification was done by answering the question what happens to one
element when the other one is de/increased. Once conclusions have been drawn,
participants appear to be using the fixed ratio model for the direct ratio problems and
the fixed multiplicative model for the inverse ratio problems. And finally, 3. We used
content analyses of spoken statements deriving from the interviews indicate the same,
as it is presented in Table 3.

Table 3 : Statements related to problems in Table 1, after learning
No Type Spoken statements in response to the question: Please explainyour considerations as you

were solving this problem.
1
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"If we teach the notion of speed as a description of movement, students will have no problem
understanding that, here, the greater the number of turns, the faster the bike will go- and therefore
what we have here is direct ratio."

"Scale is really nothing but the description of a direct ratio between the distance on the map and
distance in reality -that's also how you should present it to students: reduction or enlargement of the
real world accordin_g to a given ratio."

3

4

0
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"The larger the number of workers, the less time it will take them to finish the job. That means an
inverse relation between number of workers and days of work necessary to complete the job."

"Here the product between the circumference of the wheel and the number of turns it makes is
fixed, and the larger the circumference of the wheel, the smaller the number of turns - inverse
ratio."

5

6
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Unlike the direct ratio between the radius of a circle and its circumference, here we need to get the
ratio between radius and area. It looks like direct ratio (as the one increases, so does the other), but
the factor changes, and therefore we must find a new proportion, which is SI / S2= r12 / r22

" The more we reduce the chart, the larger- by the same factor (2)- will its representation per
centimeter on the map become. So the new scale will be 1:800."

We can conclude that exposure to the unit made participants widely apply all three
features of the ratio and proportion solving procedure. The findings suggest that most
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participants had mastered the topic, and that they had combined intuitive, formal and
algorithmic elements. Participants had acquired the concepts and were in command of
proportional reasoning.

4. Analysis of typical errors

In 90% of the erroneous solutions obtained before exposure, the chosen strategy had
been wrongly applied. This came about in three ways : (a) erroneous identification of
type of ratio (45%) : applying procedures suitable for direct ratio problems to inverse
or other types of ratio problems ; (b) language error (8%) : the fact that Hebrew
writing moves from left to right may lead students to put the nominator in the place of
the denominator; (c) wrong performance of procedure (37%) : wrongly isolating the
unknown for solving the equation ; multiplication instead of division ; erroneous
change of measures ; always dividing a larger number by a smaller one, etc. (This type
of mistakes is typical especially for direct ratio problems.)

It should be noted that after training, very few errors were made (7.5% of all responses
were wrong, and 7.5% of the participants did not respond at all).

Discussion and Conclusions

Even though the development of proportional reasoning is an issue of major
importance, the topic of ratio and proportion receives scant attention in the colleges in
Israel that prepare math teachers. The present findings suggest that inclusion of a study
unit on the topic in teachers' training will go some way toward developing teachers
who can use proportional reasoning.

This study unit should present the relevant concepts through a wide scope, and allow
teachers to practice action strategies that involve intelligent use of the proportional
scheme. Moreover, teachers should be exposed to problems referring to various,
standard and non-standard, knowledge areas, and formulations should be of both the
obvious, indirect and concealed types.

The present findings show that exposure to a study unit that was constructed on these
principles caused most participants to acquire the three knowledge components and the
ability to use them in combination. This in turn led to ratio and proportion
conceptualization and to the maturation of the dormant, potential proportional scheme.
This could be seen from the fact that most participants, after learning, made intelligent
use of the proportional scheme as an efficient mental tool for the solving of proportion
problems relating to various knowledge areas. They successfully identified direct or
inverse ratio, expressed these by means of mathematical models, and made intelligent
use of such models in problem solving. This is tantamount to concluding that they had
become 'proportional reasoners'.

This conclusion has some significant educational implications : First, we can say that
with the right type of learning, adult students' concepts of ratio and proportion and
their ability to use the proportional scheme can be significantly extended. In this
respect our results confirm the findings of Fischbein and others concerning children.



Second, it is important to include the topic of ratio and proportion - taught with
reference to both mathematical as well as psychological-didactic aspects - in
mathematics teacher training and inservice training. This is likely to raise participants'
awareness of the importance of mathematical conceptualization of the topic, and of the
development of proportional reasoning as part of the development of mathematical
thinking.
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CONCRETE IN LINEAR ALGEBRA
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Abstract
This paper focuses upon the strengths and weaknesses of disparate
approaches to Linear Algebra. By ident6,ing the theoretical distinctions
between the abstraction-to-computation approach and the computation-to-
abstraction approach, it presents examples of how one lecturer,
recognising the cognitive obstacles associated with the nature of Linear
Algebra, used the latter in the development of a first-year University
course. Student reaction suggests that this laudable effort may be
addressing procedural dculties, but compounding conceptual ones, since
the delivery of advanced mathematics material in a 'concrete' manner, can
militate against the use of concept definitions and this may have broader
implications for further mathematical development.

Introduction

Linear Algebra is one of the first courses of advanced mathematics at University level.
Along with Analysis, it is intended to shift the students' way of thinking from school
mathematics towards advanced mathematical thinking. It is probably the first 'real'
mathematics course that students have to encounter, since it requires limited
mathematical prerequisites, yet its theory is systematically built from the ground up
(Tucker, 1993; Hillel & Sierpinska, 1994). In addition, Linear Algebra brings together
methods and insights of geometry and algebra, and its wide range of applications in
modern mathematics make it an essential component of all scientific courses (Tucker,
1993). Most importantly though, students have to become familiar with its main
themes, such as vector spaces and linear maps, since they are central in the further
development of pure mathematical theory (Tucker, 1993).

This paper intends to summarise the existing literature concerning the cognitive
obstacles within Linear Algebra and some of the teaching methods employed to
overcome these difficulties. Also, it considers how a particular Linear Algebra course
was delivered, having those difficulties in mind, and what the impact was on a small
group of high achieving students. It concludes by suggesting that there should be a
balance between concrete and abstract approaches in Linear Algebra, however
difficult to achieve, since, in some instances, in our effort to solve a problem we may
create a new one.



Difficulties within Linear Algebra

During their pre-university courses, mathematics students will have met some
components of the course, such as matrix arithmetic and solution of simultaneous
linear equations (AEB GCE Syllabuses, 1999; NEAB GCE A/AS Syllabuses for
1998) . This, unfortunately, does not guarantee a smooth transition to the stark (?)
Linear Algebra. On the contrary, as Hil lel and Sierpinska (1994) argue, "both the
teaching and learning of linear algebra at the university level is almost universally
regarded as a frustrating experience" (p. 65).

Some of the reasons for the difficulties faced by the students are not confined to the
content of Linear Algebra, but are a result of the transition from elementary to
advanced mathematics.

The move from elementary to advanced mathematical thinking involves a significant
transition: that from describing to defining, from convincing to proving in a logical
manner based on those definitions. This transition requires a cognitive reconstruction
which is seen during the university students; initial struggle with formal abstractions as
they tackle the first year of university. It is the transition from the coherence of
elementary mathematics to the consequence of advanced mathematics, based on
abstract entities which the individual must construct through deductions from formal
definitions. (Tall, 1991, p. 20)

Linear Algebra, though, has certain particularities which can also impede students'
learning and understanding. The heart of these is that Linear Algebra was developed to
unify, simplify and model already existing problem solutions, rather than to solve new
problems (Harel &Trgalova, 1996). Students can solve many problems within a linear
algebra course without using the relevant theory but by mere implication of direct
manipulation techniques (Hillel, & Sierpinska, 1994).

Harel & Tall (1991) distinguish between three types of generalisations within
advanced mathematics; expansive, reconstructive and disjunctive generalisation, and
ar ue that the successive generalisations of vector sum and scalar multiples from R2 to
R to R" are an expansive generalisation for the students, since it involves "applying
the same techniques to each coordinate in successively broader systems" (p. 39). The
passage from 1r to the abstract concept of a vector space, on the other hand, requires
a re-constructive generalisation.

The learner is presented with a name for the concept ("the vector space V") and some of
its properties (the axioms) and usually guided by an expertmust follow a subtle and
difficult process of construction and meaning of V and its properties by deduction from
the axioms. This is further complicated in the learner's mind by the fact that the
properties to be deduced in V are known to hold R", causing the problem for the student
that, although these properties are "obvious" in the (only) examples (s)he understands,
judgement must be suspended on their truth in V until they are shown to follow by
deduction from the axioms. (Harel & Tall, 1991; p. 39)



Even though the theory of Linear Algebra is universally applicable, when it comes to
solving problems, there is a wide variety of algorithms for any certain task, with the
restriction that different algorithms work in different settings. Thus, students are faced
with the further difficulty of having to decide which is the most appropriate algorithm
to tackle their problem. Carlson (1993), for example, notes that the procedure needed
to fmd a basis for a vector space of row vectors is different than that to fmd a basis for
a vector space of functions.

An additional disadvantage of the unifying character of Linear Algebra is the variety
of representations that students have to get accustomed to. The word 'vector', for
example, firstly introduced in the context of concrete Ir subspaces, can mean
different things depending on the corresponding vector space. Hillel & Sierpinska
(1994), argue that the initial representation of a vector as a string of numbers, becomes
shaken when students realise that the representation of a vector depends on the choice
of basis.

As linear algebra is one of the first undergraduate mathematical courses, students are
required probably for the first time to deal with abstract concepts instead of numeric
manipulations (Carlson, 1993). They have to start "thinking about the objects and
operations of algebra not in terms of relations between particular matrices, vectors and
operators but in terms of whole structures of such things: vector spaces over fields,
algebra's, classes of linear operators, which can be transformed, represented in
different ways, considered as isomorphic or not, etc." (p. 65).

This particular difficulty is not restricted to the context of Linear Algebra, but is
common in almost all areas of mathematics. To understand a new notion in elementary
mathematics students have to undergo a cognitive shift incorporating lengthy
procedures in mathematical concepts. This conversion of actions or operations into
what Piaget (1945) described as "thematised objects of thought or assimilation" (p.
49) was described by the term encapsulation (Dubinsky, 1991).

Cottrill, Dubinsky, Nicholls, Schwingendorf, Thomas & Vidakovic (1996) formulated
the APOS theory, from the acronym of the words action, process, object and schema.
Actions are physical or mental transformations of objects to obtain other objects.
When these actions become intentional they are characterised as processes which may
be encapsulated to form a new object. A coherent collection of these actions,
processes and objects, linked in some way, is identified as a schema. A schema can be
reflected upon and transformed and thus result in the formation of a new object.

The disadvantage of such an approach in Advanced Mathematics is that the students
who are taught in this manner are not given a formal defmition of the new object until
the end if then of this whole learning process. Vinner (1991) argues that "it is hard
to train a cognitive system to act against its nature and to force it to consult definitions
either when forming a concept image or when working on a cognitive task" (p. 72).
This situation can only get worse if the students' concept image has been built through
actions and processes, without considering the concept definition.



The course

The Linear Algebra course under consideration took place in the Mathematics
Department of a very demanding British University. The duration of the course was
30 hours, split into hourly sessions three times a week, for ten weeks in the second
term. The lecturer provided the students with complete and explicit notes, so that they
could concentrate on understanding the material, instead of keeping their own notes.
There was also a recommended textbook, which was Anton's (1994) Elementary
Linear Algebra. We should also note that the course was designed not only for Pure
Mathematics students but also for students following combined degrees (Mathematics
& Physics, Mathematics & Statistics, Mathematics, Operational Research, Statistics &
Economics (MORSE)), a fact which explains the process-oriented nature of the
course.

There seem to be two ways of sequencing the contents of Linear Algebra; the
computation-to-abstraction approach and the abstraction-to-computation approach
(Hare!, 1987). The first approach suggests that matrix arithmetic and linear systems
should precede vector spaces and linear transformations, in order to enable the
students to develop the language and reasoning needed for understanding the more
abstract material. The second approach starts with vector spaces and linear maps and
then matrices and simultaneous linear equations are treated as applications of the
former.

In this particular Linear Algebra course the approach chosen was the computation-to-
abstraction one, because the lecturer felt it would be more beneficial to start with
already familiar concepts and use them as building blocks for the development of the
more abstract notions of vector spaces and linear transformations. Various
introductory strategies were used in order to present the new material, such as
`abstraction' introducing abstract ideas by initially illustrating them by specific
examples (Harel, 1987) and 'embodiment' (Dienes, 1960) translating definitions
and theorems in terms of given situations. The difference between these two processes
lies in the timing of the presentation of the particular situation; in abstraction it comes
before the concept is defined, whereas in embodiment, it follows the formal definition.

In order to demonstrate how these teaching techniques were employed, we have two
extracts from the lecture notes; the first extract is a case of abstraction and the second
of embodiment. These examples were chosen so as to reflect the nature of the delivery
of the whole course.

Abstraction

Preparing for Eigenvalues and Eigenvectors
1. Draw a set of axes on a piece of paper.
2. Choose a vector from R2 and draw it on the axes.

2 2
3. Now multiply it be the matrix A = 13 to get a new vector. Draw the new vector you get.

4. Repeat these three steps 3 or 4 times, choosing a new vector each time. Notice that A sends
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vectors all over the place.

5. Now draw a new set of axes and plot the vectors [
1

and 2 .

1 3
6. Multiply each of these vectors by A and draw the result. Notice that these vectors stay on the line

they started on. They have just been "stretched" in a positive or negative sense.
7. In these two cases,_

F2 2 it
4 I and

2 2 2 2 2

L3 1 1 j L4 1 3 1 3 3 3
__ __

8. So, for certain vectors, multiplication be A just results in a "stretching" (which can include a
change of direction) of the vector; in other words a scalar multiplication of the vector. Such a
vector is called an eigenvector of A. The "amount of stretch" undergone by such a vector is
called an eigenvalue of A.

1 2
9. So and are eigenvectors of A, and 4 and -1 are corresponding eigenvalues of A.[

1 3
10. In general an eigenvector of A and its corresponding eigenvalue are related by the matrix

equation
Ax=kx

where x is the eigenvector and A. is the eigenvalue.

Embodiment

Definition We define the adjoint matrix of A, denoted adj A, to be the transpose of the cofactor
matrix

2 3 1

Example A= 4 1 2

5 3 4

We replace each element of the matrix with its cofactor, to get the cofactor matrix, C.

C=

11

2

3 4

3

43

2

5 4

2 1

5 4

4 1

5 3

2

5

-2 -6 7

= -9 3 9

5 0 -10

We transpose the cofactor matrix to get the adjoint matrix, adj A.

[-2adj A = CT = -6
7

-9
3

9

5

0

-10

Another strategy used for the introduction of vector spaces, in particular, was
consistent with the APOS theory (Cotrill et al., 1996). Starting with vectors in R",
objects already familiar to the students, addition and scalar multiplication were
defined, initially as actions on these vectors. When these actions were interimised,
along with their properties (the 10 vector space axioms), they became processes,
which then were used to form the new object 'vector space'. These notions were later
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extended to include vector spaces other than le, resulting in the schema of a general
vector space.

The students

The fact that this research is taking place in a highly regarded British Universities, as
we noted earlier, means that the students who take part have a solid mathematical
background, as indicated by the results in their A-level exams (University entrance
requirements in Mathematics is 3 A's) and their initial 'mathematics techniques
diagnostics test'. Our sample consisted of 8 high achieving Pure Mathematics
students, seven of whom achieved first class grades in the course assessment (90%
written examination, 10% awarded through weekly coursework).

The research was carried out by fortnightly videotaped group discussions (with two
interviewers taking part), where the issues brought forward were associated both with
the delivery of the course and the students' understanding of the new notions. Some
issues were brought up by the students themselves, initiated by certain difficulties they
faced when doing their coursework.

In the following extracts from the transcripts of the discussions, the talk revolves
around the notions of vector space, linear dependence and independence, bases and
spanning sets. Having under consideration that the definition of vector space was
introduced in the APOS pattern (as described above), we can clearly see that the
students' concept image of a vector space remains restricted to 12.n spaces.

Int: Why are you always using the examples of R2, R3, ..., R"?

J: Because these are the easiest examples of vector spaces.
Int: But why are you associating the word 'vector' with vectors in space? We defined vector space

as a set that satisfies those 10 axioms and any element of this vector space is a vector. So it
does not have to be a vector in R.

L: Because when we were first taught about vectors they were vectors in R2 and R3. And that's
what is still in my mind about what a vector is. I mean we have managed to extend it to R" but
not to other sets.

Intl: Does the previous image of vectors, the 2 or 3-dimensional image actually get in the way?
A: Yeah, actually it does.

When asked what the basis of a vector space is, no student gives the formal defmition
but they instead give an answer that applies only in a very specific context, in the
same way that Carlson (1993) reports that "basis of a vector space" is for some
students "the result of one specific algorithm applied in one specific context" (p. 29).

Int: What is the basis of a vector space?
J: Any two linear independent vectors.

bit: Can you have two linear independent vectors being a basis for R4?

J: Why not?
I: For a vector space of order n you need n linear independent vectors to span it.



A: Should the elements of a basis be all linear independent?

J: Yeah.

On the issue of the course delivery, the students seemed to have divergent views.
Some appreciated the clarity and completeness of the setting out of the material, as
well as the provision of algorithms for carrying out tasks, but for others the essence of
mathematics lies in the challenge of having to struggle with theorems and proofs.

J: In specific cases there are tricks or rules you can use and it makes things easier than if you take
the general approach to it. You have the general rule to cover yourself if you have any doubts.

Int: But why do you prefer to use these tricks?
J: Because it makes life easier. Would you use the definition of derivative in order to find the

derivative every time?
Int: But is it not essential to know how you came up to this derivative, to know how to prove it?
I: It's not that essential to always carry in your head how to prove it, but to know where the results

comes from and how it was derived. I think you'd be better off with knowing why it's true; that's
what matters to me. If you just want to know the results you might as well study Physics!

L: Yeah, in applied maths we just had to use the tools, we didn't have to prove them.

Int: Do you think that the shift from school to University would be made easier if they gradually
tried to change your way of thinking from the A-level to the more abstract?

J: There's something to be said about the 'shock treatment'. I think the sooner you get into the new
way of thinking the better.

A: I think I'm learning the Analysis better because the lecturer threw us more or less straight in the
deep end at the beginning of the course and we had to cope with it.

J: If you do the gradual thing then you might get the wrong impression. A year or something in the
course you might realise "this isn't really for me". It's more honest to have the 'shock treatment';
this is what it's really like.

Conclusion

The position of Linear Algebra, as an initial course of advanced mathematics, implies
that a bias towards either concrete or abstract approaches may cause difficulties. In
this context, developing a Linear Algebra course based on the computation-to-
abstraction approach does not imply that the students will not be introduced to both
the concrete and the abstract aspects of the course. However, putting the emphasis on
the 'concrete', may sway the students towards overlooking the 'abstract'. As a result,
their concept images becomes enriched in processes but not in objects.

It is widely accepted that undergraduate students have to make a huge cognitive shift
from school mathematics to advanced mathematical thinking. To this end, it is
imperative that the balance between concrete and abstract is not only maintained but
safeguarded in every possible manner.



References

Alves Dias, M. & Artigue, M. (1995). Articulation problems between different
systems of symbolic representations in linear algebra. In L Meira & D. Carraher
(Eds.), Proceedings of the 19th International Conference for the Psychology of
Mathematics Education, II (pp. 34-41). Recife, Brazil.

Anton, H. (1994, 7th ed.). Elementary Linear Algebra. USA: John Wiley.
Carlson, D. (1993).Teaching linear algebra: Must the fog always roll in? The College

Mathematics Journal, 24(1), 29-40.
Cottrill, J., Dubinsky, E., Nicholls, D., Schwingendorf, K., Thomas K., & Vidalrovic,

D. (1996). Understanding the Limit concept: Beginning with a coordinated
process scheme. Journal of Mathematical Behavior, 15, 167-192.

Dienes, Z. P. (1960). Building Up Mathematics. New York: Hutchison.
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D.

Tall (Ed.), Advanced Mathematical Thinking (pp. 95-123). Dordrecht, The
Netherlands: Kluwer.

Harel, G. (1987). Variations in linear algebra content presentations. For the Learning
of Mathematics, 7(3), 29-32.

Harel, G. & Tall, D. (1991). The general, the abstract and the generic in advanced
mathematics. For the Learning of Mathematics, 11(1), 38-42.

Harel, G. & Trgalova, J. (1996). Higher mathematics education. In A. J. Bishop, K.
Clements, C. Keitel, J. Kilpatrick & C. Laborde (Eds.), International Handbook
of Mathematics Education (pp. 675-700). Dordrecht, The Netherlands: Kluwer.

Hillel, J. & Sierpinska, A. (1994). On one persistent mistake in linear algebra. In J. P.
da Ponte & J. F. Matos (Eds.), Proceedings of the 18th International Conference
for the Psychology of Mathematics Education, I (pp. 65-72). Lisbon, Portugal.

Northern Examination and Assessment Board (1998). GCE A/AS Syllabuses for 1998:
Mathematics (SMP 16-19).

Piaget, J. (1985). The Equilibrium of Cognitive Structures (T. Brown and K. J.
Thampy, trans.). Harvard University Press, Cambridge MA (original published
1975).

Skemp, R. R. (1976). Relational understanding and instrumental understanding.
Mathematics Teaching, 77, 20-26.

Tall, D. (1991). The psychology of advanced mathematical thinking. In D. Tall (Ed.),
Advanced Mathematical Thinking (pp. 3-23). Dordrecht, The Netherlands:
Kluwer.

The Associated Examining Board (1999). Syllabuses: GCE Advanced Level;
Mathematics and Statistics including Modular.

Tucker, A. (1993). The growing importance of linear algebra in undergraduate
mathematics. The College Mathematics Journal, 24(1), 3-9.

Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics.
In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 65-81). Dordrecht, The
Netherlands: Kluwer.



TEACHING MATHEMATICS USING EVERYDAY CONTEXTS:
WHAT IF ACADEMIC MATHEMATICS IS LOST?

Hari Prasad Koirala
Eastern Connecticut State University

Mathematics education researchers argue that mathematics should be taught
using everyday contexts so that the learning of mathematics can be
meaningful to students. Although the learning of mathematics through
everyday contexts is interesting for most students, many of them cannot make
a leap from these contexts to academic mathematics. Because of this
difficulty, teachers need to make a deliberate attempt to help students connect
everyday and academic mathematics.

Introduction
During the past two decades, mathematics education researchers, who are

especially interested in ethnomathematics, have explored the relationship between
mathematics in and out of school (D'Ambrosio, 1985; Gerdes, 1996; Nunes, 1992).
Out of school mathematics is usually carried out in everyday setting, which is very
different from an academic setting of schools (Carraher, Carraher, & Schliemann,
1985; Saxe, 1991). While academic mathematics is still viewed as a culture and
context free discipline, mathematics in everyday settings is determined by
socio-cultural backgrounds of students. Ethnomathematicians, however, believe
that mathematics both in and out of school must be based on socio-cultural practices
of students. According to Gerdes, ethnomathematics researchers "emphasize and
analyze the influences of socio-cultural factors on the teaching, learning and
development of mathematics." (p. 917).

The psychology of mathematics education has been deeply influenced by the
findings of the research carried out from a socio-cultural perspective. In the 1998
annual meeting of the International Group for the Psychology of Mathematics
Education, one major theme of research was focused on mathematics in and out of
school. The researchers in the meeting argued that the learning of mathematics
becomes meaningful to students if their own cultural contexts are used in
mathematics classrooms (Civil, 1998; Presmeg, 1998). If mathematical concepts,
ideas, and skills are developed through students' everyday contexts, they may be
more motivated to learn and develop a better understanding of mathematics.

The task of connecting students' everyday contexts to academic mathematics
is not easy (Lave, 1988; Saxe, 1991; Walkerdine, 1990). These educators argue that
students construct their everyday experiences in contexts different from the school
context, and transferring ideas from one context to another is hard because the
emergent goals are different. This may explain the discrepancy between school and
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out-of-school mathematics experiences reported by numerous educators
(Carraher, Carraher, & Schliemann, 1985; D'Ambrosio, 1985; Nunes, 1992; Saxe,
1991).

Although the above researchers have shown a discrepancy between school
and out-of-school mathematics, their main focus was not to see whether students'
mathematical abilities could be enhanced when taught using their own everyday
contexts. Nor was their focus to investigate students' feelings and interests about
mathematics when taught through such contexts. Instead, these researchers focused
on how students' understanding of mathematics is embedded in their culture and
personal experiences. More research is needed to demonstrate how students can be
helped to learn academic mathematics using students' socio-cultural contexts. In
this paper, I examine the influence of everyday social contexts in the teaching of
mathematics to future elementary school teachers.

Methodology of the study
The data for this study were collected from a group of preservice teachers

enrolled in a course entitled "Number Systems" taught by this investigator at Eastern
Connecticut State University. The majority of the preservice teachers in this group
did not have a sound mathematical background. Only about 10% the preservice
teachers had taken some advanced mathematics courses such as calculus. For the
majority of the preservice teachers this was their first college mathematics course.
These preservice teachers did not have a good experience of learning mathematics in
schools. They feared and even hated mathematics.

The purpose of the course was to teach academic mathematics using students'
everyday contexts as far as possible. All students were required to keep journals
throughout these courses describing their mathematical understandings and feelings.
Students were evaluated based on various quizzes, class presentations, journals,
midterm and final examinations. In all these evaluations, they were required to
demonstrate their understanding of academic mathematics. Although various types
of problems were asked to the preservice teachers the following problem called a
"shopping problem" was used to evaluate preservice teachers' ability to understand
academic mathematics using their everyday cultural contexts. The problem was
modified from one of the textbooks usually used in the "Number Systems" course
and represents the types of everyday socio-cultural contexts used in the class.

Two friends are shopping together when they encounter a special "3 for 2"
shoe sale. If they purchase two pairs of shoes at the regular price, a third pair
(of lower or equal value) will be free. Neither friend wants three pairs of
shoes, but Pat would like to buy a $56 and a $39 pair while Chris is interested
in a $45 pair. If they buy the shoes together to take advantage of the sale,
what is the fairest share for each to pay? (Adapted from Musser & Burger,
1997, p. 15)
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The above problem was asked as a pilot problem to a group of preservice
teachers in the previous year. The majority of the preservice teachers in that year
did not provide a mathematical response to this problem. Their responses varied
from "since Pat and Chris are friends they could divide the saving in any way they
wanted," "I would not worry about the split but treat ourselves with a good lunch,"
to "just split the savings of $39 evenly". Because of these general responses
obtained from preservice teachers in the first year, preservice teachers in the
succeeding year were specifically asked to provide their mathematical reasoning to
the problem. All 32 preservice teachers in the class wrote their responses in the
blank sheet of paper provided by the investigator.

After the analysis of the written responses, a total of six preservice teachers
were interviewed to explore more about their solutions. The selection of preservice
teachers was purposive in order to include preservice teachers of various ability
levels. Since the interviews were conducted after the completion of the course, final
grades of the students were used to determine their ability levels. One preservice
teacher was a high achiever who obtained A in the course. Four were middle
achievers, who got B's in the course. One was a low achiever, with a C. Each
interview lasted approximately 20-30 minutes. During the interviews, the preservice
teachers were shown their written work and asked why they chose their responses.
They were told that they could change their responses if they wanted.

Data Analysis Procedures
Preservice teachers' written responses to the problem were categorized, coded,

and tabulated to determine their frequencies. Each interview tape was first
audiotaped and then transcribed. Preservice teachers' strategies of solving the
problem were determined by analyzing their written responses. The responses to the
interview were used to determine the reasons why preservice teachers chose their
solutions in the written task. Interview transcripts were also used to determine
whether or not preservice teachers were consistent in their thinking.

Results and Discussion
All 32 preservice teachers in the class agreed that they commonly encounter

these kinds of sales in their everyday life in the United States. However, the
majority of them did not provide an appropriate academic solution to the problem.
Since they had studied ratio, proportion, and percent in the class, an appropriate
mathematical solution to this problem would have been to use a method to
determine the amount of savings to Pat and Chris on a proportional basis. The
following two solutions are considered appropriate based on the teaching in the
classroom:

(i) The total cost of three pairs of shoes is $56+$45+$394140. The cost for
Pat is $56+$39--$95 and the cost for Chris is $45. Since there is a saving



(ii) of $39 out of $140, Pat should save 39 x 95 = $26.46 and Chris should
140

save 39 x 45 =
140

$12.54. So Pat should pay $95-$26.46=$68.54 and Chris

should pay $45-$12.54=$32.46.

(iii) Pat and Chris save a total of $39 out of $140. So their percent saving is
39

x100 = 27.85%. Hence, Pat should save 27.85% of $95, which is $26.46
140
and Chris should save 27.85% of $45, which is $12.54. So Pat should pay
$95-$26.46=$68.54 and Chris should pay $45-$12.54=$32.46.

Not a single preservice teacher in the class gave one of the above two
responses. Their solutions widely varied. Out of 32 respondents, eight said that
"Pat should pay 2/3 of the price and Chris should pay 1/3. The total cost of the three
pairs after the saving is $56+$45=$101. Two thirds of $101 is $67 (rounded to the
nearest dollar) and one third is $34 (rounded to the nearest dollar). Hence Pat
should pay $67 and Chris should pay $34." Here is a representative response from a
preservice teacher:

Chris and Pat would need to add up the cost of the two pairs of shoes that cost
the most money because in a "3 for 2 sale" you pay the price of the two most
expensive ones. The total of the two most expensive shoes would be
$56+$45=$101. Pat wants two pairs of shoes and Chris is only getting one
pair, they need to divide $101 by 3. The result when divided by 3 is $33.66.
Chris who is getting only one pair of shoes would pay 1/3 of the cost as
$33.66. Pat who is getting 2 pairs should pay 2/3 of the cost, which would be
$67.32. And everyone is happy. Chris saved $11.34 off of the original $45
and Pat saved $27.68 off of the two pairs of shoes.

The above solution is clearly communicated. However, the shares are not
distributed proportionally based on the cost of shoes.

Approximately the same proportion of the preservice teachers (seven out of
32) thought that both Pat and Chris should divide the savings of $39 evenly. They
said if there was no sale Pat would have paid $56+$39=$95 and Chris would have
paid $45. Hence "Pat should pay $95-$19.50=$75.50 and Chris should pay
$45-$19.50=$25.50." For example,

The fairest thing would be to split the savings on the free pair in halves
($39/2=$19.50) and use the $19.50 to subtract from the total price of the
shoes they want. So the amount for Pat to pay is ($56+$39)-$19.50=$75.50
and for Chris to pay is $45-$19.50=$25.50.

Nobody was worried that the sharing using the above method was
unfavorable to Pat. He was saving only 20.5% of his original price of $95 whereas
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Chris was saving 43.3% of his price of $45. When this was brought to their
attention in the interviews, they argued that the sharing was still fair because both of
them were willing to spend their original cost if there was no sale. Moreover
according to these respondents they should not be arguing about how to split this
money because both of them are friends.

Five preservice teachers decided to split the saving of $39 into three parts and
provide $26 to Pat and $13 to Chris. Hence for them the fairest shares would be that
Pat pays $69 and Chris pays $32. Here is one response that exemplifies this
method:

Pat gets 2 pairs or 2/3 of the total shoes and Chris gets 1 pair or 1/3. Since the
third (free) pair, which costs $39, is free they should divide it by 3 and get
$13 per 1/3 of savings. Chris bought one pair so he should pay $45-$13=$32.
Since Pat has two pairs of shoes, he should pay $95-$26=$69. Although
Chris did not get a free pair he did save quite a bit of money.

The preservice teachers who split $39 in three equal parts were
mathematically fair than preservice teachers who simply split the money evenly.
According to this new method Pat was saving 27.4% of the original price and Chris
was saving 28.9% of the original $45. The percentage was quite close because $95
is only little bit more than the double of $45. However if the difference between the
cost of two pairs $56 and $45 was too high the percent savings would have been
substantially different. This kind of complex proportional thinking was not
demonstrated in any of the methods provided by the preservice teachers.

There were other preservice teachers who did not demonstrate any
mathematical understandings. Three preservice teachers said that since both Pat and
Chris were friends they could simply divide the total of $101 evenly and each pay
$50.50. When asked why Chris should pay $50.50 when the original price of the
shoes he wanted to buy was only $45, they could not give any mathematical
reasoning and simply stated that if Chris is a really good friend then he should not
mind paying extra $5.50 for Pat especially because of a good bargaining
opportunity. One of these preservice teachers said, "since Chris does not want three
pairs of shoes she should be willing to pay the extra $5.50 because of the bargain."
Three other preservice teachers said that since Pat spent more money than Chris Pat
should get the $39 pair free. These preservice teachers were clearly not thinking
mathematically. They were using friendship as a reason. It appeared that some of
the preservice teachers, who had a weak mathematical background, simply wanted
to avoid high level thinking required to solve this problem.

It is interesting to note that some preservice teachers who had a good
mathematical understanding of the problem thought that dividing the saving evenly
is fair. Ayaz was the most capable mathematics student in the class. He was the
only student who got a perfect A in the class. He reasoned that the money should be
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split evenly between Pat and Chris. I provided a counter argument saying that
the sharing between Pat and Chris can be considered mathematically fair only if
their savings are proportional to their original costs. The participants in the study
accepted my argument as an alternative to their solutions. However many of them
were not willing to change their thinking. In the final interview Ayaz said that they
can split the saving of $39 evenly. So Pat would pay $95-$19.50475.50 and Chris
would pay $45-$19.50425.50. He stated that they can also split money

proportionally such as 39 x -95 = $2650 for Pat and 39 x -45 = $12.50 for Chris.
140 140

Nevertheless, he insisted that splitting saving evenly was still fair. The following
transcript between the researcher (Resh) and a preservice teacher (Ayaz) illustrates
this issue:

Resh: Is splitting evenly a mathematical response or an everyday common
sense kind of response?

Ayaz: I think it's a mathematical response. The common sense response
would be spending more so that I should get a larger discount.

Resh: I was thinking that common sense response would be "Let's make it
half-half." Why bother?

Ayaz: I can see that. It's an easier way to do. Nevertheless, Pat would be
happy as long as she spends less than $95. I would not even bother to
split the money. I would rather go out and treat ourselves with lunch. I
think it's a philosophical and political question.

The above transcript indicates that Ayaz was comfortable with his earlier
solution even though he understood how to split money proportionally. Other
preservice teachers had a similar kind of argument: Debi, for example,
determinined that Pat should pay $67.33 and Chris should pay $33.67. When asked
if her method was fair, she argued that the method was fair from a real life
perspective. Below is the excerpt from the interview with her:

Resh: Is that fair?
Debi: Pat is getting two pair of shoes and Chris is getting one pair of shoes. It

should not matter. It is a split of free money. Doesn't matter how
much money they are spending.

Resh: Don't you think their savings should be proportional to the amount of
money they are spending?

Debi: May be from a mathematical perspective; but not from a shopping
perspective, because they each have a choice of how much they want to
spend. She happens to like $56 and $39 pair shoes. Well then that's
what she should be willing to pay. If they were buying exactly the
same pair of shoes, the splitting of money [on a proportional basis]

3 - 166
9 6 3



should have been considered. Since they have a choice they don't need
to consider the split [proportionally].

Other preservice teachers such as Mona, Riva, Andy, and Hana were all
satisfied with their way of solving this problem, which was not based on proportion
of their cost prices. While preservice teachers' responses to the shopping problem
were mostly based on the context of friendship, their subject matter knowledge of
mathematics was not always academically strong. Many preservice teachers solved
the shopping problem using a simplistic mathematical procedure even when the
problem required a complex thinking. Their solutions did not involve complex
mathematical thinking such as splitting the saving on a proportional basis. The
majority of the students simply decided to split the saving based on the number of
shoes purchased without considering their cost prices. No one in the class split the
saving based on how much Pat and Chris would have spent if there were no sale. A
few students did not demonstrate any mathematical understandings at all.

Conclusions
The results of this study indicate that the teaching of mathematics using

students' everyday contexts does not necessarily enhance their understanding of
academic mathematics. Instead of using academic mathematical concepts such as
ratio, proportion, and percent, many preservice teachers solved the shopping
problem based on a concept of simple division. When asked why they did not use a
proportional reasoning the preservice teachers argued that they would not really set
up a complex proportional procedure if they had to split the saving in a real life
situation. They argued that since the problem appeared real they used a simple
division, which many of them would actually use in their real lives.

The preservice teachers did have difficulty in using a proportional reasoning
in this problem. Does it mean that we should avoid these kinds of problems in
mathematics classrooms? If we do not use real life contexts like this, preservice
teachers will see mathematics as a collection of isolated facts and skills to be
memorized. It is therefore important to use these kinds of problems. Actually we
need to use more of these problems and emphasize the fact that students are required
to provide appropriate mathematical response to the problem based on what is
taught in the class. In the shopping problem, for example, the use of simple division
would have been fine if the responses were from elementary school students.
However the responses to the problem from preservice teachers should include
higher level mathematics of ratio, proportion, and percent. It appears that we must
make our expectations clear to students and emphasize the fact that the purpose of
using real life context in a mathematics class is to learn as much academic
mathematics as possible. If this emphasis is not made students will simply bog
down in contexts and not learn mathematics. Also, as Walkerdine (1990) argues,
teachers should be aware that everyday practice of mathematics is discursively
different from school practice and so the relation between everyday and school



practices "is far more complex than is suggested by the notion of doing
mathematical examples in familiar contexts" (p. 54).
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Learning mathematics in heterogeneous as opposed to homogeneous classes:
Attitudes of students of high, intermediate and low mathematical competence.

Bilha Kutscher The David Yellin Teachers College, Israel

Abstract
Seventh- and eighth-grade students, who studied mathematics in heterogeneous settings
organized for small group work according to a 'cooperative seating plan', were examined
as to their attitudes to studying mathematics in heterogeneous classes as opposed to
homogeneous classes. The eighth graders concurrently studied part of their mat;:::atatics
curriculum in homogeneous classes. All students believed that studying in these groups
facilitated their learning. Most students favored learning in heterogeneous classes.
However, the eighth-grade, low achievers were ambivalent: they favored heterogeneous
classes provided their assessment grades were higher. In response, an evaluation model is
proposed to answer both the learning and psychological needs of students of diverse
abilities studying in heterogeneous classes.

Research has cast doubt whether tracking is the correct way of dealing with diversity in
abilities in the classroom. Not only has research shown that learning in low tracks
significantly reduces achievement (e.g. Gamoran & Mare, 1989) but it has also been shown
that 'top track' mathematics students can achieve as well in heterogeneous classes as in the
tracked classes (e.g. Linchevski & Kutscher, 1998). Theorists claim that tracking is a central
source of social inequity (e.g. Braddock, 1990). All this suggests that, whenever possible,
mixed-ability classes should be the preferred learning setting in school. Many researchers
argue for the value of cooperative learning in groups as a means of promoting attitude,
motivation and achievement (e.g. Slavin, 1996) and for cognitive growth (e.g Webb
(1989)). On the other hand Cobb suggests that small-group interaction is more productive
when the interactions are multivocal and when the conceptual possibilities between the
participants are relatively small (Cobb, 1996). This implies homogeneous grouping that
"clashes with a variety of other agendas... including issues of equity and diversity" (ibid
p.125).

This paper offers a 'cooperative-learning seating plan' that may reconcile these two
seemingly contradictory approaches: cooperative-learning in small heterogeneous settings
among participants whose cognitive capabilities are similar. This study examined a) the
attitude of students who concurrently studied part of their mathematics curriculum in
heterogeneous classes, where this cooperative-learning seating plan was adopted, and part
of their mathematics curriculum in homogeneous settings and b) the attitudes of students
who studied mathematics only in heterogeneous settings with this cooperative-learning
seating plan. The conjecture was that all levels of students would prefer learning in these
heterogeneous classes to learning in their homogeneous ones. These outcomes were
expected since the heterogeneous learning environment was designed using the theoretical
considerations and previous research results reported above.



Study Design
The population for this case study was drawn from the eighth grade of a junior high school
and from the seventh grade of a demographically similar junior high. The eighth grade in
the first school is divided into heterogeneous 'homeroom' classes: The idea is that students
should learn most of the school subjects - social studies, general science, language and the
like in their own familiar, heterogeneous-environment 'homeroom' classes. However, for
mathematics three tracks are implemented - 'Low', 'Intermediate' and 'High' - so that each
student learns mathematics in one of the tracks. This junior high school agreed to participate
in an experiment: Part of the eighth-grade mathematics program, that was originally to have
been taught only in the tracked classes, would now be taught in heterogeneous classes. Both
the tracked mathematics classes and the heterogeneous mathematics classes would address
topics that were part of the traditional syllabus. Each student would thus be assigned two
separate mathematics environments: the tracked class and the heterogeneous class. All
students studied mathematics both in their own tracked mathematics class, where they
studied mathematics for four hours weekly throughout the year, as well in their
heterogeneous, homeroom classes for two hours weekly, for the duration of one semester.
The heterogeneous mathematics class studied according to the principles of TAP
(Linchevski & Kutscher, 1998), a learning model developed for learning mathematics
effectively in a heterogeneous setting. This model calls for alternating between
heterogeneous and homogeneous settings so that each student in TAP is concurrently a
member of two groups, a heterogeneous group and a homogeneous one. In this experiment
the way to materialize this alternation was through the 'cooperative-learning seating plan',
that was designed to promote productive interactions in accordance with theoretical
considerations reported above.

Figure I a
Seating arrangement of groups in a
more diverse heterogeneous class

L H I

L H I

Figure 1 b

Seating arrangement of groups in a
less diverse heterogeneous class

*
H I

H I

L: Low-track students desk I: Intermediate-track students desk
H: High-track students * : Students seated relative to their desk

The cooperative-learning seating plan of the heterogeneous groups was configured both
to encourage interaction in dyads between students with relatively similar cognitive
capabilities (homogeneous settings) and at the same time to allow interactions, such as
asking for help and getting explanations for solving tasks between students with more
diverse conceptual possibilities (heterogeneous settings). Figure 1 illustrates two typical
seating plans. Figure la depicts a seating arrangement that accommodates the needs of a
more diverse heterogeneous class where the distribution of low, intermediate and high
achievers might be similar. Students of relatively similar cognitive capabilities are seated in
close proximity to allow productive, multivocal interaction (Cobb, 1996). Nevertheless,
concurrently these seating arrangements allow less competent mathematical students to be
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supported, when necessary, by more mathematically competent neighboring students. In this
manner the heterogeneity of the groups is upheld while providing sufficient "homogeneity"
for multivocal interactions. Figure lb offers an example of a similar configuration for a less
heterogeneous class where there might be few weak students and where the
intermediate-track and high-track students are evenly distributed. All the 'experimental'
mathematics teachers constructed the groups for their class according to the principles of the
cooperative-learning seating-plan.

Students' attitudes and perceptions about studying in heterogeneous mathematics classes
might be affected by their learning concurrently in a tracked mathematics class; thus a
complementary study was designed. A demographically similar school agreed that one of its
seventh-grade heterogeneous classes have its mathematics lessons conducted in the same
experimental format as the aforementioned school: The students would learn according to
the principles of TAP in their homeroom classes with the specially designed
cooperative-learning groups.

The data collected in this study were observations collected by the researcher in the
experimental classes and transcripts of semistructured interviews carried out with students
toward the end of the school year. These interviews were conducted with approximately half
the students who studied in the experimental classes. The students were chosen to represent
high, intermediate and low achievers of each of the high-, intermediate- and low - tracks from
the experimental eighth-grade classes. These students were observed during classes and
interviewed toward the end of their semestrial mathematics course described above.
Concurrently a similar population of students from the experimental seventh grade,
described by their mathematics teacher as being low-, intermediate- and high-achievers
(henceforth, in both the seventh and eighth grade, called 'Lows', 'Intermediates' and
`Highs') were also observed and interviewed. This report concentrated on two factors that
might contribute to a students' attitudes to learning in heterogeneous settings as opposed to
homogeneous settings: a) Their views, beliefs and feelings about learning in the
cooperative-learning heterogeneous groups and b) their beliefs about learning in a
heterogeneous setting as opposed to in a homogeneous setting.

Results and Discussion - Students' attitudes to learning in heterogeneous settings as
opposed to learning in homogeneous settings:
a) Results and Discussion - Learning in the cooperative-learning heterogeneous groups:
The immediate reaction of most of these students was that this group work facilitated their
learning. For example:
(8: eighth grade; 7: seventh grade; H: Highs; I: Intermediate; L: Lows)
Moran (H, 8): There's cooperation (in the group), one can ask friends in the group, we're
helped by them, we do together...
Ma 'ayan (I8): It helps me!
Yossi (1, 7): The fact that I sit (in the group) then i f I need help, then they help me, those who
are sitting with me in the group.
Dudu (L, 8): When I ask (the teacher) ... the teacher can't be only with me; there are also
other children... (Asking a fellow student is less embarrassing than) showing that I don't



understand the material.. because I ask him quietly, alone. But if I ask the teacher aloud
then the whole class listens.
Ran (L, 7): (He likes to study in the group because) Yossi helps me sometimes when 1 need
him and Ayelet (the teacher) helps me and so I improve little by little.
Ran, a Low, spoke about being helped by the same Yossi, an Intermediate, who himself
reported as being helped by others. It seems that the seating configuration did allow and
encourage mutual support. A typical lesson portrayed students sitting in their groups,
interacting with the study material and each other. Students could be seen asking for,
receiving and bestowing assistance. Students of all levels seem to have enjoyed and to have
appreciated the potential of the heterogeneous cooperative-learning group as a source of
resource and support. Many of the students used the term `fun' to describe their feelings
about the group. When asked what they meant by `fun' they elaborated this as mutual help.
For example:
Yifat (H, 7): It's fun to help!... It doesn't mean that i f I am strong 1 know everything. So
sometimes they help me and I help them.
Apparently working in these groups evoked positive feelings. Further investigation
disclosed that both affective and cognitive factors contributed to these feelings. All students
had mentioned the mutual help in the groups. Following this the students were asked
whether they felt they gained more when they helped others or when they, themselves, were
assisted in their mathematics.
Nirit (148): I prefer helping because I think that the fact that I help someone else, in actual
fact I am helping myself, this opens my eyes more and I see that maybe I also have to go
over and do it some more. The fact that I help someone (means) more practice for me.
Uzi (H, 7): (He gains more) When I explain, because that's how I learn. From their
mistakes I learn.
Kokhi (1, 7): Truthfully, both. Because when they help me then I `get' it and then I can help

someone else, and when I already know it then I can help someone else and then I
understand it better. The more you'll go over it, then you'll understand it better.
Ma 'ayan (I,8): (He preferred) Helping... because it's nice, a good feeling
Ran(L, 7)(Prefers helping) because I feel I know many things.
Interestingly all preferred helping, even the least competent students who, it would be
reasonable to assume, of necessity received more help than what they gave. There seems to
be a continuum in the reasons for this preference for giving rather than receiving help. The
more competent students felt that explaining promoted understanding, intuitively sensing
that "giving high-level elaboration to other members of the group is positively related to
achievement' (Webb, 1989). They also mentioned affective factors, such as "a good feeling
of helping a classmate" but it seemed clear to them that their gain was cognitive. The less
competent mathematics students related their preferences more to affective factors, such as
improving their social standing, self-esteem, 'good feelings' and the like. Generally, the
latter students reported that they were more on the receiving end of the assistance. Perhaps
more opportunities of high-level elaboration would highlight the cognitive-gain aspect also
for these students and concurrently lead them to improved achievements.



b) Results and Discussion: Learning in a heterogeneous setting as opposed to in a
homogeneous setting:

Lower self-esteem has been associated with learning in lower-ability groupings (e.g.
Abadzi, 1984). Thus it would seem plausible that lower-track students would prefer learning
in heterogeneous mathematics classes to learning in the lower-ability groupings. This indeed
seemed the case with the Intermediates, but in the case of the eighth-grade Lows there was a
surprising result.

The Lows: The eighth -grade Lows were ambivalent about learning in heterogeneous
settings. They wanted to learn with 'everyone', but they were unhappy seeing others
achieving high grades while they, themselves, were barely achieving passing grades. In the
case of the students who were also learning mathematics in the tracked classes this feeling
was probably exacerbated by the fact that they concurrently attained much higher grades in
their homogeneous mathematics class. Yael's views disclosed ambivalence although she
declared that she preferred tracking:
Yael (L,8): Because everyone is on the same level. And there is no one who succeeds more
than you... But i f I were in Rola 's (her mathematics teacher in the heterogeneous class)
group I will get 60 let's say, and maybe I made an effort, I would feel that I'm getting
nothing out of it. (The price she thought was worthwhile paying for learning in a
heterogeneous setting was a grade) No lower than 65, the main thing is I will not fail. The
main thing is that it (the grade) won't be lower than 55 (the passing grade).
What Yael seems to be saying is that the minimum requital for a diligent student is a
passing grade. Following this she would prefer and recommend studying in heterogeneous
groups:
Yael: Because also the children will help each other... Children will understand the
material better and will have easier tests and they won't feel that they are the lowest. Let's
say if there'll be a heterogeneous class it's preferable to being in the third (their lowest)
track, to feel that (in the heterogeneous class) they're in the middle, with all the (students in
the) .first, second and third tracks. It doesn't matter if someone is a little better, a little
worse, the main thing is that they will help each other.

The Highs: Here there was a surprising difference between Highs who learned only in
the heterogeneous setting (seventh graders) and Highs who also learned in tracked
mathematics classes (eighth graders). The latter students generally were happy to study in
heterogeneous mathematics classes. Their reservation was that they sometimes found it
tedious listening to repetitive explanations and that the pace was sometimes slow. But they
even had reservations to this and put it in perspective. For example:
Rania (11,8): Sometimes they go too fast (in the high track) ... and then I don't understand
Itamar(H,8): There are topics (in the heterogeneous class) that are also difficult for me and
also I need another explanation, but some (of the explanation) is a bit boring... (But the
delay is worthwhile) because here (the good of ) friends are more important than to cover
another half a page of exercises. It (the delay) is more worthwhile.
However most of the High seventh graders were unable to imagine any disadvantages in
learning mathematics in the high tracks. Even though they did enjoy and saw the benefits of
learning with students less competent than they, they thought that studying in homogeneous
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mathematics classes would prove the better option. For example, Efrat was eagerly awaiting
the following year's mathematically tracked class:
Efrat (11,7): The moment we'll be in the same track the children will be on the same level as
me, then (as opposed to the heterogeneous class) she (the teacher) will certainly give all the
class the same exercises that are suitable (to all)... If we had tracks we would be able to
progress much, much faster.

The Intermediates: Not surprisingly, the Intermediates in both grades were very happy
learning mathematics in heterogeneous classes. Avishai (I,8) loved learning in the
heterogeneous class. He described the class and its advantages both from the cognitive and
from the social perspectives:
Avishai (1,8): She (the teacher), like, integrates. She makes two groups and integrates,
strong with weak and then everyone helps the other.. and then you learn more. What is
learning more you understand the material better... Like, let 's say she (a student) lagged
behind in the previous (work) sheet then I help her, and then I understood And it could be
also that 1 made a mistake (in this particular worksheet) and then I correct mistakes. (He
prefers learning) In heterogeneous groups because tracking makes the students competitive.
They say that those who are in the low (track) are stupid and they say all sorts of not nice
things and this makes them competitive. They're always fighting about this.
Table 1 summarizes the attitudes of the students to studying in heterogeneous classes as
opposed to homogeneous ones.
Table 1: Distribution of students according to 'tracks' and attitudes to studying in heterogeneous classes as

opposed to homogeneous classes

H(8) (N=9) 1(8) (N= 10) L(8) (N=8) H(7) (N=6) 1(7) (N=7) L(7) (N=7)

For 8 10 0 2 7 7

Ambivalent 0 0 6 0 0 0

Against 1 0 2 4 0 0

In Table 1, it can be noted that out of 47 students, 34 (72%) favored learning in
heterogeneous classes, 6 (13%) only eighth-grade Lows were ambivalent, and 7 (15%)
were against learning in heterogeneous classes. These findings, together with the findings
that students believed that the cooperative-learning groups facilitated their learning, indicate
that most students felt that learning in heterogeneous classes could be beneficial to them.
While there might be other variables that influenced these attitudes, an effort was made to
control for them. For instance, the students interviewed were selected to represent as many
groups and as many classes as possible to reduce any effect that was particular to the
make-up of a particular group or of a particular teacher. As previously mentioned, the
teachers constructed the groups not according to the students' social preferences but
according to the principles of the cooperative-learning seating plan thus reducing the
`socializing' or 'best-friend' effect during the formation of the student's attitude. Also it was
ascertained (via the mathematics coordinator) that the mathematics teachers who taught the
eighth-grade tracked mathematics classes were all well-liked and well-respected
mathematics teachers thus reducing the 'special teacher' effect. Thus, it may be said that
the eighth-grade Highs, who had learned in homogeneous classes, had a more positive
attitude toward learning in heterogeneous mathematics classes as opposed to learning in
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homogeneous mathematics classes than the seventh-grade Highs who had studied only in
heterogeneous settings. Both the seventh and eighth graders in the heterogeneous classes
studied in a learning environment conducted along the same principles. It seems that having
had the opportunity of concurrently studying mathematics both in the experimental
heterogeneous class and in homogeneous tracked class, the eighth-grade Highs saw that
tracking was not necessarily a better option. All Intermediates preferred the option of
studying in heterogeneous settings. The eighth-grade Lows, however, were ambivalent:
Apparently the anxiety of not achieving good grades seemed to put a damper on the Lows'
attitude towards learning in heterogeneous classes.

Although it may be concluded that most students in the experimental classes favored
heterogeneous classes, this study indicates certain soft points. In the case of the
seventh-grade Highs, a follow-up study is planned to examine their attitudes to learning in a
heterogeneous mathematics class when they learn in an eighth-grade homogeneous
mathematics class. Only then may one deduce with more confidence whether their rosy
evaluation of learning mathematics in homogeneous settings was well founded or wishful
thinking. As for the ambivalent eighth-grade Lows, how can conditions be created for them
to feel more comfortable learning in a heterogeneous mathematics class? One condition
could be lowering frustration levels as a consequence of low achievements. Clearly, a
necessary condition for students to be motivated to study mathematics is the formation of a
positive correlation between their diligence when learning mathematics and their
achievements in mathematics. Yael (L,8) wanted to study with "all" the children; however
she did not want to be too low an achiever. Seemingly Yael had not been achieving very
highly in the heterogeneous class. She obviously thought that the only way to gain better
grades was through less challenging tests. However, an assessment with too little challenge
would most likely be counterproductive to the Highs' feelings of satisfaction when learning
in a heterogeneous class; to some extent assessment should reflect all levels of learning in
the class. The question is how to reconcile these two ostensibly contradictory requirements:
a test that will challenge the Highs and at the same time allow the Lows to achieve
reasonable grades?

TAP assessments are constructed of two parts: a basic component (usually comprising
about 70% of the test) that assesses the core material in the relevant topic, and a
complementary component (completing the basic component to 100%) that assesses
material connected to the topic but on a higher level than the basic component. Thus,
although the assessment is composed of two parts, the student receives a cumulative grade
out of 100. This assessment format offers all students the opportunity for success in the
basic component, while usually the more accomplished mathematics students show
competence in the complementary component. Research has indicated thatLows who study
in TAP's classes gain higher achievements than Lows who study in the low tracks
(Linchevski & Kutscher, 1998). Thus, achievement-wise it is clearly beneficial for the Lows
to study in a heterogeneous class. However, for students, research results do not offer
requital. Students do not compare themselves with theoretical instances such as, for
example, learning with mathematics students in other classes who are or are not studying in
heterogeneous or homogeneous groups. Comparing themselves to their classmates, it is
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only natural for all students to hope for positive feedback in the form of commendable
assessment grades in return for their diligence and effort in their mathematics class. An
evaluation model should take these psychological factors into account and allow all students
to keep their self-respect in the heterogeneous class vis-a-vis their achievements and their
classmates.

Proposed Evaluation Model in Heterogeneous Classes
Assuming the TAP model of assessment, it is proposed that each component of the

assessment be treated grade-wise as a separate unit, each unit receiving a maximum grade of
100%. Thus, students would receive back their test papers with two separate grades, each
evaluated out of 100%, one for the basic component, the other for the advanced component.
They would be informed that the basic component assesses the core material and as such
forms the primary part of the assessment; thus reasonable competence in this component is
required. Similarly, students would be informed that the second part of the assessment,
although recorded by the teacher, evaluates more advanced material connected with this
topic and thus no minimum grade is required on this component. This evaluation process
might reduce the less-competent students' frustration. At the same time the more competent
students could receive the acknowledgement they need. By emphasizing the importance of
the 'basic' grade, all students and notably the Lows who have performed adequately on
this component could feel that they had received due recognition for their efforts, thus
avoiding frustration. By virtue of the presence of the 'advanced' grade on the evaluated test
paper, the more competent students could feel both motivated to rise to the challenge of the
advanced component in the assessment and also feel recognized for this effort. Conceivably,
such an evaluation model could answer both the learning and psychological needs of the
whole mathematical community learning in heterogeneous classes. Further research should
be done to examine the effect of such an evaluation model on students' attitudes.

References:
Abadzi, H. (1984). Ability grouping effects on academic achievement and self-esteem in a
southwestern school district. Journal of Educational Research, 77, 287-292.
Braddock, J.H. (1990). Tracking implications for student race-ethnic subgroups (Technical Report
No. 1). Baltimore: Center for Research on Effective Schooling for Disadvantaged Students.
Cobb, P. (1996). Mathematical learning and small-group interaction: Four case studies. In P. Cobb
& H. Bauersfeld (eds.), The Emergence of Mathematical Meaning: Interaction in Classroom
Cultures. Hillsdale, NJ: Lawrence Erlbaum Associates.
Gamoran, A., & Mare, R. (1989). Secondary school tracking and educational inequality:
Comparison, reinforcement, or neutrality? American Journal of Sociology, 94, 1146-1183.
Linchevski, L. , & Kutscher, B. (1998). Tell me with whom you're learning, and I'll tell you how
much you've learned: Mixed-ability versus ability-grouping in mathematics. Journal for Research in
Mathematics Education, 29(5), 533-554.
Slavin, R.E. (1996). Education for all. Lisse: Swets & Zeitlinger.

Webb, N.M. (1989). Peer Interaction and learning in small-groups. International Journal of
Educational Research, 13, 21-39.

3 - 176



TWO TEACHERS' BELIEFS AND PRACTICES WITH COMPUTER
BASED EXPLORATORY MATHEMATICS IN THE CLASSROOM.

Chronis Kynigos* and Michael Argyris**

University of Athens and Computer Technology Institute*
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Abstract: This paper describes two elementary teachers' beliefs and practices
constructed after eight years of innovative practice involving one-hour-per-week
computer-based maths classroom activity with small cooperating group of pupils.
Participants were observed for 5 teaching periods, verbatim transcriptions were
made from video recordings and semi-structured interviews were taken. Combined
qualitative and quantitative analysis indicates that the teachers' actions may be
influenced by their belief systems -not necessarily by one- as well as by wider
cultural perspectives.

Theoretical framework

In our effort to study the interrelations between teachers' espoused beliefs and
their practice (Ernest, 1989, Lerman, 1992) we adopt a theoretical orientation which
is influenced by two important paradigm shifts in the teaching and learning of
mathematics: the appreciation of the teaching process and the formative role of the
classroom to teaching practice. Perceptions of the teacher as implementers of
prescribed pedagogy and curriculum have given way to those of the teacher as
reflexive practitioner who's teaching is shaped by espoused beliefs and by practice
itself (Hoyles, 1992). With respect to implementing innovation (as is the case in the
present study), the teacher forms a personal pedagogy in the process of making
sense of his/her environment as he/she acts upon it and is influenced both by his/her
beliefs on teaching mathematics, the teachers role and the nature of mathematics
itself and by the classroom culture and the wider culture (Olson 1989, Moreira and
Noss 1995, Thompson 1992). The complicated relationship between teachers'
beliefs and practices has captured the interest of many researchers revealing a
disparity between espoused and enacted beliefs (Raymond 1997). To this end
additional research is necessary to illuminate and map the nature of the relation
between beliefs and beliefs-in-practice (Lerman 1992). A second paradigm shift has
been from constructivist and interactionist towards socio-constructivist perceptions
of learning mathematics. These have given new impetus to classroom research with
particular emphasis on the interplay between mathematical learning and social
interactions. The study of mathematical teaching and learning in classroom
situations has been one of the important means to develop theoretical interpretations
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of learning as a reorganization and construction of concepts in social settings (Cobb
et al, 1996, Baruch and Swartz, 1997).

In our effort to further analyze elementary teachers' practices and beliefs about
their role, mathematics, teaching of mathematics, we build upon previous research
(Kynigos 1996) where teacher interventions were described by means of a) the
aspect of the learning situation to which they referred to and b) the type of pupil
activity they intended to encourage. Our approach has been to study the teaching
process in the context of using exploratory software to mediate innovation, taking
into account Hoyle's (1992) suggestion that computational environments inevitably
perturb the dynamics of a classroom, make more apparent the mathematical beliefs
and understandings of teachers and students providing a window, a magnifying
glass even, on the interaction process.

This is a report on research into two teachers' practices and beliefs constructed
after eight years of such innovative practice involving a one-hour-per-week
computer -based mathematics classroom activity with small cooperating groups of
pupils.

Research Setting

This study was part of the "YDEES"' project which involved ethnographic
investigation in a variety of aspects of classroom practice in school based
innovation programs involving the use of exploratory software for small group
mathematical project work. The teachers in question were observed during a two
month project, the object of which was for each group of pupils to find out
quantitative geographical information on Europe and represent it in a series of bar
charts. The mathematics on the teachers' agenda was not only representing data by
means of a bar chart but also the process of constructing the different bars
(rectangles) in a sequence and finding ways with which the process would not have
to be repeated for each chart. They used a piece of software developed within the
project called "Component Logo with a Variation tool" (Kynigos et al, 1997). The
variation tool is in the form of a "slider" which allows the continuous change of the
graphical representation of a figure created by means of a parametric procedure as
the value of the variable changes. The teacher wanted the pupils to suggest that they
construct a rectangle procedure with one variable for its "height" and then use the
variation tool to create a "bar chart machine", i.e. a piece of software for creating
bar charts.

Method

The study was carried out in the framework of project YDEES: "Development of Popular Computational Tools for
General Education: The Computer as Medium for Investigation, Expression and Communication for All in the
School", General Secretariat for Research and Technology, #726, E.P.E.T. II, 1995-1998.

9 75_ 178



We employed an ethnographic approach (Hammers ley & Attkinson, 1995) in order
to a) to understand the teachers' beliefs regarding mathematics, the teaching of
mathematics and their pedagogical role and b) to investigate their practices. More
specifically, we wanted to investigate i) the nature of the role undertaken by each of
the two teachers ii) the nature of the teachers' intervention regarding the mode of
communication and the kind of activity they intended to encourage. To this end we
built upon the previous works of Hoy les and Sutherland (1989), Farrell (1996) and
Kynigos (1996), constructing a modified instrument for recording classroom events.
First we studied observational data with the intention to trace the variety of roles
and activities undertaken by teachers and pupils. Types of roles and interventions
were allowed to emerge based on the data, instead of using data to test pre-existing
hypotheses. To get a feeling for the balance of teacher actions in time, we then
separated every teaching period in one-minute time segments and we studied the
appearance frequency of each type of role and activity. Finally, we came back to the
original text using the quantitative picture supportively in order to describe the
practices of the two teachers. Each teacher was observed and videotaped for five
class periods respectively. A remote microphone enabled transcription of all their
utterances capturing responses of the group of pupils in which they intervened.
Semi - structured interviews were subsequently carried out regarding their views on
mathematics, teaching of mathematics, their pedagogical role and the role of the
computer. Background data was also collected (i.e. observation notes and students
written presentations of their work). Verbatim transcriptions of all audiorecordings
and interviews were made.

Results

Kate has 27 years of teaching experience and Martin 26 years. In the last 8
years both of them have been working for one hour per week with their pupils
organized in small groups in computer based classroom activities named
"investigations". We present the results in two sections, one focusing on their
beliefs as manifested in the interviews and the other describing aspects of their
practice, i.e. the type of communication, their role and their practice when
addressing the class as a whole.

a. Espoused beliefs

Martin enjoys doing mathematics and feels quite comfortable with the
subject. "I do like mathematics. And I think that I communicate this enthusiasm to
the students. Many times before we start the daily curriculum I ask them what
subject they want us to do and they select mathematics". He regards his role as "a
facilitator who provides students the opportunities to construct knowledge for
themselves". Such statement could be regarded as consistent with the Problem-
Solving view in the Ernest (1989) taxonomy. However, in some cases he articulates
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views in which we may trace an impact of a Platonist view of mathematics. "What I
am trying to do is not to give answers but to guide students through the right
questions to find the solution. I feel that I am responsible to guide children to reach
the right solution".

Kate, on the other hand, feels anxiety towards mathematics, a feeling that it
has its origins in her school life as a student "I had very bad experiences from
mathematics as a student and now as a teacher I am most interested in removing
any anxiety from students when they face a problem". She regards mathematics as:
"facts and procedures for computing numerical expressions to find answers,
something that you need in your everyday life". A view that is most consistent with
the Instrumentalist view of mathematics. This view doesn't restrain her to consider
her role more as a counselor and a fellow investigator stating that "although I don' t
feel quite comfortable using computers I enjoy this hour [she means the weekly hour
mentioned above] as it gives us the opportunity to be students again. You see, we,
the veteran teachers, tend to intervene too much. Using computers gives you the
opportunity to think things different. Children don't need you to tell them what to do
all the time. You have to permit them some autonomy".

b. Teachers' practices

In order to describe teachers' practices we studied their verbal and nonverbal
communicative behavior in the classroom characterizing their interventions, the
roles they constructed and the activities they encouraged. We take two similar
episodes, in the sense that they were points in time when the two respective pupil
groups had not constructed a procedure with variable for the rectangle bar and both
teachers intervened with an agenda for them to change course. We use these
episodes to highlight a sample of the types of teacher interventions and then use the
quantitative picture to discuss the full set of types and the balance of interventions
in time.

bl. Teachers' interventions
Kate : Have you done the population of Athens?(means the construction of the

appropriately sized bar on the chart)
S : Yes,
Kate: Right, Well done. Now you have to do what? Oh, wait a minute. Would it be better

ifyou put all these commands in a procedure?
S : But it works this way Mrs.
Kate : Yes, but if you put all these commands in a procedure then you can do this thing

[means the rectangle] as many times as you wish. Its better this way.
S : How?
Kate : Oh come on, you know that Get me a pencil [She goes on modeling the move of

the turtle on a piece of paper explaining the steps that pupils should follow].

In this episode Kate intervenes through her own initiative with a specific
agenda to direct the pupils to construct the rectangle bar in a different way i.e.
procedure with a variable so that they could change its length. Her argument is both
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pragmatic and mathematical. Her mode of communication is exposition -
explanation of they way they should do it.

In an analogous situation Martin reacts quite differently.
Martin I can see that you are working without using variables
S : Yes. Does it matter?
Martin What matters is that you don't take advantage of the software.
S : Well that doesn't really matter. Its still working.
Martin : Is it so difficult to use variables? I will help you if you want to.
[At this point a pupil from another group attracts his attention temporarily. Martin
returns later to this_particular group and observes their work silently without making any
further comment all hough pupils insist on working without using variables. In the last
lesson when every group presented its work he triggered a long discussion about the use
of variables and set as an example the groups that used variables in their project].

Martin's unrequested intervention was in the form of a dialogue with the pupils
aiming to explain the merits of using a procedure with variable for the bar. He did
not, however, invest much in discussion and articulation of arguments. His
argument was authoritative rather than mathematical or pragmatic, i.e. variables and
the variation tool should be used because they were available rather than because
the pupils could do such and such if they used them. After the pupils' resistance by
means of a pragmatic argument, he withdrew without further instructional
comments with the apparent intention that they reflect and make their decision.

The types of the two teachers interventions emerging from the data in this way
are given in table 1 below.
Table 1 Characterization of teachers' interventions

The Initiative Martin Kate The intention Martin Kate

requested 46% 50% nudge 29% 37%

unrequested 54% 50% discipline 1% 9%

To whom directive 23% 36%

to the whole class 11% 13% reflective 38% 22%

to a group 89% 88% group dynamics 8% 21%

The mode of communication motives 9% 20%

Verbal procedural 12% 13%

exposition/explanation 15% 42% supervision 39% 48%

dialog 50% 48%

resource 17% 22%

Nonverbal

31% 12%silent observation

demonstration 4% 25%

As it is quite clear from the quantitative picture about half of the teachers
interventions were of their own initiative and Kate tended to 'explain' and
demonstrate things more than Martin who preferred in more cases to observe
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silently. Martin's interventions are characterized by his apparent tendency to
promote reflection. Instead of providing answers he prefers to return the question to
the whole group giving them the responsibility to monitor their progress and make
up their decisions. Kate seems to emphasize issues of communication and
motivation within the group and tends to direct the pupils into clearly described
actions.

In the interview, Martin seemed to have conflicting beliefs that a) reflection is
at the heart of learning mathematics and b) that it is of primary importance that they
solve the problem. The time-dependent quantitative analysis shows that while in the
first hour 18% of his comments were directive and 45% intended pupil reflection
(like, for instance, in the excerpt above), in the last hour the picture changed
dramatically (34% and 35% respectfully).

This tendency is even more clear in the case of Kate. Starting with a high
percentage (41%) of one-minute segments containing interventions for promoting
reflection she concludes with a very low one (6%). In total her intervention is
mostly characterized by her directive comments. In some cases she even takes
control of the machine demonstrating what the pupils should do by doing it herself.

b2. Teachers' roles
A second interpretative perspective of the teachers comments is that of the

social role (i.e. the norm or shared understanding about it) which they encouraged in
their relations with their pupils. Looking again at the above episodes, Kate seems to
have adopted an instructional role, since the taken-as-shared communication context
was that she would describe, explain and demonstrate what she wanted the pupils to
do. In this case we have a consistency between the nature of her intervention and the
role she adopts. In the case of Martin things are different. In the episode, after
observing what the pupils were doing, he intervenes with an intention for them to
reflect on whether they should use variable or not and seems to accept their
pragmatic argument. In this sense he adopts a managerial role but does not pursue
discussion on the mathematics at hand, so he does not instruct or explain. He offers
counseling but does not insist when the pupils show no eagerness.

Working in this way and studying the social interaction between teacher and
students we came along the following table.

Table 2. Characterization of the teacher's role

Martin Kate Martin Kate

instructor 12% 43% counselor 30% 40%

manager 40% 44% resource 11% 12%

task setter 6% 4% fellow investigator 6% 13%

explainer 9% 8% silent observer 38% 10%

9 7 D 182



As a whole, during the five lessons under study, Martin seems to constrain his
managerial role in benefit of the 'silent observer' one, allowing students to
undertake an exploratory role. In line with his view about his role, it appears to be a
conscious choice to give students opportunities to express their ideas, experiment
with them, interpret the feedback they receive from the computer and finally
construct their knowledge. Kate on the other hand, in contradiction with her
statements, seems to construct a more directive role. She walks around the
classroom, checking groups work and often suggests what they should do next.

b3. Classroom activities

So far we were focusing on the social interaction between the teacher and a
group of students. A third perspective with which we analyzed the data was that of
the social interaction between the teacher and the class as a whole. Looking back in
the above mentioned episodes regarding the educational activities we have two
dialogues between teacher and students while the rest of the pupils are allowed to
talk to each other in their groups as they investigate the project at hand. Studying
the educational activities which were trigged by the two teachers in the whole
sequence of the five lessons we formulated the following table.

Table 3. Characterization of classroom activities

Martin Kate Martin Kate

exposition 7% 1% discussion

investigational work 84% 93% student - student 87% 92%
teacher - student 81% 94%

Both teachers seem to refrain themselves from frontal teaching and their
discourse is not in antagonism with pupils' discourse as- it is the case in frontal
teaching. Both seem to encourage students to undertake an investigational role as
this activity was the one most commonly presented in their classrooms. This is not
surprising as, after eight years of practice in this particular school, it is embedded in
its culture that during this weekly hour students should be allowed to work
cooperatively in order to investigate a specific subject.

Conclusion

The results corroborate the view that espoused beliefs may be inconsistent with
actions during classroom teaching practice. However, in both cases we find that
more than one of what we may describe as a belief system (i.e. a coherent set of
views on mathematics, teacher roles and mathematical learning) may coexist in
teachers' descriptions. In one case, for instance, we had confidence with
mathematics and appreciation of encouraging reflection in Martin who's
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interventions were infrequent and often lacking in mathematical content. In the
other, Kate expressed uneasiness with mathematics, but was rather directive and
mathematically explicit in her interventions. Both teachers were influenced by
timing, becoming more directive towards the end of the course. Studying teaching
process in terms of communication mode, type of encouraged pupil activity,
adopted roles and classroom activity was illuminative in the sense that it provided
means to describe some of these inconsistencies. For instance, Martin may have had
a coherent intent for pupil activity which he may simply have not related to his view
about his role and to the way in which he communicated with the pupils. The
relation between espoused and enacted beliefs is a complex one and is not
necessarily consistent. Further research is needed to illuminate the nature of
teaching practice in the process of developing focused theory on learning in
classroom settings.
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BASELINE ASSESSMENT AND SCHOOL IMPROVEMENT:
RESEARCH ON ATTAINMENT AND PROGRESS IN MATHEMATICS
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ABSTRACT

This paper presents findings from research exploring the use of baseline assessment
at entry to primary school to measure pupils' progress in Mathematics. Pupils'
attainment in Mathematics when they entered the primary school and when they
were at the end of year 2 were measured through external and internal methods of
assessment. The predictive validity of baseline assessment for pupils' attainment at
the end of year 2 was satisfactory. Pupil background factors were significantly
related to pupils' attainment on the baseline assessment and to their attainment at
the end of year 2. However, the baseline score was the most important factor in
relation to pupils' progress. Both pupils who did not have any background in
Mathematics when they entered primary school and those with a very good
background made less progress than those who were typical in their age. Differences
between schools ' final results were reduced substantially when account was taken of
their pupil intakes, but significant differences between schools remained supporting
the conclusion that some schools are more effective than others in facilitating pupils'
progress in Mathematics. Implications for the development of curriculum policy in
Mathematics and areas for further research are drawn.

I) INTRODUCTION

There are four reasons why all school systems must have a strategy for finding out
about pupils on entry (Blatchford & Cline 1992). First, baseline assessment may
produce information about what children know and what they do not know in order
to help teachers decide how to identify and meet children's learning needs and how
to use their teaching time and their resources. An important implication of the
identification of learning needs is that decisions about the next learning steps follow
from this. A teaching plan, which is organised in such a way, might help teachers to
plan class and individual programmes of work according to the different performance
levels of the pupils. On the other hand, information gathered from baseline
assessment can be used for summative purposes. However, there is widespread doubt
that the summative and formative purposes can be achieved in a single set of
assessment arrangements. (Brown 1991). Another important purpose of baseline
assessment has to do with the fact that teachers may identify pupils with learning
difficulties (Lewis 1995). Finally, baseline assessment as its name implies, provides
the base for which pupils' subsequent educational progress can be measured.
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Measures of the educational progress made by pupils in a school, relative to that
made by similar pupils in other schools, have come to be called "value added"
assessment and such measures are used in research into the effective teaching of
Mathematics (Brown at al 1997).

The main purpose of the research presented in this paper is to explore the use of
baseline assessment in Mathematics to measure Cypriot pupils' progress in the early
years of primary school. The review of the purposes of baseline assessment helps us
to see that this study can be linked with the following three aspects of curriculum
policy. First, in Cyprus there is no policy in evaluating school effectiveness.
However, the fact that in the Third International Mathematics and Science Study
(TIMSS) substantial variation in Mathematics achievement between year 3 and year
4 Cypriot pupils was found revealed the importance of developing a policy on
evaluating school effectiveness in Mathematics. Data derived from measuring pupils'
progress may be more valid in exploring the effectiveness of a school unit than using
outcome data only since variations in final test results of schools reflect partly the
educational attainment of pupils when they entered the school (Fitz-Gibbon 1995).
Thus, this study may contribute to evaluate school units in teaching Mathematics by
adopting the technique of value-added assessment. Second, the fact that significant
differences among the skills and knowledge of Cypriot school entrants have been
identified (Kyriakides 1997) reveals the need for measuring the progress of different
ability groups of pupils in order to explore the extent to which teachers respond to
the learning needs of each group. Thus, the data of this study may provide
implications for the importance of the formative purpose of baseline assessment.
Finally, the measurement of pupils' progress may also help us to examine the extent
to which the baseline assessment could be used to identify pupils "at-risk" of later
educational failure. Although during the early 1980s considerable research was
undertaken in European countries on screening instruments designed to identify
pupils 'at risk' of later educational failure (Wolfendale & Bryans 1979) and
significant positive correlations between attainment at the start of the school and
subsequent attainment were reported, the research reduced in prominence because of
the difficulties inherent in making predictions for individual pupils (Potton 1983).
However, the findings of studies exploring the school effect on pupils' progress may
help us to renew the interest of using baseline assessment to identify pupils with
learning difficulties.

II) METHODOLOGY
Research data concerning pupils' skills and knowledge in Mathematics when they
entered primary school constitutes of two elements. First, a teacher completed
checklist including an assessment of social and emotional development and
attainment in Mathematics was designed to build on good observational assessment
Teachers were asked to rate pupils as "developing competence", "competent" or
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"above average" for each section. The checklist is accompanied by a comprehensive
teacher's handbook which provides guidance on each section. Watson (1997) argues
that the development of criteria for informal assessment and the attention to
documentation of unplanned observations are important but not enough to ensure
teacher assessment is valid. Thus, a performance test was designed to assess
knowledge and skills in Mathematics identified in the Cyprus' Pre-Primary
Curriculum. Pupils were asked by the researcher to complete at least two different
tasks related to the purposes of teaching Mathematics to pre-primary pupils. It has
been shown that the baseline items are appropriate in difficulty for the typical
Cypriot pupil entering primary school but are also able to allow the more able pupils
to demonstrate their attainment (Kyriakides in press). In addition to their baseline
attainment, information was collected on four further pupil background factors:
pupil's age when s/he entered primary school, pupil's sex, and type and length of
pre-primary school provision. Pupil's age was converted into months and expressed
as deviations from the grand mean for all pupils. Finally, external and internal
methods of assessment were used to measure pupils' attainment in Mathematics
when they were at the end of year 2. Teachers were asked to complete a checklist for
each pupil indicating whether the child had acquired each of the skills included in the
Mathematics Curriculum of year 2, and a written test was administered by the
researcher to assess pupils' knowledge and skills identified in the curriculum ofyear
2. Data were available for 1664 pupils who completed both baseline assessment in
October 1996 and the written test for year 2 pupils in June 1998.

The stratified technique was used to select 48 schools out of the 242 Cypriot primary
schools. All the first year pupils from each class of the school sample were chosen. It
is important to note that the chi-square test did not reveal any statistically significant
difference between the research sample and the population in terms of sex, type and
place of school and size of class. It may be claimed that the pupils who took part in
the research were representative of Cypriot pupils entering primary school in 1996 in
terms of the above characteristics.

The reliability of the findings was measured by calculating the relevant values of
Cronbach Alpha for the scales used to measure pupils' knowledge in Mathematics.
The values of Cronbach Alpha for the scales used to measure pupils' responses in the
performance test and in the written test were higher than 0.80. Similarly, the values
of Cronbach Alpha for the scales used in teachers' checklists were higher than 0.82.
Thus, we can be confident about the reliability of the measures used. Moreover, the
use of two different methods (internal and external) of baseline assessment and
assessment of pupils' attainment at the end of year 2 provide us with useful
information about the internal validity of the research. Significant correlations
(p<.05) between the way teachers assessed each skill of their pupils and the way the
pupils responded to the assessment tasks of the relevant test have been identified.
Although this finding does not necessarily imply that the validity of the research is



high since it is possible that they are both invalid, the use of both internal and
external ways of assessment provides a basis for triangulation of data.

III) FINDINGS

A) Predictive validity of baseline assessment

Table 1 shows the multiple correlations between the baseline attainment and
attainment at the end of year 2 of primary school. The multiple correlation of 0.63
between the average baseline assessment score and the average year 2 score provides
a satisfactory starting point for value-added analysis. It is of interest that the
combination of teacher-completed checklist and the performance test provided the
best indicator of pupil's subsequent attainment, better than either type of assessment
in isolation.

Table 1: Correlations between baseline attainment measures and attainment
measures at the end of year 2
Outcome Predictor/s Multiple

Correlation
Year 2 average test score Performance Test 0.58

Teacher Assessment 0.54
Performance Test + Teacher Assessment 0.63

Year 2 written test score Performance Test 0.56
Teacher Assessment 0.53
Performance Test + Teacher Assessment 0.62

Year 2 teacher's Performance Test 0.57
Assessment score Teacher Assessment 0.51

Performance Test + Teacher Assessment 0.60

B) Pupil Factors

Pupil factors and attainment when they entered primary school (average age 5.72
decimal years)

The first two columns of Table 2 give the results for the analysis of baseline scores.
The multilevel model compares the effect of each factor against a reference group
which, in this case, is girls of average age with one or less year of public pre-primary
education. All the measured pupil background factors but the type of pre-primary
education were significantly related to pupil's attainment on the baseline assessment.
Older pupils' attainment was significantly higher than younger pupils' attainment.
Sex differences were marked with boys having significantly higher attainment than
girls. Age and length of pre-primary education covaried, with older pupils
experienced more pre-primary education than younger pupils. The confounding of
these two factors might be overlooked when assessing the effects of pre-primary
education. However, the multilevel model allows the influence of early education to
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be assessed whilst simultaneously controlling for age and all other measured
background factors. Thus, it was found that pupils with more than three years of pre-
primary education and those with more than one but less than three years of pre-
primary education, both had higher attainment than those with one or less than one
year of pre-primary education.

Pupil factors and attainment when they were at the end ofyear 2 (average age 7.29)

The third and fourth columns give the results for the analysis of pupils' attainment at
the end of year 2. Again younger pupils had lower scores than older pupils and boys
had higher attainment than girls. Finally, pupils with three or more years of pre-
primary education had higher attainment than those with one or less than one year of
pre-primary education.

Table 2: Fixed effects of pupil background on baseline attainment, year 2
attainment and nro ress during the first two years of primary education
Factor Baseline Attainment

Estimate Std. Error
Attainment at Year 2
Estimate Std. Error

Progress (from 5 7)
Estimate Std. Error

Pupil level
CONS (Intercept) 18.482* 1.913 2.012* 0.122 1.623* 0.238
Baseline Score -- -- -- -- 0.048* 0.001
Age** 0.838* 0.082 0.031* 0.003 0.004 0.003
Sex 3.121* 0.493 0.143* 0.021 0.052* 0.023
Pre Primary 2 Yrs 2.512* 0.576 0.057 0.029 - 0.019 0.021
Pre Primary 3 Yrs 5.931* 0.808 0.132* 0.038 - 0.028 0.027
Type Pre Primary 0.087 0.039 0.048 0.021 0.012 0.009
Group 1 (Risk) -- -- -- -- - 0.042* 0.019
Group 2 (Gifted) -- -- -- -- - 0.039* 0.020
*= Coefficients significant at p<.05, ** = Variable centred on grand mean

Pupil factors and progress during the first two years of primary school

The following observations arise from the figures of the last two columns of Table .2
which show the effect of pupils' baseline score on pupils' progress. First, baseline
score was the most important factor in relation to pupils' progress. Second, boys
made more progress than girls. This implies that the gender gap becomes even larger
during the two years of primary education. Third, amount of pre-primary education
was not significantly related to pupils' progress during the first two years of primary
education. However, the positive effect of three or more years of pre-primary
education on baseline and year 2 results, mentioned above, suggests that the benefits
of early education persisted during the first two years of primary education.

Since a wide disparity in pupils' responses to the baseline tests was identified
(Kyriakides in press), a further analysis was conducted in order to compare the
progress of different ability groups of pupils. The following five homogeneous
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groups of pupils according to the way in which they responded to the activities in the
baseline tests derived from cluster analysis: a) "Pupils with identified needs for
remedial help", b) "Pupils with needs for extended mathematical activity", c) "Pupils
who are typical for their age", d) "Formal knowledge possessors", and e) "Skills
possessors". Thus, the variable "group 1" compares the progress of pupils who did
not have any background in Mathematics when they entered primary school (group
1) with the progress of pupils who are typical for their age (group 3). Similarly, the
variable "group 2" compares the progress of pupils who had completed correctly
almost all the activities in the baseline tests with the progress of pupils of group 3.
The figures of the last two columns of Table 2 reveal that pupils who did not have
any background in Mathematics when they entered primary school and those with a
very good background, both made less progress than those who were typical in their
age when they entered primary school. Thus, the ability gap between the group of
pupils who did not have any background in Mathematics and the group of pupils who
are typical for their age becomes larger during the two years of primary education.

C) Differences between schools

School effects on pupils' progress were explored through three multilevel regression
models. The first model (null model) included only the intercept term and indicates
"raw" differences between schools in their year 2 results. The second model explores
the effect of adding information on pupils' background including their baseline
score, sex, age and type and length of pre-primary school provision. The third model
explores the effect of including variables at the school level, especially the average
baseline score, the percentage of girls and the mean of the age of their pupils. These
factors are all aggregated from the pupil level data. The analysis of the data revealed
that knowledge about pupil's prior attainment and background explains a good deal
of the pupil variation in year 2 results (34%), but very little of the school-level
variation (4%). It was also found that baseline score was the most significant of the
pupil background factor since it reduced the pupil variation in year 2 scores by 29%.
Including the school compositional factor in the third model explained no more of
the pupil-level variation but significantly reduced the school level variation by 38%.
A substantial amount of the difference between schools in pupils' progress between
baseline and the end of year 2 was explained by the overall composition of the school
intake. However, substantial differences between schools remained. The third model
revealed that about 10% of variation in pupils' scores was attributable to schools.
Having controlled for both pupil factors and school contextual factors, the results
show that there were still substantial differences in the performance of schools.

IV) Discussion

The evidence presented above can be discussed in terms of its implications for the
development of curriculum policy in Cyprus. First, it is important to examine



assessment policy in terms of policy on classroom organisation. The fact that some
school entrants had either achieved most of the aims of teaching Mathematics or had
not achieved any one of them implies that it is not possible to organise teaching
Mathematics without taking into account the different Mathematical background of
school entrants. Spending most of teaching time working as a whole class, as is the
case in Cyprus (Kyriakides 1996), is not an appropriate way of teaching Mathematics
to first year pupils. It can be argued that baseline assessment provides teachers with
information which could help them to respond to the learning needs of each pupil, or
more realistically of groups of pupils organised by previous attainment However,
Cypriot teachers did not systematically assess their pupils when they entered primary
school (Kyraikides 1997). Moreover, Cypriot pupils with special needs (either for
remedial help or for extended activities) made less progress than pupils who are
typical in their age. This implies that Cypriot teachers respond mainly to the needs of
pupils who are typical in their age. An issue that needs to be examined is whether the
development of a policy on baseline assessment may encourage Cypriot teachers to
give more thought to the best way in which to respond to individual learning needs.

Second, significant sex differences favouring boys have been identified. Thus, in
terms of equal opportunities across the first two years of primary school the lower
rate of progress of girls in Mathematics suggests that equal opportunities issues
remain highly relevant in considering whether differences in the nature of primary
school experiences of the two sexes may play a part. A conclusion by no means
unique to Cyprus (Frempong 1998).

Third, the findings of this study reveal that the school a Cypriot pupil attends does
make a difference to his/her educational progress, since schools with intakes of
similar attainment and of similar composition can and do achieve different results. It
can be claimed that even if 15% of pupils did not respond correctly to the tasks
assessing pupils' attainment and are likely to turn out to have cognitive problems, the
school effect on the progress of this group of pupils should be examined. Although
baseline assessment can be used to identify pupils who need extra help, value-added
analysis is also needed to provide information about school effectiveness in teaching
Mathematics to pupils with learning difficulties.

It can be finally argued that while the value added analysis shows that there are
differences between schools in the progress made by their pupils, further research is
needed to identify what it is that schools do that makes this difference. Nevertheless,
the analysis of baseline assessment in relation to year 2 results to provide indicators
of variations in school effectiveness in Mathematics offers schools valuable
additional information for the purposes of self-evaluation and review. The value-
added feedback may be used to encourage schools to identify apparent areas of
strengths and weakness to formulate provisional hypotheses about the factors which
may have influenced pupil performance in specific areas of Mathematics. Thus, the
importance of linking school effectiveness and school improvement work in
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Mathematics should be raised. An approach of curriculum improvement in which the
targets set would arise from school-focused needs, defined at the school level by the
school staff, would be more likely to generate authentic reform and to raise standards
in Mathematics.
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Abstract
University and older school students following scientific courses soon will use
complex calculators with graphical, numerical and symbolic capabilities. This paper
is based on the experience of the design and the experimentation of an 1 Ph grade
pre-calculus course. The first part is a study of this new context, stressing the role of
mediation of the calculators and the development of schemes of use in an
`instrumental genesis'. From this study, the paper looks at tasks and techniques to
help students to develop an appropriate instrumental genesis for algebra and
functions, and to prepare for calculus. Then it focuses on the potential of the
calculator for connecting enactive representations and theoretical calculus and on
strategies to help students to experiment with symbolic concepts in calculus.

Introduction
New hand held complex calculators offer, to some extent, a synthesis of computer
software and calculators. Like computers they have the powerful applications:
computer algebra systems, geometric software and spreadsheet. From calculators
they inherit ergonomic characteristics (small, disposable) and numerical and
graphical utilities important to the study of functions.

This paper is based on an experience of integration of these powerful calculators into
the teaching of pre-calculus'. It provides reflection, based on theory and practice, on
the changes that these calculators may bring into the teaching and learning of
mathematics, and a search for efficient means to use them.

This experience was a continuation of an earlier research looking at the integration
of DERIVE into the study of algebra and calculus in France. An important limitation
of this DERIVE experiment was that students generally lacked the familiarity with
this technology necessary to really use it to support their mathematical activities and
learning. So, when complex calculators became available we saw the potential for
easier student access to computer algebra technology which might affect their

1 This study was done by a team of five. Michele Artigue was the leader, Badre Defouad and the
author participated with the teachers, Michele Duperrier and Guy Juge, to the definition of the
sessions and did classroom observations and interviews. A report on the project can be obtained
from DIDIREM Universite Paris VII 75251 Paris Cedex 05, France. The project was founded by
the French ministry of Education (DISTEN B 2).



everyday mathematical practices, and that we would be able to observe more
substantial changes. For this reason, we did a pilot project, designing and
experimenting lessons/activities in four classes of the ordinary French scientific
upper secondary level (1 grade) where every student had a TI-922. This project
forced us to conceptualise the changes in the mathematical activity of students using
this complex calculator. We had also to think about the help that the various
multilevel capabilities of this calculator can bring to teach a specific subject like pre-
calculus.

The evolution of approaches to the use of computer technology in the
learning of mathematics
From constructivist approaches to mediation

When computers became available many hopes were placed on the autonomous
cognitive activity that a learner could develop when faced with specific tasks
(Artigue, 1996). The general frame was a Piagetian approach: acting in adequately
problematic settings, the learner meets insufficiency or inconsistency of his/her
knowledge. Introducing computer environment could help to create settings of this
kind. More recently Noss and Hoy les (1996) stressed that a computer application
may operate as a linguistic tool, and they emphasise programming as a tool for
expressing and articulating ideas. Therefore, Noss and Hoy les introduced mediation
as a major role for the computer in the student's process of abstraction.

This idea of mediation is useful in our project because a purely constructivist view of
the use of computers is insufficient to analyse the interaction between the user,
his/her instrument and the objects in the settings. A constructivist view assumes that
the computer settings will provide the means for a predictable and meaningful
interaction. What actually happened when we observed the use of DERIVE was
different: students' reactions and reflections did not have the meaning that the
teacher expected because their perception of the feedback was influenced by the
operation of the software (Lagrange, 1996).

The role of the instrumental schemes
Moreover, when the user is learning new capabilities, s/he does not distinguish the
internal capabilities and the features of the interface. In this phase, the calculator is
better seen as a complex instrument like those existing in the area of professional
working, rather than as addition of a neutral interface and an internal algebraic
language. For this reason, I use the theoretical approach of those instruments by
psychologists like Verillon and Rabardel (1995). They stress that a human creation,

2 At the time of the experiment, the relatively expensive Texas Instrument TI-92 was the only hand
held calculator with symbolic capabilities. New student affordable calculators like the TI-89 and
the Casio GRAPH 80 now offer symbolic capabilities.
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an 'artefact', is not immediately an instrument. A human being who wants to use an
artefact builds up his/her relation with the artefact in two directions: externally s/he
develops uses of the artefact and internally, s/he builds 'instrument utilisation
schemes' to control these uses. This process is the 'instrumental genesis'.

Schemes in calculus using a complex calculator

As an example of this approach, the figure 1 displays various schemes, calculator
oriented or not, algebraic, graphic or symbolic that a user of a TI-92 can use to

search for the variations of a function like x2 +x+0.01
x

Nature Of
scheme
Graphic,:
TI-92

Graphing in the
standard window
is a good
approach

dimension,.
Consider the
graph of the
function in the
standard window

me retative

Function is
increasing.
Graph is a
straight line

Algebraic,.
criticism.

none Graphical
evidence must be
compared to
algebraic aspects

Consider the
algebraic
definition of the
function

f(x) is not a linear
function

Analytic,.1
Th92

Graphie,
TI -92

Calculus;
11-92

0

fx+.011
manr1(2 + +1

188.x

Expanding an
expression helps
the interpretation
of the graph
Graphic display
will confirm
analytic ideas

Consider another
algebraic
expression of the
function
Zoom in around
x=0 and y-0 until
something appears

There is
something
special near x=0

There are two
turning points
near zero

.14x2+x+.01)
x x

zeros)
xl

100.x2- t 1

ll toe.x2

too-x2-1
100.2

( 1/10 1/10)

Use the derivative
to find the turning
points

Find the zeros of
the derivative

Position of the
turning points is
confirmed

Figure 1: Schemes in a search for the variations of a function

The first scheme (graphing in the standard window) is prevalent among most
students. In the initial stages of learning calculus very few students are able to
produce critical interpretations like in the second scheme, even when they have the
algebraic knowledge to do so. In contrast, more able students develop schemes
where graphical action is linked with algebraic and analytic interpretation: they see,
in the graph, properties that they anticipate from an algebraic analysis of the
function.

Transforming the expression of the function like in the third scheme is not a
spontaneous action to beginners. More advanced students choose the transformation
randomly among the TI-92 capabilities rather than from rational reflection. Teaching
can help to develop this reflection. Switching back to the graph window, as in the
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fourth scheme, is quite natural. Able students anticipate immediately the required
zooming, while others take considerable time over this decision. Students may have
learnt the calculus approach in the fifth scheme as a method. As a scheme, it is often
limited, because students are not able to activate it when the function is not a
standard rational function considered in the teaching.

From this brief description of features of schemes appearing in a calculus task, and
their apprehension by students, questions arise on the genesis of these schemes in an
educational context. What is the link between the development of utilisation schemes
by students and the development of their mathematical knowledge? How is teaching
to be oriented to help the development of suitable schemes, their generalisation and
their co-ordination?

An approach of teaching with instruments
Schemes for building knowledge

In Vergnaud's (1990) approach, schemes play a key role in conceptualisation: they
organise the behaviour of a person in a class of problems and situations
representative of a field of concepts, and they are a basis for knowledge in this field.
When a person learns mathematics with an instrument, his/her schemes organise
behaviours related to the use of the instrument as well as more general conducts. So
the potential of complex calculators is to be searched in the many possible schemes
that a user is able to build for its use. However, this potential will be effective only in
situations where utilisation schemes are productive of adequate knowledge and
mathematical meaning.

This is not all situations when we consider, for instance, the limit of a rational
expression at a finite or infinite point. In an ordinary 'non computer' context,
students may apply infinitesimal reasoning or methods, possibly rich in meanings. In
contrast, with a calculator like the TI-92 or algebraic software like DERIVE, students
are able to associate the idea of limit with a single scheme: pressing the 'limit' key of
the calculator and reading the output on the screen. This scheme is effective for the
task but, as Monaghan et al. (1994) observed, it may result in giving students a
narrow understanding of the notion of limit.

So, depending on their co-operation with other schemes or meanings, schemes of use
of the TI-92 or DERIVE are productive or not. Therefore, for the support of the
technology to be effective teachers must control students' development of utilisation
schemes and their co-ordination with the advancement of mathematical knowledge.

The role of tasks and techniques in the use of a complex calculator

Techniques and their relationship with the instrumental genesis are a key point in the
use of technology to teach and learn calculus. Authors and teachers assume that the
symbolic capabilities in this technology are means to lessen the stress on techniques
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which, they consider, restrain students' reflection on concepts. This view was clearly
present in teachers' expectations in the French DERIVE experiment, and I could
establish the limits of this excessively conceptual approach (Lagrange, 1996). Of
course, techniques without schemes are ineffective because they are not likely to
evolve and cannot produce knowledge. However, classroom discussion on
techniques is essential to help students to develop suitable schemes and enhance the
reflective part of these.

Unlike the paper/pencil techniques, TI-92 techniques rationalise schemes of use of
an instrument, and, according with Rabardel and \Teri llon, these schemes develop in
an instrumental genesis. A consequence is that the organisation of the tasks and
associated techniques must comply with the constraints of that genesis and direct it
in a productive way: schemes cannot develop arbitrary and not all combinations of
schemes are able to produce mathematical meaning. Below we look more closely at
these constraints and their implications in terms of tasks and techniques in the
specific subject of pre-calculus.

Teaching pre-calculus with complex calculators
Tasks and techniques to develop an appropriate instrumental genesis for
algebra and functions

At the beginning, the student tries to bring the schemes s/he built for his/her familiar
graphing calculator into use. Tasks and techniques are thus to be organised to help
him/her learn that, in the default mode, the TI-92 simplifies radicals and rational
numbers symbolically and the difference between this 'exact' mode and the various
decimal approximations. Then schemes of use of the algebraic capabilities are
essential. A key point is the notion of equivalence of expressions and the need for
awareness of the different equivalent forms of an expression. A student must learn to
consciously use the items of the algebra menu, to decide whether expressions are
equivalent as well as anticipate the output of a given transformation on a given
expression. This work has to be continued when new expressions, like trigonometric
functions, are introduced.

Like many calculators, the TI-92 offers a graphical window and a numerical table
with a wide range of capabilities. Therefore, it may enhance early functional thinking
because graphical and numerical schemes are essential for the growth of the function
concept. As seen above, figure 1, notions like the variations of a function implies the
co-ordination of algebraic and graphico-numerical utilisation schemes. A relevant
task for developing these schemes is the study of functions whose properties are not
obvious in a standard graph (for examples see Figure 1, and Trouche, 1994).

3 For a more comprehensive study of the role of techniques in the use of CAS, in relation with
Chevallard's (1992) theoretical approach, see (Lagrange, 1997).



Helping students to develop flexible links between calculus concept
representations

The use of the TI-92 in calculus is quite simple: a menu entry for the symbolic
calculation of limits and a key for the calculation of derivatives. So, as a difference
with algebra and functions, no specific instrumental learning will be necessary.
However, we saw above, with limits, that this use tends to produce symbolic
manipulative schemes, likely to generate a narrow understanding of these concepts if
they are alone. This implies a deep reflection on how teaching can help the
development of other schemes.

Tall (1996) stresses that there is not a single way to teach pre-calculus, but "a
spectrum of possible approaches ... from real-word calculus ... through the numeric,
symbolic and graphic representations in elementary calculus, and on the to the
formal ... approach of analysis". Like many others he emphasises the need for
helping students to move flexibly from one representation to another and to establish
a balance between representations

Technology tends to toss the traditional balance about. For instance, in France, every
student in the secondary level has now a graphic calculator. This situation clearly
changes the balance of the numeric and graphical representations and of the
symbolic view of the concepts of calculus. Students often prefer experimenting from
the graph rather than analysing with symbolic methods. Trouche (1994) noticed this
behaviour and he highlighted the need for developing students schemes to control
the graphs and numbers they obtain on their calculators. Now, with the TI-92 and
others, calculators are graphico-numeric and symbolic. Little is known of how this
new feature will affect the students' balance and flexibility between representations'.

In the everyday use the calculator, higher complexity of the instrument may change
students' flexibility. With common graphing calculators, graphical and numerical
schemes are instrumental when analytic schemes are associated with pencil and
paper practices. In contrast, with the TI-92, co-ordinating analytic and graphico-
numerical schemes implies controlled switches between windows. In those switches,
a clear view of the organisation in the calculator is essential and teaching has to help
students to build this view.

The balance of representations was a key point in the design of teaching modules for
pre-calculus courses. Our team assumed first that easier symbolic calculation
enlarges the possibility of linking enactive representations and theoretical calculus,

Ruthven (1997) reviews a number of researches into CAS in mathematics education. The prevalent
topic is the comparison of student performances between CAS and non CAS students, so, little is
known of the impact of CAS in the everyday teaching.
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and also that teaching must avoid the danger of too close an association between
concepts and symbolic manipulative schemes, wiping out other representations.

Enactive representations (Tall, 1996) exist in the prior differential knowledge of
students. For instance, most students have a sense of the tangential behaviour of
curves from their geometrical experience. It seems important to use this knowledge
as a basis for the theoretical concept of derivative, because differentiation is an
analytic answer to the question of the tangent line for a curve defined by a function.
However, in the ordinary context of paper and pencil calculations, students cannot
really question their enactive differential notions because they would have to
consider, and give sense to, expressions which are beyond their abilities. In our
experiment, using symbolic computation helped students to work with these
expressions and to understand their meaning. A condition for this was the limitation
of the cognitive complexity of the situation, in order that students could really reflect
by themselves: an instrument like the TI-92 reduces time consuming calculations but
not the difficulty of concepts. Also, students' development of algebraic instrumental
schemes was essential to ensure the success of this work.

Our team was concerned that students may use the symbolic capabilities of the
calculator for very simple limits or derivatives and see nothing more in those
concepts than the manipulative aspects. As Monaghan et al. (1994) argue, symbolic
computation may make manipulations effortless but tends to obscure other
representations linked with infinitesimal approaches. For that reason, we preferred to
introduce the TI-92 capabilities for limits and derivative only after students did
considerable work on the concepts, linking enactive views with graphico-numerical
approaches and symbolic forms.

For instance, in our experiment, the limit concept was introduced from an intuitive
view that a function 'tends toward zero as x tends toward zero'. Students did a lot of
graphic and numeric work, passing from f(x) is small when x is small' to "f(x)can be
arbitrary small provided that x is small enough'. Then students had to study by the
same means standard, as well as non regular, limits before the limit function of the
TI-92 was introduced. After this it was time to consider the symbolic aspects of the
concepts, namely the algebraic rules by which a person or a machine is able to obtain
limits of expressions. Students could consider several examples on how the TI-92
computes limits and then learn to do those calculations by themselves. In this
process the student had more self-reflection than in a formal approach where the
teacher demonstrates the rules.

Conclusion
Comparing earlier approaches where mathematical knowledge is thought to be built
from situations of personal interaction with the computer, the contribution of a
complex calculator like the TI-92 appears different: the calculator acts as a mediator
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for the action of students. In this mediation technology is by no means neutral:
meeting new potentialities and constraints the students have to elaborate utilisation
schemes, potentially rich in mathematical meanings. For this potential to be
effective, attention is to be paid to the understanding that the students build in this
genesis, and techniques of use of the calculator should be discussed in the classroom
to improve students' schemes. In the learning of pre-calculus, teaching should help
students to develop adequate algebraic knowledge and flexible connections of
various representations of concepts. With respect to this aim, the analyse of the
interaction of utilisation schemes is a key to design tasks and situations involving
students' use of a complex calculator.
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STORING A 3D IMAGE IN THE WORKING MEMORY
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Technion - Israel Institute of Technology, Haifa, ISRAEL

Abstract
This paper elaborates on some lessons learned from observing high school

graduates while performing tasks in 3D geometry. We observed dculties,
which we were able to attribute to a change in the original mental image of a

solid, created by students who were presented with its 2D perspective drawing.

Evidently, the original mental image changed unwillingly while performing the

task. In some cases it was replaced by a different 3D image, and in other cases,

by a 2D image. In some cases the student was aware of the change as it

occurred, while in other cases the change happened unnoticed. Following the

description of such observations, an attempt is made to explain them, applying

theories regarding the storage of information in the working memory.

Background

Israel Matriculation exams results indicate that the percentage of students

choosing to answer questions in Solid Geometry is lower than the percentage of

students who chose to answer questions in any other mathematical area. Moreover, of

those who chose to tackle such a problem, the percentage of those who complete it

successfully, is significantly lower than the percentage of students answering

correctly questions in any other area. We found this phenomenon intriguing and set

ourselves to study the difficulties students face while performing tasks in solid

geometry and in other related areas requiring spatial ability.
Although a consensus as to the components of spatial ability, has not as yet been

reached, most researchers (e.g. Clements & Lean 1981, Bishop 1983, 1989 Lohman

1979, Yakimanskaya 1991, Battista & Clements 1988) point at some or all of the

following as major ones:
a. The ability to create a mental image of a solid in 3D space;

b. The ability to retain this mental image;

c. The ability to manipulate a mental image;

d. The ability to "see" the relations among the various parts of a solid.

This paper is focused on the first two components. Using evidence collected in a

series of interviews it demonstrates some phenomena which can be attributed to
difficulties in storing a mental image of a 3D solid, created from its 2D representation

provided on paper, and to difficulties in keeping the mental image intact, while

attempting to perform the task.
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Theoretical Framework: Working memory

Cognitive psychologists distinguish between long term memory (LTM) and

short term memory (STM). Since the beginning of the 20th century, studies of STM

focused primarily on the number of items stored, items that are not necessarily related

to one another. Those studies concluded that STM is limited to an average of seven

items. Atkinson & Shivering were (in Loggia 1991) the first who came up with a

more complex model to STM that included the distinction of working memory.

According to their model the main function of the working memory is to store

information while engaging in a thinking process such as planing, or problem

solving. Consequently, one should regard the working memory as a calculating area

with operational abilities. While performing a complex task that requires many

calculations, a need arises not only to store numerous mid-way results, but also to

organize them in the working memory in a way that relates each of them to the work

in progress. There is a distinct difference in capacity and content between the

working memory and the short-term memory. Not only can the working memory

store five to seven separate and unconnected items, it must include also pointers that

connect the different items to one another.
Carpenter & Just (1989) claim that there is a mutual relationship between the

capacity of the working memory and the two functions it performs: (i) as a storage

area; (ii) as a calculating area. When a need arises to use one of these functions in an

extensive manner, it overrides the other function. If calculations are carried out more

or less automatically, there is more room in the storage area.
The study, parts of which are described in this paper, was based upon a set of

tasks that required both functions of the working memory.

The Method

The study was based upon semi-structured interviews with high school

graduates, each lasting a total of 5-8 hours in 2-3 meetings. A special instrument was

designed to guide the interview. It consists of 26 tasks, all of which required a certain

degree of spatial ability. Each interviewee was required to perform the tasks while

"thinking out loud". The process was recorded. (A few sample tasks appear in the

next section.)
Performing each task, required creation of a mental image of a 3D object

represented by a 2D perspective drawing on paper, and manipulating it. In other

words, all tasks required retaining the mental image of the object throughout the

performance. The 2D drawing remained available to the interviewee, throughout the

time of performance.
All the interviewees took advanced level math in high school. Prior to the

interview, each of them took ETS - a standard 3D exam, in order to determine their

spatial abilities.



Observations

Three observations are documented below. They all indicate difficulties in

maintaining the same mental image created by the interviewee when presented with

the figure included in the task, throughout the period of time devoted to the task. Note

that each task starts in a request to describe the
configuration presented in the figure, followed by a
request to operate upon it.

Observation no. 1
The task:

Consider a cube ABCDEFGH, and the
plane EFCD (see Figure 1)
a. Use your own words to describe the cube

and the relative position of the plane.
b. S is the mid-point of FG. Find a

symmetrical point to S, with respect to the plane
FECD.

liana's answers
To part a: "It's a cube, it's a right cube, the

plane crosses through the middle,
inside the cube."

To part b: "Where do I drop the
perpendicular to this plane?
Perpendicular from S to the plane...
oh.... I don't know where to drop
it".
She drew the perpendicular from S to FC
and extended it to the middle of EA. (Marked by-------- in figure 2) and

said: "I measure tha.distance by sight."

Figure 1

Figure 2
D

Observation no. 2
The task:

Consider a cube ABCDEFGH and the
triangle GAD
a. Using your own words describe the

relative position of the
triangle inside the cube.

b. Draw the angle between the triangle
and the face EFGH.
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Hanna's answers
To part a: "The triangle (points to GAD) is slanted. No, actually it is not slanted. (She

closes her eyes in an effort to visualize it, she uses her hands to draw in the

air). "Yes, it is tilted, if it was from H it wouldn't be slanted."

To part b: "We need to drop a perpendicular to FG
from triangle AGD. I don't know how to
drop such a perpendicular. Wait

...., we extend DH... and then,
create the perpendicular (marked by

------- in figure 4)..., DHEA is
perpendicular to GHEF, I don't know,
it can't be like that, I'm working
in two dimensions....".

In the concluding part of the interview
with Hanna, she tried to explain the phenomenon,

as she perceived it: "When I concentrate more
on the angles I switch to two dimensions. Because it is easier for me, because I

understand the angles in two dimensions, the angles in 3D are different, they are not

the same as in 2D."

Figure 4

Observation no. 3
The task:

Consider a right triangular prism ABCDEF, and a segment GA, where G is the

mid-point of DF)
a. Using your own words describe the prism and the relative position of GA.

b. What angle is created between GA and AB?

Michael's answers
To part a: "Oops...I saw it a moment ago... oops,

oops... I see it alright, but now it is
different than I saw it earlier"

To part b: "GA with AB, oh, oh, oh.... Do you
know what just happened to me?
All of a sudden the prism turned
outside-in. I'm trying to turn it
back....how do you want me to see it, as a
tent? No I didn't see it as a tent... I saw it... I
can't get in to that now. I saw an oblique tent,

but now I see a straight tent."
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Observation analysis

Observation no. 1: The verbal description included in Ilana's answer to part a,

indicates that she had created a 3D mental image of the cube and the plane inside it.

In the first part of her answer to part b, the first mental image was still stored in her

memory, while trying to drop the perpendicular from S to the plane. From her saying

"how do I drop a perpendicular to the plane?" one can assume that she was familiar

with the definition of symmetric points with respect to a plane. She knew s

she must drop a perpendicular. She also knew she must extend the

perpendicular beyond the plane: "I measure the distance by

sight", she said. However, she failed to execute it. A s,

reasonable explanation for this gap is that the difficulty

occurred because, while thinking about the process, the original

3D image of the object she created, was swapped with a 2D.

Unaware of that switch, she created a new, flat image in which the

lines FG and EA are on the same plane with the rectangle oblique plane.

(See figure 6 as compared to Figure 2).

Figure 6

Observation no. 2: The first mental image created in Hanna's mind was most

probably of a 3D object, as can be gathered from her reply to part a. However, due to

her efforts to drop a perpendicular in the triangle plane, she lost her original 3D

image and created a new 2D image of the object. In the new image DH, when

extended, intersected with GF creating a straight angle: "Wait", she said, "... we'll

continue DH and then create the perpendicular." At that point Hanna noticed she was

working with a 2D image: "I was working in two dimensions", she noted, and

reconstructed the cube image: "DHEA is vertical to GHEF". From that point Hanna

managed to maintain a 3D image of the object. Unlike the interviewee in the first

observation, in this case the interviewee was well aware of the fact that she was

working in 2D, although she wasn't aware of the exact moment the image

dimensional swap took place. Only after working a while in 2D did she realize it.

Observation no. 3: In the described event Michael was aware of the exact

moment the image swapping took place, while examining the relations in the

drawing. His awareness to the moment of the image swapping, enabled him to stop

his work until he managed to concentrate and reconstruct his first 3D image. Due to

the described circumstances this phenomenon is less serious than the previous one.

Nevertheless, it may withhold the completion of the task due to the time necessary to

concentrate and reconstruct the first image.
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Discussion

The findings described above exemplify one phenomenon in three different

levels, the phenomenon of change in the original mental image of a spatial

configuration, while operating upon it. The 3D image stored in the working memory,

goes through involuntary changes, while performing the task. In the first case the

interviewee was not aware at all of the change, in the second case the interviewee

was unaware of the exact moment the image swap occurs, although she became

aware of it later on, while the third interviewee did notice it instantaneously. In the

first two cases the change was from a 3D image to a 2D image and caused real

difficulty in completing the task successfully. In the third case it was a matter of time

and effort only, since the image twist was from one 3D to another one, as good as the

first one.
The phenomenon described in the third observation is well

known. Focusing continuously on some drawing, or
attempting to examine the relations among different
elements of a 3D object described in a 2D figure, may
cause the first 3D image to modify. The back part of the

object FD (see figure 7) "pops out" and creates the

impression that the object turns inside-out or the other way

around. This well-known phenomenon, especially related to

cubes, is known in psychology literature as "Necker Cube
phenomenon". This phenomenon occurs when the drawing of the object has a few

stabled positions. One of the interpretations to this phenomenon is that the memory

brain cells containing the object in one of its stabled forms wear down, and other

brain cells take their place in storing the object, but this time in a different stabled

form.
In our study we had many occurrences such as the third case. In all of them,

except one, the original 3D image changed into another 3D image. In one case (which

isn't mentioned in this paper) the 3D image changed involuntarily into a 2D image.

This single event may indicate that the three observations described above are related

to one another. The difference between the first two and the third one is whether or

not the interviewee was aware to the moment the image swap occurred. Lack of

awareness in the first two observations leads to unavoidable errors, while the in third

one there was a temporary loss of concentration, not necessarily yielding an error.

These findings are summarized in Figure 8.
In general, in many cases a 2D object requires a lot less room in the working

memory than a 3D object both having the same 2D figure representation. For

instance, a right angle in 2D drawing of a 2D configuration appears as such, while a

right angle in a 3D configuration does not necessarily take the form of a right angle in

a 2D drawing of that configuration. Consequently, it consumes more room in the

working memory.

Figure 7
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Creating a 3D image while examining the drawing

Involuntary image swap

Awareness to image swap

Instant awareness

Unawareness to image swap

Later awareness

Not necessarily causing an error Resulting an error

Figure 8

Observation no. 1, 2 may be explained as an overload in the working memory.
As mentioned earlier, the working memory fulfills two functions, storing information
and processing it. Each one of the two functions occupies memory space.
Interviewees who spent a considerable amount of time in examining the relations
within a drawing, had to store many details of the object's properties. We suggest that
our first two observations can be explained by that storing and processing all the
needed information, overloaded the interviewee's working memory. As a result some
of the information, in particular information concerning the depth of the 3D image,
was lost in the process. The 3D image changed into a 2D image as the 2D image
occupies less space in the memory.

References

Battista, M. T. & Clements D. H. (1988). A case for a Logo based elementary
school geometry curriculum. Arithmetic Teacher, 36, 11-17.

Bishop, A.J. (1983). Space and geometry. In R. Lesh & M. Landau (Eds.),
Acquisition of mathematics concepts and processes. New York: Academic
Press. pp. 176-203.

Bishop, A.J. (1989). Review of research on visualization in mathematics education.
Focus on Learning Problems in Mathematics, 11.1, 7-16.

Carpenter, P. A. , Just, M. A. (1989). The role of working memory in language
comprehension. Complex information processing. Klahr & Kotovsky (Eds.).
N.J.

Ekstrom, R.B., French, J. W., Harman, H.H., Dermen, D. (1976). Manual for
kit of factor referenced cognitive tests. Educational Testing Service. E.T.S

3 - 207

1004



Lean, G. & Clements , M. A. (1981). Spatial ability, visual imagery, and
mathematical performance. Educational Studies in Mathematics , 12,
267-299.

Logie R.H. (1991). Visuo Spatial Working Memory. Lawrence Erlbaum
Associated Publication. UK.

Lohman D.F. (1979). Spatial ability individual differences in speed and level.
Aptitude Research Project Report . 9. Stanford California. Stanford
University.

Yakimanskaya, I. S. (1991). The development of spatial thinking in
schoolchildren. . Wilson S.P. & Davis , E.J. eds. Soviet studies in
Mathematics Education, Volume 3.

1005
3 - 208



EXPLORING VAN HIELE LEVELS OF UNDERSTANDING USING A
RASCH ANALYSIS

Christine Lawrie
Centre for Cognition Research in Learning and Teaching

University of New England, Armidale, Australia

This paper reports a study designed to explore the difficulties associated with the
development of appropriate test questions suitable for determining van Hiele levels
of understanding in geometry. Initially, a written test based on the Mayberry
interview schedule was designed and given to 60 pre-service primary teachers.
Analysis of the results by concept and by level led to the identification of strengths
as well as inconsistencies in the items. The initial results for the items were then
processed using the QUEST software application of the Rasch partial credit model
provided by Masters, and analysed in depth. The purpose of the Rasch analysis was
to provide a quantitative edge to what had been primarily a qualitative procedure.
This paper presents the findings of the Rasch analysis.

Many difficulties are associated with the designing of appropriate test items for
determining the van Hiele levels of understanding in students, and with the
assessment of the students' responses to the test items. To make an assessment,
there needs to be available a reliable diagnostic instrument. At the University of
New England, Australia, a written test based on the Mayberry (1981) interview
schedule was designed. The items tested for understanding in seven geometric
concepts. Each question was designed to the operational definition of one of the
van Hiele levels. Examination of the initial assessment of student responses
indicated inconsistencies in the results (Lawrie 1997, 1998). To confirm the initial
results and to explore further the strengths and weaknesses of the test items, the
results were analysed using an application of the Rasch model. In this article, an
analysis of the Rasch model results is presented. Before doing this, a brief
background to the important ideas underpinning the study is presented.

Background
The van Hiele Theory
In the 1950s, Pierre van Hiele and Dina van Hiele-Geldof completed companion
PhDs which had evolved from the difficulties they had experienced as teachers of
Geometry in secondary schools. Whereas Dina van Hiele-Geldof explored the
teaching phases necessary in order to assist students to move from one level of
understanding to the next, Pierre van Hiele's work developed the theory involving
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five levels of insight. A brief description of the first four van Hie le levels, the ones
commonly displayed by secondary students and most relevant to this study, is given:

Level 1 Perception is visual only. A figure is seen as a total entity and as a specific
shape. Properties play no explicit part in the recognition of the shape.

Level 2 The figure is now identified by its geometric properties rather than by its
overall shape. However, the properties are seen in isolation.

Level 3 The significance of the properties is seen. Properties are ordered logically
and relationships between the properties are recognised.

Level 4 Logical reasoning is developed. Geometric proofs are constructed with
meaning. Necessary and sufficient conditions are used with understanding.

The van Hie les (van Hie le 1986) saw their levels as forming a hierarchy of growth.
A student can only achieve understanding at a level if he/she has mastered the
previous level(s) They also saw (i) the levels as discontinuous, i.e., students do not
move through the levels smoothly, (ii) the need for a student to reach a 'crisis of
thinking' before proceeding to a new level, and (iii) students at different levels
speaking a 'different language' and having a different mental organisation.

The Rasch scaling model
The Rasch partial credit model was first introduced for the analysis of
dichotomously-scored responses in 1960. When data are fitted to the model, person
parameters can be freed from the item difficulties and item parameters can be
estimated independently of the calibrating sample. Masters (1982, p. 163-166) used
a maximum likelihood procedure to estimate the parameters in the model. Means
and standard deviations of the infit (weighted) and outfit (unweighted) statistics
allow a check on how well the data fit the proposed mode. The advantage of the
partial credit model over other models is that the parameters in the model are
separable. This allows on a single scale, a measure of item difficulty, and of an
individual student's ability to achieve success.

The QUEST Interactive Test Analysis System (Adams & Khoo 1993) which is
based on Master's procedure, was used to process the data. This software includes
the most recent developments in Rasch measurement theory for the analysis of test
and questionnaire responses as well as traditional analysis procedures. Three
measures are available to check on the suitability of the tests as a measure of
geometric understanding. First, the item consistency is used to estimate the extent
to which items reflect the same underlying construct. Second, the fit statistics for
question estimates and student estimates can check whether the data compared
favourably with the model. Third, the infit mean square map shows the level of
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parameter fit in the model for each question. The estimates produced by QUEST
are used to create a number of statistics which then allow analysis of various
features of student performance and of the hierarchy of level used to code the
questions.

Design
To investigate the difficulties associated with the assessment of van Hie le levels of
reasoning, a detailed study of the geometric understanding of 60 pre-service
primary teachers was carried out at the University of New England, Australia. "fhe
study aimed, in part, to provide a written test based on the Mayberry (1981)
interview schedule in which each item was designed to the operational definition of
one of the van Hie le levels. The items tested for understanding in van Hie le Levels
1 to 4, in seven geometric concepts, square, right triangle, isosceles triangle, circle,
parallel lines, congruency and similarity. To accommodate time restrictions, the
seven concepts were divided between two test papers, Papers I and II. Initially the
responses of students to the written test were assessed using Mayberry's pass/fail
scoring method of evaluation. Follow-up interviews were conducted with students
to validate the levels of thinking as determined in the written test. When collating
the results, inconsistencies in the assignment of van Hie le levels for some students
emerged (Lawrie 1997). Interviews did not appear to clarify these inconsistencies.
The QUEST program (which utilises the Rasch measurement theory) was applied to
the results to confirm the initial assessment, to confirm patterns which emerged in
the results, and to determine whether there were any other patterns not yet
identified, i.e., the Rasch analysis was applied to give a sharper quantitative edge to
what had been primarily a qualitative procedure.

Initial Results
Table 1

Highest level achieved by the Australian students for each concept (% of sample)

Concept No Level Level 1 Level 2 Level 3 Level 4

Square 0 3 84 7 7

Right triangle 3 19 55 19 3

Isosceles triangle 7 27 43 20 3

Circle 0 13 19 52 16

Parallel lines 0 17 80 0 3

Congruency 0 32 35 3 29

Similarity 0 43 40 10 7
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The results of the initial assessment of the students' levels of understanding are
summarised above in Table 1. When students failed to identify concepts, their
results were recorded as No Level. All results are given as percentages, with the
horizontal sums being (approximately) 100%.

The results show that the majority of students (77%) were assessed as having
mastery of no greater than Level 2 understanding, i.e., they were comfortable
recognising concepts and listing the associated properties, but did not understand
the relationships between the properties.

The results (7.8%) of a few of the students showed inconsistencies in that the results
did not validate the level hierarchy. One particular issue related to the
inconsistencies was that some of the items did not appear to be measuring the van
Hie le level for which they had been designed.

Results using the Rasch model
The QUEST software application (Adams and Khoo 1993) which utilises the Rasch
measurement theory was applied to the results. A comparison drawn by the
program between the relative degrees of difficulty of the question parts
demonstrated patterns which support the van Hie le level structure, and produced an
estimate of geometric understanding for each student. The reliability of estimates
for both items and cases, and the internal consistency parameters were all close to
1, showing that there was good separation between the items and between the cases,
and that the items came from the same underlying construct, i.e., geometric
understanding. All the infit and outfit mean squares for item and case estimates
were close to one, indicating that the data fit the Rasch model well.

The statistics from the QUEST application indicated the following patterns. For
the infit mean square maps, the items with the largest values are those which have
been answered correctly by a greater than expected number of weaker students, and
incorrectly answered by a greater than expected number of better students. Almost
all the items with largest values were found to be testing for understanding of van
Hie le Level 1. This suggests that while the questions were clear to the weaker
students, the better students may have had difficulty in interpreting the thrust of the
Level 1 questions. Second, the item estimate maps showed that Level 2 question
parts requiring the identification and naming of properties of sides of figures
generally had lower difficulty thresholds than those requiring demonstration of
knowledge of angle properties. This indicates that students were more confident
with, and had a better awareness of properties of sides than properties of angles.



The calibration of the likelihood of students to answer items correctly in the item
estimate maps showed that the average student was able to give a correct response
to questions testing for understanding of van Hie le Levels 1 and 2, together with a
very few of the questions testing for understanding of Level 3. The item estimate
maps indicated also that the difficulty thresholds of some items supported the
earlier observation that those items were unsuitable for measuring reasoning at the
thought levels specified by Mayberry. In particular, difficulty thresholds for some
Level 3 and Level 4 items suggested that the questions do not have sufficient
complexity to measure the level for which each had been designed.

Analysis
To facilitate a deeper analysis of the results, the question parts were grouped by
concept within each van Hie le level, then plotted against their difficulty thresholds.
Any clusters appearing in the resultant graphs could indicate patterns worthy of
analysis. The graphs are given in Figures 1 and 2. Each graph shows an increasing
degree of difficulty from lower left to upper right, corresponding approximately
with van Hie le Levels 1 to 4. However, the change in the degree of difficulty in
both figures is much greater between Levels 2 and 3 than between the other levels.
There is little discernible difference, and quite a degree of overlap between the
degrees of difficulty for the questions set to test Levels 1 and 2, and, again, for
Levels 3 and 4. This suggests that the students found the questions testing for
understanding at Levels 1 and 2 to be similarly easy, while the questions testing for
Levels 3 and 4 were found to be similarly difficult. Such an interpretation supports
the results of the initial analysis, that the majority of the students were unable to
demonstrate understanding for van Hie le levels higher than Level 2. The overlap
between the levels suggests also that not all questions are testing for the van Hie le
level for which they have been designed.

Figures 1 and 2 indicate that there is a greater range in the difficulty thresholds in
Level 3 than in the other van Hie le levels. The item analysis gives the range as
from -3.40 to +4.02. First, there are several items which have negative difficulty
thresholds similar to the Level 2 items. This feature is discussed below.
Examination of the items with positive difficulty thresholds led to the emergence of
a further pattern. When the phrasing of questions was more generalised, the
difficulty threshold of the questions was greater. Correspondingly, a lower
difficulty threshold was associated with questions which used short direct sentences
and which referred to or included diagrams. Thus, the larger than expected range
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in the difficulty thresholds for the Level 3 items appears to result from the
particularly wide variety of question types.

Figure 1
Thresholds of Items for Each van Hie le Level - Paper I

Figure 2
Thresholds of Items for Each van Hie le Level - Paper II



The four features highlighted in Figures 1 and 2 deserve comment. First, there is a

cluster of nine items indicated by a circle in Figure 1. These question parts were
all designed to measure for understanding of the circle at van Hie le Level 3.
However, the graph indicates that the degree of difficulty of these nine question
parts is similar to the degree of difficulty of the Level 2 items. This offers an
explanation for the higher Level 3 success rate for the questions on the circle
compared the results for other concepts, shown in Table 1. Second, Figure 2 shows

a cluster of four items indicated by an ellipse. These question parts, which are
across more than one concept, were also designed to test for Level 3 understanding.
The four questions require either a simple yes/no response, or ask for recall of
factual information. Their degree of difficulty is shown as being similar to that of

the middle order Level 2 items, indicating that questions not requiring explanation

of a student's answer do not necessarily provide insight into ability to reason at van

Hie le Level 3.

Third, again in Figure 2, Q 11 is identified. The item was designed to test for

Level 1 recognition of isosceles triangles. Its position in the graph and its threshold

(-0.65) suggest that it is much more difficult than similar Level 1 questions.
Examination of the item shows that a correct response requires identification of an

equilateral triangle as an isosceles triangle, a Level 3 skill. Fourth, a rectangle in
Figure 2 identifies two items showing noticeably different difficulty thresholds.

Both questions test for awareness of necessary conditions in defining an isosceles

triangle. However, Q 28 with the higher difficulty threshold (+1.41) probes for
understanding of necessary conditions, while Q 29 (difficulty threshold of -2.72)

asks for recall of a definition. This supports the above notion that questions
requiring the recall of information without explanation of reasoning do not
necessarily measure understanding greater than van Hie le Level 2.

Conclusion
The study employed a (relatively) new technique developed by ACER to provide a
detailed quantitative analysis of the data. It involved use of the Rasch partial credit
modelling process provided by-Masters (1982). This allowed on a single scale, a

measure of item difficulty, and of an individual student's ability to achieve success.

The purpose of the application of the Rasch model was to undertake a deeper
analysis of the test items and the student responses than were available to Mayberry,

and not previously undertaken in the area of geometry. Also, the analysis was
designed to complement and extend the observations made in the initial results, by
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giving a sharper quantitative edge to what had been primarily a qualitative
procedure. Of significance are two features. These are:

1. The quantitative analysis confirmed the trends in the results which emerged in
the initial analysis. These included confirmation that most students were able
to demonstrate van Hie le Levels 1 and 2 understanding, but not higher levels
of reasoning, and that not all questions were testing the level for which
Mayberry had designed them.

2. Patterns in the responses which had not been perceived, or were not
particularly clear in the initial analysis, emerged. Many of the Level 1 items
showed the largest values in the infit mean square maps, indicating that higher
performing students may have had difficulty in interpreting the thrust of these
questions. A pattern made clearer in the QUEST analysis was that in the Level
3 questions, the more generalised the phrasing of, the greater was the degree
of difficulty experienced by the students.

The focus of the analysis of the initial results on how students performed on a
written test version of the Mayberry questions led to the identification of
inconsistencies in the reasoning of some students. The QUEST analysis confirmed
the occurrence of these inconsistencies.
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RETURNING TO UNIVERSITY: MATHEMATICS AND THE MATURE
AGE STUDENT'

Gilah C. Leder and Helen J. Forgasz
La Trobe University, Australia

Abstract
In this paper we examine what motivates mature-age students to commence mainstream tertiary
mathematics courses and subsequently to persist, modify or drop-out of their courses. Our
explorations were shaped by the model of academic choice proposed by Eccles (Parsons) et aL
(1985). Earlier findings from the study were presented at a previous PME conference.

Introduction
In many countries more students than ever before are accessing higher education. Yet,
there is growing international concern about enrolment profiles and waning interest in
the study of advanced mathematics (Jensen, Niss, & Wedege, 1998). The changing
emphasis in Australia for entry into higher education from school leavers to first time
participants, irrespective of age, was an important impetus for the present study.

What are the factors that motivate mature-age students2 to commence mainstream
tertiary mathematics courses and to make subsequent course-related decisions to
persist, modify or drop-out of their courses? How effective are older students in
utilising the opportunities for participation in tertiary mainstream mathematics courses
and how do institutions respond to their specific needs? These questions formed the
framework for a three year semi-longitudinal study. The study is now in its second
year and comprised four phases:

1. determining relevant factors to explore (through an extensive literature review)
2. determining enrolment patterns of mature-age mathematics students
3. a large scale quantitative survey across five universities
4. a longitudinal qualitative study, to allow in-depth exploration of affective and

related factors, of a smaller sample of mature age mathematics/science students.
Results from the first three phases, and the methods used, have been reported
elsewhere (e.g., Brew, 1998; Forgasz, 1998a, 1998b; Forgasz & Leder, 1998; Leder
1998; Leder & Forgasz, 1998). In this paper we focus primarily on data gathered as
part of the fourth phase.

The model of academic choice proposed by Eccles (Parsons) et al. (1985) served as an
initial framework for probing the data. The model has previously been used to explain
subject choice decisions of students and is assumed to be sensitive to gender
differences. The authors contend that:

choice is influenced most directly by the students' values (both the utility
value of math for attaining future goals and the attainment or interest value

1 The financial support of the Australian'Research Council and the research assistance of Chris Brew are
acknowledged with thanks.

2 Students who are 21 or over on March 1 of the year in which University entry is sought.
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of ongoing math activities) and the students' expectancies for success at
math. These variables, in turn, are assumed to be influenced by students'
goals, and their concepts of both their own academic abilities and the tasks
demands. Individual differences on these attitudinal variables are assumed to
result from students' perceptions of the beliefs of major socializers, the
students' interpretation of their own history of academic performance, and
the students' perception of appropriate behaviors and goals. (pp. 97-98)

Research aims
Whether the variables identified by Eccles et al (1985) likewise shaped the attitudes
and decisions of the mature age sample in selecting and continuing with university
mathematics is discussed in this paper. Concentrating on two students also allowed us
to contrast the survey data gathered as part of phase 3 of the study with the much
richer information yielded by the qualitative methods used in phase 4.

Literature review
Previous Australian research has indicated that gender, socio-economic status [SES]
and home location (urban/rural) influence school completion rates (e.g., Ministerial
Council on Education, Employment, Training and Youth Affairs [MCEETYA], 1994).

Students' attitudes to tertiary studies, decisions to enrol in higher education courses,
and level of achievement attained appear to be influenced by a range of social, cultural
and affective factors, the desire to pursue academic interests and to gain entry into an
attractive career (McInnis, James, & McNaught, 1995; Ramsay, Tranter, Sumner &
Barrett, 1996). Course related factors, such as difficulty, pressures, expectations, poor
teaching, and boredom can also contribute to students' decisions to drop out of
university (Abbott-Chapman et al., 1992). Impersonal and large class sizes, an
ineffective tutorial system, lack of support, assistance and encouragement, and poor
facilities were critical learning environment factors cited by withdrawing students.
Pedagogical approaches, curricular content, the ethos of a mathematics department,
and perceptions of discrimination have been given by mathematics students as reasons
for their withdrawal (Forgasz, 1998a; Rogers, 1990; Taylor, 1990).

Australian studies (e.g., Hore & West, 1980) found that mature age students are
typically from lower SES origins than younger students and that parental expectations
for daughters to pursue tertiary education were often low. Forgasz (1996) and Pierce
(1995) repoted mature age students to be highly motivated and success-oriented.

Overview of the project's instruments
Five data gathering tools were used: a survey questionnaire, interviews, regular e-mail
(or snail-mail) correspondence, 'tag for a day', and the Experience Sampling Method
(Csikszentmihalyi, Rathunde, & Whalen, 1993) or 'beeper-activated' schedule. A
summary of the methods, with sample items, is shown on Table 1.

Table 1. Summary of data gathering methods

Method/Contents Selected Sample items
Survey: computer la. Do you regularly speak a language other than English at home?
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Method/Contents Selected Sample items
scorable and open-ended
items. Four main clusters:
1. biographical/

background details

2. enrolment issues
3. affective dimensions
4. perceptions of

mathematics learning
environment

(Yes/No)
b. Parents' educational backgrounds (open)

2a. What degree/s are you studying? (open)
b. Why are you studying mathematics? (check boxes from list

provided)
3a. How good are you at mathematics? (1-5 rating)

b. Do you enjoy university mathematics? (Yes/No/Sometimes)
4. Re: University mathematics:

well taught (5-point Likert: SA-SD)
lecturers approachable (SA-SD)
assessment is fair (SA-SD)

Interviews: semi-
structured interview
protocol (same issues as
for survey)

Tell me about your life pathway that has lead you to being enrolled
in your current course.
Comment on university teaching: e.g., quality/ approachability of
lecturers/tutors, level of support

E-mail/Snail-mail:
monthly communications.
Varied formats included
open and closed items.

May message: How have you usually felt during lectures over the
past month? (Mark with an "X" as many words that apply): interested;
relaxed; worried; successful; confused; clever; happy; bored; rushed;
panicky. Write one or more words of your own.
October message: What are your reactions to your studies at
university this semester? [content of courses, lectures, tutorials,
assignments, pressures on your life etc.]

"Tag": spend time with
student on campus.
Observations recorded in
field notes.

Observations of
learning environment (to compare with student's views)
behaviour in lectures, with other students etc.

Keep notes on conversation details
"Beeper": for six
consecutive days, students
were 'beeped' six times
daily. They recorded what
they were doing and
feeling at these times on
prepared Experience
Sampling Forms [ESF].
Study, as well as other
activities, were thus
captured.

As you were 'beeped':
Where were you? .

What were you doing?
On 5-point scales (not at all - completely/very much)

Were you living up to your own expectations?
Was this activity important to you?
Were you satisfied with how you were doing?

Mood: (semantic differential type; 5-point scale)
irritable - cheerful; competitive - cooperative

The participants
Mature age students (99 students out of a total sample of 815) who completed the
survey questionnaire were invited to participate in later stages of the study. Of those
who volunteered, 26 were interviewed. Not all chose to participate in all qualitative
data gathering phases. A summary of the sample sizes for each phase of the study to
date is shown on Table 2.

Table 2. Summary of number of participants in each stage of the study to date

Survey Interviews E-mail "Tag" "Beeper"
99 26 19 9 21
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The two students for whom we present data in this paper are Caitlin and Boyd
(pseudonyms). Both were enrolled at the same university which, according to the large
scale survey findings, was highly ranked on many of the tertiary mathematics learning
environment variables tapped (see Forgasz & Leder, 1998).

Results and discussion: What the data say about Boyd and Caitlin
The survey data
Survey responses from Boyd and Caitlin revealed that they had similar English-
speaking home backgrounds. They could be considered to come from low socio-
economic [SES] circumstances, as indicated by their parents' educational levels (no
tertiary education) and occupations (working class), and the school type (government)
they attended. Neither Boyd nor Caitlin was in a permanent relationship and both lived
in rental accommodation.

Both Boyd and Caitlin were enrolled as part-time students - Boyd in a mathematics
and computer science diploma course and Caitlin in an Arts degree, majoring in
mathematics. Neither received government financial assistance to study. Boyd had
previously completed a degree course. At different times, Caitlin had begun, then
dropped out of two university courses. Dissatisfied with her current situation, Caitlin
wanted to enhance her career prospects and finally live up to family expectations. She
chose mathematics because she had been successful at it in school. General curiosity
and an interest in quantum mechanics (and later possibly in research) were Boyd's
main reasons for studying mathematics. Both had enjoyed school mathematics but
Boyd's school mathematics background was stronger than Caitlin's.

Both also enjoyed their mathematical studies at university. Boyd felt that he was
excellent at mathematics and expected to achieve highly. Caitlin believed she was
good at mathematics and also expected to excel. They did not think they were likely to
drop out of a mathematics subject during the year. They found university mathematics
to be fairly easy but challenging, believed they understood the work and were
confident of passing. They considered that the subject was well taught, lectures were
not boring, sufficient individual help was available, lecturers were approachable, and
assessment and the work load were fair. Both indicated that they had neither perceived
nor experienced any form of discrimination within the mathematics department.

From the survey data responses, Boyd and Caitlin appear to be similar. Much more
was learnt about Boyd and Caitlin from the in-depth qualitative data.

Qualitative data sources
Interviews. Interviews were conducted early in the second year of the study.
Summaries, including selected quotations, of the students' perceptions of themselves
as mathematics students and of the learning environment are shown on Table 4.

Table 4. Summary of interview data for Caitlin and Boyd
Boyd Caitlin

Past experiences and affective issues
failed maths "spectacularly" at school - I excelled in mathematics at school
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did not like it; returned to do grade 12
mathematics in 1996 - now has
genuine interest in the subject.
lst time at university: began BSc -
transferred and completed BA
works in health-related job; felt he was

parents: high expectations despite no-one in family
with tertiary qualifications
1' attempt at tertiary study: very poor, got involved
in other things, dropped out
rd attempt: part-time: financial and personal crises,
dropped out again

burning out and also feared
redundancy

Now has different attitude - no parental pressure;
"most important thing is to... get this degree after all

studying now because of interest in
quantum mechanics and philosophy;
chose "mathematics rather than

the torment that it's caused me". "The greatest thing
I've had to overcome is the confidence... to come
back and give it another shot and succeed".

physics because I don't like laboratory
classes... never get experiments to
work".

believes male mature age students have clearer
vocational goals for studying mathematics than she
has. Wants to work in a field that uses mathematics;

finds 2`1" year demanding; uncertain
how far he will go

thinks this unrealistic. Mixes mainly with male mature
age students; sees female mature age students as
sitting alone and fairly quiet.
derives pleasure out of "stretching my mind"

Perceptions of learning environment
noticed enormous gender imbalance:
"This year is a less macho environment
as the macho ones simply did not pass
the first year".
expected staff to be intimidating but
found mathematics tutors helpful.

staff approachable, "only complaint... sometimes
finding people talking down to me because I don't
know as much about their field as they do".

E-mail correspondence. Both Caitlin and Boyd replied to all four e-mail/snail mail
messages (May, July, September & October, 1998). Relevant responses to items
probing their past experiences, tapping affective issues with respect to mathematics
and views of the tertiary learning environment are summarised on Table 5.

Table 5. Summary of e-mail/snail mail correspondence from Caitlin and Boyd
Boyd Caitlin

Affective factors
May: Busy with university politics. Pain From May & July. Part-time job change: "I'm not
from old injury "disruptive enough to cause sure whether this affected my exam performance but
me to fall behind". "Enchanted" with one it was not an ideal way to study & I felt very
of his two mathematics subjects; stressed". "Not as well prepared [for examination] as
"humoured" and "entertained" by lectures; I would have liked... [performed] very well... made
"challenged" by tutorials. two mistakes... very frustrating".
July: "Confident" in one mathematics Sept. Pleased with previous semester grade (A+);
subject; "worried" about the other. This semester even better: Enjoying studies, would
Sept.: "Apathetic & lethargic" about like to be full-time: "I feel very confident and
studies this semester. Has "a major comfortable with the maths department and with my
motivational slump... towards studying the abilities". Work less stressful; has more money;
course material". Spending much time on "studying more... doing well".
mathematics unrelated to course: "In a way Oct.: Motivated "...by doing well... [and] by interest
I can actually achieve my goals without in the subject". "I am amazed at how good a student I
even completing the course". am nowadays... still afraid of the fall...". Friends
Oct.: depressed and very stressed about (other mature age students) who study mathematics
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employment and family. Believes he failed
one mathematics examination; did not take
the other - opposite to initial intentions.

are "great for keeping up enthusiasm...". Expects to
perform well, "doing better than expected".

Mathematics learning environment
May: Lectures: "I think the lecturers in July: Lectures: "I'd like... clear overview of what the
mathematics are very dedicated to the subject is covering and quick summaries along the
students". Tutorials: "... best if answers way". Had fruitful discussion with lecturers.
are explained in far greater detail... many Tutorials: "no improvement needed". Assignments:
mature age students have a sketchy "... expectations & relevance clear and the time
background in maths and are unfamiliar allowed reasonable... especially useful... Easy to be
with assumed knowledge"; comments on lazy... in tutorials". Exam.: Unfair "I wanted the
own inadequate school level background. exam to test my understanding of topics, not just how
July: "tutor could learn a few teaching to practice the methods of solving problems".
skills... treats us [as would] a primary Sept.: thinks "courses are administered well... feel
teacher". Assignments: insufficient worked very OK to approach staff... with questions".
examples in text book to "serve as a Oct: "always look forward to classes and enjoy
guide". Examination: "Felt sufficiently diversity of format". High-point - tutorials: "I love
prepared] but "didn't perform as well as I them, working through questions... either alone of
thought for [one subject] but I was with someone else. It's great to speak maths, to iron
pleasantly surprised [for other] ". Applied out bad techniques, to see how my peers approach
for special consideration on medical problems and get very personal direction". Low point
grounds. - practice classes "[I] feel very isolated. Most of the
Sept: no relevant comments class are young men and they tend to congregate and
Oct.: spoke to mathematics lecturer before be very rowdy. I feel self-conscious, sitting alone and
deciding not to sit for the examination. being so quiet. I wonder what they think of me...".

"Tag" and "beeper" data. Boyd and Caitlin were 'tagged' for about two hours on the
days they were handed the beepers. Serendipitously, both were 'tagged' by the same
researcher, on the same week day, at the same time of day, one week apart (Caitlin
first). Both students were enrolled in the same second year mathematics unit. The
researcher accompanied them to lectures. Field notes revealed that they behaved
differently during the lecture. Caitlin concentrated and summarised the lecturer's notes.
Boyd was less focussed and copied the notes verbatim. However, the researcher and
both students concurred on the high quality of the lecturer.
Experience sampling forms.
Space constraints do not allow a detailed discussion of the data gathered in this way.
Briefly, Caitlin's and Boyd's responses to the ESF prompts confirmed the impressions
gathered from the interviews and their e-mail responses. For example, in his July e-
mail message Boyd had commented on the lack of sufficient practice examples. When
asked "What were you doing" when beeped, we learnt that Boyd used his travelling
time on public transport to read a book about mathematicians and their work and to
attempt some of the examples given. The beeper signal also caught him at a number of
meetings of the environment collective, one aspect of his involvement with student
politics. Caitlin told us in September that she felt confident and expected to do well in
mathematics. When we compared Boyd's and Caitlin's descriptions of their mood for
the times the beeper signals caught them during studying activities, Caitlin consistently
revealed herself to be happier, more confident, more focussed, and clear. Interestingly,
Boyd had found the 'beeper' activity very therapeutic and requested photocopies of
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what he had written.

Concluding comments
The findings reported in this paper reveal that data gathered from a combination of
quantitative and qualitative sources are both complementary and supplementary. From
the survey data alone it could be concluded that Caitlin and Boyd were quite similar
people. Even though the qualitative data were consistent with many of their survey
responses, they also revealed ways in which the two individuals differed.

Our data suggest that the Eccles et al. (1985) Model of academic choice partially
explains Caitlin's and Boyd's selection of mathematics as an academic pursuit.
However, there were other factors associated with their personal lives and
psychological well-being, as well as aspects of the learning environment, that appear
not to taken into account by the model. These factors may be critical in the students'
decisions to persist with mathematics into next year. As yet, we are very uncertain
about Boyd's future at university and more generally.

The findings also raise a number of questions to be explored further:
How do the lives of mature age students with and without families differ?
Is mature age study only open to those who are financially secure?
Do all mature age mathematics and science students return to study to compensate
for educational mistakes made on leaving school?
Do all mature age students cope with inadequacies in their learning environments?
How critical is the role of the institution and staff of the mathematics departments in
which students are enrolled?
Do all mature age students share the same strong initial motivation to succeed?
Is there a pattern of difference in the roles and expectations of male and female
students?
Are the perceptions of university courses and the daily routines and pressures that
may affect studies the same or different for mature age students from overseas and
from different ethnic backgrounds?
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ELEMENTARY SCHOOL TEACHERS' UNDERSTANDING OF
KNOWLEDGE OF STUDENTS' COGNITION IN FRACTIONS

Yuh-Chyn Leu
National Taipei Teachers College, Taiwan, R.O.0

Abstract

This study was aimed to investigate elementary school teachers'
understanding of knowledge of students cognition in fractions. Instrument used
was developed based on the theories of hierarchy of mathematics understanding
in two stages. First, the results of elementary school students' fractions
understanding was analyzed. Furthermore, the assessment instrument was
developed based on these students' understanding.

136 subjects took the paper and pencil test. 33 were selected for interview. The
findings: Elementary school teachers could be classified into three levels on
their understandings of students' cognition in fractions. 18% of the elementary
school teachers could be identified as excellent level.

Introduction

"Understanding the knowledge of students' cognition in mathematics" is one
important component of the knowledge of mathematics teachers (Fennema et al,
1992; Markovits et al, 1994; Even et al, 1996). Research results supported the
finding that having more or less of this type of knowledge effects teaching

(Carpenter et al, 1989).

Fractions is closely connected to decimals, percentage, ratio and division. All
of these concepts not only play important roles in mathematics but also occupy
mass of the elementary mathematics materials. Students have many difficulties
in learning fractions ( Leu, 1991). Based on these reasons, this study wanted to
investigate the elementary school teachers' understanding of the knowledge of
students' cognition in fractions.

Because the coverage of the knowledge of students' fractions cognition is very
broad, it's difficult to investigate all perspectives. This study only chose some
important results of the theories of hierarchy of mathematics understanding,
such as students' problem solving strategies, misconceptions and understanding
levels etc. (Hart, 1981) as well as students' thinking tendency(Bruner, 1973). In
this study, questionnaire and interview were used as research methods.



Sample and Assessment Instrument

Sample
A convenient sample of 136 elementary school teachers who took in-service

summer school program in National Taipei Teachers College took the paper and
pencil test in this study. Among these 136 subjects, 33 were selected according
to the proportion of gender, teaching experiences and teaching grade from the
136 subject sample for semi-structured interview in one to one manner. It takes
about 15 minutes to interview. To have the in-service training, these teachers had
to pass a qualified exam. Based on their enthusiasm for learning and their
capability, their performance on my research questions should be generally
better than the average teachers.

Assessment Instrument
The paper and pencil test and the interview questions have developed on the

understanding of students' fractions learning. Therefore, the tasks were
developed in two stages. At the first stage, the information of elementary school
students' fraction understanding was established. Tasks for elementary students
were either designed by the researcher or from Yong(1987). At the second stage,
five tasks for teachers were developed based on this information from the first
stage. Each task has two forms. Students' tasks were firstly presented. Then the
elementary school teachers were required to answer the difficulties. students
might have, the problems-solving strategies students might take or the reasons
why students made those mistakes... etc. How the tasks were designed will be
illustrated by following two examples.

Task 1: types of thinking tendency
The younger the children, the more often they use the intuitive thinking to

solve problems(Bruner, 1973). In task 1, besides evaluating whether the
elementary school teachers know that students will use the intuitive thinking to
judge about equal partition, this study also want to know whether the elementary
school teachers do know the difficulties students might encounter when they
learn equivalent fraction and the figures of same-size irregular-shapes.

In the following .figures, judge which shaded areas of
them are one half of the whole areas. If the answer is Yes,
please mark ; otherwise, please mark x.

a

(1)Please make a judgement about the order of difficulties



which might be encountered by the 2nd, 3111, 4' grade
students.
The order of difficulties ( Please mark with a, b, c, d)

Easier easy hard._ harder_:___

(2)Please write down the reason why you make such a judgement.

The 4 items in this task were answered by about 660 students in 211d, 3rd and 4th

grades. The order of the difficulties of them is a, c, d, b. There is few percentage
difference between the rates of correct answers in a (98%) and c (95%). The
difference between c and d is around 30%; the difference between d and b is
around 20%. a with c, d, and b should be belonged to different 3 understanding
levels. To judge item c, according to the interview data, students compared the
shaded area with the blank area, they used intuitive thinking to decide whether
the shapes of figures are equal. Therefore, the rate of correct answer in c is
pretty high. Although students can use intuitive thinking or analytic thinking to
judge those 4 parts of d are equal, they thought the shaded area of d is 2/4 of the
whole. They need to use analytic thinking to judge 2/4 equal to 1/2, so d is more
difficult than c.

Task2: problem-solving strategies.
The students of Taiwan also have their own problem-solving strategies, but not

for those who have learned the rules of algorithm. Those students still choose
the rules of algorithm to solve problems unless they were encouraged to use
alternative strategies. Students' performances in this task were from Yong(1987).
They (around 260 students) had never learned the division of the fraction at
school.

" Fraction divides fraction" is the mathematics material for the 6'
grade. The rate of correct answers for the two following questions
were the results of the survey which randomly investigated students of
5111 grade in Taipei.

a. calculation:.3/4 = (rate of correct answer is 15%)
b. applied question: In a relay race, each contestant has to run 1/8

kilometers, if there is a relay race of 3/4 kilometers, how many
contestants will be needed? (rate of correct answer is 43%)

(1) Do you think the students' rates of correct answers for these two
questions are reasonable or not? Please write down your reason.

(2) In solving question of b, besides using 3/4 4-1/8, what were other
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possible strategies you think that students might use? (strategies
must be reasonable and can get correct answer)

In task2, this researcher told the elementary school teachers that "fraction
divides fraction" is the mathematics material for the 6`h grade and the students in
the task were 5th grade. Teachers were reminded that the 5th grade students did
not learn "fraction divides fraction" yet.

Result

This study also took taskl and task2 as examples to explore elementary school
teachers' performances on understanding the knowledge of students' cognition
in fractions. This study will show some of the teachers' answers as examples;
T# is used to represent one subject's answer in the task.

Taskl : types of thinking tendency
Question a appears frequently in learning materials as one half, so

teachers know that it is the easiest for students.
27% of the teachers got order from easy to difficult as: a, c, d, b.
T116:when dealing with questions a and c, students can use

intuitive thinking to make a judgement. But d is 2/4 = 1/2,
students must have the concept of simplification. b is much
more difficult than d for students to explore.

38% of the teachers got order from easy to difficult as : a, d, c, b.
T229: 1/2 is half of the whole area; so it is much easier to tell the

figures of a, d and c. ( d : The students will automatically
switch the above shaded area with the below blank one; c:
they will also switch the two small half circle to make up for
the one large half circle.)

25% of the teachers got order from easy to difficult as: a, d, b, c.
T417: a: students can immediately tell that 1/2 is half of the whole.

d : divided into 4 equal parts, two of which are the shaded
areas. It is also easier for students to tell 1/2. b: It can be
divided into left and right two parts , the shaded area of each
part is 1/2. c: students must draw the diameter of a circle,
but most of them can't do this.

10% of teachers got other answers.

According to the above data, 27% of the teachers understood students'
thinking tendency and the order of difficulty. From easy to hard, the order is : a:

two equal parts , d: equivalent fraction, b: the figures of same-size irregular
shapes. 63% of teachers don't understand students' thinking tendency but
understand the order of difficulty. 10% of teachers neither know students'



thinking tendency nor understand the order of difficulty.

If the elementary school teachers don't know or don't accept that intuitive
thinking is one of students' thinking types. It seems that:

teachers' selection of instructional materials and sequences would not match
with students' learning sequences.

T414: for example, in order to divide a circle into a half we must
know what a diameter is, and the diameter must be across
the center of the circle; then, we can get two equal halves of
the circle. I don't think a 2"d grade child can answer such a
question. Diameter and radius are teaching materials for the
46 grade students.

elementary school teachers will adopt the way of analytic thinking to teach
and the way they use to evaluate students' work might be based on absolute
precision but not an visual and operational based precision.

T414: such as dividing the chocolate bar, cutting it into a half I
doubt that student only did it by probable judgement. For
our teacher to solve the same problem, we also need to
measure the length, then, divide it by 2 and cut it.

Task2: problem-solving strategies.
14% of teachers were aware of the diversity of students' problem-solving
strategies and can specify students' problem -solving strategies.

T105: (a) The correct rates are reasonable. "How many
contestants will be needed" is asked in the applied
question. The answer can't be a fraction. Students will
get an integer as answer by all means.

(b) using 3 = -6 -6 is six one-eights
4 8 8

34% of teachers either were aware of the diversity of students' problem-
solving strategies or can specify students' problem -solving strategies.

T218: (a) The correct rates are reasonable. Students can reason
out each question when solving the applied questions
but couldn't solve calculated question if they forgot the
rules of algorithm.

(b)( no answer)

52% of teachers neither were aware of the diversity of students' problem-
solving strategies nor can specify students' problem -solving strategies.

T230: calculation is the foundation for the applied question;
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only] 5% got correct answer in solving simple question of
calculation. But in solving applied question, both adroit
calculation and consideration are required. It seems not
reasonable that 43% of the students got correct answer in
solving such a complicated question.

Conclusion

According to elementary school teachers' performance on answering those 5

tasks, three levels of understanding of knowledge of students' cognition in
fractions was found as table 1.

Tablel: three levels of understanding of knowledge of students' cognition in fractions.

task Knowledge of students' cognition in fractions excellent Mediocre unsatisfied

1 Understanding students' thinking tendency
and the order of difficulty of various figures

Q 0 0
or

(00 0 4
or

0 0

0 4 4
or

4 4 4
or

4 4

0
or

1
or

2 Be aware of and be able to specify students'
problem-solving strategies.

3 Be able to evaluate students by considering
the learning difficulties of fractions

Task 1-3 are paper and pencil questions. 10% (b) 73% 18%

4 Be able to explain the reason why students
make certain misconceptions

0 0 0 4
or

4 4
0

or
4

or
5 (oUnderstanding that assembly ability will

influence students' performance on solving
equivalent fractions

Task 4-5 are interview questions. 18% 70% 12%

(a) The answers of each task can be stratified into three levels: excellent, mediocre, and

unsatisfied.0, 4 and are represented respectively as three levels.004 means
that teachers get one mediocre answer in task 1 or task2 or task 3 but get two excellent

answers in the others. It isn't represented in the question order.

(b) 10% means the percentage of excellent performance in the paper and pencil tasks.

(c) Assembly ability means that students can divide unit into several parts, deal with each

part correctly and then, assemble each part into the required fractions of unit. Students

who lack such an ability can deal with each divided part but can not assemble each

part into the required fractions of unit.

If elementary school teachers do not understand their students' learning of
fractions, there could be some important effects on their teaching and students'

learning.
1.Teachers' selection of teaching material and sequences do not match with

students' learning.
Students could use intuitive thinking approach to solve problems.

However, teachers think students tended to use analytical thinking approach

IOU
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to solve problems just like themselves. So they select their teaching
materials and arrange their teaching sequence according to the cognitive
demand and task analysiS hierarchy. These two approaches will not match
well. For example, teachers think zith graders can divide a circle to two equal
halves only after they have learned the concepts of diameter and radius. But
most students already can divide a circle to halves when they are in rd
grade. They do it intuitively, i.e., through visual or by actually folding it into
two equal halves.

2.Teaching and evaluation do not match with students' learning.
Teachers conduct their teaching according to the analytical thinking

approach. However, students adopt intuitive thinking approach while they
solve problem.

Teachers may think that they should teach students' the rules of algorithm,
then ask students to apply those rules to solve applied problems. But
what's accepted by students should be put on these mathematics contents in
a meaningful and interesting context, then start from students' problem-
solving strategies and gradually link them to more abstract, formal
mathematics algorithm.

Teachers might take the criterion of absolute precision to teach and to
evaluate students, but students might take a visual and operational based
precision to learn or solve problems. For example: a teacher might use a
ruler to measure the length of a stripe of paper; then, he or she will use the
division to calculate the length of each part. In contract, a student might
divide the paper stripe through intuitive observation.

3.Teachers can't identify students' misconception and will overestimate or
underestimate the difficulties students encountered while solving problems.
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Abstract
The purpose of this study is to investigate the value an elementary school

mathematics teacher emphasized in her class. Participatory observationwas adopted as

the main research method. We found the mathematics teacher is a devout Buddhist.

She pretty much emphasized the importance to reinstate the original enlightenment. We

identified it as the core value in her teaching.

Introduction
In recent years, studies of teachers' beliefs showed an apparent inconsistency

between what a teacher thought and what a teacher taught (Anne, 1997;Chin,

1995;Thompson, 1984). Then, we would contend that this discrepancy is precisely the

reason why values rather than beliefs need to be studied.

According to Raths, L.E., Harmin, M., and Simon, S.B (1987), formation of value

contains three steps: choosing, prizing and acting. Those steps collectively define

valuing. Results of this valuing process are called values. In order to determine the

deeper factor that supports underpinning teachers' preferred decisions and actions, this

research tries to investigate a teacher's values shown in an elementary mathematics

classroom by the definition of values from Rath et al.



Methodology

We mainly adopted case study approach to find out the values transmitted in a

mathematics classroom. An elementary school teacher, Ms. Tsen, was selected among

teachers we have interviewed due to her recognized teaching expertise. She has 21 years

teaching experiences. Besides being a classroom teacher of 40 fifth grade students, she

was a mentor advising a student-teacher during our observation period.

The following procedures were carried out in order to collect data: observing Ms.

Tsen's mathematics class, interviewing her, observing the student-teacher's mathematics

classes and joining Ms. Tsen and the student-teacher's advising meeting interviewing the

student-teacher to check Ms. Tsen's values.

According to Rath's theory, acting, especially repeatedly acting, is an important

indicator for core values. Therefore, when analyzing data, we focused on what Ms. Tsen

repeatedly acted in classroom and what she considered as important and valuable.

When we came to a conjecture of Ms. Tsen's core values she was told and asked to

clarify.

Results
Buddhism is one of the major religions in Taiwan. Ms. Tsen is a devout believer

in Buddhism. The belief of it produces a great impact on her viewpoint toward

education. In this paper, we presented one value which she agreed upon: The purpose

of education is to reinstate the original enlightenment (**). To achieve the goal, she

required students to calm themselves down and start self-reflection on their own.

Following are some events indicating the evidence of the existence of this value. In the

following excerpts, "I" stands for the interviewer; "Tsen" for Ms. Tsen, "Ts" for the

student-teacher; "S" for Ms. Tsen's students, "C.O." for classroom observation, and

"Int." for interview.

1'. By way of "calming down" to reinstate the original enlightenment.

In mathematics teaching, Ms. Tsen was used to ask her students to repeat

mathematics questions or strategies, and require them to listen and look attentively
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frequently. This action reflected the "acting" component of values.

Tsen:"... There are 6 soaps in a box; we assign 5 boxes to 6 persons. How many boxes

can each person get? ... Lee, repeat the question I just asked. "(11.7.97.C.0.)

I:" What's your purpose of requiring students to repeat the question?"

Tsen: "My purpose is to let each student know what we are doing in the classroom; on

the other hand, I remind the students who are not concentrated in class to listen

attentively." (11.11. 97.Int)

Tsen: "You don't need to tell me the answer for this question; just tell me what the

difference between this question and the prior one is?... Listen carefully! Some

students still play with pencils. Put it down."( 11. Z97.0 O.)

Why does Ms. Tsen emphasize students' being concentrated in class learning?

The answer was embedded in the following classroom observation.

Tsen:" I issue a warning to you against your not being concentrated. Ok, let's begin

the next question: please use the method of filling the blank with the symbols of

multiplication to write down the question. Some students are whispering. Once

you calm down, you can solve this question. "(9Z 11.28.00.)

Why does Ms. Tsen think "being concentrated" and "calming down" can enhance

students' learning?

I: "In this forty-minute class, you have asked students to pay attention to what you said

for more than 10 times. However, your students quite already paid attention on

you, why you still keep asking them to be attentive to what you said?"

Tsen:" I found that once one is calm down, one can learn things much more diciently.

That is what I have learned from Buddhism. For example, I am able to integrate

the subjects teaching pretty well. And the teaching pattern was less flexible than

what I am doing now. I can notice the hazards that the students faced and try to
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adjust my teaching style. (3. 1Z98. Int)

" Besides requiring your students to be concentrated, what else would you

ask them to do? Apparently, some students are very concentrated but

they still can't get the point. "

Tsen: "That is the point. (Researcher's note: Here we see the "prizing" component of

values. When a person is concentrated, he is calm. Being able to calm down is an

innate ability that can help people to observe things much more clearly. No matter

what dumb or smart a person is, he/she can always show such ability."

I: "Those students who might be very concentrated in listening to the instructions,

but... "

Tsen: "Right, a student probably can not understand some of the viewpoints.

According to the terminology of Buddhism, it is a karmic obstruction (0). Take

"listening" as an example: for the same thing, some always look at the bright side

of it but others always look at the dark side. It's regrettable that some persons

always look at the dark side of events because they don't know the art of observing

things. What I did is to teach my students how to observe a thing and how to

detect everything around them. It's nothing but a root nature (Alt) to which I pay

close attention to. (Researcher's note: Here we see the "prizing" component of

values.)... Generally speaking, Buddhism can be defined as one kind of education

that can enlighten people's inborn wisdom and makes people understand the

truths of the Universe and life. The basic purpose of Buddhism is to recover a

person's original enlightenment, so Buddha means "enlightened being" aff,49.

(12.2. 97.Int)

2. By the way of " self-reflection" to reinstate the original enlightenment

Ms. Tsen often warned students the mistakes occurred but seldom told them what

their problems were.
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Tsen: "This question requires you to write it down by the way of filling the blank.

(Research's note: The correct answer is 13 =9 =()) Some ofyou write it down in

this way; let's take the first reaction as an example... Come over here, S9, how

did you write down this question by the way of filling the blank? "

S9: " 13 =9 =1 and 4/9"

Tsen: "OK, 13+9=1 and 4/9, if this is your answer, can you tell me what your

problem is? "(11.14.97. C O.)

When students made mistakes in the mathematics class, Ms. Tsen didn't tell her

students what their problems were, only reminding them that they make mistakes. The

reasons explained by Ms. Tsen were as follows:

I: "When a child made a mistake, apparently you would tell him he was wrong and

ask him to reflect on what the mistake was. Why did you choose this way to ask

him?"

Tsen: "When you make a mistake, you should beaware of the mistake by yourself. If a

child couldn't find his own mistake, I would help him to discover it. This is for

improving his nature of enlightenment (rkt). If he knows what his mistake is,

he may find out how to debug it. ... During the process of discussion, I never tell

them directly where the mistakes are and what should be improved."

I.. "Will you first ask him what the mistake is when you found it?"

Tsen: "I won't tell him where his mistake is directly. This will put a damper on his

awareness."

I: "What you emphasized is student's self-awareness. Do you think self-awareness is very

important in learning?"

Tsen: "Self-awareness is very important not only in learning but also over the whole

human life. (Researcher's note: Here we see the component of "p rizing " in values.)

That's your own feeling and awareness for yourself Everyone has such ability but

not every one can sense it. What I did is to guide my students to find their
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own mistakes out and restore the awareness. Therefore, it is not necessaryfor us to

tell students where the problems are. No sooner have they become calm, than they

will keep sober-minded and find the truths gradually." (11.18.97. Int.)

Ms. Tsen's requiring students to do self-reflection was also detected and found by

the student-teacher.

Ts: "... Generally speaking, most teachers mightpunish or award their students for their

performances. But I strongly fed that Ms. Tsen has donesomething more for her

students. To have her students to do self reflection, she asked several questions,

such as:' Are your behaviors only for others to observe, not for yourself?' 'Do

you know your behavior is right or wrong?'(3.26. 98.Int.)

Ms. Tsen's apprehension of Buddhism makes her choose such an education goal,

reflection. In addition, following paragraphs can show us that this education goal is

formed through "choosing", another one important component in the processes of

valuing.

Tsen: "The core of elementary education is life education. The reason why there are so

many problems in our society is because we put too much emphasis on subject

learning and ignore life education. ... It's just for teaching convenience, so school

subjects are classified into Language Art, Mathematics...etc.(Ms. Tsen thinks

teaching implementation of each subject should originfrom life education.)"

(3.17.98 Int)

Tsen: "Every thing is a Sura. I would require my students to observe deliberately the

environments around them." (3.24.98 Int.)

Tsen: " ... Traditional Confucianism only consult about this life of ours; in contrast,

Buddhism dearly points out the past, the present and the future. My responsibility

is to make my students reinstate their original enlightenment. I don't believe the

knowledge we have learned in school are sufficiently to help us to break away

from hardships ... " (1.6.98. Int.)
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According to Ms. Tsen, the purpose of education is to help students to break away

from hardships and suffering. To reinstate student's original enlightenment can help

reach this goal, which, however, can not be achieved only through subject learning.

Therefore, life education should be more highly emphasized than subject learning.

Discussions

Buddhism is one of the major religions in Taiwan. Tzu-Chi is one of the important

Buddhist organization. It publishes a series of books, such as: The world of Tzu Chi

The garden plot of Chin-Si (silent-thought) Chin-Si-Yu (words for silent thought), etc.

These books disseminate Buddhistic concepts and pass on the principles of how to get

along with people and deal with things properly in society. In addition, in the northern

area of Taiwan, there are 16 teacher sodalities. These sodalities in total have more than

ten thousand members. They are from different levels of public and private schools,

and various academic institutes. They weld the content of Chin-Si-Yu into their

curriculum. Therefore, in Taiwan, it is not unusual that Buddhism influences teachers'

teaching in elementary schools.

How do we define "values" and how do we claim that "this is Ms. Tsen's value?"

These still remain disputable. We followed Rath et al.'s definition, even though his

definition is more close to value clarification than value identification. We have

identified the value of Ms. Tsen, to reinstate the original enlightenment, through the

process of seeking the three components of values: choosing, prizing, and acting. Yet,

it does not mean that all candidate values should be examined and pass the above

mentioned criterion. Such kind of operational definition of values is adopted in this

study in order to get started with the investigation of values. Better description of

properties of values are needed.

We found Ms Tsen not only prized and cherished her emphasis of enlightenment,

but also combined the thought with the trend of constructivistic teaching in

mathematics. We were convinced that under such circumstance, it is easy and



comfortable for Ms. Tsen to express her thought in public. On the other hand, we were

concerned that what if a teacher's core value is against the mainstream values in the

society? Can we have chance to detect it with ease?

Note: This study was financially supported by The National Science Council, Taiwan, under the Grant No: NSC

87-2511-5-152-007
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ABSTRACT
The study aimed to explore what children's cultural activities are and to

understand the ways of their participation. Forty third graders selected from
elemental)/ schools of Taiwan were interviewed with four main questions, and their
responses were classified. The socialization and mathematical skills needed in an
activity and the amount of learning opportunities offered by adults were the indicators
used in deciding the degree of children's participation. It is proposed that the conflict
between cultural cognition and school mathematics might be a factor of school
mathematics being disconnected from everyday mathematics.

Introduction

The purpose of this study was to investigate the mathematical concepts that
occur in daily life, that children bring into school, and to explore the social contexts of
such mathematics.

There has been a considerable number of studies that link "school mathematics"
with "everyday mathematics" (Saxe, 1991; Petitto, 1982; Bishop & Abreu, 1991). The
focus of school learning on formal mathematics is cited as one critical reason why
children seem incapable of applying "school mathematics" to solve daily mathematics
problems. Further reasons are weak connections between problem situations and inner
representations (Hiebert & Carpenter, 1992), context-bound school mathematics
(Bransford, et al., 1986), and the fact that school mathematics is learned away from
social contexts. These are all possible explanations of the disconnection between
"school mathematics" with "everyday mathematics".

Some researchers agree that the strategies of solving daily problems created by
children are preliminary to learn school mathematics (Carraher et al., 1985; Bishop &
Abreu, 1991). Madell (1985) claims that informal methods of solving daily problems
are as often efficient as formal methods of solving school mathematics problems.
Formal methods learned in school- are initiated with informal methods of solving daily
problems. If a concept to be learned seems relevant to the informal methods that have
been used, children are more likely to learn it naturally. Thus to link knowledge
gained from out-of-school with school mathematics, we should accept children's
natural thinking. The design of "school mathematics" curricula should start with
"everyday mathematics", since informal methods are originated with everyday
mathematics.

According to Vygotsky's socio-historical perspective, the child is historical,
social, and cultural. (Minick, 1989). Bruner (1990) emphasized that the cognition of
human beings should focus on sense making of the world. He remarked that human
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beings seem to have an innate tendency to make sense of the world in narrative forms
and that narrative forms are distinct by cultures. This theory is supported by findings
in our ongoing research project, where we have found children growing up in farm
family learning the knowledge of farming and children living around harbor learning
the knowledge of weaving fishnets and learning fishing skills. Similarly, planting
mushrooms and cutting bamboo are viewed as natural skills for aboriginal children.

Brown et al. (1989) claim that learning situations should be embedded in
authentic problem situations that makes sense to learners. Learning should naturally
occur in real social contexts, but this does not mean that learning outcomes are
universal to learners even in the same contexts. The assistance of adults, including
parents, teachers, or peers in one important influence on learning. With Lave and
Wenger's (1991) Legitimate Peripheral Participation (LPP) theory, apprentices learn
to think, act, and interact in increasingly knowledgeable ways with people who do
something well, by taking part in legitimate peripheral participation. Learning as
participation treats the relationship among persons, their actions, and the world as a
continuously evolving set of relations. The participation is at first peripheral but
increases gradually in complexity to kernel participation. Situated learning theorists
stress that the interpretation of learning behaviors should concentrate on the meaning
and the content of learning in an authentic situation which learners interact with
surrounding persons and the environment, rather than having focus on individual
cognition.

In our research study, we are in the first year of a three year project, intended to
explore children's authentic activities in daily life which have embedded mathematics
contents. There are currently three research questions: a) What kind of cultural
activities are children engaged in? b) What are structures of cultural activities? and c)
How do children participate in cultural activities? The cultural activities that children
participate in most frequently in the first year of the project will be the basis of the
second year's study. The second year of the research project will focus on how to
bring children's cultural activities involving mathematics concepts into classroom.

Method

This investigation was carried out in Hsin-Chu, a city of Taiwan. The
participants were forty third graders in eight elementary schools, five children selected
from each school.

To collect notes about children's cultural activities, each child was interviewed
with four main questions: Who are in your family? What are they? What do you do
after school or on weekend? Which festivals do you like best, why, and how do you
celebrate the festivals? The two questions were to gather data on the interaction of the
learner with their family, and the latter two questions were to collect information on
children's out-of-school activities; especially, celebrations of conventional festivals.

Each subject was individually. Audiotapes of the interviews were
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transcribed and coded. Four social contexts with mathematical activity embedded
emerged: running a business, shopping alone, shopping with adults, and celebration of
conventional festivals. Children had a distinct degree of participation in different
contexts, and different involvement affected children's mathematical cognition and
socialization significantly. The socialization and mathematical skills needed in an
activity and the amount of learning opportunities offered by adultswere the indicators
used in deciding the degree of children's participation.

Results

Only some results appear below. We found that aboriginal children have a
specific life style that typically includes activities such as planting mushrooms and
jumping rope. They also have no cramming school, incomplete school homework, and
no money for buying toys and computers. Doing assignments, biking, doing exercises
and playing games in the arena of the temple are suburban children's regular out of
school activities. Other activities include doing homework, attending cramming
school, doing housework, playing with toys, and sports.

Some activities have mathematical structures. The structured activities which
children were engaged in included pokers games, jump rope, chess, playhouse,
hopscotch, and monopoly.

Each of these activities has mathematical content. When participating in a
structured activity such as "Playhouse", children are becoming socialized but they
also acquire mathematical knowledge. For instance, as Lily pretended to go shopping
in a store with her cousin, she said:

"... playing a cart game with my younger sister, using my aunt's room as a store.
Two dolls, one is a man, the other is woman. They came to the door of the store
to buy fish and a can and put it in the cart. After that they approached the cashier
and paid. My sister served as a server, putting money in a drawer, changing
money, and paying back the customer. They paid NT$ 500 for buying a can and
fish NT$100 altogether, then the server gave them NT$400 change. They also
bought pets in a pet store. A dog is NT$5000, A kitten is NT$3000, it is
cheaper than the price of a dog. A bird is NT$7000, it is the most expensive. We
made several pieces of rectangle paper and wrote the number on them as fake
money for too dolls."

Fake money as currency, using room as a store, two dolls as shoppers, a younger sister
to serve as a cashier, receiving and changing moneythe role-play imitates a real
shopping context. Lily's imagination and recognition of professional roles have been
developing in the playhouse context. In play, Lily also learns to recognize the price
per item, to compare the price of the items, to sum up, and to give change.
Consequently, Lily's arithmetic algorithm of multiple units and comparing of big
numbers have been developed naturally in the context of role-play, even though she
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has not learned them in school yet.

We found that suburban and aboriginal children frequently help parents in buying
general merchandise, such as salt, sugar, soy sauce, wine, cigarettes, etc. In order to
verify the emergent mathematical goals in shopping context, they were asked to
describe some of the routine activities they do.

We identified five forms of participation (no, partial, incomplete, complete, and
kernel) that were unequally distributed in various contexts. For example, three
learning processes were identified in the "shopping with parents" context "no
participation", "partial participation", and "complete participation".

Each level of participation was tabled against different activities. For example,
children's "no participation" presented in four different contexts: shopping alone for
parents, shopping with parents, family running a business, and Chinese New Year.

(1) No participation

We distinguished the structure of shopping activities in which children were
engaged in shopping alone from that of shopping with adults. The structure of
shopping in store can be described in three phases: preparing money to buy
merchandise, buying merchandise, and checking the change. Children were involved
in the three phases at different levels of engagement. For example, Ludan was asked
to buy soy sauce and salt for her mother.

Case: Ludan, a policeman's daughter
Interviewer Ludan

Were you able to help your mother to buy Yes.
something?

What did you buy? Soy sauce and salt
How much does a bottle of soy sauce cost? NT$50

How about salt? NT$15
How much were you given by your mother? NT$100

Before paying to sellers, did you count My Mom told me I need to pay NT$65, the sellers
money? will give me NT$35 change, and I need to check if

it is correct.

Ludan did not need to solve any mathematics problems during the three phases, since
her mother had prepared her for them. Thus we characterized Ludan's learning
process as "no participation".

"No participation" was also identified in contexts of shopping with parents where
children did not pay attention to the price of each item, or where a mathematical goal
was not present in children's activity because they were bidden to follow their parents.
Similarly in conjunction with a family business there were examples where children
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had no participation. For instance, Wei ly, a son of a seafood restaurant owner seldom
presents in the restaurant, so he does not know the price of each course. When he was
asked to solve the problem: "Each bowl of fish soup costs NT$60, how much do 3
bowels of fish soup cost?", he had no confidence in answering and said "Likely
NT$70". Wei ly had not been given any opportunity to learn the mathematical ideas
embedded in the real context.

Susan enjoyed Chinese New Year, since she got lucky money as well, but sile did
not know the amount of money in all. Her mother was afraid of errors in calculating
the sum. Susan said: "My mom helped me adding them up and she saved it in a bank".
Susan was deprived of opportunities to learn mathematics in the natural context.
Susan's learning process in this context was classified as "no participation".

(2) Partial participation

Most of children's learning in selling contexts was identified as "partial
participation". Jen's home is next to a harbor, and her mother owns a seafood
restaurant. Passing courses over and setting up bowls and chopsticks are Jen's jobs.
She receives money from customers occasionally and is told by her mother the
amount of change to give customers. She described helping in the restaurant passively.
She said: "Mom told me which place was busier then I moved to there to help. If she
told me she needed a hand here, then I came back here to help her." Jen's learning
process was identified as a "partial participation", because the mathematical thinking
was generally done by her mother. She did not know the price of each course, and her
mother did not provide her with opportunities for adding customer's accounts.
However, she had a chance to change money for customers, and can calculate change
(e.g. NT$80 when NT$120 is deduced from NT$200, and NT$400 when NT$600 is
subtracted from NT$1000).

(3) Incomplete participation

Running a store or producing farming products is a source of financial support for
a family. Parents do not arrange the store intentionally to educate children, but
children learn counting and changing money in the authentic contexts. We found that
children whose families run a large businesses, such those selling ironwork and
electric products, are seldom involved in their own store's activities. However,
children whose families run small stores, such as those selling Chinese chewing gum
(Ccg, a seed of a plant) or farming products, had more opportunities to do business.

Hong's father builds houses and his mother sells Ccg in a small store. He said that
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he helps in selling Ccg in his mother's store every day after school. He knew the price
of a package of Ccg and was able to count the sum NT$100 for two packages.

Mei is growing up on a farm family. Her parents produce and sell fruits in a
farmers' market. The following episode describes her participation in a selling context.
Note that both Mei and Hong (her older sister) learn mathematical ideas that are
embedded in selling situations and interact with their customers actively.

Case: Mei (Note: NT$: Taiwanese dollars.
Interviewer

You just said you help selling fruits in a
farmers' market?

Did what?

Were you able to help getting money from
customers or did you tell customers the unit

price?
How much did you need to give the change

when a customer gave you NT$100 for
buying one kg?

Who received money from customers and
who gave the change for customers?

Before you gave the change, do you calculate
the amount by yourself or were you told?

How much does it cost, if a customer need 4
kg

If he paid NT$150, how much do you need to
give as change?

US$1 = NT$33. kg = kilogram)
Interviewed

Yes; otherwise, I worked in a mountain on
weekend.

Planting bamboo, cutting old branches of
bamboo and firing them.

NT$35 for each kg, NT$100 for each 3 kg

NT$35 and paying NT$65 back to the
customer.

Elder sister received money and I gave the
change.

I did by myself. I was watching the weight
needed for a customer. My elder sister received

money first, followed by my calculation and
my change. Consequently, I passed over the

money to my older sister and paid back to the
customer.
NT$135

NT$15

The difference between these two cases is the assistance received from Mei's
elder sister. Hong was offered a complete learning process in selling Ccg. His mother
did not interfere. Hong learned not only mathematical ideas but also the social ability
in the real social context. Nevertheless, Hong is unable to manage the store without
his mother's presence in the store simultaneously, so Hong's learning process in
selling context was identified as an "incomplete participation" rather than a kernel
participation. When interacting with customers, Mei's elder sister sponsored her social
actions such as receiving money and paying money back to customers. Her knowledge
of mathematics involved in selling fruits is developing, such as adding sum up,
counting, and changing, but Mei's learning process was classified as an "incomplete
participation".
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(4) Complete participation

Case: Linda, a pharmacy's daughter

Interviewer Linda

[Linda stated that she helped her mother
buying merchandise]

If you buy a bottle of soy sauce and a
NT$65package of salt, how much do you need to

pay?

How much were you given? NT$100. I get it by myself from mother's purse.

How did you know it is NT$100? A bill is NT$100.

Before paying to sellers, did you count the I gave it to sellers directly.
money?

How did you know the change was I counted it and it was checked while I gave it to
correct? Mom.

Looking at Linda we verify that the structure of the activity is similar to Ludan's
(described previously), but the interactions with their parents in phase one and three
seem to be rather different. Linda coped independently with situations where she
needed to use mathematics. Linda's learning process as "complete participation".

(5) Kernel participation

Children engaged in the context of shopping for themselves were classified as
having "kernel participation". When buying something for himself without parents'
involvement, a child needs to figure out which objects meet their needs and how to
best buy according to the money they own. Children require higher social ability in
the context of buying something for themselves than when shopping for parents. The
emergent mathematical goal presented in both phase one and phase three.

With festivals, mathematical goals present significantly at Chinese New Year.
Large amounts of currency such as NT$500 and NT$1000 are used and addition of
multiple units is embedded in the social cultural context. For instance, Mary said that
she got NT$7500 in a red envelope as lucky money from her relatives and parents'
friends: NT$500 from Daddy, NT$500 from her grandfather, NT$500 from two aunts,
NT$500 from two uncles, and her grand mother's NT$500. When counting, Mary
uses a strategy of multiplying four times 500 and adding 500 and then 5000, the sum
being NT$7500. In nature, the counting of money here did not involve social aspects
so we identified Mary's interaction as "kernel participation".



Discussion and conclusion

It is clear from results of our project to date that mathematics is embedded in
children's cultural activities. Children learned addition and subtraction of numbers
(and other ideas such as recognition of geometrical shapes) in authentic contexts
where children interact with surrounding people. The more involvement in activities,
the better the opportunities for learning. The degree of children's participation in
various contexts depends on the opportunities offered by parents or elder peers.

As previous literature described, weak connections between problem situations
and inner representations, context-bound school mathematics, and school mathematics
learning deviate from social contexts, and result in school mathematics that is
disconnected from everyday mathematics. The conflict of cultural cognition with
school mathematics presented in the study might also be a possible explanation.
School mathematics does not recognize complexities such as the target of "less profit
means more sales" an essential strategy in the trade culture. Efficient strategies
invented by children such as Mei for solving sale problems in order to give customers
not only a correct but also a fast answer, are not recognized, leading to cognitive
conflict between everyday experience and school mathematics.

The question of how to optimize children's cultural activities into their
mathematics classroom learning is worth further investigation, and will be a focus in
the next stage of our research.
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Making sense of informally learnt
advanced mathematical concepts
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This paper considers the understandings of six vocational school stue2ts
and two experienced constructors of splines (piecewise polynomial
parametric curves used in Computer Aided Design (CAD) systems). All of
the participants' knowledge of splines was learnt only in relation to CAD
practice, i.e. informally, how to use the command for drawing splines. The
constructors and some students related splines to their mathematical
knowledge while other students, in making sense of splines, relied on the
activity in which they occurred, machine design. Saxe's (1991) model is the
basic vehicle for analysis but consideration of the role of intuition and
expertise are also taken into account in the discussion.

Introduction

This paper is about the interplay between geometric reasoning in various practices.
The post-modern view of mathematics has given rise to a conceptual distinction
between mathematics and mathematical activities in various practices (Brown, 1994).
Mathematics in no longer seen only as a decontextualized body of knowledge which
is 'naturally transferable' to other contexts. New paradigms view mathematical
knowledge as situated and linked to the various practices in which they occur.
Whether the mathematical knowledge in various practices is the same or not
obviously depends on the considered perspective on knowledge application (Ernest,
1998). In general, connecting the knowledge of various practices is no longer seen as
something obvious, in fact, several researches (e.g. Lave, 1988, Nunes, Schliemann,
Carraher, 1993, Saxe, 1991) have pointed to a marked discontinuity between the
mathematics rooted in different practices. Yet even if the problem is considered from
a situated standpoint one has to consider the interplay between mathematical
knowledge linked to various practices. Saxe (1991), for example, in considering the
mathematical practices of Brazilian candy sellers has observed some interplay
between the abysmally divided school learnt mathematics and the mathematics of
candy selling practice. Similar results have been recorded by Nunes, Schliemann,
Carraher (1993).

The interplay between knowledge linked to various practices is not easy to observe
and research. Most work in this area has been related to elementary topics (simple
arithmetic and geometry). The absence of advanced topics is easy to explain. First,
most advanced mathematical knowledge is very rarely used in everyday contexts.
Second, most advanced mathematical knowledge is learnt first in mathematical
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classes and is only later eventually linked to other contexts (e.g. other school
subjects, workplace, etc.). The fact that a topic has been considered formally in
mathematics classes obfuscates the observation of the process of generation of
mathematics related meanings in a context.

Some important insights into the relation between school and out of school
mathematics has been obtained via the meaning-making process of elementary
mathematical concepts in a context by considering instances of mathematical
knowledge acquired informally (not in institutionalised learning of mathematics, see
Nunes, 1993; Saxe, 1991). I have researched a similar instance (see also Magajna &
Monaghan, 1998) which involves more advanced mathematical ideas. I have found
that Saxe's 4-parameter approach (i.e. interpreting the data in terms of activity
structure, previous knowledge, social relations and artefacts used) explains well,
though not completely, the meaning-making process in a context.

Splines - an example of informally learnt advanced mathematical knowledge

I begin with the observation that, at least apparently, cases of informally learnt
advanced mathematical ideas are rare students usually learn about relevant
advanced mathematical ideas first formally, in the mathematics classes. Though they
may use these ideas later, informally, in other settings (and may even re-learn them),
such cases are never clear-cut and we can hardly speak of advanced mathematical
concepts which are clearly informally learnt. Splines mathematical objects
encountered in CAD courses and drafting practices are an interesting exception.
Since splines are mathematical objects which are not widely known I shall explain
this concept in very simple terms (see Boehm, Farin, Kahmann, 1984, for details).

Splines are curves used in most CAD systems to
draw 'free' forms. On a computer a spline is (xi(t),h(t))

usually defined by pointing to a sequence of
points, called control points, along (resp. near)
the imagined curve, and the computer draws a
curve which can usually be interactively (x2(t),y2(t))

modified by moving the control points. This may
appear as magic but there is a mathematical
model behind this. The constructed curve is made
of pieces, each piece being a parametric
polynomial function, usually of 3rd degree. The
end of each piece coincides with the start of the
next piece not only in terms of the endpoints but

Figure 1. A simple interpolator); spline
also in terms of the derivatives (usually up to the curve consisting of three polynomial
second degree), which gives the impression of 'pieces'.
smoothness of the curve. There are many
significantly different ways to relate the control points to a sequence of 'smoothly'
connected pieces of parametric polynomial curves. In most applications a variant of

(x3(t),y3(t))



non-interpolatory splines are generated (i.e. the resulting curve does not interpolate
the control points, see Fig. 2). Only in specific situations are constructions of
interpolatory splines preferred. Note that in any case, given the control points, the
construction of the polynomial pieces is not unique: thus, to convey the shape of a
spline the whole piecewise polynomial structure has to be considered.

Figure 2 depicts a cubic spline defined by 4
control points (joined to a control polygon,
for easier visualisation), which may serve as
a prototypical example of non-interpolatory
spline. I just list (without argumentation)
some general features of non-interpolatory
spline curves: 1. they start at the first
control point and end at the last one; 2. the
first and last line segments of the control
polygon are tangent to the spline at the
endpoints; 3. the construction of a spline
from the control points is affinely Figure 2. A non-interpolatory cubic spline

defined by 4 control points joined in aindependent - in practice this means that control polygon
symmetric control polygons give rise to
symmetric splines, that the mirrored image of a spline is the spline constructed from
the mirrored control points, etc.

I consider splines as a case of informally learnt advanced mathematical knowledge
for the following reasons:

splines are rather complex mathematical objects, not included in vocational-school
mathematics curriculum (in Slovenia) and well beyond the reach of vocational
schools mathematics;
mathematics teachers of vocational schools and students' parents usually do not
know anything about splines;
splines are common in (machining) CAD drafting, but the students and
practitioners on CAD courses or elsewhere just learn how to use them, i.e. without
any allusion to mathematics.

My main point of interest is how do users of CAD systems understand splines and
where/what are the roots of their understandings.

The method

The aim of the study was to find cases of qualitatively different ways of making
sense of mathematical objects that are used in a practice. Since this paper forms a
self-contained part of a larger study concerning interrelations between geometric
reasoning in workplace and school settings, the participants selected were those that
took part in the larger study. Part of the research took place in a small factory in
Slovenia that produces moulds for the glass industry. The work of six practitioners



working on CAD systems, all with vocational school training for machine
technicians, was studied for three weeks using several techniques (interviews,
observations, scheduled observations, document analysis, protocol analysis related to
given problems). Among these two practitioners, who most often used splines in
designing complex shapes, were selected for this study. Another part of the study
took place in a vocational school for machine technicians in Slovenia. The
participants were selected from a class of 22 students, aged 18, that recently finished
a CAD-drafting course (lasting several months, two hours per week a similar course
was observed as part of the research). Six participants were selected on the basis of
their attitude regarding the use of advanced mathematical ideas in CAD context
(using a special test that served as a filter). As it turned out, two of the six selected
students were inclined to use, in CAD context, the geometric ideas learnt in
mathematics classes (they will be referred as GEO-oriented students), while four of
them avoided this (and will be referred as CAD-oriented students).

Participants' ideas about splines were elicited using a semi-structured interview
(Robson, 1993). The participants were interviewed in front of a computer while
using the CAD software they normally used. They were asked to talk (for about 40
minutes) about splines in various contexts, to explain their ideas by making hand-
drawings on paper, and, toward the end of the interview, to draw simple drawings
using splines and to comment on them. The table below illustrates the kind of
information which was sought in the interview and how it was obtained.

tacit knowledge explicit knowledge

knowledge about the
spline command

observation during the interview explicit questions about the spline
command

relating splines to
CAD;
relating splines to
mathematics

emerged during questions (e.g.
'How to convey the shape of a
spline via the phone? Does the
shape of a spline depend on the
software used?)

'Did you learn something related to
splines in mathematics/CAD
class...'

'informal' talk at cooling down

knowledge about the
shape and properties of
splines (tangents,
overall shape,
smoothness, symmetry)

4 hand-made drawings given 4
control points each

drawing spectacles' frames on
the computer using only splines

asked to explain how to draw a
spline given four control points

explicit questions about the
construction of symmetric glass
frames

representation of a
spline
the 'structure' of a
spline

'Does the shape of a spline (given control points) depend on the
display, plotter, software, hardware ?' Imagine you are looking at
your mental image of a spline through a microscope. What do you
see ?' How would you convey the shape of a spline to another
constructor by phone ?' Do splines have length? What is meant by the
length of a spline ?' Assume the spline (or circle) command broke.
Can you still draw splines (circular arcs) using just the command for
drawing circular arcs (splines) ?' Is it possible to draw with the
spline command the shape of a bandy (and vice versa)?'



All sentences of participants' answers were coded (often a statement was assigned
several codes) and a large concept matrix with 50 entries for each of the eight
participants was built. The matrix showed a marked distinction between the three
groups (CAD-oriented and GEO-oriented students, experienced constructors) and
rather consistent understandings of each participant. Below I present the main
findings that emerged from this analysis.

Tacit and intuitive knowledge about splines

In working with splines all the participants relied to some extent on intuition (see
Fishbein, 1987 for a treatment of the topic). It appeared that all the participants used
intuition to complement their experience. They were very confident that splines have
the properties they would like them to have. All CAD-oriented students, for example,
have learnt only about non-interpolatory splines and have occasionally used only
such types of splines yet they convincingly, systematically and explicitly hand-
drew all splines as interpolatory curves. All students also firmly, consistently and
explicitly related the symmetry/mirroring of the control polygon to the
symmetry/mirroring of the resulting spline. Only some students used this property in
their work (e.g. when constructing a pair of spectacles).

Figure 3. Andrej, a CAD-oriented student,
drew the spline defined by four given control
points as an interpolator), curve. Note the
strange direction of the curve at point 4.

....
2

Figure 4. Branko, an experienced constructor,
given four control points, drew the related
spline (middle curve) quite accurately
compared to the exact one (the lowest curve,
added later for reference).

Experienced constructors were quite adept at drawing the shape of the spline by
hand, given its 4 control points, but part of this knowledge was clearly tacit . One of
them, for example, consistently drew the correct direction of the spline at the
endpoints but did not mention this feature when he was asked to describe the shape
of a spline curve. The experienced users also related the symmetries/mirroring of the
spline and its control polygon and quite often used this in their work. However, they
were much more cautious in using 'intuitively obvious properties'. Franci, an
experienced practitioner, for example, when asked whether a mirrored couple of
control polygons determines a mirrored couple of splines reasoned:

Franci: Ahm. I could try it now. I often try such things if I do not know how
they work. Now. I would get the shape. It seems to me I would get the same
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shape. Except if it depends from which side you subdivide (i.e. of the
orientation of the control polygon). For if you mirror this (the control
polygon) it goes in the other direction. Does this matter? Anyway you
subdivide the same curve (control polygon) but in different directions. I have
not tried yet this.

Participants' ideas about the nature of splines

All the participants learnt how to use the spline command on CAD software in a
CAD courses or from manuals. The command is rather easy to use: one just picks the
control points and the computer draws a curve which can be interactively modified
by moving the control points. Though the participants have not received any
explanation about the properties or the structure of the spline curve - they had quite
precise ideas about its the nature.

The CAD-oriented students (i.e. the students
that avoid using advanced mathematics in
CAD environment) understood splines as
interpolatory curves which consists of a
sequence of circular arcs (or line segments),
each arc being tangent to the its adjacent
arcs. Note that it is a standard practice in
machine hand-drafting to approximate various
curves with circular arcs (which can be
drawn with a compass). As is easily seen the
construction is not unique. Consequently,
according to these students, the shape of the
spline curve is not uniquely defined and
depends on the software used. In conveying
the shape of a spline, according to these
students, one has to consider the data of all
the circles of the particular construction. One
of the four CAD-oriented students claimed
that though there are many 'smooth' curves
made of circular arcs and interpolating the
given control points, the shape of the splines (given the control points) does not
depend on the software used because all CAD system use a standardised way
(standards are common in machining) of arranging the circular arcs.

The GEO-oriented students consistently claimed that splines are mathematically
defined curves (like parabolas or sine curves). They ignored how they are defined,
but they were certain that there is a uniquely defined mathematical procedure to
calculate the points on the spline curve. If they knew the procedure, they said, they
could find out the properties of the curve, e.g. whether a spline can exactly match a

Figure 5. The analysis of a spline curve,
drawn by Andrej, a CAD-oriented student,
based on his explanation during the
interview.
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circular arc. Consequently, the shape of the spline curve depends only on the control
points and not, in any way, on the software used. Thus, to convey the shape of a
spline curve, according to them, it is certainly enough to just state the positions of
the control points.

The expert constructors also viewed splines as mathematically defined objects, but
they have developed interesting idiosyncratic ideas about them. Because of the
mathematical nature of the splines, they claimed, the shape of a spline depends only
on the position of the control points (and not on the software used). Nevertheless, if
they had to convey the shape of the spline to another constructor by phone, though it
depends only on control points, they would send as much data as possible about the
curve, since they have to be absolutely sure that the shapes match.

The mathematical nature of splines was also reflected in the participants' interior
representation of splines. The two GEO-oriented students and, to a great extent, both
constructors viewed splines as mathematical objects. Their 'mental spline', for
example, was infinitely thin and they did not bother about the irregularities of a
displayed spline (due to resolution of the display). On the other hand the CAD-
oriented students, though they obviously distinguished between the spline curve and
its representation on the display, when they were talking about splines they often
referred to their representation on the display (e.g. the shape of the spline, given the
same control points, depends on the display). Apparently lacking a fi rm link between
splines and mathematics they relied on visual appearance. A CAD-oriented students
compared circles in CAD and circles in mathematics class:

MihaK: In CAD the circles are simplified, they are made of fewer segments,
so that they take less place in memory. You can see sometimes how a circle is
made of few straight segments, a hexagon or something like that. There is a
command to increase the number of segments. In maths, I don't know, I think
it is rather similar, you also have there the radius, the formula for the
circumference is the same, the pi. I don't know, I would say it is much the
same.

Saxe's model

I view Saxe's 4 parameter model (Saxe, 1991) as a useful framework for
understanding these observed phenomena. Splines, as objects in CAD activity, are
not 'understood' by the students/practitioners who use them, they are simply told
how and when to use them. I would say that the students/practitioners appropriate the
form (how to use the spline command), attaching to it a non-cognitive function (e.g.
denoting a section with a curved line). I have found that at least three of the four
Saxe's parameters were involved in constructing the meaning of the spline curves.
Some participants sought for the meaning of splines in the activity structure by
relying the splines to standard approximation procedure of curves used in hand-
drafting. What is most important, in my view, is that not all of the participants were



trying to make sense of the splines in the activity context. Some of them, the GEO-
oriented ones, related splines to mathematical curves, i.e. to their prior knowledge
of mathematics. Thus, though the procedure (form) for using splines was learned in
the activity, the basic understandings of splines (their representations, structure and
basic properties) are derived from the activity as well as from participants' prior
knowledge of mathematics.

The role of social relations, due to the method used, was not observed, while the
role of artefacts and conventions is quite obvious, e.g. the implementation of the
command for drawing splines on CAD systems. Perhaps it should be stressed I have
observed two additional factors that influenced the understanding of splines:
intuition and expertness. Intuition apparently helps in making sense of splines,
mostly at the initial phase. For most students splines were what they wanted them to
be, and they had properties they would like them to have - and they found them as
obvious. Expertness, on the other hand, gives at least some indication about what can
be expected in a new situation. Both expert constructors intuitively 'knew' about
certain properties of splines (e.g. that they depend only on control points, that a
spline can be mirrored by mirroring the control polygon), yet by experience - they
knew one cannot rely on such knowledge and they claimed that such things have to
be carefully tested and checked.

References

Boehm, W., FarM, G., Kahmann, J. (1984) A survey of curve and surface methods in
CAGD, Computer Aided Geometric Design 1(1), 1-60

Brown, T. (1994) Mathematics Living in a Post-modern World, Proceedings of PME
18(2), 144-151

Ernest, P. (1998) Mathematical knowledge and context, in Watson, A. (ed.), Situated
Cognition and the Learning of Mathematics, CMER - University of Oxford,
Oxford, 13-31

Lave, J. (1988) Cognition in Practice. Cambridge: CUP
Magajna, Z. (1998), Formal and Informal Mathematical Methods in Work Settings,

in Watson, A. (ed.), Situated Cognition and the Learning of Mathematics,
CMER - University of Oxford, Oxford, 71-82

Magajna, Z. & Monaghan, J.D. (1998) Non-elementary Mathematics in a Work
Setting, Proceedings of PME 22(3), Stellenbosch, 231-238

Nunes, T., Schliemann, A. D., Carraher & D. W. (1993) Street Mathematics and
School Mathematics, Cambridge: CUP

Robson, C. (1993) Real World Research, Oxford: Blackwell

Saxe, G. B. (1991) Culture and Cognitive Development: Studies in Mathematical
Understanding. Hwellsdale, NJ: Laurence Erlbaum Associates.



AN ASPECT OF A LONG TERM RESEARCH ON ALGEBRA:
THE SOLUTION OF VERBAL PROBLEMS

Nicolina A. MALARA Department of Mathematics University of Modena Italy

We expose here some results of a research concerning the solution of verbal
algebraic problems by 12/13-year-old pupils. This research was carried out within
a wider study regarding an innovative approach to middle school algebra. It shows
that if pupils are appropriately guided they can represent verbal relations in many
ways, they can compose relations by substitution and get to the solution - without
any specifically syntactic study - of complex problems at many unknowns and
achieve the awareness of the need and importance of the autonomous study of
algebraic expressions and equations.

Introduction
This report is about an activity concerning the solution of algebraic verbal
problems and part of a wide research project of didactic innovation for the three
grades of middle school. The research aimed at approaching algebra as a language
for the production of thought (Malara & Iaderosa 1998a) and included syntactic and
structural aspects of the discipline (Malara & Iaderosa 1998b), according to the
theoretical model of algebra teaching/learning formulated by Arzarello & Al.
(1995).
Our experience, together with the results of many classical researches in algebraic
realm (Bell & Al. 1987, Chevallard 1989/90, Freudenthal 1974, Kuchemann 1981,
Kieran 1992, Sfard 1991) make us believe that it is important to:

teach the algebraic language in analogy to natural languages, trying not to face
syntactical questions a priori and from an instructional point of view, but rather
trying to suggest situations from which these questions arise as a natural
consequence;

- make sure that the pupils get used to the plurality of representations of the same
thing by creating didactic situations that make them aware of the fact that the
choice of how to denote an object or express a relation influences the
development of reasonings about them;

- highlight the passage from the procedural level to the structural level, so that the
pupils acquire the awareness of the duplicity process-object, which is typical of
the way mathematics develops and of the discipline itself.

From a general point of view, the working method we used in class was based on
the systematic use of written verbalization, on the analysis of the working strategies
enacted by the classmates so as to induce metacognition and on the collective
discussion of the different results so that all conclusions drawn can be socially
shared within the class.
In this research project, we do not study verbal algebraic problems separately from
the rest, but we include it in such an activity that progressively develops all through
the three years and concerns:
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the (manifold) translation into mathematical language of information expressed
in the verbal language;
the interpretation of formal writings and the recognition of their possible
equivalence;
the study of relations that are expressed by equalities between two terms and
their transformation into equivalent ones;
the introduction of the literal calculus starting along the study of problem-
situations in general terms, and focusing on the role of the properties of the
arithmetical operations.

Our methodological hypothesis
Traditionally, the study of algebraic verbal problems is started after the
introduction of linear equations at one unknown; usually, considering the age of the
pupils, the problems that are presented are in most cases solvable by intuition or by
resorting to the appropriate graphical representations. However, as underlined also
by Bernardz & Janvier (1996), this procedure doesn't allow the pupils to appreciate
the goodness of the algebraic method.
Our methodological hypothesis starts the study of complex verbal algebraic
problems at two or more unknowns even before equations are formally introduced,
so that pupils can see why they should be studied as a mathematical object according
to the historical evolution as well as to our ministerial syllabuses. This way the
pupils get trained to the "principle of economy" that suggests the study of schemes
representing a plurality of situations and that is so typically mathematical.
What we wanted to test with this hypothesis is the pupils' behaviour in front of:

the formal translation of the relations expressed in the verbal text;
the transformation and elaboration of the relations in order to get to a resolutory
equation;
the naive study of the equations for determining the values of the unknowns and
solving a problem.

On selecting the problems that we wanted the pupils to solve, we considered the
main difficulties about which the researchers have written, and in particular:

the order in which the information appear in the text of the problem: the
sequential nature of verbal language leads the pupils to a procedural reading, but
if the order in which the data should be dealt with is different from the one in
the text, it is very easy for them to make errors (Mac Gregor 1991);
relations like "... is bigger than ...", "... is x times more than ...": they must be
converted into terms of equality whereas pupils often do a translation that
interferes with their proper elaboration (Mac Gregor & Stacey, 1993);

We can summarize the specific aims of the activities with problems as follows:
- to provoke and refine the pupils' ability to grasp and translate relations into

terms of equality;
to use hypothetical thinking in order to formalize information (if an object costs
k Liras, then another object that costs twice as much costs ... Liras);
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to manipulate formulas by using the principle of substitution and the properties of
equality appropriately for getting to an equation with a single unknown that has
to be elaborated for determining the value of the unknown;
to guide the pupils towards more and more refined syntactical questions through
the solution of the problems.

Since we have limited room here, we shall only show the main results obtained with
a group of 22 second-grade pupils with reference to a few algebraic verbal
problems at more unknowns, underline by analysing the protocols the different
difficulties and behaviours arisen and eventually we shall point out possible tips for
overcoming them.

A few problems
In Table 1 you can see some of the problems at more unknowns on which we have
worked. These problems usually have a rather simple text, that generally requires a
formal translation that is not particularly difficult. The number of unknowns ranges
from two to four and the relations can be additive, multiplicative, or both.
The didactic path developed with the pupils is focused on the control of the plurality
of the possible writings of the same relation. For instance, on studying the relation
"the segment A13 is greater than the segment CM of 4 (cm)" the pupils usually
express the sentence in the following ways Co = AB - 4 ; A73= CD + 4 ; AB CM

= 4 and they analyse and choose among them the most convenient writing as to the
problem in exam. The substitution method is presented as "the game of changing",
to be applied one or more times until they obtain an equation at one unknown which
must be then elaborated. Thanks to the properties of the arithmetical operations, as
far as the problems we have considered go, such equation can be lead to the
structure ax+b=c, with a, b and c as natural or rational numbers.

Table 1
Algebraic verbal problems with more than one unknown done in VII grade

1. Consider a triangle ABC leaning on side AB of which the following information is
given: the perimeter measures 60 cm; side BC is 5 cm longer than the side AC ; side AB
is 10 cm longer than side AC . Calculate the measures of its sides. Could the triangle be a
rectangle triangle? If yes, which would be the right angle and which the hypotenuse?

2. Determine the two numbers of which the major one is such that it is by 50 bigger than
the triple of the minor, and the sum of which is 110.

3. In a courtyard there are 224 animals between dogs and cats. The cats are 6 times as
much as the dogs. Calculate how many are the cats and how many are the dogs in the
courtyard.

4. Massimo goes to the pizzeria and spends 83.000 Italian Liras for a pizza, a pudding and
a coke. The pudding costs 15.000 Liras less than the pizza. The pizza costs 400 Liras
more than twice the coke. Calculate the cost of the pizza, of the sweet and of the coca-
cola.

5. The perimeter of a rectangle trapezium measures 96 cm. The measure of the greater base
is 20 cm more the smaller base. The difference between the measure of the greater base
and the one of the oblique side is 13 cm. The difference between the measure of the
oblique side and the one of the height is 10 cm. Calculate the measures of the two
bases, the height and the oblique side.
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We present this method in a collective activity of guided solution, in which the
teacher acts as a model and shows the best way of facing each meaningful step of
the process.
Apart from the number of unknowns and the kind of relation in question, the main
difficulties concern: i) the translation of relations into terms of equalities and their
transformation; ii) dealing with the resolutory equation; iii) choosing the unknown
through which the others are to be expressed.
This is the order in which we faced them, but it is not strictly sequential.
The first problem presents two additive relations which express the relationship of
two numbers as to a third one. It is very important to find the right translating
formulas to get to the resolutory equation. To tell the truth, we usually start with
easier problems than this, where the relations are more easily linkable together.
The second problem is even more complicated, because it contains an additive and a
multiplicative relationship and also because you have to convert the expressions "is
bigger than" and "is triple of into terms of equality.
The third problem is quite famous (Mac Gregor, 1991). We usually get to it after
dealing with other ones, with the specific aim of testing whether and to what extent
the pupils, after they have practised with formal translation, have the difficulties
that Mac Gregor has highlighted (difficulties with translating multiplicative
relations that linguistically are expressed in the inverse order than in translation or
confusing quantity with quality in using and interpreting letters).
The fourth problem, too, is faced after other problems. It contains an additive
relation, a subtractive one, and an additive-multiplicative one. It is used for testing
the pupil's ability to deal simultaneously with different pieces information to be
translated, as well as their ability to elaborate the information obtained.
The fifth problem is a bit different: apart from the context, which is geometric, this
problem contains four unknowns and it is linguistically complex. Of the four
relations, two have the difference between two unknown quantities as subject.
You will find in the following paragraphs some protocols of the pupils' work which
can help us understand what they were asked to face.

Analysis of the protocols
The protocols you see in Table 2 contain some difficulties the pupils had and the
strategies that they enacted.
The first two protocols concern Problem 2. The first one shows a good ability in
translating formally and elaborating the information, whereas the second contains a
typical error for beginners: to indicate the two unknown numbers with the same
letter. Although there seems to be a good "local" control of the relations, it lacks a
global control of the situation and the ability to organize the information into a
formal translation.
The protocols about Problem 3 testify the difficulties concerning the syntactic
aspect of dealing with the resolutory equation. In the first one, Annalisa can't
interpret and elaborate correctly the writing "C + Cx6 = 224", but she understands
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that her simplifying it into Cx6 = 224 is wrong. (Just like the researches have
demonstrated, this error was quite frequent during our activity).
In the second protocol, Chiara works in parallel with two different encodings of the
problem and makes a good and immediate translation of the relations expressed in
the text. Still, she makes a very rough mistake on transforming, which reveals her
procedural reading of the formal encoding of a relation (the expression "dogs+
dogsx6 = 224" is transformed into "dogs-2.6 = 224") and shows difficulty in
controlling the meaning in the correct reading and elaboration of the equations she
obtains.

Table 2
Examples from the pupils' work

From the protocols on Problem 2
Silvia: A = Bx3 + 50 ; A + B = 110; B + (Bx3 + 50) = 110 ; Bx4 + 50 = 110; 110 - 50 =

60
60 :4=15 B=15 ;15x3+50=45 +50=95 ;A=95.

Anna: maj. 1st number 2nd number minor number
is bigger by triple 110:3=(X3)+50=X

X + 50 ) X3 major number
sum 110

From the protocols on Problem 3
Annalisa: G = Cx6, C = G:6, C + (Cx6) = 224; 224:6 = it doesn't work
Chiara: dogs + cats = 224 ;
dogs x 6 = cats ; cats: 6 = dogs;
dogs + dogsx6 = 224 ; cats + cats: 6 = 224
dogs2.6 = 224 cats2:6 = 224
224:6 = 3 224x6 = 1344 ; 1344: = 672; cats 672; dogs 672:6 = 112.
From the protocols on Problem 4
Chiara B.: 8.300 = Pizza + sweet + coke ; pizza A , Coca = B , sweet = C.
A = sweet + 1500/cokex2 + 400. B = pizza - 440:2 No. B = pizza:2 400
C = pizza - 500/cokex2 + 400 - 1500. 8300 =A+B+C=A+A:2 -400 ;A-3:2 -1900=
8300; 8300+ 1900 =;A+B+C=Bx2 + 400 + B + Bx2 + 400 1500; B.5 + 800
1500 = 8300 ; 9800 800 = 9000 ; 9000:5 = 1800 coke ; pizza = 1800x2 + 400 = 3600 +
400 = 4000; sweet = 4000 - 1500 = 2500.
Eleonora: P pizza, C = coke, D = sweet. P + C + D = 8300 ; D = P 1500 £; P = D + 1500
C = P:2 + 400 NO CP = C + 400x2 NO C = Px2 + 400 ; P = C:2 400. The following part
appears erased: P + P 1500 + P;2 + 400 = 8300 3P - 1500:2 + 400 = 8300; 8300 - 400x2
+ 1500:3 = 900x2 + 1500:3 1800 + 1500:3; 3300:3 = 100
From the protocols on Problem 5
Eleonora: 2p = 96 cm = AB + BC + CD + DA;
BC = AB-13 , AB = BC+13 ; BC = CH-10 ,

CH = BC+10 ; AB = DC+20 , DC = AB-20
AB + + AB - 13 + BC - 10 = AB + AB 13 + AB 20 + AB - 13- 10 = 96 ; 4AB 13 - 20 -
13 - 10 = 96 ; (96 + 13 + 20 + 13 ):4 = 119 + 20 + 13:4 = 139 + 13:4 = 152:4 = 38 ; AB =
38 ; CD = 38 - 20 = 18 ; BC = 38 13 = 25; DA = 25 - 10 = 15.
Alberto: AB CD = 20 cm ; AB - BC = 13 cm ; BC - CH = 10 cm AB + BC + CD + DA
AB-CH = 23 ; 96 = AB + AB 20 + AB 13 + AB - 23 ; 96+20+13+23 = 152 ,
152:4=38=AB; AB = 38 cm; 38-13 = 25, 38-20 = 18 , 38-13 = 25; BC = 25 cm ; CD = 18
cm AD-CH = 15.
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The protocol about Problem 4 reveals more difficulties in reading the formulas
correctly so that they can be transformed. The young girl makes a mistake in
explicating B from the relation A = B x 2 + 400 since she writes B = A:2 400
instead of (A-400):2. However, it is interesting to see that since she cannot elaborate
the equation in unknown A in a way that she can manage, in the end she reconverts
the relation of equality in function of the unknown B, which allows her to achieve
the solution.
The two protocols regarding the last problem show two different ways of
organizing the information for getting to the solution. Eleonora, who is not
particularly brilliant, translates the information literally and gets to the fundamental
equation at one unknown by operating subsequent changings. Alberto, on the other
hand, is quite smart; he operates in a very original way. He expresses all the
information in terms of difference between the unknowns and combining such
differences he obtains a further relation of difference which he uses for eliminating
one of the unknowns.
Generally speaking, as to the first problem, the "game of changings" turns out to be
quite easy for almost all the pupils. As to the second one, on the contrary, the
protocols are rather different. The best solutions revealed themselves to be a good
model for the pupils who were a bit lost. As far as the third problem goes they
generally give a good translation of the text. Only the 14% of the pupils make
errors of this kind, but there is a widespread presence of mistakes and serious
difficulties concerning the syntactic elaboration. One of the difficulties that we have
detected in the pupils, for instance, is well known in didactic research (see Lopez
Real 1998) and it is due to the fact that the pupils are working with natural
numbers: they couldn't convert writings like g + g:6 into g + g/6, which is more
expressive as to a correct transformation. The fourth problem was quite difficult
for them owing to the variety of relations involved. The biggest obstacle seems to
be managing the correct translation of the relation: "the pizza cost 400 liras more
than twice the coke", which is tied to the correct interpretation of the linguistic
expression "more than twice the". As to the fifth problem, beyond the number of
relations involved, the pupils are negatively struck by the novelty that two of the
four relations of the problem concern the difference between two of the unknowns.
The global analysis of the protocols tells that the solving strategy chosen by the
pupils is "mixed": they begin by operating algebraically (they write down the single
relations formally and by substitution they reach an equation with only one
unknown), and once they get to the equation, since they lack appropriate algebraic
knowledge, they study it "arithmetically" by dividing it into two steps; on the basis
of the meaning of the equality of the two terms of the equation, they isolate and
solve the numerical expression constituted by the known terms, then they lead the
initial equation to one of the kind ax=b by summing the terms including the
unknown and by substituting b with the result of the numerical expression they have
elaborated. On manipulating the equation, the pupils have mainly syntactic
difficulties, and in particular on doing the sum of the terms in x, especially when
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some terms have fractionary coefficient, or when there's one term without
numerical coefficient among the terms including the unknown (which makes them
neglect it on doing the sum), or even when they have a bad management of the
parentheses. Some protocols show very clearly that if by working on an unknown
they reach an equation that they acknowledge to be difficult for them, they go back
to the beginning and look for a different unknown which gives them a much easier
equation. These protocols are rather useful for classroom discussions aimed at
introducing 'forecast thinking' and 'choice economy'.

General considerations
This activity had a very strong impact on the pupils both for involvement and
results achieved. Almost all of them understood that they were dealing with a
general model for solving problems with unknown data, based on the translation
into formulas of the information contained in the text, which allows to reach the
solution thanks to the elaboration of the formulas obtained. As to their behaviour,
we can divide them into two groups of the same size: the first one contains those
pupils who adopted the algebraic method and were able to face syntactic elaboration
on their own, according to the principle of economy; the second one contains the
pupils who actually learned the principle of formal translation, but who never went
beyond the models they had learned, which made them get stuck in front of new
syntactic situations. Besides, a small group of very weak pupils didn't understand
the spirit of the algebraic method and resorted to graphic solutions whenever they
could. Nevertheless, we must say that with time almost all the pupils developed the
skills for translating and organizing by substitution the relations contained in a text.
Of the errors reported in research studies we didn't see neither the conjunction
error that usually appears with additive and multiplicative relations (Mac Gregor &
Stacey, 1994) nor any difficulty on passing from one to many unknowns (Radford,
1994).
As the protocols witness, the fact of having done algebraic problem solving before
doing any algebra syntax implied of course that the pupils sometimes enacted wrong
transformations - some of which had no justification, like those connected to the
omission of the parentheses, or those which were due to lacks of thinking about the
meanings of the writings.
Anyway, this method made the pupils approach syntactic questions in itself, outside
any reference context, concentrating on the arithmetical properties. For example,
on the basis of the difficulties arisen, at a certain point the teacher asked these
questions: If M is a number, what can I say about: M + 2M + M + M ; M + 2M +
7M - 4M; -7M + 7M? and concentrated on the following answers for discussion: M
+ 2M + M + M is: 5M (Eleonora); M3 + 2M (Jessica); M + M + M + M + M
(Silvia) ; 2 + 4.M (Cristina). M + 2M + 7M - 4M is : (1+2+7-4).M = 6M (Alberto)
; 5M Vincenzo ; 10M + -4M (Salvatore) ; 3M + 7 M 4M = 10M + -4M =
6M (Chiara). -7M + 7M is : 0M2 or M.(-7 + 7) = M0 (Sara) ; 2.M + 7 7
(Chiara) ; 0 + (MM) (Cristina).
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Some of these answers show that for many pupils the meaning of those expressions
that the teachers consider easy and by no way ambiguous is not at all
straightforward. This means we should spend more time than usual with problems
like these, which are so important for the control of the meaning of literal
expressions. We therefore resort to very simple problems of this kind, which
unfortunately are not contained in our textbooks and are often considered banal by
teachers, but can be found in foreign projects (e.g. Harper 1987).
These results make us suggest that in the future we should carry out more studies
on this aspect, face equation solving beside problem solving, presenting them like
hypothetical equalities between two expressions in the sense of Herscoviz &
Linchevski (1992). These equations should be solved without resorting to ready-
made techniques, but rather in different ways according to the features of the
equation (through reasoned trials, through the weigh-model and using the law of
cancellation, resorting to inverse operators, etc.), also for reducing to the minimum
the difficulties connected to the different structures of the numerical realms in
which they might operate.
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Conjecturing and Proving in Problem-Solving situations
M.A. Mariotti & M. Maracci

Department of Mathematics University of Pisa - Italy

Abstract This paper reports on the first phase of a research project which aims to investigate
conjecturing and proving processes in problem-solving situation. The analysis focuses on the
relationship between the process of production of a conjecture and that of its justification: in
particular, deductive proof is compared to argumentation supporting a conjecture. The paper
discusses on the difficulties related to the passage from the production of a conjecture and the
production of a proof.

1.Introduction
Previous investigations (Shoenfeld, 1985) have provided evidence of the

appearance of argumentative reasoning accompanying the solution of an open-
ended problem, so as its relationship with the production of a proof (Boero, et al.
1995, 1996, Harel, 1998)
Despite the undeniable difference between "deductive organisation of thinking"
and "argumentative organisation of thinking" (Duval, 1991), some aspects of
argumentative activity were observed and described, in the production of
conjectures so as of proofs (Boero et al. ,1996; Mariotti et al., 1997). The
peculiarity of the teaching experiment, within which those aspects of continuity
were observed put in question the generality of the observation and claimed for
further investigations, in order to identify the relevance of the particular context
and the role played by the specific 'didactic contract' set up in the classroom.
Actually in the teaching experiments, which Boero et al. (1995) refer to, open-
ended problems were commonly included within school activities with the explicit
agreement that the solution should provide a conjecture as an "argumented
choice"; the issue arises whether similar results could be found outside this special
contract.
Despite the fact that problem solving activities have become very popular in
mathematics education, so as in the school practice of some countries, this is not
the case of Italy, where open-ended problem solving and investigation rarely
appear among school activities, even less at the high school level. Consequently, a
research project, still in progress, has been carried out with the aim of
investigating on the solving processes of open-ended problems.
This paper reports on some results of that analysis, in particular the relationship
between producing a conjecture and constructing a math proof of that conjecture.

The main hypothesis
Mathematical proof is a complex idea dealing with many different aspects,
concerning logic, epistemology and cognition (Mariotti et al., 1997). The facets
that proof can assume in different institutional contexts depend mainly on the
function attributed to proving process: as far as school mathematics is concerned,
the most relevant functions are explaining and convincing, while that of
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systematising a result within a theoretical framework represents a secondary
function (Bell, 1976; de Villers, 1991). That seems consistent with the conclusions
recently reached by Hoy les and Healy (1998) As the authors say "Students are
unlikely to use deductive reasoning when constructing their own proof". (p. 42)
and "An argument felt to convince or explain is more likely to be selected as a
student's own approach than one that is not, and the likelihood increases still
further if it does both"(p. 30).
That can be summarized in the following Hypothesis.

Hyp. Proving is providing logically enchained arguments referring to a theory,
but at the same time proving is providing an explication which can remove doubts
about the truth of a statement.

This twofold meaning of proof, which is unavoidable and pedagogically consistent
(Hanna, 1990 quoted by Hare! 1998), may cause difficulties and misunderstanding,
when open-ended problems are concerned.
Open-ended problems appear to provide situations to introduce students to
theorems (Boero, Mariotti et. al., 1997 ): arguments are mobilised in order to
produce and support a conjecture, but for the same reason the need of justifying a
conjecture and removing uncertainty can cause the aims of explaining and
convincing to prevail. As a consequence, the resulting argument may be very
successful in explaining an answer, but may be completely inadequate as a proof
of a conjecture. What Harel states (1998) could be adapted as follows: "The proof
schemes held by an individual are inseparable from his or her sense of what
means to solve an open-ended problem ".
In Italy at the high school level a common task concerns the proof of a given
statement, but according to a well established didactic contract (Brousseau, 1986),
a proof must be clearly required: specific expressions are used to formulate the
task "Prove that ..."
On the contrary when open-ended problems are concerned, no clear and
established norms may be found: the process of solution seems to require a
justification, but that is usually conceived as the explication of one's own
'reasoning'. That means that the solution must be accompanied by an argument
which explains and justifies it.

The experimental design
Seventeen subjects were selected in different Scientific High Schools: according to
school evaluation, all of them were high-attaining XI and XII Grade students and
generally speaking were considered brilliant students. Although they did not
belong to the same class and not even to the same school they followed a
deductive approach to Geometry. Four problems were selected and proposed to
the students in an individual interview; during the solving process they were
asked to think aloud and the whole problem-solving session was videotaped, then
the transcripts of the interviews analysed (Maracci, 1998).
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In this paper only one of the problems is considered; the text is the following.

Pb!. A convex angle rOs is given , where the two rays r and s are not on the
same straight line, and a point P internal to the angle, determine a line segment
which has its ends on the arms of the angle and P as its midpoint.

That is a construction problem; it presents some difficulties in the identification
of the solution, but may be successfully approached by assuming the segment
given and looking for some characterising properties.
The problem is not too difficult not too easy and for this reason provides a good
test for our purpose. Students can undertake the solving process, but the solution
does not come immediately: often successful, the solution comes after some
investigation.

Argumentation supported by theorems and definitions
The analysis of the transcripts reveals a great variety in students' performances,
but also interesting similarities.
It is difficult to separate the process of solution into different phases
corresponding to an ideal sequence of producing, formulating and proving a
conjecture. What occurs is more like to an intermingled combination of this
phases. The process is clearly directed by the goal of attaining the solution
together with the certitude of its correctness. The culture of theorems into which
students have been introduced leads them to consider that for a reasoning to be
correct it must refer to well known geometric properties and theorems.
The solving process results in a long and often tortuous discourse with arguments
referring to the possibility of "applying theorems". But it is very difficult to
isolate a statement which could be possibly recognized as the formumation of a
conjecture, either in the hypothetical form "if ...then" or in any other form;
similarly, it is very rare to find a final deductive argument which could be
possibly recognised as a proof.
The following protocol can be considered an exemplar.

Gia 11th grade (Scientific high school) PIA
Giacomo reads the text of the problem and after few attempts (drawing an angle and a
tentative solution segment) seems to have an intuition
Gia. : let us draw the lines parallel to
the arms of the angle and passing
through P - he draws the lines, then
draws a new drawing (4) where he
traces few segments passing through P;
stressing one of them -
Gia. Yeah, one can make the parallel
to r pass through P he draws it on
drawing 4 - at this point he marks the 0angles - here, practically ... if I trace
the segment through P - he stresses the segment - which should be practically one half, I
should find that because of the similarity ... this is one half of this ... and then also the ratio
of the other sides, that is he put the labels Q and H- OQ and OH must be 2.



Thus in order to find the segment one can do in that way he draws a new figure (5) and
labelling- given a point P one draws the parallel line to r he draws the line on figure 5-
after that he marks the intersection between the new line with the ray s one doubles ... Ishould obtain OH, let us consider a segment with the same length he marks the pointQ on s- and one make the segment pass and this is ... has the ends he marks the point R,
intersection between rand the line QP on the arms of the angle and P is the midpoint.
I .: Have we finished that way?
Gia.: I think so; here we used the 'similarity' and we could use it because I had twotriangles he comes back to drawing 4 and puts the label M on the end of the segmentpassing through P - OQM and HQP similar because constituted by one equal angle andbecause I drew the parallel to the ray r he points at it - I know, because of a theorem that I
have already proved, a group of parallel lines which intersect a ray, divides it in ... a groupof rays ... divides it into similar triangles; thus from the similarity I just pass to this ratio of
sides which between OM and OP must be 2, but, in order to be 2 it must be 2 also the ratio ofQH and 00, because we know that in two similar triangles the ratio must be constant andthen I come to the end : given a point P one can draw the parallel line, in this case to r, but
one could do the same with s, and consider the segment OH, double it in order to get another
equal segment, pass the segment through Q and ...
I .: OK, I ask you only another question: if I were your teacher and she had given you that
problem, at this point would you say "I finished" or would you do anything else?
Gia.: I would say that I finished, because I got the thesis that I wanted, I found the
segment.

The production of the solution is accompanied by the explication of one's own
'reasoning '. The formal approach to which students have been exposed lead
them to approach the problem 'theoretically', i.e. the segment must be
"geometrically constructed" and for the argument to be correct it must refer to
well known properties and theorems. Thus, since the beginning, Gia. refers to
"tracing parallels" and to "apply similarity". But the student seems not to feel the
need of reorganising that reasoning in the form of a statement and its proof. The
main objective of the argumentation remains that of explaining and convincing
oneself and/or the hypothetical interlocutor, and the discourse does not assume the
form of a Theorem (a statement and a proof within a theory, Mariotti at al.
1997).
After the question of the interviewer Gia takes up his argumentation and
immediately points out that he used ("ho sfruttato") a geometric concept -
similarity -; then he seems to undertake the first steps of a proof, although no
statement has been clearly formulated and remains implicit in the description of
the construction. What seems to me most interesting is that at the crucial point,
when Gia is going to apply the theorem, he goes back to the indirect argument,
used in the production of the solution: with the same words of his previous
argument, he says:

thus from the similarity I pass to this ratio of sides which between OM and OP
must be 2, but, in order to be 2 it must be 2 also the ratio of OH and 00,

In other terms, the inversion between hypothesis and thesis, typical of the change
from 'analysis' to 'synthesis' and required by a deductive systematisation of the
argument, did not occur.
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Gia's reasoning explains in a narrative form both the genesis of the solution and
its justification; that reasoning satisfies the student because it fulfill his needs in
that situation: it accomplishes both the function of convincing and explaining, and
the 'didactic agreement' that the support of a conjecture must be provided by
theorems already known. Thus, despite the pressure of the interviewer the
structure of the argumentation does not change and it does not even change after
the explicit reference to the didactic contract "If I were your teacher ..."
Let us consider another example which presents some similarities, but also an
interesting difference, with the preceding one.

Fra. 11th grade (Scientific high school) PIA
Fra. reads the text and draws a first diagram, that gives him the idea of a theorem aboutmidpoints in a triangle. Confronting the first drawing and a new one representing thetheorem, Fra comes to the solution: at this point, he summarises his reasoning runningthrough his previous arguments and concludes:

1. Fra. the figure is not precise ... because of the fact that ... now the figure is not well
done, anyway these points here - in the drawing 1 he changes the labels of the points images
of 0 in the symmetry of centre A and B, he points at D,E and P they should be collinear.

0

1)
2. I: D, E and P should be ... and so they are?
3. Fra: They are, I mean they are and also they are parallel to this line here he points at ABthus I got the end, if I drew a good drawing.
4. I: sorry, you are saying that D, P and E are collinear, ...
5. Fra: Yes, they are, because of this reason ... if I have this point - C on the drawing 2 and
P on the drawing 1- which would be practically the midpoint on this side here - he uses the
pen to point at the segment to determine, but without drawing it I can use the relationship
holding between the midpoints he points at the drawing 1, PB and r - ... being that parallelBC in drawing 2 - I draw this parallel - PB in drawing 1 in order to find this point B indrawing 2 then drawing the other one PA in drawing 1 - and finding this point A indrawing 2 - I know that this - OA in drawing 2 - is equal to half that side - he points at AD indrawing 1- I do the same - he points at drawing 1- I take DE and that's all.
.6. 1 : That seems a good idea, but it could be that I am not convinced that D,P and E arecollinear.
7. Fra: ... but ... the theorem ... - he points at drawing 2 ... this theorem says that if Idraw the lines through the midpoints of a triangle, for instance B and C, all the segments, the
length of the segment between the midpoints is equal to half ..., in all the triangles, anytriangle ... I mean I find this relationship ... I mean ...
8. I. In our problem, wehave the point P and the angle, we draw the parallel lines to thearms of the angle, we find the point A, B; let us do the symmetry ...
9. Fra.: let us call them 0' and 0" he changes the labels in drawing 1.
10. I.: ... you construct 0' and 0"
11. Fra.: now 0'O" passes through P

2)



12. I.: I don't know that, I don't ... that 0', P, 0" are collinear, I don' see that so evident
from that theorem, try to explain that better ... what does it mean that they are collinear?
13. Fra.: If I draw the straight line he points at a hypothetical straight line passing through
0', P, 0" they all are on the same straight line
14. I.: How can you prove it?
15. Fra. : One must prove that if I take the straight line 0'0", P is on that line .
16. I. : ... It doesn't seem straightforward to me ... from that theorem
17. Fra. : let us suppose that P is not on that line, then there should be another point P',
let us put it here - he marks P,' separated from P', on 0'0" such that ...

18. Fra: if I did a new drawing ... - he draws the angle, the point P and the parallellines P
is here, I draw the parallel lines ... let be like that - he draws a segment that does not pass
through P it would exist a point P' which is the midpoint ...

19. Fra. : the comes back on drawing 1- then it should exist a point P' on 0'O" ... a point
P' which would be the midpoint of the side ...

Similarly to Gia., the first justification produced by Fra (5) is a summary of his
previous arguments centred on the reference to the "midpoints theorem"; also the
following attempt remains confused and vague. At this point the interviewer
intervenes: he reformulates the solution, and directly asks to prove that P belongs
to this segment and is its midpoint. After the direct request of proof Fra begins a
proof by contradiction, which is then completed .

It is interesting to remark that in order to accomplish that proof Fra needs
1. to detach himself from the previous reasoning through the drawing of a new
figure, where the statement to be proved is clearly expressed (18).
2. to come back to the first drawing (19), where the first conjecture was
produced, in order to resume his reasoning and the relationships among the
elements involved (an example of cognitive unity, Garuti et al., 1996) .

Similarly to the previous example (Gia), after the intuition of the solution, there
is neither spontaneous reorganisation of the reasoning in a deductive form, nor
the formulation of a clear conjecture. The student is able to provide a proof, only
in response of a direct request (14) of the interviewer.

Discussion
Open-ended problems confirm themselves as catalysts of argumentative activity:
the feeling of uncertainty that accompanies the solving process provide a good
stimulus for the production of arguments. It is also clear that the need of a
Geometric support for those arguments has overcome the status of a norm of the
didactic contract and has evolved in an epistemic need.
Never the less, the main objective of students' argumentation remains that of
convincing oneself and/or the hypothetical interlocutor, and the discourse does
not assume the form of a theorem. In other terms, students seem unaware of the
distiction between the process of constructing arguments, i. e. "proving", and the
deductive systematisation of those arguments in a "proof" (Douek, 1998).
But in this case speaking of a cognitive rupture between these two aspects (Duval;
1991) would be misleading. Rather, our hypothesis about the presence of
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different functions of proving, which coexist and guide the organisation of the
argumentation, provides an interpretation for both the examples. In the former
example (Gia.) there is a prevalence of one function on the other and the absence
of the correct formulation of a deductive proof. In the latter example (Fra), a
direct request of proving may cause the shift from the function of explaining and
convincing to the function of validating a statement. The example of Fra shows
that the necessity of reorganising the arguments in a proof can be understandable,
although not immediate. Actually, some difficulties must be overcome: as the
protocol shows it is after the mediation of the interviewer that the student
understands what he was required to do. Spontaneously he would never think of
doing that.
Although, proving as part of the solution of an open-ended problem seems similar
to proving as response to a "proof task", between these two processes there is a
great cognitive difference. As far as the proof task is concerned, the statement
and the request of its proof are directly posed to the student from outside. On the
opposite, when an open-ended problem is concerned, the production of a proof
must be the response to a self-imposed task, encapsulated within the solving
process, and strictly dependent on the production of a conjecture. Thus, within
the solution of an open-ended problem the functions ofexplaining and convincing
may completely prevail over the other. This effect may be amplified in the
particular situation of the interview: the request of thinking aloud and making
one's own reasoning explicit to the interlocutor naturally leads the student to shift
to the functions of explaining and convincing.

The peculiarity of a construction task
As a final remark I want to focus on the particular task selected for the interview:
a construction task.
When a construction task is concerned the solution requires to describe the
constructing operations, and then to validate it in a Theorem (Mariotti et al.,
1997). That means to formulate a statement, expressing the geometric relations
among given and new elements, and prove it; but summarising in a 'hypothesis'
all the relationships stated by construction may be too difficult to be done. That
could explain why in our protocols it is almost impossible to find any formulation
of a conjecture, and when it occurs the conjecture is never expressed in a
hypothetical form. On the other hand, the absence of a statement may obstacle
pupils to assimilate the situation to the familiar situation of a 'proof task' and
hinder the production of a proof. On the contrary, the formulation of a clear
statement could direct the students towards the idea of proving and facilitate the
correct construction of a proof.

Conclusions and didactic implications
The pervious analysis shows of the continuity between the arguments used both in
producing and justifying a conjecture and its potentialities, but makes also clear
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that the relationship between the process of constructing a conjecture and that of
constructing its proof presents a complexity which must not be underevaluated.
In particular, the delicate didactic problem concerning the relationship between
the different functions of proving must be directly addressed because of its effect
on the process of constructing a mathematical proof.
A suggestion comes from our analysis: teaching intervention could foster students
to reconstruct their arguments into a Theorem, i. e. a statement and a proof
within a theory. Moreover, according to our results, a basic point seems to
concern the formulation of a conjecture in a clear and precise statement.
It is true that most of the solutions provided by our students appear very close to
mathematicians' practice of doing mathematics, but the obvious difference
between mathematicians and students cannot be forgotten. Mathematicians can
afford (take the liberty of ) informal arguments, in fact beneath an incomplete
and informal discourse they maintain the epistemological control of what is going
on, of what can and/or should be proved On the contrary, as far as students are
concerned, the control of the different functions of proving is not expected and
the balance between them is not immediate. As Hanna wrote: "what needs to be
conveyed to students is the importance of careful reasoning and of building
arguments that can be scrutinised and revised" (1989, p. 23).
As any characteristic feature of mathematicians attitude, the complementarity
between different forms of argumentative activity, could be the result of a slow
and complex appropriation process: an explicit educational goal.
That is not simply to comply with the standards of mathematical argumentation,
but because, in our opinion, the appropriation of a productive relation between
argumentation and proof may improve students' awareness of the functioning of
mathematics.
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FORMING RELATIONSHIPS IN THREE DIMENSIONAL GEOMETRY
THROUGH DYNAMIC ENVIRONMENTS

Christos Markopoulos and Despina Potari

University of Patras, Greece

This study explores how children build relationships between geometrical solids and
their properties and between the solids themselves while working with dynamic three
dimensional models. The data used in this paper comes from a teaching experiment
where two pairs of children, one of grade four and one of grade six work on the
models which have been developed by the researchers. Issues that emerge from the
study are the role of constructed environment in bridging the gap between intuitive
and formal school knowledge, in encouraging the development of relationships
between the two and the three dimensions and in supporting interactions between
"concrete" and "abstract".

A number of research studies have focused on children's thinking about three
dimensional geometrical solids. However, most of them explore children's conceptions
on solids' representations on the plane (Bishop, 1979; Cooper and Sweller, 1989;
Mitchelmore, 1980; Piaget and Inhelder, 1956). Even in cases where the solids
themselves are considered, they have been examined through their plane
representations either in static or in dynamic environments (Battista and Clements,
1996; Ben-Chaim, Lappan and Houang, 1989; Chiappini and Lemut, 1992; Gutierrez,
1996). In this study, children's geometrical thinking is investigated through models of
geometrical objects which through dynamic transformations can take different forms.
We accept Bauersfeld's position (1995) that the materials and their properties are not
"self-speaking" but we consider that the dynamical manipulation of them may help
children to construct and extend dynamic images and develop their geometrical
thinking. This analogy can be seen in the work of Shepard and Cooper (1982). Kaput
(1992) supports that in the case of geometrical objects this process is characterized by
the recognition of the invariance of these objects and this can be encouraged by the
variation of the objects.

The focus of the study

In this paper, we present a part of a research study which focuses on children's
geometrical thinking about geometrical solids and their properties. In particular, we
explore the role that the dynamic transformations of geometrical solids can play in the
creation of a learning environment which encourages the development of children's
ability to focus on the properties of each solid and build relationships between these
properties and, based on these relationships, between different solids. This
development can be seen within the model of the van Hieles' levels of spatial thinking
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or within Presmeg's (1986) and Johnson's (1987) view of the development of
mathematical reasoning and understanding through the transition from concrete images
to more abstract and flexible images. The dynamic transformation of a geometrical
solid is considered as a process where the solid changes its form through the variation
of some of its elements and the conservation of others. Similar transformations have
been studied in the case of two dimensional geometry and especially through the use of
computers (Laborde, 1993; Markopoulos and Potari, 1996). However, the case of
three dimensional geometry requires the development of more complex relationships as
the properties are related both through the linear properties of the solids (e.g. the
relationships between the edges) and through the properties of two dimensional
geometrical figures (eg. the relationships between the faces).

The above transformations have been seen in three different contexts. The first is
defined through children's manipulations of physical materials of three dimensional
geometrical models. The second involves children's interactions in a computer based
environment which simulates such geometrical models and their transformations. The
last one is formed through children's involvement in imaginative situations where
dynamic transformations of solids take place. The possibilities and the constraints of
these three environments make possible the appearance of different aspects of
children's conceptions of the solids. These contexts vary in the type of transformations
which they require through children's actions. It seems that through these contexts the
children move from physical to visual and finally to mental actions. Here, we can
probably see a development from concrete to abstract considerations of the solids. The
data used in this paper concerns the first context.

In this paper, we focus mainly on cognitive aspects of the learning environment by
working with pairs of children. However, the research is concerned with the process
where the role of the transformations is explored in a mathematics classroom
environment. The focus is not only on the development of children's geometrical
thinking about solids but also on the wider environment, such as the teacher's actions,
the cooperation between teacher and researcher, the adaptation of the materials in the
mathematics curriculum, the whole interaction between the teacher and the children
and between the children themselves, which frames this development.

The process of the study

To explore children's constructions and how these are developed, we have used a
"constructivist teaching experiment" where the researcher acts as a teacher who
models children's constructions. The researcher, reflecting on his/her interactions with
students, tries to explore children's actions and construct models of their mathematical
understanding which throughout the teaching sessions are tested and revised. Based on
current interpretations of children's actions, the researcher - teacher makes decisions
concerning situations to create, critical questions to ask, and the types of learning to
encourage. (Cobb & Steffe, 1983)
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In this experiment we worked with two pairs of 10 and 12 year-old children. Each pair
worked in three 45-minute sessions per week for 4 weeks. The sessions were
videotaped and transcribed. The two pairs were selected from the forth-grade and the
sixth-grade classroom of the same school according to their responses to a given task.
Children were given three different solids and asked to write a description of each
solid which would be given to one of their classmates. The description should be as
accurate as possible, so that their classmate could identify the solids. The three solids
were: a prism, a solid consisting of a cube and a pyramid and a cylindrical can . From
the analysis of their responses, we identified two groups in each classroom accor_liag
to the way they referred to the properties of each solid. Each pair consisted of one
person from each group. We also took into account the gender (one boy and one girl
for each pair) as well as the teachers' opinion about the personal relationships between
the children.

Description of the materials

These are models of solids which were developed having some of their elements
varied dynamically. In this experiment three models are mainly used by the children.
The first dynamic model is a cube formed only by its 12 edges whose length could
vary. The children could also vary its angles. In these transformations the degree of
variation is constrained by the fact that the lengths can double in size while the angles
can vary by up to thirty degrees. The second model is a cuboid where the length of its
edges remain the same while its height varies from an initial length to zero when the
solid "becomes" plane. The third one is a rectangular or a cylindrical transparent
plastic solid filled two thirds with salt. The children can study the various forms that
the salt takes. All these transformations which can be performed on these models are
characterized mainly by the variation of the form of the solid and not only by the
variation of its position.

The tasks used were based on our interpretations of children's actions. They varied
from the free exploration of the models to more goal directed tasks where children
were asked to transform an initial solid into a different one and study this
transformation, considering, for example, the properties that have been changed.
However the tasks have evolved throughout the sessions. Children were encouraged to
face extreme cases, to anticipate and to generalize. In our analysis below, we
exemplify more clearly the role of the tasks in the whole learning environment.

Emerging issues

From the analysis of the transcribed videotaped teaching sessions we exemplify below
some points that indicate children's thinking in three dimensional geometry and its
development.

Building relationships between the solid and its properties The children were asked to
transform a given solid into a different one and compare the two solids to identify
similarities and differences. This task encouraged the use of different comparison
strategies which fall into three categories:
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comparisons based on the form of the solids

comparisons based on the variations of the initial solid caused directly by the
children

comparisons based on the subsequent changes caused through the transformation

Throughout the teaching experiment all these three categories emerged and there was a
development in children's strategies from the first category to the third. In the first
category, the children considered the solids as whole entities. For example, in the case
of transforming a cube into a cuboid by changing one dimension one pair of children
(12 years old) initially saw the cuboid " like a cube but a little longer". Later on they
started to consider them as separate solids with different properties " It (the cuboid)
has these equal and those equal (the opposite faces) but it is not like the cube which
has all equal". By moving from one form of the solid (the cuboid) to the original one
(the cube) and vice versa, they start to become conscious of the underlying changes in
the dimensions of the solids "its length has changed while its width has remained the
same (of the cube) ". This is an example of the second category where the children
consider the change in the properties which was caused through their own actions in
this dynamic situation. The problem becomes more complex when the children are
asked to make another cube, different from the original one. In this case all the three
dimensions should be changed properly. The children initially have not developed a
particular strategy but they try different cuboids by changing the dimensions and
fmally approximate the cube while they start to realize that for a cube " we need to
have equal sides".

In the third category, the children form more abstract relationships as the changes in
the properties are not visible, for example the changes in the surface area or in the
volume. Even in cases where these changes can be seen, for example in the case of the
angles, they have not been caused directly by the children but are the result of the
transformation. Through the researcher's encouragement the children started to
consider these types of changes. We give an example below of how the children
conceived the change in the volume when they made an oblique cuboid from a cube,
keeping the same sides. Initially the children think that the volume becomes bigger "it
becomes slanted and takes up more space". Through the discussion we realised that
the children meant that the new solid does not fit easily into a cubic frame. Later on
when they were asked to justify their opinion, they could not see any point in doing so
as they thought that it was obvious. When the researcher asked them to find a way to
calculate the volume of the two solids, they started to recall the "formal" school
method of multiplying the dimensions in the case of the cube. They extended this
method to the case of the oblique solid. Then they started to believe that the two solids
had the same volume as they had the same edges. The whole problem changed to a
manipulation of numbers, the lengths of the dimensions, while their intuitive
conceptions of volume disappeared and the problem was transformed into the
comparison of the two solids in terms of their surface area. The integration of intuitive
and school knowledge took place when the researcher intervened and asked the
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children to imagine what would have happened to the solid if they continuously made
the cube more slanted. This led the children to see the effect of the height both on the
surface area and on the volume, and doubt their previous belief. As a result they
explained by using the variation of the height, that the volume of the solid will become
smaller.

The development of these three comparison strategies is associated with the evolution
of the task during the experiment (see figure 1). Students were asked to transform an
initial solid into a different one and study this transformation from three different
perspectives. These perspectives are characterized by different manipulations of the
transformation. One was the transformation into a different solid (the result of
children's free experimentation with the materials) where the varying properties had to
be identified. The second was the transformation into a specific solid (e.g. the
transformation of a cube into a different cube) where the properties of the two solids
had to be taken into account in order to get a satisfactory result . The third was the
transformation into a different solid through a specific variation of a property (e.g. the
solids to have different volumes) of the original solid. In the last two perspectives the
children are forced to take into account the properties of the solids and build
relationships. So, we see the appearance of the most advanced comparison strategies
(the last two categories). On the other hand, the first perspective encouraged the use of
more holistic comparison strategies, although this was not exclusive.

Evolution of the tasks Comparison Strategies

Transforming to a
different solid by
specifying the varied
properties.

Transforming to a
specific solid by
considering the
properties.

based on the form of
the solids.

based on the
variations caused
directly by the
children.

Transforming to a
different solid
through a specific
variation of a
property.

based on the
subsequent changes
caused through the
transformation.

Figure 1. Associating the evolution of the tasks with the children's
comparison strategies
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Forming relationships between the solids The dynamic transformations of the solids
allowed the children to experience through their own actions, different forms of the
same type of solid and possibly overcome the prototype phenomenon (Hershkowitz,
1989). Even the younger pair of children (10 years old) could relate the cube and the
cuboid and developed arguments to express and justify their relationships. For
example, these children, in their attempt to make a cube different from the original,
make a cuboid by making one dimension of the cube bigger. They recognize it as a
cuboid and they explain that this is different from the cube as "it does not have all the
edges equal".

Concrete and abstract Although the tasks involved the physical manipulations of
solids, in the whole process we see the "concrete" and the "abstract" to be interwoven.
By this, we mean that the children, through the evolution of the tasks, could go beyond
a specific physical action to a generalization. This development was not linear as the
specific and the general continuously interact mainly through the children's attempts to
justify their opinions. We see below an example of such an interaction. The pair of
twelve year-old children had made different solids by moving the salt in the cylindrical
object and they came to the conclusion that all these solids (made of salt) had the same
volume. The problem is extended to an imaginative situation when the children have to
decide what would happen to the solid if the salt were in a bigger cylindrical object. In
this problem the children actually consider a mathematical problem which is to
examine what happens in a cylinder when its volume remains the same but its
dimensions change. The boy in this pair used his dynamic images which have possibly
been created through his involvement in the experiment to face this problem: "if the
perimeter (the circumference of the circle) was the same, then it would occupy exactly
the same space but if it was much bigger (the circumference) it would become very
tiny (showing with his fingers the height of that cylinder)".Here, the children come to a
rather general mathematical conclusion by referring to the specific context of the initial
concrete situation. The children were often challenged to make generalizations through
considering "extreme" cases.

Intuitive and school knowledge By "intuitive" knowledge, we refer to what Fischbein
and Grossman (1997) define, to global, direct estimation based on some initial
information, on some mental operation. By "school" knowledge, we refer to what the
children had been taught in their mathematics lessons. The dynamic features of the
materials and the type of interaction which was developed encouraged the children to
anticipate, estimate and form hypotheses. These hypotheses were mainly justified
either from the variations observed or from those imagined and were of an intuitive
nature. The oldest pair of children tended to recall their school mathematical
knowledge in their justifications. On the contrary, the youngest pair of children
remained on the intuitive level as their school knowledge in this area was very limited.
The mathematical knowledge was used for recognition of the objects, for the
formulation of definitions and rules and for computation. In some cases it supported
the whole activity and it obtained a meaning for the children and it was developed
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further. For example, the oldest pair of children used the process taught in school, the
transformation of a parallelogram into a rectangle by cutting and pasting the right-
angled triangle formed by its height and the one side, to make an analogy in three
dimensional geometry. They tried to compare, through the same model, the volume of
a cube with an oblique cuboid which had edges equal to the cube's by cutting and
pasting a prism. On the other hand, there were some incidents where the children's
persistance in using mathematics prevented them from seeing other alternatives, even
in cases where they did not have any clue as to how to face a situation.

Concluding remarks

Goldenberg (1995) supports the view that the use of dynamic geometry suggests new
styles of reasoning. He also poses a number of questions open for research concerning
the role of this geometry in mathematics education. In this paper, we attempted to
approach some of these questions and show the possibilities of the dynamic
transformations of three dimensional solids in helping children to form relationships.
The issues that emerged indicate that it is possible to create an environment where the
children build and extend mathematical investigations by interacting with the teacher
and the developed materials. In this environment, through the continuous deformation
of a geometrical solid, the children seem to realize the role of the properties in the
solid's form and are led to make generalizations. They develop the ability to predict
and anticipate the result of their physical actions. Moreover, this environment
encouraged the children to think intuitively, in some cases overcoming the "lack" of
mathematical school knowledge and in other cases developing an alternative meaning
for this knowledge.

It is expected that the complete results from this project will extend the features and
the possibilities of such an environment by taking into account the complexity of the
mathematics classroom.
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Concept Maps & Schematic Diagrams as Devices for
Documenting the Growth of Mathematical Knowledge
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The major focus of this study is to trace the cognitive development of students
throughout a mathematics course and to seek the qualitative differences
between those of different levels of achievement. The aspect of the project
described here concerns the use of concept maps constructed by the
students at intervals during the course. From these maps, schematic
diagrams were constructed which strip the concept maps of detail and show
only how they are successively built by keeping some old elements,
reorganising, and introducing new elements. The more successful student
added new elements to old in a structure that gradually increased in
complexity and richness. The less successful had little constructive growth,
building new maps on each occasion.

Introduction
A concept map is a diagram representing the conceptual structure of a subject discipline
as a graph in which nodes represent concepts and connections represent cognitive links
between them. The use of concept maps in teaching and research has been widely used
in science education (Novak, 1985, 1990; Moreira, 1979; Cliburn, 1990; Lambiotte and
Dansereau, 1991; Wolfe & Lopez, 1993) and in mathematics education (Skemp, 1987;
Laturno, 1993; Park & Travers, 1996; Lanier, 1997).

This study focuses on how concept maps develop over time. Students taking a sixteen-
week algebra course using the function concept as an organising principle were asked to
build concept maps of FUNCTION on three occasions at five-week intervals. In addition
to qualitative analysis of the successive concept maps, we use a simple pictorial
technique to document the changes.

Given a sequence of concept maps, a schematic diagram for the second and
successive maps is an outline diagram for each distinguishing:

items from the previous concept map remaining in the same position,
items moved somewhere else, or recalled from an earlier map,
new items.

Ausubel et al (1978) placed central emphasis on building meaningful new knowledge on
relevant anchoring concepts familiar to the student. Using the schematic diagrams we
investigate whether fundamental concepts persist in the development of successful
students' concept maps and what happens to the less successful. This will be triangulated
with other techniques of data collection and analysis. Given the extensive literature on
the difference between those building a powerful conceptual structure and those
remaining with inflexible procedures, we expect to find these differences reflected in the
concept maps and schematic diagrams.

3 - 281

101 3



Concept maps and cognitive collages
The question as to whether a concept map actually represents the inner workings of the
individual mind has long vexed the mathematics education community. Here we are not
so much concerned with this issue as to how the individual chooses to represent his or
her knowledge. It involves a wide range of technical, cognitive and aesthetic issues.
Davis (1984, p. 54) used the term cognitive collage to describe the notion of an
individual's conceptual framework in a given context. As one of us was for many years a
professional artist and the other a practising musician, we warm to the rit,h inner
meaning of the term "collage". For a child it may simply consist of a collection of
pictures cut out of magazines and stuck on a piece of card, but for the artist it has a
theme or inner sense that binds together distinct elements in a meaningful way. So it is
with concept maps drawn by students. Some are seemingly arbitrary collections of items,
others use all kinds of artistic and other devices to hold the ideas together. Figure 1, for
instance, shows the first concept map of student MC drawn in the fourth week of term.
The original is in colour, with colour coded inputs red and outputs representing links that
are lost in a greyscale reproduction. By triangulating the development of these maps with
students' written work and interview data we will explore how they provide a means of
documenting cognitive growth over time.

Figure 1: MC's first concept map after four weeks
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Methodology
The subjects of the full study were twenty-six students enrolled at a suburban
community college in a developmental Intermediate Algebra course. The curriculum
used a process-oriented functional approach based on linear, quadratic and exponential
functions supported by graphing calculators. Data was collected throughout the semester
on every student including concept maps requested in weeks 4, 9 and 15 of the sixteen-
week semester. Students were advised to use "post-it" notes to allow them to move items
around before fixing the map. The maps were collected a week later, reviewed with each
individual student to gain further information on the intended meaning, and then retained
by the teacher so that at each stage the student was invited to draw a concept map anew.

Results of pre-and post-test questionnairestogether with results of the open-
response final exam and departmental multiple-choice final examwere used to rank
the students. Two subgroups were selected, the four "most successful" and four "least
successful" in the rankings, for more detailed profiling using follow-up interviews.

The concept maps of the eight selected students were analysed to document the
processes by which they construct, organize, and reconstruct their knowledge. Schematic
diagrams were constructed for the sequence of concept maps produced by each of them.
The full analysis of the concept maps and schematic diagrams (Mc Gowen, 1998) was
triangulated with other data (Bannister et al, 1996 p. 147). Here we focus on two
students, MC (in the most successful group) and SK (in the least successful).

Visual representations of students' cognitive collages
The second concept map of MC (figure 2) should be compared with the first (figure 1).
Although the overall shapes change a little, the second is an expansion of the first. Some
topics not studied in the interim (e.g. measures of central tendency and variability)
remain unchanged, some are extended (representations, equations), and new items (finite
differences) added.

The final concept map,
t

created during week 15,
was drawn on a very large
piece of poster-board, too
large to reproduce here.
The topics included on the
three maps followed the
sequence of organization of
the course and the
connections shown are
successively based on the
main ideas of earlier maps.
In his final interview, MC
commented:
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While creating my [final] concept map on function, I was making strong connections in the area of
representations. Specifically between algebraic models and the graphs they produce. I noticed how
both can be used to determine the parameters, such as slope and the y-intercept. I also found a clear
connection between the points on a graph and how they can be substituted into a general form to
find a specific equation. Using the calculator to find an equation which best fits the graph is helpful
in visualizing the connection between the two representations. I think it's interesting how we
learned to find finite differences and finite ratios early on and then expanded on that knowledge to
understand how to find appropriate algebraic models.

This final map is a rich collage, focusing on concepts and links between them, for
instance, between graphic and algebraic representations, relating finding zeros in the first
to factorising in the second.

The maps of SK provide a sharp contrast (figures 2, 3, 4). Week 4 includes definitions
(in speech balloons). Week 9 is a bare skeleton with little in common with the earlier
map. In week 15 the three basic function types (linear, quadratic,
become linked not to the central function concept but to parameters. The final
reveals procedural undertones
by concentrating on routines
(find slope, find constant
common ratio, simplify, solve,
evaluate, etc.).

Triangulating these concept
maps with other data confirms
that SK's knowledge is com-
partmentalized. She seems to
have assembled some bits and
pieces of knowledge appro-
priately, but others are missing,
preventing her from building a
cognitive collage with
meaningful connections. When
confronted with situations in
which she is unclear what to
do, she defaults to using
remembered routines. She
usually focuses initially on the
numerical values stated in a
problem. When confronted
with a task for which she has
no appropriate schema, she can
only retrieve a previously
learned routine. Her concept
image of linear and exp-
onential function on her week
15 concept map, for instance, is

and exponential)

1.081

map

Figure 3: SK's concept map,week 4
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Figure 5: SK's concept map, week 15

limited to the computational procedures used to determine the parameters. Neither her
classification schemes, nor her concept maps, reveal any interiority to these concepts or
links to other concepts, to graphical representations or to alternative strategies for
finding parameters. She demonstrated no ability to reverse a direct process in any
context at any time in the semester. On at least two occasions, she retrieved and used two
different approaches without realising her responses were inconsistent. She readily
admits she is unable to distinguish between a linear, quadratic, and exponential function,
even after sixteen weeks of investigation of these three function types. Confidence in the
correctness of her answers decreased over the semester, and her attitude became
increasingly negative.

The more successful student MC began with considerable lack of confidence in his
algebraic skills. Despite this, he was able to select an appropriate alternative strategy
when necessary, using the list, graphing, and table features of a graphing calculator. His
ability to translate among representations is documented. His work suggests that he has
formed mental connections linking the notions of zeros of the function, x-intercepts,
general quadratic form and the specific algebraic model appropriate to the problem
situation. He relates new knowledge to his previously acquired knowledge, building on
the cognitive collage he has already constructed. The interview data indicates that he was
able to deal with both direct and reverse processes, and recognizes them as two distinct
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Figure 6: First concept map and successive schematic diagrams for MC and SK

but related processes. He was able to translate flexibly and consistently among various
representational forms (tables, graphs, traditional symbolic forms, and functional forms).
Confidence in the correctness of his answers increased over the course of the sixteen
weeks. An examination of his work suggests that he initially focuses on the
mathematical expression as an entity, then parses it as necessary, exhibiting the
flexibility of process and concept necessary for more sophisticated study.

The use of schematic diagrams reveals these radically different developments (figure
6). It is immediately apparent that the basic structure of MC' s first concept map is
retained and extended in week 9 then further extended in week 15. However, the concept
maps of SK seem to start almost anew each time, with few similarities and almost no
basic structure that remains intact. Whilst MC builds from solid anchoring concepts,
developing a strongly linked cognitive collage, SK builds on sand and each time the
weak structure collapses only to be replaced by an equally transient structure.
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Comparison with other students
Analysis of the other selected students reveals striking similarities among the schematic
diagrams for each group. Each student in the more successful group produced a
sequence of concept diagrams whose schematic diagrams retained the basic structure of
the first within a growing cognitive collage. Each set of schematic diagrams for the least
successful also exhibited a common characteristic: a new structure replaced the previous
structure in each subsequent map, with few, if any elements of the previous map retained
in the new structure. No basic structure was retained throughout.

Triangulating this information with other data reveals that the basic classification
schemes used by both groups of extremes confirm the concept map and schematic
diagram analyses. The more successful have processes of constructing, organizing, and
restructuring knowledge that facilitate the building of increasingly complex cognitive
structures with rich interiority. Their basic anchoring structures, are retained and remain
relatively stable, providing a foundation on which to construct cognitive collages whose
concept maps are enhanced by imaginative use of layout, colours, and shape.

The concept maps and schematic diagrams of the least successful reveal the
fragmentary and sparse nature of their conceptual structures. No category appears on all
three maps of any individual student, nor even was there a single category common to all
four of these students. As new knowledge was acquired, new cognitive structures and
new categories were formed, with few, if any, previous elements retained. Even those
that were retained were reclassified and used in new categories with a different
classification scheme.

Reflections
This study reports a wide divergence in the quality of thinking processes developed by
remedial algebra students using graphing technology. High achievers can show a level of
flexible thinking building rich cognitive collages on anchoring concepts that develop in
sophistication and power. The lower achievers however reveal few stable concepts with
cognitive collages that have few stable elements and leave the student with increasingly
desperate efforts to use learned routines in inflexible and often inappropriate ways.

There remains the question of whether we are looking at these students through
suitable lenses. Recent research offers new insights into the roles of perception and
categorization (Rosch 1976), Lakoff (1987) which resonate with modern neuro-
psychological theories of how_the brain functions (e.g. Edelman, 1992) and how the
evolution of the brain supports certain kinds of brain structure more than others
(Dehaene, 1997). Within such wider frameworks we must ask "What if students like SK
are organizing their knowledge according to a classification scheme which is not
currently recognized or understood?" There exists the possibility that some students have
different ways of knowingways of perceiving, categorizing, constructing, organizing,
and restructuring knowledgewhich those of us engaged in the teaching and learning of
mathematics are unfamiliar with and have failed to consider. When one considers the
significant improvement of the most successful students, the conundrum remains of how



and why students like SKwho claim to want to connect new knowledge to old
appear unable to integrate new knowledge into existing structures.
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REINFORCING BELIEFS ON MODELLING: IN-SERVICE TEACHER
EDUCATION

Maria do Carmo Domite Mendonca
University of Sao Paulo, Sao Paulo, Brasil

The aim of this paper is a comprehensive discussion on my role as a teacher
educator in a course for mathematics in-service teachers, containing some analysis
on aspects of three teachers' teaching and on problems of their students. The course
was at State University of Campinas (UNICAMP) for experienced and qualified
in-service middle and secondary school mathematics teachers. In this paper I draw
upon my own notes as an adviser related to the discussions during the teachers'
coursework, a classroom experience using an innovative method centered in
"mathematics modelling".

Introduction
In recent years much research has been reported on the use of mathematical

modelling for the enhancement of mathematical learning. The racionale for teaching
mathematics through mathematical modelling has been described by Bassanezi
(1987, 1994), Blum (1990), D'Ambrosio (1986), Skovsmose (1994), among others.

According to Bassanezi (1994), "the study of problems and real situations with
the use of mathematics as its language for their comprehension, simplification, and
solution, aiming at a possible revision or modification of the object under study, is
part of a process that has been named mathematical modelling". In terms of teaching,
the use of modelling leads to the learning of mathematics content involving a real
problem solution.

Bassanezi has suggested that one important variable involved in the
mathematical modelling process is a situation, as its starting point, that belongs to the
"real world". Blum (1990) has also suggested for teaching through mathematical
modelling "an open situation which belongs to the real world and for the solution of
which some mathematics might be helpful". By "real world", both, Bassanezi and
Blum, refer to the world outside mathematics - in Blum's words: "by real world I
mean the 'rest of the world' outside mathematics, i. e. school or university subjects
or disciplines different from mathematics, or everyday life and the world around us".

Indeed, by assumimg such ideas for teaching mathematics, the issue of concern
here is whether and how, for three in-service teachers, the researcher could influence
and help them to use mathematical modelling as a method for teaching mathematics.
It was a goal to begin working with situations that belong to the real world in order
to develop basic and general foundations to problem posing and teaching through
mathematics modelling.

Actually, if this research group had to choose a psychological motive for
leading students to mathematical modelling, it would be ideas from Vygotsky, used
also by Bruner, "if one is arguing about social 'reality' like democracy or equity (...)
the reality is not the thing, not in the head, but in the act of arguing and negotiating



about the meaning of such concepts" (Bruner, 1989, p.122).
In order to analyse these researchers' role as an educator and the teachers

attitudes, Ponte's ideas were followed, being that, even though the teacher absorbs
understanding and information from an external force, he or she, decides on how to
execute decisions his/her movement/transformation is from the inside to the
outside. (Ponte, 1998)

This paper is, then, a qualitative analysis on the author's role as a teacher
educator in coursework for these in-service teachers. It also analyses the author's
own learning from this experience and some aspects of the teachers' pedagogical
practice through mathematical modelling.

Characteristics of the course: format and content
The coursework which is presented here is part of a larger program, entitled

"Science, Arts and Pedagogic Practice", with duration of 360 hours (4 semesters),
divided in eight classes of 45 hours (four of general themes and four of specific
subject themes). All the participants in this program are required to take classes in
each one of the following areas: Artistic Education, Physics and Mathematics. In
each one of the semesters, the participants had to attend two classes, one from the
general theme, and another related to the specific area they were involved in. The
whole program was offered in a period of two afternoons a week, over two years.
This first year the teachers attended required courses, and during the second year,
they participated in coursework that consisted of discuss and practice form of
inovation in their classrooms. The conditions and the description of the program
coursework was given to the student-teachers on the first day.

Thirty students participated, in groups of 10, with an undergraduate degree
in one of the following subjects: mathematics, science (physics or biology) and arts.
All the participants in this program were experienced teachers of students aged 11 to
18. One of the objectives of this course was to provide a link among the public
teachers' pedagogical practice, the academic education and the social/politcal
questions about them. (A brief summary of the content of the courses appears in table

1)
At the begining of the second year, the student-teachers were introduced to a

discussion/study about research in mathematics education, and moreover, about
action research. The seconde year of the course stressed the importance of using
cultural and social sources and personal experiences in the teaching of mathematics
on one hand, and the steps the teacher has to follow/value in a mathematics education
through the mathematical modelling process, on the other hand.

The results that I present in this paper correspond to the description/analysis on
the changes a particular group of three in-service teachers Gilberto, Maciel and
Solange - went through during the course, and my own learning from this work.
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Table 1

Summary of the General Disciplines. 15t sem/96 - "Conceptions and Organization of the Pedagogic
Work": global vision of the subjects linked to educational conceptions and their relationships with
the organization of the pedagogic work. 2" sem/96 - "History and Production of Knowledge":
historical production of pedagogic practice knowledge.

15t sem/97 -y / "Culture and Education": different manifestations and cultural practices related with
school and education. 2" sem/97 - "Science and Society": relationships between science and
society and the implications of the scientific production.
Summary of the Specific Disciplines (Mathematics Education):- 15` sem/96 - "Problems of
Mathematics Teaching/Leaming 1": reflection on the school mathematical knowledge in its
multiple dimensions: cognitive, episthemological, cultural, historical, social, semantics and politics.
2nd sem/96 - "Problems of Mathematics Teaching/Learning 2": study and reflection on the
pedagogic work in mathematics starting from problems identified by the teachers in their
classroom.
1st and 2"d sem/97 -"Teaching/Research Projects in Mathematics Education land 2": the
coursework.

Method
The selection of a qualitative method was quite natural since this work is a

type of case study which includes an analysis of personal discussions with the three
student-teachers, as well as, an analysis of teaching through mathematical modelling
and the existing teaching/learning results.

First of all, before actually starting the classroom experience through
mathematics modelling, the student-teachers and I discussed the following four
papers: a) "Modelling as a Teaching-Learning Strategy" (Bassanezi: 1994); b)
"Applications and Modelling in Mathematics Teaching-a Review of Arguments and
Instructional Teaching" (Blum: 1990); c) "Investigation: Where to Now?"
(Lerman:1989) and, d) "Problematizacao: Um Caminho a ser percorrido em
Educacdo Matematica" (Mendonca :1993)1. It is important to stress that the
discussion on Blum's paper led the student-teachers and I to decide that the analysis
of their mathematics teaching through modelling should be made taking into account
the "pro and con arguments". Blum presents, from several investigations and
inquiries in many different countries, the obstacles and potential roles that arises in
everyday teaching through mathematical modelling the author's "pro and com
arguments" were discussed from the student's point of view, from the teacher's point
of view and from the point of view of instruction.

The teachers were asked to register some of their actions related to the
innovation proposed for their pedagogical practice in the coursework. The objective
of the registration/diary was mainly to begin some reflections about themselves as a
modelling teacher, and at the same time, as a critic of his/her educational practice.
We decided that their diaries might not be shown to me, but naturally it was a very
important resource since it was, in part, from these notes that I obteained my data
and the student-teachers wrote their monographes. (Seen is in appendix I)

I The papers by Bassanezi and Lerman were read in Portuguese translations.
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Having read the articles, the teachers decided to work through generative
theme, as a starting point of the modelling process. In other words, the teachers
would invite their students to choose a situation/story/context from social reality a
theme and then, would help them to observe and investigate the facts underlying
this theme in order to pose/choose the problems that would be interpreted in a
mathematical model. Surely, the choice would be oriented, never imposed, by the
teacher, and naturally, it is important that the students were involved in that process
and felt motivated by the topics and problems raised. Indeed, the teachers Gilberto,
Maciel and Solange were prepared to develop, among their students, the following
steps: a) electing the generative theme; b) motivating a problematization/discussion
about the theme; c) asking the students a historical study about the theme; d) helping
the students to pose one or more problems d) using mathematical language for the
comprehension of the problem, which means to obtain/establish the mathematical
model, and, e) critically interpreting the obtained solution within the considered
reality.

In a general way, the teachers were led to link their conceptions of teaching to
the basic purposes, among others:

- mathematical knowledge is a set of relationships built in the interaction of the active person
with the others, by means of intellectual/physic/emotional actions, on facts and objects of the
environment and,
- the starting point of the school work would not be a mathematical content, but a problem -

especially, a problem that emerges from social reality.

Teachers' ways in the classroom
Some details of Solange's modelling experience (Group of Senior High School
students)
Generative themes: fotografia e camisinha (photography and condoms). A historical
study of both subjects was made. Two main problems posed using the photography
theme were: 1) "The relationship between the opening of the camera lens diaphragm
and the clearness of the photo" and, 2) "The time the photo would be submerged in
the fixator and the quality of its clearness". (Observation: Solange stimulated the first
question much more because she antecipated that in the second case, they would not
have a way to measure the clearness). Some of the mathematical models developed:
setting up points in a Cartesian diagram/graph of the given data/calculations of
roots/curve sketching/adjusting curves. Two main problems posed on condoms
theme: 1) "What types of preservatives are much more used?"and, 2) "The relation
of its use and people's ages". Several statistical contents were studied and many
hypotheses were tested with the use of computational software.
Some results of Solange's experience - Solange pointed out that from the questions
emerged, great part of the program was developed and there was an active
participation of the student in the teaching-learning process. Almost all
problematization emerged from the students. Solange observed that she never clearly
proposed questions. She noted that her students were naturally grouped according to
a common interest - one group, for instance, studied the history about the chosen
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theme, while the other group went to the research field to look for pieces of
information which were, in general, collected through interviews or bibliography
references. She said2: "my role was to make the process dynamic and to find a way of
leading the students to solve their own problems, I mean to model the
problem-situation. I actually worked, most of the time as a monitor... I would say that
my work was to help them to interpret the collected data in mathematical language,
that is to make the written mathematics meaningful". Solange concluded as follows:
"The class was successful beyond my expectations... It nevertheless seemed that I, as
a modelling teacher, merely scraped the surface of something much deeper... It is not
that mathematical modelling can be, for instance, introduced in a High School
classroom twice a week...the use of mathematical modelling, as a method of teaching
is rather a philosophy of mathematics instruction, is related of higher order
educational goals".
Some details of Gilberto's modelling experience (Group of 8th grade students)
- Generative theme: futebol (soccer). A historical study of soccer was made: the
estudents studied the story/development of soccer with an expert, a doctoral student
who has special knowledge about the theme. Problems posed by Gilberto leads to
several mathematical models: area of different polygons, length of diagonal,
trigonometric relationships, graph and formula of quadratic equation, among others.
Some results of Gilberto's experience - Gilberto pointed out that his greatest
difficulty in adopting the modelling process in his classroom was to break the barrier
posed by his 8th grade students, who possibly were influenced by the tradicional
educational system, whose goal was to learn a sequence of prerequisits for the test
they would have to attend at the end of the year. He said: "since my students showed
a certain degree of resistence in posing a first question, I presented them a problem, a
kind of story-problem related to the form and the measures of a playing field. I was
afraid that the ready-made question could damage the process, but it didn't happen,
they became extremely involved". His report reveals that this problem-situation,
which was followed by some other ones, provided motivation to learn about the real
situation - soccer - and about elementary geometry, measuring, linear and quadratic
equations, elementary trigonometric relationships, proporcionality and graphs. As a
final phase of this process, Gilberto tried to build a whole picture of the
problem-situation, requiring a quadratic equation as a model, before getting to the
analytical mathematical expression of this equation. Gilberto concluded as follows:
"The theoretical readings, discussions and analysis were essencial elements in my
development as a modelling teacher. My ideas changed... I would say that they were
reinforced because I was already looking in this direction, but I didn't know how to
apply them. I believe that the use of socio-cultural ideas of the students in a
mathematics classroom is a very natural thing to do. However, for this result to be
effective the undergraduate mathematical course must have courses according to
modelling. It is like Blum says in his pragmatic argument: 'the ablility of students
and teachers to master extra-mathematics situations does not result automatically

2 All quotions from teachers come from interview data.
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from learning pure mathematics, but can only be achieved by dealing in mathematics
instruction, with such real situations'. I also would say that the work started in this
course needs to be wide and deep. The mathematical courses for teachers do not
discuss/teach how to integrate mathematics with social problems and other forms of
knowledge. That was the first time I was invited to use activities that are close to
students' socio-cultural context. I like my results in spite of thinking, there is still a
big gap between modelling and my experience here".

Author's reflections
I would say that this paper has presented the argument that mathematical

modelling using problems generating from "real situations" involved the students
much more than traditional mathematical instruction, based only on subject content.
In fact, these preliminary data suggested that in some aspects mathematical
modelling achieved pleasing outcomes with respect to our student-teachers'
learning/changes and my role in this process.

Indeed, little more than one semester classroom practice through mathematical
modelling, was too short a time to evaluate these teachers. This realization came
about because the three teachers commenced the work with a great deal of interest
and motivation they demonstrated a willingness to help their students to learn
mathematics from within their reality. This instructive model allowed me to better
see our learning and changes much more than was expected.

In order to follow the student-teachers involvement with this innovation, and
to accomplish my analysis as their adviser, use of categories, such as: a) through my
orientation, the degree of the teachers' perception growth in reference to mathematics
modelling; b) the degree of possibility that the innovative method could actually be
accomplished and, c) mathematical concepts and models worked with based on
problems which emerges from real situations.

In the first few weeks of the coursework I assumed a radical position,
following Freire's ideas that "it is only parting from questions that one must look for
answers" (Freire, 1986, p.46). He asks, what would it mean if there are no questions,
there will be no lessons, there will be nothing to teach. However, after a while I
started wondering if the teachers were not wasting their time trying to use a problem
posed by the group, given the fact that many mathematics topics they already knew
how to teach (from a ready made way or formula) in an interesting and dynamic way
which captured the attention of their students. But, it is interesting to note that once
the teachers' interest increased, especially Solange and Gilberto's, when problem
posing, from the facts of social reality became the heart of their mathematics
instruction, my doubts quickly disappeared. After two weeks of classroom work
through modelling, Solange spontaneously said "I can recognize that the pedagogical
work stopped being that mechanical process that can take the learner just to learn an
algorithm or a formula, but I developed, somehow, the attitude of maintaining a
constant dialogue with my students, and among them, in order to motivate curiosity
and problem posing, and... now I can face circunstancial questions from the part of
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my students". Gilberto said: "I am finding better means of access to the didactical
variables we need to study and the autonomous questioning from the students are not
as poor as before.

During the coursework, I could note a great change in the teachers' ability to
transform the problem between the real word and mathematics. This competence
could be developed by means of suitable/successful processes, as discussed in
"formative pro-argument", as quoted in Blum. According to him (and I could see this
progress as well), the ability to translate from a practical/social context to the
mathematical context, in which data would be presented by means of table:, graphs
and equations, can only be advanced by means of experiences where the entire
mathematical modelling process is covered.

It is also important to point out that the three teachers naturally noted/observed
(what I was expecting!) that mathematical modelling, motivated by a problem that
emerges from social reality, can guide the pedagogic work to a transdisciplinary
cooperative teaching-learning process. They said something like: "the questions
posed by the learners don't belong to a very defined area of studies and so, in order to
find the means/ways for their solutions, we frequently transit into different areas".

The process of mathematical modelling with respect to
intellectual/emotional/political students and teachers development, is a great
challenge for both. That is, in order to teach the mathematics through modelling
method, teacher and student should establish relations/connections with the world
around them and the mathematical content, which demands a vast investigation out
of the matter of mathematics. For instance, the condoms discussions made instruction
more open and required classroom interaction unusual for the student-teachers and
their students. Blum refers to this second aspect as one of the obstacles, from the
teacher's point of view, to teach through modelling.

Based on these considerations, I intend to make some changes in the next
experimental courses that I guide. First of all, I will attempt to make the
register/practice diary more centralized, using much more time to examine the notes
and to understand what set of variables could be the best for the teaching of
mathematics through modelling. Second, the teachers should elaborate, as learners,
alternative models from experimental data, before acting as a modelling teacher.

Finally, I would say that in spite of the process not being precise (a handicraft
one) and the fact that this was the first experience teaching in this format, I found my
own perspectives reinforced, which means that I reinforced patterns of beliefs about
the use of social sources and personal experiences in making the learning/teaching of
mathematics more effective and more meaningful.

Acknowledgment: The author would like to express her gratitude to Gilberto Chieus Jr.,
Maciel Gomes dos Santos and Solange Regina Pedroso for their helpful comments.

Note: The teacher Maciel was also involved in the course but he did a theoretical analysis of
population growth phenomena and did not carried modelling classroom work)



Appendix I
Specialization Course: "Science, Art and Pedagogic Practice"

Task related to: the individual monograph / the classroom practice / pedagogic experience using a
innovative method / teacher's development as a researcher / action research.

Dear student

Please, from now on, I would like you to observe and register your difficulties and
facilities in reference to: a) the teaching through modelling process in general; b) the
students' actions and questions that show their involvement or not with the process of
modelling and, c) the understanding, from the part of the students, of a mathematical
fact. I ask you to make the registration in twice: 1) soon after each class, and 2) from
your past classes/situations (either very interesting or very difficult).
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THE DEVELOPMENT OF ELEMENTARY SCHOOL
CHILDREN'S IDEAS OF PRICES

Regina D. Moller
Institute of Mathematics

University of Koblenz/Landau, Germany

Abstract
The study reported in this paper investigates the competence of 6-10-year-old
children with respect to putting prices on real-world goods. The methodological
framework of the project is based on a qualitative and quantitative research
approach and uses structured interviews with each student of the first four primary
level classes. The results show competence for the "economic world" which could
enhance the teaching and learning of applications in math classes.

Introduction
In his chapter "Towards a way of knowing" Bishop argues that a performance-
orientated Curriculum with its emphasis on techniques, methods, skills, rules and
algorithms is portraying mathematics as a "doing" subject and not as a reflective
subject. In order for mathematics to educate the pupils he emphasises:

Surely what is needed now is more understanding and critical awareness
of how, and when, to use these mathematical techniques, why they work,
and how they are developed? This requires not only much greater
thought, but also a different kind of thinking and therefore it requires a
very different approach to the curriculum.

(Bishop 1995, 8)

Curriculum guidelines of many countries recognise the importance of applications
of mathematics to everyday situations. Applications however are very often
methodically used as a field of practice for previously introduced operations with
different types of numbers and therefore occur at the end of a chapter unit. And
although these applications of mathematics should manage to link the learning of
mathematics with real world questions, children and elementary school teachers
frequently seem to struggle with the applications.

This project was begun with the concern that little is known about elementary
student's competence and strategies concerning real-world prices of goods. One of
the first types of applied problems in elementary mathematics classrooms include
price-value problems. Traditionally this type of problem (formerly called regel de
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tri") belong to practical arithmetic serving the purpose to prepare for real life
situations:

The solving of these problems was understood as a training for applying
mathematics to real life and also for logical thinking.

Vollrath (1992, 229)

The didactical analysis of Kirsch (1969) clarified that the underlying mathematical
structure of this type of problem is a functional relationship between two kinds of
domains of magnitude (in German called GrOBenbereiche; Griesel 1973, 1997).
Domains of magnitude are ordered semi-groups and some of them are isomorphic
to (Q , +, <) which makes them a useful basis for elementary school mathematics
concerning applications (Kirsch 1970, Steiner 1969). Kirsch argues that neither
proportionality nor antiproportionality is a property of a real life situation and
therefore this type of problem could not be used as an instrument for teaching
logical thinking in math classes. However in the centre of real-world applications
is the study of relations between magnitudes.

Kirsch (1969) suggests tables as a methodical tool to work with functional
relationships. Nowadays already second grade pupils at primary level have to fill
out tables in order to solve these price-value problems. A typical example looks
like this:
Find out the prices for cold meat:

Gewicht 50 g 100 g 200 g 400 g 500 g 600 g 1 kg 1,5 kg

Preis 0,88 DM

In solving these problems pupils use either an additive or a multiplicative
approach. Both of these solving strategies are valid because they are properties of
the underlying proportional relationship. Nevertheless the knowledge about this
relationship is a subject matter of seventh grade mathematics classes.

In order to understand and solve this kind of problem children need competence in
three ranges: Knowledge of the

number system including decimal numbers (as prices)
"money world", that is the money system (coins, bills)
"economic world" (e.g. prices of goods, tasks of a bank)

While we are reasonably aware of students' abilities of the number system and of
stages of knowledge of students concerning the money system (e.g. Burris 1983,
Burti/Bombi 1981) we know little about the understanding of the "economic
world" children have in industrialised countries. Because in contrast to the students
Nunez et al. (1993) described in their study school children normally do not
experience the "economic world" on a basis of everyday personally experienced
buy-and-sell-situations. They have to rely more on observing experiences (e.g.
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when parents buy groceries taking goods from long shelves in a supermarket) and
of negotiations with other children (e.g. when they barter favourite toys). Piaget
(1932/1973) therefore stresses the necessity of social mediation for economic
situations.
Basic factors of prices of goods are production costs and properties like freshness
with fruits and vegetables. Supply and demand are also important factors of trends
of prices which can well be observed on markets. This kind of knowledge depends
on processes of enculturation and of socialisation (Bishop 1991, p.37).
Traditionally math classes inform with and through price-value problems about all
subject matter linked with physical quantities like length, weight and time.

Basic ideas of functionafrelationships are the
idea of one-to-one correspondence,
idea of systematic change
idea of observing a function as a mathematical object (Vollrath, 1989, p.8ff.)

These ideas emphasise the conception of a dependency between two (sets of)
values together with methodical variations and an overall view of properties of a
function. On primary school level the second idea is stressed because of the use of
tables.

On the basis of the functional approach to price-value problems there are various
problems:
Problem of fore-knowledge:
To solve the price-value problems the underlying assumptions of proportionality
are neither openly assumed nor touched upon in class. Therefore the students rely
with the methodical help of the offered tables on their intuitive strategies.
Problem of schematic solving:
Since, it is not the explicit goal (in the German curriculum) to teach the
proportional idea in early math classes, students rely more on a schematic solving
procedure with these problems.
Problem of fixed assumptions:
Price-value problems with their representations of tables to use in order to find the
solution give students the impression that prices of goods follow proportional rules
as it is the case with the other physical quantities (Keitel 1979, 264). However
prices of goods are not properties of goods like the length or the weight but
assigned economic values by humans which can change according to peoples'
necessities or opinions.
Problem of the concept of values:
Students bring to math classes a variety of value conceptions which is normally not
touch upon explicitly when price-value problems are discussed. Although the
system of coins and bills is normally discussed, the idea of linking their values to
real life goods is generally not stressed upon. It is assumed that the solving of
price-value problems give the pupils the appropriate ideas of concept of values.
The task of reflecting upon economical facts linked to price-value problems are
normally not undertaken in class.
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Necessary knowledge to solve price-value problems belong to functional thinking
which involve abilities like stating dependencies of domains of magnitude and/or
making assumptions about the kind of dependency and/or finding the influence of
changing one magnitude on the dependent other (Vollrath, 1992). These abilities
and possible deficiencies become apparent in economical situations in which the
student is asked assign prices to real-world goods.
The research questions underlying this study involve two aspects of research
focussing on elementary students.
What kind of individual strategies and competence do students of the first four
classes apply with respect to prices for real-world related goods?
How do they assign the prices? What reasons do students give for their prices?

Theoretical framework
Additionally to the theory of learning about functional relationships (Vollrath
1989) two further theoretical assumptions form the basis of our study: they are
concerned with social constructivism as the underlying theory of learning and with
problem solving as a part of mathematics (education).

1.Constructivism emphasises the individual's unique knowledge schemata (von
Glasersfeld 1991; Davis et al. 1990) and also the role of interaction in the learning
process (1995, 191) The inclusion of a social dimension (i.e. linguistic and cultural
factors (the way one talks about money), teachers' conceptions (their opinion and
experience about and with money) and their role in classes) in a constructivist
theory of learning is referred to as social constructivism. The learning about the
money system and its functions in economical situations depends highly on human
interactions and influences the individual's learning (Bishop 1995, Seiler 1978).

2. For a long time problem solving has been regarded as an important part of
mathematics. However the specific economic contexts have not been sufficiently
emphasised with respect to open real-world related tasks in either (elementary)
classroom practice or classroom research (Pehkonen 1991). Price-value problems
belong to Sachrechnen" (that is real-world-related mathematical problem
solving). Particular emphasis lies nowadays on real world contexts so that
children's knowledge about real-life situations can aid them in their learning of
mathematics.

Research Method
The structured interview approach (Bortz, Daring 1995) was chosen as the
methodological framework of the study. Hence, the data collection and
interpretation follow a strict procedure: each student of the elementary math
classes was individually interviewed and had to respond to a series of questions.
The data collection and interpretation also followed a strict procedure: Each
student out of the four classes of one elementary school was set aside from the
usual math lesson and introduced to the specific set-up. All answers were taped
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and transcribed. To be able to compare and recognise a development of
qualifications in the answers of all students the first and second graders were
joined together and the third and fourth graders. A Chi-square test for each of the
questions produced significant results. The comparisons of the pupils' respective
explanations gave rise to distinguish certain types of understanding of prices.

The Problems used in the Study:
Each student of all four classes (99 altogether) was given the idea to be an owner
of a toy-shop in which he sold different kinds of wooden playthings of different
shapes and colours (red, green, blue and yellow): cubes, quadrilaterals of different
volumes, each two or three-times as big as one of the cubes and a flat quadrilateral,
which had the volume of a cube, but was twice as long. In order to sell them the
students were asked to assign prices to each of the objects. To make the
investigation comparable, the starting point in assigning prices was given by the
investigator: the price for the red cube is 1DM.
In the sequence of questions that followed the prices were asked of
1. each of the yellow, green and blue cubes
2. each of the small, big and flat quadrilaterals
3. two, three and five of the dices, of the small quadrilaterals and of the big

quadrilaterals.
4. In the last question the student was informed that another shop sold the die for

1,50DM. Do you stick to your price?

The first question aimed at the relevance of colour stressed in psychological
literature (Burti/Bombi 1981). The next question aimed at the ability to think
proportionally with a number of pieces. The proportional aspect was also offered
by the next question: What price do you give the quadrilaterals (the one being two
and three times bigger than the die and the flat" one)? Bags with three or four
different kinds of these wooden pieces had to be taxed by the children looking for
their abilities to proportionally appraise and allocate prices. The last question was
used to assess the students' abilities to think about other peoples' motivation
within economic situations.

Findings
The findings relate to:
(1) childrens` mathematical problem solving abilities,
(2) their learning of social conventions,
(3) their ability to apply the social knowledge to math class problems.
Owing to space restrictions this paper can only focus on some of the answers of the
students. Examples of student answers as well as specific responses to the
questions will be compared during the presentation.
With respect to children` problem solving ability the study suggests that primary
school children have far more social knowledge of price-value problems than are
asked for in math classes. They use much more "common sense" in assigning
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prices and explaining their assessment than is normally asked for in usual textbook
problems.
The results obtained indicate the following:
First and second graders did not clearly understand that the prices depend on the
volume of the wooden toys. However the third and fourth graders understand this
relationship well.
The ability to perceive a proportional relationship between the prices and the
volumes of the various quadrilaterals grows with regard to age. However 50% of
the pupils at the end of fourth grade still have difficulties with it.
The ability to perceive that the price of half a volume is half the price still cause
difficulties for about 30% of the children at the end of fourth grade.
The understanding of the number system becomes obvious with the assigning of
prices. The use of only natural numbers for the prices of the wooden toys was
predominant with first graders.
Colour also plays a role when prices are put on to the toys. There are first and
second graders who price the objects by their colours. For example, first grader's
reasoning was: "because it is green and flat".
The power of perception increases with age: more pupils of second and third grade
mention the specific form of the toys than the first graders.
The answer to the hypothetical question shows that some pupils have already a
good understanding of prices. Some know that different shops offer the same
goods for different prices. Others bear in mind the customer's motivation: "I keep
to 1DM, then more people will come to my shop."

With respect to children's problem solving abilities the study suggests that pupils
use far more criteria to solve real-world problems when the given problems are
open and when "common sense" is necessary to their understanding. However, the
levels of sophistication indicated by the pupils' explanations can vary quite
drastically within one class.
As to the problem of fore-knowledge:
Although proportional relationships belong to the curriculum of seven graders'
mathematics classes the pupils show economic competence in their assigning
prices. They know about proportional price assignments with respect to a number
of wooden toys and with respect to their volume. When growing older they are
more capable of making the correct mathematical operations.
The problem of fixed assumptions:
Keitel (1979, S.264) was assuming pupils might think of prices as naturally given
rules as within physical contexts. With respect to the flexible price assigning
capabilities of the students with their knowledge of reductions and motivational
incentives this observation looses its importance.
The problem of schematic solutions:
The solving of price-value problems might lead to schematic solutions on the part
of the students. As to real-world situations like the one investigated in this study
pupils use strategies and explanations which derive from their own experiences.
Problem of conception of values:
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The students in this study use various categories like size, number of wooden toys
to price their goods, but also as criteria for intended use, usefulness, moral and
appreciation.
The problem of functional thinking:
The ability of proportionally assigning prices to real-world objects lying in front of
them is present in elementary students. However the answers show significantly
different results between first and second graders versus the third and fourth
graders. The ability of proportionally assigning prices rises significantly with the
second group, which has already been observed by Piaget. On the other hand the
ability is already present in the first group. This result emphasises the existence of
domains of subjective experiences (Bauersfeld 1983).
The ability of proportional assignment to a number of toys is present in third and
fourth graders without any difficulties. They assign prices quickly without
hesitation. First and second graders assign prices, in almost all cases the time with
an additive and not a multiplicative strategy.
Generally the abilities of the proportional assignment of prices to volumina is less
apparent than to numbers. The proportional assignment to different volumina seem
to be difficult for third and fourth graders. In this study the students use the cube as
a "measure" for the quadrilaterals. Either they "see" the cube into the quadrilateral
and count how many times they could place the cube into the quadrilateral or they
cut the quadrilateral into pieces of the size of the cube.
The consequences of this study suggest that the abilities and the competence of
elementary students reach well into the "consumer world". The students carry into
the classroom a variety of experiences and perceptions of real-world economic
situations so that price-value problems can be estimated variously according to the
students observations.
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RETEACHING FRACTIONS FOR UNDERSTANDING
Han lie Murray, Alwyn Olivier and Therine de Beer

University of Stellenbosch, South Africa

This paper reports on the viability of a programme aimed at encouraging sixth
grade students who have already been exposed to teaching practices leading to
entrenched limiting constructions, to construct the concept of a fraction anew and
to invent solution strategies for realistic problems involving fractions, in a school
and classroom environment with serious practical and organisational problems.

Introduction
Much research has been done on the problems elementary school students experience
with common fractions and on the design of teaching programmes for fractions at
different grade levels (see Pitkethly and Hunting, 1996, for a review of the research).

An important issue is the effect that limiting constructions (D'Ambrosio & Mew-
born, 1994) has on students' attempts to make sense of fractions. These include, for
example, the influence of whole number schemes, which encourage the student to
interpret the fraction symbol as two separate whole numbers, and limited part-whole
contexts, where the student has had no or not sufficient experience of fractions as
parts of collections of objects. Another issue is the possible adverse effect of rote
procedures on students' attempts to construct meaningful algorithms for operations
on fractions (Mack, 1990).

The above problems can be prevented by appropriate programmes for learning frac-
tions in the lower elementary grades (e.g. Empson, 1995; Murray, Olivier & Human,
1996). However, when these limiting constructions are already firmly entrenched,
it is to be expected that the task of encouraging students to develop strong and
error-free conceptual and procedural knowledge about fractions will be much more
difficult. Such attempts have already been made successfully (e.g. Bell, 1993;
Kamii & Clark, 1995; Mack, 1990) in what we believe to be favourable learning
environments.

In this paper we explore the possibility of implementing a programme for common
fractions for Grade 6 students in less than favourable learning environments.

Theoretical framework
In line with our approach to the teaching and learning of whole number arithmetic
(e.g. Murray, Olivier & Human, 1994, 1998), we believe that the teaching and
learning of fractions should be based on eliciting and clarifying students' intuitions
about fractions through posing realistic problems for which students have to invent
their own solution strategies (cf. Empson, 1995; Kamii & Clark, 1995).

The following aspects are crucial in our approach to the teaching and learning of
fractions:
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Choice of problems. Knowledge about fractions involves knowledge about the
concept of fractions, of which two subconstructs are the part-whole relationship
between the fractional part and the unit, and the idea that the fractional part is that
quantity which can be iterated a certain number of times to produce the unit. The
unit may be a single object or a collection of objects. Fractions are also used in
different ways and have different meanings, for example the part-whole mentioned
above, but also a ratio, a quotient, a measure, etc.

If the problems posed in a teaching programme do not include, and students do not
experience, these different subconstructs and meanings within a reasonable time,
limiting constructions are formed (e.g. Murray, Olivier & Human, 1998). For the
same reason, the fractions addressed should also immediately include thirds, fifths,
etc., and not only halves and quarters, as is common in many teaching programmes.
For example, in a previous study we found that Grade 1 students freely constructed
appropriate different sized fractional parts in response to realistic problems, whereas
many of the Grade 3 students in the same school who had only been exposed
to halves and quarters during their teaching programmes for fractions, could not
conceptualise thirds and/or could not recognise the difference between halves and
thirds when they were trying to solve the same problems (Murray, Olivier & Human,
1996).

Social interaction. Social interaction creates opportunities for students to talk about
their thinking, and this talk encourages reflection. "From the constructivist point of
view, there can be no doubt that reflective ability is a major source of knowledge
on all levels of mathematics ... To verbalise what one is doing ensures that one
is examining it. And it is precisely during such examination of mental operating
that insufficiencies, contradictions, or irrelevancies are likely to be spotted." Also,
"... leading students to discuss their view of a problem and their own tentative ap-
proaches, raises their self-confidence and provides opportunities for them to reflect
and to devise new and perhaps more viable conceptual strategies" (Von Glasersfeld,
1991, pp. xviii, xix).

We therefore believe that we should not only provide opportunities for students to
build on their informal knowledge, but that students should be encouraged to make
explicit and become aware of the nature of their own personal constructions (Bell,
1993).

Students' own representations. Students are expected to create their own represen-
tations of fractions. This is achieved by confronting students with sharing situations
where a remainder also has to be shared out, for example sharing four chocolate
bars equally among three friends (Murray, Olivier & Human, 1996). Prepartitioned
materials are not used until later and the introduction of written symbols for frac-
tions is delayed until the need for fractions and some conceptions of fractions have
been developed by the students themselves.

1103 3 - 306



This study
This study forms part of the Mathematics Learning and Teaching Initiative (MALATI)
project aimed at curriculum and teacher development. The project teachers received
student worksheets and teachers' guides which were studied during workshops, and
were supported by regular classroom visits of project workers during the 1998
academic year. The student worksheets consist of two packs of activities, an intro-
ductory pack and a further pack.

The introductory activity pack of 33 worksheets is aimed at

developing the fraction concept through sharing situations
introducing realistic problem situations for operations involving fractions
(e.g. division by a fraction)
comparison of fractions
equivalence of fractions
introducing the fraction notation

The further pack attempts to make explicit students' informal procedures for the
operations developed in the introductory pack.

Teachers were requested to firstly spread out the work over the year, and secondly
to use the worksheets in the suggested sequence, with all the students in the class
working on the same worksheet during a particular lesson period. The reason for
this is that students are encouraged to solve a problem at whatever level they feel
comfortable, and that students share their conceptualisations with the class to the
benefit of all. Since our materials repeatedly pose problems with the same struc-
tures, it provides students with repeated opportunities to make sense of particular
structures.

In this paper we limit ourselves to describing the effect of this intervention on
a specific sixth grade class in one of the MALATI elementary project schools in
a black township near Cape Town. The circumstances in the school and in the
community do not support learning. Many students have transport problems to
school and come from extremely unstable and impoverished homes. Absenteeism is
not only high, but malnutrition and chronic health problems prevent some students
from functioning optimally even when they are at school. The school organisation
is poor; the lesson timetable is not followed and there are continual unscheduled
interruptions in the form of staff meetings, celebrations and outings during school
time. It is difficult to persuade teachers to attend workshops after school hours.

There were 42 students in the class. The teacher, Nolo, was eager to co-operate
and although she started the year in a very traditional way (in spite of the initial
workshop), she had after a few weeks established a culture of enquiry, argument
and discussion among most of the students. However, even by the end of the year
some students were unwilling to share their ideas through fear of being wrong.
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By the end of the year, this class had only completed the introductory pack. This
reflects their low level of knowledge at the beginning of the year as well as the
above-mentioned practical and organisational problems during the year.

Results
We have available two sets of written tests and all the students' written work during
the year as well as several videotaped classroom episodes.

Test Set A comprises a pre-test completed in November 1997 (the end of the pre,rious
academic year) by all the sixth graders of the school under discussion, and a post-
test completed in November 1998 by the sixth graders of Nolo's class. These are
therefore not the same students, but students in the same grade in successive years
in the same school.

Test Set B comprises a pre-test completed at the beginning of the 1998 academic
year by Nolo's class and a post-test (a different one from Set A) completed by
Nolo's class at the end of the academic year.

Test Set A. The items testing students' part-whole conceptions showed a very
substantial gain in 1998. For example, these are the percentages of students correctly
stating the fraction shaded in the following figures:

1997:40%
1998: 90%

1997: 33%
1998: 89%

The following item testing the comparison of fractions also showed a substantial
gain from 18% in 1997 to 31% in 1998:

Anwar and Amina each received R30 pocket money. Anwar spent
8

of his pocket
7money and Amina spent 75 of hers. Who spent more? Explain your answer

Test Set B. The pretest at the beginning of the year revealed that students had very
little knowledge of fractions. The post-test showed definite gains. For example, the
success rate for the item "Which is bigger, -35 of a cake or 4 of the cake?" had a
success rate of 4% in the pre-test, and a similar item had a success rate of 45% in
the post-test. The success rate of the item -33 of 10" increased from 4% to 31%.

Both pre-tests identified the following main problem areas in students' understand-
ing of fractions:

a very weak understanding of the fraction concept
strong interference from whole number schemes
strong interference from rote algorithms



For example, this type of error occurred frequently as
a response to "Which is bigger, of a cake or a of a
cake?"

Although both post-tests showed substantial gains, we felt the success rates to be
low considering that students had solved similar and more difficult problems during
their lesson periods.

Students' written work. At first, there were strong signs of previous teaching.
Mangaliso offered this incorrectly partitioned apple as solution to a problem involv-
ing chocolate bars (apples are frequently used to demonstrate fractions in many
teaching programmes).

After a while, this type of response did not occur again in Nolo's class.

Most students produced their own representations of fractions in response to the
initial sharing problems. For example, Thomboloxole solved the following problem
as follows:

L Asa
6

Lisa, Mary and Bingo have 7 bars of chocolate I--

that they want to share equally among the three On 11 n°
of them so that nothing is left. Help them to do
it.

They also solved problems which prepared the way for operations with fractions
successfully through their own representations of the physical situations. For ex-
ample, Worksheet 9 poses an addition and a division-type problem. Zanele solved
the two problems like this:

Peter and Anna prepare soft porridge for breakfast. For each bowl they use ofof
a litre of milk.

If they make 6 bowls of porridge, how many litres of milk do they use?
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They have 5 litres of milk. How many bowls of porridge can they prepare?

Although all the students worked on the same worksheet during a particular lesson,
they functioned at different levels of abstraction. For example, Dumisani solved the
previous problem like this:

A\-3A-3` A.-\33
1-s \

3 cr"ciA5C-

Students frequently used drawings which seemed inappropriate to us. After the
initial realisation that drawings were acceptable as solution methods and as means
of communication, some students came to believe that they had to make a drawing.
For example, this drawing by Bonziwe as a solution to the following problem seems
to be more decorative than functional:

How much ice-cream in total does Lisa have if there are 5 containers of ice-cream,
each -1- full?

4

Other classrooms in the same school produced a peculiar marriage of sense-making
and rote learning. For example, Worksheet 8 lists the ingredients and their amounts
in cups and teaspoons for one cake, and requires students to calculate how much of
each ingredient would be needed for five cakes. Some students successfully calcu-
lated the quantities of each ingredient needed for five cakes, and then (correctly, but
inappropriately) added up all the quantities in order to produce a single numerical
answer. When challenged whether this was the sensible thing to do, the response
was "no, but in mathematics we have to give only one answer to a sum". A solution
such as this never appeared in Nolo's class (these are the different ingredients):
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Discussion
The results show that in this class the intervention achieved decided success in
addressing students' conception of fractions. Students' written worksheets show
that inappropriate whole number schemes had disappeared, and that students were
able to invent procedures to solve realistic problems involving fractions. It is also
quite clear that in an approach like this, the traditional idea that division by a
fraction is the most difficult problem type does not hold. Zanele's and Dumisani's
solutions for the second problem of Worksheet 9 (5 ÷ ) illustrate this. We suspect
that division may be the easiest of the four operations for which to invent informal
operations as long as the context is sensible to the student (Mack, 1990).

On the negative side, many students could not manage realistic problems in the test
situations although they had solved similar problems successfully as collaborative
groups without the help of the teacher. It is possible that because many students
missed worksheets through absenteeism, their understanding of a particular problem
structure could not become stable.

We tried to help the teacher to identify students who were behind so that they
could be given additional learning opportunities, but this proved to be organisation-
ally unmanageable. We still believe that students solving problems collaboratively,
combined with whole class discussions, is a better approach than individualised
learning (compare Bell, 1993).

It is also possible that language caused a problem during the tests. English is
the second language of these students, and in class the groups spent a significant
amount of time talking about the problem situation before they started to solve it.
Although the teacher explained the wordings of problems during the tests, this was
probably not sufficient. It is possible that one or two written tests in the course of
the year might have improved their performance in the final test. (We originally
strongly rejected the idea of regular written tests because the then-existing school
culture depended heavily on written evaluations.)
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The question we posed at the beginning of the paper was whether it was possible
to develop anew a stable conception of fraction in students who had already formed
limiting constructions, using an approach which expects students to make sense of
realistic problems and invent their own procedures in an atmosphere of discussion
and argument, and whether this could be done under difficult conditions. This has
proved to be possible.

An intervention in extremely adverse learning environments also has positive effects:
An approach only reveals its essential aspects in difficult teaching and learning envi-
ronments, whereas a competent teacher in a supportive environment unconsciously
anticipates and copes with possible problems. As an example, we cite the case
of the students who did indeed solve the problem where they had to calculate the
quantities of ingredients needed for five cakes competently and sensibly, but then
offered solutions which they considered to be mathematically correct but which
made no sense at all. It has therefore become clear that encouraging students to
build on their informal knowledge, and solve problems through their own inven-
tions, without also changing their beliefs about the nature of mathematics, is not
sufficient.
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Operations on "open phrases" and "open sentences" expressions-

Is it the same?!

Musicant Bracha
Beit Berl Teacher Training College, Israel

Abstract

It has been assumed, based on the daily practice of teachers, that students tend to apply to

open phrases the properties and rules for open sentences (equations). The present research

carried out on 9th and 10th grades confirmed that hypothesis. It was found that most of the

students performed the transformations required for solving an equation. mechanically,

without having in mind the corresponding formal justifications. The basic concept of

equivalence with its properties seems to be totally absent.

Researches dealing with how students are performing operations on open phrases and

open sentences apply differently, to models, which characterize students' mistakes in

open phrases and in open sentences. The source of these mistakes is in abiding the

rules in the wrong way, in generalizing of rules and errors in operating (Mutz, 1982).

For example: researches dealing with open phrase indicate some cognitive obstacles in

simplifying open phrases which are related to "incomplete nature" of algebraic

expression, TiroAl, Even, Robinson (1994). That is to say, there is a tendency, among

students, to simplify every open phrase until receiving a pattern of ax or a.

This research focused in two main questions:

1. Can the student identify permitted operations in open phrases or open sentences

and what is the mathematical justification that a student gives to the operations he

performed on those expressions?

2. Do students apply the permitted operations on "open sentences" to the operations

on "open phrases" as well?

Methodology

Subjects:

The subjects were students enrolled in 9th and 10th grade (52 students in grade 9 and

53 in grade 10). In each grade, two levels of mathematical competence were



considered: group A, the high level and group B, the lower level. In all, the research

population was consequently divided into four groups: 30 subjects in group 9A and 22

subjects in group 9B; 30 subjects in group 10A and 23 subjects in group 10B.

The levels of competence were established by the school itself and were expressed by

the quantity and subject-matter of the mathematics taught to the respective students.

The schools in which the research was conducted were situated in a region with a

population of average and high socio-economic status.

Instruments:

a) A questionnaire was administered in which equations and open phrases appeared.

The subjects had to estimate whether the operations performed (and indicated in the

questionnaire) were mathematically correct. The central concept was that of

equivalence. The subjects had to estimate whether the transformation was valid

ones, that are whether the successive steps of successive transformation were

correct and led to equivalent expression. After each question, the subjects were

asked to justify their answers.

b) A number, of subjects, different from those to which the questionnaire was

administered, were interviewed with regard to the same questions.

Results:

A. Operations on "open phrases" and "open sentences" expressions and the

Justification of their performance.

In performing operations on "open phrase" and "open sentence" expressions, we shift

from one expression to another, repeating the process of replacing one expression by

another, until we obtain an "open sentence" expression which is easy to solve, or a

simpler "open phrase" expression which is easy to use. To the extent that all the shifts

are reversible, we will obtain equivalent balanced "open sentence" expressions, and

correspondingly, compatible "open phrase" expression. Therefore it is important for

the student to be acquainted with the permitted operations.

Operations in equation

The reasons given by the subjects to justify their judgments in operations upon the

"open sentences" expressions can be classified to the following categories: (Table 1)



a)Reasons relating to the operations maintaining equivalence, for example:

"Multiply both sides with the same number" or "you need to multiply both sides".

This reason led to a correct judgment.

b) Reasons relating to the link between given numbers in the "open sentence"

expression and the operations, for example:

1. In the equation 3x = 9 a multiplying operation was performed both sides in the

number 1/3. 14% of the subjects reasoned their judgement, regarding the number

which multiplied the equation, when the number 3 written in the equation, "to

multiply with a 1/3 is the same as dividing in 3". Therefore they came to the correct

judgement. 10% from the subjects saw 1/3 as a "strange" number for the equation

("Where did the 1/3 come from?") and that's why the operations that were

performed with this number were, in their opinion, incorrect.

2. In equations with fractions, the subjects reasoned: "eliminate the common

denominator".

c) "Calculation" reason: some of the subjects ignored the performed operations and

set their judgement only after they solved the given equations.

It can be explained by these reasons:

* The students do not have a deep understanding of the meaning of equivalence.

* The students tend to use ways they know well and feel secured with them.

* It is possible that the principle of equivalence is known to the students, but they

feel a need to check every case. (Fischbein, 1982).

The wrong way in calculating led some of the subjects to an incorrect judgement,

here they performed operations only in one side (especially true in equations with

fractional multipliers), while calculating wrong or when there was no possibility

in reaching a solution from the shape x = number.

d) "Lack of information" reason, for example: "right way", "these is the way to

solve". Such reasons (with no information) were given sometimes even when the

judgement was correct.



Table 1: distribution of the judgements and reasons (in percentage) in the whole

population (n=105)

examples of questions for

multiple operation on

equations

the
judgments

The reasons

Referring to
equivalent

link to numbers
and operations

calculation Lack
of
information

No
explanation

3x = 9a
1 13x=9
3 3

right or wrong, explain

correct 74
incorrect 16
no
answer 10

19 24 21 16 20

x x
+ = 10

2 3

=
3x+ 2x=--60
right or wrong, explain

correct 83
incorrect 13
no
answer 4

18 44 9 2 27

5 7 correct 54
incorrect 34
no
answer 12

35 33 4 28
+ y

3 x 3 + x
=
5(3+x) + 7(3-x) = y
right or wrong, explain

2 x 2+ x
4

correct 39
incorrect 55
no
answer 6

15 44 3 7 31

P(x)
3 2

+ +

a
p(x) = 2(2-x) +3(2+x)+24
right or wrong, explain

Additional findings were given in multiplying operations in equations with

fractions:

a. The numbers of given addends with fractions in one side of the equation does not

affect on the subjects' judgement and reasons. The explanation is in focusing the

algorithm of eliminating the common denominator, performed by the subjects.

b. In "open sentence" expression that include fractions, the students tended to perform

operations on one side only. As the given expression on one side became more

"abstract", this "algorithmic behavior" grew stronger.

In the interviews where the subjects explained the incorrect judgement ("right") in

the equation where the expression p(x) is written down: "it doesn't seem like an

equation" or "it is a function therefore no operations are performed".
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Operations in "open phrases" expressions

Table 2: distribution of the judgements and rationales (in percentage) in the whole

population (n=105)

equesriloesnsoffor
multiply operations

on open phrases

the
judgments

reasons

Referring to
equivalence

Explanation
regarding
solving
equations

links to
numbers
and
opera tions

Lack
of
information

Turn to
equation

No
explanation

1
3x + 9y= (3x + 9y)

3
right or wrong,
explain

correct 40
incorrect 49
no
answer 11

11

26 8 17 2 4..o

x x
+ = 3x + 2x

2 3

right or wrong,
explain

correct 29
incorrect 67
no
answer 4

11 46 9 8 26

5x+1= 5x+3
3

right or wrong,
explain

correct 27
incorrect 64
no
answer 9

8 36 5 16 4 31

This research indicates that most of the subjects assume that it is possible to perform a

multiplying operation on a "open phrase" expression. The main reasons that the

subjects gave, to explain their judgements in the multiplying operations performed on

different "open phrases" expressions, can be classified in the following categories:

a. Reasons related to compatible "open phrase" expression. For example, in a

multiplication operation performed on an "open phrase" expression, the student

reasoned, "the expression changed after the operation was performed".

b. The reasons taken from the repertoire of explanations related to the solution

algorithm of "open sentence" expression. For example: "eliminated the denominator",

"multiplied it all in the required number", "multiplied diagonally". Such reasons led to

incorrect judgement.

In interviews, made with some subjects, the following explanations were given to the

interviewer's question: "What do you rely on when transferring from a given

expression to the one you wrote after the simplification?"

* "As I was taught, the goal is to eliminate the fraction, I work according to the rules".

One student explained: "The rules are to eliminate the fraction".

* "According to the formula, according to the examples given in class, in any exercise

EST COPY V IA LE 3-317



with fractions one multiply the common denominator".

* "I relied on the common denominator, Iwanted to eliminate it". A student added: "This is

how I was taught all through the years so it will be easier, more esthetic and more

simplified".

* "I eliminated the denominator because I have already used it and I don't need it any

more".

c. Reasons related to the link between the number employed in performing the

operation, and the given number in the "open phrase" expression. For example:

"It is impossible to multiply a number that isn't in the expression".

d. Reason with lack of information - for example: "That's the way you solve it".

e. Transferring the "open phrase" expression to an equation.

B. Comparison between the performed operations on "open sentences" and "open

phrases" expressions

Observe the following question:

"open sentence" expression "open phrase" expression

x x-+-=10
2 3

<=>

3x+2x=60
right or wrong, explain

x x
- + -= 3x +2x
2 3

right or wrong, explain

On this question 60% of the subjects gave an identical answer "right, right" to the

operations they performed on the two expressions. 46% of the subjects gave identical

reasons to their answers, the most noticeable one was "he eliminated the denominator".

In order to understand the way of the subjects' thinking here are parts from some of the

their interviews:

Interview a - a student from group 9A = teacher. S = student)

x

3

x
T : Given the expression:

2
+ can you simplify it?

S: The student writes:
3x +2x

= 5x
6

T: On what did you rely when you transferred from the first to the second expression?

S: One cannot simply add the two fractions. One has to find the common denominator.

T: On what did you rely when you eliminated the common denominator?

S: Because I have already used it and did not need it any more.
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Interview b - a student from group 10A

x
3

x
T : Given the expression:

2
+ =10 can you simplify it?

S: The student writes:
x

+
x

=10 3x+2x=10
2 3

T: On what did you rely when you operated the above transformation?

S: One has to find the common denominator.

T: Can you explain what you mean by common denominator?

S: Common denominator is something, which is common for a number of things.

T: On what did you rely when you looked for the common denominator?

S: One has to eliminate the common denominators.

T: Can you explain more?

S: No, it is the way to solve it and that is that.

From the comparison between the operations performed on "open phrases" and "open

sentences", one can observe that most of the subjects perform identical operations in

both types of expressions. The explanations, which follow the subjects' answers, are

related to the algorithm's solution of the "open sentence". The identical elements in the

"open phrases" and "open sentences" led to a hidden model of "a common solution" to

both types of expressions.

Discussion

The "open phrase" and the "open sentence", as in many mathematical concepts have

two aspects which complete one another: one is the formal-conceptual aspect which is

represented by axioms, definitions, sentences and proofs, and the logarithm aspect

which includes calculation knowledge and the understanding of the processes

performed while calculating. The two aspects are combined in the mathematical

operation. Skemp (1976) claims that learning the "rules not the reasons" enables the

student to function in a very determined frame but without fully understanding the

concepts, he wouldn't be able to deal with new assignments. This understanding

enables the student to deal with any kind of information according to the changing

variables.

The research indicates that only a small percentage of subjects use discretion that are

related to operations which maintain equivalence. A great part of the subjects apply, in
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their reasons, to specific numbers which were useful to them in order to perform the

operation in the expression. Focusing on numerical hints causes them to perform some

operations on "open phrase" permitted only in "open sentence" expressions.

As in "open phrase" (mainly with fractions) the subjects captured visual elements from

the algorithm of solving "open sentence" expressions with fractions and implemented

them in "open phrase" expressions. The justification to their operations came from the

repertoire of explanations regarding the algorithm of solving open sentences.

Fischbein (1996) sees in the algorithm of equation solving a "Structural Scheme of

Equation". In equations with fractions, students remember certain procedures of

solving those equations. Open phrases with fractions are comprehended by the students

as a structural scheme of equation that is why the student uses certain procedures of

solving equations on "open phrase" expressions.

Summary,

Teaching often focuses on the students' mastering procedures, and does not attempt to

link formal knowledge with the procedures and situate these within a comprehensive

framework Such fragmented teaching may cause the student to perceive only the

visual elements of the algorithm which will lead to faulty executions on "open

sentence" and "open phrase" expressions. It is important to create linksbetween formal

knowledge and the algorithm process. in order to help the student understand the

operations permitted on "open sentence" and "open phrase" expressions.
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USING SEMI-STRUCTURED INTERVIEWING
TO TRIGGER UNIVERSITY MATHEMATICS TUTORS'

REFLECTIONS ON THEIR TEACHING PRACTICES

ELENA NARDI, UNIVERSITY OF EAST ANGLIA, UK

Integrating the findings from a qualitative study of 20 first-year undergraduates' learning
difficulties in their encounter with the abstractions of advanced mathematics within a
tutorial-based pedagogy at Oxford (Nardi, 1996), a study of the tutors' responses to and
interpretations of these difficulties was conducted. The study was intended as a bridging
project between (Nardi, 1996) and a related ESRC funded research project which started
in October 1998 regarding current conceptualisations of teaching at university level as
reflected in practice and issues arising from their relations to mathematics as a discipline.
For the above purposes, samples of the data and the analysis from the initial study were
presented to the tutors and discussed in semi-structured interviews. Here I demonstrate the
tutors' reflective statements regarding their teaching practices as triggered by the
interviewing process.

The study', on which the findings discussed in this paper originate from, is a small-scale
follow-up of the author's doctorate (Nardi, 1996) and a precursor to the Undergraduate
Mathematics Teaching Project (UMTP) currently being conducted at Oxford. In the
following I briefly outline the doctorate (Project 1). Then I describe the aims, methodology
and some of the findings of the bridging study (Project 2). Finally I outline briefly UMTP
(Project 3).

PROJECT 1: A STUDY ON THE LEARNING OF MATHEMATICS AT UNIVERSITY LEVEL

The study2 was a psychological study of first-year undergraduates' learning difficulties. For
this purpose twenty first-year mathematics undergraduates were observed in their weekly
tutorials for two terms. Tutorials were tape-recorded and fieldnotes kept during
observation. The students were also interviewed at the end of each term of observation.
The recordings of the observed tutorials and the interviews were transcribed and submitted
to an analytical process of filtering out episodes that illuminated the novices' cognition. An
analytical framework consisting of cognitive and sociocultural theories on learning was
applied on sets of episodes within the mathematical areas of Foundational Analysis,
Calculus, Topology, Linear Algebra and Group Theory. This topical analysis was
followed by a cross-topical synthesis of themes that were found to characterise the novices'
cognition. The findings were arranged in themes relating to the novices' difficulties
regarding their image construction of new concepts as well as their adoption of formal
mathematical practices.

Research supported by the Harold Hyam Wingate Foundation in the UK.
Research supported by the Economic and Social Research Council (ESRC) in the UK.
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PROJECT 2: A STUDY ON UNIVERSITY MATHEMATICS TEACHERS' PERCEPTIONS OF

THEIR FIRST-YEAR STUDENTS' LEARNING DIFFICULTIES

Project 2 is a follow-up study to the doctorate in which the tutors were invited to reflect
and comment upon samples of data and analysis from the doctorate. In the following I
describe this study as a bridge between the strictly psychological concerns of Project 1 and
the directly pedagogical concerns of Project 3.

Aims. The primary aims were: to provide feedback to the tutors who participated in the
doctorate and enrich its findings by including the participant tutors' point of view; to
introduce a pedagogical dimension in the psychological discourse developed in the
doctorate; and to inaugurate the collaboration between mathematicians and mathematics
educators involved in UMTP in the development of discourse and methodology.

Methodology of Data Collection. For the above purposes, three tutors who participated in
the doctorate were invited to participate in a series of semi-structured interviews. This
choice resides theoretically in the methodological considerations, in particular regarding
the interviewing of the students, in (Nardi, 1996) and in the literature regarding the
teachers' reflections on their own pedagogical practices (see section on Project 3). Prior to
the interviews the tutors were presented with samples of the data, transcribed extracts from
the tutorials, and the analysis, presented in the doctorate. The samples were deliberately
chosen to trigger tutors' reflection upon the students' learning processes, their own teaching
actions as well as their response to the analysis in (Nardi 1996). The interviewees were
informed of this agenda (see Fig.1) in a note covering the samples of data and analysis that
were to be discussed.

An agenda for the Interview:

A Introduction: clarifications regarding the sample.
B Issues regarding learning:

B 1. a critical perspective on the sample of analysis
B2. the interviewee's perspective on the sample of data

C Issues regarding teaching:
Cl. a critical perspective on the sample of analysis
C2. the interviewee's perspective on the sample of data

Please read keeping in mind discussion can zoom and out of
....................... . ...

the particular. pieces of data and can address iSsues generally regarding your perception of
your role as a tutor.

Fig. 1
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Methodology of Data Analysis. The analysis of the interviews (Nardi, 1998 and Nardi, in
preparation3) aimed at juxtaposing the analysis in the doctorate and the tutors'
interpretations, as expressed in the interviews; and, moreover, at inaugurating reflection
upon the tutors' teaching practices which is a fundamental aspect of the partnership
currently being set-up in Project 3. The recordings of the interviews were transcribed and
the contents of the transcripts were catalogued.

Subsequently the analytical perspectives on the data varied considerably. Some
chronological considerations proved significant: when analysis was due to start, the
provision of funding for Project 3 was confirmed by the ESRC. This altered the nature of
Project 2 from being a self-contained follow-up to Project 1 to, additionally, being a
prelude to Project 3. Three analytical perspectives were applied on the data. I will elaborate
on the third one4 by providing samples of the data and relevant analysis.

Analytical Perspective 3: a strong incorporation of methodological considerations. Did the
interviews trigger the participants' reflection on their students' mathematical thinking and
on their own teaching practices? If yes, how? If not, why? The answer to this question is
affirmatives. A small set of categories emerged from the scrutiny of the transcripts:

R S: The tutor describes standard practices, or standard difficulties observed in
the students, or standard difficulties in the teaching.

R D CEP: The tutor defends their practice in the episode by challenging the
critique in the sample on epistemological or pedagogical grounds.

R D U: The tutor defends their practice in the episode against the critique in the
sample by undermining the representation of the events in the sample.

R R: The tutor re-evaluates, or even regrets, their practice in the sample either by
simply agreeing with the critique in the sample or by engaging in reflection
on the students' learning processes.

In the following I present samples relating to the R-R category for each one of the three
interviewees. In view of Project 3, in which the tutors are interviewed on a weekly basis,
this category is particularly significant as the tutors' explicit self-evaluative reflections may
have an immediate impact on their imminent teaching.

3 By the time this research report is presented at the conference and if the paper has been accepted, the full reference will be
available.
4

Analytical Perspective 1: this emerged from the need for a transition from looking at episodes from the tutorials from a
learning to a teaching point of view, and to immerse in the relevant literature. So I used the data as an empirical basis in which
to embed my reading of standard texts on teachers' thinking - for instance, on the Teaching Triad (Jaworski, 1994).
Analytical Perspective 2: a domain oriented perspective. For this, I have isolated all domain-specific extracts and cited them
along with fmdings in the literature and the thesis for instance, on the difficulties of the students' enculturation into the
necessity of proof as well as into specific proving techniques (a relevant presentation at the MAA conference in San Antonio,
Texas was done by the third author).
s

A number of methodological considerations were compiled and have influenced heavily the methodology on Project 3. These
will be discussed elsewhere.
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TUTOR 1: SELF-EVALUATIVE REFLECTIONS

Tutor l's stronger self-evaluative statements were far lengthier and more elaborate about
epistemological (regarding the logical coherence of his mathematical discourse to the
students) than psychological (regarding his individual students' state of learning) or
pedagogical (regarding his teaching decisions and actions) matters. For example he is
spending a substantial amount of time during the interview on re-considering his appproach
to proving what the derivative of xn, for n>0 is6. In his concluding remarks however there
is also a 'didactical reason' for his re-newed preference:

Tutor 1: ... well, now my belief is that I would have preferred it for a didactical reason and justify my
evaluation that it was a better proof on historical grounds partly. That it gets us... it is evident from the
fact that we get closer back to the simple reasoning that it's the original proof, em ...So obviously I
have got the wrong ... I have not presented things terribly well there.

Consistency is highly valued by Tutor 1, and, as he has always expressed a strong
preference for 'more direct, simpler and for that reason more satisfactory' arguments, he
possibly felt that in this case his consistency was partly let down. When confronted with a
series of instances where his recommendations to the students about the use of pictures in
order to acquire an intuitive understanding of an argument or a concept but not substitute
for a rigorous proof, are rather lacking in consistency, he replies 'I try to be reasonably
consistent about that. I may get it wrong from time to time...' and provides a lengthy and
precise manifesto of what he believes the use of visualisation in the construction of
mathematical meanings ought to be.

In the same vein of adhering to firmly established principles that guide his behaviour in the
tutorial, the tutor is 'slightly embarrassed' that he has commented on a Calculus question
that the students had great difficulty with, as an exceptionally hard one':

Tutor 1: [...] I believe that to be true but usually I try not to publish to the students evaluations of that
kind, that this was a hard question or that wasn't. [...] I normally try not to do that.

Despite the fact that Tutor 1 was offered a set of concrete learning episodes to be discussed
in the interview, he mostly preferred to use the episodes as a basis for exposition on the
general principles that guide his tutorial teaching (his approach is in contrast with the
approaches of Tutors 2 and 3). Among the three interviewees he is the one for whom
stronger prompting was employed in order to explore his views on subtler psychological
issues regarding his students' learning. Even so, when pressed to focus on specific learning
incidents, he demonstrated a belief in the individuality of his students and in the need to
adjust his teaching to this individuality:

6In the tutorial he had expressed a preference for a proof based on the Binomial Theorem as a 'historically original' one. In the
interview he says he should have based his preference on that it is a proof on First Principles.

He grounded his comment on that 'it is harder to prove that something does not have a limit, than to prove that it does have a
limit'.
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Tutor 1: [...] Well, it's the picture that I've got in my mind and the picture I use for teaching but of
course it's no damn good if you've got a student with a different type of psychology from mine. One
has to be aware of that. [. .] this particular em, metaphor, this particular picture, adaptation of the
notion of a Venn diagrams, em, needs to be abandoned or rethought through with this particular
student, doesn't it? Quite probably abandoned.

In the following sections Tutors 2 and 3 engage in psychological and pedagogical
discourse immediately and on their own initiative totally.

TUTOR 2: SELF-EVALUATIVE REFLECTIONS

In contrast to Tutor 1, Tutor 2 preferred immersing into the specific learning episodes she
was provided with for reading before the interview even though she would often
conclude with a reference to her standard practices. Therefore a large part of the
conversation was devoted to her reaching a new understanding of her students' utterances
which at the time of the tutorial might have seemed to her as bizarre reactions. For
instance, when reminded of the Linear Algebra episode' where all eight of her students
reply Tp(1)=2, her initial assessment was that the students lacked knowledge of the
relevant defmitions. When I pointed out to her that in two of the tutorials the students had
just demonstrated knowledge of these definitions, she responds that 'they still could not
apply [them]'. She elaborates her reassessment:

Tutor 2: Well, polynomials ought to be easy but functions they have problems with, thinking about a
function as being an entity in its own right. Whether that came into it...

Interviewer: You mean they cannot see a function as an object, to use it as an element of a set as
opposed to a process.

Tutor 2: Yes, that's right, it's always been a process: you apply it to an element and another element
comes out.

Apart from an insightful observation into her students' thinking, the above are also in
resonance with findings on the learning of functions the process/object duality of their
nature is a well-trodden area of research in Advanced Mathematical Thinking (e.g.
Dubinsky and Harel, 1992).The significance of the statements lies in that they come from a
practitioner who is unaware of this literature and who, in the event of the interview, gains
this awareness. This exchange highlights a convergence of perspectives and interests
between mathematicians and mathematics educators on which the emphasis is largely
missing in the field. Numerous similar exchanges took place in these interviews and will be
reported elsewhere (Nardi, in preparation).

8 He refers to a misunderstanding regarding the use of an illustration of cosets in Group Theory as equal-sized pans of a square.
9 T is the linear mapping Tp(x)=p(x+1), for p a polynomial of degree 3. Therefore 1 is the constant polynomial mapped via T on
itself, not 2. A similar incident occurred with the zero element.
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Towards the end of the interview Tutor 2 offered an unprompted evaluation of the
interviewing process. In this she seems to have valued mostly the discussion ofalternative
interpretations of her students' utterances:

Tutor 2: So therefore I think there is other possibilities I hadn't had in mind because on the whole I
don't actually know how much tutors think about their role as a tutor and what actually one is doing as
opposed to, you know, what end result you would like to get out of it all. A lot of it I suppose is really
done by what has worked in the past with our students. [A similar statement was offered by Tutor 3].

TUTOR 3: SELF-EVALUATIVE REFLECTIONS

As with Tutor 1, Tutor 3's initial persistent focus seemed to be on how epistemologically
comprehensive was his introduction to the notion of spans and spanning sets in Linear
Algebra. In the course of the interview however it transpires that his persistence was on
trying to understand what initiated the discussion of the concept on the part of the student.
When he hears that the definition of span used in the lectures was different to the one he
used in the tutorials and that nobody had hinted at the equivalence of the two definitions,
he responds that 'it seems in retrospect to be a great mistake' and that 'It's quite likely that
I never discovered that of course which is a mistake'. Tutor 3 seemed to perceive the
interview as an occasion for directly evaluating his teaching. In fact he had prepared a list
of cases based on the samples of data he was provided for reading before the interview
where he 'could have handled things differently'. He distinguished between 'errors that I
am making here and I think I know why I am making them' and 'other ones that are pretty
bad mistakes and it's not quite clear why I was making them'.

Given the limitations of space, I offer in the following his first mentioning in the interview
of what he perceived as an example of each of the above mentioned types of `mistake' to

Both 'mistakes' were discussed to great detail, in fact large parts of the interview were
devoted to a line-by-line scrutiny of the transcripts:

Tutor 3: Well, for example, [...] it seems to me to be a major error to go on talking about the theory of
cosets without going immediately or fairly immediately to some concrete example. And I am amazed I
am making a mistake like that. The other general mistake that I noted throughout both episodes is that
I am rather keen on pushing for what I regard as the right understanding of concepts, or the right way
of proving something, instead of pursuing what the undergraduate is thinking about. And I think I
know why I make that mistake. It's quite a lot to do with the rather fast pace of the Oxford course, that
there is a lot of pressure to try and get the student keeping up with the pace and then of course in the
long run it's far better if they have a thorough understanding of the concepts and then we can
accelerate the pace and catch up later. But I think that's a general mistake that I perceive in retrospect.

In the detailed scrutiny of the transcripts mentioned above, in which again a
mathematician's and a mathematics educator's perspectives were actively co-ordinated,
Tutor 3 seems to maintain a balance between strong self-evaluative comments and
challenges to the analysis in (Nardi, 1996). In most cases his challenges regard a 'slightly
more positive' assessment of the student's state of learning at the time. Nevertheless he

u) The first refers to an episode from Group Theory and the second to one from Linear Algebra.
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always concludes with re-evaluations such as 'in retrospect maybe I should have taken
time to explain the difference', 'maybe I should have spent more time trying to find out
what she really meant there' or 'one should be more patient and follow up what the student
is thinking'.

SYNTHESIS AND IMPLICATIONS FOR PRACTICE

Whether the tutors in these interviews engaged in an explication or re-evaluation of their
standard tutoring practices, in reflection on their students' thinking or in challenging the
analysis in (Nardi, 1996), the aims of the interview, as outlined earlier here, were certainly
fulfilled. This fulfilment can be partly seen in the extracts of the interviews exemplified in
the previous three sections. In sum and I offer these also as an evaluation of the methods
used in Project 2:

The tutors engaged in an articulation, justification and often reassessment of their
teaching actions in the discussed episodes, or even more generally. Occasional
inconsistencies in their practices were also highlighted.
The tutors engaged in a scrutiny of the evidence on their students' thinking, a task for
which any time is rarely allowed. This often amounted to their gaining an awareness of
existing research literature , for instance, in specific areas of learning difficulties in
undergraduate mathematics.
Certain analytical themes from (Nardi, 1996) were enriched by the tutor/practitioner's
point of view, e.g., in the extracts illustrated here, regarding the debatable value of
using certain concrete graphical representations to introduce abstract mathematical
concepts or the need to enhance a co-ordination of intuitive and formal practices for the
novice advanced mathematics learner.

Implications for practice. During the interviews the tutors expressed their concern for a
potential limitation of the study which related to their difficulty with recalling the specific
learning episodes they were invited to discuss. All of them claimed that had the interviews
taken place closer to the incidents, their recollections would be fresher, hence more
reliable. It was agreed however that what was actually discussed in the interviews were the
transcripts of the recorded events and the analysis in (Nardi, 1996). It was also agreed that
had they been interviewed immediately after the event, there would have been no analysis
to discuss. This would alter the nature of the data actually this immediacy is exactly what
Project 3 aims to achieve. These more immediate interviews would also benefit from a
more balanced input from both the practitioner's and the researcher's point of view. As the
tutors themselves acknowledged the impact of this exchange, in particular when taking
place on a regular basis, on the tutors' perception and enactment of their role can be
significant. These considerations have been built into the formation of the aims and the
methodology of Project 3. In the concluding section I outline Project 3 which is currently
in progress.
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PROJECT 3: THE UNDERGRADUATE MATHEMATICS TEACHING PROJECT

UMTP is a one-year study which commenced in October, 1998. Its broad aim is to explore,
in a clinical partnership (Wagner, 1997) with university mathematics teachers, current
thinking and practices in mathematics teaching at first-year undergraduate level and to
begin to provide a knowledge base on which to make decisions affecting teaching. UMTP
develops theoretically from educational research at pre-university levels: in particular, the
growing literature into teachers' thinking processes and personal theories and their links to
pedagogy (e.g. Brown and McIntyre, 1993) and research on the correlation between
teachers' perceptions of mathematical epistemology and cognitive development and their
classroom practices (e.g. Jaworski, 1994). UMTP extends this literature to address
pedagogical issues in university mathematics teaching, drawing on studies of advanced
mathematics in epistemological and cognitive domains (e.g. Tall, 1991; Sierpinska, 1994).
Another root of the study resides in a close collaboration between mathematicians and
mathematics educators: UMTP addresses and seeks reconciliation between the differing
emphases of these practitioners. The set of qualitative data developed in the study consists
of tutorial observations, semi-structured interviews with the tutors and participant group
discussions. The UMTP project team have submitted a Research Report to PME23 in
which they discuss findings from the project (Jaworski, Nardi and Hegedus, submitted11).
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ADDRESSING STUDENTS' CONCEPTIONS OF COMMON FRACTIONS

Karen Newstead and Alwyn Olivier
Mathematics Learning and Teaching Initiative, South Africa

Grade 6 and 7 South African upper elementary school students' conceptions of and
operations with common fractions were investigated before and after a year of exposure to
materials which had been designed to challenge common limiting constructions identified
in a previous study, and to a teaching approach of which reflection and interaction are
essential components. There was a significant improvement in several of the items in the
written tests, in line with the aims and extent of the materials used

Introduction

This paper reports on the impact of an approach for the teaching of common fractions on
Grade 6 and 7 students' conceptions of fractions. The approach was intended to challenge
common limiting constructions (D'Ambrosio and Mewborn, 1994) and included materials
that were designed to specifically address students' problems with fractions which had been
identified in a previous study (Newstead and Murray, 1998) in a larger sample of which the
current sample is a subset.

The approach and materials were used during the first year of implementation of the
Mathematics Learning and Teaching Initiative (Malati) teacher and curriculum
development project in schools, as a vehicle for introducing elementary school teachers to
our approach. This approach requires a classroom culture as described below which
originates from our theoretical orientation as reported in previous PME papers (e.g. Murray,
Olivier & Human, 1996). Such an approach is based on the view that students construct
their own mathematical knowledge irrespective of how they are taught. Cobb, Yackel and
Wood (1992) state: "... we contend that students must necessarily construct their
mathematical ways of knowing in any instructional setting whatsoever, including that of
direct instruction," and "The central issue is not whether students are constructing, but the
quality and nature of these constructions" (p. 28, our italics).

Based on the previous study (Newstead and Murray, 1998) and on the existing literature,
and in line with the Malati philosophy, the fractions materials were designed according to
the following basic principles:

Students are introduced to fractions using sharing situations in which the number of
objects to be shared exceeds the number of 'friends' and leaves a remainder which can
also be further shared (e.g. Empson, 1995; Murray, Human & Olivier, 1996).
Students are exposed to a wide variety of fractions at an early stage (not only halves and
quarters) and to a variety of meanings of fractions, not only the fraction as part-of-a-
whole where the whole is single discrete object, but also for example the fraction as part
of a collection of objects, the fraction as a ratio, and the fraction as an operator.



Students are encouraged to create their own representations of fractions; pre-partitioned
manipulatives and geometric shapes do not facilitate the development of the necessary
reasoning skills and may lead to limiting constructions (Kamii and Clark, 1995).
The introduction of fraction names and written symbols is delayed until students have a stable
conception of fractions. Written, higher order symbolization is not the result of natural
learning, and students struggle to construct meaning for such representations of fractions in
the absence of instruction which builds on their own informal knowledge (Mack, 1995).
Similarly, students can and should make sense of operations with fractions in a problem
context before being expected to make sense of them out of context (Piel and Green, 1994).
The materials repeatedly pose problems with similar structures to provide students repeated
opportunities to make sense of particular structures. Fractions are taught continuously
throughout the year, once or twice a week rather than in a concentrated 'block' of time.
A supporting classroom culture is required in which learning takes place via problem
solving, discussion and challenge and in which errors and misconceptions are identified
and resolved through interaction and reflection. Teachers do not demonstrate solution
strategies, but expect students to construct and share their own strategies and thus to
gradually develop more powerful strategies.

The Malati elementary school material and approach was implemented in 4 traditionally
disadvantaged schools near Cape Town in 1998. In addition to student worksheets and
comprehensive teacher notes, the teachers attended workshops and reflection sessions and
were visited regularly in their classrooms by Malati project workers.

Methodology

To study the impact of the Malati materials and approach, research was conducted on both
teacher and student change in two of the four elementary schools. The impact on Grade 6
and 7 students' learning was investigated using both written individual tests and observation
of students interacting in groups to solve challenging problems. This paper reports on
changes in students' responses to the common fractions items in the written tests only.

The written tests were designed by Malati researchers to 'cover' both the curriculum
traditionally taught in the schools, and the intended Malati curriculum. Thus items in the
Grade 6 and 7 tests differed in some cases according to the existing curriculum aims. All
the Grade 6 and 7 students completed the three tests on the same day towards the end of the
academic year in November 1997. For one of these tests, calculators were not allowed. The
tests were administered by Malati project workers who encouraged the students to try their
best, but assured the students that the results were not for school 'marks'. Exactly the same
procedure was followed with the Grade 6 and 7 students in the same two schools in
November 1998. The tests were coded by Malati project workers according to a coding
schedule devised after an initial analysis of the first dataset. Out of every class of
approximately 30 to 50 students, the first five complete tests were coded by two Malati
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project workers who then compared and discussed any discrepancies before continuing to
code individually. The data was input and the analysis carried out using SPSS for Windows.

Results

The response categories for the fractions items were collapsed for the purpose of a chi-
squared analysis. In some cases, certain responses were coded as showing some
understanding of the problem, in which case a third 'semi-correct' category is indicated. In
these cases, the chi-squared analysis was conducted using the categories 'no correct
response', 'semi-correct response' and 'correct response'.

The following tables show the success rate on the common fractions items. The items are
numbered for convenience and not according to test item numbers. All the values in the
cells are percentages of the total number of students who were tested. The number of
students in each grade differ in 1997 and 1998 owing to the non-longitudinal research
design, e.g. Grade 6 students in 1998 (who have been exposed to the intervention for a year)
are compared to Grade 6 students in 1997 (who had not been exposed to the intervention).

Item 1 tested students' part-of-a-whole conception of fractions:

1. What fraction of the following figures is shaded? If it is not possible to say, explain why not.

(a)

(d)

(b)

(e)

(c)

(f)

Table 1 shows the success rate on these items and significance of change in responses:

Item
1997

(N=208)

Grade 6
1998

(N=174) Significance
1997

(N=191)

Grade 7
1998

(N=193) Significance

1 a 58 85 p < 0,001 71 78 p> 0,05
1 b 52 83 p < 0,001 69 79 p < 0,05
1 c 69 89 p < 0,001 87 90 p > 0,05
1 d 53 79 p < 0,001 73 78 p > 0,05
1 e 2 5 p> 0,05 4 12 p< 0,01
lf 48 77 p < 0,001 67 72 p > 0,05

Table 1: Success in identifying fractions using pre-partitioned shapes



Although rational number lines were not taught in the Malati curriculum, the following
number line items were included to test students' conception of fractions as rational
numbers:

2. What numbers are shown by the
arrows? The first one has been done
for you.

1

5

3. Show the following numbers on the

number line below. The number
has been done for you.

(a)1-1
2

(b) L2 (c) 3
3

3

4

<I I I I I>
0 I 2 4

Table 2 below shows the success rate on these items and significance of change in
responses. Blank cells in the table indicate that these particular items were not included in
(in this case) the Grade 7 tests.

Item 1997
Grade

1998
6

Significance 1997
Grade

1998
7

Significance

2a 35 46 p < 0,05 33 47 p < 0,01

2b 16 32 p < 0,001 19 27 p < 0,05

2c 4 14 p <0,01 14 17 p > 0,05

3a 17 35 p < 0,001

3b 6 18 p < 0,001

3c 9 17 p <0,05

Table 2: Success on items using rational number lines

Additional items that were included in the Grade 6 and 7 tests are shown in Table 3 and 4
respectively. For Item 5, a 'semi-correct' response indicates that students correctly chose
Amina as having spent more, but did not supply a reason. For Item 6, a 'semi-correct'
response indicates that students gave a response of 6 or 7 rather than the precise correct
answer of 6+ . `SC' indicates the frequency of semi-correct responses (where such a
category was coded), while 'C' indicates the frequency of correct responses.



Item (Grade 6 test only)
1997

SC C
1998

SC C Significance

4. Jackie spends I of her pocket money and Piet
spends 1 of his pocket money. Could Piet have
spent more money than Jackie? How?

3 2 p > 0,05

5. Anwar and Amina each received R30 pocket money.
Anwar spent i of his pocket money and Amina spent

of hers. Who spent more? Explain your answer.;-;-

11 17 19 17 p > 0,05

6. Mrs Brown wants to cook porridge for 10 people.
She normally uses 5 cups of oats for 8 people.
How many cups of oats does she need for 10 people?
Show your calculations.

16 <1 33 4 p < 0,001

Table 3: Success on comparison of fractions items and the use of fractions as a ratio

Item (Grade 7 test only) 1997 1998 Significance

7a. If the diagram below represents a whole, show by
means of a suitable drawing how
you would represent I .

9 6 p > 0,05

7b. If the diagram below represents a whole,
means of a suitable drawing how
you would represent + .

show by
47 59 p < 0,01

8a. Four pizzas were bought: 1 of the pizzas was eaten.
Show this fraction by shading:0000

8b. How many pizias were left?

13

7

24

17

p < 0,01

p < 0,01

9. 1 of a man's salary is R3200. What is his salary? 39 37 p > 0,05

10. After a party 1 of a cake is left. The next day John eats I
of the leftover cake. What fraction of the cake is left then?

4 p > 0,05

Table 4: Success on items in context.testing concepts of and operations with fractions

The following items tested operations with fractions out of context. Students were not
permitted to use calculators for these items. For Items 11 and 12, a 'semi-correct' (SC)
category was included for responses in which a suitable common denominator was used but
the correct answer was not obtained. In the case of Item 17, a SC category was also
included for responses of '30 min + 15 min' and `f '. Table 5 shows the frequencies in
the various categories and significance of change in responses. In some cases, a chi-squared
analysis could not be conducted as some of the cell frequencies were too low.



Item
1997

SC C

Grade

1998

SC C

6

Significance
1997

SC C

Grade
1998

SC

7

C Significance

11.5 + -4 1 <1 5 2 - 10 11 9 8 p> 0,05
8 5

12. 3-1 +141 1 <1 6 2 - 8 11 2 8 p >0,05
4 5

13.
1

x 26 5 9 p> 0,05

14.
8=

+
1

-4 1 1 - 6 6 p> 0,05

15. -3 of -1 19 9 p < 0,05
4 5

16.4 of R120 11 16 p> 0,05

17. half of 1÷ hours 1 17 6 34 p < 0,001

Table 5: Success on context-free items testing operations with fractions

Discussion

Fraction as part-of-a-whole The results show a significant and substantial improvement in
many of the items that reflect the students' conception of the fraction as part-of-a-whole,
which is considered to be an essential foundation to the understanding of fractions. This
improvement was most evident at the Grade 6 level in all Item 1 questions, except le (see
Table 1). There was not a similar significant improvement in the Grade 7 responses, which
could probably be ascribed to the relatively high success rate in 1997.

In Grade 7 there was a significant improvement in Item 1 e which may indicate that some
Grade 7 students are reflecting more successfully on the necessity of equal parts In 1998,
78% of the Grade 7 students gave the answer as 1, as opposed to only 44% in 1997. In
Grade 6, the percentage of students who gave the answer as 5 changed from 69% to 66%.
However, the poor success rate in both grades on this item indicates that more emphasis
needs to be given to the necessity of equal parts.

Fraction as rational number It is interesting to note the significant and substantial
improvement on most of the questions of Items 2 and 3 that require students to make use of
the rational number line. The Malati material does not make use of any such number lines,
so this may be ascribed to an improvement in the ability to make sense of fractions as
rational numbers. The exception to the significant improvement on these items is the Grade

1817 response to Item 2c, although 'semi-correct' responses like -2- and were included as
5 5
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correct responses. It is expected that students will respond to this item with greater success
once they have been exposed to decimal fractions, which were not taught in 1998.

However, the lack of success on Items 4 and 5 indicates that the Grade 6 students were not
able to use fractions as rational numbers within the problem solving context. According to
Watson, Collis & Campbell's (1995) classification, this particular use of fractions within
the problem solving context represents the most complex level of fraction items. Indeed,
our data indicates that students need more experience with fractions as abstract rational
numbers in a problem solving context.

Other meanings: Fraction as part of a collection, as operator and as ratio We had
expected that the materials had addressed fractions as part of a collection of objects
sufficiently. Indeed, there was a significant improvement in the responses to Item 8a. The
disappointing success rate on Item 9 could be ascribed to the fact that the materials
neglected to address fractions as operators sufficiently. The significant change in the
responses to Item 6 (the fraction-as-a-ratio) was, on the other hand, unexpected as we had
felt that this meaning of fractions was not sufficiently addressed in the materials. However,
the significant change is in fact in the semi-correct responses and not in the correct
responses, and could thus be ascribed to better reasoning and/or estimation, or simply to an
increased willingness to attempt the problem (see below).

The role of the whole The lack of success on Item 4 may be attributed to the fact that
comparing fractions of which the whole is not necessarily the same was not addressed at all
in the existing material. The conception of the relationship between the fraction and the
whole will need to be further addressed in 1999, as indicated by the lack of success on Item
7a. There was however increased success on Item 7b.

Operations with fractions The students did not show a significant improvement on the non-
calculator items (Items 11 to 17) which involved context-free operations with fractions.
This can be explained by the fact that thus far in the materials they have only been required
to make sense of operations in the context of problems. Context-free operations with
fractions are expected to be revisited and consolidated in further fraction materials. The
Grade 6 students' significant improvement in Item 17 could be ascribed to the fact that this
item is not really context-free although it was included in the non-calculator test.

It is of concern that the students did not achieve more success on Item 10 which concerns
multiplication of fractions in context. However, there was a significant improvement in
subtraction of fractions in context (Item 8b), which can be expected as students had much
experience with such problems.

Willingness to try Significantly more Grade 6 students (at least p<0,05) attempted Items
I a, lb, 1c, Id, 4, 5, 6, 16 and 17 in 1998 than in 1997. Significantly more Grade 7 students
(at least p<0,05) attempted Items 1 b, 2b and 12c in 1998 than in 1997. The only item in
which fewer Grade 6 students attempted a response in 1998 than in 1997 was Item 11, and
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significantly fewer Grade 7 students attempted a response to Items 11 and 15 in 1998 than
in 1997. Items 11 and 15 involved context-free operations with fractions, of which the
learners had little experience.

Conclusion The items on which the students performed poorly in 1997, and on which there
was no significant improvement during 1998, may indicate insufficiencies in our
curriculum design principles and implementation. For example the role of the whole needs
to be more thoroughly addressed. In spite of our attempts to address various meanings of
fractions, more attention needs to be paid to some of these such as the fraction as operator.
As intended according to our design principles, operations with fractionS need to be covered
out of context now. Another aspect of fractions which may not have been sufficiently
addressed in our materials was the transition from unit fractions to related non-unitary
fractions. This transition is not one which occurs naturally (Davis, Hunting & Pearn, 1993).
This may account for the lack of success on several of the items.

However, in this study design principles to facilitate improved learning of fractions were
developed based on research on students' understandings and limiting constructions. The
resulting materials and classroom culture of reflection and discussion helped to facilitate a
better basic understanding of the conception of fractions, and a greater willingness on the
part of the student to try.
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THE EFFECTS OF A DIAGNOSTIC ASSESSMENT SYSTEM ON
THE TEACHING OF MATHEMATICS IN THE PRIMARY SCHOOL

Steven Nisbet (Griffith University, Australia)
& Elizabeth Warren (Australian Catholic University)

Abstract
This paper reports that the introduction of a diagnostic assessment system in Year 2
has had a significant and positive impact on mathematics teaching and assessment in
the primary school. Teachers reported using a wider variety of assessment techniques
(notably individual interviews & observations), using assessment data for planning
instruction, having a greater sense of accountability, and including more problem
solving and hands-on activities in their teaching.

Introduction

School teachers are continually faced with the challenge of implementing innovative
ideas, some which are mandated by the school or the school system, and others which
are promoted but not enforced. The literature on teacher change and professional
development includes a sequence of models which, in turn, purport to describe the
process and explain the success or otherwise of curriculum innovation.

The traditional model of implementing curriculum innovation assumes that teacher
change is a simple linear process along the following lines. Staff development
activities lead to changes in teachers' knowledge beliefs and attitudes, which, in turn,
lead to changes in classroom teaching practices, the outcome of which is improved
student learning outcomes (Clarke & Peter, 1993). Later models recognise that
teacher change is a long term process (Fullan, 1982) and that the most significant
changes in teacher attitudes and beliefs occur after teachers begin implementing a
new practice successfully and see changes in student learning (Guskey, 1985). The
professional development model of Clarke (1988) has refined the Guskey model by
recognising the on-going and cyclical nature of professional development and teacher
change. Later Clarke and Peter (1993) adapted the Guskey model further by
broadening the original conceptual elements within the model. Staff Development
Activity was broadened to include any external source of Information, Stimulus or
Support, and was labelled as the External Domain. Classroom Practice became the
Domain of Practice to include any Classroom Experimentation. Student Learning
became the Domain of Inference to include any Valued Outcomes. Finally, Teacher
Beliefs became the Personal Domain to include Teacher Knowledge and Beliefs (see
Figure 1).

Reference to the above model of professional growth has the potential to illuminate
the reasons why some innovations in mathematics education have succeeded and
others have not. For instance, the importance of teachers' knowledge and beliefs in
the cycle of professional growth was confirmed by Leonidas (1996) who found that
the failure of a mathematics curriculum change in a centralized system was due to the
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fact that teachers' perceptions of mathematics were inadequately considered at the
adoption and implementation stages. Similarly, Philippou and Christou (1996) noted
that if bright new ideas are to find their way into mathematics classrooms, it is
imperative that change agents have a deeper understanding of classroom teachers'
views, beliefs, conceptions and practices. Their study found that although teachers
may be aware of and accept contemporary ideas (in this case about assessment), there
can be a distance between their knowledge and intentions on the one hand, and their
actual practice (in assessment) on the other.
Figure 1: The Clarke-Peter model of professional growth

External Source of
Information, Stimulus

or Support

External Domain

Personal Teacher Knowledge Classroom Domain of

Domain and Beliefs Experimentation Practice

Valued Outcomes
Domain of Inference

Note on Figure 1: solid line = enactive mediating process; broken line = reflective mediating

process. The mediating processes translate growth in one domain into another. The term enactive

distinguishes the translation of a belief or a pedagogical model "into action" from simply "acting".
Acting occurs in the Domain of Practice and each action represents the enactment of something a
teacher knows, believes or has experienced (Clarke & Peter, 1993).

One particular example of an innovation which was not only successful at changing
assessment practice at the target years but also produced a ripple effect through other
school years was the system-wide adoption of the Victorian Certificate of Education
(VCE) and its multi-component assessment scheme (Clarke, Stephens, & Wallbridge,
1993). It demonstrated that changed assessment practices in Years 11 and 12
mathematics had a strong impact on how mathematics was taught and assessed
throughout the secondary school. The new assessment methods contained in the VCE
included the use of multiple-choice skills test, an extended-answer analytic test, a ten-
hour challenging problem, and a 20-hour investigative project. Such a wide range of
assessment methods reflected the contemporary mathematics education literature, and
would have been endorsed by the informed mathematics education community. In
terms of the professional growth model (Clarke & Peter, 1993), the changes in the
domain of practice must have produced valued outcomes for students as perceivedby
their teachers, and modified the beliefs and attitudes of practising teachers enough to
continue the practice and to extend it to other grades in the school (the ripple effect).
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This paper is concerned with the effect of a new state-wide system of assessment in
lower primary mathematics on the teaching of mathematics throughout the primary
school. In terms of the professional growth model (Clarke & Peter, 1993), the paper
explores the nature of the enactive mediating process indicated by the arrow between
the External Domain and the Domain of Practice, and the reflective mediating
process indicated by the arrow between the Domain of Practice and the Domain of
Inference. The process started in the External Domain with an imposed diagnostic
assessment system, which lead to the teacher making changes in the mathematics
classroom (Domain of Practice) and noting improvements in the Domain of Inference
(valued outcomes).

The background to the adoption of the new system of diagnostic assessment in lower
primary classes in the state of Queensland and a brief description of it now follows.

As a result of concerns about the levels of literacy and numeracy of children leaving
school (Wiltshire, McMenniman, & Tolhurst, 1994), two state-wide initiatives have
been undertaken recently. One is the Year 2 Diagnostic Net (the other being a Year 6
Test). Briefly, the Year 2 Diagnostic Net is a mandated process of monitoring and
reporting on children's literacy and numeracy development in the early years of
schooling. It identifies those children who are experiencing difficulties in literacy and
numeracy and provides a framework for developing appropriate intervention
programs for those children. The Net is a process in which teachers (i) observe and
map all children's progress individually using developmental continua for aspects of
literacy and numeracy, (ii) validate observations of children requiring additional
assistance through specifically designed assessment tasks, (iii) provide appropriate
learning support for children, and (iv) report to parents about these aspects of
children's literacy and numeracy learning and development (Handbook for schools,
1996, p I ). The numeracy section of the Net deals with patterns of simple objects,
counting skills, and representing numbers from 0 to 10. This paper examines the
effect of the introduction of the Year 2 Diagnostic Net on teaching and assessing
mathematics in the primary school.

Methodology

In part of a survey, primary teachers were asked to indicate whether or not the
introduction of the Year 2 Net had influenced their (1) teaching and (2) assessment of
mathematics (by circling yes or no for each item). A blank space (20cm x 3.5cm) was
provided below for respondents to explain how the Net had been influential. Fifteen
hundred survey forms were sent to a random selection of primary schools
representing different school systems (government & catholic), socio-economic areas
(high & low) and geographic locations (metropolitan, provincial & rural). The return
rate was 26% (n=387) and the resulting sample was representative of the different
systems, socio-economic areas and geographic locations. The sample was also
representative of school year levels.

3 - 331. 1 3



Results

More teachers reported that the Year 2 Net had an influence on their assessment
(42.2%) compared to an influence on teaching (28.3%) (see Table 1). However the
majority of teachers influenced by the Net taught Years 1, 2 and 3: 70% of these
teachers indicated that it influenced their assessment, and 43% said that it influenced
their teaching. Teachers in other grades reported levels of influence lower than those
for lower-primary teachers, reducing to 31.3% (assessment) and 20.8% (teaching) for
Year 4 teachers and 15.2% (assessment) and 13.6% (teaching) for Year 7 teachers.

Table 1: Distribution of percentage of responses across grades on the question of
whether the Year 2 Net influenced the teachers' assessment and teaching.
Year Level Influenced assessment % Influenced Teaching %

Yes No No response Yes No No response

Preschool 25 58.3 16.7 25 66.7 8.3

Year 1 75.5 18.9 5.7 39.6 52.8 7.5

Year 2 80.7 15.8 3.5 50.9 45.6 3.5

Year 3 63.9 26.2 9.8 45.9 40.1 13.1

Year 4 31.3 54.2 14.6 20.8 64.6 14.6

Year 5 12.8 76.6 10.6 12.8 76.6 10.6

Year 6 11.9 61.9 26.2 9.5 64.3 28.6
Year 7 15.2 62.1 22.7 13.6 63.6 22.7
Averages 42.2% 44.5% 13.4% 28.3% 57.8% 13.9%

Only 175 (45%) of the respondents wrote an explanation in the space provided of
how the Year 2 Net had influenced their teaching and assessment of mathematics.
The explanations that were provided fell into four categories, with significantly more
explanations given about assessment practices (n=73, 42%) than about content taught
(n=37, 21%), methods used for teaching (n=38, 22%), and comments about students
(n=27, 15%), F(3, 18) = 4.15, p < .05. More explanations were given by teachers of
years I to 3 (n=138, 79%) than years 4 and 5 (n=31, 18%) and years 6 and 7 (n=6,
3%), F(6, 18) = 9.24, p < .0001.

(i) Comments on assessment: The comments on assessment were about different
types of assessment tools the teachers now used or about different ways of
implementing assessment procedures in the classroom setting (see Table 2).

Table 2: Distribution of comments on changed assessment practices (n= 73)
Category Yr. 1 Yr. 2 Yr. 3 Yr. 4 Yr. 5 Yr. 6 Yr. 7 Total

Type of assessment
Observation
Journal
Individual interview
Focussed assessment
Review sheets

4
1

5

3

1

5

6
1

3

3

1

1

2

2 1

1

16
4
14
5

1
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Implementing assess.
More systematic 1 5 4 1 11

More individually based 1 1 1 3

Greater array 1 2 4 2 1 10

Influenced recording 1 3 2 1 7

Influenced reporting 1 1 2

The majority of teachers who reported an increased use of observation and individual
interviews taught in the lower primary grades. This increase should be seen as a
positive effect of the introduction of the Year 2 Net. Many teachers reported that they
assessed more systematically and used a greater array of assessment methods.

(ii) Comments on content: Many comments show that many teachers have embraced
the Year 2 Net not only as an assessment device but also as indicator of what to teach
(see Table 3), for instance more problem solving and activities with number patterns.

Table 3: Distribution of comments on changes in content (Total = 37

Content Yr. 1 Yr. 2 Yr. Yr. Yr. Yr. 6 Yr. Total

3 4 5 7

Number emphasis (patterns) 1 2 1 4

Problem solving 2 2 1 5

Investigations 1

Continuum (Net) is syllabus 1 11 6 2 2 22

Emphasis on money 1 1

Emphasis on different aspects 4 4

(iii) Comments on teaching: Many comments indicate a greater sense of
accountability and the use of assessment data to inform planning (see Table 4).
Others included the greater use of hands-on activities, and self-reflections of teaching

and mathematics.

Table 4: Distribution of comments on chances in teaching (total = 38

Teaching (method) Yr 1 Yr. 2 Yr. 3 Yr. 4 Yr. 5 Yr. 6 Yr. 7 Total

More hands on 4 2 1 5

Real world contexts 1 1 2

Teaching (approach)
Integrated approach 1 1

More accountable 2 1 1 1 1 6

Informs planning 2 2 2 1 2 9

Ensure all children have
knowledge of all areas

3 5 8

Teaching (Prof Dev)
Changed my perceptions of
mathematics

1 1 2

Identified my weaknesses 1 2 3

Network meetings inservice 2 2
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(iv) Comments about students: These comments show that many teachers interact
more with students on a one-to-one or small-group basis, and identify more children
at risk (see Table 5). Such responses are consistent with those shown in Table 2 and
should be seen also as a positive effect of the introduction of the Net.

Table 5: Distribution of comments on changes relating to students (total = 27
Categories for students Yr. 1 Yr. 2 Yr. 3 Yr. 4 Yr. 5 Yr. 6 Yr. 7 Total

More one to one 2 5 2 2 11

More small group interaction 1 2 3

Identify chn needing extension 1 1 2

Identify children at risk 4 1 1 2 8

Adapt to developmental levels 1 1 2

Plotting children's progress 1 1

Discussion

These results should be interpreted in the context of the methodology of self-
reporting by teachers and the return rate of just over a quarter. Although the state-
wide figures may not be as high as the sample figures, it can be argued that the
introduction of the Year 2 Net nevertheless has had an impact on the teaching and
assessment of mathematics in Queensland primary schools especially in the lower
grades (Years 1, 2 & 3). The fact that 80.7% of the Year 2 teachers in the sample
reported that it influenced their assessment methods and 50.9% reported that it
influenced their teaching, indicates that the impact has been substantial. Even a
worst-case scenario of a quarter of these percentages implies that the impact was not
insignificant, with many teachers across the state improving their assessment and
teaching skills.

In terms of the Clark-Peter model (1993) of professional growth, the External-
Domain stimulus of a mandated assessment process has lead to changes within the
Domain of Practice, namely, better assessment and teaching methods. The Year 2 Net
has offered many lower-primary teachers a pedagogical model which they report
being able to translate into action through the enactive mediating process. Hence the
success of the Net may be explained in terms of teachers noting the outcomes of the
assessment tools of the Net as being positive and valued.

The effect on the teaching and assessment of mathematics reported by teachers in
grades other than Year 2 is another example of the ripple effect described by Clarke,
Stephens and Wallbridge, (1993), this time in the primary school, with the effect in
this case waning in year levels more distant from Year 2.

The impact of the introduction of the Year 2 Net has been positive in terms of valued
outcomes. Why positive? The responses by teachers have largely referred to
outcomes that have been endorsed by the informed community (Stephens, Clarke, &
Pavlou, 1994). The mathematics education literature is replete with calls for
broadening the range of assessment techniques used in mathematics classes (Clarke,
Clarke & Lovitt, 1990; Beyer, 1993; Swan, 1993; Webb, 1993). Hence, it is
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gratifying to note lower-primary teachers in this study reportedly using a greater
array of assessment techniques, including observation and individual interviews.
Similarly it is gratifying to note a reported increased emphasis on identifying children
at risk and conducting more one-to-one and small group activities, in the light of
public concern about standards of numeracy and the thrusts in the literature on
intervention in early mathematics (Pearn, 1994; Steffe & Cobb, 1988; Wright, 1994).
Given the sustained endorsement of problem solving and hands-on activities over the
last twenty years (NCTM , 1979; Cockcroft, 1982; AMEP, 1985; NCTM, 1989,
AEC, 1990), it is also satisfying to note more teachers reporting an increase in their
use of such activities in the mathematics classroom.

The fact that many teachers have embraced the Year 2 Net not only as an assessment
device but also as indicator of what to teach may imply a perceived inadequacy of the
current syllabus statement (Department of Education, Queensland, 1987) and/or
insufficient promotion of the syllabus and its accompanying resources. Nevertheless,
it is a concern to educators when the assessment tail wags the curriculum dog.

However, other comments in the category of teaching indicate that there have been
other positive outcomes of the introduction of the Year 2 Net. Firstly, some teachers
report using the assessment data to inform planning - a positive outcome, given that a
major purpose of assessment is planning instruction (Cole & Chan, 1994). Secondly,
some teachers believe that they are more accountable, and that they ensure that their
children "have knowledge of maths in all areas" another positive result in the light
of calls for achieving learning outcomes (Australian Education Council, 1994).
Thirdly, it is gratifying to note some teachers being more self-reflective in relation to
their own strengths and weaknesses and their perceptions of mathematics. This
supports another facet of the Clarke-Peter (1993) model of professional development
i.e. the personal domain, and is a cue for the next stage of this investigation.
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STUDY OF JUSTIFICATIONS MADE BY STUDENTS AT THE "PREPARATION
STAGE" OF BADLY DEFINED PROBLEMS

Noda, A.; Hernandez, J. and Socas, M.M.
University of La Laguna

SUMMARY
In this work we describe and analyze the behaviour of three final year Infant Education teacher
training students when at the "preparation stage" (Bourne, et al., 1979) they have to solve six badly
defined find problems in arithmetic, algebraic and geometric contexts. More specifically, we
analyze the ways in which the students identify problems as either well defined or badly defined,
the relationships they establish between the data and the aims of the problems, and the type of
arguments they use in order to justify their actions in terms of validation and refutation.
INTRODUCTION
Attempts have been made to characterize the notion of problems from the viewpoint of
Mathematics (Polya; 1957), Psychology (Newell and Simon, 1972; Chi and Glaser, 1986),
as well as from that of Mathematical Education (Schoenfeld, 1985). Also, there have been
many attempts to classify and group them (Simon, 1973; Butts, 1980; Charles and Lester,
1982; Frederiksen, 1984; Borasi, 1986; Pehkonen, 1991, 95).
As Greeno (1978) and Kilpatrick (1987) point out, it is very difficult to make precise
classifications of problems because many problems possess common features in different
categories.
We use the classification adopted by Polya (1945) who distinguishes find problems from
prove problems, and adapt some elements found in the definition of problem space put
forward by Newell and Simon (1972). In our work we have had to make a "local"
characterization of well and badly defined find problems in order to identify the problems to
be included in our research. One term we have had to introduce is that of the "Semiotic
State" of a well or badly defined find problem; this term stands for the set of semiotic
representations of the problem that the ideal solver would produce from the initial state Eo
up to the final state R. The notions of initial state, desired final state, operators, etc., are set
out by Newell and Simon (1972, p.810).
It should be pointed out that while in their definition these authors refer to the various
cognitive representations of the problem the solver makes on the basis of the task
environment, we refer to a "formal competence model" and to the possible semiotic
representations of the problem solution made by an ideal solver.
So, a find problem is determined by the tern <E,O,R> where E is the set of semiotic states,
O the set of operators, and R the set of solutions; so, E= {E0, E , En , with En E R, and Eo,

the initial state, formed by the set of data given.
We characterize a find problem as well defined when in the previous tern

Eo # 0 A 3 (E;),.(0,1,...,} ^ Eo c Ei, E {1,...,n}. (E, represents a succession of states

included in E ) .

That is, when we go through.a solution process in which we can relate all the data to the
solution by means of some type of analysis or synthesis, be it numerical, algebraic, or some
other type.
So, if in this definition we again take the tern <E,O,R> and deny the conditions that
characterize the well defined find problem, a badly defined find problem would be



characterized as E0=0 v v E0 a Ei, Vi e {1,2,..., n} . That is, when there is noEto

possible relationship between the data and the solution.
We can now classify badly defined find problems as: Type I (too few data) when Eo = 0,
Type II (too few data) when Et) 0 A (Ei)je{i,.",n}, Type III (too many data) when

E0 A 3 (Ei) ie{l,...,n} A E0 Ei, Vi E . (Noda, A.; Hernandez, J. and Socas,0
M.M., 1997,1998).
EXPERIMENT DESCRIPTION
In this experiment we consider the models proposed by Dewey (1933) and Bourne et al.
(1979) for problem solving and we basically analyze the "preparation stage", focusing
especially on students' actions at this stage. In Dewey's terms, these actions can be specified
as: identification of the problem situation, characterization of the problem, and analysis of
means-ends, in other words, how solvers analyze and interpret the data initially available, the
restrictions and how they identify the solution criteria.
Research questions.
Our aim is to study solvers' behaviour when they are faced with badly defined find problem
in arithmetical, algebraic and geometrical contexts. To carry this out we ask ourselves the
following questions: How do solvers identify the problem situations in terms of well or badly
defined? How do they establish relationships between the data and the aims in these types of
situations? And finally, how do the solvers justify their actions? Bearing these research
questions in mind, we designed an analysis scheme to observe the real solvers at the
preparation stage when working with well and badly defined find problems.
Methodology
Adopting the model established by Schoenfeld (1985), the scheme was designed as follows:
Reading: reading, silence, re-reading
Ll. Have all conditions of the problem been noted?
L2. Has the aim of the problem been correctly noted?
L3. Does the environment (context) of the task affect the reading of the problem?
Analysis-Exploration: Understanding, reasoned actions
El. Does the solver look for some relationship, either true or false, between the conditions

and aim of the problem?
E2. Are the actions governed by the conditions of the problem (the data)?
E3. Are the actions governed by the aims of the problem (the question)?
Actions: Reformulation, introduction of elements, simplification of elements.
Al. Does the solver explicitly or implicitly recognize that the problem is well or badly

defined? Does s/he justify this?
A2. Does s/he reformulate the problem? Does s/he transform the problem into a well or

badly defined problem? Explicitly? Implicitly? How? Does s/he justify the
transformation?

A3. If s/he does not transform the problem either explicitly or implicitly, does s/he set about
It as if it were a well defined problem? Does s/he justify this?

Checking-Transition.
VI. Does the solver revise his or her actions? As a result of the process or of the result

obtained? Does s/he justify this?
V2. Does s/he change his or her action plan? Does s/he justify this?
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V3. Is the plan adopted suitable for the change made?
The justifications made by the solvers for their actions must be considered in terms of
validation or refutation To this end, we establish, as in the case of well defined problems,
three general types of resource (Calderon and Leon, 1996):
Internal cognitive resources (related to mathematics) For justifications made with regard to
the mathematical relationships established by the solver or mathematical behaviour decided
upon by the solver in the procedures followed.
External cognitive resources. For justifications made by using culturally established concepts
to justify mathematics. The level of systematization in such justifications refers to beliefs
and attitudes held about mathematics rather than to authentic processes of mathematical
inference
Discursive resources. For interpretations made in a verbal or written form that exteriorize
and show concepts and processes to do with well or badly defined problems or problem
situations.
Subjects
In order to gather oral data, the experiment was carried out on three-year teacher training
students specializing in Infant Education at the Centro Superior de Educacion at La Laguna
University (Tenerife, Spain). The three subjects were split into two groups: Group 1, made
up of two students of average ability, and Group 2, made up of one student of high ability.
Instruments
Both groups were given a set of six badly defined problems (see Table 1): three badly
defined Type-II problems with a lack of data (Al, B2 and B3), and three badly defined Type-
III problems with too many data (A2, A3 and B 1). The problems were worked on in two
one-hour sessions carried out on different days.

'---.... Context
Sessions --.

Arithmetic Algebraic -Geometric

Session 1 (Al) M.D. Type II (A2) M.D. Type HI (A3) M.D. Type III
Session 2 (B1) M.D. Type III (B2) M.D. Type II (B3) M.D. Type II

Table 1
The sessions were videotaped. Group 1 carried on their session by means of discussions
between the two students in such a way that they alternately played the roles of interviewer
and solver regarding the various problems, while in Group 2 a clinical interview was carried
out.
RESULTS
Let us now look at the results obtained in the experiment in accordance with the analysis
scheme we have designed.
By way of example, we shall describe the behaviour of the solvers when solving one of the
six problems they worked on (A 1), and include the transcription of the video recording of
both groups of students. The parts underlined highlight the justifications made by the
students.
Al: The menu in a bar reads as follOws: FlOt,dogs 100 pesetas; coffee 75 pesetas; fried potatoes
85 pestle's, Coca Cola 125 pesetas, toast 100 *set0,. and hamburgers 175 pesetas. If Luis does
not like hot -dogs, how much did he pay for lus breakfast? 1-

Group 1: Student 1 (S1) plays the role of interviewer while Student 2 (S2) that of the solver.
Sl: Reads out the problem.
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S2: As Si reads out the problem, S2 notes down the problem data (both the text as well as the
numerical data in the form of a table with two columns: the left one for the text and the right one
for the numerical data). When SI finishes reading the problem, he asks: "What does the problem
ask?"
SI: "How much he paid for breakfast."
S2: Does not note down the question but immediately says: "Well, if he ate fried potatoes, toast,
coffee ... (she pauses a little and then goes on) ... he can't have Coca Cola, he isn't going to mix
Coca Cola and coffee. Look, if he had a hamburger and Coca Cola (writing on the board
Hamburger and Coca Cola, and beneath this text the numerical data 125 + 175 = 300 pesetas, and
doing the calculation in a slightly lower voice) he paid three hundred pesetas for breakfast.
SI: "Eh! And how do you know he had a hamburger and Coca Cola and not fried potatoes, toast,
coffee, Coca Cola and hamburger, but not the hot dogs because he doesn't like them? If the
problem doesn't tell you what he ate, how can you know?"
S2: "That's stupid! Anyway, if he mixes coffee and Coca Cola, he'd be sick."
SI: "Well, you might think that, but you don't know about Luis."
S2: "Well, let's say he had toast, coffee and fried potatoes."
SI: "And why not everything except what he doesn't like, that's the hot dogs? The problem doesn't
tell us anything else."
S2: "Well, in that case then, we'll say that for breakfast he spent (she begins to put all the numerical
data on the board and does the calculation aloud 85+100+75+125+175=560 pesetas) five hundred
and sixty pesetas.
SI: "Alright?"
S2: Yes, though he could have had (she begins to say all the possible cases, including in each case
two of the items on the menu) fried potatoes and coffee, or toast and coffee, or ..- anyway, whatever
he pays depends on what he eats. Any solution is right."
SI: (Nods, but at the same time shows he doesn't agree with the various solutions suggested by his
classmate.)
Description of actions referred to the solver student.
The student looks for a relationship between the conditions and the aim of the problem, her
actions being governed by the aim. She implicitly recognizes that the problem is badly
defined and reformulates it, justifying this by means of refutation and by applying external
cognitive resources based on common sense ("social logic"). Then, following a period of
checking-transition, she modifies her actions, and identifies the problem as well defined
with many possible solutions, justifying this action through validation and using discursive
resources, such as description' .

Group 2: Student (D), Interviewer (I).
D: Reads out the problem but does not write any notes on the board, and says: "it depends on what
he eats, because if he chooses toast and coffee from the menu he'll pay a hundred pesetas plus
seventy-five pesetas which would be one hundred and seventy-five pesetas, but if you take into
account that he probably likes other things for breakfast, those amounts would be added up."
I: In that case, what would in fact the solution to the problem be?"
D: "Well, I'd answer that it'd depend on what he ate."
I: "O.K. Do you think, then, that there is something missing in the problem or that there's too much
information, or do you think the problem's well expressed?"
D: "Something's missing in the text, for example. 'The cafe menu reads: Hot dogs 100 pesetas,
coffee 75 pesetas, fried potatoes 85 pesetas, Coca Cola 125 pesetas, toast 100 pesetas, and

' Verbal explanation, by means of identifying, explaining or projecting the features of the situation.
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hamburger 175 pesetas. If Luis had so much money, what could he eat?' Alternatively, 'The cafe
menu reads: Hot dogs 100 pesetas, coffee 75 pesetas, fried potatoes 85 pesetas, Coca Cola 125
pesetas, toast 100 pesetas, and hamburger 175 pesetas. If Luis likes to have this and that, how much
will he pay for his breakfast? But, the way it's formulated, we can't answer, because you don't know
what he's had nor what he likes to have for breakfast."
Description of actions
The student looks for a relationship between the conditions and the aim of the problem, her
actions being governed by the aim. She explicitly recognizes that the problem is badly
defined and transforms it. She justifies her actions through refutation and uses internal
cognitive resources based on counter-examples2

Here we briefly summarize the solvers' behaviour when working with the rest of the
problems.

A:2: Some farmers stored hay for 41 days; but as the hay was af better quality than they had
thOught, they saved'160 kg per day,,sO that they 'had hay for 6 days. They spent a total of 1,200
pesetas. How !natty kilo; g in
1Description of actions

ams of ha did the-4.7;rSte7. .

The student does not look for a relationship between the conditions and the aim of the
problem. His actions are governed by the conditions. At first, he sets about the problem as if
it were well defined. This action is validated though the use of external cognitive resources
of a ritual kind3 . Later, following a period of checking-transition, he changes actions and
transforms the problem, justifying his actions by an authoritative (belief) refutation4
Description of Group 2 (G2) actions
At first, she sets about the problem as if it were well defined, justifying her actions through
validation and using external cognitive resources based on authority. Later, after a checking-
transition period, she looks for a relationship between the conditions and the aim of the
problem, her actions being governed by the aim. She recognizes that the problem is badly
defined and transforms it. Her actions are justified through refutation, using internal
cognitive resources such as contradiction.
A3: How far is.thesChool frost! theparkif to 001m t*Placeto'cinoliter the 60-cm diameter
w40. of a bicycle travels 62 metres andand_it takes 6 0144: ,

Description of actions of the solver student of the Group 1 (G1).
The student does not look for a relationship between the conditions and the aim of the
problem. Her actions are governed by the conditions (the data). At first, she sets about the
problem as if it were well defined. The action is validated through the use of external
cognitive resources of a ritual kind. Later, following a period of checking-transition, she
transforms the problem, justifying her actions by refutation and using external cognitive
resources based on authority (belief).
Description of Group 2 (G2) actions

2 She gives an example, taken from the same situation or from an analogous one, in order to justify the fact
that the situation is badly defined or takes the same situation as an example.
3The subject tries to establish validity because of the way in which the situation is presented. The appearance
rather than the coherence of the contents is more influential.
4The justification comes from a source that enjoys complete credibility: teacher, task (book), competent
classmate, etc.
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At first, she sets about the problem as if it were well defined and she puts forward her
validation arguments by using empirical internal cognitive resources5 . Later, after a
checking-transition period, she looks for a relationship between the conditions and the aim
of the problem, her actions being governed by the aim. She recognizes that the problem is
badly defined and transforms it. Her actions are justified through refutation and she uses
internal cognitive resources, in this case a counter-example... .. _
BI:: *woman raises -a. goat and 3 rabbits for 52. weeks She hyysi:760, "amt of, for one
week If the animals eat all; the fodder was left over at

the end. of the week? . .

Beieraption of ifaini student Of the Giiiiiitir(G1
The student does not look for a relationship between the conditions and the aim of the
problem. His actions are governed by the conditions. At first, he sets about the problem as if
it were well defined, validating this through the use of cognitive resources of an
authoritative kind. Later, following a period of checking-transition, he looks for a
relationship between the conditions and the aim of the problem. He identifies the problem as
a badly defined one, justifying his actions through refutation and using internal cognitive
resources such as a counter-example.
Description of Group 2 (G2) actions
At first, she sets about the problem as if it were well defined. The action is validated through
the use of external cognitive resources of an authoritative kind. Later, following a period of
checking-transition, she looks for a relationship between the conditions and the aim of the
problem, her actions being governed by the aim of the problem. Then, she recognizes that
the problem is badly defined and transforms it. Her actions are justified by refutation and she
uses internal cognitive resources, in this case acounter-example.___

i *ie are hems and rabbiikT fthei*A4.totat o f 716'.1eilhim
i&iiiikeriiithefaintyardt

escrilitioa of actions the solver student of the ( ).

The student does not look for a relationship between the conditions and the aim of the
problem. Her actions are governed by the conditions, and so she sets about the problem as if
it were well defined. This action is justified by means of validation through the use of
analytical internal cognitive resources6.
Description of Group 2 (G2) actions
The student does not look for a relationship between the conditions and the aim of the
problem, her actions being governed by the conditions (the data). At first, she sets about the
problem as if it were well defined. These actions are validated by using empirical internal
cognitive resources. dr and measures 90 in by 60 m; , how, ar it-it
B3: If the square in front Of yourhonae measures

from your school to your house?
Description of actions of the solver student of the Group 1 (G1).
The student looks for a relationship between the conditions and the aim of the problem, her
actions being governed by the aim of the problem. She recognizes that the problem is badly
defined, justifying her actions through refutation and uses discursive resources such as

'Justification is made on the basis of quantifiable experiences or physical facts.
'The student works within the field of mathematical demon'-"
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irony' . Later, following a period of checking-transition, she transforms the problem. These
actions are justified through refutation, using internal cognitive resources such as the
counter-example.
Description of Group 2 (G2) actions
The student looks for a relationship between the conditions and the aim of the problem, her
actions being governed by the aim of the problem. She recognizes that the problem is badly
defined and transforms it. These actions are justified through refutation, using discursive
resources such as irony.
FINAL CONSIDERATIONS

Regarding the solvers' behaviour, generally speaking, and except in the case of Group G2
when doing Problems AI and B3, we can
see two clearly differentiated semiotic
states which we call initial and final, and
in which the students use clearly
differentiated validation or refutation
justifications. These types of behaviour
regarding the "Identification of the badly
defined problem in terms of well or
badly defined" and "how they justify
their actions" in terms of validation or
refutation, can be represented in the
following scheme, which also enables us
to see the paths the students follow:
Certain difficulties arise when identifying problems in terms of badly defined, where the
influence of the context is notable. So, when we analyze the final semiotic state,
identification as well defined (option C in our Scheme) only occurs in the algebraic
context (both groups of students identify Problem B2 as a well defined problem). In the
initial semiotic state these problems are considered to be well defined by both groups in
the three contexts studied (Problems A2, A3 and B 1), all of these being Type HI
problems.
With respect to the paths followed by the students when working on the problems through
the various semiotic spaces, we can see that it is in Type III problems where they go from
one vertex to another in the Scheme; in other words, they modify their action plans
following a checking-transition period (in the three Type III problems).
With regard to whether the actions are governed by the aim or the conditions, we can see
that:
- When the actions are governed by the aim and not the conditions, the students recognize

that the problem is badly defined as such (option A or B in Scheme); on the other hand,
when the actions are governed by the conditions, the students identify badly defined
problems as well defined (option C in the scheme).

- With regard to context, differences can be seen. Actions governed by the conditions of
the problem are always undertaken in the algebraic context. However, regarding the

.4 The student explicitly recognizes
that the problem is badly defined

and does not reformulate it.

The student neithe
transforms it implicitly
or explicitly and sets

about it as if it were a
well defined problem.

J

IThe student
transforms it
implicitly or

explicitly into a well
or badly defined

problem

7 She refutes the validity of the situation by implying the opposite of what she literally says. This is a type of
indirect justification.
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types of problems, there is a large degree of balance between Type II problems (lacking
data) and Type III problems (too many data).

When we analyze justifications by means of either validation or refutation, we note
different types of argumentation which, initially, can be categorized and classified as in
the following table

----- Resources
JustificatioUi"

Internal Cognitive External Cognitive Discursive

Validation Empirical
Analytical

Authority (beliefs) Ritual (attitude) Description
Comparison

Refutation Counter-example
Contradiction

Authority (beliefs)
Social Logic

Irony
Ridicule

Table 2
In both validation and refutation types justification we note a certain degree of balance
between external and internal cognitive resources. There are fewer justifications in
discursive terms.

Finally, we should point out that of resources used in our analysis becomes a theoretical
instrument that relates and typifies the students' justifications when they work on badly
defined problems at this "preparation stage".
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THIS PATIENT SHOULD BE DEAD!
or

HOW CAN THE STUDY OF MATHEMATICS IN WORK ADVANCE OUR
UNDERSTANDING OF MATHEMATICAL MEANING-MAKING IN

GENERAL?

Richard Noss, Celia Hoy les and Stefano Pozzi
Institute of Education, University of London

Our data involves a detailed study of the ways in which a group of paediatric
nurses think about the notion of average and variation. We describe some
continuities and discontinuities between mathematical and nursing
epistemologies, and draw some general conclusions about the ways in which
more general mathematical meanings are constructed.

Over the past few years, we have been studying the ways in which mathematical
meanings are constructed and mobilised in a variety of workplace settings'. Our
overarching objective is to try to understand in the most general terms, how
individuals make mathematical sense: that is, to try to exploit the richness and
complexity of mathematical activity in situ in order to analyse mathematical activity
per se. Our method has been to focus attention on the kinds of problems professionals
actually solve, in order to try to make visible a range of activities that can usefully be
described as mathematical, in terms of their participation at least at some level
in the manipulation and interpretation of quantitative and spatial data and
relationships (see Noss et al., 1998; Pozzi et al., 1998).

As our research progressed, we became aware that it was possible to make a
provisional epistemological classification of some of the activities we were
observing, and that it made sense to analyse them in terms of what they represented
from our mathematical point of view. This analysis could then be synthesised and
compared with the practitioner viewpoint. In this paper, we report the outcome of one
such mathematical classification, consisting of the interpretation of statistical data on
the part of a group of paediatric nurses.

There are numerous findings which appear to illustrate how people's intuitions often
seem to stand in the way of developing statistical notions. Shaughnessy (1992)
provides a comprehensive overview of this research. With regard to the mean and
other measures of central tendency, there appears to be an incompleteness in what
people believe, a perceived lack of balance between computational and conceptual

I The workplaces studied involved investment bankers, airline pilots and (the subject of this paper)
paediatric nurses. We acknowledge the support of the Economic and Social Research Council, UK,
Grant No. 8022250004. The final report of the project Towards a Mathematical Orientation can
be found at www.ioe.ac.uk/rnoss /tmo /.
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understanding, and little understanding of why a mean should be calculated. As far as
the understanding of variation is concerned, Shaughnessy notes that: 'people
inappropriately believe there is no random variability in the "real world"' (p. 478).
This is not only a problem for novices: for example, Batanero et al (1994) reported
that a widespread misconception amongst university students was a deterministic
conception of association; students do not admit exceptions to the existence of a
relationship between variables and if they find any reject the idea that there is a
relationship.

While providing a wealth of information, these studies can provide only a limited
number of starting points for our research, as they fail to acknowledge the range of
sense-making devices and strategies which people actually use in practice to describe,
for example, randomness and variation. Neither do they identify important
continuities with a view to understanding better how functional knowledge may be
extended 'beyond its productive range of applications' (Smith, diSessa and
Roschelle, 1993 p. 152).

It might be, of course, that there is a simple discontinuity between taught/school and
intuitive/practical knowledge. Mokros and Russell (1995), in a study of fourth and
eighth graders, concluded that some students 'were concerned with procedures, not
with meaning. For them, average means a series of steps involving addition and
division' (ibid p.35). The authors ascribe this procedural strategy to a failure of
reification and it is here that they locate the students' difficulties.

There is much in this argument that merits discussion, and we cannot do it justice
here2. It does, at least, propose some rationale for students' misunderstandings. But if
the reification hypothesis makes sense, we ought observe process-oriented strategies
characterising everyday thinking about data, not just school students. In working
situations, people mobilise all kinds of meanings for manipulating and making sense
of data, and this ought to throw light on the construction of specifically mathematical

meanings.

The Nursing Studies

The practice of nursing involves making sense of a wide range of quantitative
information through the measurement, recording and interpretation of patient
data.This clinical experience would suggest that nurses will have well-formed
intuitions about a wide range of statistical ideas, although what these intuitions are
and how they can be developed has not been researched in any depth. Moreover,
analysis of texts and interviews with nurses suggest that only measurement and
recording are regarded as obviously mathematical, while interpretation is mostly seen

in terms of clinical knowledge alone. The question for research was this: what
meanings do nurses construct as they interpret data within their day-to-day practice?

2 A full version of this paper is in press by Pozzi, Hoy les and Noss.
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We gathered data on this issue in three ways: ethnographic observation on the ward,
clinical interviews and questionnaires, and a short teaching experiment. We will
outline our findings in an abbreviated and non-chronological form, in order to
highlight the central issues, reserving detailed data for our presentation. We begin
with an interesting insight from our teaching experiment.

The teaching experiment: We recruited for our teaching experiment 28 paediatric
nurses who were enrolled on a research awareness course as part of their professional
development. We aimed to explore the relationship between nurses' and
`mathematical' views of average and variation, in the context of teaching a range of
statistical modelling ideas using data analysis software (we used TabletopTM)3. The
teaching experiment involved a combination of computer-based hands-on work and
whole-class presentations, during which different ways of analysing data were
introduced, alongside discussion of the substantive nursing issues involved.

We asked the nurses to consider explicitly the relationship between age and blood
pressure, and to write down or illustrate their hypotheses. Suppressing all details, a
fascinating phenomenon occurred. While most quickly opted to present the data as a
scattergram of blood pressure against age their reaction to this graph was as
surprising as it was puzzling. Given their practical and theoretical knowledge
regarding the relationship between BP and age, we believed that the group would be

prone to a high degree of confirmation bias, i.e. finding a relationship of some
description regardless of how it was represented on the computer. Instead, many
found it difficult to see any relationship at all in the scattergram and here was the

surprise decided there could be none after all.

It seemed clear that the nurses' judgements were influenced by three main factors.
Firstly, the high variation in the blood pressure data was a hindrance to seeing any
relationship and obscured the identification of any trend; i.e. variation and
relationship were somehow antithetical. Secondly, the rise in the data, in as much as
one could be seen, struck many as involving a slope too gentle to possibly indicate a
relationship that was so important that it stood as an a priori assumption of nursing
knowledge, i.e. important relationships should have impressive-looking gradients.
Thirdly, the nurses could explain the variation on the basis of their practical
knowledge. i.e. they were able to reiterate substantive reasons for differences in
blood pressure for particular age-groups (lifestyle, health and other physiological
factors). Some of the extreme data points were of particular interest, not from the
point of view of variation from a trend but because they indicated to the nurses that
the data were unreliable. As one nurse put it, 'this patient should be dead!'.

These three factors together in part predictable from the literature, in part more
specific to nursing meant that the nurses tended to focus on variation at the

3 The TabletopTM (TERC Inc.) is a database with an appealing graphical interface, which allows
students to overcome unfamiliarity with the software quickly.
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expense of the relationship. At this point, most of the nurses had reached an impasse,
so we prompted them to model the data using the other tools available. Many split the
data into age groups, finding the mean blood pressure for each group a familiar
number to all the nurses. This introduction of central tendency allowed many nurses,
to our surprise, to reaffirm what they believed but had previously rejected: i.e. that
BP did indeed increase with age! The use of the average enabled them to push the
variation in the data into the background, as they took on board the increments in the
means from the youngest age group to the oldest.

What was it that changed in the nurses' thinking which allowed them to reach this
reconciliation? Of course the tools mediated the ways in which the data were
conceived to divide the data into quartiles, to calculate the means clearly
played significant roles. This tool-mediation served as an essential aid in clarifying
how the nurses' views developed, and just how their practical knowledge of the
average BP of an age group could be effectively mobilised. But to illuminate the
puzzle further, we needed to look more closely at the ways in which statistical
concepts were actually employed in practice by the nurses on the ward. Accordingly,
we now turn to the ethnographic study and the insights we derived from analysing
statistically-based ideas as they arose in situ.

The interviews and the ethnography: We reconstructed our ethnographic data into a
set of episodes each describing a nursing-mathematics activity. While the episodes
painted a broad picture of routine practice, we also identified and analysed a number
of breakdown episodes, which involved a rupture in the normal routines. On these
occasions, activities which were normally characterised by unproblematic, routine
action were replaced by conflict, disagreement and doubt, which resulted in
spontaneous explanations and considerably more articulated (and therefore explicit)
reasoning and problem-solving strategies. Although these breakdowns were rare, they
provided a rich source of information about participants' views and the knowledge
they mobilised in order to substantiate them. Apart from providing insights as they
occurred, we reconstructed these episodes and used them as a basis for clinical
interviews with a subset of nurses.

One such episode involved the interpretation of blood pressure data plotted on a
standard nursing chart. We asked the nurses to find the (deliberately vaguely stated)
`average' of a set of blood pressure data plotted on a BP chart. Only one nurse used
the mean4. One mentioned it while adopting another strategy, while reference to
either the median or mode was never explicit although both were used implicitly.
The nurses used a variety of strategies, almost all of which would be judged 'wrong'
on the straightforward criteria of general mathematical correctness, e.g. 'I looked at
the chart and judged which was the middle range' or 'At a glance, all the systolic
pressures are on or around 110 mm Hg'. But they made perfect sense and were

4 To use any standard calculational technique would have been quite difficult, given the way the
data were displayed.
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correct as estimates of the child's blood pressure a kind of everyday average. The
graph presented the nurses with a familiar situation in which the sense of average was
unambiguous, and for which the idea of representativeness posed no difficulty
because of the naturally symmetrical distribution of hourly BP readings.

In order to make sense of the nurses' strategies, we need to give a more detailed
account of the practice underlying them, derived from our ethnographic observations
on the wards. When a nurse takes charge of a patient, she immediately establishes his
or her individual baseline. For example, nurses will attempt to answer questions such
as 'what is this patient's normal, stable blood pressure?' This means that nurses have
a tendency to take less account of the whole body of data when looking at average,
and instead focus on clusters of data around the same value especially if they think
the patient was stable or settled around the time of these readings. As all patients
have their own individual physiology, their profile of vital signs when they are stable
is in some sense unique to them. Establishing a patient's normal profile of vital signs
thus enables a nurse to judge when data deviate from the normal. A further feature of
this process is that nurses develop an awareness of non-critical factors that lead to
unusual readings (e.g. instrument error, patient over-activity) in order to distinguish
them from significant changes in the patient's condition.

The notion of an individual baseline is not the only organising idea in nurses'
judgements of average, since they must also take account of population norms. As we
have reported, nurses 'know' that blood pressure is related to age, and can usually
spontaneously quote a number for the average BP for a given age. But we found that
nurses will only use it when it makes sense in terms of clinical practice. For example,
the nurses were sceptical of the meaning of an overall population average for a young
child and some refused to acknowledge that it existed! Thus the variability of the
measures meant there was no average something which makes no sense
mathematically but which makes sense for the nurses.

On one level, these are completely understandable responses. The average blood
pressure for an individual child obviously depends on whether the child was
premature, its size and so on. Yet these kinds of considerations are, of course,
included in the notion of average indeed, it is the variability in population data
which makes the statistic necessary. Nurses have difficulties because of their work of
considering an average independently of the individual as it is the individual who is
the focus of her care. The fact that 'average' necessarily masks individuality like
any statistic is therefore seen as problematic. For a nurse, it is the variation that is
crucial, and she is prepared to accept the notion of average provided it is individually
mediated.

Discussion

We begin with a straightforward assertion: no description of the nurses' view of
average and variation is adequately characterised in terms of misconceptions of the
official, mathematical definitions. The nurses' meanings were different from the
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mathematician's, interwoven with meanings from their practice, and efficient and
effective at work.

Nor does it make sense to describe the nurses' strategies as, for example, failing to
have reified the notion of average. On the contrary, if reification means anything, it
means that an individual has made sufficiently strong links between elements of a
concept to ensure its functionality: and as we have seen, this certainly applied to the
nurses' notion of average.

What, then, is the status of the nurses' knowledge? The notion of nursing average
was, as we have seen, on the one hand a description of the normal state of a patient
over time, and on the other, a data point for a population a measure of location
unrelated to variability. In relation to the first aspect, the average provides a baseline

for example, an individual's blood pressure when it is stable. Here the nursing
average works like a mathematical average so it can be seen as another example of
what we have termed a situated abstraction (Noss and Hoy les, 1996). It is well
articulated and abstract, but abstracted within rather than away from the nursing
setting. It retains crucial elements of the setting in the way it is conceptualised which
define the limits of its general applicability. But as with a mathematical average, the
nursing average is indeed representative of the data as a whole and is recognised as
such by nurses, because of the small variability in the data and the approximately
symmetrical distribution. Additionally, in this context, outliers really must be
explained as physical 'extraneous variables' or functions of a medical condition.

The population view of an average differs considerably. Contrasting data on an
individual with the population from which the individual is drawn is a complex issue
from a mathematical perspective. Yet our research showed that the readings taken by

nurses, or data which are interpreted by them, take account of population norms in

ways which are finely tuned to nursing practice.

When nurses are acting in their familiar situations of monitoring blood pressure over

time, they coordinate these different meanings of average to produce functionality.
They use the notion of average to reason about their patients' condition, to relate the

state of their patient to others in a virtual and deliberately ill-defined population (e.g.

an overweight nearly 7 year-old), to communicate information to each other and to

doctors, and to make rounded judgements concerning what action to take. Thus,
significant background factors in blood pressure readings (e.g. age, sex, obesity,
smoking) have to be taken into account by nurses when they interpret daily BP
readings, and consider the condition and treatment of patients. Variation has to be
explained. Not surprisingly, this practice spilled over into the nurses' answers in the
questionnaire for the average blood pressure of a particular age group.

How do these insights of 'statistics on the ward' help us understand the nurses'
responses in the teaching experiment? Recall that they wanted to explain away

variation and found variation and relationship antithetical, while we wanted to

introduce them to a fundamental principle of statistical modelling: that data is made
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up of an explanatory model and random or unexplained variation around this model.
On first reading of the nurses' responses, it seemed that their 'intuitions' were falling
foul of this important statistical principle, and were based on a deterministic
conception of association. Like the university students in the study by Batanero et al
(1994), it appeared that they were using the many exceptions (or variations) to the
blood pressure-age relationship to reject the idea that there was a relationship at all.
Or, to restate the problem in the terms used by Rubin and Rosebery (1990), there
seemed to be a confusion between the variables in the model and extraneous
variables, which meant that presence of the latter made conclusions about any
relationships in the model less possible.

Yet our study indicates that the roots of the responses might be rather different: the
`transfer' of the successful strategies of dealing with data over time on the ward to the
consideration of population datasets which then had to be debugged. We use the
word 'transfer' with due caution, as we are well aware of the pitfalls. Yet it seems
that something like transfer is involved here. If the nurses' appreciation of average is
situated i.e. ward practice dictates that explanation is required for significant
variation, while smooth plateaux in data suggest normality and stability and require
no explanation then we may well ask how this can connect with other 'situations',
and in particular, mathematics, where the situation is more or less reversed.

In Noss and Hoy les (1996), we outline the idea of webbing, as a notion with which to
make sense of the ways in which people connect together pieces of their conceptual
and physical world to create understandings. The crucial idea is that individuals'
sense of situation and the tools they have to hand, provides support for making
meaning, and also the means for reconstructing these pieces in new ways (or
developing new knowledge pieces).

We do not want to rehearse our earlier arguments, but rather propose that our current
findings throw some light on the cul-de-sac in which the situated cognition
perspective seems to leave mathematics. The point is that the nurses had made the
idea of average an object, defined in relation to their connection with other objects,
and their functionality within the cultural domain in which they are used. What we
see in the teaching experiment is how the mathematical domain could be brought into
contact with the nursing domain, and how different tools (in our case, including the
technological tools of a particular database program) could catalyse this contact, by
exploiting the fact that the nurses could make sense of the new (mathematical) world
by using the one tool which they used in their day-to-day practice the mean blood
pressure for an age group. It was this notion that helped them to see the trend in the
variability and recapture what they knew of a relationship between age and blood
pressure.

Mathematical objects are defined in relation to other objects, typically other
mathematical objects. For the learner or practitioner, there is not necessarily any
privileged status for these objects and as we have seen, in nursing epistemology,



the privileged elements of mathematical epistemology simply do not make sense
compared with the notion of nursing average.
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THE RESEARCH OF IDEAS OF PROBABILITY IN THE
ELEMENTARY LEVEL OF EDUCATION

Ana-Maria Ojeda S.
Cinvestav del IPN, Mexico; University of Nottingham, U.K.

Abstract. Ideas of probability have been investigated in Mexican elementary
education. Two examples are given to illustrate the way in which epistemo-
logical aspects are considered in this research. Teaching experiments with 6-
7 year old children suggest that pupils' interpretations of the tasks they were
asked about may result in answers which do not inform on their idea of
chance, since they tend not to focus on it. Additionally, by using question-
naires and clinical interviews with 10-15 year old children, it wasfound that
correct performance in arithmetic does not assure that they can cope with
questions about probability for which a quantification is required

Introduction

A research project interested in students' understanding of fundamental ideas of

probability in the Mexican system of education has been carried out for five years.

The project, which ranges over all the educational levels, considers epistemological,

psychological and social aspects of the ideas of stochastics, in order to give an ac-

count of problems arising either from the teaching or learning of these ideas, as well

as of their possible answers. The work we present here concerns only with the

epistemological aspect, from the ontogenetical point of view, for the elementary

mathematical education (primary and secondary school).

In this respect, one of the issues we have been investigating is the suitability

of ways in which the ideas of probability have been introduced, nowadays appar-

ently everywhere, in the educational elementary level. More specifically, we claim

that the lack of consideration of factors influencing children's interpretation of the

tasks proposed to them when ideas of probability are involved may mislead propos-

als for the curriculum of probability. We exemplify this with two of the studies

which our project has undertaken; one concerns with the absence of the idea of

chance in the Mexican syllabuses for the 6-7 year old pupils (Gurrola, 1998). The

second study considers the role of arithmetic concepts in 10-15 year old pupils' un-

derstanding of probability (Perrusquia, 1998).

izs



The problem and theoretical considerations

The delay of educational research in stochastics with respect to that research in

other ideas of mathematics has led to call on results from this latter and from re-

search on developmental psychology about the idea of chance (Piaget & Inhelder,

1975), for probability to be included in the mathematics curriculum. However, these

views leave aside some aspects about children's interpretations of random situa-

tions, which seem to be important for the process of teaching.

Among the consequences of this, there is that probability is not considered in

Mexico for kindergarten (5 year old children) nor for the first two grades of primary

school, because after Piaget's model for the development of intelligence, children

are uncapable to understand chance at stages previous to the stage of concrete op-

erations (from 7 or 8 years of age). However, research in education with younger

children (Falk et al., 1980) suggests that the idea of probability can be introduced

even for kindergarten pupils. On the other hand, children's performances when us-

ing other mathematical concepts to answer questions about probability, such as ra-

tional number, may not reflect their understanding of random situations, as prob-

ability demands a way of thinking that differs from the one used to face determinis-

tic situations (Fischbein, 1975). Hence, Garfield and Ahlgren's allusion to the defi-

ciencies in handling fractions as one of the difficulties for children to understand

probability (1988) may result in delays for the introduction of probability or in

waste of ways to profit on children's potential to approach this idea.

We are concerned here with the problem of characterizing children's under-

standing of the ideas of chance and probability specifically for educational pur-

poses. More precisely, we are interested in having information from children's idea

of chance and with what their quantifying ofprobability may reveal for considering

their teaching in elementary education.

The problem has been investigated by referring to models of thinking pro-

posed by other researchers. In particular, we refer to the origin of the idea of chance

in children after Piaget & Inhelder's work for the study with young children without

4 - 2
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instruction in probability. The study on the quantification of probability with older

children was framed in Kieren's proposition of constructs for rational number

(1988), in particular the constructs in the basic stage.

The studies and the methods used

The methods used in our research appeal to the aim pursued for education. Conse-

quently, after having general data from the children who partiCipated in our studies,

interviews in depth with selected pupils took place.

The idea of chance in young children. Gurrola (1998) sought information

about the convenience of introducing the idea of chance for 6-7 year old primary

children. Accordingly, six children of this school age were asked about ideas of

probability within a teaching experiment protocol (Glasersfeld, 1983). When using

this method, a clinical interview is prolonged until evidence is obtained from the

interviewed child making clear his/her understanding of the situation he/she is

asked about.

A device was used to question children about random mixture similar to the

one Piaget and Inhelder used (1975). It consisted of a rectangular tray which can be

made to swing up and down by means of a fulcrum fixed at its base. Twelve equally

sized marbles, six white and six green, can be arranged on both sides of a divider

that the tray has at the middle of one of its sides, before letting them free by bal-

ancing the tray (see Figure 1), what we did with no intention for the marbles to mix

to the least extent from each seesaw movement, as Piaget and Inhelder did. Ac-

cording to these authors, children of the age considered here do not anticipate the

irreversibility involved in randoth mixture; instead, they try to find any kind of or-

der on the grounds of common properties of the elements or of their original al.-

rangement. As a result, they are not able to start understanding what chance is.

Nevertheless, among the six children we interviewed, four foresaw the mix-

ture of the marbles when balancing the tray, that is, a different position from the one

they had originally; the other two children proposed the marbles arriving at the

same position they had at the start, but finished the teaching experiment stating that

4 - 3
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different positions should be ex-
of.o

o
o

pected. They realised that, as a conse-
o

o quence of the balancing of the tray,

14.5 cm
well take place. Additionally, during

24 cm the questioning, it arose that when
32 cm

interpreting the whole activity, some

Figure 1 children may not focus on chance,

but rather on trying to overcome it.

That is, they may interpret the situation as a task to control the movement of the

tray so to obtain, after each swinging, the marbles arranged as originally. This was

the case of Almendra (7 years, 9 months).

In the first arrangement, the twelve marbles were shown to the girl separated

by colour at both sides of the divider (in the following transcripts, E stands for in-

terviewer, A for Almendra):

collisions between the marbles may

E What do you think is going to happen if we balance the tray like this?

A One [marble] can go here, another here and another here [she describes lines towards the

opposite side of the tray but in the same direction]. But without crossing here [as she points

to the middle of the tray extending an imaginary line stemming from the divider]: these are

green and these are white.

After one movement of the tray, the girl sees that some marbles have changed their

position. Before each of the subsequent trials, she arranged the marbles as they were

presented to her at first. Apparently, she does not conceive the irreversibility of the

mixture, but she states she does not know how to prevent the changing of the places

between the marbles, and continues referring to the role of the divider:

A This is meant to keep them [the marbles] at their place.

Therefore, the divider was removed from the tray and the device was presented to

her again showing the marbles mixed, i.e. not obviously arranged by colour (p. 99):

E Do you think the greens will go back to their place and the whites to theirs?

A No.
E No? Why?
A Because the movement makes them change their places.

4 :.4
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She even realises that the collisions between the marbles contribute to the mixture.

The teaching experiment cases examined in Gurrola's research suggest that,

in fact, young children could be faced with the idea of chance by posing to them

appropriate situations and questions, so they could focus on features of that idea,

such as variation in the occurrence of results and the possibility of different ar-

rangements.

Arithmetical and probabilistic thinking. In order to analyse what children's

use of numbers may reveal about their understanding of probability, Perrusquia

(1998) aimed at obtaining information from 10-15 year old pupils (5th and 6th grades

of primary school, 1st and 2nd grades of secondary school) when they assign frac-

tional numbers to the likelihood of an event. After Kieren's work (1988), under-

standing rational numbers is shown when these numbers are used according to the

different interpretations for which they are meant.

This qualitative oriented study had two phases. The first one consisted of a

general inquiry involving 145 pupils who answered a questionnaire. The second

phase was carried out with eight children chosen from the sample in the first phase.

The questionnaire used in the first phase was designed in an arithmetic ver-

sion and in a probabilistic version, each of which included ten problems, two for

each of the five basic interpretations of rational number (part-whole, measure, quo-

tient, operator and ratio (Kieren, 1988)). The questions posed in the probabilistic

version referred to the same situations posed in the arithmetic version but now in-

volving chance and to number assignation to the outcome given in the answer.

These questions required the child to identify events, to express the probability of

events from a partition of the sample space, independent events, and to decide

which of two random situations offered higher probability for a given event. Ex-

amples of the questions posed are shown in Table 1.

Pupils answered the arithmetic version of the questionnaire a week before

they dealt with the probabilistic version.
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Table I. Examples of questions posed in the two versions of the questionnaire.

Arithmetic version , Probability version

9. Some marbles are con-
tained in two bags: in the
first, there are twelve, eight
are white and four are black.
In the second bag, there are
twenty marbles, fifteen are
white and five are black
What fraction of marbles in
each bag are black?

(Ratio construct)
First bag

0.00030
0 0

Second bag

00
Oe°

° 0
°96q, 0

`100

9. Some marbles are con-
tained in two bags: in the
first, there are twelve, eight
are white and four are black
In the second bag, there are
twenty marbles, fifteen are
white and five are black
Without seeing, I want to
draw a black marble. What
bag should be chosen?

Which bag has the biggest
fraction of black marbles? According to the bag you

chose, what is the fraction of
black marbles for that bag?

10. Balls are let free in this
maze. If one hundred and
twenty are introduced at A,
what fraction of the whole lot
would come out through each
of the exits D, E and F?

D

(Operator

B

D

construct)

A

E

r

1'

10. Balls are let free in this
maze. If one hundred and
twenty are introduced at A,
what exit, D, E or F do you
think more balls will come
out?

What fraction of the whole lot
of balls do you think will
come out through the exit you
chose?

E
F

The youngest pupils (27 children in the 5th grade of primary school) obtained

the lowest rate of incorrect answers in the probability version (85%) of the ratio

construct questions (the most abstract of the constructs we considered). For each of

the school grades considered here, there was at least one pupil showing poor per-

formance in fractions and a good performance in probability questions (e.g. Al-

berto, aged 10, 6.2% and 70.5%, respectively).

For the second phase of this research, the highest rates of correct answers

were taken as the reference to choose two pupils from each school grade: one hav-

ing the highest score in the arithmetic version of the questionnaire (four in all), the

other in the probabilistic version (four in all). These eight subjects were interviewed

using a protocol of semi-structured questions based on their answers given to the
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probabilistic version.

According to the results, the children from the arithmetic group gave answers

in the interview without referring to chance. Although their handling of fractions

was correct, they showed a deterministic or linear approach to the questions posed.

On the other hand, the pupils of the probability group accepted or even proposed

the variation in the occurrence of possible events; they did not refer to a pattern to

explain the probability they assigned to events. Only the oldest of these pupils (2nd

secondary grade) considered equiprobability. As an instance, we present some tran-

scripts for question 10 (in Table 1):

Question 10. Probability group (pp. 127-128)

E If we get 60 balls in A, which exit is more likely to have more balls come out?
G Twenty or thirty?
E 60.
G Then there would be 30 [pointing at D], saying twenty [pointing at F] and 10 [pointing at E];

or thirty here [D], twenty this side [F] and ten here [E]. It could vary a lot.

Question 10. Arithmetic group (p. 198)

E If we get 60 balls in A, what exit is more likely to have more balls coming out?
An E
E What part of the sixty [will go out through E]?
An Thirty over sixty [she writes "E 30/60 "].
E What part of the sixty will be out through the less likely exits?
An [She writes "D 15/60" and "F 15/60"].

The pupils of the probability group did not show a consistent performance in the

arithmetic version. However, in the probability version, three of these four children

answered correctly the questions requiring the ratio construct (for instance, question

9 in Table 1):

Question 9. Probability group (pp. 172-173)

E From what bag is it less likely to draw a black marble?
D Black ... from the second ... Cause ... in the first there are four and in the second five; then it

increases but also there are fifteen whites in the second, and in the first there are eight; that
difference of seven whites reduces chance.

Question 9. Arithmetic group (pp. 200-201)

E Let's consider two bags, the first having 6 whites and 12 blacks, and the second one white
and 5 blacks. From what bag is it more likely to draw a black marble from?

An The first ... Because there are more blacks.



E the first has S whites and 3 blacks , and the second three whites and I black?

An The first one ... Because there are more whites.

The 'probability' pupils interpreted the random situations from a frequential

approach more often than the children from the arithmetic group, or quantified by

means of percentages.

Remarks

The results obtained suggest the convenience of introducing didactical activities for

teaching probability at elementary education by giving priority to a frequential fo-

cus as a natural approach pupils have to chance. Preferences and interpretations

young children make of the tasks proposed when these involve chance should not

be neglected as the aim pursued may not be attained. However, an inquiry in depth

is required to know about the results of children's understanding of random situa-

tions when the idea of chance is introduced into the classroom environment by

means of a didactical activity. Finally, the fact that different basic interpretations of

fractions can be required when facing questions about probability, offer an opportu-

nity for the child to give sense to the use of these numbers by focusing on the study

of chance.
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An Analysis of Individual Students' Views of Mathematics and its Uses: the
Influence of Academic Teaching and Other Social Contexts

Tasos Patronis (Department of Mathematics, University of Patras, Greece)

This paper presents, analyses, interprets three long interviews with Greek students of
mathematics and physics, as case studies of individual students ' views of mathematics and
its uses in various social contexts, with an attempt to investigate the influence of these
contexts and in particular the influence of academic teaching on students thought and
perspectives. As a framework of analysis of students views, the interrelation is considered
between the notions of a context representation and of a scenario, which leads to a
classification of the views presented into the following scenarios: i) a scenario of
«passiveness», in which the individual does not essentially act of all; ii) a scenario of «self:
objectivization» in which the involvement of the selfas a subject of reflection is ignored;
and iii) a scenario of social construction of mathematical meaning.

Questions about the nature and applicability of mathematics are rarely discussed in
school or in university courses. Students' perceptions of such questions may be considered
as an important component of their beliefs about mathematics and science in general, and it
is well known that such beliefs affect students' decisions and their mathematical
performance as well (see e.g. Garofalo and Lester, 1985; Borasi, 1990).

In accordance with Paul Cobb's remarks on the close relationship between contexts,
goals and beliefs in learning mathematics (Cobb, 1986), the question here arises, to what
extent the students' epistemic views of mathematics and its uses depend: a) on the context
of teaching in academic institutions and related ideology; and b) on broader contexts related
to various social problems and to the overall goals and intentions of the individuals
themselves.

The research of Ruthven and Coe (1994) had more or less similar aims to the present
one. In that research a structured questionnaire was used, which made it possible (with the
help of factorial analysis) to derive a classification of students' beliefs between certain
central factors. However, as the authors themselves say, (their findings suggest that) «there
is no simple systematic relationship between beliefs about the nature of mathematical
knowledge and activity and about the teaching and learning of mathematics». This suggests
that qualitative methods are necessary (in addition to quantitative ones), for investigations in
the sociology and/or social psychology of mathematics education, in order that individual
students' views are explored and analyzed in some more depth.

LOCATION, METHOD AND OBJECTIVE OF THE RESEARCH

A research with long and minimally structured, but taped interviews has been
carried out, in Patras University, of which three individual cases will be presented here.

The compulsory core of content in the Mathematics Department of Patras University
consists of 16 courses, 10 of which are traditional courses in Pure Mathematics (Algebra,
Analysis and Geometry). These courses, as well as some «advanced» optional courses such
as e.g. Topology, Measure Theory and Functional Analysis, begin by a set of axioms and
abstract definitions. The so-called «axiomatic foundation» of real numbers gives students a



good taste of formalism from the very beginning of their studies. The situation in the Physics
Department is similar in what concerns the teaching of mathematics and mathematical
physics.

There are two interviews with students of mathematics and one with a student of
physics. These subjects need not be considered as representative of any students' population,
but simply as interesting cases of students with particular views and perspectives. It had
been decided from the beginning that the research would be restricted to female subjects of
about the same age (22-24 years) in order to have some uniformity and facilitate
comparative analysis of the responses.

The main objective of these interviews was to perceive in what extent formal
teaching in academic institutions as the above departments has an influence on the
formation of students' views. Another related objective was to investigate the influence of
other (non-institutional) social contexts. Thus, although discussion varied in each individual
case, there was a focus in all interviews on two main questions:

Do you think that mathematical relations and operations express anything about the real
world?
Do you believe that mathematics should be used in building models for social needs?

In addition, each student was asked about her total experience with mathematics
during the school and university period, and about her future plans. In this way
supplementary data was collected, which was necessary for putting the subjects' views in a
broader perspective in connection to their overall interests.

THE SUBJECTS' STORIES

The method of presentation followed here is similar to that of Byrd (1982), who
investigated some deep reasons for students' difficulty with mathematics. In order to
understand better the views and representations of the subjects on such «charged» and
subjective matters we need first to write in short a «story» for each individual case.

The subjects' names used below are not the real ones.

1. Hypatia, graduate of mathematics

Hypatia had graduated just before the interview. Hypatia's story is typical of many
young people in Greece who come to study mathematics. Her father had not finished the
primary school, and yet he was able to solve practical arithmetical problems that were
difficult for her when she was a primary school pupil. Later she used equations in order to
solve such problems, while it was always difficult for her to follow her father's way of
thinking. When Hypatia entered the secondary school, she asked for a private tutor in
mathematics, as she was not feeling «safe», because her parents were not able to help her.
With her tutor's help she found school mathematics very easy.

Mathematics taught at the University has «enlarged» Hypatia's views and improved
her «inner life». She believes that «freedom in thinking» is possible only in mathematics,
which permits the scientist to «create new entities» and find new solutions to problems. But
her possibilities for a job are now reduced to private tutoring, since most graduates of
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mathematics remain unemployed in Greece. Hypatia is afraid that she could «humiliate»
mathematics by connecting it with earning money.

Concerning mathematical relations and operations Hypatia thinks that these may not
have a direct connection with reality:

There are many mathematical operations, relations and formulas that directly
express reality - and this can be perceived at a first glance. But there are other
notions, as for example the negative numbers, which we cannot immediately
say «express» something real, although we can think of sense (orientation) as a
kind of physical reality expressed by those numbers.

Concerning model building for social needs, Hypatia wonders whether mathematics
could help people eliminate classes and bring equality and justice in human society, but the
idea of using mathematics seems to bother her. Mathematics is not an instrument for a
rational organization of society; «rationalism exists within mathematics itselfi>. When she
was asked if mathematics would necessarily be useful just because of its rational character,
Hypatia reflected a little. «It depends», she said, «on the way it is used; it may be good for
society or it may nob>. In human society there is, according to Hypatia, a coexisting of the
rational and the irrational, which makes doubtful the successful application of
mathematical models. Perhaps, the «harmony» existing in mathematics should make
possible a «harmonic solution» of social problems without conflict. But it is in the
philosophy of mathematics, not in its logistic or technical part, that one must search for this
spirit; thus athe vulgar, uncultivated men of power, who use mathematical techniques and
calculations in their business, have nothing to do with true mathematics, since calculations
and techniques «do not represent the nature of mathematics».

But how is it possible that a mathematical model, which is a rational and «harmonic»
construction, lead sometimes to absurd conclusions when applied to human beings? Hypatia
reflected on this question and after a while replied that

...there are unpredictable factors which are very serious, because when we try
to comprise many things in large categories, some special cases escape, so that
we lose them in generality - especially when we refer to mean values. For
example, by using the normal distribution we miss all special interesting cases
which are hidden at the extreme parts of the curve. This happens in particular
in intelligence tests and in the evaluation of students' performance.

2. Sophia, final year student of mathematics

Sophia is the daughter of a shop keeper. Her experiences with mathematics in the
primary school were «rather superficial, as is the case with a lot of children». However, the
knowledge and abilities she developed in this «mechanistic war, as she said, were useful in
her subsequent career and gave her a feeling of confidence. During the Gymnasium (lower
secondary school from 13 to 15 years) she decided to be a «good pupil», and her
mathematics teachers gave her a kind of psychological support.

At the moment of the interview Sophia considers mathematics in a totally different
way. She tries «to get deepen> into everything she reads, and «to grasp the meaning, the
applications and connections with reality».

I try to analyze everything... But sometimes I am not satisfied with my
explanations. For example, when I make the correspondence of real
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numbers to concrete things, I wonder if this correspondence could be
avoided. It is necessary to speak of all these things?

She explains the meaning of numbers and their operations on the basis of human
communication.

When we say to someone «yesterday I saw five men...», this expression
gives him an image of what we have in our mind.

She says that in the case of number we have an immediate connection with the real
world, while in other cases we have an «internal» act of generalization, which seeks to
integrate many things to one in our mind. She mentions as an example of this kind of
mathematical abstraction the addition of equivalence classes, but she does not seem able to
produce a relevant example of such an algebraic construction (as for instance is the case cf
addition of vectors in the plane). Sophia concludes that the purpose of mathematical science

is...
to enlarge our view, to reduce the situation to a more general level, at which
all things can be examined in a unique way and under a general point of
view.

Concerning mathematical models in social contexts Sophia says:
First, we could construct classes... not because I see it like a purely
mathematical abstraction, but because one of the functions of human mind is
to classify objects in certain categories; for instance the term «man»
comprises certain beings with some known properties. When we have to
deal with different things, e.g. a man, an animal, a chair etc., then we use
another word to express all these things together; we may say «I have these
things» or «I have these living organisms» (speaking of men and animals).

What I mean by this is that we always have to do with classes of things.
Thus mathematics interprets and analyses the way in which our mind

functions.
Moreover,

Generally speaking, the whole world can be considered as a set of classes.

Even if primarily we have distinction and differentiation, we always can find

similarities between different objects.

3. Vangelio, final year student of physics

Vangelio's parents were farmers, who had emigrated for some years to Germany.

She went to a rural school but she chose her field of study very early. Possibly the main

reason for this was her teacher of physics, from whom she says that she also learned
mathematics.

She did not like practical arithmetic in primary school and she never memorized
rules for solving problems; she always wanted to understand the task by herself. She never

had a private tutor and disliked tricky and senseless exercises. When she entered the
secondary school she had difficulties with equations and functions in mathematics courses,
because she could not grasp the meaning of these notions from the irrelevant examples of

the textbook and she refused to memorize rules and algorithms that she could not
understand. Later, at the age of 15-16 years, she learned to solve equations of the first

degree in the context of problems of physics:
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I learned from my teacher of physics how to solve equations very simply. I
met these things in practical problems about velocity, time etc. Given two
quantities how to find a third. I learned to solve first degree equations at the
first class of the Lyceum (tenth grade).

Vangelio said that she liked much to read literature, especially novels «with a social
perspective». In general she liked to learn, she was curious about scientific questions
(especially in physics).

All this changed when Vangelio entered the university. The physics courses seemed
senseless to her.

I come to the first lesson of mechanics and I see only formulas. Derivatives
here and there - while we hadn't comprehended the notion of a derivative in
the Calculus. I couldn't understand the physical meaning of all these
formulas. I left the classroom and I didn't come again.

Vangelio earns her living by private tutoring (like many graduates and final year
students of physics and mathematics in Greece). Mathematics is not so interesting for her
any more. Here is, also, her impression of mathematical research:

(In mathematics) one finds some hole and digs in depth. I am not interested
in this, I like to have a global image of things.

Vangelio thinks that the relation of mathematics to the real world is not immediate,
but is made apparent by the study of natural sciences.

When we look at the real world we don't immediately think of mathematical
formulas with x.y. etc. But... by studying mathematics, physics and other
sciences like that, for a long time, one sees that the real world is indeed
expressed in mathematical quantities... Sometimes I think of a mathematical
relation in connection with real things, as e.g. in the case of the relation s =
v.t between velocity, time and distance in uniform motion; this happens in all
such cases when simple notions are connected together by definitions.

A concept such as that of limit (which is needed for a rigorous definition of
velocity)...

is a human abstraction which corresponds to a real situation. I don't know
whether this concept is «physics» by itself, but surely it corresponds to that
situation. It is like two sets of which is mapped into the other.

Vangelio finds that it is not truly possible to predict human reactions by using a
mathematical model, because there are too many parameters that may affect the result in a
«chaotic» way. The same stimuli do not produce the same responses, she says, this depends
on many other factors. But even if it was possible to predict human behavior by some
special mathematical model, Vangelio should not accept such a perspective.

It is terrible, it is fascism, to predict systematically human behavior by a
mathematical model. It is disgusting. I don't agree at any point with such a
trend of mathematization. Because, first, this trend is not at all accidental;
(these models) are finally used for some people's benefit. If these models
could be really applied, then a man of power would be able, by using them,
to build the worst dictatorship, the worst totalitarian state against other
people.
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ANALYSIS AND INTERPRETATION

Context Representations and Scenarios

In this section a theoretical framework is introduced for the analysis and
interpretation of the subjects' responses. This framework relates the idea of context
representation to that of a scenario, which was introduced by Peacocke (1989) for the case

of representation of a subject's perceptions and primary experiences.
As Evans (1994) says, «a full conception of the context needs to take account of the

relations of power exercised (...) and the material and institutional resources». However, it is

not possible, in our case, to analyze these relations and institutional resources without taking

account of the individuals' own goals and perspectives, as these are influenced, regulated or
prevented by the context. Thus we are led to introduce the idea of a «scenario» as dual, in

some sense, to that of a «context representation». A scenario is a potential sequence of
mental actions, which in general are viewed as permissible within a given context,
according to a particular representation of this context. Conversely, a new representation of

a given context may emerge through the mental actions of a scenario within this context. It
should be emphasized that a scenario is a potential sequence of actions, so that two (or
more) scenarios are possible of the same person acting within the same context.

A Scenario of «Passiveness»

Hypatia's view can be analyzed and interpreted in terms of the interrelation between

scenarios and context representations. The individual stays in a continuous conflict under
the influences of two contexts, which here are the context of teaching of pure mathematics

in academic institutions, on the one hand, and the context of everyday life and practical

needs, on the other. From the moment that Hypatia graduates and must earn her living, she

is forced to solve the conflict in favour of the practical part. The only permissible scenario

then is to leave the things as they are in both contexts and let everything be done without
involving oneself at all. Such a decision can be justified by considering one of the contexts

as «sacred» and the other as «evil» and refusing to «humiliate» the «sacred» one by «using»

it for the purposes of the «evil».
In what concerns mathematical abstraction and generalization as a process within the

context of academic institutions, Sophia also develops a «passive» scenario. Her
representation of this context is similar to that of Hypatia, although her approach seems to

be a little more «formal». But when Sophia says that the purpose of mathematics is «... to

reduce the situation to a more general level, at which all things can be examined in a unique

way and under a general point of view», she does not seem to understand the inner

mathematical needs for such a generalization.

A Scenario of «Self-Objectivization»

I borrow the notion of «self-objectivization» from Habermas (1976). The community

of researchers and students of a reductionist science cannot perceive itself as the subject of

communicative action.
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Sophia's view differs from that the Hypatia in two main aspects: First, although
Sophia partly enters into a «passive» scenario, she does not identify mathematics with
«freedom in thinking», as Hypatia does, but she reduces it to the act of generalization.
Second, Sophia is much more specific than Hypatia is discussing the current meaning of
numbers in everyday life, when she explains this meaning on the basis of «human
communication».

By reducing the world to a set of classes and by identifying mathematical activity as
generalization and classification of objects, which is «one of the functions of human mind»,
Sophia cannot perceive herself and other persons as acting within a social context.

Sophia does not separate mathematics from human and social reality. Mathematics
can shape reality, but its function is like that of a «black box». She thinks of applying
mathematics in this context by using classes for the description of similar things, and she
considers the acts of classification, categorization and identification as natural functions of
the human mind, thus objectivizing these acts in a similar way to that of early materialist
(reductionist) philosophy.

A Scenario of Social Construction of Mathematical Meaning

In the last scenario which will be discussed in this paper, Vangelio operates in a
reflective and constructive way on mathematics taught at school (and partly at the
university). She consciously rejects formalism as a style of presentation and searches for the
physical meaning of mathematics taught. The general education and social experience of
Vangelio are part of her scenario.

Mathematical concepts are considered as «rooted» in a kind of physical «ground».
For example, the meaning of the concept of limit in calculus is constructed by the human
mind on the ground of the physics of motion and corresponds to velocity. While every
mathematical concept is understood in this way (i.e. by a projection into a physical or social
context or domain), the converse is not true, since not all of physical and social reality can or
should be interpreted mathematically.

Compared with the previous scenarios, Vangelio's scenario is a non-passive and a
non-reductionist one. Contrary to idealism, for which mathematics is exploring a reality
limited into the mental sphere, this scenario develops an understanding of mathematical
concepts outside the sphere of ideal mathematical abstractions. Furthermore there is a
rupture with some prevailing context representations such as objectivization of
mathematical activity and rationalization of human society according to science and
mathematics.

CONCLUDING REMARKS

The present study shows that some students are exposed to a strong influence of the
context of academic teaching of (pure) mathematics, while at the same time there is a lack
of deeper understanding. Sophia's scenario, in particular, illustrates the fact that

any de-personalisation of the mathematical process and reification of the
product pushes mathematics back into the absolutist position by
objectivising the 'truths'.

(Burton, 1995, p. 284)



Moreover, it shows that such a de-personalisation and de-contextualisation restricts
the opportunities of the learners for critical reflection upon the present situation of teaching
mathematics in university institutions.

There is a deep assumption about mathematical knowledge, which more or less
penetrates the three scenarios presented in this paper, namely that mathematics has always to
do with stable and predictable facts or events, while human society and human life belong to
the realm of unstable and unpredictable. The teaching of mathematics - at least in Greece -
has done nothing to challenge this assumption, and new mathematical areas such as non-
linear dynamics, complexity theory and fuzzy sets and systems remain out of the university
syllabus, with very few exceptions.

Even focusing on «real» problems and applications to physics and other sciences
does not seem to be a radical alternative to de-contextualised teaching of mathematics, since
the picture of the main stream of mathematical thought still remains distant and
uninteresting to the individual (in Vangelio's words previously quoted in this study,
mathematical research seems like «digging a hole in depth»). Accordingly, new links need
to be established, within the process of education, between mathematical knowledge and
other contexts of social and political activity, which will enable the learners to integrate
mathematics among their own perspectives and interests.
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TO CHECK OR NOT TO CHECK?

(DOES TEACHING A CHECKING METHOD REDUCE THE INCIDENCE
OF THE MULTIPLICATIVE REVERSAL ERROR?)

Duncan Paw ley, University of NSW, Australia

Abstract

This study investigated the hypothesis that including a method of checking the
answer in worked examples teaching translation from sentence to equation imposes
excessive cognitive load, and thus interferes with learning. A measure of cognitive
load (subjective) was used, finding that the level of difficulty of learning the
materials was perceived as significantly higher by the "checking" groups than by the
"no checking" groups. A third teaching method was then tested, introducing the
checking method in the third week of the study, having used the "no checking"
worked examples for the first two weeks. Groups using this "separate introduction of
checking" method had significantly higher mean scores than both "checking"
groups and "no-checking" groups.

Introduction

Bloedy-Vinner (1994, 1995 and 1996) identified defective knowledge of algebraic
language as a cause of reversal errors. Following her work, results have been
presented (Pawley and Cooper, 1997) showing that the use of worked examples
emphasizing understanding of algebraic language had been effective in teaching
translation from sentences to equations. This effectiveness was seen in the significant
reduction in reversal errors made by students studying worked examples as compared
with a control group using the "conventional" method.

This research had involved three experimental groups, all using worked examples, as
well as the control group. In one of the experimental groups no checking method was
included in the worked examples ("no-checking" group), in one the worked examples
included a method of checking by comparison of quantities (Wollman, 1983), and in
the third the worked examples included a method of checking by substitution of
numbers for the variables.

The checking methods had been incorporated on the basis of previous research
showing the importance of conscious checking in this kind of question. Davis (1980,
p 192) suggested that an instructional program should make sure that the students
"are aware of the likelihood of an incorrect choice, and form the habit of checking to
see if they have in fact chosen correctly". Wollman (1983) notes that "experienced
individuals consciously check their results" (p.170), and concludes that the inclusion
of a check that the equation produced is correct is the "crucial step from a
pedagogical point of view". These findings led to the expectation that in the test the
groups studying worked examples which included checking methods would have
higher mean scores than those studying worked examples which did not include
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checking methods. This expectation was not supported. The conclusion of the study
was "Taken singly, only the 'no-checking' method produced a significantly better
result than the 'conventional' method" (Pawley and Cooper, 1997, p. 326). When the
results were analyzed separately for grade 8 and grade 9, further divided into higher
ability and lower ability levels, the only significant difference between any of the
"checking" groups and the corresponding "no-checking" group was in favour of the
"no-checking" group. The mean of the "no-checking" group was_in most cases higher
than that of either the "comparison" or the "substitution" group. (13 of 16 contrasts).
(Pawley and Cooper, 1997, p 324, table 2)

The suggested reason for the lower mean scores of the "checking" groups was the
imposition of a higher cognitive load by the inclusion of the checking method.

The concept of cognitive load is based on the fact that we humans have a limited
working memory, though a very large long-term memory. We can only hold in
working memory approximately seven elements. (Miller, 1956). These elements may
be numbers, rules, mathematical operators, logical connections between other
elements, etc. Cognitive load refers to the demands made on this limited working
memory by the cognitive processing in progress.(Sweller, 1988). Cognitive capacity
is required for learning, i.e., tasks such as recognizing a rule or pattern, formulating
information into a schema, and storing it in long term memory. Overloading the
cognitive capacity by requiring attention to too many elements at one time will

prevent this learning taking place.

Thus the suggestion was that inclusion of the steps of the checking method in the
worked examples increased the number of elements required to be attended to
beyond the level at which the students were able to process the information. This
seemed to be the only explanation of why teaching one group of students to check
would actually make them do worse than another group of students of matched
ability who were given identical instruction with the exception that they were not
taught to check. If this explanation is correct, then teaching the checking method
after the schema for translation had been acquired could not detract from students'
performance. It would either make no difference to students' scores (if checking was
unnecessary with the greater level of understanding obtained through the use of
worked examples) or improve students' scores (if checking was still of importance).

Research Questions

The present study investigated two questions. The first was whether including the
checking method in the worked examples imposed excessive cognitive load,
hindering acquisition of the schema for translation. The second was whether the
introduction of the checking method after the schema for translation had been better
acquired would result improved performance.
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Thus the two hypotheses were:

1. The perceived cognitive load for the "no-checking" group will be significantly
less than for the "checking" group.

2. The mean score of the group taught the checking method subsequent to the
translation schema (the "separate-checking" group) will be significantly higher
than those of the "no-checking" and the "checking" groups.

Method

The subjects were all the students in grade 8 and grade 9 at a secondary school in
Sydney. Each grade was divided into three matched ability groups, based on
mathematics tests in the previous year. Each group was further divided into "higher"
and "lower" ability levels.

All the groups had three acquisition sessions. The introductory material for all groups
was identical. The worked examples studied by all groups in each acquisition session
were identical except for the inclusion of the checking method in those studied by the
appropriate groups.

The first of the matched ability groups was the "no-checking" group. This group used
worked examples with no checking method for all three acquisition sessions.

The second of the matched ability groups was the "checking" group. This group used
worked examples incorporating the "comparison" checking method for all three
acquisition sessions.

The third of the matched ability groups was the "separate-checking" group, which for
two sessions used materials the same as those used by the "no-checking" group, and
in the third session materials the same as those used by the "checking" group in its
third session. This allowed two sessions for acquiring the translation schema without
a checking method.

To measure the cognitive load imposed in learning this material by studying the
worked examples, a subjective measure of mental effort was used. This approach was
taken following use of the method in experiments by Paas, (1992) and Paas and Van
Merrienboer, (1994). They argued for the reliability of subjective measures of
cognitive load (Paas, 1992, p. 429) on the basis of the high correlation between such
subjective measures and other (objective) measures of cognitive load obtained by
previous researchers. For example, Bratfisch, Borg and Dornic (1972) obtained a
Spearman rank order correlation of 0.9 between objective and subjective measures of
task difficulty. The method used in this study was that at the conclusion of the first
acquisition session the students were asked to indicate, on a seven point scale, "how
hard or easy this material was to learn", by putting a cross in the appropriate box.
The scale ranged from "extremely easy" to "extremely hard". The responses were
scored by giving a value of 1 to "extremely easy" and so on, up to a value of 7 for
"extremely hard". One group of students had thus spent one session studying worked
examples incorporating the checking method, and the two other groups had spent one
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session studying worked examples with no checking method. The means of the
responses for the "no-checking" group and the "checking" group were compared,
separately for each grade and ability level, using ANOVA contrasts.

An immediate test was administered to all groups at the end of the third acquisition
session. After two weeks, a delayed test was administered. These tests each consisted
of two questions on equation formation. For both the immediate test and the delayed
test, for each of grade 8 and grade 9 separately, the mean score of the "separate-
checking" group was compared with the mean score of the "no-checking" group and
also with the mean score of the "checking" group, using the Student's t-test. In
addition, comparisons were made using ANOVA contrast tests between the mean
score of the "separate-checking" group and the combined mean of the "no-checking"
group and the "checking" group. This was done for both the immediate test and the
delayed test, for each of the whole of grade 8, the whole of grade 9, and both the
higher and lower ability levels of grade 8 and grade 9 separately.

One-tailed tests were used in all comparisons, since both hypotheses were
directional.

Results

Table 1 shows the means of the responses for the "checking" and "no-checking"
groups to the questions on difficulty of the materials, separately by grade and ability
level. Table 2 shows the results of contrasts between the means of the different
group/ability level combinations for grade 8 and for grade 9.

Grade Group Level N Mean SD
8 No-

checking
High 31 2.68 1.38

Low 33 3.48 1.70

Checking High 16 3.50 1.10

Low 16 3.63 1.45

9 No-
checking

High 28 2.71 1.01

Low 29 3.38 1.18

Checking High 15 3.27 1.10

Low 14 3.50 1.16

Table 1: Mean scores for Perceived Difficulty (on 7 point scale).

For grade 8 at the higher ability level the "no-checking" group found the task
significantly less difficult than did the "checking" group, (p = 0.016 on a one-tailed
test). For grade 9 at the higher ability level this difference is not significant, but it is
approaching significance (p = 0.062 on a one-tailed test) (Table 2). There is no
significant difference between the "no-checking" group and the "checking" group at
the lower ability level for either grade 8 or grade 9.
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For both grade 8 and grade 9 the higher ability level "no-checking" group found the
task significantly less difficult than did the lower ability level. (Grade 8, p = 0.020,
Grade 9, p = 0.013 on a one-tailed test) (Table 2). However, in the case of the
"checking" group there is no significant difference between the higher and lower
ability levels in either grade.

Grade Contrast Value of
Contrast

Value
of t

p value
(1 tailed)

8 High Ability, No-check vs. Check -0.82 -2.230 0.016
Low Ability, No-check vs. Check -0.14 -0.299 0.383
No-check, High vs. Low ability -0.81 -2.096 0.020
Check, High vs. Low ability -0.13 -0.275 0.393

9 High Ability, No-check vs. Check -0.55 -1.556 0 062
Low Ability, No-check vs. Check -0.12 -0.334 0.370
No-check, High vs. Low ability -0.67 -2.262 0.013
Check, High vs. Low ability -0.23 -0.566 0.287

Table 2: Results of ANOVA contrast tests, Comparing Scores for Perceived
Difficulty.

Table 3 shows the mean scores of the different treatment groups in both immediate
test and delayed test for grade 8 and grade 9, both ability levels combined and higher
and lower ability levels separately. Table 4 shows the results oft -tests for
comparisons between these means. (Note: In this paper the results of contrasts are
reported separately for the higher and lower ability levels only where one of these
contrasts is significant and the other is not. Otherwise the contrasts are reported for
the grade as a whole, meaning both higher and lower levels are significant or both
not significant).

For grade 9, the mean of the "separate checking" group was significantly greater than
the mean of the "no-checking" group and that of the "checking" group, in both the
immediate test and the delayed test. The mean score of the "separate-checking"
group was therefore significantly higher than the mean of the "no-checking" and
"checking" groups combined (p = 0.000 for immediate test, p = 0.000 for delayed
test). (See Table 5 for results of ANOVA contrasts between these means).

However, for grade 8 none of these differences was significant. Rather than the
"separate-checking" group performing better than the other groups, it was the worst
(note the signs of all contrasts for grade 8 are opposite to those for grade 9). For the
higher ability level, the "no-checking" group performed the best, though not
significantly. The contrast for grade 8 higher ability level between the "no-checking"
group and the mean of the "checking" and "separate-checking" groups had p = 0.089
on a 2-tailed test.
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Grade Treatment Level Immediate Test Delayed Test
N Mean SD N Mean SD

8 No-
checking

All 30 1.63 0.76 31 1.65 0.66
High 16 1.94 0.25 17 1.71 0.69
Low 14 1.29 0.99 14 1.57 0.65

Checking All 31 1.61 0.72 34 1.47 0.83

High 16 1.63 0.81 17 1.71 0.59
Low 15 1.60 0.63 17 1.24 0.97

Separate-
checking

All 32 1.41 0.87 31 1.42 0.85
High 14 1.71 0.73 14 1.64 0.63
Low 18 1.17 0.92 17 1.24 0.97

Total 93 1.55 0.79 96 1.51 0.78

9 No-
checking

All 30 1.23 0.90 28 1.11 0.96
High 16 1.56 0.81 15 1.47 0.92
Low 14 0.86 0.86 13 0.69 0.85

Checking All 30 1.37 0.81 27 1.41 0.84
High 16 1.25 0.86 15 1.67 0.72

Low 14 1.50 0.76 12 1.08 0.90
Separate-
checking

All 30 1.87 0.35 27 1.74 0.45

High 14 1.86 0.36 13 1.92 0.28
Low 16 1.88 0.34 14 1.57 0.51

Total 90 1.49 0.77 82 1.41 0.82

Table 3: Mean scores for Immediate Test and Delayed Test, for Grade 8 and
Grade 9, different treatments and levels.

Grade Contrast Immediate Test Delayed Test
Mean
duff.

Value
oft

p value
(1 tailed)

Mean
duff.

Value
oft

p value
(1 tailed)

8 No-check vs.
Sep-check

0.23 1.090 0.140 0.23 1.170 0.124

Check vs.
Sep-check

0.21 1.028 0.154 0.05 0.247 0.403

9 No-check vs.
Sep-check

-0.63 -3.606 0.000 -0.63 -3.167 0.002

Check vs.
Sep-check

-0.50 -3.114 0.002 -0.33 -1.814 0.039

Table 4: Results of t-tests, comparing mean scores for different treatments, for
Grade 8 and Grade 9.
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Grade Test Value of
Contrast

Value oft p-value
(1-tailed)

0.1548 Immediate -0.17 -1.026
Delayed -0.12 -0.675 0.251

9 Immediate 0.57 4.602 0.000
Delayed 0.52 3.714 0.000

Table 5: ANOVA Contrasts- Mean score of Separate-checking Group vs.
Average of Means of No-checking and Checking Groups, for Grades 8 & 9.

Conclusions

Hypothesis 1 was supported for grade 8 higher ability level; the perceived cognitive
load for the "no-checking" group was significantly less than for the "checking"
group. For grade 9 higher ability level there was a strong trend in the expected
direction, the difference falling just short of significance. This smaller difference for
grade 9 than for grade 8 is due to the fact that the mean result for perceived level of
difficulty for grade 9 was slightly lower than that for grade 8. That is, grade 9 found
it slightly easier to learn from the "checking" worked examples than did grade 8,
which is what we would expect.

The fact that there is no significant difference between the "no-checking" group and
the "checking" group at the lower ability level for either grade 8 or grade 9 means
that the lower ability students found the "no-checking" materials almost as hard as
the "checking" materials. These students are having enough trouble still in trying to
acquire the schema for translation; the extra steps of the checking method don't make
it much harder for them than it is already. Note that this test for cognitive load was
after one acquisition session. Previous studies have shown that three sessions are
required for lower ability students to acquire the schema for translation, (Fawley,
1997), which is why three sessions were used for all groups in this study.

The fact that there is no significant difference between the higher and lower ability
levels of the "checking" group means that the higher ability students found the
material just as difficult as did the lower ability students.

Hypothesis 2 was supported for grade 9, the mean of the "separate checking" group
being significantly greater than the mean of the "no-checking" group and that of the
"checking" group, in both the immediate test and the delayed test.

That this was not the case for grade 8 may again be due to insufficient time (only 2
sessions) for the "separate checking" group to acquire the schema for translation
before introduction of the checking method. The "no-checking" group had certainly
acquired the schema by the end of the third session, with a mean of 1.94 out of 2 for
the grade 8 higher ability level "no-checking" group. It appears that grade 8 required



the three sessions on the translation schema before introduction of the checking
method.

In summary, there was support for both hypotheses, the first at the grade 8 level and
the second at the grade 9 level. In both cases the results suggest explanations in terms
of acquisition time required as to why the expected results were obtained by one
grade but not the other.
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AN EXPLORATION OF THE INTERFACE BETWEEN VAN IIIELE'S LEVELS 1 AND 2:
INITIAL FINDINGS

John Pegg and Penelope Baker

Centre for Cognition Research in Learning and Teaching

University of New England

This paper is concerned with identifying a structure in the responses of students as they move from
thinking at van Hiele's Level 1 to Level 2. This period in the development process is one in which
students move from using global or overall features of a figure to having properties describe a
figure. This development is important for students and marks the beginning of formal geometrical
thinking. Three significant categories have been identified in this transition. First, specific
features are identified. Second, attempts are made to qualify or quantify these features and, finally,
the features take on an individual significance although they are not seen as determining the figure.
To explicate the findings, a number of samples of student interviews are provided.

Introduction

The van Hiele theory (1986) continues to act as a catalyst for research into students' geometrical

thinking. This is evident in the continuing numbers of papers, theses and book chapters which
draw upon various aspects of the theory. Nevertheless, despite considerable empirical support
(Clements & Battista, 1992) for various aspects of the theory there have been a number of sustained
criticisms (Pegg & Davey, 1998). It appears that this conflict has resulted in some researchers
rejecting the theory out of hand while others have attempted to move forward by taking specific
issues and extending the theory in ways that maintain the original formulations. Four examples

illustrate this latter approach. These are: the consideration of van Hiele's ideas within the SOLO
model (Biggs & Collis, 1991; Pegg & Davey, 1998); the widening of the level descriptors to
incorporate the original ideas but to allow for inclusion of coding of questions more typical of those
currently asked in secondary schools (Pegg & Currie, 1998); deeper explorations of the nature of
the levels and the properties associated with the level framework (Fuys, Geddes, & Tischler, 1985;
Burger & Shaughnessy, 1986); and dividing van Hiele's Level 2 into two levels referred to as Level
2A and 2B (Pegg, 1997). It is the last of these issues which is relevant to this paper and provides
the impetus for the research reported.

The splitting of van Hiele's Level 2 (in which figures are identified in terms of properties which are
seen to be independent of one another) into two levels, Level 2A (in which students work with one
property) and Level 2B (in which students work with a number of properties independently) is

more than semantics. It represents an important psychological shift which is supported by
empirical data which sees many younger students unable to move beyond applying a single
property or 'concept' at a time, due to working memory constraints. It is only after some
(considerable) time that students are able to simultaneously apply in sequence several properties.

The identification of Level 2A to student thinking is important. Its strategic position between
intuitive/visual thinking at Level 1, where invariant features of a figure take no overt part in
problem-solving activities, and Level 2 thinking, in which properties determine a figure, provides a
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context for several research questions. Significantly for this paper is the question: Is there some

identifiable cognitive structure to students' development of individual properties as students move

from Level 1 to Level 2A? It is this question that is at the heart of this study.

Design

The study aimed to explore young students' responses to a series of questions concerning properties

of figures on two occasions approximately 12 months apart. The sample comprised of twenty
students. At the time of the first intervention 12 were nine years old, and 8 were twelve years old.

The students were selected from two schools across each age group with equal numbers of males

and females. The selection represents the bottom, middle and top 20% of the age cohort based upon

their general mathematics performances on class tests. The nature of the intervention was such as

to provide the students with a number of problem-solving contexts about which they could
undertake an activity and then talk about the reasons for their actions. This technique seemed to be

enjoyed by the students and the interviewer was free to probe for further information as was
deemed important. However, care was exercised in asking additional questions so as not to
prejudice further activities asked of the students. As was expected the twelve-month delay in re-

testing was sufficient for the students to have no recall of the items or their earlier approaches. Due

to space restrictions this paper reports on only one question and takes the interview data from the

first intervention. A report on the second intervention and its relationship to the first for each child

is currently under preparation. Significantly, the results of the second stage provide confirmatory

support for the pattern suggested in this paper.

The task reported below was similar to that given to an older cohort of students and reported

previously (Currie & Pegg, 1998). It was to have the students group and justify their groupings

among seven different triangles, namely, equilateral, acute isosceles, obtuse isosceles, right

isosceles, acute scalene, obtuse scalene, and right scalene. In this case, because of the young age

and lack of geometrical experience of the students they were provided with a diagram of the seven

triangles, each on a separate card, and were asked to sort the triangles into smaller groups. They

were not given the names of the triangles and there was no attempt to have them provide names.

While the diagrams were designed to depict each type of triangle, they included no markings or

labelling to indicate equality of sides or angle size. Individual cards for each type of triangle

enabled the student to alter the orientation of the triangle when and where necessary. The student

triangle groupings were used as a catalyst for discussion, involving prompts and probes, concerning

the justification of the groupings. The investigation required the analysis of responses concerning

the particular triangle groups formed, and the reasons for the identified groups.

Results

Of the twenty students interviewed four responded at Level 1 and three responded at Level 2A. For

completeness, selected excerpts of their interviews are provided to indicate the boundaries of the

groups of responses. No student in the sample tested was able to respond at Level 2B.
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Level 1 responses

There were four students (all aged 9 years) whose responses were identified in this category. While
the focus of attention was different in each case there was a clear attempt by each student to use
aspects of the global appearance when grouping the triangles. These ideas ranged from using: fat

and skinny by Emily; the position of the apex and how this position distorts triangles from some
ideal template held by the student as in the cases of Patrick and David: and, to picking some
important visual indicator of the triangle such as sharpness indicated in Joanna's response.
Int: Tell me about this group. (acute isosceles, right scalene and acute scalene)
Emily: Well they are sort of the long skinny type of triangle.
Int: And this group? (obtuse isosceles, obtuse scalene, right isosceles and equilateral)
Emily: They are the fatter triangles.

Int: Right so we have got the seven triangles. Why is that one on its own? (right scalene)
Patrick: Because it is not sort of like a triangle shape it is sort of like it is bent.
Int: And this group? (obtuse scalene, obtuse isosceles and acute scalene)
Patrick: This is the normal triangle except it is sort of like the point is not in the middle. This

should be there like that.
Patrick: These ones here are normal triangles. (acute isosceles and equilateral)
Int: Can you tell me about the normal triangles?
Patrick: They're middle of the urn, the point is facing the middle of the line.

Int: Tell me about this first group. (acute isosceles, obtuse isosceles and equilateral)
David: Oh, they are just straight triangles.
Int: What does that mean?
David: It just means that they um (pause) are just plain triangles without any changes to it.
David: Um these are triangles (scalene and right isosceles) that are pointing to the right hand

side or the left.

Int: What is this group? (acute isosceles and equilateral)
Joanna: Those triangles are both going up in the same direction so I put them together.

This group? (obtuse isosceles, right isosceles and acute scalene)
Joanna: These two are both pointing up and this one is kind of doing the same.

And your last group? (right scalene and obtuse scalene)
Joanna: These are kind of the same?
Int: What is the same?
Joanna: They go sharp on the corner just here.

Overall, the responses in this category are consistent with findings of other research and the strong
visual/intuitive nature of the students' thinking was evident.

Level 2A responses

Three students responded at Level 2A. Each had established three distinct classes of triangles,

namely, equilateral, isosceles, and scalene. The decisions for these groupings were based primarily

on the number of equal sides of the triangles. Interestingly, neither Sacha (age 12 years) nor Jessica

(age 9 years) were able to name specific triangles. Cole (age 12 years), on the other hand had no
trouble in using the more general names such as equilateral and scalene, although the word
isosceles was not used. His response goes a little further than the other two students in that he
mentions, under probing, equality of angles and, more importantly, he is willing to begin to
consider links between isosceles and equilateral triangles based on them having similar properties.
Sacha: That group (equilateral) is a triangle and it has got three sides all the same length.
Int: What is it called?
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Sacha: A triangle.
Sacha: This group (acute, obtuse, and right isosceles) all has a length at the bottom and its two

sides coming to the point are the same.
Int: Your next group? (acute, obtuse, and right scalene)
Sacha: This group has urn they are all different lengths. The sides are all different lengths.

Do you think any of these different groups here can link together?
Sacha: No.

Jessica: This is the triangle (equilateral) that has roughly the same length sides.
Int: And this group. (acute, obtuse, and right isosceles)
Jessica: They are the triangles with the same length. The top two on each are the same length.
Int: And this group. (acute, obtuse, and right scalene)
Jessica: All the sides are different lengths.
Int: Do you think any of these groups belong together?
Jessica: These are sort of together because most of their sides are the same length.

Cole: Well they are equilateral ones and they have all three sides the same.
Int: Anything else they all have?
Cole: They have all the angles the same.
Cole: These ones are the scalene ones. They have all sides different and all the angles

different.
Cole: These are, I can't think of what they are. They have two sides the same and one

different, and two angles the same and one different.
Int: Do you think any of these groups go together?
Cole: No not really, they are all triangles.
Int: No links for any other reasons?
Cole: No.
Int: Do you think I could put these (isosceles) with these?
Cole: No not really, I suppose they do have two sides the same.
Int: Could you put them with that other group?
Cole: No they are separate.

The students responding at this level were able to group the triangles into three mutually exclusive

classes. Each class was determined by a specific property. Under prompting the classes remained

mutually exclusive although Cole alone indicated a possible link between the equilateral and

isosceles triangles based on side properties.

The remaining 13 responses were seen to lie between these two boundary levels. There were three

clearly identifiable groups. These groups appeared to have a logical development to them and

provide a sequential pathway from Level 1 to Level 2A. For ease they are described as Categories

1 to 3.

Category 1

Only one student's, Hannah (age 9 years), response was identified in this category. Although there

were examples to be found elsewhere, in these other cases, they were followed or accompanied by a

more detailed response. The main characteristic of this response was a focus on the number of

sides. hi addition, there was much in common with the responses of the category described
previously, i.e., the use of global imagery to support the description. This is shown in the response

of Hannah.

Hannah: Well these (acute isosceles, obtuse isosceles, and equilateral) are like the triangles and
these ones (right triangles, and scalene triangles) are like the sloped ones.

hit: Int: Tell me about the triangle group.
Hannah: Well they have three sides and a big triangle face there and that one goes up a long way.
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Int: What do they all have in common so that they can go together?
Hannah: Well they all go up and they have this long bit there.

Why do these ones go together?
Hannah: Well they go on a slope and I don't know what they are called but they have three sides

like a triangle but they don't all go up to that point up the top.

Overall, the response in this category moved away from a sole reliance on a global representation of
the figures, as would be expected of a Level 1 response, and started to focuson the number of sides.
No attempt was made to consider the length of the sides in any way.

Category 2

This category was a logical extension of the previous response and six student's responses were
identified. Four of the students, all aged 9 years, continued the focus on three sides, and, in some
cases, three angles (which were referred to as corners), but, in addition, they attempted to bring in
some notion of the length of the sides or the measure of the angles. However, significantly they

were not able to use effectively ideas of equality (or evenness) to group figures consistently. In the

case of Abbey, she was able to mention that one side is longer than another but was not able to
group the triangles using this idea.
Abbey: They are the sort of triangles. (acute isosceles, obtuse isosceles and equilateral)
Int: What do you mean by that they are triangles?
Abbey: Because they just look all the same except for the width wise.

What is the same?
Abbey: Well they just look the same sort of. They have sort of got three corners like that.
Abbey: They are the kind of weird sort of ones because one side is longer than another and I

haven't seen that before.
Int: These two? (acute scalene and obtuse scalene)
Abbey: That one is sort of a weird one if you have it the wrong way there like that and these

ones (right isosceles and right scalene) are sort of like part of a normal triangle if you
have it like that. If you have them both like that they can go in there own group.

Int: What do you mean?
Abbey: If you have them up that way like that they are a bit like a triangle but they are not.
Int: In which way aren't they?
Abbey: Well because that one slopes that way and these ones go straight up. I could put one in

with the weird and one in with the triangles.

Helen was similar but during the conversation concerning her grouping she only noticed the lengths
of sides as a consequence of the groups she had formed. However, there was a lack of consistency
in her explanations.

Int: So what does this group have in common?
Helen: They won't come straight up into an apex. They won't have even sides like that one. It

has one big side and one short side.
Int: So what does this group have with its sides then?
Helen: They have equal sides.
Int: Are you sure? Have a look.
Helen: Urn most of them do.
Int: Does that matter if they don't?
Helen: Um.
Int: Is the apex more important?
Helen: Urn I am not sure.

Initially, Jack responded using global criteria typical of a Level 1 response but when probed started
to focus on the size of the edges (sides).
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Jack: That is the group (acute obtuse and right scalene) that are the more sloped and they are
bigger.
This group? (right isosceles, acute isosceles and equilateral)

Jack: This is the group with urn they are the ones that are exactly the right way.
What do you mean by that?

Jack: Like urn urn like they have got all the edges are the same size.
And this one? (obtuse isosceles)

Jack: That is just one that has been pushed down.

Finally, Anthony begins by trying to use lengths of sides but is not consistent with the groupings he

established. His attempts to describe the length of sides are drawn from specific examples within

the group and he is unable to provide a broad generic description which encapsulates all triangles

within the groups formed.

Anthony: They are all triangles.
What does this group (acute, obtuse, and right isosceles and equilateral) have that relates
them together?

Anthony: Some of them have all the edges the same size.
What about the others?

Anthony: Urn the bottom edge is smaller than the top edge.
What about this next group? (right scalene)

Anthony: It is half of a triangle.
And your last group? (obtuse and acute scalene)

Anthony: They are sort of triangles but one side on the edge is longer than the other.
Are any the same on that?

Anthony: Um one is a lot longer.
The remaining two students, Alisha (age 12 years) and Simon (age 9 years), provided very similar

responses to that described above in that they were still inconsistent in their justification of their

groupings. However, they were able to move beyond the focus of individual figures to begin to talk

in more general terms about the groupings they formed. They used examples related to specific

figures only as a means to justify their more global decisions. For example, Simon responded:

Simon: These ones are all even sort of thing. (acute and obtuse isosceles and equilateral)
Int: What do you mean by that?
Simon: Urn, they all um, they are the same on each side like on this side it is like 4 cm long and

on this side it is another 4 cm long. Whereas on this group it is say 6 cm long, and that
one is only about 3 cm long. And also on these it is half.
What part of the triangle are you looking at?

Simon: I am looking at the top because the bottoms are all practically the same.

Here Simon has chosen to use specific lengths to justify his groupings even though the answer he

came up with was incomplete.

Overall, these six responses in this category, while still relying heavily on visual cues, are
characterised by the addition of attempts to use the length of sides to group triangles. However,

there is often a vagueness in the students' comparison of lengths as they have difficulty in
indicating spontaneously which sides are equal. In addition, the groupings lack stability as the

guiding principle is not applied in a consistent manner across all triangles.

Category 3

There were six students who responded in this category. All students except Daniel (age 9 years)

were 12 years of age. The most important characteristic of the responses used by this group is that
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a single feature, such as equality of sides, is an appropriate criterion upon which to group triangles.

As a result, all triangles with, say, two sides equal, such as isosceles and equilateral triangles, can
be linked. This does not imply that the students see these properties as defining the figure but that
given this feature certain triangles have this characteristic. Key aspects of the responses in this
category include: consistency across groups formed in relation to the principle applied by the
student; a strong reliance on visual cues; only one property or feature is utilised at any one time and,
hence, the groups form spontaneously, as triangles are seen to have the appropriate chosen
characteristic. Different grouping are possible depending on the feature or property chosen.

Two examples to illustrate this category are provided by Jason and James, both aged 12years.
Jason: These (acute, obtuse, and right isosceles and equilateral) have either got um some of

their lines are equal length with the others like those two are there.
Int: So they all have some lines of equal length to the others. Any other reason?
Jason: No right angles.
Int: What is this one? (right scalene)
Jason: Well it has a right angle and it could go with this group here because it doesn't have any

sides that are equal.
So why is that second group together? (acute, obtuse, and right scalene)

Jason: Because they all have unequal sides.
Int: Does that group have a name?
Jason: It does but I have forgotten it.

Int: Can you tell me why these (acute, obtuse, and right scalene) are all related together?
James: They are all triangles but each three sides of the shape are different lengths.
Int: Anything else?
James: Urn nope.
Int: How come your next group are together? (acute and obtuse isosceles)
James: Because only two sides um ... but these are all wonky triangles (acute, obtuse, and right

scalene) but these ones are still triangles but they are urn.
Int: So what relates these two together?
James: They are still triangles. They have got three sides, and three corners, and that is all.

These ones (equilateral and right isosceles) are just the same length, oh no they are not.
These ones are almost all of the same length around the triangle.

James: Well if that one is all the sides are different and this one is almost the same, what is this
group? (acute and obtuse isosceles)

Int: I just realised that this one is the same as this one. (added right isosceles to acute and
obtuse isosceles)

Int: Are you sure?
James: Yep.
Int: Do they look the same?
James: (pause) In this shape there is only one odd side. In these shapes there is one odd side

and on there are no odd sides on that shape and these here they are all odd.

Overall, students who respond in this category are able to form consistent groupings based upon the

spontaneous identification of the chosen property. However, this contrasts with those responses

coded as Level 2A as in this latter case the properties signify particular figures and are not simply a
consequence or an associated characteristic of a figure.

Discussion and Conclusion

The sample interviewed provided an insight into the development from Level 1 to Level 2A. Three

broad categories of responses were identified. These categories can be describedas:
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1. a move from a total reliance on global visual aspects to the realisation that there is significance

in certain aspects of a figure, such as sides. However, in the early stages this results in students

commenting on the number of these features;

2. an attempt to document more than one feature or, alternatively, to try and further clarify a
particular feature. However, the attempts were inconclusive with either the student being unable

to appropriately articulate the property or unable to move from specific figures and apply the

notion across a group of figures; and

3. a successful attempt to group the triangles according to a single property. This grouping is not

necessarily unique but it is consistent within the framework adopted by the student. However,

the figures chosen within a grouping are simply those which are seen to possess the chosen

observable property, hence, there is the possibility of different groupings of triangles being

formed depending on the nature of the property selected.

The results of this study have offered an initial framework to describe a developmental path in

student cognitive growth in moving from a visual basis for describing figures to one in which

properties determine a figure. Due to the exploratory nature of the findings, as much transcript

information as possible has been provided. Nevertheless, these results are tentative and require

further investigation across different tasks and using other figures. Further research into this aspect

of cognitive development is vital. The careful analysis of the process of students' acquisition of

properties can offer new insights into teaching during this critical time in a young person's
development of geometrical concepts. It is possible that future successes in students' growth will

depend on how well a program of instruction addresses this transition phase.
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Pupils in lower secondary school
solving open-ended problems in mathematics

Erkki Pehkonen & Jaana Vaulamo
University of Helsinki, Finland

Abstract
In spring 1998, eighteen pupils in the lower secondary school'took part in research,
the aim of which was to clarify how creatively pupils can solve open-ended pro-
blems. As a part of the research interview, two open-ended problems were given
to the pupils in pairs to solve. Without any hints, all pupils ended with the same
simple (addition-based) solution. After the first hint, only one pair of pupils came
to the complete solution, and another pair got the right idea, but was not able to
follow it. The rest, seven pairs needed, at least, two hints in order to solve the
problem completely. The results bring clearly forth the meaning of creativity for
problem solving. Some pupils seem to have weak ability to think creatively, i.e. to
generate new ideas and ponder different alternatives.

The purpose of this paper is to clarify how pupils in lower secondary school can
solve open-ended problems in mathematics. Especially, the focus will be on the
role of creativity in problem solving. The paper pertains as a part to the research
project "Teachers' conceptions on open-ended problems" which was financially
supported by the Finnish Academy (project #162027).

Theoretical background
Conventional school teaching has been accused that it considers the action and the
context where learning happens totally different and neutral concerning the topic to
be learned. However, psychological studies show that learning is strongly situation-
connected (e.g. Brown & al. 1989). Furthermore, the latest research indicates that
learning of facts and learning of procedures seems to happen through different
mechanisms (Bereiter & al. 1996).

This points out that in mathematics instruction, pupils should be offered different
methods to learn on the one hand conceptual knowledge (as facts) and on the other
hand procedural knowledge (such as using facts). Conventional school teaching
suits very well for learning of facts, whereas learning of procedural knowledge de-
mands other kind of instruction. One possible solution to the latter case is offered
by open learning environments, since within them one can deal with real, existing
problems, be active and learn in natural settings (e.g. Blumenfeld & al. 1991).

In search for mathematics instruction which is compactible with the constructivist
view of learning (cf. Davis & al. 1990), one promising method seems to be the use
of open-ended problems. They offer pupils opportunities to explore on their own,
make conjectures, to prove their hypotheses, to communicate with their mates, etc



(cf. the papers in Pehkonen 1995 or 1997b) thus they form open learning
environments.

The idea to teach mathematics via problem solving leads naturally to the use of in-
vestigations (e.g. Klaoudatos 1999), i.e. a kind of open-ended problems. The abili-
ty to generate new ideas, to change flexible one's view point if one gets stuck in the
solving procedure, to check obtained results (looking back) and compare them with
the problem statements, and all the time to control that one works within the proper
problem framework are essential components of successful problem solving (cf.
Mason 1982, Schoenfeld 1985).

In problem solving activities, creativity has an important role (e.g. Silver 1997).
But in the literature, there is no single definition for creativity that is generally
accepted in research (e.g. Hay lock 1987, 1997). The most common components of
the definitions for creativity are divergent thinking and flexibility. For example,
Hay lock put forward that "creativity is the capacity to get ideas, especially original,
inventive and novel ideas" (Hay lock 1997, p. 68). In solving mathematical pro-
blems, an individual needs both logical thinking and creative thinking, and large
mathematical knowledge with rigid logic is not alone enough (cf. Pehkonen 1997a,
Solvang 1998). Therefore, pupils' possibilities to be successful in problem solving
are also strongly dependent on their creative capacity.

The sample and methods

In spring 1998, seven teachers with nine teaching groups and from these 18 selected
pupils took part in research, the aim of which was to clarify how creatively pupils
can solve open-ended problems, i.e. what is the amount and the quality of ideas they
produce during the solving procedure. The research was carried out in two lower
secondary schools Apia and Tyry with 13-15 year-old pupils in the city of
Valkeakoski in southern Finland, using observations and interviews. From each
teaching group, a pair of pupils was chosen at random, in order to be interviewed.
Additionally, one mathematics lesson from each teaching group was observed.
Furthermore, the teachers' conceptions on open-ended problems were gathered
with a questionnaire.

At the end of the interview, two open-ended problems were given to the pupil pairs
to solve. The problems used were taken from the paper of Reusser & Stebler
(1997, p. 312). The selected problems represent mathematically simple problems
in everyday context with multiple answers, and the aim of using them was to find
out pupils' creative capacity, not so much their mathematical skills. Since the
problems selected were similar in their mathematical and creative level, one may
suppose that the results obtained support each other.

Here we will concentrate on the results based on the solving procedure of the first
open-ended problem, because of the space restriction. Some parts of the interviews
and observations are used as background information.
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Data gathering process
In the interview before problem solving, the pupil pairs were asked for their con-
ceptions on open-ended problems. And directly in the beginning of the problem
solving phase, they were told that following problems are open-ended.

Here we describe the procedure of solving the first open-ended problem which was
as follows:

Carl has 5 friends and George has 6 friends. They decided to give a party
together and they are asking all their friends. How many guests are coming?

The pupils were asked to read the problem and to answer it, thinking aloud, if
possible, in order their solutions and reasoning can be audiotaped. During the
solution procedure, the pupil pairs were given only some hints, if they seemed to
need some help. As the first hint, they were asked "Are there any other possibi-
lities?" If the pupils have not yet produced the complete solution, they were given
another hint: "What about if the boys have common friends?" As the third and last
hint, the following completing question was given: "Could there be still more
possibilities?"

During the solving procedure, the interviewer gave no comments on the quality of
the answers. Her only intervention was to give the hints in the order described.
But after the pupils have finished, after the hints, their solving of the problem, the
interviewer worked the complete solution of the problem with the pupil pairs
together through.

Two examples of the solution procedure
In the first place, we tried to find out, whether the pupils were satisfied with one
answer or whether they found (or tried to find) more. answers without a hint or
after the hints. Additionally, the quality of ideas was noted. In the problem, pupils
had to recognize that Carl and George might have some mutual friends, in which
case there could be a varying number of persons attending the party.

As the first example, the solution procedure of a pair of seventh-graders, two boys
(from Terry's teaching group, see Table 1) is presented. In the beginning of the
problem solving phase of the interview, the boys began eagerly to study the given
problem. As soon as they had read the question, one of the boys stated: "I know
already, there will be thirteen guests." And the other boy responded convincingly:
"Yes, so there are." Then the boys put more precisely that one gets 13, if one adds
the guests (11) and the boys (2).

Hint #1: "Are there any other possibilities?"

After pondering a while with soft mumble, the first boy continued: "If they have
three common friends, then five plus one will be six, and plus boys." After a
tangled explanation and common discussions, the boys reached a consensus: "There
will be eight guests."
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Hint #2 was skipped, since the boys have already reached the idea of common
friends.

Hint #3: "Could there be still more possibilities?"

After discussing a while, the boys passed as a resolution the earlier answer without
any alternatives. "There will be eight guests."

The second example is a pair of eight-graders (from Anne's teaching group, see
Table 1). In the case of the eight-graders, there seems to be some scepticism
against the question. Anne's pupils expressed openly their surprise after reading
the question in the problem. One of them said: "What ...? One cannot say
anything on this. All might be possible, because you are not saying...." And the
other one continued: "They will ask their all friends, and we don't know how many
they are ... or we just know about." The pupils pondered also the aspect that the
party might be arranged in Carl's or George' home, and then the host is not
counted as a guest. After long discussions, the pupil pair concluded in consensus
that the number of will be eleven.

Hint #1: "Are there any other possibilities?"

After a long-lasting silence, one of them answered first with a silent and unsure
voice: "No". After a while, the other one repeats the same answer more sure and
loud.

Hint #2: "What about if the boys have common friends?"

After this hint, they began to ponder together other possibilities for answers. At
last, one of them states: "Then there can be ten or less."

Hint #3: "Could there be still more possibilities?"

The third hint did not improve the given solution.

Results and discussion
Table 1 gives an overview on the development of the solution procedure in the
open-ended problem. The first column gives the grade level. In the second
column, one can find the pseudonames of the teachers: A for Apia and T for Tyry.
Two of the teachers had two teaching groups: Annette and Teo. The third column
indicates the interviewed pupils' last mathematics mark, grouped into three catego-
ries: A = marks are average level, A+ = marks are above average level, A- = marks
are below average level. Results of all interviewed pupils (grades 7-9; 13-15 year-
old pupils) are gathered in the four last columns. A dash in the box means that no
new answer was given or that the hint was not offered, since the pupil pair has
already reached the complete solution.
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1. answer after 1. hint
(other?)

.

after 2. hint
(common
friends?)

after 3. hint
(other?)

Terry's pupils A 13 8
(3 common friends)

8 8

7 Ann's pupils A 11 11

plus gatecrashers
6 or 10 5...10

7 Teo's pupils #1 A 11 6
(only guests)

6...11 -

7 Teo's pupils #2 A- 11 2 or 3 (it depends
who comes)

10 or less 6...11

8 Anne's pupils A 11 11 10 or less -

8 Annette's pupils A+ 11 or 13
(who is a guest?)

6...11
(common friends)

9 Ted's pupils A 11 11 6...13 -

9 Alfred's pupils A 11 or 13
(who is a guest?)

13+ (friends of
their friends)

5...13 -

9 Annette's pupils A- 11 12 or 13
(who is a guest?)

5...10 -

Table 1. Development of the pupils' solutions for the open-ended problem (grades
7-9; 13-15 year-old pupils).
The described problem solving procedure of Terry's pupil pair was typical in the
sense that the pupils needed hints to continue in their solving procedure. Characte-
ristic for their thinking was the lack of flexibility when they got an idea ("three
common friends"), they were stuck in it, and were not able to variate the condi-
tions, i.e. to get rid of the arbitrarily set preassumption ("three common friends").

Another example, the solution procedure of Anne's eight-graders showed low level
creativity and anxiety in problem solving. Characteristic for the pupil pair was the
small amount of speech during the solving procedure and their unwillingness to
think aloud (if at all).

In contrast to these two examples, the solution procedure of Annette's eight-graders
who were talented was very concise: On seeing the problem, they discussed briefly
the question "Who is a guest?" and concluded the answer "11 or 13". After the first
hint, one of them commented the idea that the boys might have mutual friends, and
then they very soon resulted "all between 6 and 11".

Without any hints, all pupils ended with the similar simple (addition-based) solu-
tion. Some of the pupils discussed the question "Who is a guest?", and therefore,
came to two different solutions (11 or 13). After the first hint, four pairs of the
pupils began to generate alternative ideas, as gatecrashers or friends of their
friends, but only two pairs came without the second hint to the idea of common
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friends: Terry's (grade 7) and Annette's (grade 8) pupils. No pair of pupils did

give a big variety of alternative ideas. Usually the pupils were satisfied in finding

another possibility. All other pairs but one needed, at least, one more hint, in order

to solve the problem completely. Two pupil pairs (Terry's and Anne's) were not

able to find all the solutions.. Terry's pair developed a good idea ("three common
friends"), but were not able to generalize the idea, in order to reach the complete

solution. Their looking back stage was insufficient. Anne's pupils were satisfied

with an about solution".

In the pupils interviewed, two pupil pairs have mathematics marks below average

level (Teo's pair #2 and Annette's ninth-graders). Their solutions were in average

on the same level as the other ones. Those pupils having mathematics marks above

average level (Annette's eight-graders) were essentially better in solving this pro-

blem: With one hint they developed the complete solution.

There seemed to be no difference between grade levels in solving this problem.

The result is understandable, since in such problems one does not need mathema-

tical content knowledge but more creativity and thinking skills.

In their ability and capacity to generate new ideas, the pupils differed slightly from

each other. Two pupil pairs (Annette's eight-graders and Alfred's pupils) begin to
ponder the problem context from the very beginning (before the hints), but their
considerations were only around the question: Who is a guest? After the first hint,
four pupil pairs generated good ideas (as common friends, gatecrashers, friends of

their friends), but only one was successful in solving the problem. All other needed

the second (or third) hint. Summarizing, the pupils' ability to generate new ideas is

weak, they need some hints in order to begin. But with hints most of them are able

to produce enough ideas for solving the problem.

Background information
From the questionnaire and the interviews, we have gathered the teachers' and the

pupils' conceptions on open-ended problems. Every teacher defines open-ended
problems, using slightly different words, as problem tasks which have more than
one solution. Almost each teacher has written in the questionnaire an example of an

open-ended problem he has used. The teachers consider the use of open-ended pro-

blems as a method to foster pupils' thinking.

Before solving the problems during the interview, the pupils were asked for their
knowledge on open-ended problems. Most of the pupils answered that they had no

idea of this kind of problems. None of the pupils had seen such kind of problems in
their mathematics text books. Only Alfred's pupils told that their teacher usually
starts lessons by using similar questions. Also Teo's pupils (both pairs) stated that

their teacher often asked questions with more solutions.



In this small sample, there seems to be no relationship between the teacher's use of
open-ended problems in class (Teo and Alfred) and the pupils' capability to solve
the problems (cf. Table 1).

Conclusion
Pupils seem to think rather schematically, although they were informed on the
openness of the problems to be solved. Especially the seventh-graders "rushed" on
the problem, in order to produce an answer in a hurry. In the case of the upper
grade pupils, one can observe some hesitation (which might be interpreted to be
thinking) in the beginning of the problem solving, but the results are mainly similar
to those in grade 7. Probably, pupils lacked the skill to ponder between different
alternatives, they were satisfied with the first solution which came into their mind.
After the hints, almost all pupil pairs were able to solve the problems completely.

The word problems in Finnish mathematics text books are usually closed problems
with one fixed answer (usually a "nice" number) and one way of solution. Since
everyday problems which pupils will encounter later on in their future are not
well-defined closed problems, pupils might have difficulties to transfer their
mathematical knowledge. The use of open-ended problems in mathematics class,
every now and then, might help them to use their mathematics skills in the future.

The results bring clearly forth the meaning of creativity for problem solving.
Some pupils seem to have weak ability to think creatively, i.e. to generate new ideas
and ponder different alternatives. Since creativity is a central component in
problem solving and since problem solving can be considered as the core of
mathematics, more emphases for practicing creativity should be given also in math-
ematics classes. For example, the teacher may use such open-ended problems in the
classroom situation, in order to promote pupils' flexibility of thinking. And for
this, the use of a proper set of hints might be helpful.
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Abstract: This paper deals with the gender differences in primary pupils' (N--- 185)
mathematical argumentation. The theoretical framework is derived from the idea
based on social constructivism that mathematical argumentation is regulated by
normative aspects. The methodological approach is qualitative, but analysis is
supported by some statistics. The results of this study suggest that there are gender
differences in the conclusions and in the quality of argumentation.

Theoretical background
Gender differences is a widely discussed topic in the field of of mathematics
education. Studies concerning primary school mathematics have found gender
differences for example in the strategy use and in problem solving and calculation.
In the first grade girls were more likely to count on fingers or use counters, i.e to
use overt strategies; boys were more likely to use retrieval to solve addition and
subtraction problems (Carr & Jessup 1997). Boys are found to be better at problem
solving and girls at calculation (Marshall 1984) and girls make different errors than
boys in problem solving (Marhall & Smith 1987). It has also been found that boys
show greater self-confidence in mathematics than girls (Leder 1992). These and
many other findings give us reason to explore the field of gender differences more
thorougly.

This paper deals with the gender differences in mathematical argumentation.
Argumentation in mathematics education has been studied i.a. by Krummheuer
(1995). However, we do not know very well whether there are any gender
differences concerning the quality of argumentation.

How do primary pupils give arguments in a mathematical situation? Argumentation
is understood here as a chain of ideas proceeding from the premises to a conclusion.
In a classroom, a common possibility for argumentation is, to show the rationality
of one's own action when explaining a solution to a problem.

In the following, the theoretical framework is derived from the idea that
mathematical argumentation is regulated by normative aspects (Yackel & Cobb
1996): What kind of arguments are justified, acceptable and valid? Thus the
communicative nature of the argumentation is emphasized. It is assumed that the
norms are produced in the classroom interaction processes. Social norms are
general norms which regulate social activity, and they can be applied to any subject



matter. By sociomathematical norm Yackel and Cobb refer to the normative aspects
of mathematical discussions which are specific to mathematical activity. A
sociomathematical norm includes a shared understanding of what constitutes an
acceptable and justified mathematical explanation in each community. An example

of a classroom's sociomathematical norm is the understanding of what constitutes
mathematically elegant or mathematically efficient solutions.

Data collection and analyses
This paper deals with the quality of arguments primary schools pupils gave when
they were faced with conflicting or confusing mathematical information. The data

was collected by student teachers in nine different schools either in rural areas or in

small towns. The total number of pupils was 185 of whom 98 were girls and 87
boys. Half of the pupils were fifth-graders, i.e. 11 years old, but fourth and sixth
graders also participated. The following task was posed to pupils:

Pens 7.50

Pencils, 2 in a package 4.50

Glue 35 ml 9.30

Sharper 5.80

Accompanied by the illustration shown here, the following task was given to pupils

in one classroom: Jack buys six pencils. How much must he pay for them?
Arthur says that Jack must pay 27 marks. Lisa thinks that the correct answer is 10

marks and 50 penniesl. With which of the children could you agree? Give

arguments for your answer.

The pupils were asked to write their answer and argumentation on a sheet of paper.
The students teachers read the task aloud as many times as desired to ensure that a

pupil's poor reading skills would not prevent him or her from accomplishing the
task. The teachers were also asked to make sure that all pupils understood what they

were expected to do. In our schools pupils pupils are not familiar with this kind of
problems in which none of the suggested answers is correct. The task was
mathematically simple, since the mathematic skills were not the main interest. The

emphasis was put on the children's reasoning and argumentation process.

A richer and more relevant data could have been collected by recording classroom

discussions, but this was not possible in this setting. However, "writing

mathematics" is also important. Writing is one possible way to communicate.
During the act of writing the writer clarifies and works out his/her thoughts and

tries to make them understandable to others (Borasi & Siegel 1994; Shield &

1 Mark =100 Pennies
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Galbraith 1998). As the data is pupils' written works it is not possible to consider
the development of argumentation, but nevertheless, it is possible to see what kind
of explanations were used and acceptable in the classrooms' mathematical situations.

Both quantitative and qualitive methods were used in analysing. Statistical analyses
were made to calculate the significance of differences. When analysing pupils'
arguments I applied the method developed by Stephen Toulmin (1974), in which an
argument is seen to consist of different elements. Data provide the starting point on
which the conclusion is grounded. This process from data to conclusion is
legitimised with the help of facts, which are called warrants. The warrants can be
supported by some generally known facts, called backing. Krummheuer (1995) also
used this method when he investigated the development of argumentation in a
classroom.

The whole data (N=185) was analysed qualitatively to seek the patterns in argumen-
tation. First, it was classified by the conclusion and thus three categories (+ blanco
category) were formed. Then each of these categories were analysed by the
argumentation. All the answers that followed the same-type chain of ideas were
classified into the same category. In the beginning there were almost thirty
categories, which include inter aliai the categories for work sheets with no answer
to the posed question ("With which of the children could you agree?"), without any
argumentation and blanco work sheets. In the course of process the categories were
gradually reduced. The final analysis include four main categories and eight sub-
categories. Each sub-category was described by the terms of Toulmin's model so
that the each chain of argumentation was made visible.

Results and typical argumentations
The answers of 50 pupils (27%) were not included into the further analysis, because
of the difficulties to follow their reasoning. Half of of them gave no answers at all,
some gave answers and arguments without any reasonable logic, and some of
students had made so many errors in calculations that it was impossible to them to
draw any reasonable conclusions regarding the task. It was not expected that pupils
should write their calculation on the work sheet - they were allowed to to do the
calculation mentally if the preferred. The main issue was the argumentation. In the
course of analysing it turned out that if pupils had made many errors in
calculations, in most cases it was impossible to follow their reasonig or at least the
intepretations had been very coincidental. So I decided to skip over those pupils.
However, minor errors in calculation did not matter. There were exactly as many
boys as girls among the skipped pupils. No gender differences were found (x2 =
0.11 , df = 1) in this respect.

In the following I will discuss only the responses of those 135 pupils whose
reasoning it was possible to follow. Of them 73 (54 %) were girls and 62 (46 %)
boys. The task allows three possible conclusions to be arrived. Differences between
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boys and girls are significant (x2 = 6.85 , df=2 0.05>p>0.02) in the conclusion.
Table 1 shows the division of different conclusions among pupils.

Conclusion Girls Boys

I disagree with both 63% (46) 66% (41)

I agree with Liza 37% (27) 29% (18)

I agree with Arthur 0% (0) 5% (3)

Total 100% (73) 100% (62)

Table 1. The precentages of pupils' different conclusions.

Did the gender matter in the quality of argumentation? The main types of
argumentation were divided in four categories which were labeled: 1) mathematical
logic, 2) I know, 3) Lisa is nearer, and 4) Arthur is reasonable. First, the
differences between argumentation and sex were analysed by x2 -test. The result of
this analysis suggested significant differences (x2 = 9.075, df = 3, 0.05>p>0.02).
Then a more detailed analysis was made by comparing the differences between
proportions.

Most pupils 63% of the girls and 66% of the boys stated they would disagree
with both Lisa and Arthur. There were two main routes to arrive the conclusion "I
disagree both Lisa and Arthur". Many pupils and majority of them were girls
used arguments having the nature of mathematical reasoning: "I disagree with both
of them, because if the price for two pencils is 4,50 then for six pencils Jack must
pay 3 x 4,50 ( Jack needs 3 packages). So althogether 13,50." They started from the
mathematical information and facts and proceeded step-by-step. The final
conclusion was drawn by combining the data known from the solutions given by
Lisa and Arthur with their own mathematical reasoning. 34% of girls and 26% of
boys used this kind of mathematical reasoning in their argumentation. This
difference is not statistically significant (z=1.01, p=0.08).

The less qualified arguments were based on pupil's own performance. This type of
argumentation was more common among boys (40 %) than among girls (29 %) and
the difference is significant (z = -1.39, p = 0.04). A typical argumentation was: "1
cannot agree either of them, because I got a different answer." Figure 1 displays an
example of this kind of argumentation.
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I got
a different
answer

D (data)

because

SO

I am right

since

I don't agree
either of them

C (conclusion)

B (backing)

I am good in
mathematics

Figure 1. An example of argumentation

W (warrant)

The distinctive aspect between the categories "mathematical reasoning" and "I
know" was the quality of argumentation. In the first category the arguments had the
basis in the mathematical reasoning: The pupils showed how they arrived the
conclusion and proved it to be the correct one. It is the kind of reasoning that a
mathematician does. In the second one the argumentation is grounded on the
authority-based belief. A mathematician would never accept an argumentation: "It
must be so, because I have calculated it and I know how to do it:"

32 % (=46 students) wrote they could agree with Lisa. However, majority of them
stated that neither Lisa nor Arthur was right, but if they had to choose, they would
side with Lisa, because her answer was nearer to the right one. This was the main
argument. This conclusion was more common among girls than among boys, but
the difference is not statistically significant (z = 1.01, p = 0.08). However, in this
conclusion there were no differences in the quality of argumentation, all the
arguments very were similar and so independent of gender. Only a few pupils and
all of them were boys - gave their support to Arthur, and the arguments given by
them were very reasonable. They were sympathetic to Arthur and the error he had
made: "He did not notice that there were two pencils in the box. He has calculated
the price for six boxes correctly."

The normative aspects of 'argumentation
I distinguished between two sociomathematical norms. The first sociomathematical
norm (type i), which is based on the arguments of those students who agreed with
Lisa, can be formulated as follows: "The result which is closest to the right answer,
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is a better one." One third of the pupils used this explanation and regarded it valid
and justified. This norm is interesting: Although Lisa's process was not in any way

reasonable, pupils however though that her . answer is better than Arthur's
reasonable process but wrong answer. This gives us reason to believe that in
classrooms' mathematical discussion products are more valuable than processes.
Every pupil who applied this explanation carried out the calculations correctly and
stated that, in fact, neither Lisa nor Arthur was right, but they were ready to give
their support to Lisa.

The second sociomathematical norm, mathematical reasoning, (type ii) appears in

some of those explanations where pupils stated they would disagree with both Lisa

and Arthur. These pupils generated their own opinions and their arguments were
based in the first place on mathematical reasoning. One third of the pupils applied
this norm. This kind of sociomathematical norm gives us reason to believe that
mathematical argumentation is practiced in some classrooms.

My hypothesis was that social norms could not be seen in pupils' written products.
However this belief turned out to be wrong. I could find three social norms that
regulated the nature of argumentation. There were five teaching groups with a
great number of pupils who justified their decisions primarily on the basis of their
own expertise or the lack of expertise of others (type I). A typical argument was: "1

disagree with both Lisa and Arthur because I got a different answer." o r "
because both of them have calculated incorrectly" (but in our language the meaning
of "incorrectly" is stronger). In these teaching groups a valid argument seems to be
the fact that the pupil has arrived at a different solution. Some of them have secured

their backing by the fact, obviously well-known in their classroom: "I am right,
since I am good in mathematics."

We could say this norm is social, rather than sociomathematical, because it is
grounded more on status or supposed expertise than on the efforts to show the
mathematical basis. Furthermore, these explanations are often related to efforts to
convince the teacher or the reader that the actor is innocent: "I don't want to agree
with either of them because both of them are wrong." This kind of explanation has
actually nothing to do with mathematics, and it can be applied in any situation to
explain the rationality, if it is accepted in the classroom.

The second social norm emerges only connected to the first one. This norm is very
gender related. In all those teaching groups where among boys as well as among
girls - the social norm of one's own expertiness or other's inexpertiness was
accepted, the norm of unsureness can be identified among some girls. The girls who

have very well carried out the calculations and given very elegant mathematical
arguments may state in the end: "Naturally I may have made a mistake too" or "
Maybe I am wrong".

The third social norm was encountered in one teaching group. This norm includes
the idea that you should understand other people. Regardless of what kind of
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mathematical arguments the pupils in this group applied, they tried to understand
the actions of both Lisa and Arthur: "Arthur has made a little mistake, but it could
have happened to anyone," or "I don't know how Lisa got her answer, but it must
be some kind of annoying and human mistake." The norm was independent of
gender.

The quality of arguments was not dependent on pupils' age as I have shown in an
earlier paper (Pehkonen 1998). Actually there was more variation across different
teaching groups than across grades. Similar results have been reported by Yackel
and Cobb (1996). The patterns of argumentation and norms could be very similar
among the third graders than among the fifth-graders. But there were teaching
groups of fifth-graders (or third-graders) each of whom had its own norms and
ways to argumentate. And there were groups where it was not possible to
distinguish any norm in the written data.

Some teaching groups were very able to give arguments and others were not. It
seems obvious that some teachers have trained their pupils to argue and express
their opinions. Argumentation can be seen primarily as a discourse technique
(Krummheuer 1995, 238) which can be learnt.

Concluding remarks
Boys based their argumentation on their own expertise more often than girls and
girls preferred mathematical reasoning more often than boys did. These findings
are in line with results of previous research which indicate that girls are better at
calculations and algorithms (Armstrong 1981; Marshall 1984). The findings of this
study suggest us that girls are more able to use these skills in their argumentation to
make them mathematically more elegant. Further research with more
representative samples will be needed to comfirm these suggestions.

Gender influence on the normative aspects of argumentation could be seen in some
teaching groups. Gender differences emerged in those teaching groups where the
social norm was that acceptable mathematical accounts can be based on one's own
supposed expertise or on the lack of others' expertise. In these and only in these
teaching groups there were girls who were willing to suspect their solutions and
reasoning - even when they were mathematically elegant and well grounded in
logic. These findings support previous reseach which has pointed out gender
differences in self-confidence. Boys are more confident (Leder 1992) and tend to
dominate situations in class rooms (Carr & Jessup 1997).

The results of this study help us to get a more detailed picture of the nature of
gender differences in mathematics education. The next question is what is the
influence of teacher who belongs to the social setting of class room? What is the
mechanism how teachers influence to the accepted, valid and justificated
explanations in mathematic class rooms and so to the norms that emerge?
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OBSTACLES IN APPLYING A MATHEMATICAL MODEL: THE
CASE OF THE MULTIPLICATIVE STRUCTURE

hit Pe led - University of Haifa
Leonid Levenberg, Ibby Mekhmandarov, Ruth Meron -

Center for Educational Technology, Tel-Aviv
Alexander Ulitsin - Ministry of Education, Jerusalem

Third and fourth grade children, who started learning about
multiplication in second grade, do not tend to use multiplication
in multiplicative situations. This study looks at children's
choice of mathematical models in different non contextual
displays: equal groups, rectangular arrays, and a rod model
(which they use in class). The findings show that many children
do not perceive the displays as representing multiplicative
situations. Even children who exhibit knowledge of
multiplication facts do not apply their knowledge in these tasks.
Instead, they use addition and counting strategies.

An important goal in teaching mathematical operations is the
development of schemes, such as the additive scheme or the multiplicative
scheme. These schemes, or structures can act as mathematical models of
given situations. Usually the situation does not uniquely determine the
structure, nor does it easily hint that a certain mathematical model can be
used (although conventional school word problems might imply that it
does). We teach children basic operations with the intention that they
apply them in different situations. We also expect to see progress over
time in the choice of a model, i.e. in the ability to apply more efficient
models in the relevant cases.

Given a rectangular array of objects with the task of finding their total
number, it is expected that a young child will count the objects one by one.
An older child will count the elements in each row and then add up the
rows. An even older child is expected to realize the size equivalence of
the rows, i.e. the repeated addition structure and then add or multiply, or
recognize the rectangular array structure, and multiply the number of rows
by the number of columns.

The above description talks about different structures, which have been
identified by several researchers. A lot of the research on multiplicative
structures deals with the categorization of multiplicative situations
(Vergnaud, 1983; Schwartz, 1988; Nesher, 1988) and with children's
word problem solving (Fischbein et al., 1985; Kouba, 1989; and many
other significant works reviewed by Greer, 1992).



Some of these researchers have focused on younger children's work.
Carpenter et al. (1993) show that even kindergarten children can solve
some types of multiplicative word problems. Kouba (1989) looks at
solution strategies of children in grades 1-3, and is interested more in the
nature (and quality) of their solutions than in the question whether they can

answer a given problem correctly. Kouba uses equivalent set problems
(later termed repeated addition problems or mapping rule problems) and
finds that children use a variety of counting strategies. She also observes
that the intuitive model that children seem to have for equivalent set
problems is linked to the intuitive model for addition as both involve
building sets and then putting them together.

Similarly, Mitchelmore and Mulligan (1996) show that during their
second and third grades children use many different strategies in solving
multiplicative problems. These strategies include quite a lot of addition
and counting calculations. However, they also find that over time the
strategies are chosen more efficiently.

These different research findings suggest that children do not
necessarily use multiplication in solving multiplicative word problems.
Many children use addition and some choose to use a long counting
process.

It is often claimed that children are efficient and use a more effective
tool or a shorter route once they possess it. Such a behavior is described
by Woods, Resnick, and Groen (1975) in the case of choosing between
solution strategies in subtraction (e.g. going two steps backwards in 9-2
while counting up from 7 to 9 in 9-7). This behavior is also evident in
Siegler and Shrager strategy choice model (1984), where children choose
to retrieve an addition fact rather than count, when they reach a reasonable

degree of confidence.
If children tend to be efficient, why do they not use multiplication but

instead do quite a lot of counting or adding? Several explanations can be
suggested: They are not able to identify the structure of a multiplicative
word problem as a multiplicative structure, or they do recognize a
multiplicative structure but do not know the relevant multiplication facts.

In this work we differentiate between these two obstacles by looking not
only at children's solution strategies but also at the way they perceive
different situations.

Most of the existing research, including the works described above,
involves word problems. In solving word problems children are engaged
in text interpretation, a stage which might contribute to the difficulty in
identifying the efficient structure (although in some word problem types
the verbal description contains clues for identifying a multiplicative

structure). In this work we avoid this stage by looking at children's
behavior in different non-contextual displays of objects. As we show

1 2 1 Ei
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below, the use of a multiplicative structure is scarce even in these
non-contextual tasks.

PROCEDURE

Fifty four third and fourth grade Israeli children were individually
interviewed. The children were chosen from regular classes that use the
same curriculum, called "One-two-and three". They were identified by
their teacher as having some minor difficulties in mathematics. This
curriculum usually introduced beginning ideas about multiplication at the
end of first grade, and further develops the concept in second grade. A
sequence of concrete models is used in order to represent multiplication: a
"train" of equal rods, the same rods in a rectangular configuration, and
eventually an array of dots. Using the array model the children discuss the
number of rows and the number of dots in each row, and apply the model
in different problem solving situations.

The purposes of the interview were: To find what mathematical model
children use spontaneously in perceiving a given display, which has a
multiplicative structure, to observe which strategy they apply
spontaneously in calculating the amount represented in the display, and to
find how they calculate multiplication facts in multiplication number
problems. Eventually these findings were used to investigate the relation
between knowing multiplication facts and recognizing and using
multiplication in different situations.

In the course of the interview each child was presented with different
displays, asked to describe what she sees, and then requested to find
"How many there are". The order was: Equivalent sets, a "train" of equal
rods, a rectangular array, and some contextual situations (involving eyes
and fingers). Each display was presented several times with different
numbers (4x5, 10x5, 4x2, 10x2). Here we present the results for the case
of 4x5, (complete results to be presented in an extended article).

The request to describe what they see was intended for investigating
how children perceive the display. The child was given a card with a dot
configuration and asked to tell the interviewer, who supposedly could not
see the card, what to draw.

Several additional tasks included: representing a given expression, such
as 4x5, using rods, inventing a story problem to a given expression, and
finding some multiplication facts, e.g. 4x5. The questions that mentioned
multiplication came only at the end of the interview in order to avoid any
hints about the choice of an operation in the different displays.



RESULTS

Children's conceptions were deduced from their display descriptions

and explanations during the interview. In several cases a child was
considered to be perceiving the display as a multiplicative structure even

when an additive or a counting strategy was used in the calculation of the

total amount of objects. In the following excerpt a third grader, Lorry,

tries to figure out the total amount represented by a "train" consisting of
four `5-rod'-s, as shown below:

yellow I yellow I yellow I yellow

I: What do you see?
L: Yellow rods of 5.
I: And what else? (no answer) How many rods?
L: 4.
I: How much is it?
L: Should I do 4 multiplied by 5 [note In Hebrew 4X5 can be read as '4

multiplied by 5 or as '4 times 5'. Here she used the word 'multiplied'.
Further on when she calculates the amount by addition, she uses 'times 'J.

I: Yes.
L: (Thinks for a while) 25.
I: How did you do it?
L: 1 did four times five, 5 plus 5 that's 10, and another 5 that's 20, and

another 5 that's 25.

Table 1 presents the percentages of students who perceived the different

displays of 4X5 as multiplicative situations. It also shows these
percentages separately for students who could do a mental calculation of

4X5 (using either fact retrieval or repeated addition), and for those who

could not do a mental calculation (e.g. had to use objects). It should be

noted that the columns are not disjoint. A child who perceived a
multiplicative structure in one display, could also see it in another display.

Table 1: Children exhibiting multiplicative display conceptions.

display
calculation

equal sets
yes no yes

rods
no

array
yes no

mental 7 25 5 27 10 22

n=32 (22%) (78%) (16%) (84%) (31%) (69%)

non-mental 0 22 2 20 2 20

n=22 (0%) (100%) (9%) (91%) (9%) (91%)

all students 7 47 7 47 12 42

n=54 (13%) (87%) (13%) (87%) (22%) (78%)
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The data in Table 2 shows the different calculation strategies in each of
the displays for children who could figure out 4x5 mentally. This
subgroup of children includes those who could potentially utilize their
knowledge in the different displays.

Table 2: Strategy choice in different situations for children who could
mentally multiply 4x5.

trategy
Situation

multiplication addition counting other total

equal sets 6 18 6 2 32
(19%) (56%) (19%) (6%) (100%)

rods 4 19 - 9 32
(13%) (59%) (28%) (100%)

rectangular 8 9 9 6 32
array (25%) (28%) (28%) (19%) (100%)
contextual 7 20 3 2 32
cases (22%) (63%) (9%) (6%) (100%)

As can be seen in Table 2, less than a quarter of the children who
calculated 4x5 mentally, used multiplication in each of the different display
calculations. Our data (not presented here) details this distribution
separately for children who did the calculation of 4x5 by retrieval, and
those who used addition. Most of the children who used multiplication in
the display calculation were those who used it in the calculation of 4x5.

Children's answers and explanations contribute some interesting
information on the way they perceive the given representations. The
following are two of these examples:

1. Post hoc identification of a multiplicative structure:
Given a rectangular array of 4x5 X-s , Ron (a fourth grader) draws it

correctly from memory. The task is followed by this dialog:
How many rows are there? 4
How many X-s are there in each row? 5
How many X-s altogether? (Ron thinks for quite a while) 20
How could you tell? I did 4x5.
Did you do it in your head? No. I counted the X-s.
So why did you say 4Z5? Because it's 20.
But 2x10 is also 20. (Ron hesitates a moment) Ah! But here
(in the array) we have 4 and also 5.
So why did you count earlier rather than do 4x5? Because
I was in a hurry...
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This dialog might initially suggest that Ron identified the multiplicative

structure, or at least the repeated addition structure of the array. However,
the time it took him to figure out the total amount, his own account on his
counting, and his surprised discovery of the connection to the 4 and 5 lead

to a different interpretation. Ron suggested the expression 4x5 after

counting 20 X-s in the display. He might have chosen 4x5 because it is an

expression that yields 20. It is probably during the discussion that he

suddenly saw how the array dimensions related to the expression.

2. A selective application of multiplication:
Some children used addition or even counting for small amounts, while
applying multiplication for larger amounts. Other children had different

reasons for the choice of a strategy, such as: I counted [even though I
used multiplication in another situation] because I was in a hurry.... [and
would have wasted time if I stopped to analyze the situation].

DISCUSSION

Third and fourth grade children participating in this study showed very
little use of multiplication strategies in non-contextual displays, while
multiplication was the more efficient strategy. These findings could only
partially be attributed to the fact that most of these children did not know

the relevant multiplication facts. This was revealed by investigating the

way children perceive the displays. Only a small proportion of children

perceived the displays as multiplicative structures. Even among those who

could figure out a multiplication fact mentally, only about a third identified

the multiplicative structures. The conclusion that the blame does not lie in

absent knowledge of facts is also manifested by the choice of strategies in
figuring the amount in different displays. Less than a quarter of the
children who could figure out the facts mentally used multiplication, a
large proportion of them used addition, and some even counted.

The children in this study were identified by their teachers as having

some difficulties. Yet the displays presented to them were familiar

representations, the same ones through which multiplication was defined

to them in first and second grades. If fact retrieval is not the main obstacle

in applying multiplication, perhaps the difficulties involve the nature of the

displays or the nature of instruction.
The identification of a multiplicative structure is quite complex. In

equivalent set situations, for example, one has to be able to perceive all the

given sets at the same time and recognize their equivalence. In deriving

the number expression one of the factors is an intensive quantity,
appearing not just in one set but in each of the sets. The second factor is
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not even represented as a simple set. Rather, it is the number of the sets in
the display. This complexity makes it difficult for children to identify and
apply a multiplicative structure in a given situation.

The interviews disclose some of the display difficulties. In additional
tasks, where children were asked to use manipulatives and represent an
expression, such as 3x4, some of them tended to represent both numbers.
Thus, for example, one of the children used rods and built a train
consisting of a single 4-rod and three 3-rod -s, as follows:

(4) I (3) I (3) I (3)

When realizing that something was wrong because it does not measure
12, as expected, he changed it to one 3-rod and three 4-rod -s. He was
frustrated upon realizing that it still does not measure 12. Another child
represented this expression by building an array consisting of four rows,
with three 3-rod -s in each row.

In the course of class instruction children are directed to those elements
in the display which represent the multiplication factors. If we want them
to develop the ability to look at a given display and choose an efficient
mathematical model, we need to teach them to analyze situation structures
and detect relevant features of these situations. Our instruction should
include tasks that give them the opportunity to develop the ability to
analyze and apply the mathematical models which are available to them.
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A SCHEMA-BASED MODEL FOR TEACHING PROBLEM SOLVING

George Philippou and Constantinos Christou
Department of Education, University of Cyprus, Nicosia 1678

In this report, we develop a model for teaching mathematical problem solving based on schema
knowledge. The model makes extensive use of the graphical representation of problems to enhance
students problem-solving schemas. Instruction proceeds through four successive phases: the
recognition, interpretation, strategy development, and application. The design extends for about
twenty-four teaching periods that spread over ten weeks. The model was field-tested in Grades five
and six. The results presented in this report refer to students in Grade 5 and showed significant
differences between pre-test and post-test scores in favor of the experimental group. This is an
encouraging indication that the model is effective in improving students' problem solving ability.

Introduction and aims

In recent years problem solving has been constantly at the heart of mathematics
learning and plays a central role in mathematics education. During the past decades,
considerable progress has been made in understanding the mathematical and linguistic
structure of several types of word problems and many of the factors that affect their
difficulty were specified (De Corte & Verschaffel, 1987; Riley & Greeno, 1988;
Nesher and Hershkovitz 1994). Research has developed three different types of
"instructional models" for teaching word problems. Models of the first type
emphasize explicit teaching of the distinct phases of problem solving and some
general problem-solving strategies and heuristics (Polya, 1973). A second type of
models focuses on the linguistic structure of the problems to make it explicit and less
difficult, aiming at facilitating students to classify and connect the new to existing in
the memory schemata (Rudnitsky, Etheredge, Freeman, & Gilbert, 1995). A third
approach draws attention to problem posing i.e., to the process by which pupils are
guided to develop understanding by actively working out given information to
synthesize their own problems (NCTM, 1989). These efforts have done little to
improve pupils' ability to solve mathematical problems (Lester, 1994); word
problems continue to be the cause of frustration to teachers and students alike.

Though schemas knowledge is expected to enhance problem solving ability,
Cooper, Baturo, and Dole (1998) found that instead of the expected schema based
classification, proficient solvers of percent problems used computational proficiency.
Marshall (1995) developed a comprehensive proposal for teaching and assessing
problem solving, which is grounded on schema theory and the acquisition of basic
schemas by the learners. Our goal was to develop and field-test an instructional
approach of problem solving by extending Marshall's ideas to encompass in an
integral form the basic characteristics of the three instructional models mentioned
above. Furthermore, the proposed model incorporates some of the ideas of concept
mapping which have been used successfully in language, arts, and social studies for
years, as a way to teach students how to organize information in these subjects.
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Theoretical background

From a developmental perspective, children's thinking about problem solving is part

of a more general way of knowing. Of particular relevance to this research are the

schemas proposed by Marshall (1995) that form a major foundation for problem

solving in the primary grades.

"Schema" is a Greek word with multiple meanings most of which derive from Plato

and Aristotle. The literal meanings of schema include form, figure, shape and

diagram, while the metaphorical meanings refer to a means of organizing
characteristics that might be used as frameworks unifying objects of the same

structure. Marshall (1995) argues that the two Alain dimensions of the construct of

schema focusing on memory and action might be reconciled. The schema is structured

by our experience and it also structures it. Though we do not fully understand how

memory works, schema is one means by which related information is retained in
human mind. Schemas from the same domain are connected to each other and they

are frequently displaced as networks of cohesive units. Thus, schema may be thought

of as a storage and consequently retrieval mechanism.

Figure, the literal meaning of schema, is a geometrical representation of
information. Figure understanding is an expression of problem thinking and, as such,

it is a natural function of the human mind. It is a powerful visual technique, which
provides a key to understanding the structure and the linguistic forms of a
mathematical problem and helps students to construct understanding of mathematical
problems, clarify their thinking, and justify their ideas.

The first steps toward a successful solution of a problem involves
understanding the semantics of the problem, producing a mental representation, and
relating this structure to existing schemata; a solution plan can only subsequently be
formulated. Mayer (1987) breaks down the phase of problem representation into
problem translation, which involves converting each sentence into an internal mental
representation, and problem integration, which involves combining the information
into a coherent unified structure. The final outcome of repeated similar problem
experiences is the formation of a relevant mental schema, which subsequently
becomes part of the solver's repertoire. Relating a new problem to an existing schema,

the solver analyzes the features of a problem by transcribing the main ideas with the

purpose to learn through organizing his thoughts. A problem schema could function

as- a means to describe and classify the elements of a story problem and hence
conceptualize the relationships and connections among them. In other words, the
problem schema serves as a teaching and learning activity.

The real value of mapping a problem onto a schema lies in the visual
representation of the relationships among the elements of a word problem. Via this
tool, the linguistic form of the problems is explicitly depicted and is visible to the
students constructing the maps as well as to the teachers. A student-constructed
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schema is the "hard copy" of his/her understanding of the syntax and relationships of
the problem.

The instructional process leading to problem schemata constitutes a practical
form of analyzing (conceiving) the particulars of the problem and next connecting
(integrating) the parts into a holistic mental representation. Schema construction may
be viewed as a natural function of the human mind, it is a process of transforming the
script into a more tangible graphic form, which may provide a key to understanding
the mathematical structure of the problem. Schema serves as a vehicle for developing
problem solving abilities, offers pupils an opportunity to encounter various linguistic
forms and situations. It helps pupils to construct deeper understanding of
mathematical problems, clarify their thinking, and justify their ideas. It further
provides teachers and students a useful tool to monitor progress of students'
understanding of the process. The schema enables students to investigate their own
solutions, and it allows them to feel successful at the end of the lesson, as long as
they have tried valid strategies. Problem schemas may lead to rich discussions among
students, as they explore relationships among the pieces of information comprising a
problem, clarify misconceptions, and develop understanding in a meaningful way.

An overview of the intervention program.

A number of instructional programs emphasizing problem solving have been
developed in recent years (Lester, 1994; Nesher and Hershkovitz 1994). For the
most part these programs encouraged an active role for both students and teachers,
promoted the learning of problem solving strategies, and drew attention to solving
problems of different schemas. In addition to these characteristics, the present
program had the following characteristics:

It focused on the schemas and diagrams of arithmetic word problems based on the
work reported by Marshall (1995).
It emphasized extensive experience with word problems by asking students to
identify the essential parts of a story, specifying the complete and incomplete
elements of the problem.
It emphasized the development of students' abilities to recognize, apply, select
and create a schema.
It incorporated a specific teaching strategy for problem solving by integrating the
diagrammatic representation of a problem.

According to the main targeted abilities the problem solving experiences were
organized in four distinct though overlapping phases: The identification or recognition
phase, the elaboration or interpretation phase, the strategy planning phase, and the
application or execution phase.

Phase 1: The identification of the main elements and features of a problem is
the most important knowledge for schema activation; it is this understanding that
contributes to the initial recognition of a situation or a story. The structure of each
category of word problems involves some essential features that are repeated in all



similar situations and problems. Thus, pattern recognition occurs as a result of the

simultaneous cognitive processing of many features (Marshall, 1995). The objective

of this phase was to help students develop the basic identification knowledge. The

students were expected to learn at this phase that there are four basic problem-

situations (change, compare, group, and analogy schemas), and to identify the

essential nature of each schema. To this end, during the first few lessons students

were introduced to problems that underlie the four basic situations and were asked to

discuss the salient features of each situation as well as the relationships among the
elements of the problems. After all the situations had been introduced students were
encouraged to identify problems and classify them into one of the four schemas.

Phase 2: The elaboration knowledge contains discussion of the main
characteristics or features that are essential for the development of each one of the
specific schemas. The students explain in their own words the details that are distinct

to each schema. Through the elaboration knowledge, the students were expected to

create relevant mental models about the problems. The identification and elaboration

knowledge constitutes a framework that allows students to form a hypothesis about
the schema into which a problem belongs, and tests it.

During the second phase teachers introduced the idea of representing the
relationships of problems through a diagram aiming at helping students develop the
elaboration knowledge. A schema diagram used in the study for the change problem
is shown in Figure 1. Each schema can be represented in its own unique way. Thus,
teachers spend about lessons on each schema discussing with students the three
necessary components of each diagram. A broad description for each part of the
diagram was undertaken so that students perceive what the shapes represent in each
schema and what is the function of the arrays (see Marshall, 1995). Several examples

were treated in the classroom, to help students understand the various situations that

arise according to which part of the problem is the unknown. Both phase 1 and phase
2 dealt with one-step word problems to acquaint students with the structure of each

schema

Initial stage

Transfo-
rmation

Figure 1: Diagrammatic form of the Change schema

Phase 3: The evaluation of the hypothesis is the result of the process of elaboration.
The planning knowledge refers to ways through which students make decisions about

the schemas that are appropriate for the solution of the problems at hand. Phase 3,
which is the planning phase, involved students in two-step word problems, which are
combination problems. Instruction in this phase focused on the need to identify the
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two situations that compose each two-step problem and on the way each problem can
be mapped. Given the presence of two situations in a single problem, the students are
expected to acquire the necessary knowledge for selecting which one to examine first
and to examine how two situations are related within a problem. Figure 2 illustrates
the instruction for one two-step problem, which involves two change schemas. The
two diagrams emphasize that one of the values from the first situation will of
necessity be part of the second situation. This is graphically demonstrated by drawing
both diagrams and linking the parts that contain the same value with an arrow. This is
the most crucial phase, since the students must acquire the skills needed to formulate
a plan of action (about twelve lessons were devoted to this phase).

Figure 2: Diagrammatic form of the Change-Change schema

Phase 4: The execution or application knowledge consists of the techniques and skills
that are necessary for carrying out the selected schemas. In the case of word
problems, the execution knowledge is limited to the four arithmetic operations of
addition, subtraction, multiplication and division. During this phase students
developed their ability to execute the appropriate operations to give reasonable
solutions to the problems.

Procedure

We used an experimental-control design. The subjects were 310 fifth graders from ten
intact classes. Five classes of students comprised the experimental group, and the rest
comprised the control group. The study took place during the first term of the 1997-
98 school year. The intervention program was taught to the experimental classes
during the regular mathematics sessions allocated in the weekly timetable. During the
same period the control classes continued to follow the regular instruction on the
same problems as those involved in the experimental program.

The teachers who taught the experimental classes had a short course at the
University just to get acquainted with the basic constructs of schema theory, and the
way they were expected to work with their students. All the classes were given the
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same pre-test and the same post-test, which measured students' ability in solving one-

step and two-step word problems. These tests contained items designed to measure
learning as well as transfer of knowledge. The pre-test and the post-test comprised of

two parts each, the first one consisting of ten one-step word problems and the second
one consisting of twelve two-step word problems The subjects completed a retention

test one month after the post-test. All writings of the pupils during these lessons were
collected and will be analyzed in a later stage. However, the results that follow refer
only to the twelve two-step problems of the pre and post-tests.

Results

For the analysis of the data a structural means model was used. The model is a
representation of the two samples of students; the first sample is the experimental

group, while the second is the control group. Figure 3 shows the path diagram used in

the present study, where the pretest scores can be conceived as indicators of the latent

variable F 1 . Ability at post-test was represented by the latent variable F2, which was

also a function of the ability at the pre-test. The right part of the figure gives the
constant V999, which was presumed to affect each of the twelve two-step problems
in the pre and post-tests, reflecting their intercept (see Bentler, 1995). V999 also
affects directly the factors F1 and F2, representing the intercepts of these factors.
Factor loadings, factor regressions, and variable intercepts were constrained to be
equal across experimental and control groups. Factor intercepts were fixed at 0 for
identification in the control group, and were free to be estimated in the experimental

group.

Figure 3: The Structural Means Model used in the Study

As reflected by the iterative summary, the solution converged quite smoothly, and the
goodness-of-fit statistics showed the model to be a very good fit to the two-group
data, as indicated by a CFI (Confirmatory Factor Index) of .934. To answer the
primary question of whether the latent construct means for the two groups are
significantly different, we turned to the construct equations, which are presented in
Table 1. The parameters of interest in answering this question were the factor
intercepts that represent the latent mean values. Because the control group had their

I 22 7 4 -62



parameters fixed to zero, we concentrated solely on estimates for the experimental
group (Table 1).

The regression of F2 (post-test scores) on F1 (pretest scores) was significant
indicating that the experimental group did better than control group on the post-test
(.971, Z=10.036). The experimental group students were higher in pre-test to begin
with, when .078 was compared to control's value fixed to zero. However, the
difference between the two groups at the pre-test was found to be non statistically
significant, (Z=0.875) and thus we could conclude that both gimps were initially
equal in ability to solve problems at the beginning of the study. Thus, the
experimental program produced a positive significant impact (.275) on students ability
to solve word problems (Z=2.124).

Table 1

Construct Equations with Standard Errors and Test Statistics

Fl = .078*V999 + 1.000 D1
.089 (SE)
.875 (Z -score)

F2 = .971*F1 + .275*V999 + 1.000 D2
.097 .129 (SE)

10.036 2.124 (Z -scores)

Conclusions

We began with the premise that schemas are basic mechanisms for learning and
therefore, instruction ought to facilitate students develop strong schemas (Marshall,
1995). The proposed instructional model for problem solving was based on schema
theory. Throughout the instructional phases students were encouraged to construct
meaning and knowledge by analyzing and synthesizing the problem text, on the basis
of schematic representation, and to develop the ability to work with various linguistic
forms and become acquainted with the mathematical structure of relevant problems.
Much of the process involves visual representation that enhances connectivity of the
common characteristics of the problem. Thus, we may hypothesize that individual
student and group activity with visual forms can anchor the schema development. The
schematic representation of a problem could be used as a means of getting pupils
make sense and communicate their understandings to make it open to inspection and
scrutiny.

The results of the present study provide us an encouraging indication that the
instructional model for problem solving based on schema theory, is effective in
improving students' problem solving ability. The study provided evidence that the
students in the experimental group acquired knowledge about problem solving in a
rather short period of time. Another advantage of the model is the possibility to
monitor student's abilities and weaknesses. By simply looking at the drawing
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constructed by the student one can pinpoint misunderstandings about the
mathematical relationships in the problems, possible misinterpretation of concepts,
deficiencies in the problem representation or the strategic planning of a solution. For

example, the teacher can identify the pupils who are unable to solve a problem of a
specific structure when they use the inappropriate figure.

In light of the differences in performance observed between the experimental
and control groups, pertinent research questions need to follow up. First, further
analyses of the data will follow to provide us with insight of what categories of
problems contributed most to the development of students' ability to solve problems.

Second, which of the four phases was of greater importance in developing the

problem schema. In addition, several points might be examined concerning
involvement and relevant characteristics of participant teachers.
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This paper describes an analysis of student constructions of formal theory in
university mathematics. After a preliminary study to establish initial categories
for consideration, a main study followed students through a twenty-week Real
Analysis course, interviewing individuals at regular intervals to plot the
growth of their knowledge construction. By focusing on the students
constructions of definitions, arguments and images, two distinct modes of
operation emergedgiving meaning to the definitions and resulting theory by
building from earlier concept images, and extracting meaning from the formal
definition through formal deduction. Both routes may be successful or
unsuccessful in constructing the formal theory.

Advanced mathematical thinking is so vast an enterprise that different individuals focus
on different kinds of activities. One mathematician might focus on "thinking hard about
a somewhat vague and uncertain situation, trying to guess what might be found out, and
only then finally reaching definitions and the definitive theorems and proofs." Another
may extend formal theory already developed by "getting and understanding the needed
definitions, working with them to see what could be calculated and what might be true to
finally come up with new 'structure theorems'," (MacLane, 1994, p. 190-191). The
division of labour between those "guided by intuition" and those "preoccupied with
logic" was noted by Poincare (1913), citing Riemann as an intuitive thinker who "calls
geometry to his aid" and Hermite as a logical thinker who "never evoked a sensuous
image" in mathematical conversation (p, 212).

So how can we expect students to fully understand all the processes of advanced
mathematical thinking when mathematicians themselves must specialise in only part of
the total enterprise? This research project began with a preliminary study analysing
written work and interviews with students to establish basic categories for analysis. It
was founded on theory in the literature of advanced mathematical thinking (e.g. Tall,
1991, and subsequent developments). Few of the students concerned proved to have a
grasp of the formal theory, exhibiting imagery already studied in the literature. The main
study was designed to cover a wider spectrum of students, including highly successful
ones. Students were interviewed at intervals on seven occasions through a twenty week
first year course on Real Analysis. The methodology uses a form of theory construction
following the style of Strauss (1987), Strauss & Corbin (1990). It begins by reviewing
data and attempting to categorise it, re-evaluating the categorisations to fit the data
collected until it falls into a natural structure that is grounded in the available data.
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Preliminaries

A preliminary categorisation was considered in which students:

1. become acquainted with the definition,
2. use the definition to deduce results,
3. use the results in further theorems to build up systematic theories.

This may be summarised under the successive headings:

1. DEFINITIONS,
2. DEDUCTIONS,
3. SYSTEMATIC THEORY.

However, the cognitive processes proved to be more intimately interconnected. To truly

understand the nature of a definition requires the use of deductions to construct its

implications. There is therefore an important interplay of the form

DEFINITIONS <> DEDUCTIONS.

To take account of this observation, Bills & Tall (1998) defined:

A (mathematical) definition or theorem is said to be formally operable for a given individual if

that individual is able to use it in creating or (meaningfully) reproducing a formal argument.

In a preliminary study, Pinto (1998) analysed the final assessments of twenty student

trainee teachers. Only three based any arguments on definitions and only one used a

formal definition in an operable manner. The remainder gave informal justifications
often based on a particular case. To take account of this spectrum, the heading
DEDUCTIONS was modified to ARGUMENTS to include all types of justification, and the

main study focused on DEFINITIONS, DEDUCTIONS and underlying MISCONCEPTIONS.

The negative tone of the third category was later modified to focus on:

DEFINITIONS,
ARGUMENTS,
IMAGES.

The first two headings were analysed in turn with each being related to underlying
concept images as follows:

DEFINITIONS <> ARGUMENTS

IMAGES

The students chosen for the main study were selected using a test designed to provide a
full spectrum of students following a first year pure mathematics course including
potential high and low achievers. The students were interviewed on seven occasions
throughout a twenty-week course. All interviews were transcribed from the tapes and
significant episodes selected to be coded and organised into a classification system. The
initial coding system followed the plan of themes highlighted by the exploratory study:
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DEFINITIONS given by each student were classified as descriptive, correct
formal or distorted formal,

ARGUMENTS were categorised as being based on concept images or based
on the formal theory presented,

IMAGERY, as evoked by the students, was classified as to whether it was
apparently constructed from the formal theory or not.

Given the differences between the informal approaches of the students in the preliminary
study and the desired formal theory, the responses initially were classified as follows:

Approach: DEFINITIONS ARGUMENTS IMAGERY

informal

formal

descriptive

formal
(correct or distorted)

based on concept
image

based on formal
theory

not constructed
from definition

constructed from
definition

'' Table 1

This analysis, however, was revised when two distinct approaches were found to occur:

giving meaning to the concept definition from concept imagery,

extracting meaning from the concept definition by making formal deductions.

Although reminiscent of the earlier-mentioned approaches of research mathematicians,
they differ because students are given the definitions as starting points. However, there
are certain parallels. Giving meaning involves using various personal clues to enrich the
definition with examples often using visual images. Extracting meaning involves
routinising the definition, perhaps by repetition, before using it as a basis for formal
deduction. This led to a new categorisation (table 2) where giving meaning could lead to
formal theory or fail by remaining image-based, while extracting meaning could be done
either reflectively or mechanically, leading again to a spectrum of success or failure.

Approaches Concept Construction

Strategies Characteristics DEFINITIONS ARGUMENTS IMAGERY

Giving meaning 1. Reconstructing old 1. Formal: 1. Based on 1. Reconstructed with
(building from knowledge to give correct thought the formal theory
informal ideas) new distorted experiments: 2. Old images retained

2. Interpreting new 2. Descriptive: formally 3. New ideas added as
knowledge in terms general presented extra information
of old prototype image-based

4. Conflict between
specific 2. Rote-learned old and new

Extracting Routinising: Formal: Based on formal Based on formal
meaning reflective correct theory: theory:
(building from mechanical distorted meaningful compartmentalised
formal theory) where either may remain

compartmentalised or later
be linked to old knowledge

rote-learned linked

Table 2



Students building operable definitions through giving and extracting meaning

In the main study some individuals used both approaches at different times, but many

showed a distinct preference for one approach. For instance of two highly successful

students, Ross was categorised as an extractor of meaning and Chris, a giver of meaning.

In his first interview, Ross wrote down the definition as follows (Pinto, 1998):

(
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16. vtq 14 ; 14 LI < (Ross, first Interview)

He explained that he coped by:
"Just memorising it, well it's mostly that we have written it down quite a few times in lectures

and then whenever I do a question I try to write down the definition and just by writing it down

over and over again it get imprinted and then I remember it." (Ross, first interview)

Throughout the course he constantly attempted to prove results from formal definitions,

seeing links with earlier established results until towards the end when he began to slip

behind the pace of the lectures. At such times he might consider imagistic ideas but then

always attempted to base his ideas on extracting meaning from the definition.
Chris, on the other hand, used imagery to support his thinking, drawing pictures to

represent his main ideas. He wrote down the limit definition as he drew a picture, saying:

"I don't memorise that [the definition of limit]. I think of this [picture] every time I work it out,

and then you just get used to it. I can nearly write that straight down." (Chris, first interview)

n L

a, ti-,4 ce-i,,-62. Ai nv
< e efey-

"I think of it graphically ... you got a graph there and the function there, and I think that it's got
the limit there ... and then once like that, and you can draw along and then all the ... points
after N are inside of those bounds. ... When I first thought of this, it was hard to understand, so I
thought of it like that's the n going across there and that's a. ... Err this shouldn't really be a
graph, it should be points." (Chris, first interview)

The slip in drawing a curve revealed him concentrating on more important ideas and
(temporarily) neglecting others. He always seemed to be negotiating with his ideas. For

instance, he considered an alternative definition in which increasing N caused e to
become small before rejecting it and settling on the standard form. He seemed to enjoy

the tension of challenge and was constantly giving meaning from his concept images
whilst reconstructing them to take account of the formal theory.

Both students could use the definition of limit in an operable manner in different
ways. For instance, when asked about "non-convergence", Ross wrote down the limit

definition and negated the quantifiers, while Chris wrote down the definition immediate-

ly as if thinking the ideas through in a mental experiment. Ross practised and thought

through his proofs formally, Chris wrote formal proofs linked to thought experiments.
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Less successful students

Many students on the course had difficulty with definitions. Robin tried rote learning:
"It's just memorising the exact form of it, making the actual idea sort of understandable ..."

Despite this, he could not write the definition of convergence accurately:

tgle
sesvemt 614) leActr 4 es411 4 14, er3.4 At 6 iW

1-.4. l a., < y9/0 vfile, 4 (Ros5, i nierviml

He attempted to extract meaning from the definition, but was unable to remember it
accurately, let alone make it operable. For instance, in one problem he set N=5 without
mentioning any relationship between £ and N.

Colin was also unsuccessful with the definition, writing:

.eeixez ,t/ ( < 6,"

He often attempted to support his ideas using a diagram:

ni.
z

(Colin, first interview)

(Colin, first interview)

However, his pictures were highly specific and seemed to imprison him in their implied
detail rather than provide the flexibility of thought available earlier to Chris. For
instance, he denoted the limit by 1 yet wrote £ instead of /+e, and considered the limit as
a lower bound (a common concept image noted by Cornu, 1981, 1991). He explained:

".. umm, I sort of imagine the curve just coming down like this and dipping below a point
which is ... and this would be N. So as soon as they dip below this point then ... the terms
bigger than this [pointing from N to the right] tend to a certain limit, if you make this small
enough [pointing to the value of a" (Robin, first interview)

Neither student could cope with non-convergence. Robin wrote:

Se Lei a, Les 461- 4'J 4, 14 ;af
?0 re e,ti.)-h- ot. fesicAp °A-leg,

.4 6,,
L f Paikeve/ aq , tit/ (Robin. second intEry iew)
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He leaves the original quantifiers unchanged, and only modifies the inner inequality

Ian LI < e incorrectly to give Ian LI > E. He is unable to treat the whole definition as a

meaningful cognitive unit (Barnard & Tall, 1998), focusing instead only on the inner

statement as something which he can attempt to handle.
Meanwhile Colin, said:

"Umm ... I would just say there doesn't exist a positive integer because we can't work it out ...

no ... you cannot find an integer N ..."

and wrote:

e-e- 42-C-;44- ate- E .e.riare- >, jam..

(Cohn, second interview)47o-C14/-e Lc-114.-t

Both students used pictures and symbols in their work, giving meaning on some

occasions and attempting to extract it from the definition on others. However, Robin's

main preference was to extract meaning from definitions which were regrettably often

erroneous, whilst Colin preferred to attempt to give meaning using concept images

which were too limited to build the general concept.

Other unsuccessful approaches

Two other classes of students were consideredusers of mathematics, including those

studying physics, statistics, economics, etc and future teachers of mathematics. Some of

the users of mathematics were successful, others were more interested in mathematics

only for its use, having little interest in formal proof which appeared too complex, even

alien. Rolf (an applied mathematics student) wrote the definition as:

(q.1) > L if
la,r

>o
Cliff (a statistics student) wrote:

eta' a"

(Rolf. first interview)

serAAX.A. put..a/a. E 1 0 . °And 14 6.1) a (1-°Siiote 'it4er

V (Cliff, first interview)

Both definitions are distorted and restricted to the inner statement, with total absence of

the two external quantifiers and the functional relation between c and N. Rolf saw the
definition as a process, which he attempted to memorise, and use as a criterion to check

if a sequence is convergent or not. He tended to try to extract meaning from it, but failed.

Cliff seemed to think of it as a dynamic description of convergence which he imagined
occurring in time as N increases and c decreases. He attempted to give meaning but is

unable to do it successfully. Given their inadequate definitions, neither student could

define non-convergence. Both subsequently resorted to rehearsing routine computations

requested in previous examinations and tried to rote-learn them to pass the course.
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The student teachers in the main study all replicate the imagistic meanings of those in
the preliminary study. They have dynamic images of convergence with terms getting
"arbitrarily close" which have often been reported in the literature (Cornu, 1991). For
instance, Laura evoked many personal images for the idea of a limit with built-in
conflict:

"The number where the sequence gets to, but never quite reaches."

Let an be the sequence and L is the limit which it tends to. Then when some initial values are
placed into the formula of the sequence the answers will never reach the value of L (nege-e or
positive).

"... oh, yes, I put 'never reach', and it can reach, and that will be the limit of it. ..."

"... But it won't never get bigger than the limit. The limit is like the top number it can possibly
reach. And I put never reach." (Laura, various sayings, first interview)

She was unable to write down the definition in any formal sense, although she had
mental pictures that gave her imagistic meaning for some of the theorems. Any
justifications she made involved attempting to give meaning using images. She was
unsuccessful with the formal aspects of the theory as were all the other teacher-training
students. Essentially, the idea of formal proof in analysis was alien to their day-by-day
routine in teaching practice. As Laura explains:

"I'm on another planet when it comes to Analysis. It seems just completely surreal to me. ... it
sparks in a lot of people in the group ... a lot of people. I don't think there is anybody who
understands it. And a lot of people are getting very frustrated, with it. I just want to throw books
around the room and ... get up and leave." (Laura, first interview)

Summary

In this paper we began by noting that mathematicians use different cognitive techniques
to generate new theorems. Some work with formal definitions, carefully extracting
meaning from them by deducing from them and gaining a symbolic intuition for
theorems that may be true and can then be proved. Some have a wider problem-solving
approach, developing new concepts that may be useful before making appropriate
definitions to form a basis for a formal theory.

Students learning mathematics have a different problem. They come from elementary
mathematics, deeply ingrained in the computation of arithmetic and the symbol
manipulation of algebra using standard algorithms to solve certain types of problems.
The forms of proof at this level (often called "demonstration" or "justification") usually
either involve algebra to give a symbolic description for a general arithmetic statement,
or some kind of thought experiment focussing on a "typical" or "generic" case.

The transition from elementary mathematics to formal proof is a huge chasm for many
students whose underlying concept image is unable to sustain the formalism. Many
(including the majority of those in our sample preparing to teach mathematics) have
informal images which dominate their thinking. Some remain entrenched with their old
images and those that attempt to use the definition may only be able to cope with part of
the structure, giving a personal definition that is not formally operable.



Success comes to those who achieve it in (at least) two ways, either giving meaning by

working from the concept image, or extracting meaning by working formally with the

definition. These two techniques can each be successful or unsuccessful. For the

successful student, giving meaning involves constantly working on various images,

reconstructing ideas so that they support the formal theory. The successful student who

extracts meaning from the definition has a different task of building up a formal image

based mainly on the proof activities themselves.
Those who fail to cope with formal proof but try to give meaning from their concept

imagery may be able to imagine thought experiments which give generic proofs and an

intuitive insight into some of the ideas, others may fail completely. And become
extremely frustrated. Those who fail to extract meaning are unable to cope with the
complexity of the definitions and be totally confused. A fall-back strategy to attempt to

pass exams is to learn proofs by rote.
Teaching and learning formal proof remains an important component of theory

building in advanced mathematical thinking. For future mathematicians it is essential.

However, in using different approaches through giving or extracting meaning involves
quite different sequences of construction. Giving meaning from concept images requires
ongoing reconstruction of personal ideas throughout the course to focus on essential
properties of the definition and to construct an integrated formal theory. Extracting
meaning builds up ideas mainly from formal deductions with fewer links to other
concept images and so avoids some possible conflicts at the time. However, this formal
approach has its own difficulties and may end up with a formal theory unconnected to
informal imagery. These different developments suggest that it may not always be
possible to deal with different student approaches within a single teaching method.

The most serious finding is the negative effect caused by teaching formal proof in
analysis has on future teachers which may have an implicit effect on their teaching of
mathematics to the next generation.
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DISCONTINUITIES REGARDING THE SECONDARY / UNIVERSITY
TRANSITION :THE NOTION OF DERIVATIVE AS A SPECIFIC CASE

Frederic Praslon, Equipe DIDIREM, University Paris 7

ABSTRACT :

The mass phenomenon regarding university teaching today makes high

school/college transitional problems bigger. We carry out a didactic analysis of

these multiform problems in a specific mathematics field i.e. the analysis, and

concerning a more precise topic, the derivative. A parallel study on the way each

teaching institution deals with the derivative notion, andon student's personal
relationship coming out from them, highlights the existence oftwo very distinct

cultures. Finally, we will study the consideration of this institutional break and its
management through adapted workshops.

I. INTRODUCTION

The mass phenomenon of university teaching as well as new requirements imposed to
universities make the transition between high school and college a crucial issue today
(ICMI, 1997). This transition involves very different facets, discontinuities and
changes, and not only academic ones. For instance, one cannot deny that the
evolution in students' social status and life plays an essential role. From an academic
point of view, forms and contents of knowledge are affected by this transition, as well
as assessment modes and relationships between teachers and students. In our research
project, we address these transition issues from a didactic perspective, by focusing on
one mathematical domain known as playing an essential role in the transition failure :

Calculus. Moreover, in this mathematical domain, we focus on one specific area : the
notion of derivative which, in France as in many countries, is the core notion of high
school Calculus courses. Our aim is to understand the discontinuities and changes
occurring within the high school/college transition regarding this notion and its
environment, the way they are dealt with in standard university teaching practices
with the corresponding cognitive effects on students. It is also to build didactic
designs which could help to make both teachers and students more sensitive to these
discontinuities and able to face them more effectively.

In this report, we will first present our theoretical frame and methodology. Then we
will briefly describe the multidimensional grid we have built in order to analyse the
institutional and personal relationships linked to the notion of derivative and its
environment, before focusing on the analysis of one specific task proposed to



students. Finally, we will analyse the results obtained through this specific task when
considering the more general outcomes of the research project.

II THEORETICAL FRAME AND METHODOLOGY

Hi Theoretical frame
The research project relies on different theoretical frames. At a global level, it relies
on the anthropological approach of didactic phenomena developed by Y.Chevallard
(1991). This is specially useful for one major reason : we are here studying the
transition between two different mathematical cultures : high-school culture and
university culture. Chevallard's approach stresses the relativity of mathematical
knowledge and the fact that the personal relationship such or such individual
develops with respect to such or such mathematical object is shaped by the
institutional values, relationships and norms the institutions he or she lives in,
develop with respect to that object. These are conveyed by mathematical practices or
"praxeologies" which, according to Chevallard, can be analysed in terms of tasks,
techniques (the word bearing here a very general meaning), technologies which have
to be understood as discourses with explanatory or justificative aims, and finally
theories which can be seen as technologies of the technologies. In order to understand
discontinuities and changes, we have thus to analyse the praxeologies relevant to both
cultures concerning the derivative notion, in a very precise way. Another important
point is the following one: Chevallard stresses that the knowledge development
within one given didactic institution supposes what he calls the "routinisation"
(routine process) of some tasks and official techniques which tend to become
"naturalised", and then transparent to the actors of the institution.

At a more local level, we rely on different theoretical frames relevant to Advanced
Mathematical Thinking (Tall, 1991), especially to what is now known as the
"theories of reification" (Dubinsky, 1991), (Sfard, 1992) as we make the hypothesis
that the transition between process and object views of mathematical concepts is a
key point in the high school/college transition process in Calculus. We also rely on
some epistemological distinctions introduced by A.Robert concerning the
generalising, unifying, formalising dimensions of concepts or relationships to
concepts at stake at university level and the cultural gap these epistemological
characteristics necessarily introduce in the transition. We also rely on a recent
synthesis of the same author where she tries to describe in a very detailed way the
characteristics of mathematical practices at a university level and situates the latter
considering high school mathematics culture (Robert, 1998).

When looking at Calculus and results obtained so far in this area more specifically,
we refer to two articles recently published by M.Artigue (Artigue, 1996, 1998) which
offer an integrated view of the different perspectives mentioned above, of their
respective potential and limits as well as a synthesis of the results each of them was
able to produce up to now.

4 -74

1 239



II.2 Methodology

Relying on this theoretical frame, our methodology aims at investigating the
discontinuities and lacks in the high school/college transition, both from an
institutional and personal points of view. For this purpose, we have built a
multidimensional grid allowing us to analyse in a detailed way the practices
involving the notion of derivative, both at high school level and during the first
university courses.

Regarding the institutional dimension, this multidimensional grid has then beer used
in order to analyse systematically the tasks proposed to students in most current
French textbooks for grades 11 and 12, and Baccalaureat assessments for scientific
sections. It has then been applied in the same way with worksheets used with students
in their first semester at university in Calculus courses, in different universities.

As regards the personal dimension, students' relationships with the notion of
derivative has first been investigated through a written test taken at the entrance at the
university by students. The tasks elaborated for this test cannot be considered as
familiar ones for these students. Taking into account the institutional analysis, they
appear more as transitional tasks between the two mentioned above cultures.
Secondly, we have designed and experimented specific workshop sessions where
students, working in small groups, have to face mathematical problems representative
from the main discontinuities previously identified (status and role of definitions, role
of conjectures and counter-examples, work on classes of functions defined by general
properties... ). In the research project, these sessions have a diagnostic role, helping
us to understand the difficulties met by students as well as their resources and
evolution all along the academic year, but they also want to be the source of the
engineering part of the research project mentioned above.

Validation is classically based on the triangulation of the results obtained through
these different methodological approaches.

III. THE MULTIDIMENSIONAL GRID OF ANALYSIS

The analysis of the practices involving the notion of derivative is organised around a
multidimensional grid of analysis of the tasks arising at least in one of the two
cultures. Tasks are firstly classified according to themes, and for each theme the
analysis is organised around five main components :
a) autonomy given to students in the resolution (eventual decomposition into

subtasks, given hints... ),
b) status of the notion of derivative in the task (according to the "tool" and "object"

dimensions, the "process" and "object" dimensions... ),
c) nature and context of the task (mere application of standard techniques, technical

adaptations possibly required, level of generality, degree of reflexivity...)
d) settings and flexibility between settings required by the resolution of the task
e) semiotic registers present in the text of the task and/or required by its resolution.



For each of these components, both qualitative and quantitative data are collected.
Moreover, when using this grid for analysing textbook tasks, for each theme (for
example, the "finite increments inequality"), we define a rate of repetition "t" for the
corresponding tasks. This rate allows us to measure what kind of tasks and techniques
generates important and specific training in a given institution and identify important
differences and lacks between tasks, even when they seem part of the two cultures.

IV. FOCUSING ON ONE SPECIFIC EXAMPLE

In this part of the report, as announced above, we focus on one specific task proposed
to students in the entrance test.

1V.1 Description and a priori analysis of the task

This task formally introduces the notion of symmetric derivative, and explores its
relationships with the standard notion of derivative, firstly on one specific example :
the periodic function (period 1) defined on [0,1[ by the expression f(x)-----x(1-x) then in

general. More precisely, they are asked to analyse the continuity and differentiability
of the function f and calculate (if they do exist) its derivative and symmetric
derivatives at the following points : 0, 1/2 and 'A. Then they are asked to examine the
three different following conjectures :
i) Every par function defined on R has a symmetric derivative at 0.
ii) Every par function defined on R has a derivative at 0.
iii) If one function, defined on R, has a derivative at x0, then it necessarily has also

a symmetric derivative at x0, and fs'(xo).= f '(x0)-

Note that students are also given the following graphical representation of the
function f. In this text, due to space restrictions, we focus on the first part of the task,
the second part will be addressed in the oral report.

Graphic scheme: 0 4.%

This task is far from being a familiar task at high school level : it deals with a
function which is only implicitly defined through an algebraic expression, with a
new notion formally introduced, it includes general conjectures... So, from students,
it requires a kind of mathematical reflexivity and practice which goes beyond
standard institutional relationships to the derivative. Nevertheless, this task can be
considered at the interface between high school and university culture, at least for
French scientific students : it doesn't require heavy technical work, it begins with the
exploration of some particular case, which can help the transition to the more general

part, and even provides a counter-example, students just have to identify as such.
Moreover, the given graphical representation can help students to visualise the

4 -76

1241



properties of f : continuity, non differentiability for x=n with nEZ, parity, and thus
favour a more economical management of the necessary calculations in proofs. Let us
add that one of the aims of this task is therefore to test the level of cognitive
flexibility between the algebraic and graphical settings, in a situation where
information in the two settings is simultaneously given.

Nevertheless, as mentioned above, this task presents serious difficulties and we
would like to point out some of those ones relevant to the first subtask :

a) In order to study the differentiability of f, it is necessary to come back to the
definition of the derivative, definition which, at high school level, has more a
cultural status than an operational one. In order to succeed, students also have to
overcome the obstacle associated with the possible amalgam between f and the
polynomial function P defined by P(x)=x(1-x). So they have to clearly distinguish
f from its algebraic expression on one particular interval and consider it as a
specific object. We can reasonably expect that a lot of students entering the
university are not able to overcome this obstacle and will say that the function f is
continuous and differentiable over R, as it is given by a polynomial expression on
[0,1[ and periodical. In the following, we will label such arguments as those of
level 0.

b) Students may be aware that there is a problem in 0 and try to develop a local
analysis, but unaware of the necessity of distinguishing right and left limits, taking
the same expression for negative and positive x, especially if there is a semiotic
trap : the bracket is closed in 0 in the definition of f. We will generally label this
kind of behaviour as a level 1 behaviour.

c) Students can be aware of the problem for integer values ofx and define conditions
for smooth connection, without using the notion of limit, still in a construction
phase, for instance by checking if f(0)=f(1) and f (0)=f (1) by using periodicity
and the given algebraic expression for f. No doubt that such a solution is not a
correct one but it seems to us unreasonable to expect that, with the scope of
experience they have, high school students can go beyond that point. We will label
such a behaviour as a level 2 behaviour.

d) As regards the specific calculation of derivative values asked for, we can expect
that students will correctly evaluate the derivative at '/2 and 'A , but also that a lot
of them will use the same expression 1-2x for the derivative in 0, falling into the
semiotic trap mentioned above. It will be interesting to notice if, in that case, they
denote some contradictions with the characteristics of the graphical representation
and, if so, how they manage them.

e) The calculation of the symmetric derivative values doesn't not obey the same
pattern. Students may be blocked by the formal definition which is given there and
unable to exploit it. Limit calculations at % and 1/4 , if they are undertaken, are not
beyond high school technical abilities, at 0 the result can be immediately obtained
if parity is used, but if not the calculation becomes more complex.
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f) The interpretation of the results obtained may raise specific difficulties : students
are faced with a new notion they cannot easily interpret; it seems to coincide with
the notion of derivative at '/2 and 1/4 , why such a discordance at 0 ? Students are
not obliged to be specifically confident in their formal calculations. It is only
through the second subtask that they are seriously required to adopt a reflexive
attitude.

IV.2 Main results obtained :

As far as the continuity and derivability of f are concerned, about 1/3 of the students
involved can be situated at level 0 (and in most cases they don't even invoke the
periodicity of f in their argumentation), 1/3 undertakes a local analysis at points 0 or
1 (levels 1 and 2), 1/3 develops a mixed approach (level 0 for continuity and 1 or 2
for the derivative, or less often the opposite way). 16% clearly develop a strategy
relevant to level 2. When there is some local analysis, the graphical point of view is
only evoked by 20% among students and it then acts as the essential argument, never

as a way of checking algebraic calculations. So the level of flexibility between the
two settings appear to be poor, in this specific context at least.

4) kc Yo 4.4,A ; P.NS S.Jv
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General procedure, level 0, expression of a typical high school "ritual":

As was anticipated, students massively succeed in calculating the derivatives at 'A
and '/4 (95%), see more easily the situation as a problematic one in 1 than in 0, as the
bracket is open in 1, and only use x(1-x) as an algebraic expression for f. Continuity,
which is a very marginal notion in French high school syllabus, is not dealt with in
the same way as differentiability, which is the notion at the core of high school
Calculus courses. Most students feel the necessity to come back to the formal
defmition of the derivative when checking the differentiability in 0 or 1 and 60% of
students distinguish between right and left limits in that case. No doubt that the
institutional role of functions such as the absolute value function plays an essential
role here. Nevertheless, the degree of familiarity with such functions is not enough to
make what we could call "the angular point icon" something operational in that
context and would allow them to overcome the difficulty generated by the limited
validity of the given algebraic expression.
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Visibly, students try to give some meaning to this unusual situation. This leads to a
diversity of strategies, which even if they don't succeed are not at all deprived from
interest and show that students have some mathematical resources, of course strongly
shaped by their mathematical field of experience in terms of functions, a very limited
one in terms of possible pathologies at the end of high school.

The same thing occurs with the notion of symmetric derivative. Unexpectedly,
students in their great majority are not blocked by the proposed formal definition.
The rate of success is even 75% for the calculations at '/2 and 1/4. The main error
reveals an inadequate relationship with the notion of "undetermined form" which
plays an important role in their relationship with the limit concept : obtaining the
expression lim 0/2h for fs'(1/2) some students declare that the symmetric
derivative cannot exist as 0/2h is an "undetermined form". But the calculation of the
symmetric derivative at 0 is only correct for 3% of students; in that case, 88% of
students calculate f(-h) by substituting h to h in the given expression of f, and thus
obtain the value : 1 for the derivative.

86% of students use the expression 1-2x in order to calculate f (0), obtaining f (0)=1.
26% of these had previously perceived the non differentiability of f in 0, by using the
definition or graphically, but visibly there is a cut for them between the familiar and
ritual calculation of derivatives, and the unfamiliar analysis of differentiability they
were asked for in the first question. The following excerpt clearly illustrates this cut:

Icol-
Ai-nti& .se, Co d t .o,u,14.121cit fem yjfaat4 411.11: 4144-
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Finally, the comparison between the two notions in that particular case remains
unproblematic for the majority of students as, due to the errors mentioned above, they
have found the same value: 1 for the two derivatives at 0.

V. CONCLUDING REMARKS

This example is quite representa6e of the strong tendencies we observed in the test
results and, beyond that, in the experimental part of the research. Results attest the
attempts made by students in order to adapt their mathematical resources to the
problematic and complex situations proposed to them in the test and in the
workshops. These attempts most often lead to oversimplifications, favoured by their
reduced field of experience. They also often lead to a disconnected treatment of
continuity and differentiability issues which becomes more understandable if one
takes into account the respective role of the two notions in the high school culture.
They also appear strongly dependent on the context as well as on the form of the
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questions themselves and, in spite of the obvious directions given in the syllabus,
they are poorly operational at connecting their different settings of mathematical
work (algebraic, graphical) and show little cognitive flexibility. Nevertheless, if we
consider that the proposed tasks are really out of their high school culture, that they
put at stake some important characteristics of the new relationships they will have to
develop with respect to the notion of derivative and more generally with respect to
Calculus at university, we have to consider these attempts, even clumsy ones, as very
positive starting points, sources of adaptation, potential for a didactic work. It doesn't
seem reasonable to think that the complex cognitive activities required here can be
mastered at high school level, even if they deal with simple objects. They have to be
seriously taken in charge in the high school/college transition, which cannot only be
seen as a transition from some experimental and pragmatic Calculus towards a formal
one. The institutional analysis we have developed in our research work clearly
demonstrates that it is not presently the case in most university courses. There is
some didactic gap and we hope that, modestly, our research work will contribute to
better understand how it could be didactically managed.
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THE ROLE OF PICTORIAL IMAGES IN TRIGONOMETRY PROBLEMS

Lisa Pritchard and Adrian Simpson

Mathematics Education Research Centre, Institute of Education
University of Warwick, Coventry, CV4 7AL, UK

Year 10 pupils were involved in two task-based, semi-structured
interviews after a short revision course on basic trigonometry. The tasks
explored the pupils' use of pictorial images in solving traditional
trigonometry word problems. This paper reports that a general pattern
of use was discerned in which pupils moved from different types of
diagram construction, to information extraction and finally to symbolic
manipulation with little subsequent reference to the image of the
trigonometric situation. The possible reasons for this unidirectional
picture to symbol flow are discussed in relation to some fundamental
difficulties in learning trigonometry.

Introduction

Trigonometry may be seen as the confluence of a number of streams of mathematical
difficulty. It is a topic area in which students first meet functions which are not direct
numerical manipulations of the functions' arguments: cos(30°) is not a direct
manipulation of the number 30. It is one of the first areas where mathematical objects
are given by definition: sine is given as the ratio of the lengths of the opposite and the
hypotenuse in a particular type of right angled triangle. Curriculum designers see it as
an area in which visual elements are naturally associated with word and symbolic
problems: questions with and without attached diagrams are interspersed from the
beginning of the topic. Problems often involve the abstraction of information from
'real world' situations: ships, buoys and lighthouses abound in trigonometric word
problems.

All of these mathematical difficulties are compounded by the difficulties pupils have
in moving flexibly between images of trigonometric situations and
algebraic/numerical symbolism.

In this paper, we report on a research project which directly examined the roles
pictorial images played for students in solving traditional, basic trigonometry
problems.

The implicit assumption of the various UK mathematics schemes (and, indeed, of the
UK national curriculum) is that trigonometry is a topic in which pupils can flexibly
move between visual and symbolic ways of working. Despite earlier research
(Blackett, 1990) suggesting the importance of a flexible approach to linking
numerical and visual domains in trigonometry so as to give a better conceptual



understanding, most schemes follow the suggested pattern of development in national
curriculum documents. Following a grounding in Pythagoras' theorem, the notion of
similar right angled triangles are used to define sine, cosine and tangent functions in
terms of ratios of appropriate side lengths. Pupils then find angles or lengths of sides
in abstract situations in which the right-angled triangles are drawn for them. They
progress to 'real world' word problems, such as finding heights of trees from a given
angle of elevation and distance in which diagrams are sometimes given, but are
expected to be constructed by pupils as an aid.

It is widely claimed that the use of diagrams or pictorial images is useful in helping
pupils solve problems. It is claimed (Nickerson, Perkins and Smith, 1985) that

Once a graph or diagram is drawn, the problem solver can bring perceptual
processes to bear on it. Also, a visual representation of a problem can make
apparent certain relations among parts that might otherwise go unnoticed.

It seems clear, then, that trigonometry is an excellent place to explore the ways in
which pictorial images are used in the solution of problems.

Trigonometric problems
The research was an attempt to get a sense of some of the possible ways in which
pupils might use pictorial representations as part of the process of solving
trigonometry problems, having had only a basic introduction to it. Six pupils, two
girls and four boys, were chosen from a top-set year 10 class who had just revised the

basic concepts of trigonometry. They were tape-recorded solving some 'real world'

word problems of the type (but not precise form) they were familiar with, during two
different interviews. The questions which the data presented in this paper relate to

were:

a. A ship is 10km due south of a lighthouse. It is sailing on a bearing of
60° towards a buoy which is due east of the lighthouse. How far is the

lighthouse from the buoy?

b. A flagpole is hung horizontally, suspended from the wall by two ropes
which are attached to the end of the flagpole. The angle between the
ropes at the end is 60° and at the wall the ropes are 1 m apart. How

long are the ropes?

c. A 5m ladder rests against a wall, with the foot of the ladder 1.2m from

the bottom of the wall. What angle does the ladder make with the
ground and how far off the ground is the top?

d. A cuboid has dimensions of 5m by 12m by 15m. Calculate the angle

made between the diagonals from the bottom of one corner to the top

of the diagonally opposite corner and the 5m by 12m base.
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The method of solution was left entirely to the students, no diagrams were provided,
neither were the pupils directly encouraged to produce them, though such
encouragement would have been given in an ordinary classroom situation.

The pupils' spoken protocols, their diagrams and their written work were analysed
revealing three different useful categories for exploring their use of pictorial images:

The creation of diagrams

The use in solving problems

The use in checking and making meaning

The Creation of Diagrams

For the typical 'real world' word problems, all of the pupils, in all of the problems
drew a diagram. What stood out from this, however, was that there were qualitatively
different ways in which the pupils used their mental imagery to produce them. The
data showed three different ways in which they appeared to construct them: getting a
whole mental image of the real scene and then effectively copying that image on to
paper; getting a whole mental image and copying an abstraction on to paper or
constructing the diagram piece by piece by taking one phrase from the question at a
time.

Andrew, who seemed to be a strong visualiser throughout the tasks, talked of
"thinking about the diagram in my head and what I would see if that happened" when
drawing pictures. His also drew pictures with quite realistic properties ladders that
were an attempt to look like ladders, as seen in fig 1.

Li

0 al
,5rotin hj p

Figure 1

4.18

BEST COPY AV



In Sophie's case, she spoke similarly about some form of complete mental image
which she was struggling to manipulate (in this case, trying to draw the space
diagonal of a cuboid for question d)

"I can't see a diagonal from the bottom of one corner, it's confusing. I'm trying to
get in my mind which corner which diagonal ... [the cuboid is] square, no, rect...,

no it was square actually"

However, her diagrams, such as in fig 2 were more abstract than Andrew's.

,2
Figure 2

Most pupils, however, drew the diagrams by repeatedly taking the next piece
information from the question and adding it to the drawing. They did not seem to
construct a mental image and copy it they directly constructed a drawing. Keith, for
example, seems to take the information as instructions to be followed in a logical
order. When asked how he drew parts of the diagram for question b he said

Well I made it into sections, one thing at a time. I didn't just pinpoint 3
dots. I had to think about each thing at a time. I pinpointed the
lighthouse and then thought that the ship's 10km south so I didn't do it
in proportion. I drew 60° angle which I thought was about 60° and I
drew a line straight down. I drew a line east until it met the other line
and I drew the other dot there.

Uses in Solving Problems

The research showed only two main uses in solving problems for the pupils'
diagrams: identification and extraction. They were used to sort out the information in
the question, identifying the objects in relation to each other: as Sophie put it "as
you're drawing it out you can see which one's opposite and which one's not". Once
the drawing had all of the information arranged on it, the pupils then used it to extract
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the appropriate information and choose which of the trigonometric ratios they would
need to use.

This two stage process of identification and extraction was seen in all the pupils'
solution strategies, but was put most succinctly by Sarah:

Sketch out the triangle, label it and then work out what the question wants

All the pupils followed the same procedures for solving the problems. They recalled
the mnemonic they had been taught to enable them to recall the basic ratio definitions
("sohcahtoa" for "sine = opposite/hypotenuse; cosine = adjacent/hypotenuse and
tangent = opposite/adjacent"). The relevant information was substituted in to the
'formula' and the symbols were rearranged in an attempt to find a solution. As
expected, it was when this attempt initially failed that the most interesting data was
seen.

One problem was the reliance on memory if a student could not remember the
process, they could not proceed easily. In particular, when pupils were asked to find
an angle in the problem (rather than the more familiar task of finding the length of a
side) many could not recall the procedure they needed to follow after having reached,
for example, cos(x) = 0.24. Most, perhaps for want of any other interpretation to
hand, thought of this as the product of 'cos' and 'x' being 0.24, even if, for some
pupils, they knew this was not the case:

Int: How would you find x?

Sophie: 0.24 divided by cos

Int: Does cos x mean cos times x?

Sophie: cos is x is the cos. What cos is, like x belongs to cos.

This problem was quite common and highlights a further problem in the nature of
trigonometry at this stage of schooling. In terms of the development of the function
notion in the sense given by APOS theory (Breidenbach et al., 1991), the functions
pupils will have been familiar with to this point will generally have been seen as
processes: the direct numerical manipulation of their arguments. For many of the
pupils, even in a good year 10 class, functions as objects may not yet have developed
even in simple cases. It is reasonable to suggest that the trigonometry functions can
not yet be seen even as a process: cos(30°) is not a numerical manipulation of 30 in
any obvious way. It is more likely to be seen as no more than an action: one based on
procedure implicit in the definition and which is quite convoluted ('draw a right
angled triangle with a 30° angle, measure the adjacent and the hypotenuse and find
the ratios of their lengths'). In the pupil's nascent understanding of familiar functions,
the inverse can often be associated with a reversed procedure. It seems much harder
to get a sense of reversing the procedure above to find x given cos(x).
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The use in checking and making meaning

The checking of solutions was not a natural procedure for any of the pupils. If they
found an answer, they generally considered the task completed. As part of the process
of gathering data, however, the pupils were explicitly asked if their solutions 'seemed

reasonable'.

An interesting aspect of this data is that the checking followed the same flow as the
solution, even if that flow was not complete. Some pupils did refer to their diagrams
and the data from the diagram, whereas others checked only the symbolic/numerical
calculations. None of the pupils seemed to put their solution back into their pictorial
or mental image, to get a sense of whether the solution was of roughly the right size.

Discussion

Presmeg (1986) categorised solutions as visual if they involve

imagery, with or without a diagram, as an essential part of the method of
solution, even if reasoning or algebraic methods are employed

and non-visual if they do not involve such imagery. The research reported here shows

that there may be layers of complexity within that definition of a 'visual solution', at
least in the context of these trigonometric problems. Even though no pupil used it
throughout the solution of a problem different pupils used imagery to different
extents.

In the research data presented here, we can see a general flow to the methods of the
pupils' solutions: construction of a diagram, identification and extraction of data,
choice of ratio and symbolic manipulation to a solution (or until stuck). The genuine
use of visualisation in the sense of So lano and Presmeg (1995) seems only to play a

part in the first aspect of this flow and only for those few pupils who constructed the

diagram by first building a whole mental image and then copying it on to paper
(either 'realistically' or more abstractly). For most of the pupils, there was much less

use of visualisation even here: they transferred the information, a piece at a time,
from the word problem to their diagram without, it seems, constructing a whole
mental image. Even in checking, this general flow from (possible) visualisation to
diagram to calculation was followed.

One of the problems with the construction of images in the case of trigonometry at
this stage of schooling may be the reversal of the usual concept image/concept
definition development (in the sense of Tall and Vinner, 1981). It has been argued
that the majority of mathematics at school proceeds from getting a familiarity with

concept images without any real reliance on concept definitions and that one of the

difficulties with the transfer to advanced mathematical thinking is that this flow is

reversed. In higher mathematics objects may be defined prior to any other aspects of

a concept image being constructed. Probably for the first time, pupils are given

definitions of the trigonometric ratios (often in shortened forms like 'sine is opposite
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over hypotenuse') before they have formed any significant concept image of them.
Indeed, these definitions do not lend themselves to the development of clear images:
while the objects of the definition ('opposite side' and 'hypotenuse') are easily
identified as part of a picture, the ratio itself is not. The objects within the definition
and the object which is defined are quite different and are susceptible to quite
different modes of reasoning the former visual and the latter numeric/symbolic.

In this research we can see pupils who are able to move between these two modes of
reasoning, but in one direction only and at only one point in the solutions to the
problems given. They can extract from their diagram the information they need to
begin the symbolic reasoning they use to handle the ratio itself.

This is quite at odds with the findings of Nunokawa (1994) where a mathematically
more sophisticated student was asked to solve a problem and was seen to move more
flexibly between pictorial and symbolic representations, modifying diagrams as the
work on the problem progressed. Simpson and Tall (1998) distinguished between
passive, organisational, conceptually generative and formally generative imagery. It
appears that while Nunokawa's mathematically gifted student used diagrams in ways
that fit all four of these categories, the pupils in this research are using their pictorial
images in, at most, an organisational way. They are using the diagrams to organise
and to allow them to extract the information they need for a symbolic calculation, but
they do not use them to suggest solution strategies, hint at expected results or embody
the formal definition of the mathematical objects under consideration.

It may be that the more sophisticated use of pictorial images comes from a more
developed understanding of the topic. The student in Nunokawa's research had
developed a much richer network of connections that constituted his understanding
(in the sense of Hiebert and Carpenter, 1992) and it can be suggested his concept
image and concept definition were more closely linked. With pupils beginning their
encounters with trigonometry they inevitably can only draw on a sparse network of
knowledge and with this, one of their first encounters with a defined object, they have
dissociated concept images and definitions.

Clements and Battista (1992) suggest:

At van Hie le Level 2 and higher, one's use of visual images is constrained by
one's verbal/propositional knowledge. Images and transformations of images
incorporate this knowledge and, as a result, might behave differently at
different levels.

In this research we have seen that the verbal/propositional knowledge does indeed
take precedence over the images and it may be that the paucity of such knowledge
makes the images they produce such poor generators of subsequent thinking.
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THE RHETORIC OF GENERALIZATION
A Cultural, Semiotic Approach to Students' Processes of Symbolizing

Luis Radford
Universite Laurentienne

Ontario, Canada

Abstract: Taking generalization as a cultural semiotic problem, that is, a problem about
meaning co-construction occurring in the overlapping territories of writing and speech,
this paper attempts to study generalization as a mathematical action unfolding in a
classroom discursive Bakhtinian 'text' jointly written by teachers and students in the
course of mediated activities. In the case that we shall consider here, what is at stake is
the construction and the meaning, in a grade 8 classroom, of a new mathematical object
that of the general term of a sequence or pattern. We shall focus on the problem of how
generalization finds expression in processes of sign use (particularly sign understanding
and sign production).

1. Introduction
This paper is part of an ongoing research program dealing with the students' processes of
symbolizing in algebra'. By students' processes of symbolizing we mean the different ways
in which students come to understand, use and produce signs. Our work is embedded in a
post-Vygotskian semiotic theoretical framework that we elaborated elsewhere (Radford
1998, in print) in which signs are seen as psychological tools, symbolically loaded and
intimately linked to the actions that the individuals carry out in their activities. Within this
theoretical context, ways of symbolizing (Nemirovsky 1994) are not considered as acultural,
pre-given processes. Instead, we consider them as instances of the general modes of
signifying resulting of the juncture of sign-mediated activities of the individuals and the
Cultural Semiotic System (e.g. beliefs, patterns of meaning-making; see Radford 1998) in
which activities are subsumed. Mathematical generalizations as well as other mathematical
activities are framed by specific and culturally accepted ways of symbolizing. This point can
be made clearer if we consider sign use in the historical example of the study of numbers in
Antiquity. While mathematicians in the Pythagorean tradition, legitimately used pebbles to
investigate some properties of numbers, in Euclid's Elements not only the actual pebbles but
also any iconic representation of them was completely dismissed and replaced by a
referential, non-operational sign-segments/letters language couched in a deductive line of
reasoning. The deductive Greek mathematical style was linked, as A. Szabo suggested, to
the Eleatan distinction between true knowledge and appearance and the consequent rejection
of the sensible world as carrier of knowledge. Moreover, and most important for our
discussion, the Eleatan beliefs legitimized new ways of symbolizing which authorized
certain rules of sign use and excluded others. How the Euclidean "mathematical generality"
could be expressed depended on the Greek conception of the concrete and the abstract, the
historical availability of the Phoenician letter-based alphabet adopted by the Greeks (a letter-
based written language which was completely different from, for instance, the syllabic
Akkadian cuneiform language of the Babylonian scribes) and on the accepted cultural
normative dimension in which the use of signs was caught. Let us consider a short example.
Proposition 21, Book IX of Euclid's Elements reads as follows:
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If as many even numbers as we please be added together, the whole is even.

For let as many even numbers as we please, AB, BC, CD, DE, be added together; I say that

the whole AE is even. For, since each of the numbers AB, BC, CD, DE is even, it has a half
A B

part; [VII. Def. 6] so that the whole AE also has a half part. I
1

But an even number is that which is divisible into two equal parts [id.]; therefore AE is even

(Heath 1956, Vol. II, p. 413).

Euclid expresses here "generality" in natural language as a volitive potential action rendered

by the comparative formula "as many even numbers as we please". And, within the

Euclidean semiotics, the letters allow combinations (in fact assemblages, e.g. AB) which

denote segments that stand for non-particular numbers. Interestingly enough, the proof was

not recognized (either by Euclid or his later commentators) as lacking generality despite the

fact that a drawn segment unavoidably has a particular length as well as the fact that it was

actually based on only four numbers. As far as we know, the proof was considered

completely general by the canons of Greek mathematical thought. As in contemporary

classrooms, modes of symbolizing and expressing generality in Antiquity were shaped by

the master's and students' beliefs about mathematics, and their mutual understanding and

acceptance of legitimizing procedures about mathematical symbolization.

In this paper we shall deal with a problem which arises in the algebraic study of patterns,

namely, that of generalization. Ordinarily, in such cases, because of curricular requirements

(as is the case in the current Ontario curriculum for Junior High-School), generalization is

expressed through the semiotics of the algebraic language. Of course, a great deal of

experimental research has shown that the algebraic expression of generalization is very

difficult for students who are still acquiring the mastering of the algebraic language (see e.g.

Rico et al. 1996). In accordance with our theoretical framework (Radford 1998, in print),

we will attempt to explore generalization as a semiotic problem, that is, a problem about

meaning co-construction by teachers and students in the course of mediated activities. We

shall focus on the construction and the meaning, in a grade 8 classroom, of a new

mathematical objectthat of the general term of a sequence or pattern. We are particularly

interested in the problem of how generalization finds expression in processes of sign use.

Since the general term cannot be ostensively pointed to as one can point to a door or to a

desk, the semiotic construction of such a mathematical object acquires a particular didactic

interest.
2. The methodology

In our research program we are accompanying for three years some 120 students and 6 teachers in

the teaching and learning of algebra. This task includes the teachers', researcher's and assistants'

joint elaboration of general and particular goals, the joint elaboration of teaching and learning

settings, the video-taping of the lessons, discussions, and feedback. The teaching settings have been

elaborated in such a way that the students (who are presently in Grade 8) work together in small

groups; then the teacher conducts a general discussion allowing the students to expose, confront and

discuss their different achieved solutions. In general terms, we are interested in investigating the

students' processes of symbolizing in specific teaching settings about patterns on the one hand, and

equations and inequations on the other. In this paper, however, we shall focus solely on the students'

and teacher's co-constructive semiotic expressions of the "general term" of a sequence or pattern.

The results that we shall present here come from an interpretative, descriptive protocol analysis

(Fairclough 1995, Moerman 1988). Because of the length requirements of the article, we
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shall limit ourselves to the protocol analysis of one of our student groups. The protocol
analysis will attempt to disentangle texture forms underlying the process of sign use
(particularly sign understanding and sign production) in terms of the conveyed meaning and
of the classroom use of utterances genres (e.g. reading, confronting, requesting, informing).
Our question can then be explicitly formulated in the following terms: how do students' and
teachers' voices and writings find their way in the construction of the new object (from the
student's perspective) of the general term of a pattern or sequence? How do teacher and
students deal with the concrete and the abstract in pattern problems? In its most general
terms, and taking the term 'rhetoric' as a mode of discourse or text making, the question is:
How does the rhetoric of generalization take place in the classroom?

3. Results
The students were asked to work in groups to solve some problems about patterns. In
previous activities they investigated some patterns and had to provide answers to questions
like a and b shown below. Questions c and d required a new kind of symbolic
understanding. For the sake of brevity, we will consider here only some excerpts of the
episode concerning one 3-student group discussion of questions c and d. Let us nevertheless
mention that, although questions a and b led to different understandings of how to
investigate patterns, the students did not raise problems concerning issues on generalization.
The students kept focused on concrete issues raised by those particular questions. The case
for questions c and d was very different.

Observe the following pattern:

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0

Fig. 1 Fig. 2 Fig. 3

a) How many circles would you have b)
* in the bottom row of figure number 6?
* in the top row of figure number 6?
* in total in figure number 6?

) How many circles would the top row d)
of figure number "n" have?

How many circles would you have
* in the bottom row of figure number 11?
* in the top row of figure number 11?
* in total in figure number 11?

How many circles would figure number
"n" have in total? Explain your answer!

Time Line dialog / remarks
1:41 (21)

1:59 (22)
2:07 (26)
2:13 (27)
2:22 (28)

2:33 (29)

student 2: (he writes the answer to the third part of question b while saying) in total
that comes to 24. Wow! This is easy! (Now he reads question c) How many circles
would the top row of figure number ... What? OK. Somebody else!
student 1: (reads the question.) How many circles... [...] What does it mean?
student 2: I don't know. (hitting the sheet with his pencil)
student 1: What's figure n? / (inaudible)
student 1: (talking to student 2) Shut up! I'm going to kill you. ... n is what letter in
the alphabet?
student 2: (talking to student 1) Ask the teacher.

In this passage the students are trying to make sense of the expression "figure number n"
contained in question c. As we noticed elsewhere (Radford 1996), the general term of a
geometric or arithmetic pattern cannot be explicitly expressed within the semiotic system
(SS) of the objects of the pattern itself. Even to pose the question, it is necessary to go "out"
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of the first SS (which will include, in the case of elementary school arithmetic, the basic
"well-formed" expressions using the ten digits and certain signs like those required for the
elementary numerical operations, equality and so on) and to rely on another richer SS (e.g. a
meta-language). In the case of our text, we had recourse to the algebraic language to talk
about the general term. As the engineering of the problem given to the students suggests, the
idea of generalization that we decide to use resides in an experiential dynamics attempting

to go beyond the concrete terms of arithmetic. As expected, the transcript indicates,
however, that the students' understanding of the question remained circumscribed to their
arithmetical experience. We reach here a nodal point in the development of the classroom
activity whose unraveling will require the elaboration of new meanings. While student 2
bluntly abandons the quest for meaning (an action accompanied by exasperation as line 26
suggests), student 1 started a cardinal-arithmetic plan: to display the letters of the alphabet
and to figure out what position n occupies in that order:

2:54 (32) student 1: How many circles would the top row of figure 14 have? n is fourteen.

3:00 (33) student 2: No it's not!
3:01 (34) student 1: Yeah it is!
3:02 (35) student 3: What is n? (asking the teacher who coincidentally is walking by)

3:04 (36) student 2: (talking to the teacher) What is n? We do not know.
3:08 (37) teacher: (turning the page and reading the question aloud) How many circles would

the top row of figure number n have?
3:13 (38) student 3: What is n?
3:15 (39) student 1: n is fourteen because n is the fourteenth letter of the alphabet. Right?

3:20 (40) student 2: (counting aloud the letters that student 1 wrote on the table previously)
one, two three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen,
fourteen.

Student 2 does not agree with student l's interpretation about what n is and his arithmetical
rephrasing of the question ("confronting" utterance in line 33). The arrival of the teacher

serves as a potential way to overcome the conflict. The teacher, nevertheless, offers as an
answer a re-reading of the question only. Interestingly (and probably because of the teacher's
laconic answer) student 2 seems to change his mind and to agree in investigating student I 's

idea; thus he starts counting the letters of the alphabet. Noticing that the students are taking

an unexpected path that may take them away from the intended algebraic meaning, the

teacher consents to explain a bit further:

3:28 (41) teacher: "n" is meant to be any number.
3:32 (42) student 2: OK.
3:33 (43) student 1: n is what?
3:35 (44) teacher: Any number (in the meantime student 3 comes back to question a.)

3:39 (45) student 1: I don't understand.
3:41 (46) teacher: You don't understand?
3:42 (47) student 1: No. [...]
3:44 (49) teacher: (talking to student 3) Do you understand what n is?
3:45 (50) student 3: Which one? (pointing to the figures on the sheet) this, this or this?

3:46 (51) teacher: It does not matter which one.

The rhetoric of generalization has now taken a different turn. The teacher launches the
understanding of "n" as "n being any number". The students' reactions show that there is a
tremendous difficulty in constructing this specific meaning. Student 3's answer (line 50)
suggests that this difficulty is linked to a very specific semiotic problem that we will term as
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the "multiple representation problem". Since sign-numbers, in the semiotics of arithmetic,
generally refer to a single object (i.e. although in some contextual instances the number five
may be represented as e.g. 6-1, nobody will agree that, in the base 10 arithmetic, two
different 'basic' representations like "7" and "5" represent the same number) it appears very
hard to conceive "n" (which by the way as sign has a similar 'basic' iconicity as "7" or "5")
as representing more than one number (see line 50). This is corroborated by the following
lines:

4:10 (53) teacher: (talking to student 2 after a long period in which the students remained
silent) OK. There, do you have an idea what is n?

4:12 (54) student 1: Fourteen.
4:13 (55) teacher: It may be fourteen ...
4:14 (56) student 2: (interrupting) any number?
4:15 (57) teacher: (continuing the explanation) ... it may be 18, it may be 25...
4:18 (58) student 1: Oh! That can be any number?
4:19 (59) student 2: (interrupting) The number that we decide!
4:20 (60) student 1: OK then, (taking the sheet) OK, n can be ... uhh...
4:26 (61) student 2: Twelve.
4:27 (62) student 1: Yeah.
4:28 (63) teacher: But ... yeah. What were you going to write?
4:31 (64) student 1: 12.
4:32 (65) student 2: 12.

The teacher's attempt failed. The proposed meaning for n as being "any number" is
interpreted as an arbitrary but concrete number ("informing" utterances, lines 61, 64-65).
The teacher tries to give meaning to the expression conveying the generalization by re-
investing the students' arithmetic point of view in a way which is still coherent with the
global plan to introduce the general term in the context of the classroom setting. The
teacher's voice hence acquires a specific tone made up of the pedagogical plan and the
students' contextual voices. The Bakhtinian text in which generalization is being written
appears to be heterogeneous in its meaning. Realizing that things had not turned out as
expected, in the next line the teacher launches a rescue mission from where the wanted
meaning could properly arise:

4:33 (66) teacher: And if you leave it to say any number. How can we find ... how can we find
the number of circles for any term of the sequence (making a sign with the hands as if
going from one term to the next)

4:51 (67) student 2: Figure n? There is no figure n!
4:54 (68) student 1: (talking to student' 2) He just explained it! N is whatever you want it to be.
4:57 (69) student 2: (talking when student I is still talking) What is it?
5:01 (70) student 1: OK. Umm ... seven. (writing on the sheet)
5:10 (71) student 2: Not on top! It's seven circles (taking the sheet and looking at the figures)
5:13 (72) student 1: Yeah! And in the bottom is 5 circles!
5:21 (73) student 2: (writes the answer and starts reading the next question) How many circles

would ... (inaudible) ... 12 circles (writing the answer).

Speech does not unfold alone. Speech unfolds accompanied by other semiotic systems, for
instance systems of gestures that we make with our hands and arms (see e.g. Leroi-Gorhan
1964). When we make gestures, the hands can be used to produce signs by e.g. sketching
objects (Kendon 1993), while in certain cases concrete objects can be used as metaphors of
absent objects (an instrumental strategy generally employed and which becomes a
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cornerstone in the development of sign systems with deaf children). Gestures form a sign
system with its own syntax and meaning that afford the production of texts. In previous

activities, we frequently saw our students pointing to a concrete figure (the third figure of a
pattern, for instance) to refer in fact to the 100th figure. And in the case of the episode that we

are discussing here, the teacher makes an intensive use of gestures (line 66) to by to
complement the sense of the expression "any number" an expression whose even most
forceful utterance cannot reach the students' understanding yet. Indeed, the students keep the

arithmetic meanings for the relation between "n", "figure n", and "any number". We should
note at this point that student 2 is clearly uncomfortable with their general understanding of
"figure n". There is something that does not fit the modes of meaning generation as being
used in their classroom culture. In the subjective understanding of student 2, the order of
discourse (Foucault 1971), as legitimized by the discursive practices of the classroom
cultural institution and instantiated here by the teacher's remarks seems to point to a different

way to interpret "n". We may say that, for him, if n is meant to be any concrete intended

number, as student 1 is proposing, then, according to the classroom culture, the teacher could
have stated this clearly instead of using such a complicated phrasing. Student 2 is doubtful

and this doubt appears as something very important for the future of the meaning negotiation

process. Notice that the conflict between students 1 and 2 seen in lines 27-28, 32-34, arises

differently here. In line 68, student 1 re-interprets the teacher's previous explanations as
confirming his own arithmetic interpretation and challenges student 2 with an authoritative

argument ("[the teacher] just explained it!"). Seeing this, the teacher decides to intervene

again:

5:42 (74) teacher: So, uh... (looking at the sheet) Wait, wait, wait! But for any number....
There you did it for seven circles, but if seven... for any ...

5:52 (75) student 2: (showing the sheet with his pencil) You add 2 to the number on the
bottom... subtract....oh no, you add 2 to the number on top. If it is seven, the number

like this what I (inaudible)

As the dialog suggests, the opening towards a new understanding is not made possible
through a discussion on a concrete example but through the prise de conscience of an action
previously undertaken (in solving question a and b but also in many lines of the dialog
presented here, e.g. lines 71, 72). The action is now formulated not as a concrete action
within arithmetic (which would give as a result a concrete number, as in lines 71 and 72) but

as a potential action in the metacode of natural language. As we can see, the new
mathematical object is constructed with words: "You add 2 to the number on the bottom...".
What we call "generality" is trapped here in the expression "the number on the bottom" an
expression that keeps all the sensuality of the figures in the space and the operation of
adding ("You add 2") to which is submitted this unutterable number ("the number on the

bottom") within the elementary semiotic system of school arithmetic.
But what is it that finally made possible the negotiation of meaning? The answer resides not

in the students' suddenly grasping the teacher's intentions but in the teacher's continuous
(polite, encouraging but always clear) rejection of the students' solutions and the students'
will to search for alternative understandings. The construction of the potential action with
words is pushed further by the teacher in order to end up with a mathematical formula:

6:01 (76) teacher: OK. Could you put this in a formula?
6:04 (77) student 3: Uhhh
6:05 (78) teacher: ... using n.
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6:06 (79) student 3: Uhh ... it's the term times two plus two.
6:10 (80) student 2: The term times two plus two?
6:12 (81) student 3: (showing the figures with his pencil) Uhhh ... 2 times 6 ... 2 times 3 is 6,

plus two
6:21 (82) teacher: Could you say that again, please?
6:23 (83) student 3: Yeah. The term times two plus two (student 2 writes the explanation) I [...]
6:37 (86) student 1: (reading the answer) OK. The term times two plus two.

The students finish by writing: "n2 + 2 = ".

4 Concluding Remarks
The word "term" (which emerges as a sign representing the previous term "the number on the
bottom") is not used correctly by the students from a mathematical point of view. There is a
confusion between the term and its rank. Nevertheless, the attempted meaning was
functionally clear. It is worth noticing that the word "term" comes first to be used by the
students as a tool that allows a refinement in the construction of the object. The use of words
seems to be similar to that of concrete tools in apprentices. At first the tool (in terms of the
"specialist's norms") is used awkwardly and only later can one use it with progressive
mastery.
The concept of general term appeared as a potential action bearing the concrete characteristics
of actions previously carried out in the social plane undergoing an internalization (in the neo-
Vygotsky's sense given in Radford 1998) through and by signs (in this case words and
mathematical signs, whether iconic or arithmetic ones). Such a potential action which
seizes the actual form of the generalization is the particular expression of concrete actions
as afforded by the students' mediated activity (not only by speech but by writing and the
related cultural artefacts allowing it, e.g. the sheet and the pencil, the latter functioning as a
key instrument in deictic gestures, as in the crucial line 75) arising in the course of their
reflections to solve the problem. The students' reflections and their understanding and
production of signs are embedded in discursive schemes and discourse orders prevailing in
the classroom according to its own culture.

As we have seen, the potential action making possible the overstepping of concrete arithmetic
chinking and the reaching of generalization finds expression in the semiotics of the concrete
actions and the mode of thinking thus produced. Contrary to the traditional idea, generalization
is not something dealing with the abstract and its evacuation of the context but a different
contextual semiotic expression of previous actions, which afford the potential action (for
instance, giving sense and virtually existence to it). It is enlightening to remark at this point of
our discussion that Euclid's proposition quoted in the introduction also bears this distinctive
trait of generalization as a potential action that, figuratively speaking, still has the sent of the
concrete Pythagorean actions from where it emerged. Generalization is not a mere act of
abstraction from the concrete; indeed, generalization keeps a genetic connection to the
concrete according to the mediated system of individuals' activities and the epistemic and
symbolic structure of these. In turn, as paradoxical as it may seem, the generalizing potential
action, even without being there, is already producing the concrete actions. Indeed, without
being explicitly there, the potential action is already present, making possible that the sixth,
seventh or any other term be investigated in the very same form. Beyond their synchronic
temporal dimension, the concrete and the abstract bear a dialectical relation, in which they
mutually condition each other within the limits traced by the historical and cultural rationality
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of the individuals and the semiotic systems that the individuals are continually re- and co-
creating.
As we saw, the web of possibilities from where generalization takes place is co-formed and
revealed in the texture of the text that the teacher and the students deploy in their search for
meaning. In the particular case studied here, we saw how meaning shifted from "figure n" to
"n" to "any number" to "any arbitrary but concrete number" until they overcame the "multiple
representation problem" and reached an algebraic "public" (Ernest 1998) standard meaning.
We also saw that this was done by using different utterance genres ranging from reading ("R"
e.g. line 22), requesting ("Q" e.g. line 36), confronting ("C" e.g. line 33), explaining ("E" e.g.
line 44), acquiescing ("A" e.g. line 42), informing ("1", e.g. line 45)2 . The students'
production of signs in the formula was mediated by speech and its written form. After tittering
the formula, the students wrote it in natural language as "the term x 2 + 2" and then as "rte
n2+2 = " . It is worthwhile to note that Vygotsky suggested that " [u]nderstanding written
language is done through oral speech, but gradually this path is shortened, the intermediate
link in the form of oral speech drops away and written language becomes a direct symbol just
as understandable as oral speech." (1997, p. 142). The fate of the students' understanding of
algebraic language seems to be the same, that is, it will be couched in speech (and the
accompanying semiotic systems) and only later will it become a kind of autonomous semiotic
action. Indeed, signs (like "n" in the students' formula), we would like to insist in closing this

paper, are but the result of semiotic contractions of actions (concrete or intellectual as outer or
inner speech) previously carried out in the social plane.

Notes:
1. A research program funded by the Social Sciences and Humanities Research Council of Canada, grant

number 410-98-1287.
2. The number of occurrences of types of utterances are as follows (notice, however, that a same utterance

may belong to more than one category depending on its pragmatic dimension).
R Q C E A
3 22 7 9 5 15
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UNDERSTANDING DATA TABULATION AND REPRESENTATION

Chris Reading
Centre for Cognition Research in Learning and Teaching

University of New England, Armidale, Australia

Statistics has received increased recognition in mathematics school curriculums in Australia partially
due to the strand status assigned to statistics (within Chance and Data) in A National Statement
in Mathematics for Australian Schools. Consequently, research has focused on considering
what 'statistical thinking' really means. To assist teachers to plan and assess the teaching of statistical
concepts more needs to be known about students' statistical understanding. This paper takes up the
theme by considering students' responses to two open ended tasks, one of which presents the data in
table form and the other graphically. Both tasks require students to describe what they understand by
the data representation. A developmental sequence of eight levels was identified and the responses to
the two different data presentations were analysed. The SOLO Taxonomy was used as the theoretical
framework to assist this process.

Introduction
More statistical ideas are being incorporated into mathematical syllabuses across Australia but poor

awareness of students' statistical understanding on the part of teachers (Watson, 1998) may well be a

contributing factor to the poor treatment of statistical components in the curriculum. Truran (1997)

identified lack of knowledge of statistical understanding as a concern when trainee teachers had

difficulty in interpreting and applying concepts in the Chance and Data strand to create well structured

sequences of lessons. In encouraging teachers to give students a chance to show what they can do

statistically Shaughnessy (1997) stressed the need for research into students' thinking about chance

and data.

A recent development in investigating student understanding has been the use of the SOLO
Taxonomy (Biggs & Collis, 1982) as a framework, in both probability and data handling. SOLO

levels have been used to classify student responses concerning uncertainty (Moritz, Watson & Collis,

1996), data representation (Chick & Watson, 1998), data reduction (Reading & Pegg, 1996) and data

interpretation (Reading, 1998). This paper contributes by exploring students' responses to questions

concerning the understanding of data tabulation and representation, using the SOLO Taxonomy as the

theoretical framework.

The SOLO Taxonomy
Detailed descriptions of the SOLO Taxonomy can be found elsewhere (see for example, Biggs &

Collis, 1991; Pegg, 1992). The model, which allows students' responses to be categorised, consists

of five modes of functioning, with levels of achievement identifiable within each of these modes. The

two modes relevant to the research being reported are the ikonic mode (making use of imaging and

imagination) and the concrete symbolic mode (operating with second order symbol systems such as

written language). Although these modes are similar to Piagetian stages, an important difference is

that with the SOLO Taxonomy earlier modes are not seen to be replaced by subsequent modes and in

fact are often being used to support growth in the later modes.

A series of levels have been identified within each of these modes, three of which are relevant to the

this report. These are: unistructural - with focus on one aspect, multi structural with focus on several

unrelated aspects and relational with focus on several aspects in which inter-relationships are

identified. These three levels form a cycle of growth which recurs within modes and in different



modes. Within a mode the relational level response in one cycle is similar to, but not as concise as,

the unistructural response in the next. A similar cycle of levels is identified in different modes but the

nature of the element on which the cycle is based is different. This taxonomy is particularly useful

because of the depth of analysis which can be achieved when interpreting students' responses.

Research Design
One hundred and eighty secondary students, selected randomly over gender (male, female),

mathematical ability (low, middle, high) and academic years (7 to 12) were tested on a range of

statistical questions. This paper reports on the responses to a two part question concerning the

understanding of data tabulation and representation, an important step in the process of data analysis.

The question was not testing the ability to arrange data into a table or a graph, but aimed at presenting

students with some data and allowing them to describe what information they were able to gather

from the representation. Part I of the question presented the data in a table, while in Part II the data

presentation was graphical. The two parts were used in the question to investigate whether the form

of data presentation influenced student understanding. The open-ended question allowed the student

to respond with as much information as he or she felt was necessary.

Analysis of Responses to Part I
The question, as presented to students, is shown in Figure 1. Investigation of student responses

showed that it was possible to divide the responses into a number of levels based on the statistical

quality of the answer given. Three major groupings of the levels were identified based on the depth to

which the response indicated the ability of the student to understand the representation of the data.

Part I Question
A class teacher wanted students to practice collecting data.
concerning the number of ice creams that she ate during a
the student came up with is given below.

Week 1 3
Week 2 5
Week 3 7
Week 4 4
Week 5 2
Week 6 7
Week 7 5

What does the table tell you ?

One Year 8 student decided to collect data
week for a seven week period. The table

Figure 1

First Group (No Data Use)
Responses in the first group dealt with only the requirements of the question and three broad levels,

coded as 0, 1 and 2 were observed. These responses attempt to rationalise the requirements of the

question but appear to make no use of the data when formulating the response.

Level 0 These responses indicate that the question has not been considered or the

requirements were not clear. For example:

(7201) Its like a graph.

Level 1 These responses indicate that not all aspects of the question have been considered

sufficiently to produce an answer. Usually, some key fact from the wording of the question is

reproduced in the response. For example:

(7111) The table tells us about the ice cream eating habits of a year 8 girl.
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Level 2 These responses indicate that all aspects of the question have been considered and a

reasonable answer attempted but still no use is made of the data. For example:

(8213) The table tells you in column one: what week it was and in column two: how many ice
creams were eaten in that week.

Second Group (Data Item Use)
Responses in the second group are concerned with attempting to understand the data, with three
levels, coded as 3, 4 and 5, being observed. However, attempts to describe the data are produced in
non-statistical terms.

Level 3 These responses indicate that, although students have considered the data, focus is
directed back to the key facts in the question usually indicating in some way that weekly data is
available. For example:

(11105) It tells me how many ice creams she ate in 7 weeks, how many she ate each week.

Level 4 These responses indicate an awareness that features of the data need to be mentioned

in the answer. However, restricted experiences at data description result in the information in the
table being quoted verbatim. For example:

(12207) The table tells me that for week 1 the student ate 3 ice creams, in week 2 she ate 5 ice

creams, week 3 she ate 7 ice creams etc.

At this stage there is a divergence of the responses into two distinct paths which appear to develop at

seemingly parallel rates. These are labelled:

Path A for responses which describe statistical features of the data

Path B for responses which make judgements about the data.

Level 5 These responses describe the data by making a simple observation. They suggest
readiness to engage in data description but a lack of experience and appropriate tools to produce a

statistically sophisticated response. For example:

Path A (11111)
Path B (8108)

Some weeks she ate more than other weeks.

That the girl is very unhealthy.

Third Group (Data Feature Use)
The final group of responses indicate a readiness to describe the information contained in the data in a

more acceptable statistical form. Only two levels of responses, coded as 6 and 7, were identified.

Both levels are split into A and B paths, with Level 7 also having some responses incorporating
elements from both paths.

Level 6 These responses indicate the use of data from the table to make one detailed
observation. They show more sophistication than those at Level 5, linking the observations to
features of the data, rather than making broad statements. For example:

Path A (10109) The table tells me that the amount of ice creams eaten varies from 2 - 7 over
the 7 weeks.

Path B (9201) The table tells you that she likes ice cream for a couple of weeks then she gets

back into them again.

Level 7 These responses indicate a more in-depth understanding by presenting more than one
observation related to the data. For example:
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Path A (9112) She ate the most ice creams in week 3 and 6. And the least in week 5. On

average she ate 4.7 or 5 ice creams a week.

Path B (12212) The student likes ice cream or it is summer and she wants to keep cool.

Some responses showed features of both Path A and Path B,

(10212) The table tells you that the girl ate 33 ice creams in 7 weeks and that she must have

liked ice creams.
A third level in this group was not found but it is anticipated that such a level may contain responses

which not only mention statistic(s) and judgement(s) but use the statistics as evidence for the

judgements made.

The results, arranged by academic year, appear in Table 1 and a number of interesting points become

apparent. First, there are only eleven students (18%) from the two senior years whose responses fall

within the first group, compared to twenty five (42%) from Year 7 and 8. Second, there is a larger

number of senior students compared to junior, noticeably twelve in Year 12, whose responses were

coded as Level 7. Third, there is a large bulge in most years at Level 2. Fourth, there appears to be a

larger number of responses in the last level of each of the first two groups (that is Levels 2 and 5),

than in the previous two levels of the group. This is more noticeable in the junior years. Last, there

appears to be a balance in the number of studentswhose responses reflect Path A and Path B.

Table 1
Response Level and Path by Academic Year for Part I Question

Level Year Total
7 8 9 10 11 12

0 1 0 0 0 0 0 1

1 4 1 0 1 0 2 8
2 4 5 10 11 6 3 49
3 14 3 3 2 7 2 20
4 0 5 0 3 0 2 10

A B AB AB A B A B AB
5 1 5 3 6 4 3 2 4 4 2 3 3 40
6 1 0 3 2 1 4 2 2 2 3 1 2 23
7 1 0 1 0 3 1 1 0 5 0 4 3

0 1 1 2 1 5 29
Total 30 30 30 30 30 30 180

These results suggest that, for the process of understanding data presentation, the level of response

improves progressively with academic year, although, the bulge at Level 2 suggests that many

students have difficulty actually describing the data at all. Further, there appears to be no particular

preference for descriptions using statistical features or judgemental observations.

Analysis of Responses to Part II
The second part, II, of the question is shown in Figure 2. Answering this question meant that

students needed to be able to read the graph before describing the data. Examples of responses to Part

II are not given because they are similar in form to those given for Part I and were coded into similar

levels. The results, arranged by academic year, are presented in Table 2 and some interesting features

emerge. First, while twenty one students (35%) from the two senior years gave responses in the first

group, there were thirty four (57%) from the Years 7 and 8. Second, Level 7 contained thirteen Year

11 and 12 students but only three Year 7 and 8 students.
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Part II Question
The deputy in the school kept a record of the number of students who were late to school each week.
He decided it would be useful to draw a graph to illustrate the information. The graph is presented
below.

No. of Students Late to School

Frequency

6

5

4

3

2

1

1 2 3 4 5 6 7 Week
What does the graph tell you ?

Figure 2
Third, there appears to be a larger number of responses in the last level of each of the first two

groups (Levels 2 and 5). Last, there are almost twice as many students coded in Path A as Path B,

with Path A more popular in all but Year 7 and Year 10.

Table 2
Response Level and Path by Academic Year for Part II

Level Year Total
7 8 9 10 11 12

0 0 0 0 0 0 0 0
1 8 7 1 0 2 3 21
2 11 8 11 14 12 4 60
3 2 1 3 4 4 1 15
4 0 0 0 1 0 2 3AB AB AB AB AB AB
5 0 7 3 3 5 3 0 7 4 2 7 3 44
6 1 0 6 0 5 0 4 0 1 0 2 0 19
7 1 0 1 0 0 2 0 0 4 0 6 2

0 1 0 0 1 0 18
Total 30 30 30 30 30 30 180

These observations suggest a slight improvement in the quality of responses with increasing

academic year and a preference for describing the data using statistical features rather than

judgements. Difficulties were experienced making the step to actually describe the data and also in the

step to describe the data in more statistical terms.

Comparison of Part I and Part II
The framework developed appears to be adequate for explaining students' understanding, as far as
the basic description of data presentations is concerned. There is a slight upward shift in the trend of
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the responses over the academic years as would be expected. All but one student felt that he or she

understood the question sufficiently to attempt an answer and those few who had the most problems

responding (Level 1), including misinterpreting the graph, were mostly in Years 7 and 8.

Testing the hypothesis that the level of response is independent of the part of the question yielded

x2 = 13.53 (6 d.f) which is significant (p < 0.05) and indicates that the level of a response is

associated with the part of the question being answered. Many more responses than expected were

coded at the lower levels in Part II, while Part I had more responses than expected in the uppermost

levels. This suggests that students exhibit a higher level of understanding when the information is

presented in a table rather than as a graph. Considering the number of responses that were graded

into each path for Parts I and II, a test of independence resulted in x2 = 2.39 (1 d.f.) which is not

significant (p > 0.10) suggesting that the choice of path is not associated with the part of the question

being answered. This means that the path, A or B, used by astudent in Part I does not indicate which

path will be used in Part H. For example, giving a judgemental response when describing tabulated

data, does not necessarily mean a judgemental response will be given when describing graphed data.

Three noticeable trends emerge when comparing the results of the analysis of Part I and Part II. First,

there are more Year 7 and 8 students in the first group than there are Year 11 and 12 students.

Second, there are more senior students than junior students in Level 7. Third, there is a large bulge in

the numbers at Level 2 in most years. So, irrespective of the form of data presentation there is a

general trend for a slight increase in the level of performance of the students over the six academic

years and an unexpectedly large number of students repeating key facts from the question and not

using the data in any way in the description. The better quality responsesfrom Years 11 and 12 could

mean that by this stage most students are ready to describe the data in more detail, despite the fact that

little statistical work is actually undertaken in their curriculum studies.

The comparison of results also highlights three differences. First, the number of Year 11 and 12

students in group one is much larger for Part II (21) than for Part I (11). Second, the overall number

of responses at Level 7 is much larger for Part I, (29), than for Part II (18). Lastly, similar numbers

of responses are categorised as Path A or Path B in all years for Part I but most years show a

predominance of Path A type responses for Part II. These differences suggest that although there is

an increase in level with academic year, the overall range of performance is better when data are

presented in table form than as a graph. Also, that when presented with data in graphical form

younger students are more likely to use judgements in their descriptions while older students are

more likely to use statistics.

SOLO Taxonomy Framework
The SOLO Taxonomy is now used, along with the groups of levels described earlier, to develop a

framework which can be used to assist with the interpretation of student responses. The first group

of responses exhibit ikonic features, while the second and third groups represent two different cycles

in the concrete symbolic (CS) mode.

Ikonic mode responses show no evidence of linking the required task with any sort of symbolic

representation. Level 1 responses were coded as a mixture of unistructural (U) and multistructural

(M) responses, while Level 2 responses were relational (R).
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Second and third group responses have been able to link the concepts in the question to concrete
experience. The answer, which suggests that the question has been understood, links directly to

aspects of the data. These responses are in the CS mode, with two cycles, of U, M and R levels.

The first cycle involves appreciating that it is possible to describe data. The elements in the first cycle

are the actual pieces of data themselves (data items). A relational response in the first cycle is not

achieved until the student is able to consider all data items as a functioning set, and the data items as

capable of being described in another form. The U, M and R levels in this cycle correspond to the
Levels 3, 4 and 5 described earlier, with the R level showing the split into two parallel paths.

The second cycle involves showing an appreciation for the need to refer to the features or behaviour

of the data as part of the description. The elements in the second cycle are the various features (or

properties) of the data which a statistical description could include. A relational response in the
second cycle is not achieved until the student is able to present both statistical facts and judgements,

and also some relation between them. In this cycle, the U and M levels correspond to the Levels 6

and 7 as outlined earlier. These two levels still contain the separate A and B processing paths, while

some M level responses show evidence of elements from both paths. No responses were observed at

the R level.

In summary, the main feature which distinguishes the concrete-symbolic mode responses from those

in the ikonic mode is the retrieval of facts from the recorded data. laconic mode responses go no
further than recognising from the question the variables which are being measured. CS mode

responses show that the data items have been considered. Within this mode, the first cycle responses

suggest that the data items have been considered as separate items while the second cycle responses

indicate an overview of the data, in the form of a statistic or judgement.

Conclusion
Three major findings have evolved as a result of this study. First, presenting data in graphical form

alters the way students describe data, as compared to tabular presentation. The differences in

approach to data description include an overall lower level of understanding and a greater likelihood

to discuss statistics rather than make judgemental comments.

Next, the three broad grouping identified, namely, No Data Use, Data Item Use and Data Feature

Use, assist in determining the stage a student has reached in understanding data representation and

tabulation. No Data Use responses are dealing with aspects of the question and not the data, while in

the other two groups use is made of the data, Data Item Use responses in a less statistically
sophisticated fashion than the Data Feature Use responses. These groupings offer teachers a means to

follow better student thinking when planning lesson sequences within the curriculum and assessing

specific student outcomes.

Last, the groups of levels identified can be categorised as cycles of U-M-R levels, based on the
SOLO taxonomy. The No Data Use group is a U-M-R cycle in the ikonic mode where the elements

of focus are the facts in the question. The other two groups represent two U-M-R cycles in the CS

mode. The elements of focus in the first cycle, the Data Item Use group, are the actual data items



while the focus in the second cycle, the Data Feature Use group, is on the various features (or

properties) of the data. The identified levels in the CS mode are consistent with the U, M and R levels

described in more general terms by Chick and Watson (1998, p. 156). Using this framework to

assess responses, teachers can gain a greater awareness of students' understanding which will allow

them to better prepare lessons based on the curriculum and to assess what students really know,

understand and can do.
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NEEDING TO EXPLAIN:
THE MATHEMATICAL EMOTIONAL ORIENTATION

David A Reid

Acadia University

Explanations are accepted or rejected within a community on the basis of an
emotional orientation. Examination and description of students' explanations in
mathematics classes are used in this report to clarify the nature of the mathematical
emotional orientation. The report also provides elements of a language for
describing students' explanations as a contribution to the difficult task of conducting
research into students mathematical proving.

Proving in mathematics is a complex activity and research on students' learning to
prove must employ a rich descriptive language to capture it. Lakatos (1978) and
Polya (1968) offer language to describe two elements of proving: the formality of
written proofs and the relationship between deductive reasoning and other types of
reasoning. Classifying kinds of deductive and inductive reasoning has also been an
area of much research (e.g., Bell 1976, Harel & Sowder 1996). Another element of
proving, the formulation of reasoning, has been described by Mok (1997) and Reid
(1995a) but further work is needed in this area. A further element, the need or
purposes served by mathematical reasoning, has been receiving considerable
attention (Balacheff 1991; Bell 1976; Hanna 1989; Lampert 1990; de Villiers 1991),
especially the need to explain deductively in mathematics (Hanna 1989, 1995; de
Villiers 1991, 1992; Reid 1995). This report elaborates on the language used to
describe students' explaining, and discusses the central role deductive explaining
plays in the "mathematical emotional orientation."

The mathematical emotional orientation

Maturana (1988a, 1988b) uses the phrase "emotional orientation" to describe the
bodily predisposition that underlies individuals' decisions to accept some things as
explanations and to reject others. An emotional orientation defines a domain of
explanations, of which mathematics is one. Mingers (1995), in his discussion of
Maturana's work, identifies three aspects of an emotional orientation:

Each domain is constituted in three interlocking dimensions the
criteria for accepting explanations, different operational coherencies
structuring such explanations, and the actions seen as legitimate (p.98,
emphasis added).

In mathematics the criteria for accepting explanations include the use of deductive
reasoning, a basis in agreed upon premises, and a formal style of presentation. There
are many operational coherencies (shared experiences and assumptions) in
mathematics, the most obvious of which is the language used to talk about it. There
are also many actions that are seen as appropriate to mathematics (drawing diagrams,
generalising statements, making conjectures, etc.).
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The nature of the mathematical orientation may be clearer if we consider what is not
mathematics. Explaining by reference to authority (as in the non-explanations
discussed below) is not mathematics. Neither is focussing closely on procedural

steps in mathematics classes, although this is the experience of many students.
Finally, actions such as the use of abuse to establish authority are not legitimate in
mathematics. On the other hand, feeling a need to explain conjectures, and preferring
deductive reasoning as the means to do so, are a part of the mathematical orientation.

Ways of explaining

Most of the examples I provide in this report come from observations in grade 10

mathematics classes in which students were studying coordinate and Euclidean
geometry. The students engaged in a series of activities, working in groups, and
reported their conclusions to the class as a whole on a regular basis.

Behaviours which could be called "explaining" occurred in two kinds of contexts:
activities in which there was an explicit demand to "explain" and contexts in which
students engaged in what observers saw as explaining without being prompted to do

so by a teacher or activity prompt.

In these two contexts several different modes of explaining were observed:

Non-explanations;
Explaining how;
Explaining to someone else (in response to a question);

Explaining to someone else (spontaneously);
Explaining as part of social activity in a community where explaining is a

social norm, i.e., part of the community's emotional orientation;
Attempting to come to a personal understanding (explaining to oneself).

Individuals operating from a mathematical orientation are likely to use deductive

reasoning in any of the last four modes of explaining listed here.

Non-explanations
Personal or institutional authority is a common mode of "explanation" in schools,
especially for students and teachers who can't explain something and see that
inability to explain as a negative reflection of themselves as people. In the following

In this report I will sometimes omit the word"emotional" from the phrase "mathematical
emotional orientation" for brevity. This should not be taken as an indication that the role of

emotions in defining a mathematical orientation is unimportant. Emotions are central to defining

mathematics.
These examples are taken from an ongoing research project on the psychology of reasoning in

school mathematics, funded by SSHRC grant # 410-98-0085, Acadia University and Memorial

University of Newfoundland.
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example Stu both refers to the teacher's authority to verify and falls back on his own
authority when asked to explain.

1. Stu: [To teacher] That one and that are complementary right?
2. Teacher: Why?
3. Stu: Because.
4. Jill: None of them are complementary.
5. Stu: They are.

Abuse can be used to establish the authority to explain. In the following example Stu
replies to Christy's questions with a question of his own, perhaps to help her reflect
on her own mathematical activity, or perhaps to evade her question. When he and
Jimmy do reply to her they provide only the procedure she is meant to use with an
implicit reference to an outside authority ("you're supposed to"), followed by abuse
from Stu. Stu's opinion that he is in a position to declare Christy "stupid" suggests
that he is establishing authority over her.

1. Christy: How'd you get that?
2. Stu: How'd you get 6?
3. Christy: I don't know.
4. Jimmy & Stu: You're supposed to add them together.
5. Christy: Oh-
6. Stu: 3 minus 5 equals 8 ... Man you're you're stupid.

Explaining how

Jimmy and Stu, in the previous transcript, offer Christy-a procedural explanation, in
response to her question ("You're supposed to add them together."). Many of the
explanations offered in mathematics classes are not explanations of why something is
the case (as would be expected from a mathematical orientation), but simply
explanations of how something is calculated (which is consistent with what might be
called the "school emotional orientation"). This happens not only when students ask
each other how to do something (as in the previous example) but also when teachers
ask students to explain. For example, this is Jill's response to the written prompt,
"Which equation describes the graph on the left? Explain why."

In transcripts I use the following conventions: An em-dash () indicates a short pause. Several
indicate a longer pause. Ellipses (...) indicate omissions (usually "um"s, etc.) to improve
readability. Three asterisks (***) are used to indicate an omission of several lines of speech. A
hyphen (-) ending a line indicates an interruption of speech at that point.
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The reason the equation I've marked describes the graph is because I took the
points from the graph and made up a table ofvalues then I did the equation
with the table of values I made.

Jill does not explain why in any way that would satisfy a mathematician. Instead she
describes what she did.

Explaining to someone else (in response to a question)

Another context for explaining, the first in which deductive reasoning is likely to

occur (suggesting a mathematical orientation), is responding to another person's
question. The other person might be a teacher or written prompt (like the one offered

to Jill in the previous example) or, in this case, another student (CH is a research

assistant).

1. Melinda: I have one.
2. CH: What do you have?
3. Melinda: Triangle ABC and BDC.
4. Jill: Why?
5. CH: They're congruent?
6. Melinda: 'Cause they have a shared side and alternate angles.

Here Melinda uses notation specific to mathematics and makes implicit use of a
shared experience of theorems and definitions in geometry to provide a deductive

explanation.

Explaining to someone else (spontaneously) and as a social activity.

In the following transcript four grade 10 boys are trying to work out a generalisation
concerning the sum of the interior and exterior angles of polygons. Their class has

been studying Euclidean geometry (parallel lines and congruent triangles) for about a

month, in a style similar to the exploratory methods described by Fawcett (1938). In
this context the students in the class have come to adopt explaining as a major focus
in their mathematical activity, and have come to value well formulated, deductive
explanations. The following transcript offers a number of examples of spontaneous
explanations, embedded in a social context that values explaining. (Bold indicates
such explanations.) These explanations suggest that the boys were operating from a
mathematical orientation at this time.

1. Wane: The exterior angles of them all because when there's
more sides you can make more triangles.

2. Mick: Which one is he talking about?
3. Wane: So it keeps going up by 180!
4. Clark: Here's what I was thinking. This one is 360. That triangle

there and that one exterior angles.

5. Wane: Oh yeah, that's true too.
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6. Mick:

7. Clark:

***

That angle there is 360 and this angle here Now they all
equal 360, right?
You see, we got this thing here a common vertex. That
means we have to subtract some angles. 360 and 360 which
is 720, right? Correct? Okay. Now we got to subtract some.
Okay?

8. Mick: So what do we got?
9. Clark: We got four angles, right? Now uhhhh uhhhh

They're all counter-clockwise Yeah they are. CCW.
10. Wane: No they aren't.
11. Mick & Clark: Yes they are because the way they goes up that way.
12. Clark: Okay. Now we got the four angles.
13. Wane: Four times 180.
14. Mick: But they're not all 180.
15. Clark: How do you know they're not 180?
16. Mick: Because they're not all straight lines. The angles aren't

straight lines I was just looking at that one.
17. Clark: And they're all supplementary to an angle inside here,

right?
18. Mick: Oh, deadly!
19. Wane: And it has something to do with if you know the interior

angles the sum of the interior angles then they'll all
wind up to be the same thing because they're all
supplementary to an angle.

The behaviour of Mick, Clark, Jacob and Wane in the above transcript suggests that
they have a mathematical orientation. The passages in bold show Wane, Clark and
Mick responding to a felt need to explain their conjectures, which is an action in
keeping with mathematical practice. Their explanations make reference to
geometrical concepts, definitions and theorems that are a part of the shared
experiences of their mathematical community. They propose explanations using
deductive reasoning (an operational coherency that structures mathematical
explanations) and they expect others to explain things deductively and with reference
to the same definitions they use, indicating that at least two of their criteria for
accepting explanations are consistent with a mathematical orientation.

Explaining to oneself.

The last mode (explaining to oneself) can be described in still greater detail, but in
the interests of space I will limit myself here to one example, of two university
undergraduates working on the Arithmagon problem (see Reid 1995a or 1995b for a
more detailed analysis):

1. Stacey: What happens if you add the middle numbers together?

4 - 109

1274



2. Kerry: Well I guess we could, hmm.
3. Stacey: I just want to try something. If you take 27, 18, and 11. 2,

4, 5, 56. Right?
4. Kerry: Sure.
5. Stacey: And you have So you add each of those twice, right?

Yeah you do. That's not going to help you either. That's
what you end up doing right?

6. Kerry: What'd you do?
7. Stacey: You add A, B, C. Then you multiply them by 2. You get

this answer.
8. Kerry: Do you add?
9. Stacey: 22, and 34. Yup. Do you know what I mean?
10. Kerry: Sorry. So you add this and multiply by 2 so, like, the sum

of this is 28 times 2. And it's 56. Good one. What's that

mean?
11. Stacey: [laughing] Nothing.

In spite of the linguistic indications that Stacey was explaining something to Kerry
("Right?" "Do you know what I mean?") she is really explaining to no one but

herself. Kerry, in spite of being involved in the same problem solving activity as

Stacey, was unable to follow her explanation. It is clear however that Stacey was
explaining something to herself, and elsewhere I provide a possible interpretation of
the deductive reasoning involved in her thinking (Reid 1995b, Kieren, Gordon
Calvert, Reid, & Simmt 1995) which suggests she was operating from a

mathematical orientation.

Conclusion
Researching proving involves dealing with complexities. Many types of reasoning

are involved, there are degrees of formality of written proofs and formulations of

reasoning, and the needs which motivate proving are many and their importance is
only beginning to be understood. The examples I offer in this paper are intended to
help clarify one need to prove: the need to explain. In exploring the need to explain I

also address the features that qualify explanations as mathematical explanations,

which is an important part of defining a mathematical emotional orientation. The
criteria for acceptance of explanations in mathematical communities include the use

of deductive reasoning and reference to shared experiences of notation, definitions

and established theorems. Observation ofthese characteristics in students'
explanations suggests progress in their adoption of a mathematical orientation.
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MONITORING OF DYNAMICS
OF STUDENTS' INTELLECTUAL GROWTH IN MPI-PROJECT

Sam Rososhek
Algebra Department .

University of Tomsk Russia

The system of tests, which allows to follow the dynamics of intellectual growth of
students aged 10-15, has been worked out within the frames of MPI- project Accom-
plishment of test tasks corresponds to a certain level of organization of individual
mental experience, which is considered as the level of intellectual growth. Student's
accomplishment of every test allows to receive a multidimensional vector, charac-
terizing the state of his/her individual mental experience at the moment of doing the
test. Totality of such vectors for all the tests during the whole period of studies
makes up the individual trajectory of a student's intellectual growth in multidimen-
sional space. We propose to discuss the tests themselves as well as some results ob-
tained in Tomsk schools.

The system of the tests, which allows to follow the dynamics of intellectual growth
of students aged 10-15 has been worked out within the frames of MPI-project (MPI:
"Mathematics. Psychology. Intelligence."), the head of the project is Prof.
E.Gelfman. The project is directed at the development of students' individual cogni-
tive experience. Fulfilling test tasks corresponds to a certain level of organization of
individual mental experience of a child, in other words, a certain level of a child's
intelligence. The theoretical foundation of the paper includes Kholodnaya's concep-
tion about intelligence as individual mental experience [1] and Weyl-Shafarevich
conception about Algebra as the collection of coordinatizing quantities systems
[2-4].

Let us have a look at basic pivotal lines, which cross the whole system of the tests
and which correspond to certain components of individual mental experience of a
child. They are: 1) a line of comparing numbers which by the end passes into a line
of inequalities; 2) a line of equations; 3) a line of operations with numbers which by
the end passes into a line of algebraic structures; 4) a line of word problems, which
by the end passes into a line of mathematical modeling; 5) a line of search for
regularities in a row of numbers which passes into a line of functions; 6) a line of
visualization of abstract mathematical notions.

We shall dwell on some of these lines in a more detailed way. Let's begin with a line
of comparisons. Here is a mid-year test for the 1st year of studies in MPI-project,
which along with skills of comparing decimal fractions, checks the ability of trans-
formation of one way of recording numbers into the other one.
Task 1 from a mid-year test for 10-11 year old students. Insert the omitted sign of
comparison for the following numbers: "seven integers seventy nine thousandths" ...
"seven integers eight hundredths. a) <; b) >; c) =".
A corresponding task which is given at the end of the 1 st year of studies
(age 10-11). Insert the omitted sign of comparison for the following numbers:
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"thirteen of tenths"... "one hundred and three hundredths". a) <; b) >; c) = ;
d) another answer (point out, which one)".

Complication of task of the test which is given at the end of a school year is made
simultaneously along several directions: first of all, if in a mid-year test it is presup-
posed that the right answer is given among the variants of the answers, it is not
obligatory for the final test at the end of the school year. Secondly, besides trans-

formation from verbal form of record of numbers into sign form, here transforma-
tions of a decimal fraction into a standard form is necessary and that requires corn-
prehention of the notion of a decimal fraction, but not only formal habits of actions.
It should be noted that a notion of a common fraction in WWI-project is given after a

notion of a decimal fraction, that's why children are not

13
iacquainted with formal transformation of fraction into decimal fraction 1.3.

10

Let's have a look at a corresponding task for the 2nd year of studies. Here is an ex-
ample of a mid-year test for students aged 11-12. Insert the omitted sign of compari-

son into the following numerical expressions: "thirty one minus fifty"... "forty nine
minus seventy. a) <; b) >; c) =".
A task which is given at the end of a school year to students aged 11-12.
Insert the omitted sign of comparison into the following numerical expressions: "mi-

nus one hundred eighty nine of twenty sixths"... "minus seven integers twenty six

hundredths. a) <; b) >; c) =; d) the other answer (which one) ".

Complication of a final test in comparison with a mid-year test for children aged
11-12 lies in the following: integers are compared in a mid-year test and in the final

test we compare rational numbers (represented in different forms: common and

decimal fractions).

Now let me give an example of a comparison task for students of the 3d year of
studies, aged 12-13:
"Compare the values of numeric expressions and insert the omitted sign of compari-

son: 00.04 --3) (--1-1-004 )72- 6 8 a) <; b) ; ="

This task is directed at exposing students' ability to make a generalized numeric rea-
soning. The majority of students who were doing this task tried to transform common
fractions into decimal ones and they had to pass to approximate values of numbers

and, as a result, couldn't get the correct answer. Some of the students transformed
decimal fractions into common ones, and having done the required operations with
the fractions, they compared the fractions, which they have got as the result. Maxi-

mum number of points was given to the students who, having

transformed the numerical expressions into the form

lf ts,

1 -
25

1

24 and
A 1

24
1

25
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didn't start to calculate their concrete values, but compared a negative number to a
positive one.
Another task from a test, which is given at the end of the school year to 12-13 year
old children: "compare the numbers and insert the omitted sign of comparison: 2100
100010. a) <; b) >; c) = ; d) another answer (which one) ".
In this task a generalised numerical reasoning was in transformation of numbers into
the form (21°)1° and (1000)1° with the consequent comparison of 21° and 1000.

Let us pass over to the task of the 4th year of studies (children aged 13-14).
Here is an example of a mid-year task: "compare numbers and insert omitted sign of
comparison:

3
... . a) <; b) >; c) =".

A task which is given at the end of the 4th year of studies (13-14 years): "compare
the numerical expressions and insert the omitted sign of comparison:

(Nig -3,1S). a) <; b) >; c) = ; d) another answer (which one) ".

If in a mid-year test a generalized numerical reasoning is given in the form ofa nu-
merical expression with consequent comparison of subradical expressions, then in a
final test the reasoning is complicated by the usage of transformation of numerical
expressions, which allow to establish that they have different signs.

In the tests for students of the 4th year of studies there appear numerical inequalities
(inequalities and systems of two inequalities with one variable). Finally in the 5th
year of studies we include quadratic inequalities and inequalities with a modulus in
the test. Success in work with this material largely depends on success of work along
the whole line of comparison task, beginning with the 1st year of studies.
Now let's consider the line of algebraic operations. Here is a task from a mid-year
test for students, aged 10-11: "Calculate using the properties of arithmetic operations
(point out, which ones): 92(57 39) + 18 208 = ... a) 7100; b) 7200; c) 7300".
If the correct answer has been got without using properties of operations, one point
was given. If the properties of operations have been made use of for getting the cor-
rect answer, but they were not named, two points were given and only usage of prop-
erties of operations for getting the correct answer with naming these properties was
estimated by three points. Here is an example of a test, given at the end of a school
year to 10-11 year old students: "Make calculations using the properties of arithmetic
operations (point out, which ones): 1.71. 0.18 + (3 2.982)2.29 =
a) 7.2; b) 0.72; c) 0.072; d) the other answer (which one) ".
Complication of a task of a final test in comparison with a mid-year test lies in the
fact, that, firstly, there was the correct answer among the given answers in a
mid-year test but in a final test it is not obligatory and, secondly, numerical domain
with natural numbers is widened to decimal fractions.
In MPI-project we give two tasks to 2" year students, aged 11-12. One task consists
of using familiar properties of arithmetic operations and the 2nd task is aimed at



checking some of the properties for operations of subtraction and division in differ-
ent numerical domains.
Here is a mid-year test for students, aged 11-12: "Make calculations using the prop-
erties of arithmetic operations (point out, which ones)
39 (-2) (14 16)(-111) = ... a) 300; b) 300; c) 144".
Another task from a mid-year test for 11-12 year old students: "we may say about
property of commutativity for subtraction of whole numbers a b = b - a that it is ...
a) always fulfilled; b) never fulfilled; c) fulfilled for some numbers and not fulfilled

for the other numbers".
Tasks which are given at the end of the 2d year (11-12 year old students):
1) "make calculations using properties of arithmetic operations (point out, which

ones):
1

(6-1 (-32.4) (-32.4)- 8-
8

60.75) 3.4 -15-3- =
4 5

a) 15.6; b) 199.2; c) 428.7 ; d) the answer is different (point out, which one) ".

2) "we may say about property of associativity for division of rational numbers that it
is: a : (b : c) = (a : b) : c. a) always fulfilled; b) never fulfilled; c) fulfilled for some
numbers and not fulfilled for the other numbers; d) the other answer (which one) ".

Now, let's consider tasks of tests which are refered to the line of algebraic operations

(third year of studies).
Tasks for a mid-year test for students aged 12-13:
I. "We may say about property of "right" distributivity for division of rational num-
bers relative to addition (x + y) :z=x:z+y:z that it is. a) always fulfilled; b)
never fulfilled; c) fulfilled for some numbers and not fulfilled for the other num-

bers"
II. "We may say about property of "left" distributivity for division of rational num-
bers relative to addition x: (y + z)=x:y+x:z that it is. a) always fulfilled; b)
never fulfilled; c) fulfilled for some numbers and not fulfilled for the other num-

bers"
Tasks from the test, given by end of a school year to students aged 12-13:

I. "We shall define the operation on a set of whole numbers according to the fol-

lowing rule: for any pair of whole numbers m and n, let m 02n = (m - n)2 . We shall

call operation 02 "quadratic difference" of numbers m and n. We may say about

property of commutativity for quadratic difference of whole numbers m 02n = n02m

that it is. a) always fulfilled; b) never fulfilled; c) fulfilled for some numbers and

not fulfilled for the other numbers; d) another answer (which one) ".

II. "We shall define an operation on a set of whole numbers according to the follow-

ing rule: for any pair of whole numbers m and n let m 03n mean the following:

m 03n = (m n)3 . We shall call this operation 03 "cubic difference" of numbers m
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and n. We may say about property of commutativity for cubic difference of whole

numbers m 03n = ne3m that it is: a) always fulfilled; b) never fulfilled; c) fulfilled
for some numbers and not fulfilled for the other numbers;
"d) the answer is different (point out, which one) ".

Now let's pass over to the test for the 4th year of studies. Here is an example of a
mid-year test for students of the 8th form (13-14 year old):
"We shall say that natural number n is the order of permutation g if multirzation

of permutations g = g" is equal to identical permutation and that n is the
n times

smallest number with such property. Order of permutation g =
(1 2 3 4 51

is
3 4 1 5 2)

equal ... a) 6; b) 5; c) 3".

Here is an example of a final test for the 8th form students aged 13-14:
"Let us consider a set of A numbers in the form x + p/2 where x and y are whole
numbers. Then, relative to addition of real numbers, this set is: a) noncommutative
group; b) commutative group; c) not a group; d) the other answer (which one) ".
Finally, in tasks for the fifth (concluding) year of studies, according to MPI-project,
the lines of algebraic operations and visualization of abstract mathematical notions
are absent as they are united on a new level in work according to computer program
on visualization of algebraic structures (groups, rings and so on) and are tested sepa-
rately.

In conclusion we shall give development of one more line word problems, which
by the end passes into mathematical modelling.
Here are examples of mid-year test for the 5th form (10-11 year old).
I. "What is the price of an ice-cream if the box with ice-cream costs 16 thousand
roubles and there are 32 pieces of ice-cream? a) 5 thousand roubles; b) 2 thousand
roubles; c) 500 roubles".
II. "Put down the expression for definition of the price of an ice-cream in roubles, if
the price of a box of ice-cream is c roubles and the number of pieces of ice-cream in
a box is k. a) k c; b) c : k; c) k : c".
It is interesting to note that while answering the proceeding task, many students give
a wrong answer of 2 thousand roubles. But some of them, having got the correct
answer to the second task, turn back to the 1St task and get the correct answer.

A task from the test given at the end of the 5th form (10-11 year old):
"Introduce additional information and define the distance which a boat covers in t
hours if the speed of the boat is equal to u km/h and the speed of the river-stream is
v km/h. a) (u + v)t; b) (u - v)t; c) (u - v): t; d) the other answer (which one) ".
A task from a mid-year test for the 6th form (11-12 year old).



"At the beginning of the year a company issued k shares and by the end of the year
got profit of n roubles. At a general meeting of shareholders it was decided that a
part of the profit (namely, m roubles) should be used for development of the com-
pany and the part of profit, which is left, should be paid to shareholders. Then,
shareholders will have per one share...a) (n - m): k; b) n : k - m; c) k :(n - m)" .
A task from the test, given by the end of the year in the 6th form (11-12 year old):
"During interurban bus route one bus stops every 40 minutes and the other bus-every
18 minutes. Both the buses began the movement simultaneously. What is the small-
est period of time when both the buses reach their destinations? (It is presupposed
that the time which they spend at the bus-stops may not be taken into account).

1a) 3.5 hours; b) 5-3 hours; c) 6 hours; d) the other answer (which one)".

A task from the final test in the 6th form:
"A set of game device for TV-sets includes the cartridge, the price of which is
n roubles, which makes 8% of the whole set price. What is the price of the game de-

vice without cartridge?
\ 8n 8n , 100n

a) n ; b) n - ; c) n; d) the other answer (which one)".
100 100 8

A task from a mid-year test for the 7th form (12-13 year old):
Define an average speed of an automobile on the part of the road from point A to
point B and backwards, if the distance from A to B is equal to S km and it took u
hours to cover the distance from A to B and it took v hours to cover the distance
from B to A.

a) ; (S: u + S : v); b) 2S: (u + v); c) (2S : u) + (2S : v)".

A task from a final test in the 7th form (12-13 year old):
"There are two sectors in the stadium with n seats all in all. Receipts from selling
tickets to the match were: to the 1St sector x roubles, to the 2I'd sector y roubles.
How many seats are in the 2nd sector if all the tickets were sold at the same price and
there remained no tickets unsold?

a) y:(x+
n

Y) );b) y:(
x + y ny

);c) x" ; d) the other answer (which one)".

We should note that the word problems given above were among the most difficult
tasks for students of the 7th form.
Here are two variants of the tasks of final test for the 8th form (13-14 year old).
I. The area of a right triangle with cathetuses h, and h2 is B and the area of a square,
one side of which is the hypotenuse of this triangle, is A. Define h1 and h2.

a) h1 = VA + 2B +VA-2B, h2 = VA+2B -4,4-2B;

b) h = ,IA +4B + VA 4B, h2 = VA + 4B VA 4B ;

4 - 118

1283



1
c) = .i(q A + 4B +

1 ,
4B), h2 = A + 4B - NrA413);

d) the other answer (which one) ".
II. "A raft and a motor boat started simultaneously with the stream from city A to city
B. While the raft was on the way, the motor boat, after arriving to city B turned
backward and came to city A at the same time with as raft came to city B. In how
many times is the speed of the motor boat larger than the speed of the raft?
a) 1; b) 2; c) two decisions: 1 -5 and 5 +1; d) the other answer (which one) ".
In word problems of the final year of studies according to MPI-project, the line of
word problems is passing into the line of mathematical modelling. As this line is
very important, I shall give corresponding tasks from final test for the 9th form
(14-15 year old).

I. "A businessman made up his mind to buy shares of three companies. All in all he
wanted to buy 12 shares for 61 dollars and not less than two shares of each of the
companies. How many variants there exist on these conditions if the price of shares
of these three companies is $7, 5 and 4? Solve the problem by means of making and
analyzing a corresponding mathematical model. a) one variant: 3, 4, 5; b) two vari-
ants: 3, 4, 5 and 3, 3, 6; c) three variants: 3, 4, 5; 2, 6, 4 and 5,2,5; d) the other an-
swer (which one) ".
II. "In city N in the flour market there is the following situation (tab1.1):

Table 1: Flour market situation

Quantity of flour required
during a week (tons)

Price per a ton of flour
(mln. roubles)

Quantity of flour, sup-
plied during a week

(tons)
100 1.5 20
70 1.7 40
50 1.8 60
30 1.9 90
10 2 100

Construct a mathematical model of the given situation and give the answer to the
question: what is the equilibrated price and the equilibrated quantity of flour for the
given market? a) 1.7 mln roubles per a ton and 55 t; b) 1.8 mln roubles per a ton
and 50 t; c) 1.7 mln roubles per a ton and 53 t; d) the other answer (which one) ".
III. "In conditions of a standard model "foxes-rabbits" let's assume that at a certain
period of time there were 120 rabbits and 50 foxes on an island. Find out short-term
and long-term consequences of the administrative decision to shoot 10 foxes and 25
rabbits during the 1 st year. In particular, can this decision destroy the ecosystem of
foxes-rabbits?"

Now we shall consider how, with the help of the tests, to define the individual tra-
jectory of a student's intellectual growth during the period of studies. According to
MPI-project, as it is seen from the examples given above, their complication from
year to year (and from mid-year to final) demands more and more various in volume

4- 119

1284



and structure individual mental experience of a child. That's why we may suppose
that the quantity of the points which a student gets for the tests of one line for the
half or for the whole year, correspond to the level of development of one component
of individual mental experience at a given moment. Then a set of points, which have
been got for all the lines of the test system in a mid or final test is a vector in a cer-
tain multidimensional space. Totality of such vectors for all the tests during the
whole period of studies makes up the individual trajectory of a student's intellectual
growth. Preliminary results of the tests showed that, if maximum summary number of
points is from 25 to 30 for different tests, there may be pointed out some ranges of
summary number of points, which may be interpreted in the form of a certain current

estimator of state of a child's individual mental experience.

If summary number of points for a test is less than 10, then current state of individual
mental experience is considered unsatisfactory. If summary number of points is
within range from 10 to 14, then current state of individual mental experience is con-

sidered satisfactory and for the range from 15 to 19 is considered good. Finally, ex-
cellent mark corresponds to the range of 20 points and larger. A key question: how

should we evaluate different individual trajectories? This question requires a sepa-
rate investigation, taking into account test materials in different schools. So far, on

the basis of the results of preliminary tests we can move forward hypothesis: if in a

certain test a definite range for summary number of points was achieved, then we

may speak of intellectual growth, if in the following tests the summary number of
points remains within the same range or higher. It should be noted that besides sum-
mary number of points, we should taken into account different components of the

vector of points for each of the tests. In practice, the results of a test in any concrete

group are recorded in the form of a matrix, in the columns ofwhich we record differ-

ent tasks of test and in the rows we record the students of this group. Following the

results along different lines of a the tests, we may find out the dynamics of develop-

ment of different components of individual mental experience.

In conclusion, a few words about psychological aspects of the given system of tests.
Students who worked with these tests were asked to write reflections where they
could express their thoughts and impressions about the search for decision or about

the tasks themselves. Even, these reflections which we have now, contain such inter-
esting psychological material that demands a separate discussion.

References

[1]Kholodnaya M. A. Psychology of Intelligence: paradoxes of the research. Mos-

cow, 1997.
[2]H.Weyl. Topology and abstract algebra as two roods of mathematical comprehen-

sion. Amer. Math. Monthly, vol.102, ' 5, May 1995.
[3]Shafarevich I.R. Algebra-I (Modern problems of mathematics. Fundamental di-

rections), vol.11, Moscow, 1986, VINITI.
[4]S.Rososhek. Forming Algebra Understanding in MPI-project. Proceedings of

CERME 1, Osnabrueck, August 1998 (in print).

4 - 120

.12



STUDENT-GENERATED MULTIPLICATION WORD PROBLEMS
Denise W. Rowell

Karen S. Norwood, Ed.D.
North Carolina State University

This study examines sixth graders' attempts to generate multiplication word
problems. Twenty-eight students were interviewed and were asked to write a story
problem which could be solved by multiplication. Less than 40% of the students
could write a problem which was multiplicative in context, yet most of the students
used multiplication to solve the problem. In spite of the interviewer's attempt to
promote disequilibrium, the students never understood that their problems were
not multiplicative in context. This research report discusses the students ' attempts
to generate problems, their refusal to be put in disequilibrium, and their inability
to recognize that context determines the operation.

Introduction
There has been a considerable amount of research done recently on

children's ideas of multiplication. Multiplication is much more difficult than
addition because it is a binary operation. (Anghileri, 1989; Clark & Kamii, 1996;
Simon & Blume, 1994; Vergnaud, 1983) Addition is unary; it only requires
thinking in one dimension. Multiplication, however, requires the "coordination of
two dimensions". (Simon & Blume, 1994)

The difficulty that children encounter with multiplication is quite surprising
considering that students tend to learn the facts and the algorithms at an early age.
(Clark & Kamii, 1996; McIntosh, 1979; O'Brien & Casey, 1983) The problem is
that there is more to multiplication than just facts and algorithms. In fact, there are
two different aspects of multiplication: computational and contextual. (O'Brien &
Casey, 1983) Many students can compute products without understanding
multiplication in context. (Clark & Kamii, 1996; O'Brien & Casey, 1983) The
focus of this paper is on children's contextual understanding of multiplication.

Several activities have been done to determine multiplicative reasoning in
children. Clark and Kamii (1996) had students in grades 1 through 5 perform a
Piagetian "fish task" to determine the ideas that children have about
multiplication. They found that multiplicative thinking begins early in some
students, but is slow to develop. Graeber & Tirosh (1990) had students give a
definition of multiplication and found that most students define multiplication in
terms of repeated addition. Dorwaldt (1989) and Anghileri (1989) found that many
students do not understand the language of multiplication and thus have trouble
understanding multiplication in context. In several studies (De Corte et al., 1994;
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Graeber & Tirosh, 1990; McIntosh, 1979; O'Brien & Casey, 1983), students were
asked to write multiplication word problems. O'Brien and Casey found that many
of the students wrote problems that were additive in context, but used
multiplication to solve them. De Corte et al. found that most students who wrote
appropriate multiplication word problems used the repeated addition model.
Graeber and Tirosh also found that the students who were successful in writing
multiplicative problems used either the repeated addition model or the union of
equivalent groups. McIntosh found that many younger students could not write a

problems that was multiplicative in context, and that some of the students who did
write multiplication problems wrote problems which were checks for division.
(For example, "6 boys climbed up a tree and collected 18 acorns each boy had 3

acorns." (McIntosh, p. 14))

Children have an informal intuition about multiplication, but often they

cannot match their informal knowledge with the formal instruction they receive in

school. (Resnick, 1986) Even when teachers try to promote disequilibrium (Simon
& Blume, 1994), students tend to rely on their formal ideas instead of their
intuition (even when their formal ideas are erroneous).

Theoretical Framework
The theoretical framework for this study is based on a constructivist view of

learning. "[C]onstructivism holds that all knowledge is constructed and that the
instruments of construction include cognitive structures that are...themselves

products of developmental construction." (Noddings, 1990, p. 7) In addition, most
constructivist mathematics educators believe that children enter school with some
informal knowledge of mathematics. (Baroody & Ginsburg, 1995; Resnick, 1986)

The role of the mathematics teacher is to determine what knowledge they have
constructed and provide them with the experiences that allow them to construct

more logical or more efficient methods for doing mathematics.

In particular, the authors framed the study using the theories of Piaget,
Vygotsky and Resnick. Like Steffe and Cobb (1988), we interpret children's
cognitive development using Piaget's concept of schema, assimilation, and
accommodation, and we agree with Vygotsky's concept of the zone of proximal
development. However, in addition to this, we subscribe to Resnick's ideas about
children's errors, as well as their intuition about mathematics.

According to Piaget, children adapt to the environment and organize their
experiences using what Piaget calls schema, assimilation, accommodation, and
equilibration. (Wadsworth, 1996) A child's schema is the cognitive or mental
structure he uses to organize the environment. As he receives new bits of
information, he tries to integrate that information into a previously existing
schema. Piaget calls this process assimilation. When the child receives



information that will not assimilate into a previous schema, he is said to be in
disequilibrium. This child has to create a new schema or modify an existing
schema in order to make the new information fit. This process of modifying
cognitive structures is accommodation. Equilibrium is reached when there is a
balance between assimilation and accommodation. Finally, equilibration is the
process of moving from disequilibrium to equilibrium.

In addition to the theory of Piaget, the authors agree with Vygotsky's zone
of proximal development (ZPD). Vygotsky describes the ZPD as "the gap between
the child's level of actual development determined by independent problem
solving and her level of potential development determined by problem solving
supported by an adult or through collaboration with more capable peers."
(Dixon-Krauss, 1996, p. 15) It is through adult or peer collaboration that children
can make constructions that they might otherwise have been unable to make.

The piece that seems to be missing in the theories of Piaget and Vygotsky is
that they neglect to discuss the "gaps" in constructions. In other words, Piaget fails
to describe what happens when children create new schema, or modify existing
schema, incorrectly. Vygotsky does not discuss what happens when children are in
their zone of proximal development, but fail to develop to their potential. Lauren
Resnick addresses these issues. When students perform mathematical tasks, many
of them make similar errors. (Resnick, 1986) Some constructivists call these errors
"weak constructions". (Noddings, 1990) Resnick calls these errors "buggy
algorithms". She claims, "Buggy algorithms are ... clear examples of inventions
that are unsuccessful." (Resnick, 1985, p. 274)

Resnick also claims that children enter school with an intuition about
mathematics. (Resnick, 1986; see also Carraher, Carraher, and Schliemann, 1985)
However, the instruction they receive rarely makes use of this informal
knowledge. Students have formal instruction in mathematics which is full of
algorithms and is unrelated to everyday life. Typically, children who do well in
mathematics are able to make the connection to real life; whereas, "weaker
mathematics learners seem very prone to allow mathematical symbols to become
dissociated from their quantity and situational referents. . . . [they] try to memorize
and apply the rules that are taught, but do not attempt to relate these rules to what
they know about mathematics at a more intuitive level." (Resnick, 1986, p. 191)

Methodology

The participants in the study were 28 sixth graders taken from an intact
class. The students were enrolled in a small public school in central North
Carolina. To collect data, we conducted clinical interviews with each student
individually. The interviews were done in April of the school year, (after the



students had reviewed multiplication). Each interview was videotaped. The

students were asked to complete seven different multiplication tasks, one of which

was to write a story problem. Each student was given the following directions,

both verbally and in written form:

Write a multiplication problem that follows these rules:
(1) The problem must end in a question.
(2) The question must be one that is possible to answer by

multiplying.
(3) Solve your problem in as many ways as you can.

The interviews were conducted by one of three researchers. A pilot study

was done with fifth graders to insure that the researchers were consistent in their

questioning techniques. As a result of the pilot study, minor revisions were made

with the interview protocol.
During the interview, the student had access to paper and pencil. Each

question was read to the student by the interviewer. The interviewer then placed
the written instructions in front of the student for reference. The interviews lasted

from 20 to 45 minutes.

This paper focuses on the story problem task. After the student wrote a

problem, the interviewer asked probing questions such as "Can you draw me a

picture of your problem?" and "Can you think of another way to solve your
problem?" In the cases where students wrote problems which were not

multiplicative, the interviewers asked additional questions in an attempt to

promote disequilibrium. In some of the interviews, after attempting to promote
disequilibrium, the interviewers asked the students to write another word problem.

We coded the data using an adaptation of a coding scheme used by O'Brien
and Casey. (1983) We chose to code our data as follows:

1. Wrote a problem involving multiplication
a) Array model
b) "Times" model
c) Repeated addition
d) Two-step problem (one step required multiplication)

2. Wrote a problem involving multiplication as a computation
3. Wrote a problem involving addition
4. Wrote a problem involving subtraction
5. Wrote a problem involving division
6. Wrote a problem involving comparison
7. Wrote a problem which was nonsensical



For each student who wrote a multiplicative word problem, the problems
were classified according to the model of multiplication that the student used.
Problems which involved multiplication as a computation were not considered to
be multiplication problems. For instance, one student asked, "What times what
equal 36?" Finally, a few of the problems were not story problems in that they did
not ask a question or that they did not make sense. These problems were classified
as nonsensical. For example, Todd wrote: "If a boy has 3 blocks on his desk and
his friend ask him can he use his 3 bloks [blocks] to multiple [multiply] then his
friend sied [said] what is the anser [answer]? 9"

Preliminary Results and Conclusions
We found that only 39% of the students were able to write story problems

which were multiplicative in context. Of the students who were able to write a
multiplication story problem, 90% used an array model of multiplication. In
addition, there were 6 addition problems, 4 subtraction problems, 2 division, 1
comparison, and 3 nonsensical. (But in general, students who wrote these
problems used multiplication to solve them.) Even when students used
manipulatives to model their problems, they did not realize that the context of their
story problem was not multiplication.

We also found that in spite of the interviewers' attempts to put the students
in disequilibrium, the students refused to adjust their thinking to fit the
circumstances. The following transcript is an example of an interviewer's attempt
to promote disequilibrium.

Frank's Story Problem: "Their are 5 people playing basketball on one team
and 5 other people playing on the other team. If you multiply 5x5= How
many players will be in all?"

Interviewer: How would you draw a picture of this?

Frank: I would draw circles for the people 5 on one side and 5 on the
other side and then make a multiplication [sign] [drew 5 circles, x 5
circles, then drew a 5x5 array of circles]

Interviewer: [pointing to row 1 of the array] I see 5 people on this team and
[pointing to row 2] 5 people on the other team, but where did these
people [pointing to rows 3,4, and 5] come from?

Frank: They came from...[long pause]... they came from when you times 5
times 5 and they came from that...from 5 times 5.

Interviewer: So why did you multiply?



Frank: So there would be enough people on the team...Like, just in case if 3
people got hurt, there would only be 2 people left and then you can put

in 3 more people.

Interviewer: Let me ask you this: if you were watching a basketball game

and ... they're playing each other and you see 5 on say the Chicago Bulls

and 5 on ... you know. How many would be out there playing?

Frank: 5...I mean, 10

Interviewer: How did you get that?

Frank: How did I get 25?

Interviewer: No, how did you get 10?

Frank: Added 5 plus 5

Interviewer: What's the difference between your problem and my problem?

Frank: This is a multiplication problem [pointing to his problem] and this is
addition [pointing to interviewer].

Interviewer: OK, why is this one [Frank's problem] multiplication?

Frank: [Long pause] 5, maybe 5 people wouldn't be enough to ... [long
pause] play on the team or ... [long pause] because ... I don't know ...

because ...

In spite of our efforts to put them in disequilibrium, the children did not
understand that the context of the problem determined the operation to use. As
McIntosh (1979) put it, "A great deal of children's difficulty with numbers stems
from their not being able to see what the problem is about, so they simply extract

any number in sight and perform some computation." (p. 15) In fact, one of the

students who wrote an addition problem was given chips to model her problem.
She saw that when the problem was modeled she got 5 (3 + 2) as the answer
(instead of 6, which was her answer). She even claimed to understand that her
problem was actually an addition problem. However, when we asked her to write

another problem, she wrote another addition problem, but concluded the problem
with "Use multiplication to show your answer."

This research report will address the children's inability to recognize that

context determines the operation, their refusal to be put into disequilibrium, as
well as the implications for teaching multiplication.
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THE CLINICAL INTERVIEW: CONDUCT AND INTERPRETATION

Tim Rowland

Institute of Education, University of London

The purpose of this paper is to illustrate thepower and the process of the clinical
interview as a tool for research into students' mathematical thinking. The case in point
involves a 10-year-old solving a problem requiring division ofan integer by a fraction.
The interview unearths unexpected idiosyncratic methods and links with decimal
fractions, leading the analyst to speculate about rational number constructs that might
underpin such actions.

THE CLINICAL METHOD: PRINCIPLES AND PITFALLS

Piaget's post-doctoral studies in therapeutic psychoanalysis he read Freud and attended
Jung's lectures inspired his approach to the study of children's thinking.

This is the method of clinical examination, used by psychiatrists as a means of diagnosis
... [in which] the good practitioner lets himself be led, though always in control, and takes
account of the whole of the mental context. (Piaget, 1929, pp. 7-8).

The clinical method, the basis of Piaget's work for half a century, has been adopted by
researchers world wide. Ginsburg's work, for example, has drawn extensively on his
own mathematical conversations with children.

The primary method is the in-depth interview with children as they are in the process of
grappling with various sorts of problems [...] Interviews like these ... are rare in
mathematics education but essential to improving it. (Ginsburg, 1977, p. iv)

The clinical method is appropriate for the purposes of identifying (eliciting), describing
and accounting for cognitive processes (Ginsburg et al., 1983, pp. 11-13). The verbal
clinical interview is characterised by the following features (ibid., pp. 18-20): (a) the
interviewer employs a task or tasks to channel the subject's activity (b) the interviewer's
questions are contingent on the child's responses: the interviewer constantly makes
instantaneous decisions about the direction of the interview (c) the procedure demands
reflection: the interviewer asks the subject to reflect on what s/he has done and to
articulate her/his thoughts (d) the contingent nature of the procedure enables the
interviewer to test hypotheses that s/he has generated in this interview, or in earlier
interviews.

The contingent interviewer is having continually to make rapid assessments of what
`witnesses' say, to probe without leading the witness, striving to create the conditions for
the surface manifestation of the subject's thought.

Such mathematical conversations can provide teachers with effective assessment data,
and the professional skills of teachers related to questioning ought to equip them
particularly well to deploy the method for diagnostic purposes. The primary intent of the
clinical interview as a research tool is not to teach the child but to enlighten the
interviewer. The temptation for teachers to teach remains powerful, however. Piaget
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himself remarked that "It is so hard not to talk too much when questioning a child,

especially for a pedagogue!" (Piaget, 1929, pp. 8-9)

Doig and Hunting describe a programme for training teacher-clinicians to use interview

methods of student assessment. They note that clinical approaches to assessment offer

the advantage of interactive communication between the student ("data source") and the

teacher ("data interpreter), but that teacher-clinicians have been observed to "fall back

on ingrained methods such as telling students, or providing direct information rather than

questioning" (Doig and Hunting, 1995, p. 285). At the previous PME, Markovitz and

Even (1994) reported that junior high teachers are more prone to these teacher-habits

than elementary teachers in clinical interview situations.

According to Hunting (1987, p. 145), it is as though the technique were "rediscovered"

in the 1980s. The purpose of this paper is to make a contribution to the illumination of

the process of the clinical interview conduct and analysis. The bonus is speculative

insight into the mind of a remarkable, young mathematical thinker.

CONSRUCTIVIST PERSPECTIVES ON THE CLINICAL METHOD

Continuing international interest in radical constructivism lends urgency to the need to

make sense of the way individual learners have constructed their mathematical

knowledge, and adds weight to the efficacy of the clinical interview as a means of
achieving this objective. At the same time, radical constructivism forces a re-assessment

of the analyst's interpretation of the clinical interview. An essential means of

communication in the interview is language. From a constructivist point ofview (von

Glasersfeld, 1995), each individual associates words with past experiences. The

`meaning' of the word (for that individual) consists of a co-ordination of word and

experience (or re-presentation of experience), so that each calls up the other. Von

Glasersfeld calls this two-way (mental) use of language 'symbolic', arguing that
symbolic communication is achieved by means of co-ordinations which are compatible:

their being identical is neither necessary nor, for that matter, empirically verifiable. This

compatibility is inherent in the notion oftaken-to-be-shared meanings (Cobb, 1989).

From this perspective, the clinical analyst is not, in any direct sense, finding out 'what is

going on in the head' of the subject, but fabricating a story, an account of the subject's

inner world which is compatible with the analyst's own construction of the subject

him/herself, of the subject-matter in hand, of the nature of knowledge and learning, and

so on. Doig and Hunting (1995) and Hunting (1997) refer to the need for sound

pedagogical content knowledge on the part of the clinical interviewer, as s/he constructs

a theory of the student's understanding in the interview and tests the theory through

contingent questioning. My 'reading' of a pupil's contribution in the account which

follows is significantly informed by various investigations and reports on student's

rational number constructs (much of it usefully summarised and integrated in Carpenter

et al. 1993). Numerous related contributions to PME include Markovitz and Even

(1994), Goldin and Passantino (1996) and Lamon (1996), each of which refer to clinical

methodology.
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A CLINICAL INTERVIEW: THE ANALYST'S ACCOUNT
The interview discussed in the remainder of this paper is one of a number which I
conducted and transcribed over a period of some years (Rowland, 1999). My interest
was in how pupils apply the framework of knowledge that they possess to the solution of
non-routine problems which invite generalisation. The problem which inaugurates this
interview can be represented as 100 4- 3/4. The problem is presented in terms of
iquotition', the separation into an unknown number of parts, each of a given size.

Susie was aged just 10. I had interviewed her a number of times, and judged that she
would find a presentation such as "How many lots of three-quarters are there in a
hundred" accessible but non-trivial.

The interview begins':

1 TR: Right, I want you, to start with Susie, to explain to me what you mean by three-
quarters.

2 SL: Well, if you have one thing, whole thing, and you cut it in half, and then the two
bits in half again, and take away three of them, and take away one of them, the
three left are three-quarters.

3 TR: What about five-sevenths?
4 SL: Well once again, if you cut a cake like that, [she draws] cut it into seven equal

pieces, it has to be equal ...

10 SL: It has to be equal, so if you take away two of those pieces you've got five left.

At this stage, as analyst/researcher, I am probing2 to discover what kind of constructs are
bound up in Susie's 'knowing' of rational number? How might her rational number
scheme determine particular practical actions on her part? (Kieren, 1993, p. 57). Her
contributions [2] and [10] are significant in this respect, and will be considered later.
Following the preamble, I quickly got to the point:

11 TR: Right. Right. Now the next thing I want you to think about is, how many lots of
three-quarters are there in a hundred?

12 SL: How many lots of three-quarters are there in a hundred.
13 TR: Yes.

16 SL: Em, [... ] ... how many lots of three-quarters Yes ... I think ... have one
hundred, add ... what was it? ... oohhh ... It's impossible to third it - a hundred,
you need a third of a hundred. So that must be [writes] three ... thirty-three point
three recurring. [Writes 33.3r, changes r to R] I'll put a capital R for that
because that [r] means remainder. Ah, so if you add those two together,
together, it should be one hundred and thirty-three point three recurring.

The transcript 'turns' are numbered 1, 2, 3 ... and referenced as [nj in the commentary /analysis. Some turns have been

omitted in order to prioritise other material in this paper.

2 My commentary is mainly in the present tense, to convey the contemporaneous nature of interpretation and contingent

response.



In effect [16], to find how many 3/4 there are in 100, Susie adds to 100 a third of 100.

I note in passing her preference for the infinite decimal representation of one-third. My

attempt to find out why she believes (with good cause) that her procedure works does

not meet with success.

17 TR: Right, [..] what I actually asked you, right, was how many lots of three quarters
in a hundred. And what you've done is to take a hundred, and then a third of a

hundred, and add it on. Now, can you explain to me how that tells you how
many three-quarters there are in a hundred?

18 SL: I actually have worked that out quite a long time ago; worked that out, I did. It

hasn't ... I did actually do some maths and worked it out that way [inaudible].

I did try doing it that way, and then tried doing it another way. It worked, but
the other way I had was too difficult, so I just stuck to this way.

19 TR: When did you work out this other way?

20 SL: I can't remember ... well ...

I am still unclear about much of what she is saying in [18]. What exactly did she work

out "quite a long time ago"?. What was this other way? Invert and multiply? Her

teachers informed me that she had not been taught that method at school.

My next question is designed to find out whether Susie can adapt her method to division

by other fractions, choose one that will readily allow such a method to be demonstrated.

23 TR: OK. What about, how many four-fifths in a hundred?

24 SL: Four-fifths. It's correct, isn't it? [refers to 133.3R written]

25 TR: Oh yes, that's correct.

26 SL: Em, that was three ... what was that again? That was three-quarters.

27 TR: That was three-quarters in a hundred, now we're talking about four-fifths.

28 SL: That must be a fourth, this must be a fourth of it ... mmm ... a fourth of a

hundred [pause]

29 TR: A fourth of a hundred. OK, so what have you got?

30 SL: One hundred and twenty-five.

31 TR: OK. Describe what you do again. Just describe.

32 SL: I just had the hundred, and then I had one fourth of hundred, and added them

together.

Much as I (the analyst) marvel at the ingenuity of her method, I also (the mathematics

educator) realise its limitations. But does Susie? Indeed, she does. [34, 36]

33 TR: Right. What sort of ... can you give me another example of how many lots of
something in a hundred, that you could do that way.

34 SL: Well, you could, there, it's a fact you can, could not do the same way with ...

seven ... ninths.

35 TR: You couldn't do the same. Why not?

36 SL: Because it has to be one different. Like with this one [indicates 3/4] it was one

and that one [4/5]was one.

39 TR: One difference between which numbers?



40 SL: The number of them and the quarter. And it has to be the smaller one to the
number.

Susie seems to be expressing the required general relationship between numerator and
denominator (it is not clear whether or not she knows these terms) with reference to the
particular example 3/4 . In fact, "The number of them" [40] precisely captures the
etymology of 'numerator'. I hesitate (the cough, [41]) before asking my next question,
because I predict that Susie's answer will require her to divide 100 by 6, and (knowing
her) that she will do it mentally. I was quite unprepared for her response:

41 TR: Right, [cough] could you, um, work out how many lots of six-sevenths there are
in a hundred? [... ]

44 SL: Now what's a sixth of a hundred? Mm [pause], yes, I know a third of a hundred
is that [indicates 33.3R] [ I a sixth will be half that. [ ] So what's half of three.
Ah, one ...

49 TR: Can you work it out up here? [away from written 33.3 R]
50 SL: No, I'm working out this, so I can ... I will put it up there when I've worked it

out. I need just to be close up there, which will help me work it out.

Susie wrote 15 beneath the 33, then over-wrote the 5 with a 6. Then she wrote 5 beneath
the .3R; later she changed that 5 to 6 as well. She volunteers an explanation to me:

51 SL: So, do you know why I carried five into that? I had that one, and I had a half, so
that I had that. Why I'm moving in this way, it's a bit different. In a normal
adding sum you move the other way [i,e. right to left rather than the left to right
here]

52 TR: I'm not clear what you're doing Susie, you're working out a half of thirty-three
point three recurring ...

57 SL: I had five [from 15], and I have one of those [from 1.5], and then we carry the
five .over to there. And it will continue happening. Six and carry five, six and
carry five, so it must be [pause] sixteen point six recurring.

58 TR: Sixteen point six recurring. OK.
59 SL: Which is one hundred and sixteen point six recurring.

In such rare moments, this interviewer struggles to suppress his excitement. My question
about dividing by six-sevenths had opened an oyster, to reveal a pearl. In effect, Susie
writes that half of 33.333... is 15+1.5+0.15+0.015+ ... (half of each 3); adding the units,
tenths, hundredths and so on she gives 16.6666... "And it will continue happening". [57]
Six and carry five, six and carry five. The at home-ness of this 10-year-old with infinite
recurring decimals is an accidental (but characteristic) by-product of the main thrust of
the contingent interview, a theme that I opt not to pursue further at this point.

I choose, instead, to see whether Susie is able to expand her schema to deal with
fractions not of the form "4,+1). I thought it unlikely that she would, but had to test that
judgement.

62 TR: OK. Now, you said that it wouldn't work for seven-ninths didn't you, this
method. Right? Now, I'd just like you to write down five-sevenths, just here.

My contingent choice of 5/7 in preference to 7/9 is significant: I don't want any difficulty
in dividing 100 by 7 to block Susie's method, if indeed she has one.



63 SL: I'm going to have to think though, very well. Um, I'll try ... [pause]. Ahh, of

course ... [interrupted]

64 TR: You have a think while I push the door up.

65 SL: ... you can't ... I don't understand. It's definitely a hundred. So that means two
Ahh, ahhh, you've got two left, and you need five each time. So if you have

two hundred ... um ... divided by five. How many times does five go into two
hundred? Well, it goes into one hundred twenty times ...

66 TR: Mm-hm

67 SL: Must go into forty times. So that's ... a hundred and forty. [...]

69 SL: That's a two difference.

The exclamation `ahhh' in [65] seems to announce a moment of special insight. Susie

proceeds to extend and articulate this generalised process. From this point, she

consistently deploys 'you' as vague generaliser (Rowland, 1999):

89 SL: The next one, when you have two difference, you have to do two hundred
divided by that, the number, and add a hundred to the equals.

90 TR: Right, add a hundred to the equals.

91 SL: And with three you have to do three hundred divided by whatever is the top

number.

Susie's computational algorithm can be formulated as follows:

for p < q, 100 ÷P/q= 100 + [100(q-p)] =p

DISCUSSION: PART-WHOLE OR PART-COMPLEMENT?
How does Susie conjure up these algorithms, progressively adapted for increasingly

general application? I develop a hypothesis during the interview, as follows. I surmise

that Susie takes a global view of the division problem 100 ÷ 3/4, in which she first

imagines one three-quarter part of each of the 100 'things'. I don't know what her things

are. My corresponding image would be a long thin rectangular strip, standing on a 'base'

100 units long, with 3/4 of the height blocked out, or shaded.

Thus, 100 "lots of % accounts for % of the whole. The remaining 3/4 is one third of the

shaded part. Addition of one third of the part already accounted for will complete the

whole. The essence of the imagery is the perception of the fraction (3/4) in relation to the

complement ('/4) which is one-third its size.
Pirie, Martin and Kieran (1994) asked three categories of students (school and

university) a set of six (written) questions about fractions, including: How would you

explain 3/4? Pixie et al. describe four "major images" which emerged from the
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questionnaires. (1) Division: a quantity divided by a quantity (2) Part of a whole (3) A
number of some sort (4) A way of writing: a number over another number.

I suggest that Susie's image relates to (2)., but is crucially a part-part or part-
complement image embedded in a part-whole construct3. I failed to elicit any direct
confirmation of such imagery from Susie by contingent questioning, but there is indirect
evidence to support (compatible with) my interpretive hypothesis, as follows.

Describing a tenth in a classroom episode some months earlier (Rowland, 1992,
p. 44), she had said:

SL: If you have ten, and you take away nine ones, you have just the one left ... it's
because you take away a ninth ... no, nine-tenths. So there's one-tenth left.

For Susie, a tenth is the remnant when nine-tenths is taken from the whole.

At the beginning of this interview, she described three quarters [2] and five-sevenths
[10] in part-complement terms in her drawings and in her choice of words.

2 SL: Well, if you have one thing, whole thing, and you cut it [in four] and take away
one of them, the three left are three-quarters.

3 TR: What about five-sevenths?
10 SL: it has to be equal, so if you take away two of those pieces you've got five left.

Susie constructs each fraction beginning first with the part-whole construct for the
fraction and its complement, then removing its complement from the whole.

FINALE

To conclude the interview, I challenged Susie to adapt her method to divide by improper
fractions, such as five-thirds. Again, as with 56 earlier, I chose 5/3 contingently to
minimise for Susie any complications with whole number arithmetic. The challenge was
speculative: the hypothesised imagery schema does not seem to extend to dealing with
such cases, because the 'parts' to be removed are greater than the initial unit. She rose to
the challenge however, this time subtracting a fifth of 200 from 100.

177 SL: One hundred divided by five-thirds [sighs]. Right. See, this one [5/7] you added
it. I can't understand that [5/3]. That one's harder. Ahh, ahh, oh yes, you would
have twice as much for the difference, won't you. So that's ... so suppose we
had five-thirds. Want five-thirds. You would have to take a hundred ...

178 TR: Yes.
179 SL: Take away ... urn, a fifth of two hundred.
180 TR: Right.

189 SL: And then you have two hun ... one hundred would be ... that's forty. That equals
forty. So take away forty equals ... sixty.

Perhaps she perceives five-thirds as having a complement of negative-two thirds within
the whole, and hence the need to 'trim away' the excess two-fifths (from 100 lots of five

3 The mistaken tendency of some children to denote the part as a proportion of its complement rather the whole is well-

documented (e.g. Hart, 1981)



thirds). Alternatively, her thinking at this stage may be predominantly algebraic,
encapsulating and making the appropriate adjustment to the earlier procedure.

I was convinced that Susie brought intuitive knowledge of fractions (Kieran, 1993),
drawing on unusual but powerful fraction imagery, to create a global, gestalt overview of

the problem and a highly idiosyncratic solution. She demonstrates expansive
generalisation and readily perceives the possibility ofreconstructive generalisation

(Harel and Tall, 1991) as she confidently and flexibly adapts her method to solve a

comprehensive class of related problems.
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DIVISION WITH REMAINDER

CHILDREN'S STRATEGIES IN REAL-WORLD CONTEXTS

Silke Ruwisch

Institute for Didactics of Mathematics

Justus-Liebig-Universitat, Giessen, Germany

One-step division problems in the model of equal groups and equal measures can be
partition or measurement problems. They can also be divided into problems without
remainder, problems with a remainder which is not used for the solution, and
problems with a remainder which raises the solution by one. Most studies
concerning these aspects used word problems. This paper describes an empirical
investigation about children working in the real-world context juice punch". 12
second-graders age 7 to 8 and 28 third-graders age 8 to 9 were videotaped
pairwise. The results of the qualitative analysis show, that it depends on the solving
strategy, if the children had difficulties in dealing with the remainder.

Although division is not very difficult from a mathematical point of view, it is the
most complex operation children have to learn at primary school (eg. Anghileri 1995,
Burton 1992, Greer 1988; Harel & Confrey 1994; Schmidt & Weiser 1995):

Multiplication and division are second level operations", which are based on
addition and subtraction.
Division is taught as the inverse of multiplication, so the understanding of
division requires the understanding of multiplication.
There is a greater number of situational models with multiplicative structure than
with additional structure.
Within the models of equal groups and equal measures two aspects of division
can be differentiated: measurement and partition.
Division with remainder is an additional difficulty, because only integers are
allowed as a result. No other operation requires this differentiation.

Division problems in the model of equal groups

Most division problems in contexts are founded in the model of equal groups and
represent one of the following aspects: measurement or partition. In case of
measurement problems, the divisor indicates the number of elements of each subunit,
whereas the quotient gives the number of sets. From this point of view dividing
means grouping or repeated subtracting. In partitive problems, the number of
subsets is known, while the number of elements per set is to be found. The action
dividing" suggests a sharing procedure here.

Context-bounded division problems can also be divided into problems in which
the remainder is zero,
the remainder is non-zero but is not used for the solution, and
the remainder is non-zero and raises the solution by one.



Therefore, the following six situations can be differentiated within the model of
equal grouping (see Brown 1992, Burton 1992):

Division
Type

Re-
mainder

Measurement Problems Partition Problems

Zero Susan wants to pack up 16 plates
into boxes. One box can hold 4
plates. How many boxes does Susan
need to pack all the plates?

Susan wants to pack up 16 plates
evenly into 4 boxes. How many plates
will be hold from each box?

Non-zero but
neglectable

Susan wants to pack up 18 plates
into boxes. One box can hold 4
plates. How many boxes may Susan
fill with plates?

Susan wants to pack up 18 plates
evenly into 4 boxes. How many plates
will be hold from each box?

Non-zero
and raises
the solution
by one

Susan wants to pack up 18 plates
into boxes. One box can hold 4
plates. How many boxes does Susan
need to pack all the plates?

Susan wants to pack up 18 plates into 4
boxes. How many plates must be put
into one box?

Table 1: Measurement and Partition Division Problems

Solving division problems

Although division is such a complex operation, young children without any formal

instruction to the operation are already capable of solving one-step division word
problems. The findings of different investigations (e.g. Brown 1992, Burton 1992,
Kouba 1989, Mulligan & Mitchelmore 1996, Murray et. al. 1991) show:

About half the children solve division problems by using manipulatives or

fingers.
Children use much more often grouping strategies than sharing one by one,
although the problem may be a partitive one.
Problems with remainder are more difficult than those without remainder.

Even if division problems with remainders are calculated correctly, the

interpretation of the result causes difficulties.

The Study

All investigations dealing with division problems in context used one-step word

problems, which were told verbally. Qur question was, how children would solve
problems in a realistic context, in which they had the possibility of using real

materials. Especially we were interested in the following questions:
Which strategies do children use to solve division problems in real contexts?

How do children solve measurement problems with remainder in real contexts?

How do children interprete remainders in real contexts?

To answer these questions we investigate the problem-solving strategies of German

second- and third-graders (age 7-9) in real world situations. The main focus of this

paper lays on the strategies of children dealing with the context ,juice punch".
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Design of the situational context

Juice Punch
(60 glasses)

at 15 glasses

0 12 glasses

8 glasses

5 glasses

20 glasses

orange juice

peach juice

pineapple juice

banana juice

sparkling water

Figure 1: Recipe for a juice punch

same amount of
liquid as original
bottles in a super-
market 0.21, 0.5 1,
or 0.7 1. In contrast
to a real situation,
they were filled
with water and
labled with the type
of fruit and the
amount of liquid given in glasses. As in supermarkets, the bottles were sorted
according to their size and the type of fruit (see figure 2).

Data and Methodology

Subjects. The subjects of the whole study were 122 children from 7 different forms
of German public primary schools, 40 of them have worked with the ,juice punch".
Thus, 12 second-graders age 7 to 8 and 28 third-graders age 8 to 9
participated in this part of the investigation. At the time of inquiry the second-
graders had not been introduced to multiplication or division yet. The third-graders
had already learnt the multiplication table and had been instructed to both types of
division problems. They were also familiar with division with remainder, although
the different situational interpretations are not taught explicitly in Germany.

For our investigations we constructed three real-
world settings which are similar to each other in
their arithmetical structure but differ in the
situational contexts: classroom party, juice punch,
and doll's house (for details see Ruwisch 1998). The
second context, juice punch, will be described in
more detail now, because the examples used later are
taken from it.

In the situational context ,juice punch", the children
were asked to determine the number of bottles which
are necessary to realize the recipe given in figure 1.
To simulate an everyday situation, the children had
the possibility of using real materials for their
solution: a punch bowl, a 0.1 1-glass to measure, and
bottles of different sizes. These bottles contained the

o 000o Goo o Goo
o 0000 Oe o 000
o 0000 Oo o Ooo o

O o 00oo Oo o Goo 0o
o 00.. Oo o Ooo 0o

0
0

apple banana orange pineapple cherry sparkling-
water

peach multi-
vitamin

Figure 2: Tables with bottles of fruits and sparkling water
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Procedure. The children were
withdrawn from the classroom
and confronted pairwise with the
materials in a separate room.
They were given a short
introduction into the situation
(see figure 3). Then they had to
work by themselves until they
indicated to us that they had
finished. On average the
working-phase which was
videotaped lasted 20 to 30
minutes.

Results

Analysis. The videotapes were
transcribed in detail for each
pair. We differentiated different

My niece asked me for a juice punch for her
birthday party. Do you know, what that is?" ...
(eventually explain) 10 children will come to the
party. At home I looked for recipes for juice
punches, and I found one which yields 60 of these
glasses (show the glas). I have brought the recipe
for you here (turn around the recipe). Can you read
it out to me?" ...(let them read aloud by turns) As
you can see, the details of the recipe are given as
glasses, and therefore I don't know, how many
bottles I need. So that you can find this out for me,
I have put juice-bottles here (point to the tables
with the materials) which are filled with water.
Can you fill in this shopping list (turn around the
shopping list), how many bottles I have to buy for
the juice punch in the supermarket?"... If you are
ready, please let me know."

Figure 3: Verbal instruction
forms of transcripts due to the
degree of resolution (see Wollring 1994): a) coarse transcripts of sequences, b)
verbal transcripts with middle resolution, and c) verbal and action transcripts with
high resolution. The latter form of transcripts was used for the case-studies, this

paper refers to. The transcripts were interpreted turn-by-turn in small groups of 1 or

2 researchers and 3 to 4 teacher students.

Children's strategies and action patterns. The children used three different solving

processes to determine the number of bottles: 4 third-graders estimated the number, 4

second-graders and 10 third-graders mixed the punch by measuring with the glass,

and 8 second-graders and 14 third-graders calculated the numbers (for details see
Ruwisch 1999). Only the children of the last group came across the problem of
division with remainder. Their difficulties, their searching and solving processes, and

their discussions are described in detail now.

Children's strategies solving a measurement division problems with remainder.
Treating the whole problem, the children had to solve 5 smaller problems. The

number of bottles of every juice, except banana, could be solved without remainder.

It was interesting to us, that most children tried to find out a solution without any

juice left, although they were not asked to do so by the interviewers. So calculating

children chose the corresponding size of the bottles and found the following

solutions:
- 3 bottles of 5 glasses to get 15 glasses of orange juice,

- 2 bottles of 5 glasses and 1 bottle of 2 glasses to get 12 glasses of peach juice,

- 4 bottles of 2 glasses to get 8 glasses of pineapple juice, and

- 10 bottles of 2 glasses or 2 bottles of 7 glasses and 3 bottles of 2 glasses to get 20

glasses of sparkling water.

I 3 0 5
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The 5 glasses of banana juice given in the recipe could not be realized with the given
bottles of 2 glasses each without some amount of juice left at the end. So, here these
children had to solve a measurement problem with remainder. We could observe
three different reactions to this problem:

4 thirdgraders had no problems at all to find the solution. They did neither talk about
banana juice as a special problem, nor had difficulties in finding the solution 3
bottles of 2 glasses", which all them wrote down at once on the shopping list.
Although these children tended to calculate the minimal number of bottles necessary,
it seems as if they did not even come across the problem of the remainder. Acting in
a simulating real situation, it seemed to be clear to them, that they have to buy one
more bottle.

8 second-graders and 10 third-graders did come across the problem. All of them were
somewhat puzzled at the beginning, like the example of Max & Felix (3rd grade)
shows:

F (F. is still writing down the solution for the pineapple juice)
M Then? (looking at the recipe) Then banana. (turning around to the bottles)

Banana, banana (finding bottles of banana juice, turning around to the
recipe) Then we need, how much banana? (looking at the recipe) 5 glasses.

F 5?
M (turning around to the bottles, looking at a 7 glass bottle of apple juice) These

are 7 glasses. (tapping the 7 glass bottle of apple juice)
F (turning around to the bottles) Yes, that's of course ... 5 (looking at the

bottles next to apple juice)
M 2.
F Oh, damn, there are no bigs of this kind, that's mean.
M Oh yes, but they are 7ers (turning around to the recipe)
F Pardon, 5? How shall we manage that?

(M. is looking into the recipe, F. is again turning around to the bottles.)
F Are there also anywhere ones? (looking around the other given bottles)
M 5, 5.
F Is (looking at the lables of the other bottles, looking at the bottles standing

behind the others) there anywhere anything, dipdidipdidip
M (spreading out his arms) that's impossible.
F Ahm, what kind is this one (touching a bottle of multivitamin juice)
M Ahhh!
F Maybe of these?

(Both are standing in front of the bottles of multivitamin juice)
M There is all together. 5 glasses are in it. Well, it doesn't matter (shrugging

his shoulders)

All of these children knew that 5 glasses could not be reached by bottles of 2 glasses.

4 second- and 4 third-graders only stopped for a short moment, giving comments like
here are no 5s, how will that work? Okay, let's take 2 small ones and a half'. These
children also wrote down 2 and a half' as their result. Although they did not give
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the solution 3", they nevertheless interpreted the remainder in a correct way: Being
asked by the interviewer at the end, how many bottles he or she would have to buy,
the children answered three, but there will be one glass left."

The other 10 children had greater difficulties in finding a solution, which satisfied

themselves. All of them showed a first puzzled reaction, looking for a quick solution,

like Max & Felix did. Because they could not find one at once, they put this problem
aside and started with another one. They only returned to the banana juice, when they

had finished all the other parts of the recipe.

The process of searching for a solution was no linear approximation. The children

tried several possibilities. But all processes can be characterized by expansion in

some of the following different directions:
spatial expansion: the children suggested, that bottles with 5 glasses of banana

juice could be found between the other juices, under the tables, or at another place

inside the room;
offer expansion: The children looked for bottles with one glass of juice:

F I know! No, not really. (Turning to the bottles of banana juice) Are there
anywhere ones, is here anywhere standing a 1 (looking at the lables of all

bottles of banana juice) please, let anywhere stand a 1, please, please,
M (touching a bottle of 7 glasses of apple juice) we ought to choose a smaller

bottle, that's not possible
F Such a small picco (demonstrating with his thumb and fingers half the height

of a 2-glass-bottle, turning around to the recipe) I don't get it (looking into

the camera).

expansion of interpreting the problem posen: instead of buying bottles of one
juice only, the children tried to use multivitamin juice:

F We don't need that. They want to pull our leg. That one (pointing to the
bottles of multivitamin juice) we don't need as well. Or maybe, if we, how

much do we need (looking into the recipe) 5. or, if we from these, n000, it's
impossible, too, there we also have only big ones.
(Both are standing in front of the bottles ofmultivitamin juice).

M Aha, of every glas 1 (pointing to the lable of the bottle of multivitamin,

turning around to the shopping list), then we should of these (pointing to the

pineapple juice in the shopping list) 1 less, and of these (pointing to the peach

juice in the shopping list) 1 less, and of these (pointing to the orange juice in

the shopping list) 1 less, and of these (pointing to the sprakling water in the

shopping list) 1 less,
F Yes.
M then it would come out even here (pointing to the banana juice in the

shopping list). But, wait, does it work?

expansion of acceptable solutions: in the end all children found the solution 2

and a half" and wrote it down.



F 5. .. Of these, these two (touching 2 bottles of 2 glasses)
M Then we do, shall we cut one in two? (looking at F.)

(Both are loughing.)
F Or half of it, then something is left. But, who did say, that it matters if

something is left (going along the bottles, looking) Well, what's this here
(touching a bottle of 5 glasses with pineapple juice)?
(Both simultaneously) Hm, hm (shaking their heads).

and some minutes later:

F Ah, there is nothing else, Max.
M Yes (lets go the recipe and the bottles of peach juice
F As this solution.
M Pardon?
F 3 point 2 glasses (taking the pencil, going to the

3.2"
M Hm, write it down. 3,? ah, 3 point
F 2
M glasses.
F Stop! (writing R 1")
M What is? (reading, what F. is writing) R 1?
F Remainder one glas.
M (touching groaning at his head) Well, does not matt
F Ready.
M Yes.

and turns around to F)

shopping list and writing

er.

Interpretation and Conclusions

The results show, that specific strategies are predestined for specific difficulties.
Estimating will not give exact results, especially if the children are not used to do it.
Measuring is a very slow solution strategy which cannot be used without having the
bottles in front of you. So, calculating with the numbers given on the lables is one of
the most effective and efficient strategies for the given problem. But: Children who
used this strategy, tended to think very precisely, although the situational context did
not require such a precise thinking. So, these children had to solve self-made
problems, when they tried to give an exact number of bottles with no amount of juice
left. Nevertheless, all children were able to find the solution, even if they were not
very satisfied by it. Although some children wrote down 2 bottles and a half" or 3
bottles of 2 glasses, remainder 1 glass", all said, that 3 bottles had to be bought.

If the interpretation of the remainder as raising the solution by one is easier in a real-
world context than in solving word-problems, cannot be said, because it could be,
that the difficulty in both environments is to decide what should be written down, the
solution or the interpretation of that solution in the situational context.

It also must be said, that the data which could be interpreted for this paper, was very
small. It consisted of one measurement problem with remainder and 4 measurement
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problems without remainder. Division with remainder had not the priority for the

design of this study. Therefore, more investigations in real-world contexts have to be

made, also encluding measurement problems, in which the remainder is not used, as

well as encluding all kinds ofpartition problems.
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ARITHMETIC AND ALGEBRAIC PRACTISES: POSSIBLE BRIDGE BETWEEN
THEM

Patricia Sadovsky

Universidad de Buenos Aires

Abstract
In this work we analyse strategies of students with no previous experience in
algebraic work (11/12 years old) to tackle problems on Euclidean division where the
notion of variable must be used. The results of the analysis let us make the hypothesis
that solving problems which require, apropos of a particular concept, the use of the
notion of variable, simultaneously contribute to a progress towards the
conceptualisation of that content and also to enter the algebraic practises. These
results are part of a broader diagnosis whose goal was to get data to characterise a
possible articulation space between arithmetic and algebraic practises. Such a
characterisation will orientate the design and implementation of didactic situations
that will be tested in the next stage of our research.

The research questions

As we considered the many researches that deal with the passage from
arithmetic to algebra (Bednarz,N and Janvier, B; 1996; Kieran,C; 1992; Mason,J;
1996; Panizza, Sadovsky, Sessa; 1996, 1997; Vergnaud,G et al; 1988), we made the
hypothesis that it was possible to generate a didactic articulation space between the
arithmetic and algebraic practises, so that the students could tackle much better the
essential and inevitable rupture entailed by the entrance to the algebraic world.
(We are thinking of 11 to 12 years old scholars).

We talk about an articulation space naturally organised around a number of
problems. But we also talk about rupture. Articulation and rupture are terms which
seem to contradict one another. As it is well documented in the literature on this
subject, there is an unavoidable rupture due to the fact that the entrance to algebraic
world means to reject meanings and practises that have been build up throughout their
scholastic education. Nevertheless, the possibility of a space of problems which the
students can understand and for which the usual arithmetic procedures could work as
base strategies that would not be enough, let us talk of articulation. Thus, there is
articulation because the arithmetic knowledge they have is enough to tackle a set of
problems though not to solve them, but there is rupture because there it exists the need
to abandon certain practises.

Which algebraic capacities would this space include and which ones it would
leave out? How could it be characterised? Under which didactic conditions could these
articulation practises emerge in the classroom? How would this work modify the
conditions to enter to the algebraic world? Since it would mostly be about the
establishment of a practise: How would the unfolding of this articulation space impact



on the teaching of the different mathematics concepts involved in these problems? Up

to what extent would the algebraic procedures unfolded with respect to a certain

content be available when dealing with some other contents?
These questions were the ones that guided our research. Our methodological

framework is the one of the engineering didactic (Artigue, M;1990). Our study has a
stage which deals with the characterisation of an articulation space between the
arithmetic and algebraic practises ( at the moment we are working on this stage), a
stage of designing and proving didactic situations and ultimately one of giving validity

to the situations that have been designed.
While the mobilization of the notion of variable is a central element of the

algebraic activity and represents and important rupture with regards of the arithmetic
practises we have decided to structure this articulation space focusing on problems
which from different mathematics contents and, apropos of different kind of tasks,
demand implicitly or explicitly the mobilization of the notion of variable. On the other
hand, we have considered that the distinction between sense and denotation
(Drouhard, et al; 1995) in respect with the numerical algebraic expression could
become a didactically valid starting point to elaborate problems that would urge the
students to analyse the structure of the expressions and stablish relations among
different expressions without appealing to the actual solution of the operations. Finally,
taking into account the results offered by several researchers (Malara,N; 1998 Arcavi,

A et al.; 1990) we have decided to include in this articulation space problems that
would entail the students' inquiry, the pose of conjectures and the validation of
arithmetic theorems.

Being our aim to better characterise the articulation space and to make
hypothesis that nourish the elaboration of didactic sequences (1999 project), we
devised a diagnosis test for students in grade 7(mean age11/12 years old) with no
experience on algebraic work. The aim of the test was :

- to analyse the strategies unfolded by the students who lean on arithmetic
practises when faced to problems which demand the mobilisation of some of the issues

above mentioned.
- to study the fertility of the situations presented in order to propitiate an

evolution towards algebraic practises and outline the possible evolutions .

The diagnosis was administered in three stages to Grade 7 students from three
different schools. The children had to solve the problems alone, they were given
pencil, paper and a calculator. After the problems had been solved we interviewed
some of the students to inquire them about their productions. The interviews were
audio-recorded.

The test consisted of two different kind of problems:
-problems for which the analysis of the structure of numerical algebraic

expressions and the comparison among different expressions was a must.
-problems which could be modelized by means of a two variable equation

(whether linear or not), some about rectangle areas and perimeters, others about
realistic situations and a third group refered to the notion of Euclidean division.



We will only present here the results we obtained from the analysis of the third
group of problems.

The problems

The problems on Euclidean division we presented to the students were:

I. Find a division operation whose dividend is 25, its quotient 8 and its remainder
12. How many are there? Ifyou think there are less than three write them all down,
and explain why there are no other ones. If you think there are more than three write
down at least four of them and explain how other solutions could be found
2. Find a division operation which dividend is 32 and its remainder 27.How are
there? If you think there are less than three write them all down, and explain why
there are no other ones. If you think there are more than three write down at least
four of them and explain how other solutions could be found.
3. If you divide 527 by 46 the quotient is 11 and the remainder 21.

a) Verify it.
b)Can you find any other number that when you divide it by 46 the remainder is 21?

How many are there? Ifyou think there are less than three write them all down, and
explain why there no other ones. If you think there are more than three write down at
least four possibilities and explain how other solutions could be found
4. Find a division operation which quotient is 20 and its remainder 14.
How many are there? If you think there are less than three write them all down, and
explain why there are no other ones. If you think there are more than three write
down at least four of them and explain how other solutions could be found.

The relation dividend= divisor x quotient + remainder, divisor>remaninder0,
which from now on we will call Euclidian relation, is the core of all four problems.

What is the status of this relation for different students? For one specific
student, does this status modify in the different problems? Up to what extent do
children conceive the Euclidean relation independently of the division operation? Is
this independence necessary to give solutions?, and to explain how they are obtained?
Which transformations take place in the strategies when the notion of variable is at
stake? For those students who implicitly mobilise the Euclidean relation to give
examples (problems 2,3 and4): Is the explicitation of the relation a means to explain
how other solutions were obtained?

Analysing some of the cases, we will try to answer the above mentioned
questions.

Results

Broadly speaking the students perceive the Euclidean relation as subjected to the
division operation and they frequently cannot disentangle it from the actual solution of
the operation. Now, this way of perceiving the Euclidean relation perfectly adapts to



the first problem; and its limits can only be seen when facing problems where the
mobilisation of the notion of variable is necessary. So speaking, we think that these
problems are simultaneously a chance to find the limits of the arithmetic
practises and enrich the conception of Euclidean division.

How does this dependence on the Euclidean relation with regard to the division
operation manifest? What are its consequences? We will analyse it following Daniela's

procedures.
Daniela finds the divisor to problem 1 using the Euclidean relation; she writes: 8 .

25 + 12 = 212. Then, to justify that there is only one possible division, she shifts the
centration and says: " If they give you a result with a remainder and a divisor, there is
only one possible solution. If we had divisor and quotient or divisor and remainder
there would be more than three." Let us observe that to justify that there is only one
possible division she mobilises one representation of the division as an operation in
which given two numbers (dividend and divisor) we get another two (quotient and
remainder). Having in mind this last representation, she anticipates aforehand in which

cases she would get more than one possible solution. She mobilises once again the
Euclidean relation when tackling problem 2. She gives several examples and explains
that we could obtain more: "multiplying 32 .X plus 27 ." When she tackles problem 4,
she points out: "There is only one solution because you have a 'given' quotient and
remainder." That is to say, before mobilising the Euclidean relation as she had
previously done in the case of problem 2 concentrated on the division operation,
and probably also on a certain representation of what the algorithms of the arithmetic
operations broadly are Daniela supposes that there is only one possible division
operation, probably because she has been given the two numbers that are the results of
an division. Taking into account the main importance of the rol of the focusing at its

final stage to elaborate a proceeding (Inhelder,B y Caprona,D; 1992), we think that
this first anticipation stops Daniela from refering to the Euclidean relation and stablish

the analogous roles that unknowns and givens have in problems number 2 and number

4. (Let us realise that beyond the restrain on the divisor posed by problem 4, the
formulas which model both problems are identical).

While Daniela was working, we could observe her commitment to problem
number 4 and her hard attempts to get to a solution. There are traces in her sheet of
paper that at a certain point, she proposes 945 as dividend and 46 as divisor and gets
20 as quotient and 25 as remainder. Nonetheless, she cannot get profit from this

result. This would point out that she needs certain hypothesis with regards to the

expected quantity of solutions, to make trials to move from an approximate solution to

the desire one.
Let us analyse now the written representations she uses for problem number 4.

After thinking hard she writes down:
x I X
14 20

and then she writes down: 20 .X + 14 = Y. After she has written this, she tries but

cannot solve the equation as if the mere manipulation of it could make it emerge 'the'



expected solution. That is to say, this representation has for her the statute of an
equation in which X and Y are unknowns and not variables and , thus, she cannot
conceive it as a formula which produces infinite solutions. (Should it be observed that
the written equation has for Daniela an instrumental value as it generally occurs with
the production of a representation though she is conceiving it wrongly.) Should it be
noticed, that one of the aims of this didactic work, a propos of these issues, would be
the possibility to make students conceive these expressions as formulas so that these
formulas are a support that has both the functions of treating the information and of
objectivation (Duval, R:1995). Quoting R. Duval, that they can make the conversion of
register (in this case from operation register to formula register), conversion that as the
author points out it is not cognitively neutral (Duval, R; op.cit.). The conversion of
register should make it possible for the students to stablish the analogy between the
quotient and the divisor in problems 2 and 4, analogy that cannot apparently be
perceived when representing the division as an operation. In other words, the
production of the formula would draw near two problems that when seen from the
representation of the division as an operation they seem to be essentially different.
We talk about analogy and not equivalence because these elements variation domains
are not the same. So speaking, a didactic work with problems such as the ones we
have proposed should think about the possibility of an interaction between the two
registers we have been talking about. Why? We have found during our research some
students who focus in the formula losing sight of the restrictions on the remainder.
With respect to this issue let us compare Diego's and Andres' works.

Andres is one of the few students who'trusts' in the Euclidean relation as well
as in the operation. From the very beginning, he writes down the formula d= c.D+r
and he uses it to provide solutions to problems 2,3 and 4. But he does not realise that
in problem 4 he had to consider divisors greater than 14 and successively he gives the
divisor the values 2,3,4,and 5. Having all his attention centred in the formula, he does
not look for controls and does not notice his mistake. In other words, he trusts so
much in the formula thing most students do not do that he does not validate his
production.

Diego is a student that after working hard manages to solve problems 1,2
and 3. He uses the calculator and thanks to the many trials he makes with it he
manages to put at stake the Euclidean relation in order to produce the demanded
operations. Afterwards he makes the operations to validate them. This control is the
one that allows him to realise he is doing something wrong when he gives divisors
lower than 14 in the case of problem 4. These results make us think of the possibility
of advancing in the conceptualisation of the Euclidean division, of giving the
Euclidean relation both_the statute of instrument and object, and, at the same time, of
accepting the student's entrance in algebraic procedures, asks for the jointed
manipulation of the operation and the Eucledean relation controlling one another.

As we have already pointed out, a didactic work with problems such as the ones
we proposed would let the students find the limits to the arithmetic practises, thus



generating the conditions for the entrance to the algebraic procedures. Since to face a
problem like the second one, for example, it is necessary for the students to give any
value whether to the dividend if they use the trial and error strategy as to propose
any operation with divisor 32 and then "move" towards the solution or to the
quotient to be multiplied by the divisor (32) and then added the remainder (27). The
students resist a lot this practise of giving any value, they generally think that it is only
possible to work with the numeric data given in the problem .

Hunan, for example, finds the correct dividend for the first problem and when
we interview him he says that to obtain the dividend :" I made 8 that is the quotient
multiplied by 25 that is the divisor and added 12 to it that is the remainder." Then,
he says that this solution is the only possible one because: "with the operations I have
made, the only possible solution is 212".

When he tries to solve problem 2 he proposes 347 as divisor getting 10 as
quotient and 27 as remainder. See that 347 is 32 x 10 + 27. When we asked him how
he had obtained that number (347), he answered: "I invented a number and added 27
to it.. It could have been any number." Though he says he has chosen any number, the
number he has "invented" is 320 that is 10 times the divisor. It all happens as if Hernan
somehow knew that number had to be "obtained" from the numeric data he had been
given, but at the same time he would not be completely aware of the relation between
the quotient 10 and the 320 that is ten times the divisor. He gives only this solution to
this problem and does not says how many solutions it could have. On the other hand,
as the number 320, which Hernan says he has invented, is an approximation to the
dividend which apparently has for him no relation with the quotient, it could be said
that he conceives the dividend as an "starting point" for the procedure he has to put at
stake and not as the number he has to obtain to fulfil the requested conditions. We
shall see here another trace of the arithmetic practise: "in relation with the division
operation you start from the divisor and the dividend". On the third problem it is much
clearer that the number that Hernan "invents" has somehow a relation with the data
and that he takes as starting point the dividend. Let us see. This student carries out the
verification proposed in part a). To do this he does the division operation this is
what most student did and for part b0 he divides 5270 by 46 and as he obtains 26
as reamainder he proposes 5265 as divisor. When he finished the problems he says
this to us :

I: How did you get the operation?
H: I added a zero to the 527 of the other operation ( he refers to the divisor of part
a)) and I got 26 as remainder so I started lowering the number until I got 5265.
I: Are there any other possible solutions?
H: Yes, i f you invent other numbers. But I don't know which number to invent, I tried
but I couldn't.

Throughout the procedures put at stake by Hernan we see that he mobilises the
Euclidean relation for the first problem, but this same relation is not available when
one of the elements of this relation must be determined by him. This does not allow
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him the production of other solutions though he seems to intuitively perceive that they
exist. To undergo the resistance to give values, what is necessary to face problems 2,3
and 4 would allow Hernan to advance in the conceptualisation of the Euclidean
division.

At the very beginning, we wondered whether the explicitation of the Euclidean
relation could be a means to explain how the solutions are achieved in each of the
cases. On this issue, we would like to point out that a lot of students who immediately
provided some results without showing the traces of how they had obtained them, they
explicited the relation when they were asked to explain how the solutions were
obtained. Taking into account that to make explicit the relations used it always means
a conceptual advance a propos of the implicit put at stake, this result tells us about the
potential didactic productivity of asking for an explanation about how they arrived to
the solutions.

Conclusions

How do these results nourish the making up of didactic sequences that aim at the
construction of an articulation space between the arithmetic and algebraic practises?

The results that arise from the analysis of these problems seems to confirm a
general hypothesis that guides our project: tackling problems which require, a propos
of a particular mathematics concept, the putting at stake of the notion of variable
entails an opportunity to advance in the conceptualisation of such a content. The
advance in these conceptualisations and the arise of algebraic practises would be
completely imbricate processes. To this effect, the teacher's interventions in the
didactic sequences should contemplate a twofold institutionalisation: regarding the
mathematics concepts being worked and the practises being installed. The
institutionalisation at algebraic practise level would run through different mathematics
contents and it would be each time linked to the contexts in which such procedures
were produced. Understanding these practises would have the characteristic of
understanding "how it is to be done" , that is different to the mere conceptual
understanding (Inhelder, B; Caprona,D; op.cit).Specially, in relation with the didactic
implementation of the afore analysed problems it would be important to consider that
there would be on the side of the students a variety of possible procedures all of
which would enchain procedures that would allow them to evolve towards the
conceptualisation of the Euclidean division in terms of the Euclidean relation. After the
didactic work the students should stablish:

The dependence of the dividend regarding the divisor, the quotient and the
remainder
The similarities and differences between the production of division operations when
the divisor and the remainder are fixed and when the quotient and the remainder
are fixed



The identification of the quotient and the remainder from the Euclidean relation
without making the operation.

At algebraic practise level the didactic work with these problems should let the
students:

To advance in the incorporation of the procedure by which a value is given to a
variable to get the value the other one that depends on the first one .
To stablish the instrumental value of the Euclidean formula as producer of special
operations and representative of the many examples produced and the infinite
solutions that the problems admit.

The fieldwork we are going to face from now on will most probably confirm
some of these issues, will open up our spectrum to other possible ones that now we
cannot loom and, as it always happens, will compel us to renounce to a lot of the
elaborations that preceed the difficult, complex and challenging task of putting to test
our work with the students.
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ON SOME UNDER-ESTIMATED PRINCIPLES OF TEACHING
UNDERGRADUATE MATHEMATICS

Ildar Safuanov, Pedagogical Institute of Naberezhnye Chelny

The classical and contemporary experience in university mathematics teaching
revealed the importance of such things as the strong individuality of a lecturer and
especially the style (in oral lectures and in textbooks as well). Thus, the teaching has
much in common with the art, and it seems useful to research teaching by means of
art studies. Note the importance of such under-estimatedprinciples as: 1) genetic
approach: developing didactics from the method of science itself; 2) concentrism
(teaching in a concentric way); 3) the principle of multiple effect.

1. Introduction.

As indicated Pototsky (1975), the undergraduate mathematics teaching is almost not
investigated, the pedagogy of higher mathematics essentially is not present, and few
monographs on problems of university mathematics education exist.
Though since 1975, when the Pototsky's book was written, the situation has
changed in some extent (the researches of L.D.Kudryavtsev (1985), A.G.
Mordkovich (1986), H. -C. Reichel (1992), D.Tall et al. (1991) devoted to various
aspects of teaching of mathematical disciplines at universities and pedagogical
institutes have appeared), the methods of teaching of undergraduate mathematics are
investigated insufficiently (at least in the former U.S.S.R). Perhaps the Western
situation is more prosperous so we will restrict our following considerations to the
undergraduate mathematics teaching in Soviet and post-Soviet universities.
Kudryavtsev (1985, chapter 2.5) has put forward a problem of developing
methodical principles of teaching of undergraduate mathematics. He complained of
difficulty of the formulation of exact methodical principles.
The training of the university students essentially differs from the training of the
school pupils. In universities such mechanisms of influence on students, as direct
compulsion, authority of seniority by age are less significant; on the other hand, the
university students are better prepared for the perception of a material through
various channels. In the training of the university students there is less
"didacticality" in a school sense and more art. Probably, partly for this reason the
university teaching was less studied: the opinion existed, that the art cannot be
learned, the art is not a subject of a scientific investigation, it can only be acquired
on the basis of personal experience.

However, as L.D.Kudryavtsev (1985) and N.L.Gage (1964) indicated, any art has its
rules, which can be explored scientifically, and any art can and should be learned
(and taught): artists, and musicians, and writers study hard.



On the other hand, it might be more fruitful to investigate some aspects of
mathematics education by methods developed in art studies. Indeed, mathematics
teaching, unlike mathematics itself or, say, philosophy, is a completely applied field
unable to develop independently of practice. It makes mathematics teaching really
close to such artistic fields as theatre or literature. Investigating these applied fields
must result in some practical recommendations. One can regard these fields not only
as art but also as craftsmanship and their investigations even as "design science"
[Wittmann (1995)]. Of course it is impossible to quickly develop the universal
system of all required recommendations (similar, say, to the theatrical system of
Stanislaysky). We attempt here only to indicate some (not ALL) UNDER-
ESTIMATED (exactly as indicated in the title) principles that, in our view, could in
some extent stimulate or refresh the efforts of the mathematics-educational
community in elaborating the recommendations. We will touch only two aspects of
mathematics teaching: 1) general subject-related directions in developing methods
of teaching; 2) effect on students.

These two aspects do not cover the whole realm of the undergraduate mathematics
education. We are not aiming at constructing a complete system of didactical
principles for teaching university mathematics which would allow to increase all the
results of teaching (students' knowledge, creativity, motivation, interest, future
professional skills etc.). Moreover, we can not guarantee that the use of the
principles we are discussing would improve students' knowledge of mathematics in
traditional sense (say, amount of mathematical facts, proofs, problem-solving
patterns understood by the individual and/or stored in her/his memory), and we do
not invent non-traditional meanings of mathematical knowledge. Our aims are rather
closer to those of (physics educator) R.Feynman (1963) who tried to construct his
course in such way that most able students could keep and strengthen their
enthusiasm. We also agree with his statement that "there is no benefit of teaching
for somebody except those for whom there is almost no need of teaching". It is
especially true in our Soviet and post-Soviet conditions. Lastly, we are fond of his
intention, designing the course for the most active listener, to take into consideration
also interests of less able fellows, so that they could "seize the essence".

In this paper, the first aspect is represented by the principle of genetic approach to
the methods of teaching. This is a rather general principle, extracted from
experiences and thoughts of generations of undergraduate mathematics educators.
Of course, deep development of this principle requires the study of students' (higher
mathematics) learning processes. We did not yet accomplished such deep studies, so
we only survey various manifestations of this principle implied by several authors,
and also present some examples inspired by this principle. In particular, we do not
discuss in this paper such important and fashionable problem as understanding and
constructing proofs by students.

We hope that scientific community, e.g., members of PME's Advanced
Mathematical Thinking group can deeply and fruitfully contribute to the further
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development of this principle from the point of view and in terms of the process of
(higher mathematics) learning.

We draw more attention to the second aspect (effect on students) that, in our
opinion, is greatly under-estimated. Here it is represented by two principles: of
concentrism and of multiple effect.

We do not declare that these principles are quite new, or that we have discovered
them. Many authors have expressed the ideas similar to these principles.
Thus, we will try to briefly describe three insufficiently investigated, but, in our
view, rather important and global for mathematics education principles: the
principle of the genetic approach to the methods of teaching mathematical
disciplines, the principle of the concentrism and the principle of the multiple effect.
Last but not least, we would like to draw attention of mathematics educators to the
importance of such also greatly under-estimated aspect as the style of teaching and
writing textbooks. Shortage of space does not allow us to discuss this problem in
details here, so we will do that elsewhere.

2. The principle of the genetic approach to the didactics.
The essence of the genetic approach is that the didactics of a scientific discipline
should correspond to the method of the science itself. Many prominent mathematics
educators stated the ideas, connected with this principle, e.g. F.A.W. Diesterweg
(1962) and H. Poincare (1990). It is especially important for mathematics teacher
preparation. As shows E.Ch. Wittman (1992), "a genuine integration of mathematics
and education (during the preparation of the teachers) can be achieved only if
educational and psychological relationships and processes inherent in good
mathematics are elaborated and developed". Diesterweg wrote: " the method of
teaching of each subject should correspond to its source or principle... Otherwise
the method will be arbitrary, borrowed from the outside, not following from the
nature of a subject, and rather being contradicting prescription ... Here alongside
with the statement: " the Man represents a method " - a rule: " the Subject represents
a method " is true. Diesterweg warns against the understanding genetic approach as
historical. A student should be raised to the height of modern science. He should not
learn all out-of-date, already rejected points of view and errors of the past.
Rubinshtein (1989) wrote that there coexist dialectical unity and distinction between
the ways of pupil's learning and the cognition processes of mankind. He argued that
the subject's logic extracted during the process of the historical development of the
cognition represents that unity.

Of course, it does not mean that there is no role for the history of mathematics in
mathematical education. It is quite allowable to make students acquainted with the
history of mathematics by giving special historical courses. Moreover, sometimes it



is useful to insert (not importunately and obtrusively) some historical facts in regular
or advanced mathematical courses as it was done, say, by H.S.M.Coxeter (1966).

More precisely interprets the genetic approach to the didactics V.V.Davydov: " the
substantial contents of a concept can be revealed only by finding out the conditions
of its origination " (1972).

The most talented scientists - educators of the past skillfully used the genetic
approach in teaching. The physicist M.Planck gave the best description of that:
" I have -never chosen shortest and most elegant proofs and reasoning, but always
searched for those best corresponding, on my opinion, to the physical essence of a
subject, because I did not want to show, how the known rules were open, nor how it
is possible to prove them briefly today, but mainly the way, by which it was possible
to open that theorem ... "

Much earlier G.W. Leibnitz (1880) expressed a similar idea: "I tried to write in such
way that a learner could always see the inner foundation of things he is learning, that
he could find the source of the discovery and, consequently, understand everything
as if he invented that by himself".

Genetic approach can be used at various levels of teaching process: in designing
syllabuses, in learning a topic or theme, in solving a problem. Accordingly, this
approach may be used in various ways. One may find numerous examples of the
genetic approach in classical and modern textbooks and in lectures of successful
educators. For example, probably the worst way to teach number theory is a
traditional for Soviet pedagogical universities approach: number theory is taught as
application of the divisibility theory in rings of principal ideals. In our view, the
genetic approach requires that most elements of number theory should be taught
before abstract algebra because number-theoretical problems are interesting as they
are for those at least minimally inclined to mathematics, and these elements can
serve as good examples motivating many concepts of abstract algebra.

The next is an example of using genetic approach in studying a separate theme.
Before studying linear congruences modulo m, we consider several problems where
students have to check divisibility of numeric values of expressions into natural
numbers. Together with students, we discover that remainders play the main role in
solving these problems. Thus, the idea of introducing special relation between
numbers with the same remainders arises etc.

A good example of using genetic approach in proving is provided by Davis, Hersh
and Marchisotto (1995, pp. 307-313). G.Polya (1965) noted that in problem solving,
the genetic approach implies the principle of successive phases.

However, one should not use the genetic approach as the absolutely strict rule but
rather as the source of further interesting ideas [see Polya (1965, Ch. 14)]. For
example, "pure" genetic approach would require that one should study not only the
elements of number theory, but also theories of polynomials with one and several
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variables before passing to theories of rings. It would be excessive waste of time and
efforts. Motivated by number theory, students can learn divisibility theory in integer
domains and then study polynomial theories as easy special cases.
Nor means the genetic approach that didactics of a discipline should be closed in
boundaries of subject's contents. On the contrary, as noticed J.Dewey and Heintel
[see Wittmann (1992)], taking subject matter's method fundamentally into account
in building didactical models means using the method of highest order, scientific
method and, therefore, breaking out the narrow boundaries of special disciplines.
This means that one should also take into account all manifestations of human
spirit's activities that are related to the scientific method and may help students to
master the scientific method. In particular, genetic approach does not deny the
importance of investigating the effect on students and the artistic side of teaching.

3. The principles of the concentrism and of the multiple effect
Many authors expressed the idea that teaching (not only of undergraduate
mathematics) should be conducted in a concentric way. L.S. Vygotsky (1996, p. 87)
wrote: " The rule is to completely avoid a repetition and to make teaching concentric,
i.e. to arrange a subject in such way that it should be studied in maximally brief and
simplified form at once in full volume. Then the teacher returns to the subject, but not
for a simple repeating the past, but for studying the material once again in the
deepened and extended form, with a variety of new facts, generalizations and
conclusions, so that all things learnt by pupils earlier repeat again, but uncover their
new sides, and new elements bound themselves with already familiar ones in such
way that the interest arises by itself. In this respect both in a science and in life only
new about the old can rouse our interest ".

Earlier Diesterweg (1962) suggested three rules close to the concentric way of
teaching in the sense of Vygotsky: «1. Distribute a material in such a manner that at
each stage a pupil would be in a position to guess or definitely expect the next stage.
2. Indicate at each stage some elements or parts of the following material and, not
making essential breaks, cite certain elements from the future themes in order to
excite inquisitiveness of pupils, not satisfying it, however, fully. 3. Distribute and
arrange a material in such way that (where possible) at the following stage during
studying new things the previous elements were repeated". He noticed that
mathematics teaching could benefit from the concentric way.
We will try to specify here the traits of the concentric way of teaching mathematical
disciplines at the undergraduate level. In our opinion, the main features are:
1) the preparation and, in particular, the anticipation;
2) the repetition at the higher or deeper level and the increase;
3) the fundamentality (the requirement of deep and strong study of the carefully

selected foundations of a discipline);
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The preparation is the extremely important element both in teaching and in various
kinds of art. This element is well known by professional writers and theatrical
directors. For example, A.P.Chekhov wrote: " If in the first act a gun hangs on the
wall, in the last it must shoot ". A little bit modifying the classification of
A.Zholkovsky and Yu. Scheglov (1977), one can consider three types of the
preparation: a) the presentation; b) the anticipation;) the refusal.

Various ways of the presentation of the teaching material are investigated in detail
in didactics of school mathematics (for example, before the study of a new material
it is possible to activate the necessary knowledge from the previous themes or from
related disciplines, to consider familiar examples etc.). Such ways can be studied
also for teaching at the undergraduate level.

As an example of the element of the type "refusal" a problem way of studying a
theme can serve (students are put before the fact of absence of the theory for the
solution of the problem, and then the required is constructed in some way).

The most interesting and fruitful of these elements is, in our view, - the
"anticipation". The indications to this element can be found at many classics of
mathematics education. The above-cited rules of Diesterweg directly state this
requirement. The demand to teach pupils to guess is put forward by G.Polya (1965)
and Pototsky (1975). A guess and foreseeing by the students should be intensively
used in teaching. Mordkovich (1986) also has described the elements of such
method, comparing it with a spiral.

Concerning the repetition, note that one can speak not only about the repetition of
those or other elements of a material, but also about repetitions of the relations
between objects at various levels of a mathematical discourse. For example, the
relations between objects in the theory of finite-dimensional vector spaces in many
respects are repeated in the general theory of linear spaces, the relations between
objects in analytical geometry on a plane in many respects are repeated in analytical
geometry in a space; the relations between objects in the elementary number theory
in many respects are repeated in the theory of polynomials. Even more interesting
repetitions of the relations between objects one can find at the higher levels of
abstraction, say, in abstract algebra. For example, categories and functors are in the
relation similar to the relation between algebraic systems and homomorphisms; the
composition of morphisms in a category is similar to the partial algebraic operation.

The increase means that elements repeated at later stages of study should be
deepened and extended, equipped with interesting, impressing details.

For the efficiency of the concentric study, the anticipation should be based on very
deep study of the fundamentals of a subject. The deep and slow study of the
foundations requires the economical and thorough selection of the most necessary
material. It is possible to name the requirement of deep and strong study of the
carefully selected foundations of a discipline the principle of fundamentality.
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We will name the approach to the teaching of a mathematical discipline combining
the requirements of fundamentality, preparation and anticipation, repetition and
increase the principle of concentrism.

The principle of concentrism, developed and used by many educators, is, in our view,
closely connected to the artistic side of teaching. Indeed, elements of preparation,
anticipation, repetition, increase are important for the composition of artistic works
[musical pieces, theatrical plays, stories, paintings etc.] As we remarked in the ending
of Section 2, it does not contradict to the genetic approach to methods of teaching.
For example, G.Polya (1965) who supported the genetic approach, at the same time
compared teaching to the theatrical art and even to music. Unfortunately, although it
is widely admitted that teaching has much in common with art, the artistic side of
teaching is under-estimated and almost not studied [cf., Koehler (1997)].

Another principle connected with the artistic side of teaching is the principle of
multiple effect (on students and on the readers of textbooks). The essence of this
principle is that the essential educational result can be achieved (in a lecture course or
in a textbook, or even at a microlevel - in a separately taken lecture) not with the help
of one means, but many, directed to one and the same purpose. For example, the
following means of expressiveness may be used in teaching undergraduate
mathematics:

1) The variation (passing through the various) e.g., the explanation of a theoretical
rule on a series of various examples, or, even more important, the consideration of a
subject from all basic sides.
2) Splitting (material into smaller pieces);
3) The contrast - for example, the use of rather fruitful questions of a kind "How
differs the concept (figure etc.) A from the concept (figure...) B. H.Poincare (1990)
emphasized the importance of this element, speaking about mathematical definitions.
One may note that elements related to the principle of concentrism are connected
with metaphorical relations (relations of similarity) and elements related to the
principle of multiple effect are connected with metonymical relations (relations of
contiguity). It would be interesting to deeply investigate the possibilities of
combining metaphorical and metonymical relations in producing an educational
effect [cf., R. Jacobson (1973), R.Barthes (1967), M. James et al. (1997)].

4. The conclusion.

Thus, for teaching mathematics at universities one can formulate the important
principles indicated by classics of mathematics education, but poorly investigated
and insufficiently used in practice: the principle of the genetic approach to teaching,
the principle of concentrism and the principle of multiple effect. The .style of
teaching is extremely important, too. It is necessary to deeply study the role of
above-discussed principles not only for classroom teaching, but also for the creation
of the textbooks.

4 - 159

324



References

Barthes, R. (1967). Elements of Semiology. London: Jonathan Cape.
Coxeter, H.S.M. (1966) (KoKcTep, X.C.M.). BBeJeHue B reomeTpkno. M.: Mmp.
Davydov (1972) (B.B.):IaBBLEtoB). BBABI o6o6uxem4B B 06rieHHH. M.: neaarorica,
Diesterweg, F.A.W. (1962). Wegweiser zur Bildung fuer deutsche Lehrer and
andere didactische Schriften. Berlin.
Feynman, R.P. (1963). Foreword. In: Feynman, R.P., Leighton, R.B., Sands, M.
The Feynman lectures on physics, v.1. Reading, Mass.: Addison-Wesley.
Gage, N.L. (1964). Theories of teaching. In: E.R. Hilgard (ed.). Theories of
Learning and Instruction. Chicago, University of Chicago Press.
James, M., Kent, Ph., Noss, R. (1997). Making sense of mathematical meaning-
making: the poetic function of language. - In: Pehkonen, E. (ed.). Proceedings of the
21st Conference of the International Group for the Psychology of Mathematics
Education. Lahti, v.3, 113-120.
Koehler, Hartmut (1997). Acting Artist-like in the Classroom. - Zentralblatt fuer
Didaktik der Mathematik, No. 3, 88-93.
Kudryavtsev (1985) (Ky,apsiBues, CoepemenuaA mamemamuKa u ee
npenodaeanue. M.: Hayica, 1985.
Leibnitz, G.W. (1880). Mathematische Schriften. Berlin.
Masel (1991) (Ma3m, JI.A). Bonpocbi a/m=3a my3bucu. M: COBeTCICHri
KOM110314T0p.

Mordkovich (1986) (MopmcoBirq, AT.) HpoOeccuonanbuo-nedaeoauttecicasi
nanpaenentiocmb cneguanbna nodeomoeicu ytiumenea mamemamulcu
neda2oewtecicux uucmumymax. M.: AxaziemBx ne,larorwieciaix nap( CCCP.
Poincare, H. (1990) (Ilyamcape, A,). 0 Haw. M.: Hapca.
Polya, G. Mathematical discovery, v.2. New York - London: Wiley, 1965.
Pototsky (1975) (1-10-rowatii, M.B.). 17penodaeanue ebicuteli mamemamuicu 6
nedaeo2uttecicom uttcmumyme.M.: Ilpocsememe, 1975.
Reichel, H. -C. (1992). Teaching student teachers. Integration of mathematics
education into " classical " mathematical courses. Examples and various aspects.
Journal fuer Mathematik-Didaktik, No. 10, 367-377.
Rubinshtein (1989) (Py6fflunTerm, C.JI.). OcHoebi o6ufeit ncuxono2uu, m. 2.
M.: Ilertarorxxa.
Tall, D. (ed.) (1991). Advanced mathematical thinking. Dordrecht: Kluver.
Vygotsky (1996) (BbiroTendi, JI.C.).17edaeo2w4ecKast ncuxonoeust. M.:
HeRarorifica-Ilpecc.
Wittmann, E.Ch. (1992). The mathematical training of teachers from the point of
view of education. Zentralblatt fuer Didaktik der Mathematik, No. 7,.274-279.
Wittmann, E.Ch. (1995). Mathematics education as "design science". Educational
Studies in Mathematics 29, 355-374.
Zholkovsky, Scheglov (1977) QIConicoscimil, A., WernoB, 10.). K onticamno
npmema BbIpa3HTeJlbHOCTI4 "BaputpoBaime". CemBomica H HHItOpMaTHKB, .11.2 9.

4 - 160

1325



FACTORS INFLUENCING STUDENT'S GENERALISATION THINKING PROCESSES

Marlene C. Sasman: Mathematics Learning and Teaching Initiative (Malan), South Africa
Alwyn Olivier: Malati & University of Stellen'bosch, South Africa
Liora Linchevski: Malati & Hebrew University of Jerusalem, Israel

In this study we presented students with generalisation activities in which we varied the
representation along several dimensions, namely the type of function, the nature of the
numbers, the format of tables, and the structure of pictures. Our results show that varying
these dimensions has little effect on children's thinking as in our previous study, few children
tried to find a functional relationship between the variables, but persisted with using the
recursive relationship between function values, makingmany logical errors in the process.

INTRODUCTION

Number patterns, the relationship between variables and generalisation are considered
important components of algebra curricula reform in many countries. These curricula
often use generalised number patterns as an introduction to algebra. However, there is
insufficient research that deals with the cognitive difficulties students encounter and the
feasibility of such an approach. Much of the available research on students' thinking
processes in generalisation reports on students' strategies in abstracting number patterns and
formulating general relationships between the variables in the situation (e.g. Garcia-Cruz and
Martinon, 1997; MacGregor and Stacey, 1993; Orton and Orton, 1994; Taplin, 1995).
In a previous study (Linchevski, Olivier, Sasman & Liebenberg, 1998) we presented
grade 7 students with problems like the following:

(C3): Matches are used to build pictures like this:

Picture 1 Picture 2 Picture 3 Picture 4

The table shows how many matches are used for the different pictures. Complete the table.

Picture number 1 2 3 4 5 20 100 n
Number of matches 3 5 7 9

Few students managed to construct a function rule to find function values. Rather, they
focussed on recursion (e.g. f(n + 1) = f(n) + 2 in problem C3 above), which led to many
mistakes as they tried to find a manageable method to calculate larger function values.
The most common, nearly universal mistake was to use the proportionality property
that if n2= k x ni , then f(n2) = k x gni). For example, in problem C3 above, from f(5)1= 11
they deduced that f(20) = 4 x 11 = 44. Although this property applies only to functions
of the type f(n) = an, students erroneously applied it to any function. It is possible that
our use of "seductive numbers" in a sequence like n = 5, 20 and 100 stimulated the
error (we regarded these numbers as seductive from a multiplicative point of view).

' Formal functional notation was not used in the interviews with students. It is used here forease of communication.
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We found that most students' generalisations and justification methods were invalid,
because they are not aware of the role of the database in the process of generalisation and
validation.. For example, in problem C3 above, they did not, and seemed unable, to verify
their generalisations against the given data pairs (1 ; 3), (2 ; 5), (3 ; 7), (4 ; 9).

We also found that students worked nearly exclusively in the number context and did
not use the structure of the pictures at all.

Based on the above we viewed the following as questions for further research:
whether the use of non-seductive numbers will prevent students from making the
multiplication error, also when they encounter seductive numbers in other problems
whether the visual impact of the table, as for example shown in problem C3 above, also
contributed to the persistence of the proportional multiplication error
whether pictorial representations in which the function rule is "transparent" will help
students to use the structure of the pictures to more easily find function rules.

In this paper we report on some first findings on these three questions.

RESEARCH SETTING

The activities
We designed a series of eight generalisation activities in which we varied the
representation of the activities. Four activities were formulated in terms of numbers only
(in the form of a table of values), and four were formulated in terms of pictures only (in
the form of a drawing of the situation). Each numerical representation had a corresponding
pictorial representation. Two of the functions were linear functions of the form f(n) --= an + b,
and two functions were simple quadratic functions

The numerical tables of values were presented in different formats: "continuous" (e.g. IT
below, in which input values for which the corresponding function values had to be
calculated were included) and "non-continuous" (e.g. IIT, where the input values were
not given, but were presented verbally by the interviewer). The tables were presented in
both vertical and horizontal format.

The pictorial representations of the activities were chosen to be either "transparent", i.e.
the function rule is embodied in the structure of the pictures (e.g. in Ip below), or "non-
transparent", i.e. the function rule is not easily seen in the structure of the pictures (e.g.
in IIIp). As with tables, pictures were presented in both "continuous" and "non-
continuous" format. All the drawings were presented to students in vertical format, but is
here given horizontally due to space considerations.

The questions in each activity were basically the same, namely given the values of f(1),
f(2), f(3), f(4), f(5) and f(6), we asked students to first find f(7) and f(8), and then the
function values of certain further input values and to explain and justify their answers
and strategies. These input values were both "seductive" (e.g. 20, 60) and "non-
seductive" (e.g. 19, 59).

We supply below a selection of the activities. The subscript P indicates that the activity
was presented in a pictorial representation and the subscript T indicates the problem was
presented in the form of a table of values.
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Blocks are packed to form pictures that form a pattern as shown below:

Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 Picture 6

IT : Tiles are used to build pictures to form a pattern. The table below shows the number
of tiles in a particular picture.

Picture number 1 2 3 4 5 6 7 8 ... 20 ... 60 ...: n
Number of tiles 2 5 10 17 26 37

Hp:Matches are used to build shapes. A different number of matches is used to build
each shape.

91:7 9f13' 91EFEP rifIFIRP 9:FEFEFERP
Shape! Shape 2 Shape 3 Shape 4 Shape 5 Shape 6

IIT :Matches are used to build shapes to
form a pattern. The table shows the
number of matches used to build a
particular shape.

III : Cans are arranged to form pyramids like this:

Pyramidl Pyramid 2 Pyramid 3 Pyramid 4

IVp : Tiles are arranged to form pictures like this:

x X

Shape number Number of matches
1 4
2 12
3 20
4 28
5 36
6 44

Pyramid 5 Pyramid 6

x X ><
Picture 1 Picture 2 Picture 3 Picture 4 Picture 5 Picture 6

Methodology
We interviewed ten grade 8 students at one of our project schools in a historically
disadvantaged area of Cape Town before they had received any instruction on patterns,
sequences or algebra. The students were selected by the teacher so that they were
representative of the grade 8 class. Each student was interviewed three times in 45-minute
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sessions. All interviews were videotaped and the tapes transcribed. The analysis will be used to

design a teaching intervention to address the cognitive difficulties students have in the
processes of generalisation.

RESULTS AND ANALYSIS
Most students had no difficulty finding f (7) and f (8) in any of the activities they either
found and used the function rule correctly, or used recursion correctly for these nearby
values. However, in trying to find a manageable strategy for finding further-lying
function values, students invented a variety of different strategies, both correct and
incorrect. These strategies and their frequency are summarised in Table 1.

Table 1: Number of students using each strategy per activity

Activity number and representation format Recursion
Proportional
multiplication

Additive
decomposition

Difference
method

Extended
recursion:

Function
rule Other

Ip Transparent picture, continuous

WWI Seductive values: 20, 60, n
m°21Quadratic function: f(n) = + 1

2 1 2 wrong
variations

5

n2

IT Horizontal continuous table
Seductive values: 20, 60, n
Quadratic function: f(n) = n2 + 1

4 1 1 wrong
variation

3 1

Hp Transparent picture, continuous
NnuNon-seductive values: 19, 59, n
Ur' Linear function: f(n) = 8n 4

1 1 3
1

2 wrong
variations

2

HT Vertical non-continuous table
Seductive values: 20, 60, n
Linear function: f(n) = 8n 4

4 3

1

2 wrong
variations

Hip Non-transimentpictrue,non-continuous
Non-seductive values: 23, 79, n

2:11MS Quadratic function: f(n) = n2

3 1 1 2 wrong
variations

2 1

MT Vertical non-continuous table
Seductive values (29, 87, n)
Quadratic function: f(n) = n2

1 1 I wrong
variation

6 1

IVp Transparent picture, non-continuous

X Seductive values: 20, 60, n
Linear function: 1(n) = 4n + 1

1 2 2
2

2 wrong
variations

1

IV T Horizontal continuous table
Non-seductive values: 23, 117, n
Linear function: f(n) = 4n + 1

1 3 1

2

2 wrong
variations

1

The nature of the function
Finding function rules It is interesting to note from the data in Table 1 that more than half of
the students found and used the function rules in activities IP and IIT. These both represent
simple quadratic functions. One could be tempted to conclude that students easily recognise
such simple quadratic function rules. However, one immediately also notices the marked
differences in students' responses for the same functions in the picture and the table contexts.
In activity Ip the picture is transparent, but students find it much more difficult to recognise
the same function rule from the equivalent table in activity IT. In activity III on the other
hand, students easily find the rule in the table, but not in the non-transparent picture.
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It is clear that students found it much more difficult to formulate function rules for linear
functions. From our interviews it seems that students try to construct simple
multiplication (proportional) structures, but when it does not fit the database, they
quickly give up and then invent all kinds of error-prone recursion strategies.
Recursion When students focus on recursion patterns, however, they find the constant
difference between consecutive terms in linear functions much easier to handle than the
changing difference in quadratic functions, leading to many errors. We describe these
strategies and errors in the following sections.

Seductive vs. non-seductive numbers

The proportional multiplication error In our earlier work with grade 7 students we found a
persistence with the erroneous proportional multiplication error. Also in this study six of the
ten students interviewed used it at least once in the series of activities. For example:
Interviewer: How many tiles in Picure 20? (in IVO
Peter: OK, I am using 5 (meaning n = 5; f(5) = 21 in the picture) to get to 20. So 21 times

4 is 84, because 5 times 4 is 20.

This erroneous strategy was used only with what we call "seductive numbers". When
students could easily find the function rule the nature of the input values was immaterial,
i.e. they did not make the multiplication error, even for seductive numbers.

Extended recursion A few students managed to adapt their focus on recursion to a
manageable strategy for finding further-lying function values. This extended recursion
method is symbolised by f(n) = (n k)d + f(k), where d is the common difference
between consecutive terms. Here is an example:
Interviewer: OK, Shape 59? (How many matches in Shape 59 in Hp?)
Hamid: So first I subtract 19 (he had previously calculated f(19) = 148) by 59 and then you

get your answer of 40 and then I times it by 8 (the common difference between
terms) and then I get my answer and then I add it by 148, that is Shape 19's answer.

Some students used this method also in the case of seductive numbers.

Students using this method often seemed to lose track of all the details. This was mostly
because they worked verbally, and did not write down information or their strategy. For
example, several students correctly calculated (n k) x d, but then did not add f(k).
While the extended recursion method is correct for linear functions, many students also
erroneously applied it to or adapted it for the quadratic functions. For example:
Interviewer: Ok, and then Picture 20? (How many matches in Picture 20 in IT?)
Harold: I subtract 20 by 8 (he had previously calculatedf(8) = 65) . . . I subtract 8 by 20,

then I get 12 ... with that 12 I times by 2 is equal to 24 ... then I add 24 by 15, is
equal to 39 then I add 39 to 65, is equal to 104.

Interviewer: Just explain the 15 please
Harold: That's the 15 I added by 50 (f(7)) to get 65 (f(8)).

Additive decomposition of input value The introduction of "non-seductive numbers"
gave rise to other inappropriate strategies when students could not find a multiplicative
relationship between the non-seductive numbers such as 19, 23, 59 and 117. Some
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students used additive decomposition of the input value, symbolized by f(n) = f(a) + f(b),
where n = a+ b. For example:
Interviewer: OK, in Picture 117, how many tiles? (How many tiles in Picture 117 in activity IV)

Errol: (Writes 30 = 121, 40 = 161, 50 = 201 . . . 100 = 401, 117 = 470) Picture 117 is 470.

Interviewer: Can you explain to me how you got that?
Errol: Uhm, as I followed on Picture 100, I had to end up at 401 and I added Picture 17 to

Picture 100 which gives Picture 117 (He had previously calculated Picture 17 as69)

The difference method The erroneous difference method, symbolised by f(n) = n x d
was invoked with both "seductive" and "non-seductive" numbers. For example:

Interviewer: Ok, how many in Picture 23? (How many tiles in Picture 23 in IVT?)

Linda: (works on calculator) . . . 92

Interviewer: Just explain please?
Linda: It will take too long to add 4 every time (she previously found a constant difference

of 4 between the terms of the sequence). So I just said 23 times 4.

The visual impact of tables
From Table 1 it is clear that the visual presentation of the numbers in a table format for
the function did not impact on the errors students made. The table in activity IT was
horizontal and "continuous" whereas the table in HT was vertical and "non-continuous".
Four students made the proportional multiplication error in both these examples. One
student committed the difference method error in IT whilst 3 students committed the
error in HT. The way we presented the questions as "continuous" or "non-continuous" in
the picture activities also did not effect students' strategies. This can probably be
explained by the fact that when the input numbers were not presented in writing,
students made their own "continuous" "tables", so the visual distraction remained.

"Transparent" vs. "non-transparent" pictures
In Ip five of the ten students successfully recognised the function rule from the structure
of the transparent picture. In Hp most students recognised that 2 squares (8 matches)
were being added but then converted to numerical mode, constructing their own "table"
of values, e.g. " 1 = 4, 2 = 12, 3 = 20, etc.". Only two students described the function
rule from the structure of the pictures, namely as (n + n 1) x 4 and n x 4 + (n 1) x 4
respectively. Only one student used the structure of the picture in IVp to identify the function rule.
No child could recognise the function rule of using the non-transparent picture as the database in
Blp. Two students found the function rule once they reverted to the number context.

It seems that these students do not have the necessary know-how of how to use the
structure of a picture to find a functional relationship. If one wants to find a function rule
in a table, one necessarily takes some specific value of the independent variable (input
number) and tries to construct a relationship between this input-output pair. In the case
of pictures, few students seem to intentionally take a specific input number and try to see
this number in the structure of the picture, as illustrated in the following diagram:

II

1331

IV
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Of course, it further requires a rich number sense, e.g. in II to see a further relationship
in the numbers (2 is one less than 3, and 3 is one less than 4) before one can formulate
the function rule [n + (n 1)] x 4. In IV one must see the multiplication or equal addition
structure before one can formulate the rule 4 x n + 1. A weak number sense will
therefore also contribute to students' difficulties in using the structure of pictures to see
the general in the particular required to formulate function rules.

Most students could see and use the structure of the pictures in a recursive way, e.g. in II
students used the structure that 2 squares (8 matches) are added each time, and in IV they
used the structure that 4 tiles are added to each successive picture. However, this did not help
them to fmd the function rule, and students mostly then constructed a table of these values
and then used the numbers in the table inductively. Of course, one could use the extended
recursion method to use this recursive structure to formulate the function rules as 4 + 8(n 1)
and 5 + 4(n 1) respectively.

Verification of strategies
Consider the following protocol:
Interviewer: Ok, Shape 19? (How many matches in Shape 19 in 11p?)
Peter: (Peter successfully found f(7) and f(8) by counting the number of squares and then

multiplying by 4 to get the number of matches. Now he starts making a systematic
table of the number of squares in each Shape, using a recursive pattern:

7 8 9 10 11 12 13 14 15 16
13 15 17 19 21 23 25 27 29 31

He then stops and goes back to looking at the pictures again.)
OK, I realised if I do this it is a bit of a hassle, so I looked at the pattern (in his
database) and I figured the difference (between f(n) and n)
I took here (pointing at f(5)) . . . the difference between 9 (f(5)) and 5 (n) is 4 and by
number 6 it is 5 . . . yes (he checks again) . . . 5. And by number 7 it is 6 and by
number 8 it is 7. So I just tried it out. So I said to myself OK it is right and it will
take too long to do it like this (referring to his table ofvalues). So Shape 19 is
19 + 18, is 37, so 37 blocks times 4 gives you . . . 148 (using the calculator).

Clearly, Peter has constructed an efficient rule, which we can symbolise as [n + (n 1)] x 4,
based on a sound analysis of patterns in the given and his extended database, and he verified
that his pattern holds against the database several times. He was convinced and he could use
the method with assurance. However, this style of working stands in stark contrast to most
students' approach to such generalisations. While the students who used a function rule
necessarily deduced the rule from the database, the other strategies reported in this paper are
mostly not based on the database students did not fmd the methods in the database, nor did
they check it against the database. This applies to correct as well as to incorrect strategies.
Students seem not to realise the need to validate their generalisations, and seem not to have
the know-how of how to validate a generalisation against the database.

DISCUSSION

As in our previous study, students worked nearly exclusively in the number context and
not with the pictures, favoured recursion methods, had difficulty in finding function
rules and made many errors, including the proportional multiplication error. There is,
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however, one marked difference, namely the variety of strategies used by the students in
the present study in comparison to the previous study. Of course this could be
attributable to the differences in the subjects, who are at a different grade level, and from

a different socio-economic background. We would argue, however, that the difference is
mainly attributable to the introduction of non-seductive numbers in our activities.

It is for this reason (the greater variety of strategies), that we plan to extensively use non-
seductive numbers in our planned intervention. However, as is evident from the
examples in this paper, the use of non-seductive numbers will probably not prevent the
ubiquitous proportional multiplication error when students encounter seductive numbers,
nor will it prevent the other erroneous strategies reported here. For that we believe we
should address two more fundamental issues, viz.

First: The development of an awareness of the need to view any strategy as an
hypothesis that should be validated against the database, and a focus on skills of how to
do it. When one looks at the variety of strategies used by students, one can probably
safely say that they have the ability and flexibility to find many patterns and
relationships between numbers. The problem, however, is that most students are finding
random relationships between the numbers without reference to the given database. We
are struck not so much by the frequency and persistence of students' errors, but by their
lack of an essential aspect of "mathematical culture", namely to view any strategy as an
hypotheses that should be justified or verified against the given database. It seems that
students lack simple strategic knowledge, e.g. to test an hypothesis against special cases.

Second: A more explicit study of the properties of different function types, and a comparison
of such properties to become aware and make explicit which properties apply to which
function types. All the erroneous strategies used by students are correct properties for some
function, which students wrongly apply or overgeneralise to other functions.
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This research presents and analyzes difficulties experienced by teachers who were
attempting to find meaningful ways to help their students learn about addition and
subtraction of integers. Results indicate that teachers can generate meaningful
contexts to help their students understand addition, but have great difficulty doing
the same for subtraction. The contexts that they generated appeared to be based on
an understanding of subtraction that involved "taking away" one amount from
another. No example of subtraction as the comparison of two quantities was given.
As a result of their difficulties in finding meaningful contexts, they tended to prefer a
more procedural approach to teaching subtraction, claiming that using an algorithm
"is more meaningful than making up a story".

Introduction

The purpose of this paper is to present research findings related to our work with
teachers in a long-term teacher development intervention. An underlying premise of
this intervention is that teachers need appropriate experiences and materials from
which to build new models of instruction. In addition, teachers must also be
provided with opportunities to develop a deeper understanding of the mathematical
concepts they are expected to teach and an increased awareness of the ways in which
children learn (Schorr, Maher, & Davis, 1997; Lesh and Kelly, 1997; Janvier, 1996;
Alston, Davis, Maher, and Schorr, 1995; Simon, 1995; Cobb, P., Wood. T., Yackel,
E. and McNeal, B. 1993; 1986; Davis, 1984). To this end, in each workshop session,
led jointly by the authors, teachers are presented with challenging problem tasks and
asked to work together to produce solutions that represent important mathematical
ideas. After sharing their own ideas and representations, they are encouraged to use
these or similar tasks in their own classrooms. During classroom implementation,
teachers are encouraged to recognize and analyze their students evolving ways of
thinking about these mathematical ideas. Teachers are also encouraged to carefully
study and assess student work, and to select particularly interesting products to share
in subsequent workshop sessions. Studying these samples of student work together
provides the opportunity to consider the development of these ideas in students and
discuss the pedagogical implications of using this approach. As one might expect,
this approach to thinking and doing mathematics is unfamiliar for many experienced
teachers, and is not easy.

Experience and research have shown that all teachers possess beliefs about the way
mathematics is learned (Thompson, 1985). These beliefs are generally acquired



prior to actual classroom experience, and held through years of teaching (Tabacknick
and Zeichner, 1984). In addition to long held beliefs about mathematics instruction,
many teachers may not possess adequate subject matter knowledge. Cohen and Ball
(1990) point out "how can teachers teach a mathematics they never learned, in ways
they never experienced?" (p. 233). The old models that teachers have for providing
mathematics instruction are generally quite robust, and even teachers involved in
long term interventions will fall back upon those old models, especially when under
pressure to have students perform well on tests whose goals may be inconsistent with
those of the teacher development intervention.

The purpose of this paper is to provide documentation, in a specific content domain,
relating to some of the difficulties that teachers experience as they attempt to make
the transition from teaching mathematics as a set of rules, procedures, and algorithms
toward thinking about and teaching mathematics as a "collection of ideas and
methods which a student builds up in his or her own head" (Davis, 1984, p. 92).

Background'
This research is one component of a multi-year teacher development intervention.
that began with the purpose of supporting the effective classroom use of exemplary
mathematics curriculum and meaningful assessments as an integral part of
instruction. To this end, university researchers work directly with groups of teachers

from four economically disadvantaged high schools in an inner city in New Jersey.
The particular high schools were chosen because they have student achievement
levels in mathematics that are amongst the lowest in the city. The school district is
currently under the supervision and control of the state due to overall poor student

performance.

Methods and Procedures
This paper is based on an analysis of the problem-solving activity that occurred
during one full-day workshop session in the third year of the intervention. Ten
teachers were present. Three of the teachers had been part of the project since year

one (tier I) and three of the teachers had joined the project in its second year (tier II).
The remaining four teachers had joined the project during the third year (tier III).
The workshop under discussion was the second workshop of the academic year.

The format of this particular workshop, typical of each of the project sessions, began
with discussion initiated by the teachers about issues that they consider relevant to
the project. As a general practice, the researchers' role during these discussions is

that of facilitator and observer, providing opportunities for them to learn about the
knowledge, beliefs, and concerns of the participants. Based upon this, the

This work was supported in its first year by a teacher enhancement grant from the National Science Foundation which

was directed by Richard Lesh and Thomas Post. Beginning in the second year, support has come from the school

district itself. The opinions expressed are not necessarily those of either sponsoring agency and no endorsement should

be inferred.
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researchers are able to make decisions about the direction of future workshop
sessions.

The specific mathematical content of this paper, addition and subtraction of signed
numbers, was introduced in the beginning discussion by one of the teachers. These
particular ideas had not been considered in previous sessions, and, in fact, were not
the topic selected by the researchers as the main mathematical idea to be explored
during the session.

The data for this research includes the researchers' observation notes, problems and
illustrations printed by the teachers on large pieces of chart paper as they were
explaining their ideas to the group, and their individual written work completed
during the session.

Results

On the occasion reported in this research, a spontaneous general discussion about
operations with signed numbers occurred, following from a concern expressed by
one of the teachers.

The following dialogue represents excerpts from that discussion as recorded in the
field notes of the researchers with further documentation from the chart papers used
in group discussion.

Kate2 (tier III): One ofmy students, Richard, is generally a very good student. I'm
concerned because when he does examples like positive thirteen minus eight,
he ends up with fifteen. I think that using calculators is the cause of his
problem.

Mark (tier I): I think that signed numbers are a problem for many of my students as
well.

When other teachers also added that their students had difficulties with signed
numbers, Mark wrote on a large piece of chart paper in front of the group:

-1-(-5)= -1+5 = 4
Mark: See, the question is what do you add to negative five to get to negative one.

There are lots of ways to do it. You can also think how many units must you
move to the right on a number line.

He illustrated his point by drawing a number line with an arrow directed from -5 to
-1 and labeled it +4 (as below). Two additional examples were given and illustrated
on a second number line, 1 + 3 and -3 + 2.

2 Names have been changed to preserve the anonymity of the teachers and students.
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+4

-5 -4 13 1 2 11 0 1 2 3 4 15

Mark: .... or you can always consider the negative number as money you owe, like

you owe someone ten dollars and you pay six so you still owe someone four.

Jack (tier II): I like it when the teacher becomes a number and actually walks!

Mike (tier III): I like to think that the plus sign means "have" and the minus sign
means "owe". So, if you have positive five minus three equals positive two,
the positive sign in front of the five means have, the minus sign means owe,
and the positive sign in front of the two means still have.

He wrote the following on the large chart paper in front of the room:

"+" means "have"
"-" means "owe"
5 12(3Th= +2

1\vave we

Joan (tier I): When you have to subtract a negative, you should use three
words--keep, change, and change. So if you have negative three minus
negative four, you keep the first sign, and change the other two.

She wrote the following on the large chart paper in front of the room):

3 ( -4) =
Keep Clange Clange

Jack: I like that, because the more you try to give them a reality example, the more
confused they get.

Researcher: Can you make up a story to go with Joan's problem if you wanted to?

Jack: Its hard, but you can.

Researcher: Go ahead, why don't you all try.

Mark: You can always do it with money, like I said before.

After a general discussion, the researchers redirected the teachers' attention to the
problem that Joan had written on the chart paper. They again challenged them to

work individually or together to create meaningful situations or stories that would
make sense out of each of four numerical expressions involving operations with

signed numbers.

Researcher: Well, make one up. While you are at it, try to make up problems for
these as well. You can work together if you like.
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She added the following three problems to the piece of chart paper:

-j - (+4) = +3 -4 = -3 +4 =
The teachers worked individually, occasionally conferring with neighbors. During
that time, several teachers noted to the group how difficult it was to make up a real
story to coincide with any of the problems listed above.

Susan (tier III) began the discussion. She said that she liked to use algebra tiles to
help, and her example was based upon that. Her written example follows:

Sandy got squares for positive and negative numbers. -1 = in red
color. 1 = in blue color. -(-1) = in blue color. She took 3 red
squares, and then subtracted four in blue. How many squares in what
color did she have?

-3 - ( -4) = -3 + 4 = 1
When the other teachers responded that they did not understand the example and
asked how this could be considered a "real situation", Susan explained that she was
referring to the use of actual blue and red tiles, concretely, to solve the problem. She
used the chart paper in an attempt to illustrate this, but immediately became confused
herself, unable to remember how she had produced the blue (negative) and red
(positive) squares necessary to concretely remove 4 red squares and end up with 1
positive blue square.

Harriet (tier 1) then suggested the following problem instead:

Sharifa had $3 negative (out of pocket) and she gave Maria negative one
times minus $4. How much did they have together?

Several other teachers responded that they thought this would be confusing for
students as well. In the ensuing discussion, one of the researchers asked whether the
teachers had been writing their stories for this problem to match the answer (positive
one) that they already knew. All the teachers agreed that this was indeed the case
and stated that, for subtraction of negative numbers, using a rule was preferable. Jack
repeated his earlier remark, emphasizing the following:

The more you try to give them a reality example, the more confused it gets!
"Keep, change, change" is more meaningful than making up a story.

The written examples for the problems were collected from all of the teachers at the
end of the session. Analyzing that data confirmed the difficulty that teachers had
encountered in finding sensible situations for subtraction.

Ellen (tier 2) tried an example that documents how difficult developing a meaningful
story had been for her. She wrote:

Sam has been borrowing money from some of his friends. He owes
Tonero $3. He owes Habebah $4. He started to repay his debts.
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She first wrote the following annotated expression to show how the symbols
connected to the words of her story:

(

reduce the debt

for Tonero Habebah

On reflection, Ellen apparently changed her mind, and wrote this numerical
expression on her paper to go with her story:

3 ( -4 )

Both Susan and Harriet also wrote sensible stories that were based on addition. It

appears that Susan changed a subtraction problem to an addition one, as indicated by

her symbolic representation.

Susan's work follows:

Pete was on the 3rd floor, then he took an elevator 4 floors down. On
what floor is he now?

+3 - 4 = +3 + ( -4) = -1

Harriet wrote the following story for the same problem:

Ericson owed $4 to Alice. However he received $3 from Mahmoud. How
much money will he actually have out of his pocket?

In analyzing the written work of the teachers, all but one of the papers included at
least one example that was a sensible addition story using signed numbers. No
teacher provided an example for subtraction of a negative number from another
quantity that was realistic. Mark's example indicates that he may have been
considering subtraction of a negative number as a "forgiven debt". He wrote:

A couple of weeks ago, James borrowed $3from Mary with the
understanding of paying back the very next day. But James forgot to meet

up with his obligation. Mary then got upset and demanded James to pay
her money. James then replied. In fact you owe me one dollar. Do you
remember when you borrowed $4 from me 10 years ago?

However, along with his story, he wrote the following equations as the appropriate
numerical representation for what he had written:

3 - ( - 4) = - 3 + 4 1

Discussion and Conclusions

A number of examples generated throughout the session appeared to be based on an
understanding of subtraction of whole numbers that involved "taking away" one
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amount from another. In each case, the appropriate numerical expression involved
addition, with the negative sign indicating either direction or a debt. No example of
subtraction as the comparison of two quantities was given after Mark's reference to
the number line, and even in this case his comment "what doyou add to negative
five to get to negative one" appears to indicate that he was thinking of addition.

The examples reported document the value of having teachers write meaningful
stories both as a means of deepening their own understanding, and uncovering areas
of difficulty. However, the results reported indicate thatmore attention should be
given to developing meaning for subtraction as comparing a first quantity with a
second, first with whole numbers, and then with integers.

In addition, the results indicate that the teachers still felt that itwas helpful to offer
students "real world" problems, especially those involving money, to help them
understand addition of signed numbers, but that was not the case for subtraction.
Jack's comment sums it up: The more you try to give them a reality example, the
more confused it gets! "Keep, change, change" is more meaningful than making up
a story. In fact, the teachers unanimously agreed that Joan's suggestion to use the
procedure involving "keep, change, change" was the best way to approach
subtraction of integers.

As indicated in the results, when the researcher asked the teachers whetheror not
they were generating their problems for subtraction with the answer already in mind,
they all indicated that they indeed were. Further, their written work indicates that
they consistently converted subtraction problems into addition problems, and their
problem situations more closely reflected addition situations.

Another point worth noting has to do with the use of concrete materials in the
teaching of mathematics. As indicated by the results, Susan had great difficulty in
recreating a situation in which addition and subtraction of integers could be modeled
with tiles. This occurred despite the fact that she had mentioned on more than one
occasion during the discussion that using what she referred to as algebra tiles had
been very helpful to her students. She not only had difficulty in representing how
the tiles could be used, but also in generating the statement of a problem that could
be used to precipitate a discussion involving them. In fact, her initial word problem
using the squares (tiles) reveals some basic misconceptions about the difference
between using concrete materials and generating a real situation. In this case, Susan
thought that using the concrete materials was the real situation.

The results of this research indicate how difficult it is for teachers to provide
meaningful problem-solving situations for their students in this particular content
domain. Further, they indicate that at least in this circumstance, when teachers
experience difficulty in providing a meaningful context for their students, they often
resort back to a procedural approach.



A final point needs to be made. The teachers involved in this research are caring,
committed teachers who have all successfully completed degrees in college
mathematics. Each of them works hard to create meaningful instruction for students,
and is eager to learn more about how to meet their needs. An important implication
of this study is the need to encourage mathematics education researchers to
constantly focus attention on the mathematical thinking of teachers, and to create
contexts and environments in which teachers and researchers can openly work on
these ideas together.
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WAYS OF TALKING IN A MULTILINGUAL MATHEMATICS CLASSROOM'
Mamokgethi Setati

University of the Witwatersrand, South Africa

In this paper I investigate the nature of talkin a multilingual mathematics classroom in South
Africa. In particular, this paper explores how the teacher uses code-switching to facilitate
communication of mathematical ideas. The paper draws from a wider study on language
practices in multilingual mathematics classrooms in South Africa where multilingual teaching
and learning is now encouraged Current national policy defines eleven official languagesand
flexibility for schools in determining their language policy.

INTRODUCTION
It is well known that language (reading, writing and speaking) is important for thinking and
learning, and that language is not only an issue in mathematics classrooms but in all classrooms.
This issue, however, takes on a specific significance in multilingual mathematics classrooms.
Learning and teaching mathematics in a multilingual classroom in which the language of learning
is not the learners' main language is, undoubtedly, a complicated matter. Learning mathematics
is similar to learning a language since mathematics, with its conceptual and abstracted form, has
a very specific register. School mathematics also involves a range of discourses, ways of using and
valuing language. These places additional demands on mathematics teachers and learners.

Mathematics teachers ... face different kinds of challenges in their multilingual
classrooms from English language teachers. The latter have as their goal, fluency and
accuracy in the new language - English. Mathematics teachers, in contrast, have a dual
task They face the major demand of continuously needing to teach both mathematics and
English at the same time (Adler, Slonimnsky and Lelliot et. al., 1997).

Learners on the other hand have to cope with the new language of mathematics (its specific
register and discourses) as well as the new language in which mathematics is taught (English),It
is therefore important to understand the different language practices that teachers in multilingual
mathematics classrooms use to enable learners' meaningful communication of mathematical ideas,
concepts, generalisations and thought processes. In this paper I will present the initial stages of
an analysis of data collected for a wider study on language practices in intermediate multilingual
mathematics classrooms (Grades 4 - 6) in South Africa. I will focus on one case and will explore
the following questions:

how does the teacher use the learners' main language to help learner access to mathematics?
what languages do the learners use in mathematical discussion?
how do learners use the language of the teacher, the language of mathematics and their own
everyday language in the process of learning?

THEORETICAL FRAMEWORK
Two major areas of enquiry inform this study. The first relates to Vygotsky's theory of socio-
cultural development. Development occurs in and through socially mediated activity and language
plays a key role in mediation (Vygotsky, 1986). The presence of a more experienced other who
embodies and models the intended outcome for the learner is crucial within this framework. In a
mathematics class, the more experienced other can be the teacher and the intended outcome for

The financial assistance of DANIDA through the Joint Education Trust (JET) towards this research is
hereby acknowledged. Opinions expressed and conclusionsarrived at are those of the author and are not
necessarily to be attributed to DANIDA or JET.
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the learner is mathematical excellence which includes the ability to talk "within and about

mathematics" (Adler, 1998).

Pupils learning mathematics in school, in part, are attempting to acquire communicative

competence in mathematical language. Learning to be able to articulate the meaning ofcertain

concepts involves the development of a language that can best describe the concepts involved. This

is especially pertinent to mathematics because mathematical talk is known for involving both

specialised terms and different meanings attached to everyday words. Mathematical language

comprises both informal and formal components. Informal language is the kind that learners use

in everyday life to express their mathematical understanding. Formal mathematical language refers

to the standard use of terminology (mathematics register) which is usually developed within formal

settings like schools. In most mathematics classrooms both forms of language are used and these

can be either in written or spoken form. "One difficulty facing all teachers, however, is how to

encourage movement in their learners from the predominantly informal spoken language with

which they are all pretty fluent, to the formal language that is frequently perceived to be the

landmark of mathematical activity" (Pimm, 1991: 21).

Another useful way of categorising discourses in mathematical classrooms is to use Sfard's (1998)

distinction between calculational and conceptual discourses. She defines calculational discourse

as discussions in which the primary topic of conversation is any type of calculational process, and

conceptual discourse as discussions in which reasons for calculating in particular ways also become

explicit topics of conversations (Sfard, 1998: 46).

The second area of enquiry relates to the work that has been done concerning teaching and

learning in multilingual classrooms. One of the significant findings in this area relates to the

benefits that result from using code-switching' in teaching and learning mathematics (Setati, 1996;

1998, Adler, 1996). Other studies have shown that use of the learners' first language in teaching

and learning provides the support needed while the learners continue to develop proficiency in the

second language (Khisty, 1995; Adler, Slonimnsky and Lelliott et. al., 1997).

In this paper I look at ways in which the teacher models and uses different mathematical discourses

and code-switching and how these enable the development of learners' mathematical linguistic

abilities. I will argue that this case suggests a complex correlation between code-switching, using

a range of mathematical discourses and pupils' ability to communicate mathematics.

METHODOLOGY AND RESEARCH DESIGN
This is a qualitative study (Cohen & Manion, 1994) that focuses on one carefully selected grade

4 teacher together with her class during their mathematics lessons. The study is both descriptive

and exploratory (Bailey, 1978:38). It is descriptive in the sense that it describes in detail the way

in which the teacher and learners use languages during the mathematics lessons. The study is also

exploratory because it explains how the teacher uses languages to facilitate learners' access to

mathematics.

Data was collected by means of teacher interviews, lesson observations and learner interviews. The

teacher pre-observation interview was done before the lessons were observed and focussed on the

'Code-switching is when an individual (more or less deliberately) alternates between two or more

languages (Baker, 1994: 77).
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preferred language practices of the teacher. Lessons were observed for a week and the last two
lessons observed were video recorded. A reflective interview with the teacher after observation
of lessons focussed on the critical incidents in the lessons observed and the teacher's understanding
and rationale for the language practices used during the lessons. The pupil interview focussed on
learners engaging in mathematical talk related to mathematics lessons observed.

To analyse the lesson transcripts and learner interview, four categories were used to understand
ways of talking mathematics in this classroom: informal and formal calculational discourse and
informal and formal conceptual discourse.

In the section that follows I first give a description of the context in which data was collected and
then continue with the analysis.

THE CONTEXT
Ntombi, the teacher, teaches in a primary school (grades 1 - 8), west of Johannesburg in South
Africa. She has been teaching for ten years and has a Senior Primary Teaching Diploma plus a
three year university degree. Like her learners, she is a first language Tswana? speaker. However,
in addition to Tswana she can speak three other languages (English, Afrikaans, S. Sotho).Her
grade 4 class that was observed had 60 learners in total, 26 girls and 34 boys. They were all
multilingual and could speak from two to four languages and this included English which is a
second language for all the learners in the school. Compared to other learners in the wider study,
these pupils were relatively fluent in English. While their level of fluency could not be compared
to a first language speaker, they were able to communicate in English. The main language in the
area and the school is Tswana and all the learners are fluent in it. The language of learning in the
school is English' and its use is encouraged in the school.

A GENERAL DESCRIPTION OF LESSONS OBSERVED
Five consecutive lessons were observed in the same grade 4 class and they all focussed on
multiplication. To introduce the first lesson Ntombi started by writing the word "multiplication"
on the board and talking with the learners about what it means both in Tswana and in English. She
proceeded to give them an example on the board:

14 This was elaborated procedurally: 6 times 4 is 24,
x16 write 4 cany 2. 6 times 1 is 6 plus 2 is 8. 1 times 4
84 is 4, 1 times 1 is 1. 4 plus zero is 4, 8 plus 4 is 12,+J3 write 2 carry 1 and 1 plus 1 is 2. Therefore the

224 answer is 224.

This was followed by group exercises and then class-work which were both similar to the example.
During group work there was a lot of interaction mainly in Tswana between learners. During
teaching, Ntombi communicated with learners in both English and Tswana and engaged them in
mainly formal calculational discourses. These kinds of discourses were also observed among
learners during group work.

3Tswana is one of the eleven official languages in South Africa.

°According to the new language policy in South Africa schools have a right to choose their language of
learning.
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Lesson 2 started with checking and marking of home-work. Volunteers from different groups were

called to the board to write their solutions. If the answer on the board was incorrect another

volunteer was requested. The teacher identified those who had problems with the home work and

did more examples with them, emphasising the procedures to follow, while the rest ofthe class

continued with more multiplication problems. After working with the selected group she gave

them an exercise to do as home work. Both the teacher and learners used English and Tswana

interchangeably (code-switching) and formal calculational discourse was dominant during this

lesson. The lesson ended with the whole class singing a song while they put away their

mathematics books.

Similar to lesson 2, lesson 3 started with checking and marking of home work. She then worked

with one group (`good group') on multiplication of three digit numbers by two digit numbers while

the rest of the class was busy with corrections. Code-switching and formal calculational discourses

were also dominant during this lesson.

After checking and marking homework in different groups during lesson 4, the teacher worked

with the same group (`good') on a word sum while the rest of the class was very noisy and not

involved. The word sum she did with the group was: "In Thusong primary school, there are 10

classes and in each class there are 19 learners. How many learners are there inThusong?" After

doing this example she started a song to get the learners' attention back. At the end of the song

she wrote two different exercises on the board: one for the 'good group' and the other for

everyone else. For the 'good group': "In KTS there are 15 classes. In every class there are 13

learners. How many learners are there in KTS school?", for the rest of the class: 301 x 15, 408 x

19, 485 x 15. During this lesson discourses became more informal and conceptual and code-

switching continued to be a dominant practice.

In lesson 5, after checking and marking the home work, the teacher continued to work with the

`good group' on another word sum example: "In the SPCA? are 12 cages. In each cage are 12

dogs. How many dogs are there altogether?" The rest of the class was working on lesson 4's word

sum. In handling the word sum with the 'good group', the teacher started by asking learners to

read and then focused on the new words like "SPCA", "cage" asking them what they mean. Most

of the learners' explanation of these words were in Tswana. This was followed by a discussion on

what they were required to find in the word sum and how the solution can be found. After finding

the solution she wrote two different exercises on the board for the learners to do as a class test.

During this lesson the teacher engaged learners in both formal and informal calculational and

conceptual discourses.

DESCRIPTION OF TALK IN AND ACROSS LESSONS'
During teaching, Ntombi focused mainly on formal mathematics language. Her classroom

mathematical discourse moved across calculational and conceptual discourses. She taught

procedures explicitly. Throughout lessons 1, 2, 3 she lead the learners in calculational processes

used to solve problems. Her focus seemed to be on getting the learners to master the procedure

and not on the reasons for using the procedure or on why the procedure works. Her talk was in

terms of procedures where numbers are manipulated as objects that can be 'carried'. For instance,

'SPCA is an abbreviation which stands for Society for the Prevention of Cruelty to Animals.

`Due to limitations of space it was not possible to display transcript extracts in sufficient detail,

examples have been selected.
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"We carry down 1 and say 9 plus 3 is 12".What is interesting is that the teacher is not the only one
who 'owns' this kind of talk. She models the talk and then gives learners an opportunity to
practice it. This was evident during lessons and learners' interview where learners used the
language of the teacher in most of their discussions. In the extract below the learner is working
out the solution for 444 x 19.

P: Let us say 9 x 4 is 36.We write 6 and carry 3 then again we say 9 x 4 36 4- 3 is 39 we
write 9 and carry 3. We say 9 x 4 again is 36 plus 3, 39 andcover the units.We say 1 x 4
is 4. And again I x 4 is 4. We say again 1 x 4 is 4 and then we underline and then 6 + 0
is 6. 9 + 4 is 13 carry I. 9 + 4 is 13 plus 1 is 14 carry I. 3 + I plus 4 is 8. (Lesson 4)

In the above extract, the learner is imitating the 'teacher's language' of mathematics where
numbers are referred to as objects that can be 'covered' and 'carried'.

While it can be argued that this kind of talk can and does occur in many mathematics classes, what
actually makes a difference is the fact that in Ntombi's multilingual class this kind of talk is
supported by the learners' main language. For instance if the teacher discovered that there was an
error in the procedure she handled this in the learners' main language. For instance, in the extract
below the teacher had asked one of the learners to work out 59 x 19 and according to the
procedure she taught them they firstly needed to write this problem vertically. In trying to write
it vertically the learner wrote the multiplication sign incorrectly between the 1 and 9 in 19. The
extract shows how the teacher used Tswana to deal with this error in a non-threatening manner.

T. Alright, I must put it down, okay. And then we say 1 + 0. 3 +... Go na le phoso fa?[Is
there a mistake here?]
P: No.
T: Nix, nix? Lebella senile. [Really? Look carefully.] (The learner corrects the
multiplication sign writes it at the correct place.) (Lesson 4)

This is not the only way in which the learners' main language plays a role. In fact to move across
the discourses Ntombi used the learners' main language. The following episode which occurred
during lesson 5 is a typical example of how Ntombi used the learners' main language to engage
learners in informal conceptual discourse.

T: Eh, can you all read here?
P: In the SPCA are 12 cages, in each cage are 12 dogs. How many dogs are
there altogether?
T: Now, first of all, what is this SPCA?
P: When your dog is ill (unclear)
T: Yes, sure.
P: Fa ntja ya gago e lwala go na le batho ba acing ba tla go tsaya ntja ya gago
a ba a isa ko spetlele fa ba bona e le botoka ba e busa[lfyour dog is ill, there are
people who will come and take it to the hospital and they bring it back when it is
welt]
T: Ee, spetlele sa dintja akere?Ke ko diphologolo, di pets tsa mo ntlung di nnang
teng akere?[Yes, it is a hospital for dogs, right? It is where pets are kept]
P: Ba kile ba tsaya ntja ya ko ga[They once took my dog.]
T: Ba kile ba tsaya ya kwa lona? [They once took your dog?]
P: Le ya ko gaelAnd mine too]
T: Ao! Ba e tlhatlhoba ka eng? La patela? [How do they examine it? Do you

Pay?]
P: No. Mahala. [Free.]
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7' 0oh, ke mahala? [Oh it isfree?] Go raa gore e a thusa ka gore seo se se tona ke gore

re tshwcmetse go tlhokomela diphologolo tsa rona akere?[This is helpful because the

greatest thing is that we should take care of our pets] 0 tla bolella baba sa itseng,

baagisani gore bathong ga nyanyana ya gago e kare e a tlhotsa o tla e isa ko SPCA [You

must tell your neighbours and all those who do not know that if their dogs are

ill they can take them to the SPCA] (Lesson 5)

While it may seem as if the discussion that the teacher is having with the learners above is not

important in a mathematics class, in this case it is. The problem that isbeing dealt with here talks

about the SPCA and therefore the teacher uses this as an opportunity to educate the learners about

the SPCA. The use of the learners' main language here enables active interaction with the teacher,

for instance, learners are free to share their stories about the SPCA
T: Right. Jaanong ga re bala fa yare[when we read here it says] in the SPCA are

12 cages. Ke mang a ka re bolellang gore [who can tell us]what is a cage? E

kare re bolela ka duo tse re sa itseng gore di ko kae.[It seems that we are talking

about things we do not know].
P: Ke ko ntja e dulang. [where dogs stay].
T. Ooh, are ko ntja e dulang, gore ga o batla gore e ske ya latlhega o e tswalela

mo caginyaneng. [She says that's where dogs stay, if you don 't want your dog to

get lost].
P: Ee. [Yes]
T. Jaanong di cages tse di di kae?[How many cages are there?]

P: 12.
T. 12?
P: Yes.
T: Ke rata go di kwala ga gore o mongwe o utlwa re re 12 mme ga re di bone

akere? 0 bala le nna gone. [I want to draw them so that we can see them, right?

Count with me.] (Draws 12 boxes on chart representing cages. Pupils count

together with her)
T. Go raa gore re ko SPCA jaanong akere? [We are now at the SPCA]

P: Yes. (Lesson 5)

In the above extract the teacher is dealing with the word cage, which could be new to most second

language learners. It is important to note that while the teacher engages learners in an informal talk

about the new words in the problem, these words are explained in the learners' main language and

not in English. The learners talk about what a cage is in Tswana. The teacher continued in the

same manner to get the learners to interpret each of the sentences in the word sum.

In interpreting the sentence "In each cage are 12 dogs' the teacher made drawings of the cages

and dogs inside and then moved on to what the question requires them to do.

T: Ee ke raa gore tla re baleng potso e.[Let 's read the question.]

Ps: How many dogs are there altogether?
T. Go raa goreng? [What does it mean?] Ke kola go tlhaloganya seo pele. [I

want to understand thatfirst] Morero ke eo potso e re botsa gore dintja tso tsotlhe

Ise di mo dicaging di di kae. [Morero, there's a question, it says, how many dogs

are there altogether in the cages.]Dintja tso tsotlhe di di kae?[How many dogs

are therealtogether?]Jaanong ke batla go itse gore karabo re a go e bona fang. [I

would like to know how are we going to find the answer.]

P: We are going to write tens, hundreds, thousands and units. (Puts chart on the
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board) ... and we must underline, when we are through we say 12 times 12, we
underline again when we are through we put the button here and we say 2 x 2...
(Learner goes on with the procedure in English until he gets the answer)
P: The answer is 144.
T: Go raa gore re na le dintja tse kae?[It means how many dogs do we have ?]
P: 144. (Lesson 5)

It is interesting that in the above extract the teacher rephrases the question for the learners, a
practice that she has not been doing since the beginning of the problem. On the other hand to deal
with the teacher's question: "how are we going to find the answer" the learners move out of the
informal talk, that they have been interacting with the teacher in, into the formal calculational
discourse which they have learned.

What the above extracts show is that these learners are aware of the dominant culture of
mathematics classrooms in which formal written mathematical language is valued and therefore
when required to give an answer they draw on their knowledge of formal procedures. Another
interesting factor is the fact that the formal calculational discourse happens in English and this is
perhaps due to the fact that this discourse is acquired in English.

In the next extract the teacher tries to engage them more in conceptual discourse.
T: 144. Mara jacmong go tlile fanggore re tshwanetse gore re di timese ko gonne nna
nka nne ka nagana gore mare why re sa re 12 plus 12?[But now, how did you know that
you are supposed to multiply, why are we not saying 12 plus 12?]
Kenosi: Because re batla di answer tsa rona di be right. [Because we want our
answers to be correct]
T. Oh, Kenosi o arabile are o batla go bona a tshwara dipalo tsa gage right ke
moo a reng 12 x 12. [Kenosi has responded he wants his answers to be correct.]
0 mongwe a ka reng? [What do the others say?]A ka re tlhalosetsa jang?[How
else can you explain this?](A few pupils raise their hands and she point at one.)
T. 0 kola go leka?[Do you want to try ?]Emella re utlwe, Ntsiki?[Stand up and
try, Ntsiki]
Ntsiki: Bare ko SPCA go na le di 12 cages ene gape go na le dintja tse 12 bjanong
ge re di bala dintja tse di di kae?[They say at the SPCA there are 12 cages and
12 dogs in each cage, so when you count the dogs in each cage what willyou
get?] (Lesson 5)

It is interesting that when the teacher asks them why they multiplied, the first reason she gets is
that they want their answers to be correct. This is also very typical of most mathematics
classrooms where it is important to know what thecorrect answer is and not why the answer is
correct. On asking for alternative answers, Ntsiki used the teacher's drawing to explain how she
would get the answer. Her response is also in Tswana.

It seems that in engaging learners mainly in formal calculational discourse the teacher
communicated to learners what is valuable mathematics language. It is therefore not surprising that
when the learners were engaged in conceptual discourse they quickly shifted back to the formal
procedural discourse. Nevertheless, Ntombi's learners were exposed to and engaged in all four
kinds of discourses. During the learners' interview learners could draw on all kinds of discourses.
Mathematically, Ntombi's learners were able to engage in both calculational and conceptual
discourses. They could carry out their procedures with ease and whenever they were required to
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give reasons for some of the steps in their procedures they managed well. It is feasible to argue

here that Ntombi's ways of talking enabled learners both mathematically and linguistically.

DISCUSSION
My analysis suggests an important correlation between code-switching, the kinds of mathematical

discourses used and whether these enable or constrain learner access to communicating
mathematics. As the analysis above shows, Ntombi uses a range of discourses in her teaching and

these were reflected in the learners' communication of mathematics. What is very important to

note, however, is that the movementbetween one discourse to another was facilitated by the use

of the learners main language (Tswana). This is particularly important because while Ntombi's

learners' are relatively fluent in English, it is not their first language and as the data shows some

of the learners could not engage in calculational and conceptual discourses without using their

main language, Tswana. It is therefore possible that if Ntombi did not allow them to use Tswana,

the discourses could have remained formal and procedural. Obviously one cannot claim that use

of code-switching enabled learners' communication of mathematics, however, the correlation

between code-switching, mathematical discourses and whether and how they enable learners to

communicate mathematics is a fruitful area to explore further.
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STUDENTS' USE OF DIAGRAMS IN STATISTICS

Pamela F. Shaw and Lynne Outhred,

Macquarie University, Australia
This paper summarises the preliminary findings of a study into why students in an
introductory statistics course do or do not use diagrams in questions which could
be done with or without the use of a diagram. It was found that students were
reluctant to use diagrams but those who used diagrams were more successful.
Very little relation was found between use of diagrams and previous maths
studied.

INTRODUCTION

In mathematical problem solving two factors have been found to be important - a
verbal or logical component and a visual component (Krutetski, 1976). The logical
component includes translation of words into algebraic symbols while the visual
component comprises diagrams, pictures and graphs. Moreover, students have been
found to emphasise these components differently when solving problems. Presmeg
(1986) used the term " visualisers" for students who prefer to use visual approaches
for solving a problem which may be solved by either a visual or non-visual method.

In statistics it is important that students can utilise both visual and non-visual
methods; visual (e.g., graphical methods) are necessary for an initial inspection of
the data to determine distribution characteristics, such as normality, dispersion, and
outliers, while non-visual methods are predominantly employed in hypothesis testing
and calculating confidence intervals. However, students may be reluctant to use
visual methods, such as graphing or drawing a diagram, because of an emphasis on
algebraic methods in mathematics teaching. For example, Vinner(1989) found that
tertiary students tended to prefer an algebraic proof rather than a diagrammatic
proof, even when the latter, as stated by students was easier to follow. He felt that
this preference was affected by the method of teaching where students gained the
impression that symbolic solutions were more prestigious than diagrammatic
solutions.

Visual representations may be included as part of a problem information or students
may produce their own representations as part of the solution process. In research on
primary and secondary students' interpretations of graphs that accompanied
statistical problems, Curcio (1987, 1996) identified three levels of graph
comprehension:

literal reading from the graph;

comparisons using the graph - reading between the data;

reading beyond the data.

If students are at the literal and comparative levels in their knowledge of graphs, they
may have difficulty solving statistical problems when they are only given the raw
data. Reading and Pegg (1998) analysed the responses of Australian students in
Years 7 to 12 to two data reduction questions, one of which presented the raw data
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and the other a graphical representation. They found that students responded at a

higher level when the data was presented in raw form rather than in graphical form.

However, Roth and McGinn (1997) have questioned whether graphical ability is

related to cognitive ability rather than to practice in using graphical methods in

practical and social situations.

Students who represent problem information visually when they solve mathematical

problems may be more likely to make a visual representation of statistical data (e.g.,

a stem and leaf plot or a graph). Shaw (1998) investigated whether the use of

statistical displays was associated with the use of diagrams in non-mathematical and

mathematical problems. The results of the study indicated a relationship between the

use of statistical displays and the use of diagrams in mathematical, but not non-

mathematical situations. Moreover, students who spontaneously drew diagrams for

the statistical problems were more likely to gain higher marks in the final

examination than students who did not.

In this paper we report some preliminary findings concerning the spontaneous use of

diagrams by tertiary students as they solve statistical problems. The aims of the

study were to:

investigate the relationship between ability and the use of visual solution methods;

determine if students who drew diagrams were more successful than those who

did not.

METHODOLOGY

Students in introductory statistics courses at two Australian universities were given

an assessment task comprising a number of statistical problems and one
mathematical problem whose solutions would be facilitated by the use of an
appropriate diagram. At both universities the course was a large (>500) service

course for first year students. Both courses covered displaying and summarising

data, distributions and sampling distributions, hypothesis testing of means for one

and two samples, regression and categorical data. The problems required responses

at Curcio's third level - extrapolation from and interpretation of the data. There were

four versions of the task, the versions differing only in the order in which the

problems were given. Students were asked to provide their University entrance score

as an indicator of ability.

In addition, nine students from one of the universities were subsequently interviewed

at the end of their course and the interviews audio-taped. These students completed

the same problems but were asked to verbalise their solution. At the end of the

interview they were asked about their use of diagrams.

The 88 students reported here were given the assessment task in a lecture midway

through the course when they had studied hypothesis testing with one and two

samples but had not yet received any instruction on regression.

Each student's response was given a diagram score of 0, 1 or 2 (0 = no diagram, 1 =

partial diagram and 2 = correct diagram) and a score for the solution from 0 to 3
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where 3 = correct solution. In addition, The students were asked to give the level of
mathematics they had studied at secondary school and this was coded from 0 to 3
where 0 = no mathematics at Year 12 and 3 = 3 unit mathematics. (Students with the
highest level of mathematics (4-unit) enrol in a different statistics unit.)

The assessment task

The four questions used in the assessment task are given below. The fourth question
was a modification of a question used by Campbell et al (1995).

Problem 1 Area under the normal curve: The age of academic staff at Newport University are
normally distributed with a mean of 38 years and a standard deviation of 5 years. What proportion
of staff would be expected to be aged between 45 and 50 years?

Problem 2 Linear relationship between two variables: It has been claimed that as academic
staff get older their tolerance of students decreases. A test of staff tolerance of students has been
developed. Ages of a random sample of six staff at Newport University and their tolerance scores are
listed below. Are the data likely to support this claim?

Name Grey beard Long legs Mac Boffin Blondie Shortie

Age 52 39 33 25 22 45

Tolerance 28 35 35 50 39 23

Problem 3 Distribution of a single variable: The employment history of a random sample of 30
academic staff at Newport University was obtained. Listed below are the number of years that they
have worked at Newport University. As a person with statistical knowledge you have been asked to
comment on this data.

1 7 5 2 5 6 4 5 5 6 2 2 2 6 6

3 5 6 9 5 5 1 3 4 7 5 2 2 7 6

Problem 4 Linear algebra: The blood alcohol readings- of two lecturers from Newport
University were recorded the morning after an accident. The readings were:

Alison 6 hours after accident: 5 units Brett 5 hours after accident: 7.5 units

8 hours after accident: 2 units 9 hours after accident: 5.5 units

Assuming a linear relationship, when were their readings the same?

RESULTS

It is clear from Table 1 that for each problem (with the exception of Problem 1) the
largest group of students are those who do not draw a diagram and who cannot solve
the problem. Problem 1 would have been the most familiar to the students and in
lectures and tutorials students would been told to draw diagrams for problems of this
type. For Problems 1 and 3 those students who drew a diagram were far more likely
to obtain a successful solution than those who did not. However, for Problems 2 and
4 successful students were approximately equally divided between those who drew
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and those who did not, but very few students who drew a correct diagram could not

solve the problem.

Problem 2 was given to these students before they had been given any instruction in

regression and their responses reflect ideas developed at secondary school. The

majority of the students (81%) did not draw a diagram and less than a quarter of

these students obtained the correct answer whereas of the 19% of students who drew

a diagram, most were successful.

Table 1 Students categorised by diagram usage and solution (%) for each

problem (n=88)

No solution or an
inadequate solution

(Score = 0 or 1)

Reasonable or correct
solution

(Score = 2 or 3)

Problem 1 Areas under the normal curve

No diagram* 34

13Correct diagram

19

34

Problem 2

No diagram*

Correct diagram

Problem 3

No diagram*

Correct diagram

Problem 4

No diagram*

Correct diagram

Linear relationship between two variables

63

3

18

16

Distribution of a single variable

60

16

6

18

Linear algebra
52 19

8 21

* A partial diagram was included in the "No diagram" category.

In Problem 3 most students simply calculated measures of centre and spread without

checking the form of the distribution. In fact, the data was bimodal with peaks at 2

and between 5 and 6.

Problem 4 was a mathematical question, rather than a statistical one. It could be

answered graphically, algebraically or using ratios. Slightly less than half (45%) of

the students satisfactorily answered this problem. Again there was a relationship

between the use of a diagram and successful completion of the question.

Since students are in general more successful when they draw a diagram why do

more students not apply this strategy to solve problems? Below we report on the

information gained from the nine interviews as to why students draw diagrams. Four



of the students drew diagrams for three or four problems, the other five drew
diagrams for at most two of the problems.

Why students drew diagrams

When students talked about why they drew diagrams their comments seemed to fall
into two categories: those that appeared to be motivated by a conceptual approach to
problem solution and those who appeared to be following procedures.

i. Conceptual basis

Some students find that visualisation helps their concept formation. They
think in pictures and get a general idea. Student 5 even considers statistical
formulae as a form of picture.

I Now, you've drawn a lot of diagrams. Why didyou do that?
S5 Well, I think in pictures. I've always found it easier to do things like maths

and science than English, because I have a lot of trouble with words, I often
don't understand them, or I've felt I've understood what's been said, but I
haven't. Whereas pictures, it's pretty easy to get the general idea, urn,
yeah, I've always found it easy with pictures. ... I just find it easy to work
with pictures, but words, they just go straight out of my head Like I say,
I've always done badly in English and things like that because I don't do
very well with words.

I So you prefer pictures to formulae, for instance.
S5 Much, yeah, but even formulae, they're like little tinypictures,
I Right

S5 Um you know, like I can remember that the p is the same as the biggest bit
on the picture of the normal distribution, like I remember it as a picture, so
that's how I, I just guess percentages by how much do you reckon that is
compared to the rest of it. That sort of thing, that's why I'm not very good
at remembering formulas and stuff, because they are sort of words, but I
prefer them to the actual words, that's why the first thing Ido is write down
the ,u and a because they are better than reading them back in the
paragraph we're been given.

Another student uses diagrams as a way of reducing the information processing load
during problem solving:

S7 Why did I do that? So I can see what I am doing. Because in my head I
can't have too many things at once, so I have to do everything on paper.

ii. Procedural basis

Some students drew diagrams because they had been told to do so in class.
This was particularly evident in the question on areas under the normal
curve. However, Student 6 had not noticed this emphasis until she came to
revise for the examination and she was concerned because she did not feel
confident in her ability to draw diagrams.
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I Well, in most of the examples that you've done, well you have drawn a lot

of diagrams, why did you do that?

S6 Oh, they say to in class, basically, and like I just noticed going through

some revision, it's often called for.

I What, drawing a diagram, in the revision?

S6 Urn, yeah, they seem to refer to ... like with these it seems to make sense

anyway, and with this stem and leaf plot, .... but like I didn't notice it
throughout the year, throughout the semester, that we were being asked to

do it much, except for here.

I Right
S6 And then I was going through the revision all the time, and I noticed that

"oh, yeah, graph this " and I thought "Oh God" because my visual spatial

is like really poor.

Why students did not draw diagrams

i. Conceptual basis

Students gave several reasons for not drawing diagrams: they were not sure what to

draw; they did not feel that they needed a diagram; diagrams had not been

emphasised in teaching; or a previous diagram had not helped obtain a solution.

For the single variable question, Student 4 said that he had not drawn a diagram

because "I was only asked to comment on the data ... on a bunch of numbers" .

However, when prompted on Problem 4 he had a sudden insight and went on to

correctly solve the problem.

I So you could see no relevance in drawing a diagram?

S4 No, what's the use of it. On question 4 there wasn't enough information to

draw any linear relationship because like with Brett, I could of ... actually,

actually ... I might be able to get something out of this ... you do, okay,

blood alcohol units on they axis, ...

ii. Procedural basis

I So why don't you draw diagrams?

S8 I do when I'm asked to do itfor statistics.

There were a number of concerns that the students raised that indicated they did not

realise the value of diagrams in helping them solve the problems. For example, that

diagrams were too time consuming to draw or that graph paper was not provided "I

guess i f I had actual graph paper, I would have plotted those two points, draw a line

and worked it out that way, put those lines on graph paper, but myfreehand drawing

isn't that good". The other reason given was the emphasis on using formulae in the

computer assessed tasks in the course.



Problems in drawing diagrams
Very few of the interviewees had any difficulty with Problem 1 (area under the
normal curve). This was probably because the interview took place at the end of the
term when students were studying for their final examination.
Although diagrams can be helpful, if students draw an incorrect diagram or cannot
interpret the diagram they have drawn, then diagrams may be counter-productive.
The main problems with diagrams that were apparent from the interviews were:

Despite drawing a stem and leaf plot for Problem 3 some students identified the
distribution as normal rather than bimodal;

In the linear algebra problem (Problem 4) several students felt that they could
not extrapolate beyond the range of the given data

S6: Urn, when were their readings the same? Well if their readings were the
same, I would imagine they would have crossed over at some point.

I Okay. It seems a reasonable idea.
S6: So I'm just thinking I've chosen the wrong way to do it, or I've or whether

I've plotted it incorrectly

Relationship between visual solution methods and mathematical level

The mean diagram score for each level of mathematics studied is given in Table 2.

Table 2 Mean diagram score for each level of secondary school mathematics.

Mathematics level N Mean diagram score Standard deviation
0 7 2.1 2.3

1 6 3.8 2.2

2 32 3.3 2.2

3 31 3.1 2.3

The results shown in Table 2 do not indicate that students with higher mathematics
levels were more likely to draw diagrams. The students with no mathematics in
Years 11 and 12 were less likely to draw diagrams than those who had studied some
mathematics. However, students who had studied 2-unit or 3-unit mathematics had
slightly lower scores than those who had studied the most basic mathematics. These
results have to be treated with caution because of the small number of students
whose results have been analysed at this stage. Nevertheless, the results shown in
Table 2 may indicate that students who have studied more algebra may attempt
algebraic solutions rather than graphical ones.

CONCLUSIONS

The preliminary results from this study show that for these four problems the
majority of students did not draw diagrams, despite being encouraged to draw
diagrams throughout the course. The problem for which drawing was most common



involved finding an area under the normal curve, a standard problem for which

students had been taught in their course to draw a diagram as an integral step in the

solution process. Despite this, only 47% of the group drew diagrams and for the

other three questions less than a third of the students drew a visual solution. For all

four problems it is clear that the students who draw a diagram as part of the solution

process are far more successful than students who do not.

Why then do students not see that diagrams are a useful problem solving strategy?

The main reason that came out of the interviews was that students were not sure that

a diagram was worth the effort it took to draw it, rather than not knowing what to

draw. Although when questioned, one student did not seem sure which diagram to

draw, she went on to suggest drawing a histogram and the underlying reason seemed

a lack of confidence in her drawing ability. Students seemed to want to calculate

statistics, such as means and standard deviations without first obtaining a feel for the

data. No student suggested a diagram might be an easier method of solving some

types of problems.

We thought that students who had studied more mathematics at secondary school

would be more likely to draw a diagram as these students were more successful on

the assessment task. However, the preliminary analysis of the data did not seem to

support this hypothesis. The results for the full sample may clarify this issue further.

Since students who draw diagrams are more successful than those who do not, a

greater emphasis needs to be given to integrating the use of diagrams in the teaching

of introductory statistics. Students were more likely to draw a diagram when they are

clearly incorporated in the teaching. This result suggests that the construction and

use of diagrams needs to be specifically integrated into course materials and

assessment.
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CONCEPTUAL UNDERSTANDING OF CONVENTIONAL SIGNS: A
STUDY WITHOUT 1VIANIPULATIVES

Corina Silveira

The University of Southampton, United Kingdom
This paper focuses on the beginnings of the learning of the system of natural
numbers seen as a sign system and as an object of social use. It presents data ofone
case study conducted as part of an on-going longitudinal teaching experiment. The
broader investigation studies a group of 5-year-old children in a primary school in
the South of England. The appropriation of the conventional system of numbers is
seen as a gradual approximation mediated by the use of spoken and written numbers
in a diversity of situations. An established model of children's conceptual
organisation of the number sequence is used to analyse children's thinking. Work
with the conventional system of spoken and written numbers without restriction of
the series is reported andpreliminary reflections on how children appropriate these
systems are outlined.

Introduction

Understanding the system of natural numbers entails understanding of two cultural
systems of external or physical signs: the system of number words and the system of
written numbers'. Although there is a vast body of research focusing on the learning
of the former (e.g. Steffe et al., 1983; Steffe and Cobb, 1988; Steffe, 1992; Fuson et
al, 1982; Fuson 1988), much less is known about how young children appropriate the
system of number scripts and further, how the use of the system might mediate this
appropriation in the beginnings of cognitive development. Recently, it has been
acknowledged that there is a paucity of investigations into how children acquire
knowledge of written numbers (Wright, 1998) despite some exceptions (e.g. Lerner
and Sadovsky, 1995; Sinclair and Scheuer 1993; Sinclair and Sinclair 1984). Related
to the learning of written numeration is, of course, the understanding of place value.
Investigations have shown that despite considerable pedagogical effort, English
speaking children show "inadequate understanding" (see Fuson, 1990 for a review).
Extensive research in this area seems not to focus on the fact that both written and
spoken numeration are complex systems of signs available to young children's
inspection and use without the graduations normally imposed by schools.
Theoretical framework and research literature
The study holds the view that children construct their own mathematical knowledge
and there is no other way to .access this knowledge except by building models of it
(Steffe, 1991; Steffe and Cobb, 1983). With Cobb et al. (1992) we concur that this

These two systems will be to often termed written and spoken numeration to highlight the relational nature of theideas they embed.
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construction takes place irrespective of the pedagogy used. However, the quality of

this construction seems to be very much dependent on the situations an individual is

called to participate in with more competent peers. Hence, these researchers establish

the dual nature of mathematics learning, both an individual cognitive activity and a

communal, social practice. These two aspects of mathematics learning seem to be

intricately linked when young children are initiated in the learning of the first system

of signs they might associate with "mathematics": number words and written

numbers. On .the one hand, this learning can be seen as a process of conceptual

reorganisation (Steffe et al. 1983, Steffe and Cobb, 1988). On the other hand,

following a Vygotskyan tradition, it can be seen as a process of appropriation of

cultural inheritance. In this sense, the conventional system of natural numbers and its

particular spoken and written signifying forms, are seen as "cultural tools" which

serve as "mediators that relate the developing child to his or her cultural inheritance"

(Cobb, 1995, p. 364). For example, children's construction of more abstract

arithmetic units (Steffe et al, 1983) can be seen as taking place as they engage "in

culturally organised practices in which cultural tools play a role" (Cobb, ibid.) "with

the guidance of more skilled partners" (Vygotsky, cited in Cobb, ibid.).

The idea that cultural tools mediate cognitive development is held by cross-cultural

investigations which argue that differences in the word number sequence of different

languages promote differences in conceptualisation of the numeration system (see
for example Miura et al., 1988; Fuson and Kwon, 1992; Bell, 1990).

It is in this sense that written and spoken numbers mediate children's conceptual

organisation, in so far as these marks and spoken words play a role in situations

which recreate cultural practices. We have developed the idea that children might be

restricted from using and talking about number words and written numbers because

curriculum designs present "in doses" the work on the series of spoken and written

numbers'. For example, by working with spoken and written numbers up to 10,

successively up to 100 and then extending the work beyond 1000 in the consecutive

years of school'. This progression is a pedagogical choice fully endorsed by

educational practitioners.

When the work with written numbers is extended beyond 10, instructional devices or

manipulatives (e.g. Dienes blocks, Multilink) are usually employed in order to

"bridge" the learning of numeration. Research has also put the rationale of the use of

these devices under criticism (see for example Perry et al., 1994; Thompson, 1992

for reviews; also Baroody, 1989; Kammii, 1985; Holt 1982 for a critical view). For

example, Perry et al. have argued that the "notion of manipulatives in mathematics
education has focused on the use of concrete materials to 'produce' the ideas
assuming that the learners themselves do not bring with them the ideas that can be

2 This assertion is based on national curriculum designs both in the United Kingdom and Argentina.

For example, in the UK numbers from Ito 10 are presented in Reception Year, up to 20 in Year 1.
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manipulated" (Perry et al., ibid., p. 488). Baroody has stated that "it does not follow
from Piagetian theory that children must actively manipulate something concrete and
reflect on physical actions to construct meaning. It does suggest that they should
actively manipulate something familiar and reflect on these physical or mental
actions" (Baroody, ibid., p. 5, italics in the original). The use of concrete materials
has been said to hold a representational view of the mind with the assumption that
students "will inevitably construct the correct internal representation from the
materials presented" (Cobb et al., 1992, p. 5) because the concept to be learned is
inherent or materialised in the physical device. Contrary to this view Cobb et al.
(ibid.) have termed these instructional materials as "pedagogical symbol systems" to
emphasise their "symbolising role in individual and collective mathematical
activity". Meira (1998) has argued that the "transparency view" should be replaced
by the idea that transparency is not a property of the physical embodiments rather it
is "created" (Meira, ibid.) or "experienced" (Cobb, ibid.) through specific forms of
using the device in socio-cultural practices. He suggests that physical embodiments
should be conceived as "conversational pieces" or the motive for engagement in
conversation and argumentation. Even in the beginnings of learning, the
"conversational pieces" can be the very object of learning: the written and spoken
system of numbers. That is, instead of working with artificial "pedagogical symbol
systems", children can use, frequent, talk, and reflect upon the written and spoken
systems in all their complexity. In this sense, three main assumptions underlie the
research reported here: 1. Children elaborate early ideas on written and spoken
numerical signs (Lerner and Sadovsky, 1995; Sinclair and Scheuer 1993; Sinclair
and Sinclair 1984), 2. If the standard series of spoken and written numbers is not
presented in chunks, children can have opportunities to appropriate and master the
system of numeration; and 3. Children use external representations and conventional
signs to express their thinking (Cobb et al., 1992) and physical properties of symbols
can be resources of reasoning (Greeno, 1991). These three assumptions have been
the working hypotheses of the research

Background orientation and methodology

The aim of the research is to develop a model of children's appropriation of written
and spoken numeration which is compatible with an established model of children's
construction of units (Steffe et al., 1983; Steffe and Cobb, 1988). A longitudinal
constructivist teaching experiment (Steffe, 1991; Steffe and Cobb, 1983) with
selected case studies has been undertaken. Data presented in this paper corresponds
to one of the on-going case studies which have been conducted with 6 children ofan
English Reception class (age 5). A fieldwork diary has been produced to record
relevant information (for example what activities in relation to numeration children
have been presented with). All 6 children were interviewed outside the classroom on
a one-to-one basis and in pairs during the Summer Term March/July 1998-. Task
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based interviews were of two types: 1. Counting type assessment to ascertain
children's stage of learning according to the model of construction of units set forth

by Steffe and his colleagues (Steffe et al., ibid.). Tasks presented in these interviews

resemble those used by these researchers and children were interviewed on a one-to

one basis. 2. Semi-structured exploratory interviews to ascertain ways of knowing or
appropriating written and spoken numbers. These latter interviews typically present a

scenario as an "excuse" to talk about and write numbers, and reflect upon the
numbers produced. These interviews were with pairs of children who were thought

to be in the same stage of construction of arithmetic units. Interviews varied
according to children's responses and engagement but always had the aim of
prompting discussion on the written or spoken numbers. Of paramount importance is

how these discussions may allow two kinds of inferences. First, if children "notice"

any regularities in either or both spoken or written numbers and secondly, if children

have started to reason about these regularities. Data presented below mainly stem
from the latter type of interview. A brief description of the interview from which
they have been extracted follows.

Cinemas scenario: A picture of a cinema auditorium was prepared on a piece of
cardboard with 9 sections for the audience (64 cm x 45 cm). The sections were
divided with black strips of cardboard. The screen was represented with a piece of
black cardboard and it had a small picture of the film "101 Dalmatians". Children
were told that this was a big cinema and that the owner wanted to know how many
people could come and see the film. All children were asked to figure out how many

people there would be in the cinema if there were 100 people in each of the sections
and they were asked to write these numbers for the owner of the cinema (e.g. 100,

300, 900).

Findings and reflections: the case of Eamon

The episodes presented here belong to one case study. We present this case because

we think it shows one form of appropriation of the conventional number signs which

is discussed in the next section. It should be noted that Eamon is a counter of the
initial number sequence stage°. Eamon gives every indication that he is remarkably
interested in numerical signs. He told us he knows how to write infinity, "the biggest
number of all: an 8 turned sideways". He also volunteered some of his ideas on the

written and spoken system of numbers when he said that "the more zeros it is, the
bigger the number" and that a million is "a one and six zeros" . After counting in

tens beyond 100, he said "I know I can make it bigger with tens". In the following
episode Eamon and Sam, are presented with the cinema scenario.'

This means that his construction of the number sequence has undergone asignificant change: a particular number

word stands for the possible counting activity and refers to the individual number words of the segment from I up to

that particular number word.
5 In the transcripts "S" is Sam, "E" is Eamon, and "C" is the interviewer
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C: "A hundred people can sit in this section and a hundred people more here, and a
hundred people more here (pointing at the 3 middle sections). So how many people
in total?" [E and S seem to be eager to answer, S stands up and sits down again]
S: "A hundred and thirty"
E: (looks at C) "Three hundred"
C: "Oh! Three hundred or a hundred and thirty? You have to decide now"
S: "It's a hundred and thirty" [E looks at C]
C: "What do you think Eamon?"
E: "Three hundred"

Eamon seems to use the hundred words as if they were entities to count. This is more
clear in the following episode, where the children have agreed that only one hundred
people are now in the cinema.

C: "What if only fifty people come back? Only fifty people, not a hundred, fifty
people come back"
S: "It would be fifty hundred."
C: "Fifty hundred, do you think?"
S: "Yeah!"
E: (gestures as if he doesn't agree) "Fifty hundred?"
C: "Fifty hundred? What do you think Eamon...a hundred plus fifty..."
E: [about S's response] "That would it be more far than about thousands"
C: "So what if fifty more people come, how many would there be in total?"
E: "A hundred and fifty"

Eamon seems to suspect that fifty hundred means a lot more than a hundred plus
fifty. This suggests that he is taking a hundred as a "thing" he can repeat. An entity
that seems to mean one hundred individuals. After Sam is "convinced" that it is a
hundred and fifty people, the following conversation takes place.
C: "That's good, and what if twenty more people come?"
E: "A hundred and twenty"
S: "Yeah"
C: "And what if...eighty more people come?"
S and E: "A hundred and eighty!"
C: "And what if eighty eight people come?"
E and S: "A hundred and eighty eight!"
C: "Very good! And what if a hundred more people come"
E: "Ugh...that must be...two hundred"

Eamon's particular use of number words transpires in another segment of the
conversation.

C: "Now this is going to be a tough one for you. What if one million people come
and see the film and tomorrow one million more come...how many all together?"



S: "..one..."
E and S: "Two million"
C: "How did you work that out so quickly?"

E: (smiling) "Because..."
S: (smiling) "We just know"
E: (subvocally) "We just know..."
C: "What if one million more come?"
E: "One million more is...three million"
C: "Three million?"
S: "Yeah..."
C: "And what if a thousand more come?"
E: "One thousand more...er...(shakes the pen in his hand), well...It's three million

one thousand"

The above excerpt is not an isolated one. Unfortunately, Sam's contribution to the
dialogue prevents Eamon to keep trying to justify his answer. Nevertheless, other
segments of the discussion indicate Eamon's awareness of the organisation of the

system of spoken numbers. The following episode occurs after the children have

written 5000 and 9000.

C: "Which one is bigger...five thousand here or five hundred here?"

S and E: "Five thousand!"
C: "How do you know that?"
S: "Because it comes after a hundred!"
E: "Because first is one hundred, and then nine hundred and then one thousand, and

then one thousand, and then two thousand, and then three thousand, and then four

thousand, and then five thousand"
C: "Right...0h, I see. And which one is bigger...three hundred...or two thousand?

E and S: "Two thousand!"
C: "How do you know?" [...]
E: "Because the same, three hundred and then...the last hundred is nine hundred and

ninety nine...and then it's..."
S: "...a hundred..."
E: "... [it's] one thousand"

Eamon's explicit explanations on the organisation of the number words are present

in other segments of the transcripts. In the transcript that follows, Eamon volunteers

to count in tens "up to two thousand and something" . He counts in tens
conventionally with no hesitation and he is interrupted at 500. Unfortunately for his
companion, he wants to continue so it is proposed that he count from eight hundred.

E: "...800, 810, 820, 830, 840, 850, 860, 870, 880, eight hundred and ninety, one
thousand, one thousand and ten, 1020 (clearly and conventionally), 1030, 1040,



1050, 1060, 1070, 1080, 1090,...(breaths in), t...one thousand one hundred, (looks at
C), one thousand one hundred and ten, one thousand one..."
Eamon seems so eager to show what he knows that he misses out a whole interval
(900-1000). This performance, it is believed, can no longer be thought of as a purely
linguistic skill, that is, as another sequence in ones.

Discussion

Eamon has a remarkable command of the syntax of the conventional number words.
He uses a multiplicative or an additive syntax in accordance with the appropriate
semantics. For example, "two hundred and ten" for 200 plus 10 and "three million"
for 2 million plus 1 million. His inferred organisation of the spoken sequence in tens
suggests that he has reflected on these spoken signs and that "ten" has become
intuitively important. Eamon's explanations seem to reflect the following piece of
structure: 1010 1110

U

10

UUUUUUVUUU
999

100 200 900 1000 1100

Based on the preliminary findings, we hypothesise that Eamon is forming a complex
field of reference for signs such as ten and hundred. For example, he seems to
understand that counting in tens creates bigger numbers faster and he knows
somehow (implicitly or explicitly) that he has to count ten times an interval of a
hundred to reach a thousand. This latter observation indicates that Eamon has
developed an informal or tacit understanding of the role of ten in the organisation of
our system of numeration. This, together with Eamon's intuitive understanding of
the syntax of spoken numeration seems to suggest that his form of appropriation of
the system entails a "relational understanding" (in the. sense of Skemp, 1986) and
because of this a "symbolic form of reference" (in the sense of Deacon, 1997).6 This
form of appropriation seems to contrast with others which are more "indicative" in
nature (in the sense of Deacon).

This paper has attempted to focus on the intriguing role conventional signs play in
the conceptual understanding of numeration. What seems to be evident is that Eamon
is taking these conventional signs as material to think and to converse about.
Because he is able to engage in discussion about written and spoken numbers,
problematic situations can be posed upon these signs without the need to employ
artificial devices. As Lerner and Sadovsky (1995) have pointed out: why do we have
to create a new device in order to teach the real one? Further steps in the
investigation will intend to take Eamon towards reasoning about these patterns or
regularities of the physical signs.

6 Deacon's argument is beyond the scope of this paper. However, this quote should clarify the point: "The symbolic useof tokens [physical signs] is constrained both by each token's use and by the use of other tokens with respect to which it
is defined" (p. 100)
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ON FORMULATING THE TEACHER'S ROLE IN PROMOTING
MATHEMATICS LEARNING

Martin A. Simon, Ron Tzur, Karen Heinz, Margaret Schwan Smith, and
Margaret Kinzel, Penn State University

Abstract. This work represents our efforts to articulate and explicate a
conceptual framework for mathematics teaching in which we specify mechanisms
of student learning and the role of teachers in promoting that learning. We
discuss two mechanisms of learning and how they provide possible sites for
teaching, the learner's experience of disequilibrium and reflection on activity-
result relationships. Conceptualizing learning in terms of reflection on activity-
result relationships is considered as away of addressing the learning paradox.

In this paper, we report theoretical work in progress. We choose to present
this work at the PME Conference to promote discourse on the ideas presented.
Further development of the ideas will be greatly enhanced through discourse
among researchers with different cultural, theoretical, and experiential
backgrounds.

The focus of this paper is development of a conceptual framework
regarding mathematics teaching that builds on significant work on the learning of
mathematics. We approach the need for conceptualizing mathematics teaching not
only from our role as mathematics educators (teachers), but also from our role
as mathematics teacher educators and researchers of mathematics teacher
development. It is only through clearly articulating conceptions of mathematics
teaching, that the goals of mathematics teacher development can be defined and
the approaches to and results of mathematics teacher education analyzed and
evaluated.

The ideas that we present are not a description of a "new" form of
teaching. Rather, they are our attempt to make explicit (articulate) some
principles of mathematics teaching by importing, synthesizing, and further
elaborating ideas that exist in the literature. Although examples of teaching
which embody these principles can be observed with increasing frequency, it is
our experience, particularly in conversations among US mathematics educators,
that these principles are often not accessible subjects of discourse.

The fundamental commitment that mathematics educators seem to share is
to promote students' development of powerful mathematical ideas and ways of
thinking (and participating in mathematical activities). Teaching is evaluated by
its effectiveness in doing so. Currently, in a number of countries, mathematics
educators are promoting and participating in alternatives to direct instruction
(c.f., Brousseau, 1997; NCTM, 1991; Streefland, 1991). Teaching that is
predominantly teacher telling and showing has been challenged because of the
perceived ineffectiveness of its results. This need for alternative approaches to
teaching in conjunction with recent research and theory development on
mathematics knowing and learning have tilled the soil for the development of
new conceptual frameworks with respect to mathematics teaching.



Getting off the Continuum: Articulating the Problem

Many teachers in the United States are engaging in teaching practices that

seem to fall on a continuum bounded on one end by telling students the
mathematics that they are to learn and at the other end asking students for the
mathematics that they are to learn. Participating in the current reform effort has
tended to encourage teachers to move away from telling, and they have
gravitated towards asking the students for the mathematics. In some situations,

asking students for the mathematics that they are to learn seems to work. It

works when the students have the understandings necessary to take the next step

on their own in response to the teacher's question. However, there is often a
problem with asking students for mathematics that they have not yet
conceptualized. At times, the problematic nature of this teaching strategy is

masked by the presence in the classroom of students who are advanced and can

take on the telling role formerly occupied by the teacher. In other cases,
however, none of the students can answer the teacher's question and the teacher

must adapt her approach. In such cases, we often see the teacher move back
towards the middle of the continuum, asking leading questions and supplying

hints. This becomes the compromise position, not telling, yet accomplishing the

results of telling. Neither the use of leading questions and hints, nor telling by a

student seems to accomplish the goals of the reform. From the observers'
perspective, we would argue that there is a need for formulated (explicitly
articulated) approaches to mathematics teaching that can allow teachers to get off

of this continuum.
Reconceptualizing Teaching

Prior Work
Many researchers have contributed to the conceptualization of aspects of

mathematics teaching (c.f., Ball, 1993; Cobb, Wood, & Yackel, 1993). However,

few have tried to articulate theories of mathematics teaching. It is perhaps

significant that in the PME classification of research reports and members'
research interests, there is no category entitled "theories of mathematics
teaching" (or "integrated theories of teaching and learning"). However, over the

last 25 years, two significant programs of research have made important
contributions to theories of mathematics teaching, the French Theory of
Situations (c.f., Brousseau, 1997; Douady & Mercier, 1992) and the Dutch

Realistic Mathematics Education (RME) (c.f., Streefland, 1990; Treffers &

Goffree, (198 5).1

Our work builds on these two programs. The ideas that we develop
elaborate Brousseau's idea of "teaching as the devolution of a learning situation

from the teacher to the student." Brousseau (1997) asserted:

Teaching consists of inducing students to assimilate the projected learning by placing

them in appropriate situations to which they will respond "spontaneously" by

adaptations. ... The main objective of teaching is the functioning of knowledge as a free

production of the student within her relationship with an adidactical milieu. (p. 229)

We will explore the adidactical milieu in relation to constructivist learning

theory and how learner's free productions can contribute to conceptual
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development. In RME, students' free productions are also emphasized and
considered a starting point for "progressive schematization," a process through
which students' spontaneous solutions are developed towards the goal of formal
mathematics.

Working from Constructivist Theory
There is likely to be consensus that theories of teaching should be

integrated with theories of learning, that is, they should reflect and build on
relevant learning theory.' However, using a theory such as constructivism to
think about teaching involves a non-trivial adaptation, from describing learning
when it occurs to promoting learning when it might not occur without an
appropriate pedagogical intervention. As Cobb (1994) wrote:

Versions of constructivism do not constitute axiomatic foundations from which to
deduce pedagogical principles. They can instead be thought of as general orienting
frameworks within which to address pedagogical issues and develop instructional
approaches. (p. 4)

We use constructivism in service of developing approaches to teaching that
offer an alternative to the unsatisfactory continuum of teaching described above.
Although, following Cobb and Yackel (1996), we coordinate social and cognitive
analyses of learning, the focus in this paper is on the cognitive. The reader is
referred.to Simon (1997) for a discussion of teaching from a social perspective.

Disequilibrium. We begin our discussion of alternative teaching approaches
by considering "disequilibrium," a key mechanism in describing learning from a
constructivist perspective. Disequilibrium refers to a result of either a learner's
experience of an event not fitting with her expectations or a perceived lack of fit
among the conceptions she holds. Disequilibrium is thought of as a trigger for
conceptual reorganization leading to learning: To what extent does this aspect of
constructivist theory provide a possibility for the teacher to make an impact?

We can think about the teacher's role as including intentional actions aimed
at provoking disequilibrium with respect to particular student conceptions. The
teacher can attempt to provoke disequilibrium, but disequilibrium only results if
the issue is significant to the students and they perceive a conflict. Provoking
disequilibrium, when successful, would seem to constitute an alternative to telling
or asking for the mathematics. In some cases, it does seem to promote learning.
However, it is important to ask whether disequilibrium dependably leads to
learning and to look more closely at situations in which the intended
disequilibrium cannot be induced. In explicating these two issues, we focus on the
relationship between assimilation and accommodation.

Piaget (Bringuier, 1980) asserted that "adaptation is a whole whose two
poles can't be dissociated. Assimilation and Accommodation" (p. 44). We
interpret this to mean that every assimilation of new experience requires some
level of accommodation, modification of current schemes, and every
accommodation requires an assimilation into a (modifiable and modifying) set of
schemes. The latter is particularly important because the intention of a teacher
who tries to provoke disequilibrium is to trigger an accommodation in the
students' schemes. Based on this relationship between assimilation and
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accommodation, we would argue that the necessary (but not sufficient) conditions

for provoking disequilibrium, an intended conflict experienced by the learner,

are that the learner has schemes that allow for a compatible interpretation of the
situation (conflict) to that of the teacher and schemes which can be
accommodated to construct an understanding compatible with that of the teacher.
This is a complex way of saying that disequilibrium only takes place when the

learner can understand the conflict and conceive of the possibility of a solution.
Here we are not saying that she has a solution in mind, rather that she conceives
of it as solvable. We will use a problem-solving situation analogically to illustrate
this last point. Consider the well-known Prisoner and the Hats problem:

Three prisoners, two sighted and one blind are put in the following situation:
They are told that the warden has 3 red hats and 2 black hats. He places one
hat on each of their heads. Two of them see the hats of the others , but not the
hat on his own head. The warden says that whoever knows the color of his
own hat shall be freed.
The first sighted man looks at the others' hats and says that he cannot
determine the color of his hat. The second sighted man does the sane,
whereupon the blind man says he knows the color of his hat.
What color hat did he have and how did he know?

For the problem solver who anticipates that the second prisoner has an
informational advantage and that the third must have a still greater advantage,
the problem may provoke disequilibrium and that disequilibrium may lead to a

solution. (We are using this to concretize certain points not to claim that a
conceptual reorganization necessarily takes place.) For the problem solver who

only considers what each prisoner sees, the problem has insufficient information,
and he is likely to assume that it cannot be solved. This problem solver has no
disequilibrium related to the mathematics, although he may experience a conflict
from having received an "unsolvable" problem from the teacher.

We provided an example in which the learner experienced no
disequilibrium with respect to the mathematics. Another possibility that can
occur, if the necessary schemes are not in place, is that the learner experiences
disequilibrium that does not fit with the conflict intended by the teacher. This
situation can be difficult to perceive by the teacher or observer. In such cases it

is not likely that the disequilibrium will lead to the advances intended by the
teacher. Note, that the students will always find a way to lessen their
disequilibrium, however, that process may not result in the intended mathematics
learning or any mathematics learning at all.

Where does this discussion of disequilibrium leave us? We can think about

learning as the coming to know regularities among comparable mathematical
entities. When disequilibrium can orient reflection upon comparable entities,
provoking disequilibrium can be an effective way of promoting learning.
However, it provides only a partial alternative to the continuum that we discussed
earlier. What is needed is a way to think about a teacher' s role in fostering
conceptual development when disequilibrium does not seem to be a viable option,

i.e., when necessary schemes are not in place. In grounding this exploration in
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constructivism, we continue to eschew the notion that more powerful concepts
can be infused into learners and embrace the idea of promoting an internal
process of construction. This quest however, puts us face-to-face with what has
been called "the learning paradox" (Pascual-Leone, 1976), the need to explain
how learners "get from a conceptually impoverished to a conceptually richer
system by anything like a process of learning" (Fodor, 1980, p. 149 cited in
Bereiter, 1985). Bereiter (1985) pointed out that based on the learning paradox,

The distinction is between kinds of learning that can be accounted for on the basis of
knowledge schemas that the learner already possesses and learning that involves new
cognitive structure to which already existing schemas are subordinated. (p. 217)

Reflection on activity-result relationships. To begin to explain the
construction of new cognitive structures, we refer to the child's development of a
concept of manyness. Consider a child who has one-to-one correspondence and
has learned number names from one to ten. The child learns to imitate his
parents' behavior with a set of objects, touching one object at a time while
simultaneously saying a (the next) number name. Through repeated experience
carrying out this activity with different sets of objects, the child comes to know
that the last number he says represents the manyness of the set of objects. This
can be explained in the following way. The child reflects on the relationship
between the activity and the results of that activity. (Note, we are not claiming
reflection at a conscious level.) For example, early on, he may come to realize
that when there is a large collection of objects, he gets to show off most of his
sequence of number names, but when there are few objects, he only gets to say a
few number names.

What is it that might be generalized from this example that can contribute
to our search for alternative teaching approaches?' First, the child is constituting
a "new cognitive structure." Second, the activity that leads to the development of
that new structure is one that the child can carry out without and before the
cognitive advance. Third, the activity, carried out by the child who holds certain
conceptions, has specific affordances that can lead to a specific cognitive advance.
Fourth, key to the cognitive change is the child's reflection on the activity-result
relationship which leads him to identify regularities in that relationship. This is a
process that takes place over the course of repeated experience which is not
motivated by the desire to make a cognitive shift, but rather by the original goal
of the child' s activity (in this case to imitate and play with Mom or Dad).

Thinking about teaching. Based on the above discussion, we suggest that to
promote the development of a new cognitive structure, a teacher's role is to
engage students in an activity that they are capable of carrying out, independent
of the teacher (situation adidactique), that can lead to identification of
regularities contributing to the cognitive advance intended. To do so, the teacher
needs to understand the conceptions of the students in order to anticipate
activities in which they can.engage and possible ways that they may reflect on
activity-result relationships. As Hoyles (1991) suggested, "activities must connect
with pupils conceptions at the outset."



Although our formulation of this approach to teaching is different, we

believe that it is consistent with what in ME is called "progressive

schematization" (Streefland, 1991) and with Brousseau's (1997) notion of

adidactical situations. It is also consistent with what we would consider to be

effective use of manipulatives, observable in the United States. For example,

engaging first graders in solving realistic word problems using counters affords

them the opportunity to identify regularities in their solution activities as the

basis for developing arithmetic operations. (Of course this description of the

process is incomplete.) Note, the children are capable of solving what we would

consider addition, subtraction, multiplication, and division problems using their

counting schemes, their knowledge of operations carried out outside of

mathematics class (e.g. combining quantities, sharing cookies) and their ability to

represent the items in the problem with counters. Also, the children engage in

the problems to find the answer to the problems, not to construct more advanced

cognitive structures.
This approach to teaching is what Bereiter (1985) calls "indirect" in that

the cognitive advance cannot be directly brought about, rather specific

experiences for the development of the cognitive structure are fostered by the

teacher. Thus, based on understanding the students' mathematics, the teacher

anticipates a developmental process in the context of particular learning

activities, what Simon (1995) called a "hypothetical learning trajectory."

Tzur (in press) contributed an important distinction between a reflective

level of knowing which takes place in the context of the activity (e.g.,

understanding that the last number pronounced in a count indicates the manyness

of the group) and an anticipatory level of knowing which exists independent of

the activity (e.g., understanding that when the number "4" is spoken it indicates

the manyness of a countable collection). Tzur described how teachers can foster

first the development of reflective knowing and subsequently the development of

anticipatory knowing by selecting tasks and questions that invite different levels

of reflection on activity-result relationships, an additional consideration in the

generation of hypothetical learning trajectories.
Discussion

The theoretical work that we describe in this paper is part of an ongoing

effort to articulate aspects of mathematics teaching that can be useful in a variety

cf related domains: mathematics teaching, curriculum design, teacher education,

and research on mathematics teaching and teacher development. In particular, we

are attempting to articulate and explicate conceptual frameworks on teaching that

specify the mechanisms of student learning and the role of teachers in promoting

that learning. An assumption of this work is that teaching can be more scientific

in responding to mechanisms of student learning than merely telling students the

mathematics that they are expected to learn. Our claim is not that there are no

examples of teaching that meet these specifications. Indeed, there are many rich

examples of teaching that seem to be well-coordinated with the learning

mechanisms that we have described. Rather, we are attempting to further the

articulation and explication of and discourse on mathematics teaching.
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Towards this end, we have described our growing understanding of the
role of provoking disequilibrium and organizing instruction to foster reflection
on particular activity-result relationships. Although the former seems to be
useful, our current work emphasizes the latter, for as Bereiter (1985) pointed
out, "certain kinds of learning really are problematic and .. . the learning
paradox helps us see into the heart of the problem" (p. 221). That problem is
how learners develop new and more complex cognitive structures. We have
pointed to reflection on particular activity-result relationships as a mechanism
for such learning, one that can be fostered by a knowledgeable teacher. For us,
one of the indications that this mechanism may prove to be robust is that it seems
to provide an explanation for much of the learning that we can observe in -'on-
school settings. For example, the game, Checkers, can be played by any
youngster who knows the rules for moving pieces and the goal of the game (to
eliminate the opponent's pieces). However, it is predictable that youngsters who
play the game over a considerable period of time, even without any coaching,
will develop considerable insight into strategy for the game. We argue that this
can be explained as a result of reflection on activity-result relationships.

In our current work, these ideas about teaching are proving generative at
two related levels. First, as part of a conceptual framework on mathematics
teaching, the ideas contribute to a conception of teaching that serves as a goal of
our teacher development efforts. Second, we are exploring the use of these
mechanisms of learning and teaching to inform our teacher education practice to
contribute to our ability to promote more complex pedagogical structures. (See
Simon, et al, 1998, for discussion of some of these pedagogical structures.)
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Footnotes

We acknowledge that there are other important bodies of work in this area to

which we do not have access. We hope to use the international meeting to learn about

these.
2An integrated theory would also suggest that ideas of teaching affect ideas of

learning in the context of classrooms.
3 We use positivistic language here in describing what we consider to be our

experience and not an independent reality.
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THE MULTIPLE MOTIVES OF TEACHER ACTIVITY AND
THE ROLES OF THE TEACHER'S SCHOOL MATHEMATICAL IMAGES

Jeppe Skott, the Royal Danish School of Educational Studies
A lot of the research has been done relating teachers' beliefs to their classroom
practices. This paper proposes an alternative understanding ofthat relationship. It
introduces certain moments of the teacher's decision making, Critical Incidents of
Practice (CIPs), that are characterised by the simultaneous existence of multiple
motives of his/her activity. These motives may be experienced as incompatible and
lead the teacher into situations with apparent conflict between beliefs and practice.
Rather than as examples of inconsistencies these may be conceived as situations in
which the teacher's school mathematical priorities are dominated by other motives of
his/her educational activity, motives that may not be immediately related to school
mathematics. I suggest to use CIPs as focal points in pre-service teacher training.

Over the last decade many studies have been made on teachers' beliefs and of their
roles in mathematics classrooms. The results of those studies are by no means
unanimous. Some claim that very direct relationships exist between the teachers'
beliefs, their classroom practices, and the students' learning (Schoenfeld, 1992).
Others argue that there is no such relationship and that none should be expected as
beliefs are situated, and any attempt to look for priorities that are stable across
different contexts is bound to be in vain (Hoyles, 1992; Lerman, 1994; 1996).
Between these two extremes Ernest have used the espoused-enacted distinction and
pointed to possible mediating factors and social constraints regulating the extent to
which the teacher's priorities may manifest themselves in the classroom (Ernest,
1989; 1991). Bauersfeld has pointed to classrooms as jointly emerging realities
(Bauersfeld, 1988) and Paul Cobb and his colleagues to the dialectic between beliefs
and practice (Cobb, Wood & Yackel, 1990; Yackel & Cobb, 1996; McClain & Cobb,
1997), indicating that though the teacher is important, his or her beliefs are not the
sole producers of the classroom environment, let alone the learning opportunities.
This paper aims to contribute to a further understanding of the relationships between
on the one hand the teacher's images of mathematics and of its teaching and learning
in schools (the School Mathematical Images or SMIs) and on the other on his or her
classroom practices. It discusses the case of John, a 42 year old second career teacher,
and two other novice teachers who were selected for the study because of the SMIs
they presented partly in their responses to a questionnaire', partly because of how
they elaborated on these responses in later interviews. Both in the questionnaire and
in the interview John showed a strong sense of commitment to the current reform
efforts in mathematics education". He consistently emphasised the importance of
investigations and communication on the part of the students and argued that less
emphasis should be given to the performance of routine tasks. Further he described
the roles of the teacher as a facilitator of learning rather than an explicator of
mathematical concepts and skills. Characterising a good teacher of mathematics John
said in the questionnaire that he or she knows how to
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"-inspire the children to discover connections in mathematics

-understand and accept the different solutions proposed by the students

-free himself from the textbook and introduce mathematics in many different

ways"

John, the school, and the classroom
Already before he finished his pre-service training John took up teaching at a village

school, where he was offered a permanent position upon graduation. It is a small

school of 11 teachers and 130 students from pre-school to grade 7. Some years ago

the school got a new headmistress who has influenced the atmosphere to the extent

that some of the more conservative staff have left, while the rest are involved in

different types of collaborative efforts in order to initiate changes compatible with the

latest Danish educational law. In mathematics these changes are strongly inspired by

the international reform efforts. John is pleased with these developments.

I attended John's grade 4 for in 2%2 weeks in his third term after graduation, following

his teaching of a chapter in the textbook on angles, parallel lines, and plane,

geometrical figures. If possible we had a brief, general discussion about each lesson

immediately afterwards, during which I also asked more specific questions based on

my field notes. After the 2Y2 weeks I made a more comprehensive interview with

John, asking him to comment on a number of clips from the video recordings made in

his classroom.

The class consists of 14 girls and 6 boys, and though at times there are disciplinary

and collaborative problems, John and the students have created an atmosphere in

which the students' contribution to the interaction is clearly valued and in which they

participate actively and make suggestions of their own. John uses a range of different

approaches in order to maintain this atmosphere and to support the students' learning.

Some of these have become conscious elements of his routine, while others seem to

have developed less consciously. These approaches include

making joint decisions during whole class instruction as to whether a student's

suggestion is acceptable under the specified conditions (e.g. when the students are

classifying quadrilaterals according to the number of sides of equal length: How

do you know that they are the same length? Does everybody agree?).

not accepting a question like 'I don't understand this', but encouraging or urging

students to be more specific before he responds;
insisting that students ask a peer before they ask him;
encouraging students to modify or make up tasks of their own (e.g. when the

students had made quadrilaterals on the geoboard each fulfilling certain criteria,

he asked the them to modify the tasks to be relevant for triangles or pentagons);

communication in everyday language prior to the introduction of standard

mathematical terminology (e.g. when he asked the students to describe

quadrilaterals some of which had parallel lines without introducing the term of

parallel beforehand. Instead he mentions the term briefly afterwards and in a later

lesson discusses it more thoroughly).
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In all of this there is a fairly strong correspondence between John's SMIs and his
interaction with the students. That seems to be the case both when he orchestrates a
whole class discussion, and when he works with individuals or small groups of
students. The latter may be exemplified with an interaction between John and one of
the boys, Johannes. Johannes finds it difficult to solve a task of how to make a
quadrilateral with four equal sides and no right angles on a geoboard. At first
Johannes aggressively denies that he knows how to solve the task, but John is
insistent and manages to make him come up with a first suggestion. Over the next 18
minutes John joins Johannes 6 times in order to push him, challenge him, and
encourage him to make improved conjectures, and Johannes develops from claiming
not to know what to do, over stating that the task is impossible to solve and claiming
that he has solved it when in fact he has not, to coming up with a correct solution that
he is able to justify. Throughout the entire period John avoids giving any direct
instructions except the ones aimed at ensuring Johannes' initial involvement in the
task ("Make a quadrilateral. You can always make a quadrilateral"). Instead he
encourages and urges Johannes to move on when he first thinks he has solved the
task: "Are they the same length, the four sides [pretends to be thinking aloud]? I think
you are on to something here, but are they the same length? [Johannes shakes his
head]. No, but you are on to something. You are on the right track. [John leaves
him]." When Johannes finally succeeds, John who has struggled almost as hard as
Johannes exclaims: "Yes! That's it. Bingo! Exactly." He waits at Johannes' table
for eight long seconds building and sharing Johannes' triumph with him.

There are moments when John plays roles very different from the ones just described.
An example of that occurs the next day, when one of the girls, Emily, claims to know
how to solve the task that Johannes has struggled with in the previous lesson, and
John invites her to show her solution to the class. He asks her to make her drawing on
the chequered part of the blackboard, pretending it is geoboard. Emily, however,
finds it difficult to present her results. She is initially incapable of using the
blackboard as a geoboard, and having overcome that obstacle she gets stuck when
trying to make the sides of the quadrilateral the same length. After she has made a
few vain attempts, John asks her to move to the other side of the board to make a
draft of her figure. She easily makes a free-hand drawing of a rhombus standing on a
vertex. However, she gets stuck in her subsequent attempt to transfer the draft to the
chequered board, and from that instant John takes over more and more, pointing,
counting the squares, instructing her what to do, and finally making the drawing
himself.

In John's interaction with a boy, Frederick, his comments also become very explicit.
Frederick is working on a task of categorising ten different quadrilaterals according
to whether they have two pairs, one pair or no pairs of parallel lines. The
quadrilaterals, labelled from A to J, are to be written in a table that the students copy
from the textbook. Frederick calls John and the following exchange takes place"':
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John: You have to find all the figures with parallel sides. Where the sides are

parallel two and two [...] Those two, these two [points at two sides of a

quadrilateral], they are parallel, they don't meet. ... If we extend them indefinitely,

will they ever meet [places two rulers along the sides to emphasise the point)?

Frederick: No.
John: No. So at least it has two that are parallel. What if we look at the other two.

Will they meet?
Frederick: No.
John: No. So it has two and two parallels, this one, doesn't it. So it belongs to the

column you have made here [points at a column in Frederick's table].

Frederick: What am Ito write, then?
Jolyr You write this one into that column [points at the quadrilateral in the

textbook and at the column in the workbook]. Above here you have to write that it

is page 32 and task number 2 ... Then you write J in that column here ... right.

Frederick: [Short inaudible question].
John: Yes. Then let us look at the next one. [Frederick points at one]. This one.

They don't meet either, any of them, so there are two here that are parallel and two

here that are parallel [points]. So that belongs in the same column.

[Brief interaction between John and Andreas, the other boy at the same table]

Frederick: But what about the others? [Interrupts the interaction between John and

Andreas. John does not respond. Johannes tries again] These two are parallel as

well [John reacts. Frederick points at two sides of another quadrilateral].

John: Yes these two, but what about these? [points at the other two sides]

Frederick: No.
John: They aren't. So that one doesn't belong here, where they have to be parallel

two and two. It only has two parallels, so that goes in the other column.

Multiple motives of teacher activity and Critical Incidents of Practice

John obviously provides very different types of support for the students' learning in

the episodes referred to. He consistently avoids giving explicit instructions in the

episode with Johannes; he initially tries to be unobtrusively supportive in the

interaction with Emily, but when unsuccessful he takes over her attempt to initiate the

others in her findings and becomes very direct in his explanations to her and the rest

of the class; finally he is very didactic all the way through the episode with Frederick.

One interpretation of this is that John is inconsistent and only momentarily teaches in

ways compatible with his SMIs. However, there are other interpretations, and in order

to present one ofthem I shall briefly describe how two other teachers in the study

reveal similar apparent contradictions between different elements of their practice.

Christopher, a teacher from a Copenhagen suburb, sometimes deliberately refrains

from providing direct instructions to the students and seeks to support their

independent work, while in others he plays a much more direct role (Skott, 1999).

Larry, another teacher with reformist intentions but working at a traditional private

school, struggles to strike a balance between his own SMIs and what he considers to

be the priorities of the school. It turns out that a key to understanding these classroom
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interactions is the Critical Incidents of Practice or CIPs. These are defined as
moments of the teacher's decision making (i) in which multiple and possibly
conflicting motives of his activity evolve; (ii) that are (potentially) critical to his
SMIs; and (iii) that are essential to the further development of the classroom
interaction and to the learning opportunities.

In Christopher's case the motive of teaching mathematics is sometimes supplemented
or replaced by other motives, for instance developing their self-confidence or solving
organisational problems in the classroom. In these cases the main energising element
of his activity may not be the facilitation ofmathematical learning, but the fulfilment
of more general educational aims or the management of problematic classroom
situations. Larry often finds himself caught between the conflicting demands of the
school culture and of the reform. These demands establish two dominant, but
mutually competing motives of his activity: One of facilitating mathematical learning
and one of complying with the perceived pressures of the school. Focusing on one or
the other of these motives in turn, Larry gets involved in series of oscillating practices
some which incorporate specific aspects of his reformist intentions, while others have
virtually no resemblance with his SMIs. Both of these teachers, then, experience CIPs
in which the existence of multiple motives of the their activity challenge the
enactment of their SMIs. In these incidents their main focus may not be on
facilitating mathematical learning. They may, so to speak, primarily be playing
another game than that of teaching mathematics.

It is not surprising that the SMIs become less significant, when the object and motive
of the teacher's activity is not one of teaching mathematics. In John's case the main
challenge to the motive of facilitating mathematical learning and therefore to the
enactment of his SMIs - is his knowledge and understanding of the individual child.
For example John commented on the episode with Johannes by saying:

"It's difficult, but I try to make him get started on his own, because I know he can
do it. The problem is that he doesn't think so himself, or he is afraid/ /in reality he
is afraidllhe is lost at that moment, because he feels good only when he is number
one. You know, to him nothing is good enough, all that matters is being the best,
that means finishing first. The moment Ian [the other boy at the table] puts the
rubber bands on the geoboard he is ahead and Johannes gives up. It is very difficult
for him to fight that. But that is his whole situation and the expectations of his
parents and things. They are very ambitious. And they are very competitive. That's
OK, but the problem for the kid is that he only thinks he is doing well, if he is
number one. Nothing else matters."

The point here is that John is deeply involved in facilitating Johannes' mathematical
learning in ways compatible with his school mathematical priorities, but also that he
bases his interaction on the conviction that Johannes' self-esteem is vulnerable and
strongly connected to criteria of success not immediately compatible with John's
SMIs. It is just as important to John to convince Johannes that he is doing a good job
and making worth-while efforts, even if he does not produce the first or only solution
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to the task, as it is to provide him with the opportunity to construct concepts of

parallel lines or rhombuses. In this episode, then, John tries and largely succeeds in

striking a balance between two competing motives of his activity.

John's explanation of the interaction with Emily also includes much broader aspects

than those related to her mathematical learning. John conceives her as both unrealistic

with regard to her own competence and fragile when confronted with problems that

challenge her self-perception. That is important
"[...] when I react like this. I can feel that she is on thin ice, so I try to make her

draw the draft. That is how I try to give//help her [...] Then at least she can make

the draft. And then we can make the figure from her drawing between us. But I

take over completely, I can see that."

In this episode John tries to be cautiously supportive, but Emily does not succeed. He

then sees no alternative but to take over and make sure that they finish the task

together using her example, if he is to avoid a blow to her self-confidence.

John's interaction with Frederick took place at the very end of the lesson, which

partially explains why he becomes very explicit: He wants Frederick to finish the task

before the bell rings. Also he commented that Frederick is normally good in maths,

and that John expected him to be able to follow the explanations given. However,

there are other situations with weaker students in which John plays a similar role of

instructing them what to do. He says:
"There are some children in here, some of the weak ones, with whom I've had to

choose [...] especially with Louise, I've had to say to myself 'If only she acquires a

system [of how to solve the tasks], then it doesn't matter if I've provided her with

it, because at least she can follow what goes on'. I've chosen that. And she does

[follow]. So up to now she is part of the team. She largely makes the same tasks as

the rest, although she finds mathematics very difficult."

John, then, becomes explicit in a variety of different situations. With Frederick he

finds the dual motives of supporting his learning and managing the classroom

compatible. With Louise he has previously struggled to strike a balance between

facilitating her mathematical learning and assuring that she remained part of the

classroom community. Finding it impossible to reconcile the two he has settled for

the latter and accepted that he needs to provide her with very direct support.

Conclusions
In the situations described above John's SMIs play very different roles. That clearly

questions Schoenfeld's claim of a causal relationship between beliefs and practice.

However, the interpretations made also challenge Hoyles' contention that beliefs are

situated in the sense that each new context produces or encompasses a different set of

beliefs. It is rather the motives of the teacher's activity that are contextually framed,

and these motives in turn determine or influence the enactment of his mathematical or

general educational priorities, sometimes urging him to enter another game than that

of teaching mathematics.
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This interpretation also questions previous studies relating beliefs to practice in
another way. Sometimes rather condemning descriptions of teachers are made, when
they are found not to be in accord with their professed reformist views. My argument
is that what appear to be inconsistencies may rather be understood as situations in
which the teacher's motive of facilitating mathematical learning is dominated by
other and equally legitimate motives of for instance ensuring the student a place in
the classroom community or developing his or her self-confidence. I am not saying
that these different motives are necessarily incompatible. For instance in the episode
with Emily, John may have accepted her draft as a solution to the task and asked the
students in groups to develop ways of assuring that the side lengths were the same.
Or in the case of Louise it may be important to define the classroom community
differently from just having the students working on the same task. The point is not
that there is no alternative to abandoning the SMIs in situations of multiple motives.
The point is rather that in the critical incidents of practice the teacher often struggles
to find such an alternative, although sometimes in vain.

This leads to a proposal for teacher education. There has been a growing tendency to
focus more on the student teachers' practice in order to ease the transition from pre-
service training to full time teaching and to ensure a high degree of consistency
between the theoretical understandings and practical competence of the novice
teacher. For the teachers in this study such a consistency has to a great extent been
achieved. However, when they are challenged by the multiple motives of their
activity during the critical incidents of their practice, they sometimes find it difficult
to integrate their SMIs with broader educational aims or with managing the
classroom. That may be because such an integration is sometimes impossible to
obtain. But it may also be because they have not been confronted with situations that
challenge the enactment of their SMIs in their pre-service training. The proposal,
then, is to use CIPs preferably from their own teaching experience as focal points
in discussions of the realisation of their SMIs.
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"This is crazy. Differences of differences!"
On the flow of ideas in a mathematical conversation.

Jesse Solomon Ricardo Nemirovsky
City on a Hill Public Charter School TERC

Boston, USA Cambridge, USA

This paper describes the flow of a mathematical conversation in a
high school mathematics classroom. The analysis attempts to
elucidate how the discussion of a particular mathematical problem is
inherently open-ended and to describe the complexity in managing
the wide range of ideas and choices emerging from the interactions
among students and the teacher. A major implication of our analysis
is that whether an idea turns out to be mathematically correct is only
one piece of what contributes to making it valuable and inspiring.
Another implication is that the teacher's mathematical expertise plays
out throughout multiple ongoing dilemmas that go much beyond the
classic dichotomy between "telling vs. letting them discover it."

The nature of conversations in the mathematics classroom has become a
prominent theme of mathematics reform. Some of the most central questions
raised by the many initiatives to reform mathematics education focus on what
counts as a productive conversation for mathematics learning and what are the
roles of the teacher in fostering and enriching them. Chazan and Ball (1995)
argued that the opposition between "telling or not telling" is an oversimplification.
Often the interpretation of videotaped data ends up taking the form of a superficial
judgment on whether the teacher made the correct move, whether the students "get
it," or in general, whether what is seen is an example of good teaching. In
jumping to these types of judgments we close our own understanding of what the
participants are experiencing and what the documented utterances and activities
meant for them.

Calvert (1998) argued against another common image that what counts in a
mathematical conversation is exclusively the truth of the propositions that are
being argued. Explanations, according to Calvert, are often attempts at
understanding and they may affect the participants of a mathematical conversation
in ways that have little to do with proving, convincing, and competing.

Other researchers (Cobb et al., 1993; Bordieu, 1983) have postulated that
classroom conversations are regulated by social and mathematical norms, mostly
implicit, which are developed over time through extended and ongoing interactive
negotiations between the teacher and the students. Simon (1995) suggests that
while the teacher plans lessons and designs tasks aiming at realizing a
hypothetical learning trajectory in the students, in the actual interaction with the
students his plans are constantly revised and subject to redefinition.

In this paper we build on Chazan and Ball's idea (1995) that "any
discussion holds the potential for discrepant viewpoints" and that it is the
teacher's role to "manage" these views. We argue that the discussion of any
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mathematical problem can be by its nature open-ended. Instead of seeing the

teacher's role as deciding whether to make a problem open-ended, we see a

teacher's role as making a set of decisions about how to manage the

open-endedness that exists in the interactions around a mathematical issue. In

addition, we see the teacher managing the open-endedness by working on a sense

of direction for him and for the class. This work is at times expressed through

efforts to preserve certain voices which otherwise may vanish, to foster mutual

listening, and to comment on the fruitfulness of the different contributions. The

sense of direction is co-developed by the teacher and students; some students

adopt a leadership role in this regard by commenting on the quality of the

conversation itself or by suggesting changes in how the group talks to each other

or what it talks about.
This episode took place in a classroom of tenth and eleventh graders in a

second year integrated mathematics course at City On A Hill Charter School, a

public high school in Boston, MA. City On A Hill admits students from across

the city of Boston by lottery; approximately 75% of the student body are

students-of-color and over half the students qualify for free or reduced lunch. The

teacher is Jesse Solomon. The fifteen-minute discussion that followed was not

part of the day's lesson plan. The episode began when a student raised a question

about one of the previous night's homework problems. The problem gave the

sequence 1, 8, 27, 64... and asked students to find and graph the next three terms

of the sequence. Maria (all of the students' names are pseudonyms) asked the

initial question:
Maria: And on [problem 111 18, I couldn't figure out the pattern, and I tried and I

asked my mom and my brother, and no one could... (..) And, urn, I just, I- this is

the only one, I left, I had to leave the graph blank, cause I couldn't figure out what

the next two would be. Ifigured- I did the differences, I did multiplication, I tried

times 2 plus 4, times 2plus 3. I tried that. I couldn't get it. My mom couldn't get it,

and she told me just clean my room.
When Maria read the problem, I thought that it was trivial, that the

`answer' would quickly be evident for the class. However, the students

immediately showed that for them the problem was far from obvious; that

struggle made it interesting to pursue. [Bold type expresses first person

commentaries by Solomon.]
Margaret made a first proposal:

Margaret: There is no sequence, I don't think. If there is no sequence, then can't

you just guess the next two numbers? The only thing it has in common is that one

is higher than the other.
Mr. Solomon: (..) Oh, just because it's higher? Okay. What do other people

think?
When Margaret introduced her idea, she qualified it by stating, "There

is no sequence." Because the only commonality she saw is that the numbers

increased, she concluded that there is no sequence. Her comment suggests that

proposing a number just because it is "higher" than the previous one was not a

"good" solutionthat it was not mathematically satisfying. The notion that there

should be a rule to determine exactly the next number was an implicit part of the
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background of cultural assumptions in this class. Solomon tacitly confirmed this
assumption by restating Margaret's explanation with a "just:" ("Oh, just because
it's higher?") and also by immediately asking the class for alternative ideas. At
this point, Solomon took on the role of recording the students' ideas on the
overhead projector.
Maria: Did anyone else get this one?
Naomi: Well, 8*8 is 64.
Daniel: [raising his hand briefly] Urn... Hold on one second.
Latisha: [whispering to Naomi] But where does the 27 come in?
Maria: But what does the 27 have to do with it?
Naomi: The 27 comes in from the 1.
Maria: 1 times 1 is 27?
Mr. Solomon: I just want you [to Maria and Naomi] to hold on one second; I
don't want to lose it, I just want you to holdon one second [gesturing to David to
say his idea]...

As other members of the class began to engage with the problem, we see
the simultaneity of ideas and conversations that characterizes much of classroom
discussion. Daniel asked for time to think, but while Solomon was trying to
"hold" the class, waiting for Daniel's idea, Naomi expressed a relationship that she
noticed, Latisha and Maria questioned the validity of Naomi's relationship and
refuted Naomi's attempt to link 27 with 1.

Daniel then proposed an iterative linear rule ((1 + 8)*3 = 27) that used the
first two terms to generate the third, but he could not see how to generalize it.
Even though he concluded that this particular rule would not work, the class
started to play with iterative rules involving addition and multiplication. At a lull,
Solomon asked:
Mr. Solomon: How about i f I show you the next number in the sequence?
Daniel: No!
Maria: Yeah! Yeah!

This offer of the next term elicited conflicting reactions. For some students
(e.g. Daniel) adding the fifth term would diminish the merit of the solution they
would eventually come up with. For others (e.g. Maria) it would help them solve
a problem which, so far, had been almost intractable. Students are wrestling with
their issues of confidence in their ability to find a solution, the value they attach to
the independent finding of a solution, and a sense of how much effort is
worthwhile to put into a problem.
Jamal: I got it! Haaah! I got it.
Latisha: Then, what is it?
[Solomon reiterated Latisha's request to Jamal. Jamal refusal to provide it,
triggered an interaction with Maria.]
Maria: How are you going to be a genius and keep it to yourself? I mean...
Jamal: [after Solomon's request] 7. The difference between- the differences
between, urn each number [Molly: 7, 19, 37] is what it has to do with.

Note how Molly reacted immediately uttering the sequence of differences
["7,19,37"]; she had probably already taken the first differences.
Jamal (to Solomon): Go ahead, put 'em, write 'em down there. 21.

1, 8, 27, 64
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Shawna: That's 19. [Jamal: That's 19].
Molly: 37. [Jamal: 37].
Maria: I see no
Molly: There's, like, no pattern. That's what I did.

Jamal: Oh, I thought it was 7, 21 - see, that's why I messed up...all right.

Jamal: I thought it was 21. I thought it was 21.

Maria: [simultaneously] You don't got it. You don't got it.

Jamal: Yes I do.
Latisha: Okay, next.

Jamal admitted that he had been mistaken because he thought that the

second term of the differences was 21 and not 19. The refutation of Jamal's idea

was in part a repeal of his attitude, but his contribution did bring to the group the

notion of playing with successive differences. Molly confirmed that she had tried

this out but that no patterns came up. This approach, different from the previously

dominant one of trying out addition/multiplication rules, would become a key idea

for the ensuing conversation. Again, the group picked up on idea which at first

glance had been rejected.
Mr. Solomon: Anybody else, anybody else want to try anything, before I put one

more. Just say anything at all in the world.
Shawna: Well, no numbers, like, I mean, I forgot how you say it, it's a num- like,

you know, 3 or 2 can't go into 7, 3 or 2 can't go into 19, can't go into 37.

Mr. Solomon: (..) What are those called?
Maria: A prime number!
Shawna: Yeah, prime, yeah.
Mr. Solomon: Okay, so the, the consecutive differences are prime, that's

something you noticed.
Shawna: Yeah.
Mr. Solomon: Good. All right. Do you notice a pattern in those differences?

While approving Shawna's noticing of the difference being prime numbers,

Solomon's question seemed to ask for a sequential property, implying that her

answer was not 'sufficient.' Then Maria proposed a sequential property but she

felt that there were not enough numbers to ascertain it:

Maria: Right, and then the 7, 9, 7, but we only have three numbers, so... I mean

you can't really go much on -- I mean three differences. If you give us the next

one, that's what I'm saying, if it has 9 as the, the last digit, then maybe we could

figure something out. [A discussion ensues about whether Mr. Solomon should

provide the next number or not. Jamal opposes it; Maria, Molly, and Mona are in

favor]
Daniel: 'Cause, I was looking at the pattern of those, urn differences right there

[on the overhead]: 7, 19, 37. 1 said that it could be going like. See how, like, the

last digit is like, 7, then 9, then 7.
Latisha: [quietly] I just said that.
Mr. Solomon: Yep. So what would you say the next dig-...

Daniel: It would be like 9. And, and, the, the number on the, um, at the beg- in

front of the 7 would be like a zero, and it goes up one, and then it [Maria:

O0000!] goes up two from there which would be 3, and then it will go up 3 from

1 8 27 64
7 19 37
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there, which will be 6, and that's 69.
Maria: The next one would be 59! Cause look! 0, 1, 3, 5, 7
Daniel: I had 69.

Daniel proposed that the next difference was 69. His idea, triggered by
Maria's previous pointing at the second digit sequence (7, 9, 7) was that the first
digit increased by 1, by 2, by 3 and so on (so that it is 0(7), 1(9), 3(7), 6(9))
whereas Maria thought that the first digit could be the sequence of odd numbers
after 0 (0(7), 1(9), 3(7), 5(9)). Daniel proposed 69 a few more times, but his idea
was never picked by the class. Solomon then asked for all the guesses about the
next term and wrote them on the transparency. Nadia proposed 121, Daniel 133,
Shawna 113, and Maria 123.
Mr. Solomon: Well, I'll give you a hint. It's definitely not all four of them.
Class: Is it one of them?
Daniel: Nadia! I know why you said 121!
Mr. Solomon: Can someone make an argument for one of them?

At this point I was still thinking of this as a problem with only one
answer. While I may have been willing to entertain different suggestions, I
still had the 'right' answer in my head.
Naomi: I said 123 because, um... Oh yeah, because it was going, the urn, the 10,
in the 10's place of the difference, where it was 19, where the 1 and the 3, of 19
and 37, and then it was, like, plus 59...
Maria: Urn hm, that's what I got, too.
Naomi: Because, you know, 1, 3, ...
Mr. Solomon: Okay, that could work.

This is the first time that a proposed fifth number in the sequence is taken
as a workable solution. Solomon asked other students to argue for the other
proposed numbers.
Nadia: Okay, well, I didn't stop at finding the difference between the numbers
given. I found the difference between the differences. Which I got 12, and then I
got 16, from, wait, did I get 16?
Mr. Solomon: 1 think it's 18.
Students: [simultaneously] 18.
Nadia: 18. Okay wait. Then my, wait, my numbers might
change then..6. 18. Wait a minute, wait a minute [writing].
[Pause] Wait a minute.
Maria: This is ridiculous! Differences from differences!
Mr. Solomon: No, this is actually...
Maria: No, it's probably right, but I'm saying that it's ridiculous that you're
making us do something like this. [Laughter]

Even though the differences of differences idea came from Nadia, Maria
still claims that Solomon is "making them do" this ridiculous thing. During this
approach, Solomon tried to eliminate minor arithmetic mistakes that could get in
the way of Nadia's idea.
Nadia: Okay, wait, wait, wait, let me come back, let me change that number.
Shawna: 37, and the next one, like, difference 37 and 59 is 22, right?
Mr. Solomon: Well, if if we go with Naomi's thing of that being 59.

1 8 27 64 123
7 19 37 59

1 8 27 64 123
7 19 37 59

12 18
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Shawna: Oh.
Mr. Solomon: Well, no, I'm just... Right.
Nadia: All right, then I got 125.

Shawna: Well, let's go with that, let's go with that, and what's the

difference between those two?
Mr. Solomon: So if we go with that 59, then the difference is 22.

Shawna: And, so there'd be a difference of 6 in all of those, right? No, no, no.

Mr. Solomon: Will you not give up! Look! Look what the problem is. It's not a

difference of 6, it's a difference of 4, so...

I thought that Nadia's path could be fruitful, but she was not convinced

of that, so that a mathematical error could have easily derailed her and this

idea might have been lost. It felt like it was both a good and unstable idea

that it was worth the intervention of saving it.
Jamal: This is crazy! This is crazy.
Maria: Differences ofdifferences!
Nadia: It would be 125.
Mr. Solomon: (..) Well, let me, let me say one thing first. Urn, given a sequence

like this: 1, 8, 27, 64, there is not one correct answer. For example, you could

define your sequence, as, you know, however you define this difference here [first

difference], and come up with 123. That's not the answer I was thinking of but

that doesn't mean that it's not the right answer. ...
Nadia: So this is like an open-ended question.
Mr. Solomon: (...) the book, for example, really may have a specific answer,

because this, this set ofnumbers (..) has sort of a mathematical suggestion. It is a

very frequently seen set of numbers, which, when I show you, you're gonna say

"Oh, duh!" so there is an answer that would come to mind quickly, but that does

not take awayfrom...
Although I did end up talking about differences and knew something

about the use of differences in determining the kind of polynomial equation,

they were not fresh in my mind and I was not confident that I knew how a

constant third difference indicates a cubic function.

Mr. Solomon: (..)[pause] Let me say a couple things. Here's the sequence that

this usually suggests, okay: 1^3 =1, 21'3 = 8, 3^3 = 27, ...

Maria: Oh, yeah, I knew it!
Jamal: I knew it!
Maria: I really did, I really did. We did learn this!

[Mr. Solomon explained to the students that finding a constant in the successive

differences indicates the order of the polynomial.]

Jamal: Ooohhhh!
Mr. Solomon: So, what actually you just discovered is this method that people use

to find out what kind of function describes their sequence. So, just by taking

successive differences, if you kept doing this, and said, Oh! it's always 6, that

would automatically tell you that you've found a 3rd degree function.

Jamal: So if this 4th one, if you had to take a 4th one it would be like a 4th

power?
Mr. Solomon: That's a 4th degree function. And one of the things that we clearly

1 8 27 64 125

7 19 37 61
12 18 24

6 6
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need to talk about is why that's true.
Jamal: Why you never told us that? 'Cause they have that on the SAT's.

Discussion
Often we talk about open-ended problems as if open-endedness were an

intrinsic quality of certain mathematical problems, or as if we must choose
between stating a problem as closed or open-ended. Was this problem, finding
the next terms in the sequence 1, 8, 27, 64..., 'open-ended'? We find this
dichotomy misleading; instead, we hold that it is the discussion surrounding a
problem that holds the potential for open-endedness. The complicated set of
interactions in this episode (as in any classroom mathematical discussion) are
informed by the students' ideas about the problem, as well as by factors such as
their cultural backgrounds and the social dynamics of a group of teenagers. Their
contributions made the discussion open-ended. They were comfortable
simultaneously trying out four ideas with four different answers.

At a few points throughout the episode, Solomon offered to tell the students
the answer. Each time, at least one of them refused vehemently-they wanted to
get it themselves. When he finally did explain the significance of constant
differences, they did not feel like this piece of mathematics had been given to
them. Rather, they had scratched away at some larger mathematical principle
which Solomon placed in a broader context for them. Having explored and made
progress on the problem and having developed a set of ideas about it, Solomon's
telling was a confirmation of an idea that they felt some ownership over. In
agreement with Chazan and Ball (1995), there was a mix between telling them and
letting them discover it. The process of co-defining a directionconstant
differences was not the topic planned for that dayled to the creation of a ground
in which meaningful 'telling' was possible.

As varied contributions are generated by the group there is an interactive
dynamic out of which an overall and changing direction emerges: certain ideas are
picked up (e.g. Daniel: "I see that the (1 + 8) * 3 = 27"), others are abandoned or
temporarily suspended, some participants shift to a leadership role (e.g. Maria:
"Did anyone else get this one?), others seem to withdraw, the conversational
atmosphere becomes competitive (e.g. Maria: "You don't got it. You don't got it."
Jamal: "Yes I do."), productive, reflective (Nadia: "So this is like an open-ended
question"), or agitated. In such an effervescent context, the teacher tries to
contain certain forces and to stimulate others. A retrospective account can always
embellish the interaction with clean rationales and formal chains of reasoning
that led the teacher to make one or another "move;" however, the resulting image
is unreal. No chain of reasoning can account for the teacher's instant recognition
of imminent risks and possibilities and his ability to be responsive to a future that
is yet to come. Solomon started the conversation expecting an easy recognition of
the sequence of cubes and ended up discussing methods to recognize polynomials.
While this was not the execution of a pre-conceived plan, it was not a random
chain of events either. The evolving sense of direction was co-developed by
Solomon and some of the students. Maria, for example, made many commentaries
on both the mathematics and the quality of the conversation itself ("I mean you
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can't really go much on three differences. If you give us the next one," "How are

you going to be a genius and keep it to yourself?" "This is ridiculous! Differences

from differences!"), or Latisha who, exasperated by the discussion with Jamal,

asked the group to move on ("Okay, next."). Solomon and the students were

trying to have the conversation 'go somewhere' while, at the same time, trying to

understand what that "somewhere" could and should be. Even the final

interaction of the episode suggested some possible future directions for this

conversation: deeper understanding of the difference-of-differences method

(Solomon: "And one of the things that we clearly need to talk about is why that's

true"), or how to get better scores on a test (Jamal: "Why you never told us that?

'Cause they have that on the SAT's").
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THE DEVELOPMENT OF CRITERIA FOR PERFORMANCE INDICES
IN THE ASSESSMENT OF STUDENTS' ABILITY TO ENGAGE

CULTURAL COUNTING PRACTICES

Stephen Sproule
RADMASTE Centre, University of the Witwatersrand

This research explores grade seven students' ability to engage the counting strategies
of various cultures. Thepurpose of the research is to develop performance indices for
assessment of student performance. The performance indices have been created from
the results of developmental research conducted with the students. The results of the
research are presented as a scoring rubric and substantiated by student work.

Recently, Vithal and Skovsmose (1997) raised a number of concerns related to the
implementation of ethnomathematics or critical mathematics within a school system
or mathematics curriculum. The new South African mathematics curriculum,
intended for gradual implementation over the next seven years, will include
pedagogical attention to mathematics as a culturally situated activity. Thus a national
curriculum will explicitly require teachers to highlight mathematics as a human
endeavor by including activities that illustrate the mathematical practices of various
cultures and focus directly on the cultural origins of the practice.

In the research reported in this paper I have developed various counting systems (as
one aspect of a culture's mathematical practices) into classroom activities to
introduce the cultural component of the new curriculum in a mathematics classroom.
The purpose of these activities is the development of criteria for performance indices
for teachers to use in their assessment of their students' ability to engage and operate
within the counting practices of different cultures. To ensure that the performance
indices are grounded in the practices of students this research answers the question:
What mathematical approaches do students who are familiar with an English
counting style apply and develop when they encounter number systems and counting
strategies originating in other cultures and languages? The complete research agenda
also focuses on the students' awareness and appreciation of the cultural nature of
mathematics. This is not reported in the paper due to space constraints.

South Africa remains in educational transition. A new mathematics curriculum,
currently in implementation, has adopted an outcome or performance based approach
to education. In this paper I describe research that is related to a specific outcome of
the new curriculum that requires students to understand mathematics as a human
activity embedded in a socio-cultural context. The specific outcome states that
students should, "demonstrate understanding of the historical development of
mathematics in various social and cultural contexts" (Department of Education, p.4,
1997)



Although recognised by Presmeg (1998), and Vithal and Skovsmose (1997) as a

limited approach to incorporating cultural mathematics practices into the curriculum,

the Department of Education (1997) has adopted curriculum outcomes that are

concomitant with a "histories of mathematics" approach. It appears that their

intention is to provide students with a more global appreciation of mathematics as a

human endeavor situated in a socio-cultural context. One aspect of the education

process that will require change as a result of the changing curriculum expectations is

the assessment strategies employed to evaluate student development. Clearly,

traditional forms of assessment are not suitable for the stated curriculum outcome.

To improve students' abilities to count and work in various culture's counting
systems and to provide teachers a means to assess their students' development I have

employed an educative assessment framework (Wiggins, 1998). Student assessment
has traditionally only served as a means to audit student knowledge. Delandshere and

Petrosky (1998), amongst others, highlight the need for assessment to become an

integral part of the learning process.

Assessment tasks offer a useful means to achieve an educative role for the assessment

process. Using Wiggins's (1998) notion of educative assessment, the tasks illustrated

in this paper may be considered educative assessment tasks. The intention of such

tasks is not that students perform competently from the onset of the assessment (or

learning) process but that students working through a selection of tasks develop

competent performance through progressive engagement with the educative

assessment tasks. In this process a "growing collection of evidence" of student

learning is provided to the teacher for student auditing (Swan, 1993).

Within a performance oriented curriculum, auditing student work and providing

meaningful feedback to students requires additional effort from the teacher.

Supporting teacher efforts prior to and during the implementation of new assessment

strategies is vital (Izard, 1993). One of the documented forms of assistance provided

to teachers is the scoring rubric (e.g. Stenmark, 1989). These range from generic

rubrics to content or process specific rubrics. Implicit in the purpose of my research is

the need to assist teachers in the implementation of educative assessment tasks.

Consequently, a qualitative scoring rubric illustrating levels of performance and the

associated criteria has been developed and reported in table one.

Research methods
The use of developmental research in instructional developments and accompanying

research is well documented by Gravemeijer (1994), is further explicated in practice

by, amongst others, Cobb (1998) and resonates with research done by Presmeg

(1998) on students' capacity to recognise mathematics in their own cultural contexts.

I suggest that developmental research can also be successfully applied to the

development of educative assessment tasks. Considering that educative assessment is

as concerned with learning as auditing performance, the application of a

developmental research methodology is as appropriate for the development of
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assessment practices as it is for the development of instructional practices.
Consequently, this research may be considered developmental research.

Participants
The school at which the research was conducted is situated in an upper-middle
income neighbourhood of a large South African city. However the school draws
students from all levels of the socio-economic stratum. Students from three of Ms.
B's grade seven (approximately 12 years old) mathematics classes participated in the
study. The students came from diverse cultural backgrounds representing traditional
South African communities as well as recent immigrant populations. The students
also demonstrated a wide range of mathematical ability while completing the tasks.
Assessment Tasks
The educative assessment tasks used in the research were created by applying an
"anticipatory thought experiment" (Cobb, 1998) to cultural mathematics practices
evidenced in Ascher (1991) and Zaslaysky (1996). Seven educative assessment tasks
were used over 5 weeks with the participating students. Each task offered the student
an opportunity to mathematically engage the counting system of a different culture.
The scoring rubric presented in table one has been developed from student activity on
all seven tasks. In this paper I illustrate the performance indices by drawing on
student activity from the following three tasks:

1. Yoruba Counting: Students were provided the Yoruba words for 1 through 5, and
seven sporadic examples ranging from 10 to 50. The equivalent English statements
for the examples from 10 to 50 were also included. The Yoruba counting system
operates on a 5 and 20 cycle. Students were required to use the examples to interpret
the structure of the counting system, write the Yoruba word for 12, 16 and 35 and
write the equivalent English statement for 55 and 100.
2. Nahuatl Counting: Students were provided the equivalent English statement for 12
examples of Nahuatl numbers ranging from 6 to 104. The Nahuatl counting system
operates on a 5 and 20 cycle. Students are required to use the examples to interpret
the structure of the counting system, write the equivalent English statement for 9, 13,
19, 38 and the numbers 50 to 60.
3. Computer Numbers: Students were provided with the postal code bar codes (figure
one) used by the US Postal Service to assist the computerized mailing process.
Students were required to write their own postal code using the bar codes, translate
numeric postal codes to bar coded postal codes and vice-versa.

0 1 2 3 4 5 6 7 8 9

Hill HIM Hid iilli did ilili 11111 hid hih lilii
Figure 1. Bar codes for digits 0 to 9 used by the US Postal Service.

The other tasks included working with the Inca's quipu, creating a 5 cycle counting
system, sharing the words for numbers from your language (other than English) and
using hand gestures to represent numbers. More complete details, evidence and
exemplars from student work will be provided during the presentation of the paper.
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Data Collection
Data was collected from students' written responses on the worksheets and from

recorded in-class didactic exchanges (Sproule, 1998). The written responses were

used to organise the broader classification of student performance. The didactic

exchanges were used to enhance and evidence the criteria for attainment of each

performance index. Conclusions related to the performance indices and the associated

criteria were triangulated using both data sources.

Results
Throughout the results section reference will be made to the summary of performance

indices presented in table one. In keeping with the educative assessment framework

the performance indices indicated in table one are directed at student development

rather than a grade or mark. Following table one I evidence each performance index

with examples of student work.

Table 1. Criteria for attainment ofmathematics performance outcomes.

Performance
indices

Criteria for attainment of mathematics
performance index

Student's work The students is able to:
exceeds Identify and explore additional relationships and patterns in the

curriculum number systems.
expectations Offer informed additions or alternatives to the counting practices

of a culture. The student does not impose these additions but is

able to offer them as suggestions.
Identify similarities and differences between their own counting

practices and the practices of other cultures.
Perform some of the four basic operations in unfamiliar counting

cycles.
Create a multi-cycle counting system while engaged in one of
the creative tasks (e.g. a 5 and 20 cycle system).

Student's work The student is able to:
satisfies Interpret the counting practices of the culture correctly and apply

curriculum the practices consistently.
expectations Recognise mathematical reasons for cultural counting practices.

Identify more than one possible solution when the information

given about a culture's counting system is insufficient.
Describe the origins and progress of numerals in various

cultures.
Translate numbers from other counting cycles to language of
instruction and vice-versa.
Differentiate the properties of numerals in various counting

systems.
Create all numerals in a 5 cycle counting system while engaged

in one of the creative tasks.
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Student is The student:
required to Introduces additional features into the counting system that are
revise his/her beyond the features of the given information.
effort. Demonstrates a careless inconsistency with the practices of a

particular culture when counting or translating their counting
system.
Creates a new word, without a cyclic nature, for every number
while creating a cycle five counting system. Once a student has
been requested to make revisions to their work their performance
will then be classified as requiring additional learning
experiences or satisfying the curriculum outcomes.
Only identifies the mathematical properties of individual
counting systems.
Judges the relative size of the numbers based on the (syntax of
the) words used within a language.
Made arithmetic errors in completion of the task.

Student The student:
requires Develops procedures or counts in a manner inconsistent with the
additional given information.
learning Develops an internally inconsistent counting strategy. This is
experiences. most commonly demonstrated by an inconsistency between the

numbers 1-10 and numbers larger than 10.
Reverts to a 10 cycle counting style while engaged in a counting
system that is grounded on a different counting cycle.
Creates a non-cyclic counting system during one of the creative
tasks.

Student The student is unable to:
requires Express the structure of a cycle 10 number system.
attention to Adopts an additive structure (e.g. Roman numerals) for a place
previous
outcomes.

value counting system.

Student's work exceeds the curriculum outcomes
David demonstrates performance that exceeds the expectations of the curriculum. He
mathematically explored patterns in the postal bar codes.

I: Which other ones go together?
S: Zero and 1, 2 and 4, 3 and 6.
I: Does 2 and 4 go together?
S: No sorry 2 and 9, and 4 and 8.
I: And how about 7
S: 7 doesn't go with one.

I: They decided not to let 7 go with one. Which one does 5 go with?
S: None, it doesn't do with any either. Because 7, they can not because they have used all their
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combinations up and if they do it exactly the same it will be the same as 7.

David identified that the bar codes for 0 and 1, 2 and 9, 3 and 6, and 4 and 8 were

mirror images of each other (lines 2 and 4). Furthermore he recognised that the bar

codes for 5 and 7 were mirror images of themselves and that all possible

combinations were used in the construction of the 10 digits (line 8).

Student's work satisfies the curriculum expectations
The criteria outlined in table one for this performance index have been derived from

two sources. The stated curriculum outcome formed the initial foundation of this

index. Secondly, students' work that provided evidence of satisfying the curriculum

outcome but that was not specifically stated in the language of the curriculum was

included. For example, the ability to identify more than one possible solution when

the information given about a culture's counting system is insufficient (table one).

I: Jabo, tell me what you've done there?
J: These, Nahuatl, of Mexico they like use five, a multiple of five then add-on other numbers.

So you can see we wrote here six means five plus 1, and then 15 is a multiple of five and 20

is just 20 because it's a multiple of five, but when you want to say 51 you go 2 times 20

then you add 10 plus 1. 2 times 20 is 40 plus 10 is 50 plus 1

I: And how about 56.
J: Okay, 2 times 20, then you write plus, you could write plus 10 plus six. Or you could write

15 plus 1.
I: Which one do you think they do?

J: Plus 15 plus 1

Jabo consistently applied the examples of the counting practices of the Nahuatl

provided in the task to the questions posed. He provided an appropriate response for 6

and 51 (line 2). The examples provided gave an inconclusive process for constructing

56. Jabo provided two possible solutions (line 4) and then (correctly) decided on the

solution he thought was closest to the examples provided (line 6).

Student is required to revise his/her effort.

In a number of cases students' work required revision or additions. This performance

index does not suggest that the student will undertake the required revisions

independent of the teacher or other forms of assistance. An example to illustrate the

index has been taken from a student's work on the Yoruba counting system. The

student had correctly completed the other questions but had written 16 as 15+1 rather

than "4 from 20" as suggested by the examples in the task. I intervened to encourage

her to revisit this problem.

I: What does their 15 mean?
S: 15, they have got eedogun.
I: And what does that mean in English?
S: 5 from 20, so may be, I see there minus that

I: Yes, so what do you think they would do with 16?

S: To get to 16, they would say 20, no 4 from 20, minusing so there would be 20 minus four.
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The student was able to revise her response (line 6) based on the probing questions I
posed during the didactic exchange. Without further learning activities, but with
appropriate intervention the student was able to correct her response.

Student requires additional learning experiences.
This performance index was applied when the nature of the students' errors suggested
that additional learning experiences in this area might be most appropriate for their
continued development. To illustrate this index I have used students' inconsistencies
and the students' penchant for using a 10 cycle counting system (table one).

Inconsistencies: In the Nahuatl Counting task students wrote (in English) the numbers
50 to 60 as they thought the Nahuatl people would describe them. One student
provided the inconsistent response given below.

50=10+ 40 51 = (2*20) + 10+ 1
52 = (10 * 5) + 10 + 2 53 = 25 + 25 =50 + 3

The student continued to apply an erratic collection of strategies to describe the
numbers up to 60. The strategy used by the student was therefore classified as
internally inconsistent. Considering that all counting systems demonstrate an internal
consistency, this student required additional learning experiences. Similarly some
students' strategies were internally consistent but were not consistent with the
examples provided on the worksheet (e.g. 36 means 20+(15+1) and 51 means
(2x20)+(10+1)). This is evidenced in the example below.

50 = 50 51 = 50 + 1
52 = 51 + 1 53 = 52 + 1
54 = 53 + 1 55 = 55 etc.

Reverting to a 10 cycle strategy: In the Yoruba Counting task students were asked to
provide the English equivalent for the Yoruba numeral for 55 (5 from 3 times 20) and
100 (5 times 20) Examples of students' responses are given below:

55 = 10 * 5 + 5
=5 from 6*10

100 = 10 from 10 * 11
= 10 * 10
=10*2 *5

These students had reverted to a 10 cycle counting strategy possibly because it was
more familiar. The given 5 and 20 cycle system was applied to smaller numbers but
discarded for 55 and 100.

Student requires attention to previous outcomes.
This index is used as a description for students who demonstrated a lack of
understanding of the counting system used in the language of instruction. As
illustrated in table one, it is primarily evidenced by students who introduced an
additive counting style rather than adopt the learned place value system.
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For example, in the Yoruba Counting task students were asked to write the Yoruba

word for 35. A number of students wrote "ogun eewaa aarun" which literally means

20, 10 and 5. The Yoruba people would have used words that mean "5 from 40."

Conclusions
In the reported educative assessment tasks students had an opportunity to engage
various culture's counting strategies as an initial experience for developing an

understanding of mathematics as a culturally situated activity. Table one provides a

summary of the students' capacity to engage such tasks and is intended as a starting

point for teachers as they attempt to assess students in the new curriculum. The
effectiveness of educative assessment as a means to include the cultural nature of

mathematics in the school mathematics curriculum continues to be investigated.
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A LONGITUDINAL STUDY OF
CHILDREN'S THINKING ABOUT DECIMALS:

A PRELIMINARY ANALYSIS

Kaye Stacey and Vicki Stein le
Department of Science and Mathematics Education

The University of Melbourne

Abstract
This paper reports preliminary results of a longitudinal study of
children's understanding of decimal notation. A large sample of students
completed a short test that enabled their understanding to be classified
into four categories and changes over periods of up to two years to be
tracked When they attained expertise, students almost always retained it,
even if it is simply following memorised rules. A small core of students
retains "longer-is-larger" misconceptions. In contrast, students seem to
move in and out of "shorter-is-larger" misconceptions. Improvements and
hypotheses to be investigated in the future are noted.

Introduction and Background
It is now well documented that many students throughout schooling and indeed many
adults have difficulty understanding the notation used for decimal fractions. The
recent Third International Mathematics and Science Study showed that
internationally about a half of 13 year old students could select the smallest decimal
number from a multiple choice list of five decimals (data held at the Australian
Council for Educational Research). Similar results have been known for many years
in several countries. The aim of this paper is to present preliminary results from a
longitudinal study that is tracing the development of students' thinking about decimal
notation. This is of interest in its own right because being able to interpret decimals is
important in a variety of everyday contexts (e.g. interpreting digital displays and
calculator answers) as well as for mathematical tasks such as rounding and using
significant figures. It is also a case study of how students' understanding and
misunderstanding develops with progress through school and in the context of
various types of instruction.

There are several ways of classifying the erroneous rules that students may apply
when ordering decimals (Resnick, Nesher, Leonard, Magone, Omanson & Peled,
1989; Sackur-Grisvard & Leonard, 1985). The coarsest classification is that some
students select "longer is larger" (e.g., deciding 0.125 is larger than 0.3) whilst others
select "shorter is larger" (e.g., deciding 0.3 is larger than 0.496). Stacey and Steinle
(1998), working with interview and written data, traced the various ideas behind
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these erroneous rules, identified further misconceptions and developed a diagnostic

test. This Decimal Comparison Test takes about five minutes and asks students to

select the larger from 30 pairs of carefully chosen decimals. It enables ten patterns of

thinking to be diagnosed. Some of these patterns of thinking are "longer-is-larger"

misconceptions, some are "shorter-is-larger" misconceptions and others belong to

neither of these. Stein le and Stacey (1998) present evidence that some

misconceptions about decimal notation appear to be the result of instruction. In other

cases, these misconceptions arise when ideas interfere with each other. Although

future analyses will use the refined classifications, this paper reports student progress

only in terms of four major categories:
longer-is-larger misconceptions (resulting from any of five identified patterns of

thinking and possibly others),
shorter-is-larger misconceptions (resulting from three identified patterns of

thinking and possibly others),
apparent-experts (may possess excellent understanding or may apply correct rules

not understood or may have an identified misconception (Stein le et al (1998))

unclassified (since the criteria for classification are quite stringent, this large

group includes students thinking about decimals in unknown ways and others who

are inconsistent).

Cross-sectional data (see Figure 1, taken from Stacey and Stein le, 1998b) provides a

picture of the incidence of various ways of thinking about decimal notation and how

it varies with age. The Longer-is-larger category decreases from Grade 5 (32%) to

Year 10 (5%), the trend suggesting that it is unlikely to be common in adult life. The

Shorter-is-larger category plateaus at about 10%, which suggests that this general

belief may continue into adulthood. The percentage of task experts also plateaus to

about 60% in Year 10, which suggests that there are many adults who have difficulty

understanding decimal notation. The task expert category of Figure 1 is somewhat

smaller than the apparent-expert category used in this paper, because students with

identified misconceptions have been removed from it and placed with unclassified

students to form the category "Other". This adjustment is of the order of 5% and so

Figure 1 can be taken as a reasonable guide to the number of students in the four

categories used in this paper. This paper moves from the cross-sectional analysis to

the beginning of a longitudinal analysis, which traces the movement of individuals in

the overall data and reports on two questions:
do students stay in the same category or move frequently from one to the other?

what are the common paths through the misconceptions to attaining expertise?

The longitudinal sample and testing

This section presents preliminary results of the longitudinal study from 1995 to 1997.

The sample was originally selected to contain a good mix of schools and to maximise

the possibility of following students when they changed from primary (Years 0 to 6)

to secondary school (Years 7 to 12) at approximate age 12 years. It consists of

classes from:
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one state secondary school in a low socio-economic area and its three "feeder"
primary schools,
one church secondary school in an middle socio-economic area and its main
feeder primary school,
one private girls school in a high socio-economic area with both primary and
secondary students,
two large state primary schools situated in the same middle socio-economic area
and the two high schools to which their students mainly progress and
one church girls' secondary school in a high-middle socio-economic area.

100%

80%

60%

40%

20%

0%
to co n co

Year level

rn 0

Task expert

Other

Shorter-is-larger

Longer-is-larger

Figure 1: Distribution of classification by grade/year level

Students were tested with the Decimal Comparison Test at most once every six
months, making a total of five testing times in the data under consideration, from the
end of 1995 to the end of 1997. However, schools tested less often than this, for
various reasons including different dates for joining the program. In this period, no
individual student or class completed the test more than four times. The year level
distribution of students is shown in Table 1. Note that many students are counted
more than once, some up to four times each. In total, 5383 tests have been analysed,
although there is no longitudinal data yet for many students. The large numbers in
the lower year levels is due to selecting students whose progress could be followed
until 1999.

Table 1. Year level distribution of students completing test 1995-1997

Year level Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10 Total

Number of 336 965 874 1690 658 497 363 5383
students

The number of students who have completed the Decimal Comparison Test exactly
one, two, three and four times is shown in Table 2. The students who have
completed only one test play no further role in the analysis in this paper, as it aims to
track change of individuals from one test to others. For this analysis, the first time an
individual undertook the test will be called Test 1, the second time will be called Test
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2 and so on. The tests are numbered for the individual, rather than by the date

administered. Therefore for some students Test 1 was in 1995 while for others it was

in 1996 or 1997. For some students, Tests 1 and 2 have been taken six months apart,

whereas for others they may be one year or even 18 months apart if the student was

absent on some testing days. This is an unsatisfactory feature of this preliminary

analysis that will be addressed in subsequent work.

Table 2. Number of students by number of tests completed.

Number of tests One test Two tests Three tests Four tests

Number of students 1590 1198 307 119

Results
Changes of classification over consecutive tests.

Table 3 illustrates the changes in classification that occur over consecutive tests. The

abbreviations A, L, S and U refer to apparent-expert, longer-is-larger, shorter-is-

larger and unclassified groups, respectively. The cross-tabulation shows the

movement of students who have tested in one category to other categories at the

individual's next testing. The numbers are amalgamated from all tests. The data is

therefore from Test 1 followed by Test 2, from Test 2 followed by Test 3 and from

Test 3 followed by Test 4. As noted above, these changes are mostly over a period of

about six months, but will also include changes over longer periods where students

missed out on intermediate testing. This anomaly in the data will be eliminated when

the final analysis is done, to give a better measure of change over six months.

The 426 students who have done the test more than twice contribute several times to

the data. To illustrate, there were 165 instances where a student showed longer-is-

larger thinking at one test and was an apparent-expert when next tested. Some of

these individual students will have been tested again and contribute to the table again,

in the group of 835 students who are apparent-experts on the prior classification.

Table 3. Changes in classification over consecutive tests = 2169

Earlier
classification

Later classification
A L S U

A (N= 835) 732 (88%) 15 (2%) 29 (3%) 59 (7%)

L (N= 732) 165 (33%) 334 (46%) 94 (13%) 139 (19%)

S (N = 348) 125 (36%) 44 (13%) 120 (34%) 59 (17%)

U (N = 254) 98 (39%) 49 (19%) 50 (20%) 57 (22%)

Table 3 shows that from one test to the next, almost all of the apparent-experts stayed

as apparent-experts and about one third of other students became apparent-experts.

Nearly half of the longer-is-larger students (in fact two-thirds of those who did not

become experts) re-tested as longer-is-larger. The shorter-is-larger students moved

more than the longer-is-larger, but still about one third stayed in the same category.
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Amongst those who did not become experts, over half remained as shorter-is-larger.
As might be expected, the unclassified students spread most evenly across the other
misconception categories. It will be important to repeat this analysis separating
students by age group, as age is likely to be an important determinant of the speed
and direction of change.

Changes of classification over at least one year.

Table 4 is similar to Table 3 except that it shows the changes in classification that
occurred between testings typically at least twelve months apart. The numbers are
amalgamated from Test 1 to Test 3 and Test 2 to Test 4. Therefore individuals who
have been tested four times (there are 119 of these) contribute twice to the 545
comparisons in the table. The comparisons in this table come from students across a
wide age range. About two thirds of the sample were in Year 4 or 5 at first testing.
The oldest was a small group tested once per year in Year 8, 9 and 10. Some of the
data is over one year, from students who were tested regularly, but where tests were
missed it is over a period ofup to 2 years.

Table 4 Changes in classification over at least one year = 545
Earlier
classification

Later Classification
A L S U

A (N= 135) 125 (93%) 2 (1%) 1 (1%) 7 (5%)
L (N= 271) 104 (38%) 94 (35%) 23 (8%) 50 (18%)
S (N = 80) 44 (55%) 9 (11%) 19 (24%) 8 (10%)
U (N = 59) 25 (42%) 14 (24%) 8 (14%) 12 (20%)
Table 4 again shows that almost all of the apparent-experts re-tested as apparent-
experts whilst about two-fifths of longer-is-larger students and unclassified students
and over a half of the shorter-is-larger students became apparent-experts. This is
consistent with shorter-is-larger thinking being somewhat more sophisticated than
longer-is-larger thinking. Of those classified students who do not move to being
experts, most stayed in their original category (56% of longer-is-larger and 52% of
shorter-is-larger) but there was some movement into other misconception categories,
not just towards expertise. The unclassified students spread most evenly across the
other misconception categories.

We had previously expected that it would be more likely that longer-is-larger
students would become shorter-is-larger than vice versa, because we hypothesised
that students may move into the more sophisticated misconception on the way to
expertise. However, since movement is equally frequent in both directions in both
Tables 3 and 4, the data does not support this hypothesis. A further analysis using the
finer grained classification system and broken down by age is required.
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Changes of classcation over two years.

Table 5 is similar to the previous two tables except that it shows the changes in

classification that occurred from Test 1 to Test 4. In this sample, the only students

who had been tested four times were from the two large primary schools in the

middle socio-economic area. They were all tested initially in Year 4 and for the

fourth time in the second half of Year 6 or in Grade 5 initially and for the fourth time

in the second half of Year 7, when they had moved to a nearly secondary school. For

this reason, the Table is labelled as indicating changes over two years.

Table 5. Changes in classification over two years = 119).

Earlier
Classification

Later Classification
A L S U

A (N= 16) 16 (100%) 0 (0%) 0 (0%) 0 (0%)

L (N= 74) 46 (62%) 10 (14%) 5 (7%) 13 (18%)

S (N = 11) 9 (82%) 2 (18%) 0 (0%) 0 (0%)

U (N =18) 15 (83%) 0 (0%) 2 (11%) 1 (6%)

Table 5 again shows that all the students who were apparent-experts at first testing

stayed as apparent-experts. These students are likely to have been among the most

able students (having achieved early expertise in Year 4 or Year 5) so it is not

surprising that they test again as experts at the fourth testing. Most of the shorter-is-

larger and unclassified students became apparent-experts over the two years, which

again supports the observation that these students have more sophisticated thinking

than the longer-is-larger thinkers. In the latter group, only about two in three

achieved apparent-expert status. At this level of analysis, there is no evidence to

support the hypothesis that students who tested initially in one category, but do not

move to expertise, stay over two years in the same category. However a closer look

at the initially longer-is-larger students who move to the unclassified category is

warranted. Because of the strict definitions employed for categorisation, it is

possible that some of the 18% of formerly longer-is-larger students may still hold

broadly longer-is-larger ideas yet not meet the criteria for that classification. This

analysis would give a better insight into whether these students are essentially stuck

in the one category or are on the way to expertise.

How representative is this group of students who have done the test four times?

There are several reasons why they may be a better group than the rest of the sample.

To be present on the four days of testing indicates that are likely to be regular school

attenders with relatively stable schooling. The fact that their teachers have made the

effort to test four times indicates commitment on their part. By Test 4 in Years 6 or 7,

there are 86 (72%) apparent-experts and only 12 (10%) longer-is-larger thinkers.

These proportions do indeed seem somewhat better than the proportions reported

previously for the whole sample and summarised in Figure 1 above. This bias will

require careful treatment in the next analysis.
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A first attempt at following individuals

Table 6 is an initial view of the paths that students take through a series of tests. It
displays data from the 119 students who completed the test four times (the same data
set as Table 5). As noted above, these students were either in Year 4, moving
through to Year 6 or in Year 5 moving through to Year 7. Each cell shows the
number of students in the category at that particular test. There are, for example, 86
students (72% of the total of 119) testing as apparent-experts at Test 4. At Test 1, 16
students tested as apparent-experts. The table also records that all 16 of these were
apparent-experts at Test 4. Similarly there were 34 apparent-experts at Test 2 and 32
of these individual students were apparent-experts at Test 4. Combining the
information in Table 6 with the data in Tables 3, 4 and 5, we see that there is very
little movement out of the apparent-expert category, suggesting that students retain
knowledge of how to complete the test.

Table 6. Numbers of individuals in each category at each of the four testing times
and, in brackets, the number of those students who retested in the same category at
Test 4.

Test 1 Test 2 Test 3 Test 4
Apparent-expert 16 (16) 34 (32) 48 (45) 86
Longer-is larger 74 (10) 48 (6) 33 (8) 12

Shorter-is-larger 11 (0) 23 (4) 19 (2) 7
Unclassified 18 (1) 14 (2) 19 (7) 14

Most of the students who have tested as longer-is-larger initially have also become
experts by Test 4. The number in this category steadily reduces. However, Table 6
indicates that there is probably a small core of students who remain persistently in the
longer-is-larger category. This will be further investigated with the finer grained
analysis and is expected to be a larger effect in a less selective sample.

The shorter-is-larger category shows a different pattern. This category grew in Tests
2 and 3, but the low numbers who persisted in this category in Test 4 indicate that
students move in and out of it over time. This is consistent with our experiences
when we interviewed students from a class of Grade 5 and 6 students (not in this
sample). These students had recently been studying fractions and so it seemed that
the number of shorter-is-larger students who interpreted decimals as fractions
(reciprocal thinkers) was inflated by the recent experience. The pattern of pathways
for students who are unclassified seems similar to the shorter-is-larger pattern.

Discussion

The purpose of this paper was to report a preliminary analysis of data showing
students' progress in their understanding of decimal notation. Several ways in which
the analysis can be made more revealing have been highlighted: by following
individuals, by following classes so that teaching effects can be observed, by
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separating the analysis by age group and by using the finer classification system.

This will be done when an extra year has been added to the data set, so that there are

more long runs of data from individuals and more histories of intact classes.

The preliminary analysis has provided the following results to be confirmed later.

There is quite marked stability of classification. Of course there is a general trend

towards expertise, but those students who do not achieve expertise tend to remain in

the same category. Even after a passage of at least a year (i.e. first to third test) about

half of the students retaining a misconception are classified in the same way. This is

a significant result given the stringency of the classification criteria and it confirms

our informal data (from interviewing previously classified students) that the test,

although taking only a few minutes, is highly reliable.

Students in different classifications behave differently. Apparent-experts nearly

always stay in this category. This would be expected of students who "really

understand" decimals. However, at least in the context of this test, the skill of

decimal comparison is well retained even by those who use a rote-learned rule (e.g.

compare digits from left to right or add zeros).

A small group of students seem to persist in the longer-is-larger category. On the

other hand students seem to move in and out of the shorter-is-larger category and are

more likely to move to expertise. Unclassified students are similarly likely to move

towards expertise, contrary to a previous finding on a group of 50 students (Moloney

and Stacey, 1997) they were more likely to move to expertise than the shorter-is-

larger students. Following individual paths will help in unravelling students' thinking

further and eventually providing better guidelines for teachers.
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EXPLORING STUDENTS' SOLUTION STRATEGIES IN SOLVING A
SPATIAL VISUALIZATION PROBLEM INVOLVING NETS
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Background

Many scholars have argued that visual and imagery based processes play an
important role in mathematical learning, problem solving and reasoning (e.g.,
Clements & Battista, 1992; Dreyfus, 1992; Hershkowitz, 1989). A full
understanding of the nature of students' mathematical competence and creativity
requires examination of not only computational and logical problem-solving
abilities, but also associated visual skills. Spatial transformation tasks have long
provided a useful medium for investigating students' visual processes related to
mathematical competence.

Translating between three-dimensional solids and their two-dimensional
representations is one kind of processing that is particularly important to
mathematics. Michelmore (1980) argues that "it is of great value to be able to
visualize and represent three-dimensional configurations and to comprehend the
geometrical relations among the various parts of a figure." In particular, problems
related to the development of solids afford students opportunities to develop the
visual skills mentioned by Michelmore. Problems of this type often require
students to make translations between 3D figures and their 2D foldouts or nets by
focusing on the relationship among the various parts of the solid both in 2D and in
3D. A net is a diagram of a hollow solid consisting of the plane shapes of the faces
so arranged that the cut-out diagram could be folded to form the solid (Borowski
& Borwein, 1991).

Even though problems regarding nets are included in some textbooks and on
some assessments, only a few research studies have examined students' reasoning
about nets. These studies (e.g., Bourgeois, 1986; Little, 1976; Mariotti, 1989;
Potari & Spiliotopoulou, 1992) indicate either that students' thinking about nets is
affected by the complexity of the geometric figures and/or that some nets of a
given solid (e.g., a cube) may be more difficult than others. However, the reasons
for these variations in difficulty of tasks related to nets are not clear. Mariotti
(1989) hypothesizes that "constructing the correct net of a solid implies
coordination of a comprehensive mental representation of the object with the
analysis of the single components (faces, vertices and edges)" (p. 263). The
findings of her study support this hypothesis as students appear to be more

The work reported in this paper was supported in part by a grant to the University of Pittsburgh
from the National Center for Improving Student Learning and Achievement at the University of
Wisconsin for the Benchmarks of Student Understanding (BOSUN) Project. The award was
received through the Educational Research and Development Centers Program (PR/Award
Number R305A6007) administered by the Office of Educational Research and Improvement,
U.S. Department of Education. The opinions expressed herein are those of the authors and do
not necessarily represent the positions of the Center, the Office of Educational Research and
Improvement, or the U.S. Department



successful in recognizing those nets that require only relatively few

transformations from the solid to the net. However, there is little information with

respect to how students coordinate and analyze the components of a 3D solid
when transforming it into a 2D net or vice versa.

The purpose of our study was to build on previous findings and to deepen our

understanding of students' work on problems which involve translations between

3D figures and their 2D net-representations. We focused on students'
problem-solving strategies when constructing different types of nets. It is

important to know the approaches that students take when faced with a task that

requires them to construct (and not only recognize) different nets for a given solid

and to examine the difficulties related to each type of net with respect to the

strategies students use.

Method
The task shown in figure 1 was administered to eight eighth-grade students in

the U.S. in a clinical interview setting'. It can be shown that there are only 10

possible nets for a cube (figure 2). Previous studies (Mariotti, 1989) have shown

that the E-net is the most intuitive and familiar, and therefore, it was chosen to

serve as the example for this study. Each student was asked to think aloud, and to

explain each stage of his or her solution processes. All interviews were audiotaped

and detailed notes were kept for each student's work.

Make a Net

The picture shows a closed cube that can be opened up to give a net:

One can open up a cube in many different ways and get different nets. In

the space below draw different nets that could have come from a closed cube.

If you find it necessary you may use the model of a cube.

Figure 1: The task used in the study

Each student was first given the task without any manipulatives, and was asked

to solve and explain the problem. When students were no longer able to make

progress in this way, they were offered cut-out manipulative nets to use. In the

first case, we say that the students worked in mental mode (M-mode). In the

second case, we say that students worked in concrete mode (C-mode). When

working in the C-mode students were allowed to cut and tape a net or a cube in

any way they preferred (a cube could be obtained by folding and taping a cut-out

' This was the first of six tasks related to nets that were given to students. Students had

approximately one hour tv sajr-ptsix tasks and the time each student allocated to each task

varied. 1 J tf
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net using the inverse procedure of the one demonstrated in Figure 1). Students'
responses were analyzed for the students' solution strategies and the mode in
which the students worked (M- or C-mode).

A

F

I I I

B

G

1 I

D

H I

E

J

Figure 2: The ten possible nets for a cube
Results

All eight eighth-grade students produced a net while working in the M-mode,
and most produced several more nets in M-mode. Seven students also obtained
nets in C-mode. The students produced an average of about five nets each.

Two main approaches to the problem were observed: working in 3D with the
cube, and working in 2D with the net. When working in 3D students indicated
verbally or with hand movements that they were attempting to produce different
nets by unfolding the cube in different ways. For instance, students indicated that
they opened up the cube as is shown in figure 1, or by "rolling" it into a net.
Students could work in 3D either mentally (mentally visualizing the unfolding of
the cube and noting the resulting net) or with the use of concrete materials
(literally cutting a paper cube in different ways and showing the resulting net).
When working in 2D students focused on producing a net on the 2D plane and
then translated that net into a cube. Once again, students could work in 2D either
mentally (drawing a possible net and then mentally checking whether this can be
folded up to form a cube) or with the use of concrete materials (by taping together
paper squares to form a net and folding them up into a cube).

Furthermore, when choosing to approach the task either from a 2D or 3D
perspective, students demonstrated that they could use different strategies which
could be roughly classified under two categories: trial-and-error strategies, and
strategies involving systematic changes of either the net or the cube (Table 1).

The most interesting strategies are those in which a systematic way of
producing nets was used. As table 1 indicates, students used systematic ways to
solve the problem in both 2D and 3D. The first systematic strategy we observed in
3D was to unfold the cube in different ways; this was used both by students who
worked in the M-mode and by students who worked with concrete materials in the
C-mode. The second systematic strategy in 3D was only used by students who
worked in C-mode. In this case, students built a cube with a face missing and then
systematically taped the cut-off face to different edges in order to obtain different
nets. For example, when RA cut off one of the faces and formed "a cube with a
missing face", say the front face, he systematically connected the cut-off face first
to the bottom edge and then to the right edge. Each time the student would open
up the cube to obtain a new net. Students who employed this strategy appeared to
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have a good understanding of the concept of a net, how it can be formed, and how

it can be changed.

Transformations in 3D Transformations in 2D

a. Systematic changes of a cube a. Systematic changes of a net

- systematically fixing different face of a keeping four squares attached together in a

cube as a bottom and unfolding the cube to row and moving the other two squares (one

obtain the new net on the top the other underneath) around

- removing one or more of the square faces that

of the cube creating a partial net cube (a row (nets A - F in figure 2)

cube with missing face(s)) and considering - fixing one square as a "bottom" and
how the cut-off face(s) can be connecin a moving

way that it would result to a new net the other squares accordingly

- fixing a pattern of squares and adding more

around

b. Trial-and-Error b. Trial-and-Error

randomly unfolding the cube and - randomly drawing or connecting together

checking whether this action resulted in a six squares and checking to see whether

new type of net. these would fold up to a cube.

Table 1: The different strategies used by the students

In 2D the most commonly used systematic way of changing the net was to
move squares around a given pattern. Similarly to the students who realized that

by connecting a face to different edges of an open cube resulted to different nets,
students who engaged in this strategy realized that by connecting a square next to
different parts of a partial net they may produce different valid nets.

Five students chose to draw/construct a "line-of-4" and to systematically move

the two remaining squares along that "line-of-4" (figure 3). This strategy occurred
both in the M- and the C-modes. Some students were able to justify their strategy
and the validity of the nets they produced by explaining that the "line-of-4"
connected squares when folded wraps around to create a "cube with missing sides"

and the two squares can be attached anywhere along each of the sides to create the
"missing sides" of the cube. In this case, students appeared to be confident about
the effectiveness of their strategy, and often did not worry about checking the
validity of the nets they produced. We must also note that despite the fact that five
students seemed to be drawn to this strategy, none of them completed the
systematic construction of all six nets (A-F nets) which can be constructed using

this strategy.

Another common systematic strategy for producing nets in 2D was to perform
rotations and reflections of a net. Students constructed nets that were obtained by
rotating or reflecting a net that they constructed. Most of the students who drew or
constructed nets that were only rotations or reflections of one net indicated that
they understood that their nets were not different from each other and that they
could actually be obtained by moving a concrete net around the table. For these

students the drawing of rotations or reflections of any net was probably a response
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to the requirement of the problem to produce as many nets as possible. Thus, they
drew rotations or reflections of each new net they produced. Some students,
however, did not appear to identify the equivalence between a net and its
rotations.

A B

I 1-1.1- I I I --O-
a b c d

F

1

Figure 3: A systematic construction of nets A - F

A second goal of this study was to identify which are the nets that present
students with the most difficulty, and also to identify the strategies that students
use to obtain the "difficult" nets of the cube. Previous research (Little, 1976,
Mariotti, 1989) indicated that students find the E-net to be the easiest. Mariotti
(1989) in particular, suggests that the number of transformations on each element
of the cube as it is "unfolded" represents an index of difficulty. The E-net is easy
because it can be straightforwardly "opened up" (as shown in figure 1), while, for
instance, to obtain the D-net one needs to "follow a "rolling" strategy where the
composition of more transformations is involved" (Mariotti, 1989, p. 262).

Since we gave students an E-net as part of the task, it is not possible to confirm
Mariotti's findings directly. But it is interesting to note that almost all of the
students produced an E-net as one of their solutions. Table 2 shows all the nets
that each of the students in our study produced in the order they produced them,
and also describes the mode (mental or concrete) and the strategy they used to
produce each net (for example, student ST produced 3 nets: A-, B-, and G-nets.
The first two, A- and B-nets were produced in M-mode while she systematically
moved two squares along a "line-of-4" squares in 2D. The G-net was produced
when she mentally unfolded the cube in a way that was different than the one
shown in figure 1). As the table indicates, half the students (SD, RA, C3, and AH)
responded to the task by first re-producing the E-net. Their verbal protocols
suggest that they mentally unfolded the cube in the most straightforward way,
thus, confirming the first part of Mariotti's findings.

In Mariotti's study, though, students found the second net (here indicated as the
D-net) to be difficult. Mariotti explained this difficulty by stating that "the case of
type [D] figures [are harder] because in the process of reconstruction each element
is transformed many times successively. To solve the task it is necessary to follow,
in one's own mind, the transformations of the single element, so that the number of
transformations represents an index of difficulty. As a remark it is interesting to
observe that the presence of a symmetry in the situation is not always noticed and
used" (p.264). However, the D-net, was not as difficult for students in our study as
Mariotti's results would have predicted. Along with the A-, B-, C-, E-, and F-nets,
this net was also relatively easy for students to produce. In fact these are the nets
that students were more likely to produce first (not considering the E-net that was
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already given). Apparently, the unexpectedly common use of the systematic

strategies in 2D, particularly the use of the "line-of-4" strategy, in which students

kept four squares attached together in a row and moved the remaining two squares
along those four, helped students easily obtain these nets, without having to resort

to translations between the 3D cube and the 2D nets.

Name Nets Mode Strategy

ST
3 nets

A, B, B
G

M
M

Moves 2 squares along line of 4
Unfolds a cube systematically

2D systematic
3D systematic

SD
5 nets

E, E, E, E
C, B, D, A

M
C

Unfolds cube randomly
trial and error

3D trial and error
2D trial and error

RA

7 nets

E,

B, B, C, F, A
G, H, C

M
M
C

Unfolds cube randomly
Moves 2 squares along line of 4
Unfolds cube with missing face

3D trial and error
2D systematic
3D systematic

AW
4 nets

A, E
D, B
Two incorrect nets

M
C
C

Unfolds cube randomly
Moves 2 squares along line of 4
Trial and error

3D systematic
2D systematic

VR
9 nets

A, B, C, D, E, F, J
Incorrect net
G, H

M
C
C

Moves 2 squares along line of 4
Trial and error
Corrects the previous error

2D systematic
2D trial and error
2D systematic

AM
7 nets

A, E, E, A, A,
C, F, B
G, G, H, H

M
C
C

Moves 2 squares along line of 4
Moves 2 squares along line of 4
Trial and error

2D systematic

Trial and error

CJ
3 nets

E
H, G, G

M
C

Unfolds cube randomly
Trial and error

3D trial and error
2D trial and error

AH
3 nets

E, E
H, G, Incorrect net

M
C

Unfolds cube randomly
Trial and error

Trial and error

Table 2: Distribution of nets students produced with respect to the types of the nets and the

strategies used

Table 2 also indicates that the most commonly produced nets were the A and B

(6), G (5), C and H (4), D and F (3), and J (1) nets. None of the students produced

any I-nets. However, when we look at the strategy that students used to produce

these nets, it is clear that when students worked systematically (i.e., the nets were

not produced accidentally) then they were more likely to produce nets that

maintained the "line-of-4" characteristic rather than other types of nets. The A-net,

one of the most commonly produced nets, was also the net that was produced first

by half of the students. It was produced by all the students who systematically

changed the net either in 2D or in 3D. In fact, 5 of the 6 students who produced

this net did it while making systematic changes to nets in the M-mode. Finally, it

is interesting to note that, while nets A, B, C, D and F were most commonly

produced when students worked systematically, nets G and H were produced by

trial-and-error as frequently as they were produced systematically (see Table 3).



A B C D F G H I J
Systematically 5 5 3 2 3 3 2 -- 1

Trial & error 1 1 1 1 -- 2 2 -- --
Total 6 6 4 3 3 5 4 -- 1

Table 3: Distribution of nets with respect to production strategy

Discussion

One of our goals for this study was to examine the difficulties related to this
task with respect to the strategies students use. Brown and Wheatley (1997) argue
that students' ability to decompose and recombine images, that is the ability to
break down a visual image into simpler parts and then recombine those parts into
new images, is an important component of imagery in problem solving. Indeed, in
the problem under consideration, it was necessary for students to notice that the
given net is composed of squares that can be separated from one another and
recomposed again into a different formation. However, our students did not simply
decompose the net into squares. Rather, the most successful students worked using
patterns of squares in a systematic manner. In fact, our students used primarily one
specific pattern, the "line-of-4" pattern. Hershkowitz (1989) identified three types
of visual reasoning when introducing and understanding mathematical concepts:
(a) based on the whole figure, (b) based on non-critical attributes, and (c) based on
critical attributes. The results of our study support the findings of Hershkowitz in
the context of reasoning about correspondence between 2D and 3D
representations of a cube.

Those students who attempted to find a systematic way of producing new nets
focused on finding some critical characteristics of the net that remain invariant in
all the nets and correspond to critical characteristics of the solid. It may be the
case that students perceived the "line-of-4" as a core invariant characteristic of the
cube-net; when folded-up this line of squares forms the core of the cube while the
two other squares fill in two empty faces. Further, it is possible that students also
perceived the "line-of-3" (perpendicular to the "line-of-4" in the given E-net -
figure 1) as another critical characteristics of the net. This may explain the
frequency in which students produced an A-net (the A-net maintains both
characteristics) and produced it first.

Further we may attribute the common production of the G-net to the students'
attempt to maintain the invariance of the "line-of-3" characteristic (the G-net is the
only one among those that do not maintain the "line-of-4" that maintains the
"line-of-3"). The hardest nets to obtain in the M-mode were the I- and J-nets, those
that do not maintain either of the two salient, and presumed by the students to be
constant characteristics of the E-net. Similarly, the drawing of symmetric
equivalent nets can be attributed to an attempt to find and use more invariants in
the net. When students focused on finding and fixing as many invariant
characteristics as possible, students produced equivalent nets (notice, for example,
how AM produced multiple copies of the A-net when working systematically
see Table 2).
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Finally, another issue that deserves attention is the fact that none of the
students who chose a systematic way of approaching the task completed the

construction of all six nets (A-F nets) which can be obtained using this strategy.
This could be due to the limited time that students had to solve the problem.

Nonetheless, this issue brings up questions regarding students' ability to work
systematically when faced with problems that are highly visual or spatial. Despite

the fact that in six cases students attempted to use systematic ways of producing

nets (five in 2D and three in 3D; two student worked systematically both in 2D

and 3D), their attempts were often disorganized resulting in the omission of some

nets and the reproduction of others. The difficulty that students faced in
approaching this problem systematically is an area that deserves further

investigation.
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COMPARING STUDENTS' RESPONSES TO CONTENT SPECIFIC
OPEN-ENDED AND CLOSED MATHEMATICAL TASKS

Peter Sullivan, Elizabeth Warren, Paul White

Australian Catholic University

The results reported here are one component of a larger project that seeks to explore
a range of aspects of the classroom potential of content specific open-ended tasks. We
propose a way of discussing such tasks, and justify our focus both'on open-endedness
and the focus on content. In particular we compare the responses of students to
comparable closed and open-ended tasks, and also explore the effect of using specific
contexts for such tasks. We propose a method for exploring differences in facilities of
open-ended and closed tasks and suggest that both types of tasks can contribute to
effective classroom programs.

The research is based on three assumptions: tasks are the critical prompts for
mathematical activity, tasks that are to some extent open are more likely to produce
rich activity (Christiansen & Walther, 1986), and explicit attention to mathematics is a
key characteristic (Cyril, 1998).

This is an investigation into the student responses to tasks which are, on one
hand, open-ended to stimulate high quality thinking, and, on the other hand, content
specific to emphasise the mathematics being learned. It is intended to make inferences
from the results on the potential of such tasks both for classroom use and for
assessment.

Open-ended Tasks

There is no agreement on classification of tasks. The following discussion seeks
to situate the tasks used as the focus of this investigation in the context of other related
tasks, and to clarify some terms and the way we use them.

We use the word task rather than the more common word problem. It is possible
to have problems that are closed, and it is also possible to have open tasks that are not
problems in that a solution path is known to the student, but which nevertheless
provoke rich mathematical activity.

We take the task to be the statement presented to students that serves as the
prompt for their work. Their activity is the thoughts and actions in which they engage
in response to the prompt. The goal is the result the students seek as a product of their
activity in response to the task statement. Each has the potential to be open or closed.
Closed implies there is only one acceptable pathway, response, approach, or line of
reasoning. Open refers to the existence of more than one (preferable many more than
one) possible response.

While the direction of the activity can be fixed or closed we are only interested in
tasks that stimulate open activity that is, students will ordinarily follow different



approaches to the task goal. Tasks that stimulate closed activity may well contribute to

a effective mathematics curriculum. Nevertheless, we see that at least some

opportunities for working on tasks that stimulate open activity by students are

important. We suspect that open activity fosters some of the more important aspects of

learning mathematics, specifically investigating, creating, problematising,

mathematising, communicating, and thinking, as distinct from merely recalling

procedures.

Our focus then is on open goals, and we use the term open-ended to describe

tasks that have such goals.

We recognise that tasks that have open statements contribute to a broad and rich

curriculum and have potential to make a significant contribution to mathematical

learning. Examples include investigations (Wiliam, 1998), the use of problem fields

(Pehkonen, 1997), problem posing (Leung, 1997), and the open approach (Nohda &

Emori, 1997). Nevertheless this is an investigation of tasks that have a specific focus

on aspects of the mathematics curriculum. The content specific nature of the tasks

implies that the statements need to be closed.

Content Specific Open-ended Mathematical Tasks

There are a number of advantages of having the content focus explicit. One

advantage is that the students' attention is drawn to the mathematics and so their

learning may be more directed, as well as making the role of the teacher clearer. A

further rationale for the content focus of these tasks is that, with the current attention

to testing and explicit statements of curriculum outcomes in many countries, teachers

feel an imperative to be able to identify the mathematics content being addressed.

The term content specific open-ended tasks can be illustrated by means of some

examples:

A number has been rounded off to 5.6. What might be the number?

The mean height of four people in this room is 155cm. You are one of those

people. Who are the other three?

Find two objects with the same mass but different volume.

We believe that such tasks make a useful contribution to a mathematics

curriculum in that they:

provide similar advantages to less content specific open-ended tasks, and even many

of the advantages of tasks with open statements in that students can investigate,

generalise, seek patterns and connections, communicate, identify alternatives;

address conventional content explicitly and so are more easily integrated into

mathematics curricula;

have a teaching focus sufficiently similar to what teachers usually do and so are easy

to implement; and
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- provide a bridge to tasks with open statements for the students.

In earlier research on the use of such tasks, Sullivan, Clarke & Wallbridge (1991)
found that:

pupils can respond to such tasks at a range of levels especially if prompted by the
wording of the task;

- the quality of response within a single grade levels varied, and that student responses
improved in higher grades;

students at all levels gave better answers to questions which drew on content which
had been learnt some years previously;

students can learn from the activity; and

students often gave only one response even if they could have given more.

Sullivan, Bourke and Scott (1997) conducted a detailed investigation of a
classroom implementation using a program based solely on content specific open-
ended tasks. Most tasks posed were open-ended, and there were few teacher
explanations. The students engaged in personal constructive mathematical activity and
there were no management or organisational difficulties created by the approach.
Observation of individual students and interviews confirmed these impressions and
indicated that teaching based on open-ended tasks is suitable for both students who are
confident at mathematics and for those who lack confidence.

It seems that open-ended tasks offer significant possibilities for stimulating the
active involvement of students in learning and doing mathematics in classroom
situations.

As it happens, there is some opposition to the concept of such content specific
open-ended tasks. Becker and Jacob (1998) quote a Prof Wu who was critical, inter
alia, of the following curriculum statement:

Students understand and use the relationship between concept of perimeter and area, and
relate these to their respective formulas. (Becker & Jacobs, 1998, p 6)

Wu claimed that "There is no relationship whatever between perimeter and area,
... unless it is the isoperimetric inequality" (Becker & Jacobs, 1998, p 6). Wu had
previously (Wu, 1994) been critical of problems like:

If the perimeter of a rectangle is 30m, what might be the area?

He claimed that since students could not give complete answers, the question
should not be asked. We disagree. It is precisely the exploration to the link between
perimeter and area that is the strength of this task. Indeed, the failure to compare and
contrast the related concepts seem to be at the heart of many of the difficulties which
students find in responded to perimeter and area questions.



Ultimately the worth of a particular task or task type can be judged on the quality

of the responses which the students give, and whether they engage in thinking

mathematically for themselves. That is the focus of this investigation.

Comparing Responses of Students to Open-ended and Closed Tasks

The results reported here are from a larger project that seeks to explore responses

of students to comparable open-ended and closed tasks. This aspect of the project

sought to compare responses of students to tasks that address similar content, and to

explore the effect of situating tasks in particular contexts. These aspects have potential

to inform understanding of the classroom potential of such tasks and particularly to

suggest ways in which such tasks can be productively integrated with the rest of the

mathematics program. The key variable is the quality of responses students give to

such tasks.

Responses were sought from approximately 1200 students from schools in three

Australian states. Data were also collected in Indonesia but these are not reported here.

In each state, more than two schools responded to the tests. Classes were selected to

maximise comparability by gender mix, socio-economic status, urban location, school

size, and experience of the teachers. The responses presented are from students in

Year 8 classes in each of New South Wales, Queensland, and Victoria.

Seven instruments requiring written responses were developed. Each differed

according to the mix of open-ended/closed and context/context free tasks. In addition

to seeking to compare responses to similar open and closed tasks, the test forms sought

information on the effect of the use of contexts in the phrasing of the tasks. Generally,

the same students completed more than one test form. Where possible the tasks were

designed to be comparable with items from large-scale tests used elsewhere.

The tasks were piloted in three states to minimise difficulties with the wording,

and to ensure that the content was compatible with the syllabi. From the pilot results

we included a specific prompt to cue more than one response to the open-ended tasks.

This has a disadvantage in classroom situations in that it may limit the potential for

students to generalise answers. In this case, it gave us a better indication on whether

students could produce multiple responses. We also found that the mix of tasks

seemed to have little effect.

The tasks on each of the instruments were scored individually. The closed tasks

were scored as either correct or incorrect. Each of the open-ended tasks were scored

using the following codes:
i one or two correct responses
ii some correct, some incorrect
iii three or more correct responses

The tasks were basically grouped around three contexts: to gauge the effect of

using differing units of measure; to ascertain children's understanding of the

interrelationship between perimeter and area, and third to determine children's
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understanding of the relationship between embedded rectangles. Only the results of
the first of these are reported here.

In each case both open-ended and closed tasks were constructed, and each of
these were posed in context and context free formats. The open-ended tasks used a
prompt "give at least three answers" since during trialing we observed that many
students were reluctant to give more than one response.

The following presents the results with tasks selected from various test forms to
facilitate comparisons.

Responses to the Differing units Tasks

The tasks requiring the use of differing units were designed to be comparable to
the following item taken from Department of Education (1991).

A rectangular rug has an area of 2 square metre's. The rug is 40 centimetres wide.
How long would it be?

5m 8m 20m 50m

The Department of Education (1991) study reported that 52% percent of year 9
students responded correctly.

Table 1 presents the four tasks derived from this item, and shows the percentage
of correct responses for each task.

Table 1
Responses to different unit tasks

Task Type Response % of correct
Code responses

A rectangle has an area of 2m2. It is Closed Correct 7 226
40cm wide. How long is it? No context

A rectangle has an area of 3m2. What Open-ended i 8 226
might be the length and width of the No context ii 6

rectangle? (give at least three iii 9
answers)

A rectangular rug has an area of 2m2. Closed Correct 15 315
The rug is 40 cm wide. How long is the Context

rug?

A rectangular rug has an area of 3m2._ Open- i 11 315
What might the length and width of the ended ii 10

rug? Context iii 23

The number of correct responses seems low, and certainly lower that the
Department of Education (1991) question. Two possible explanations are that the one
additional year of schooling makes a difference, and that the multichoice format made
the earlier item easier.



More students responded correctly to the closed task when posed in context

(although the facility is still very low) and when posed context free.

The responses to the open-ended tasks when posed in context are much higher

than the context free ones. In context, 44% of students gave one or more correct

responses to the context task, compared with 23% for the form which did not use the

"rug" context. It seems that the rug context has assisted some students in this case.

In each case, the students gave more correct responses to the open-ended task

than to the closed ones. It appears from the results that the open-ended task may have

been easier than the closed task for these students. An examination of the types of

responses for each task gives some insight into why the open-ended question seemed

easier. The following presents responses given by of students who gave correct

responses.

For the closed tasks:
some converted to 0.4 m then calculated correctly

a few converted to 20 000cm2
many converted 40 cm to 4 m
some converted both to "non standard units"

For the open-ended tasks.:
all of those who gave one or more correctresponses used 3m x lm

many gave 1.5m x 2m as one of their responses

most other correct responses used decimals in some way

some gave 2m x 1.5m as one of their answers

Nearly 50% of students gave a response that was correct numerically but used

incorrect units. This suggests that the need to use compatible units of measure may

have been the main source of difficulty.

Many students were able to give three responses.. Even though there were still

fewer correct responses to the open-ended task than one might hope, there were more

than for the closed task.

Based on these responses, and on discussion on the elements of the tasks, the

components needed for success on each were delineated. Figure 1 summarises the

components, with the elements common to both items recorded in the middle column

of the table.

Steps to solve the
closed tasks only

Match information to
dimensions

Convert m2 to cm2 OR
cm to m

Do division

Steps common to both tasks

Visualise the shape(rug)
Read

Comprehend
Formula for Area (A=LxW)

Reverse the formula (LxW=A)
Encode
Record

Steps to solve the open-
ended tasks only

Select 2 numbers whose
product is 3

Recognise multiple
possibilities
Generalise

Figure 1: Components for each task.
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In this case, is possible that the closed task is more difficult because of the need
to convert from one unit to the other and then to do just that. Difficulties with the units
may have impeded students from exhibiting their understanding of the area concept.
The open-ended task does not necessarily require unit conversion, and it seems that
most students who responded correctly did so without converting. Hence, the open-
ended task gave more information about students' understanding of area but gave little
information about their facility with unit conversion. The use of an appropriate prompt
may be needed to elicit this information.

In the classroom, the open-ended task may be useful for initial. exploration of the
area concept with either non whole number sides or mixed units, and the relationship
between differing units of measure. The closed task 'seems to be potentially useful as
an assessment item, assuming students have had the necessary unit conversion
experiences. A brief analysis of texts at this level suggests that there are few exercises
on area or perimeter that require unit conversion.

Conclusion

This part of the project sought to compare student responses to comparable
closed and open-ended questions. One one set of data is presented here, but these
concluding comments refer to all of the results.

One goal was to explore the effect of context on the students' responses. For the
closed tasks, the context seemed to help for one set, but made no difference in tasks
that included diagrams. It is possible that the diagrams performed a similar role to the
context. For the open-ended tasks, the context helped for two sets, but seemed to make
a third set more difficult. It is suggested that in this case, since it dealt with a complex
concept, that the context made the task more difficult.

Another goal was to compare responses to closed and open-ended tasks. In two
sets, students found the open-ended tasks more difficult suggesting that these required
thinking above and beyond that required for the corresponding closed tasks. In the
other case the open-ended task was easier.

An analysis of the responses and a breakdown of the elements of the tasks
seemed to explain these differences. The open-ended tasks which were more difficult
required students to link two concepts and to use such links to conjecture and
generalise. Such open-ended tasks may serve the role of stimulating students' thinking
to higher levels.

Both the context and the open-endedness seemed to effect the focus and student
response to the tasks. It seems that each of the type of tasks would contribute
productively to classroom programs and teachers could be encouraged to plan to use
contexts and open-ended questions productively. In some cases the open-ended tasks
may serve as a useful preliminary exploration of topics; in other cases, they may be
better left until later.
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DYNAMIC SCAFFOLDING AND REFLECTIVE DISCOURSE:
THE IMPACT OF TEACHING STYLE ON THE DEVELOPMENT OF

MATHEMATICAL THINKING

Howard Tanner & Sonia Jones: University of Wales, Swansea

Abstract

The mathematical thinking skills project (Tanner & Jones, 1995) reported that
classes which followed a course emphasising metacognitive skills were not only more
successful than controls in assessments of those skills but also in assessments of
mathematical development. However the size of effect was quite small, and ethnographic
data revealed significant variations in teaching style from teacher to teacher. Further
analysis identified four characteristic teaching styles. This paper discusses the
effectiveness of the different styles with emphasis on the two most successful groups: the
dynamic scaffolders and the reflective scaffolders.

Introduction:

The Mathematical Thinking Skills Project (Tanner & Jones 1995) aimed to develop
and evaluate a thinking skills course to accelerate students' cognitive development in
mathematics. The course was based on the earlier Practical Applications of Mathematics
Project (Tanner & Jones, 1994) which had identified the metacognitive skills of planning,
monitoring, and evaluating as necessary for practical problem solving.

We aimed to develop and evaluate an enrichment course for the first two years of
secondary school (ages 11 to 13) focusing on the development of metacognitive skills.

Metacognition

Metacognition is a "fuzzy" and elusive term which is used to cover a range of ill
defined interacting categories which share certain resemblances (Brown, 1987, p106).
Metacognition has two aspects: (a) the awareness that individuals have of their own
knowledge, their strengths and weaknesses, their beliefs about themselves as learners and
the nature of mathematics; and (b) their ability to regulate their own actions in the
application of that knowledge (Flavell, 1976; Brown, 1987).

The former aspect is passive in character and is characterised here as metacognitive
knowledge or "knowing what you know". The second refers to the "active monitoring
and consequent regulation and orchestration" of cognition (Flavell, 1976, p232) and is
characterised here as metacognitive skill.

The earlier project (Tanner & Jones, 1994) identified classroom practices which
might facilitate the development of metacognitive skills. These included the use of social
structures to frame pupils' behaviour and constrain them to act as experts rather than
novices, e.g. by slowing down impulsive behaviour and encouraging examination of
several problem formulations; the development of a discourse in which differences in
perspective were welcomed; the use of focussing questions in scientific argument; and
the encouragement of reflective discourse for peer and self assessment.
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One key practice was referred to as "start stop-go". Pupils were asked to read a

problem, think in silence for a few minutes, and then discuss possible plans in small

groups. The teacher then led a brainstorming session which focussed attention on key

features. After the class had started work they were stopped at intervals and groups were

asked to report on progress to encourage monitoring.

What were we trying to achieve?

These classroom practices were taken as the basis of a project to develop and

evaluate a mathematical thinking skills course. The thinking skills targeted were

metacognitive rather than cognitive. That is the course focused on the processes rather

than the content of mathematics in the context of practical problem solving and

modelling. It was hypothesised that near transfer would be found, meaning that students'

metacognitive skills would be enhanced leading to improved performance in modelling

problems. It was further hypothesised that the development of metacognitive skills would

lead to improved mathematical thinking and that students would subsequently

demonstrate far transfer through improved performance in the content areas of

mathematics which had not been targeted by the course.

How do students learn to think mathematically?

Learning to think mathematically is more than just learning to use mathematical

techniques, although developing a facility with the tools of the trade is clearly an element.

From a constructivist viewpoint, the learner is considered as a sense-maker and an active

negotiator of meaning and a distinction is often drawn between mathematical thinking

and the knowledge base, strategies and techniques described as mathematics.

Additionally, however, mathematical thinkers acquire a socially accepted way of seeing,

representing and analysing their world, and an inclination to engage in the practices of

mathematical communities (Schoenfeld, 1994, p60).

Cobb et al (1997, p269) claim that a "mathematical disposition" may be developed

in an indirect manner through participation in "reflective classroom discourse". In

reflective discourse, teachers should manage the interplay of social norms and patterns

of interaction to create opportunities for pupils to reason for themselves and "engage in

reflective thinking or reflective abstraction" (Wood, 1996, p102-103).

One of the issues which arises is the extent to which the teacher acts as a genuinely,

neutral moderator of discussions amongst co-participants or as a director and guide of

pupils' learning. There is an obvious power imbalance between teachers and pupils in

classrooms and teachers' comments carry great weight. What is significant is the.manner

in which the power is expressed in action (Cobb et al, 1992, p486).

Two different forms of interaction can be described as scaffolding to support

learning: funnelling andfocusing (Bauersfeld, 1988; Wood, 1994). Infunnelling it is the

teacher who uses the thinking strategies and carries out the demanding tasks to lead the

discourse to a predetermined solution. The social processes of the classroom hide the

mathematical structure, which the pupil may only construct by choosing to reflect on

it
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regularities in the actions performed. "Context- and problem-specific routines and skills"
are likely to result (Bauersfeld, 1988, p37). Mathematical logic and meaning are replaced
by the social logic and meaning of the interaction. In focusing the teacher's questions
draw attention to critical features of the problem which might not yet be understood. The
pupil then has to resolve perturbations which have thus been created (Wood, 1994, p160).

The discourse mode of teaching may lead to higher levels of understanding and
thoughtfulness in mathematics. In "reflective discourse", teachers "proactively support
students' mathematical development" by guiding and initiating shifts in the discourse so
that "what was previously done in action can become an explicit topic of conversation"
and thus "participation in this type of discourse constitutes conditions for the possibility
of mathematical learning" (Cobb et al, 1997, p264 269). We intended the character of
the discourse to lend social status to "the disposition to meaning construction activities"
which is a "habit of thought" that can be learned (Resnick, 1988, p40).

The research design

The project mixed quantitative and qualitative methodologies. In a quasi-
experiment 314 students aged between 11 and 13 from six schools followed a
mathematical thinking skills course and were compared with matched control groups
using pre-tests, post-tests, delayed tests and structured interviews. However, as the
activities and teaching approaches were novel for most of the teachers involved, the
project had many of the characteristics of action research.

The teachers of the experimental classes attended an induction day and then 4 action
research network meetings spread throughout the five months of the intervention at which
teaching experiences and progress were discussed. Thus statistical data collected from
the written tests were supported by qualitative data collected during meetings, in
interviews with teachers and pupils, and through participant observation by the
researchers in experimental lessons.

Written test papers were designed to assess pupils' cognitive and metacognitive
development based on a neo-Piagetian structure. The metacognitive skills of question
posing, planning, evaluating and reflecting were assessed through a section in the written
paper entitled "Planning and doing an experiment". Metacognitive self knowledge was
also assessed by asking students to predict the number of questions they would get correct
before and after each section (referred to here as forecasting and postcasting). Fuller
details may be found in Tanner & Jones, 1995 or Tanner, 1997.

The overall results

Multivariate analysis of variance (MANOVA) was used to analyse the three levels
of test (ie: pre, post and delayed) and two types of class (ie: control and intervention). A
covariate approach (using pre-test scores as covariates) was used to add power to the
analysis by adjusting for the small inequalities which existed between groups at the start
of the quasi-experiment. For simplicity, only the multivariate results are given here
(Table 1) (but see Tanner & Jones, 1995 or Tanner, 1997 for further details).
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In assessments of the active metacognitive skills of planning, monitoring and

evaluating both the control and the intervention classes improved over the period of the

quasi-experiment. However the intervention classes improved more than the control

classes in the post-test and this improvement was sustained in the delayed-test. The effect

size was small (0.19), but significant at the 0.1% level for the written tests (Table 1).

As these active metacognitive skills had been taught in similar practical

mathematical modelling contexts, such "near transfer" might be considered unsurprising.

Its achievement was non-trivial, however, as the pupils were required by the assessments

to form their own problems within open situations, plan, identify and control variables,

choose simple strategies, monitor their work, collect and organise their data, find

relationships, evaluate and reflect on their results.

In the assessments of Passive metacognitive knowledge or "knowing what you

know" the results were not clear cut. Although the intervention classes improved in their

forecasting more than the control classes in the post-tests and this improvement was

sustained in delayed-testing, the effect of type of class was not significant at the 5% level.

The postcasting of the intervention classes improved more than the control classes in the

post-tests and this improvement was sustained in delayed-testing. This was significant

beyond the 5% level but was limited to an extremely small effect size of 0.02 (Table 1).

Table 1: Multivariate tests of significance for the effect of type of class

Variable Hotellings F value Hypoth
DF

Error
DF

Sig of F Effect
size

Metacog skill .235 43.67 2 371 .000 .191

Forecast .013 2.30 2 363 .101 .013

Postcast .022 3.78 2 341 .024 .022

Cognitive dev .021 3.89 2 369 .021 .021

The assessment of mathematical cognitive development showed a similar pattern to the

active metacognitive skills but a smaller effect. The intervention classes improved more

than the control classes in the post-test and the advantage was largely sustained at the

delayed-test but the effect size (0.02) was extremely small (Table 1).

The content of the cognitive section of the written paper had not been taught directly

by the course. Furthermore, as the intervention classes had experienced less teaching in

their normal mathematics curriculum during the quasi-experiment, it might have been

expected that the control classes would generally have outperformed the intervention

classes. This small overall effect is claimed, therefore, to be an example of mathematical

thinking skills paying for themselves through far transfer.

Although the overall results show a positive result for the intervention, albeit with a small
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size of effect, when the results of individual classes were examined a far more
complicated pattern emerged. It became clear that some classes had made very large
gains over their controls whilst others had achieved little more or even less than their
controls. Further analysis was conducted in the light of the qualitative data collected.
The four teaching styles

Analysis of the qualitative data collected through participant observation led to the
classification of the teachers into four characteristic groups according to the teaching
styles employed (see Tanner, 1997 for detailed descriptions).

The taskers focused on the demands of the task rather than the targeted
metacognitive skills. The rigid scaffolders focused on planning, but rather than helping
pupils to develop their own plans, aimed to develop the teachers' preferred approach.
The scaffolding support provided by their questioning constrained pupils' thinking,
funnelling them down a pre-determined path. These two groups of teachers were the
least successful. The taskers' classes showedno advantage over their controls in any test.
The rigid scaffolders showed an advantage in only the metacognitive delayed test with
a very small effect size (0.09). This paper focuses on the other two groups of teachers.

The dynamic scaffolders made full use of the social structure of "Start-stop-go" to
frame their pupils' behaviour and constrain them to act as experts rather than novices.
Their scaffolding was dynamic in character and was based on participation in a discourse
in which differences in perspective were welcomed and encouraged. The most significant
participant in the discourse was the teacher, who validated conjectures and used focusing
questions to control its general direction ensuring that an acceptable whole class plan was
generated. The participation framework was equivalent to "legitimate peripheral
participation" within an apprenticeship model of learning (Lave &Wenger, 1991), and
the autonomy and responsibility of the pupils was limited by the teacher's desire to
negotiate a plan to a pre-determined template. Although a whole class plan was
developed, the negotiation and participation was sufficient to ensure that students referred
to "our plan" in terms which indicated a sense of ownership. The discourse focused on
both procedural knowledge and conceptual knowledge and during the planning and
monitoring sessions, articulation and objectification of explanation was encouraged,
making the explanation itself the object of the discourse. This was the only form of
evaluation or reflection used by the dynamic scaffolders, however, and is characterised
as "reflection in action" as opposed to "reflection on action" (SchOn, 1990).

The dynamic scaffolders were very successful in accelerating the development of
the active metacognitive skills of planning, monitoring and evaluating in the context of
mathematical modelling, that is in near transfer, with a small to medium effect size (0.36)
which was significant beyond the 0.1% level (Table 2). However they failed to achieve
a significant advantage for their classes in either passive metacognitive self knowledge
or "far transfer" into the content areas of mathematics. It is conjectured that, although
active metacognitive skills may be necessary in the learning ofnew knowledge, they are
not sufficient. Metacognitive self knowledge may also be necessary for far transfer.

4 - 261

142G



Table 2: Multivariate tests of significance for the effect of type of class for dynamic

scaffolders

Variable Hotellings F value Hypoth.
DF

Error
DF

Sig of F Effect
size

-- Metacog skill 0.550 21.27 2 77 .000 0.36

Forecast 0.040 1.52 2 76 .226 0.04

Postcast 0.015 0.53 2 70 .590 0.02

Cognitive dev 0.020 0.80 2 78 .453 0.02

The reflective scaffolders also used the social structure of "Start-stop-go" to lead the

discourse in their classrooms. They granted their pupils more autonomy, however,

encouraging several approaches to the problems rather than constraining the discourse

to produce a class plan. Pupils thus had to evaluate their own plans in comparison with

the plans of other groups in the posing, planning and monitoring phases of the lessons.

The participation framework had fewer of the characteristics of apprenticeship, with

pupils taking a greater responsibility for an end product of their own design rather than

limited responsibility for an element in the design of a "master". The characteristic

feature of the reflective scaffolders, however, was their focus on evaluation and

reflection. During interim and final reporting back sessions, scientific argument was

encouraged to make the explanation an object of the discourse. Peer and self assessment

was encouraged through group presentations of draft reports before redrafting for

assessment. They deliberately generated a reflective discourse (Cobb et al, 1997) after

activities to encourage self evaluation and reflection on process. Collective reflection

does not equal reflected abstraction, but it is conjectured that during collective reflection,

opportunities arise for pupils to reflect on and objectify their previous actions as they

engage in reflective discourse (Cobb et al, 1997).

The reflective scaffolders were very successful in accelerating the development of

active metacognitive skills, achieving near transfer in practical modelling situations with

a medium size of effect (0.4) which was significant beyond the 0.1% level. They also

succeeded in accelerating the development of passive metacognitive self knowledge in

forecasting and postcasting. The effect sizes were very small (0.07 and 0.14), but

significant beyond the 5% and 1% levels respectively (Table 3). They were the only

group of classes to achieve this and it is conjectured that this was due to their emphasis

on self evaluation and reflection. The reflective scaffolders also succeeded in

accelerating development in the content domains of mathematics measured by the

cognitive test, again the only group of classes to achieve this far transfer. The size of

effect was small (0.21), but was statistically significant beyond the 0.1% level and

approximated to a year's development (Table 3).
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Table 3: Multivariate tests for the effect of type of class for reflective scaffolders

Variable Hotellings F Hypoth. Error Sig of Effect
value DF DF F size

Metacog skill 0.652 43.34 2 133 .000 0.40

Forecast 0.073 4.73 2 130 .010 0.07

Postcast 0.161 9.82 2 122 .000 0.14

Cognitive dev 0.272 18.09 2 133 .000 0.21

Discussion

The "Dynamic scaffolders" were operating a model of cognitive apprenticeship
which included authentic tasks, student autonomy and dynamic scaffolding but although
they were very effective in teaching for near transfer, they failed to achieve far transfer.
Individual construction was subordinated to the dynamics of the apprenticeship model,
whereas the reflective scaffolders encouraged both cognitive apprenticeship and
individual construction. The dynamics of "Start-stop-go" were internalised through
participation in social processes. Learning this procedural knowledge was achieved
through an apprenticeship model, organised and controlled by the teacher. Through
participating in a scientific discourse led by an expert using dynamic scaffolding, pupils
learned to internalise the processes of scientific argument and "argue with themselves".
They also learned that mathematics "made sense" and that they could "make their own
sense" of what occurred by making their own tentative conjectures and constructions and
linking them with prior schemata.

Participation in reflective discourse encouraged reflective abstraction and the
objectification of explanation. It is conjectured that the processes of mathematisation and
problem solving, once objectified through individual construction, were thus knowledge
rather than mere information and thus capable of being used elsewhere. Collective
reflection provided both a social model and an opportunity for reflected abstraction. The
reflective discourse focused on the processes of mathematisation, abstraction and
generalisation in the service of understanding structure. Participation in reflective
discourse may have encouraged the development of a mathematical disposition or point
of view (Schoenfeld, 1994; Cobb et al, 1997) which might be expected to be transferable.

The active metacognitive skills of planning, monitoring and evaluating are generic
rather than specific and these skills can survive near transfer to similar modelling
contexts. It is conjectured that participation in reflective discourse can encourage
objectification and the development of metacognitive self knowledge thus enhancing the
transfer potential of such skills. It is further conjectured that the combination of active
metacognitive skills and passive metacognitive knowledge supports both the application
of old mathematics to new contexts and the learning ofnew mathematics.
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Learning to Question: A Major Goal of Mathematics Teacher Education
Dina Tirosh, Tel-Aviv University, Tel Aviv, ISRAEL

Abstract. Mathematics education departments make efforts to revise their teacher
education courses in response to recent documents that call for dramatic reforms in
the teaching and learning ofmathematics. This paper briefly describes the "Student
Thinking About Rational Numbers" (STAR) course, it then analyzes three episodes
drawn from the beginning, the middle and the end of the course, focusing on
transitions in prospective teachers' understanding of mathematical procedures, shifts
in their conceptions of what counts as an acceptable mathematical explanation, and
developments in their awareness of the strengths and the limitations ofpractically
-based and mathematically-based explanations. Finally, some implications for
mathematics teacher education are drawn.

Prelude
Janet, a beginning elementary fifth grade school teacher, described the standard
multiplication-of-fraction algorithm in her class, and asked her students to work out
several examples. Some minutes later one of the most talented students asked:
David: It is so easy to multiply fractions. I just multiply the tops and the bottoms. I
don't understand why we can't add fractions in a similar way.
Janet demanded some clarifications:
Janet: I don't understand your question...
David: For instance, if I have to add 1/2 and 1/4 , I can add the I and the l , and then the
2 and the 4, instead of doing all the complicated things with the common denominator.
Janet interpreted David's question to indicate that he still faced difficulties adding
fractions. She immediately reacted:
Janet: If it is still hard for you, David, we should all do some more examples...
David: I know how to add fractions. My question is why we do it in such a way. It is
strange that addition is complicated while multiplication is easy.
Janet was quite shocked. She certainly agreed that adding fractions was much more
demanding than multiplying them. Yet she regarded these standard algorithms as
self-evident and incontrovertible. After class, Janet discussed her "shocking
experience" with two of her experienced colleagues, and they both confirmed that
such a question is rarely asked in mathematics classes. Janet reckoned that David
might ask the same question in the next meeting, and believed it was her responsibility
to come up with an appropriate answer - but she was unable to come up with any. She
did not know what to do.

Recent Reforms Encourage Students to Ask Questions
How will Janet proceed? What will she do? Let's leave her for a while, and discuss
her colleagues' comment that such a question is uncommon. David's question, and
many other "why-type" questions (e.g., Why '/2 is bigger than '/4 ?, Why invert and
multiply?, Why .2=.20?, Why is division by zero undefined?) are indeed rarely asked



in most classes. The traditional sequence of mathematics instruction, consisting of

providing answers to the previous day's assignment, teacher's brief explanation of a

new content, and working on a new assignment while the teacher moves around the

class answering questions, fails to encourage students to understand why things are the

way they are. (e.g., National Council of Teachers of Mathematics, 1991).

A major recommendation that emerged as a result of the recent calls for dramatic

reforms in the teaching and learning of mathematics is that teachers should welcome

students' questions (e.g., Australian Education Council, 1991; NCTM, 1991). The
professional standards for teaching mathematics, for instance, envisage mathematics

classes in which students and teachers are actively engaged in exploring mathematical
situations. According to these recommendations, teachers are expected to ask, and to

stimulate students to pose questions such as "Why is it true?", "What would happen

if..." What if not?" (NCTM, 1991). The professional standards and other reform

documents recognized that this kind of teaching is significantly different from the

traditional one, and that such changes require that teachers have long-term support and

adequate resources. Those who participate in the preparation and the professional

development of teachers are faced with many related issues, including: What
knowledge will enable teachers to bring their instruction in line with the current
recommendations for reform in instruction? What processes could foster change in

teachers' conceptions of mathematics and mathematics instruction? This paper

describes the "Student Thinking About Rational numbers" (STAR) method course,

which was developed to address these issues.

The STAR Course
The goals of STAR clearly resonate with those set by the various reform documents:
(1) encourage a view of mathematics as a human-made domain; (2) enhance
prospective teachers' knowledge of mathematics; (3) promote prospective teachers'
knowledge of students' conceptions; and (4) advocate a view of mathematics
classrooms as learning communities in which individuals develop personally
meaningful mathematical ideas as they participate in the interactive construction of

mathematical meanings.

STAR is structured around a large data-base of activities aimed at developing
prospective teachers' understanding of mathematical concepts, increasing their

knowledge of children's conceptions, and enriching their repertoire of instructional

strategies. These activities have been developed on the basis of the large body of

recent knowledge regarding children's and prospective teachers' mathematical
conceptions and ways of thinking about rational numbers. Most tasks included in the

data-base are "why-type" questions, presented as if they were asked by elementary

school students. Prospective teachers are generally encouraged to work in small

groups, to suggest responses and to present them in class. This constitutes the basis

for discussions on mathematical and pedagogical aspects of mathematics instruction.

A first version of this course was developed in 1994. Since then, the ways of thinking

about and with rational numbers as they are revealed by prospective teachers during
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the courses are sources of inspiration for constant modification of already developed
activities and for the formation of new ones. Currently, the infonnation related to an
activity in the data-base is presented in three parts: a description of the activity;
general description of related research findings; and suggestions for discussions that
could originate from the activity. The data discussed in this article are from a class of
24 prospective elementary teachers who specialized in teaching mathematics in their
second out of the four year teacher education program. Preprogram data suggest that
before the course, the vast majority of the prospective teachers tended to perceive
mathematics as consisting of rules and procedures that students should practice and
memorize. I shall concentrate on three episodes that occurred at different times dunng
the course and focus on transitions in the prospective teachers' views regarding
mathematical concepts, and on the gradual development in their awareness of strengths
and limitations of practically-based and mathematically-based explanations.

Activity 1: Can Fractions Be Added In An Easier Way?
It has often been reported that students tend to add fractions by "adding the tops and
adding the bottoms" (e.g., Carpenter, Cobitt, Reys, & Wilson, 1976). The first task
that the prospective teachers encountered related to this tendency:
Task 1. You are discussing operations with fractions in your class. In the course of
this discussion, Ken says, "It is so easy to multiply fractions. I don't understand why
we don't add fractions the same way: adding the tops and adding the bottoms"?
Participants were advised to discuss Ken's question in small groups and to present
their responses in class. Here we focus on the first part of the class discussion,
highlighting the negotiations between the participants on what counts as an explanation
to this question (All names used for study participants are fictive):
Teacher: How would you respond to Ken's suggestion?
Sandra: I'll explain that adding fractions is different from multiplying fractions. I'll
explain that when we add fractions, we do not add the tops and the bottoms, we have
to find the common denominator.
Rachel: We decided to explain that it is impossible to add two fractions, unless they
have the same denominator.
Mary: We would explain that in addition you must have the same family of fractions,
but in multiplication it is not necessary.
Sandra, Rachel and Mary did not explain "why". Jane and Sharon commented on this:
Jane: I'm sure Ken will not appreciate these explanations. They do not tell why he
can't add fractions in the way he suggested... I never thought about it... I add
fractions the way I was told... It's the rule...
Sharon: I also never thought about the reasons for adding fractions the way we do.
It's a strange question. It is also strange to think about adding fractions in a different
way. I can only explain how to add fractions but not why, or why not.... Do students
really ask such questions? That's scary!

There was general agreement with Sharon and Jane's remarks. The majority ofthe
class acknowledged that they accepted the standard addition-of-fraction algorithm as a



rule and never questioned it. This was a turning point in the discussion. The
participants started providing practically-based and mathematically-based arguments
against adding the tops and adding the bottoms.
Karen: I will take a sheet of paper and demonstrate that when we take 1/2 of the paper

and add to it '/4 of the same paper we get % of the paper. But when we add the tops
and the bottoms we get another sum: 2/6.
Anna: Your explanation shows that we get different answers when we use these
different methods. It does not explain why the tops and bottoms method is not correct.

I have another explanation [she wrote on the board]:
2 x 12 =1 and 2x = 1/2 + =1 but if we use the tops and bottoms method, we

get 2x 12= '4 + I/2=2/4, so we get a contradiction.
Betty: Karen also showed that if we use the tops and bottoms method, it leads to a
contradiction. She showed that if we add '/2 and '/4 in the tops and bottoms method, we

get less than ' /2, and this is impossible. We add to1/2 a number that was not zero, and

not negative, so the sum must have been bigger than '/2.
Karen: You got me wrong. I meant something totally different. I used the sheet of

paper because I'm sure children in elementary school need concrete examples. We

can also make a cake in class, taking 1/2 kilogram of wheat and 1/4 kilogram of sugar,
weighting these quantities, showing that we get % kilograms, and not 2/6.

The teacher then decided to draw the participants' attention to the profound
differences between Karen's explanation and those of Anna and Betty, introducing the

notions of practically-based and mathematically-based explanations.
Teacher: What is the difference between Karen's and Betty's explanations ?

Ruth: Karen uses concrete examples from daily situations. Betty did not do that.

Teacher: And what about Anna?
Anna: My explanation also does not use daily situations. 1 prefer my type of
explanation, because I get confused with these illustrations.
Teacher: Can we come up with more examples of concrete, practically-based
explanations? Can we also find other mathematically-based explanations?

In this episode we observed four types of prospective teachers' reactions to the "why-

type" question that they were dealing with: explaining how (instead of why);

rule-based arguments; practically-based arguments; and mathematically-based
arguments. The participants demonstrated that the sum resulting from adding the tops

and adding the bottoms is inconsistent both with their daily experience and with the

definitions of other mathematical operations. Toward the end of this session, the

notions of practically-based and mathematically-based explanations were discussed.

Activity 2: Can Fractions Be Divided In An Easier Way?

Division of fractions is often considered the least understood topic in elementary

school, and children's success rate on these tasks is usually very low (e.g., Hart, 1981).

Children tend to divide fractions by dividing the tops and dividing the bottoms (e.g.,

Tirosh, 1996). It is important to stress that when dividing fractions, unlike when
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adding them, the standard "invert and multiply" algorithm and the "dividing the topsand the bottoms" method result in the same quotient.
The episode presented here took place twelve weeks after the course started. To put itin context, we should say that after working on addition of fractions, the class had
dealt for several weeks with activities related to various models of mathematical
operations. The twelfth lesson focused on intuitive models of division (see, for
instance, Fischbein, Deri, Nello & Marino, 1985). The first task demanded the
calculation of 1/2 : % . One participant commented that it is strange that although
multiplication and division are related, multiplication of fractions is so simple while
division is so complicated. The instructor decided to take this opportunity and extend
the discussion on definitions of mathematical operations. She requested the
prospective teachers to consider this comment in groups and to report on the process
they went through and their final conclusions.
All prospective teachers assumed that the quotient resulting from the "dividing the topsand dividing the bottoms" method would be different from that resulting from the
application of the standard division-of -fraction algorithm. They tried "different typesof numbers" and were confident that they would eventually find a "counter example".
After about 10 minutes, Laurie commented:
Laurie: I think that in principle we can use the tops-and-bottoms method to divide
fractions. We all tried many examples with different numbers, and always got the same
results. So why do we have to invert and multiply? It is annoying to use the
complicated way and not the easy one.

Laurie's comment suggested that she was quite confident that the tops-and-bottoms
method is appropriate for dividing fractions. She based her decision on an
accumulation of inductive evidence, involving comparison of results yielded from the
method in question (dividing tops and bottoms) to results ofa method that she
regarded as correct (invert and multiply). She also expressed her view that the
tops-and-bottoms method is much easier than the invert-and-multiply algorithm. Still,
she appeared to feel obliged to obey a certain authority decreeing that division must bedone in a certain way (invert and multiply).
Dana, however, presented a different opinion:
Dana: I think we can use this method in some cases, but in other cases we get stuck. Itook 1/2 : % . I divided the tops and got 1, but in the bottoms I got 'A . I couldn't go onand had to use the invert-and-multiply method.
The participants seemed to accept Dana's argument. Then, Victoria raised a
"why-type" question which led to the following interchange:
Victoria: So we are stuck with the invert-and-multiply algorithm. I know how to do
it, but I don't know why we do what we do.
Karen: We can use the measurement model. If we take 1/2 : % we can think of how
many '/4 make a '/2 , and the answer is 2.
Anna: But, this does not explain why we first invert and then multiply.



Here, we see clear signs that Victoria differentiated between "describing how" and
"explaining why". Her comment was made by the end of the lesson. For the next
meeting, some participants brought to class a common teacher guide which suggested
to use measurement problems and concrete materials to explain the invert-and-multiply
algorithm. During this meeting, the prospective teachers worked in groups, attempting
to understand the suggested explanation. After about 15 minutes, Anna commented:
Anna: This explanation holds only for some cases. It works only when the dividend is

a multiple of the divisor.
Karen: I like the explanation in the teachers' guide. It illustrates the idea.
Anna: But it does not show why we can always invert and multiply.
Karen: It is always like that. When we teach that 1+2=3, we take one cube and two
cubes to have three cubes. But, we can't do it with 1+ (-2).
Anna: We shouldn't show 1+2 with blocks. It will confuse the children later...
Betty: Right. Later they will think that 5-7 is 0, because there are no cubes left....
Karen: But what can we do? Children need concrete examples. They do not
understand if we do not use something concrete...

A central issue in this snapshot is the legitimacy of using concrete materials that, due
to their own properties (e.g., having physical dimensions) can potentially represent
only some instances of a mathematical phenomenon. Karen conceived such concrete
representations as essential tools that support the learning of mathematical concepts
and procedures in elementary schools. Anna and Betty expressed their concerns about
possible, long-term implications of the use of such models. Notably, accessibility to
children and generality are two central issues in the research mentioned both for and

against the use of practically-based explanations (e.g., Orton & Frobisher,1996). These
argumentations were spontaneously raised by the participants as they reflected on
suggested explanations of the invert-and-multiply method.

In this episode, the prospective teachers questioned the status of the invert and
multiply method for dividing fractions which they had previously regarded as
incontrovertible, and dealt with the possibility of using other methods to divide
fractions. Gradual changes were observed in participants' conceptions of what could

count as an explanation to "why-type" questions: "explaining how" and stating that
"this is the rule that we have to follow" were no longer regarded as legitimate
reactions, and practically-based explanations were evaluated on the basis of their

generality and accessibility to children.

Activity 3: Can Zero Divided By Zero Be Zero?
Division by zero is one of the instances that violate the intuitive belief that every
mathematical operation results in a numeric answer. Students and teachers tend to
view this undefined mathematical operation as a "rule to remember" (e.g., Ball, 1990).

During the STAR course, a participant raised the issue of division by zero in the last
session, which was planned to be devoted to general reflection on the course:
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Teresa: I have learnt to ask why mathematics is the way it is. I still don't know why it
is impossible to divide zero by zero.
Many of the participants wanted to react. Molly was the first:
Molly: I think 0:0 should be 1, because any number divided by itself is I.
Teresa: But I can say that 0:0 should be 0 because 0 divided by any number is 0.Anna: I know why 0:0 is not 1 [she wrote on the board]:

o=1 But:
o
- 0+0

=
0-+ o- 1+1=2 So - =1 and U =2 , so 1=2 .

The class seemed deeply impressed. Then, Shelly reacted:
Shelly: So, it could be 2. Because if 0:0=2 then 2.0=0 and that's correct.Belly: No. This will not work, we can do what Anna did before, showing that1=2=3...So 0:0 could not be one. We should find why 0:0 is not zero--- it mustcontradict something...
The class worked for quite a while. Then Laurie commented:Laurie: We should try harder. We should look in books and ask people. But, in mymind it is reasonable that 0:0=0. Is it possible that those who determined that 0:0 isimpossible thought that it could be either 0 or 1, and did not notice what Anna didabout 0:0=1?

This comment represents a dramatic change in Laurie's attitudes towards mathematicsrules. By the end of the course, she was willing to doubt the validity of a well
established mathematical definition and to consider its revision. Other participantsseemed enthusiastic about this possibility too.
This episode suggests that by the end of the course, the participants tended to viewmathematical statements as human-made, arguable conclusions, and not as absolute,immutable truths. Traditional explanations of mathematical rules were also challengedand reexamined, taking account of their possible, long-term negative effects.

Epilogue
Let's return now to the prelude, and see if participation in STAR could have helpedJanet solve her problem which was to explain why fractions are not added by addingthe tops and adding the bottoms. This specific issue was dealt with in STAR, and it istherefore reasonable to assume that had Janet been a participant in STAR, she would
have approached the student's question by using one or more of the practically-based
or mathematically-based explanations discussed in the course. Participation in STARcould have helped Janet and other prospective as well as practicing teachers answering"why-type" questions that were discussed during the course, but one would expect that
the contribution of such a course be more profound.
The paper suggests that engaging prospective teachers in joint work on "why-type"tasks encourage them to reflect on their own understanding of mathematical conceptsand structures and to acknowledge the discrepancies between "knowing that" and"understanding why". The paper illustrates that participants in the course graduallydeveloped new sociomathematical norms regarding what counts as acceptable
mathematical explanations: Rule-based justifications were no longer accepted as
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legitimate explanations, and practically-based and mathematically-based explanations

were pursued and examined in light of their accessibility to children, their generality

and their possible long-term effects on students' mathematical conceptions and ways

of thinking (Yackel & Cobb, 1996). Episode 3 demonstrates that by the end of the

course, participants in STAR were willing to question well-established mathematical

statements which at the beginning of the course were perceived as unquestionable.
The description of these episodes should transmit not only the changes in the
participants' conceptions of mathematical explanations, but also their deep
involvement and enthusiasm on the part of the prospective teachers.

A word of caution should be added here. The first paragraph of this epilogue, argued

that it is reasonable to assume that participation in STAR would have helped Janet

(and others) in answering the "why-type" questions that were discussed during the

course. Yet, so far we have not followed participants in STAR into their own classes,

and thus at this stage of our study we lack the information needed to evaluate the

program's effects on participants' own teaching. The next stage of our research will

concentrate on studying the various effects of STAR on the actual teaching of the
participating prospective teachers.
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Abstract
Previous research has shown that even after several algebra courses starting
university students still have serious difficulties in understanding the elementary uses
of variable. Our concern now is to study how the understanding of variable evolves
through schooling. For this purpose we conducted a study involving students aged
12- 18 years. Results obtained show that students' conceptions of variable do not
substantially improve as more algebra courses are taken. We consider that students'
difficulties are not of a cognitive or epistemological nature, but that they are a
consequence of current didactical approaches.

Introduction
Many studies have been conducted to understand cognitive processes leading to the
construction of the concept of variable. Special attention has been paid to students'
difficulties at different school levels (Warren, 1995; Stacey and MacGregor, 1997,
Boulton-Lewis et al., 1998). It has been found that even after several algebra courses
starting university students still have serious difficulties in understanding elementary
uses of variable (Ursini and Trigueros, 1997). Several questions arise from these
findings. In particular we are interested in studying how the understanding of the
concept of variable evolves trough schooling and in comparing the evolution of the
different uses of variable to find out which, if any, is more strongly developed. In this
article we present the findings ofa study that addressed these questions.
Theoretical framework
Variable is a multifaceted concept. It includes as a whole different aspects. In order to
reach a competent handling of elementary algebra students need to cope at least with
what we consider the most relevant of them: unknown, general number and variables
in functional relationship. An acceptable understanding of these aspects requires some
basic capabilities as those stressed by Ursini and Trigueros (1997) in their
decomposition of the concept of variable. This decomposition points to the
importance of interpreting, manipulating and symbolising each one of those aspects
when dealing with algebraic situations. They stress as well the value of being able to
handle the variable as a mathematical object integrating its different aspects in one
concept and shift between them in a flexible way.
Methodology
In order to study how the understanding of the concept of variable evolves through
different school levels, the questionnaire designed by Ursini and Trigueros (1998)
was used with 98 students aged 12-18 years. The distribution of students was as
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follows: 37 students in the three levels of Mexican middle education (12 15 years

old); 30 students in the three levels of Mexican high school (16 18); and 31 starting

college students enrolled in social studies, business and economics majors.

Students' responses were classified as correct, incorrect and not answered in order to

make a global quantitative analysis per group and per student. The mean percentage

of correct answers given by the students of each level was calculated in order to be

able to compare them (Lozano, 1998). Based on the theoretical framework a

qualitative analysis of students' responses was made, and some students were

interviewed. This analysis provided a general overview concerning students'

capability to work with different uses of variable and information concerning the

evolution of this capability.

Results and Analysis
In the following graphs we present the mean percentages of correct answers given to

the questionnaire by the students from different groups. In all the graphs the different

groups are labelled as Sec 1, Sec2, Sec3 for the first, second and third year of middle

school; Prepal, Prepa2, Prepa3 for the first, second and third year of high school; and

Univ for the university group.
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As can be observed in the graphs there
is very little variation between the
percentages of correct responses in the
different groups. Moreover, the

percentages scarcely exceed 40%.
Overall these results show that during
schooling students undergo a very slow
evolution in their understanding of the
different uses of variable. Even though
a small raise in the curve for variable
as unknown seems to indicate a slight
evolution in students' understanding of
this use of variable, a decrease in the
curve for Prepa3 students shows that
their understanding is not solid. This
decrease might be due to the fact that at

that school level students are not
taking algebra courses but starting with
Pre-Calculus or Financial Mathematics
where variable as unknown is not

emphasised any more. Regarding
variable as general number, we

observe that as students progress

through algebra courses their
understanding of this use of variable
diminishes.

BEST COPY AVAJI LE



In the graph it appears as a decrease at Sec 3 and Prepa 1 levels. This result can be
attributed to the emphasis given in those courses to procedures for solving equations.
In contrast when students take other courses, like Analytic Geometry or Calculus
(Prepa 2 and Prepa 3) the understanding of general number slightly improves. But it
decreases again, as it can be seen, for college students. These fluctuations reveal, as in
the case of variable as unknown, that their understanding of the use of variable as
general number is fragile and not consistent enough.
Variables in functional relationship are not well understood by students at any school
level. It can be observed in the corresponding graph that the percentages of correct
responses are very low. It is surprising to realise that students who have not taken any
algebra course do better in these questions. This fact raises the question of the role
that courses play in the development of mathematical concepts. It seems that students
are more able to use their imagination and other resources when they have not been
exposed to formal algebra courses.

In order to gain a better understanding of students' capability to interpret, symbolise
and manipulate each one of the uses of variable considered, their responses were
analysed according to these dimensions. This analysis enabled us to develop a
classification of responses for each of the uses of variable and have a deeper
understanding of how students' conceptions change through their education.

Interpretation of variable
In the case of variable as unknown we found that students:

interpret the symbolic variable in an equation as an entity representing values that
can be determined (serie 1);
interpret the symbolic variable in an equation as an entity that can take any value
(serie 2);
recognise in a simple problem, leading to a linear equation, the presence of an
unknown that can be determined (serie 3);

recognise in a problem leading to a quadratic equation, the presence of an
unknown that can be determined (serie 4).

The following graph presents the evolution of students' interpretation of variable as
unknown.

As can be seen in this graph
interpretation of variable as unknown
gradually improves while students take
algebra courses (serie 1). This coincides
with a gradual decrease of the
interpretation of the unknown as
representing any value (serie 2).
However, when students start taking

Secl s PreFel Prepa2 Prepa3 "moo other mathematics courses in which

100

Interpretation of Unknown

Suie1

Serie2
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unknown is not emphasised and other uses of variable are present, they seem to

experiment confusion. The interpretation of variable as representing an unknown

value that can be determined decreases dramatically while its interpretation as
representing any value increases. This provides evidence of the difficulty students

have to deal with different uses of variable at the same time and the tendency to focus

only on one of them at a time.

Even when working with very simple problems, students have strong difficulties in

identifying and interpreting the unknown (serie 3 and 4). Again, it is amazing to

realise that students perform much better before having been exposed to algebra

courses (sec 1) and that their capability to interpret the unknown gets lost with

schooling. A reason for this could be that algebra beginners, lacking in memorised

algorithms and routines, face the problems without biases in a more intuitive fashion.

Regarding variable as general number we found that students:

interpret the symbolic variable in an open expression or a tautology as representing

any number (serie 1);

interpret it as an entity representing a determined value (serie 2);

interpret it as an undetermined object they can operate with (serie 3).

can see a pattern (figure and/or number) (serie 4).

As can be observed in this graph
when variable is used as general
number students capability to

interpret it correctly gradually
decreases (serie 1), in spite of some

40 fluctuations, while an incorrect

2D interpretation of it as unknown
increases (serie 2). We consider that
this is a consequence of the emphasis

given in algebra courses to variable as unknown. In accordance with the graph

representing the interpretation of unknown, in Prepa 2 they recover temporally the

capability to recognise a general number. However, it has to be consider that at this

school level they tend to interpreted in that way any use of variable. In spite of many

algebra courses students don't develop an understanding of the variable as an object

they can operate with (serie 3). On the other hand in all levels they are acceptably

good in seeing patterns (serie 4). This is considered (Mason et al., 1985) as a

necessary step in the generalisation process, but they are not able to express it as it

will be seen further.

100

Interpretation of General Ninber

o
Sect Sect Sec3 Repel Repa2 Repa3 U*

Serie1
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For variables in functional relationship we found that students:

recognise the correspondence between numerical quantities (serie 1);

recognise the joint variation of related variables (serie 2);
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think of the functional relationshi onl in terms of discrete values (serie 3).

Serial

Serie2

Univ

interpretation of variation in terms of discrete values (serie 3), although fluctuating,
persists in all school levels. Clearly absent in all the school levels is the capability to
conceive the joint variation of related variables (serie 2). These results indicate that
the school mathematics courses do not address in a satisfactory way the idea of joint
variation, which is a fundamental notion when dealing with functions.

In general students can interpret related
variables as representing quantities in
correspondence whichever the
representation used (table graph analytic
expression) (serie 1). However, as it can
be observed, this capability slightly
diminishes during the school years. The

Symbolisation of variable
In the case of variable as unknown students' answers were organised in three groups:

translate simple sentences to algebraic language (serie 1);
pose an equation to solve linear problems (serie 2);
pose an equation to solve quadratic problems (serie 3).

Simbolization of Unknown

4-- Serial

Serie2

. . A. .. Serie3

Almost independently of the algebra
courses taken, students can translate
simple sentences to algebraic language
(serie 1). Students' capability to pose
equations to solve linear problems (serie
2) gradually improves during the
algebra courses (Sec 2, Sec 3 and Prepa
1) but it diminishes after these reaching

prepal) certain stability. At all school levels students are unable to pose equations to
solve quadratic problems even when they are simple (serie 3). They have difficulties
to identify the unknown of a problem and to link it with the data in a coherent way.

For variable as a _eneral numbers three categories were found:
antolinthon of General tinter

oa
Sect sect Sr3 REpal Fteixi2 Rtpa3 thy

translate simple sentences
involving general number to
algebraic language (serie 1);

represent algebraically the general
term of a numerical sequence
(serie 2);

represent algebraically the change
involved when going from one
step to the next in a numerical
sequence (serie 3).
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This graph shows a fluctuating capability to translate simple sentences to algebraic

language (serie 1). Only in the case of very simple numerical sequences students can

produce the general term, although there are strong fluctuations in the different groups

(serie 2). The symbolisation of change involved in the generation of a sequence

causes great difficulties at all school levels (serie 3).

In the case of variables in a functional relationship students were able to symbolise

the relationship when:
a simple verbal expression was given (serie 1);

a table was given (serie 2);
when a verbal problem was presented (serie 3).

Sintolization of Functional Relationship
These results suggest that students
learn to represent algebraically simple
verbal expressions involving a
functional relationship as they progress
through algebra courses (serie 1). But
this is not the case when they deal with
verbal problems (serie 3). They have

difficulties in recognising the joint
variation of the variables involved and

this seems to be an obstacle for symbolising a relationship. Again, it is amazing to

find that younger students show a greater capability to symbolise information given

in a table than university students (serie 2).

Manipulation of variable
The following graph shows students capability to manipulate variable as unknown

when it appears in linear equations (serie 1) and quadratic equations (serie 2).

The lack of capability to manipulate the
symbolic variable in any equation is

striking. It is also evident that this

capability almost disappears when
students are not taking algebra courses,
even though, as we have mentioned
before, these courses strongly emphasise

1 r ppaain equation's solving.

100

Manipulation of Unknown

40

20

Serie2

In the case of variable as general number we classified students in two groups,

considering those who could:
simplify algebraic expressions (serie 1);

expand algebraic expressions (serie 2).
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Nbripialion daneral Mnter Students' capability to manipulate
general numbers varies a lot in
different levels. However, the general
tendency shows an improvement in
this capability. Moreover, it seems
that it is easier for them to simplify
expressions than to expand them.

For variable in functional relationship students' responses were grouped as follows:
substitute a number to the independent variable in order to determine the value of
the dependent variable (serie 1)
manipulate an analytic representation of a function to determine variation intervals
(serie 2)
manipulate an analytic expression in order to produce its graph (serie 3)

Manipulation of Variables in Fincticesal Relationship

---- Sett
Seri

It can be observed that all students
have difficulties to manipulate
variables in functional relationship.
This is apparent both when it is
necessary to determine values by
substitution (serie 1) as when intervals
have to be found (serie 2). These
results are intimately related with the

difficulty students have in dealing with related variation. A striking decrease in the
percentages reflecting the capability to draw a graph was also observed (serie3). Once
more students starting their study of algebra perform better than those in upper levels,
in particular they are much better than starting university students.

We suggest that the difficulties students have in manipulating variables is tightly
linked to their difficulties in interpreting and using variables. At different school
levels they are taught manipulation but, without understanding its usefulness, they are
forced to memorise techniques and to use them when they consider it appropriate. A
competent use of manipulation requires the understanding of the meaning of the role
played by the variable within a specific situation.

Concluding remarks
This results show that students' conception of variable does not substantially improve
as more algebra courses are taken. They do not develop a comprehension of variable
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as a multifaceted entity in spite of the presence of the different uses of variable in

algebra courses. It is important to remark students' incompetence to discriminate

between different uses of variable and how their interpretation of variable is strongly

influenced by the specific topic being treated in class at a particular moment.

These results suggest that instead of promoting a deep understanding of variable and

the development of intuitive algebraic ideas, current teaching practices seem to

obstruct them. Also it is important to stress that errors committed by algebra

beginners are not remedied by instruction and they prevail up to university levels.

Students seem to develop only one of the aspects proposed by Bell (1996) as

characterising algebraic thought, namely, resolution of arithmetic problems by

step-by-step methods working from given data to unknowns or by global perception

and use of multiple arithmetic relations.
We consider that these difficulties are not of a cognitive or epistemological nature, but

that they are the result of current didactical approaches. We suggest that the different

uses of variable, as well as their relationship, should be made more explicit to
students. Variable is a fundamental concept in understanding mathematics and other

sciences. A reconsideration of the way it is taught is needed.
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USING A HANDBOOK MODEL TO INTERPRET FINDINGS ABOUT
CHILDREN'S COMPARISONS OF RANDOM GENERATORS

John M. Truran Kathleen M. Truran
University of Adelaide, Australia University of South Australia

The "Handbook Model" developed by the first author is used here to
provide an integrated summary of research into children's comparison
of random generators which is accessible to teachers but highlights the
known complexities of individuals' responses. Linking psychology with
pedagogy highlights the meaning of earlier, only partially successful,
attempts to codify responses. Children's construction of probabilistic
meaning in such situations must also take account of their inconsistent
heuristics and approaches, the need for a generalisable non-numeric
probability estimator, and the need to verify judgements in ways which
allow for the uncertainties involved in any stochastic situation.

The Concept of a Handbook Model
J. Truran (1998) proposed using a "Handbook Model" for codifying research find-
ings on specific topics and to contribute to the "model-building" stage of the devel-
opment of "normal science" (Romberg, 1983) in mathematics education. The Model
uses a prose summary to integrate findings within a hierarchy of contexts. It
eschews a discursive style providing a general summary of reported findings in fav-
our of the more segmented approach found in handbooks used within hard sciences.
The hierarchy makes research findings readily accessible because each part of the
text is tightly focussed, and the prose is an effective medium for expressing com-
plexities. So the findings are more likely to be accessible to teachers with specific
needs, and may more easily complement standard curriculum documents and text-
books. The Handbook Model provides one example of how mathematics education
research might be expanded to encompass, not only psychological investigation, but
also "teaching processes as an object of study as such, as well as the epistemology of
mathematics from a teaching/learning perspective" (Balacheff, 1997).

Researching Children's Comparison of Random Generators (RGs)
Typically subjects are presented with two RGs and asked which they would prefer
to use to obtain a desired outcome. Two seem to be sufficient for establishing the
heuristics usedSpinolla (1997) used three and Ritson (1998) four, but without
identifying new heuristics. Here we discuss only symmetric Two-Outcome Random
Generators (TORGs), where each RG has finite numbers of favourable elements
(called here "G", for "good") and unfavourable ones ("B", for "bad"). A typical
example would be two urns: one containing 4 G and 3 B balls, and one containing 5
G and 4 B balls, summarised here as {4-3; 5-4). The better choice (if there is one)
is listed first and called "X", while the less good one is called "Y". Subjects know
that "both are equally good" is an acceptable answer. Such cases are indicated by
using a colon rather than a semi-colon, e.g., {2-3: 4-6), and the smaller number of
elements is listed first. We discuss here only comparisons between RGs of the same
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form because children do not see mathematically identical RGs with different

structures as being the same (K. Truran, 1994). For example, selecting a table-

tennis ball from an urn containing six balls is seen as "different from [mathe-

matically identical dice or spinners] because they roll everywhere and some could

be in corners and you wouldn't know" (boy, Year 7, aged 12: 4). While not all of

the methodological difficulties in this research have been addressed by all of the

researchers discussed below, we consider that any methodological weaknesses are

not sufficiently serious to invalidate the broad findings relevant to this paper.

Fischbein (1975, pp. 82-89) proposed that children might be making perceptual,

not probabilistic, judgements. But J. Truran (1994) reported children's language

which showed an awareness of the probabilistic nature of the task, and, for certain

and impossible events (where proportional reasoning is not possible), that some

children were moving towards formal mathematical language and the development

of a probability scale. Furthermore, Callizares, Batanero, Serrano & Ortiz (1997,

p. 50) observed heuristics reported in the stochastics literature but not in the prop-

ortion literature, such as the "equiprobability bias"two outcomes are seen as equi-

probable regardless of the RG(Lecoutre, 1992) and the "outcomes approach"

making a prediction about a single outcome rather than a statement about a prob-

ability function(Konold, 1989). So comparison of probabilities may well require

proportional or perceptual skills, but it also requires stochastic understanding.

Focus of This Paper

This paper examines, so far as space will allow, research into children's comparison

of probabilities to develop conclusions which have sufficient generality to be useful

for classroom teachers. Its purpose is not to construct a quantitative meta-analysis

of the form described by Glass, McGaw & Smith (1981). Rather, it may be seen as

a qualitative equivalent with a specific focususing research to enhance pedagogy.

Summary of Research Findings

In Chapter 6 of Piaget & Inhelder (1951/1975) children's responses to such situat-

ions are classified within a developmental hierarchy based on their skill in co-ordin-

ating the various elements of the situation (the numbers of each colour and their

relevant totals), especially their ability to relate parts with wholes. Many similar

experiments have followed from this, using three types of analysis.

Classifying Comparison Heuristics

The most common approach has been to determine the heuristics employed and to

use some measure of complexity to arrange them in order. In general, the hierarchy

has started by assessing children's ability to co-ordinate the parts and wholes of each

RG, with higher levels based on whether their comparisons were additive (e.g.,

a - b v. c - d) or multiplicative (e.g., a/b v. c/d). Freudenthal (1978, pp. 293-294)

suggested that a/b v. c/d is cognitively easier than a/c v. b/d, especially when dim-

ensions are involved, but this needs further investigation. In any case, some multi-
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plicative approaches cause particular difficulties when denominators are 0. The
principal purpose of most researchers has been to establish a hierarchy to be used as
a measure of development, rather than to explain how the development occurs.

Way (1997) has summarised and codified six of these summaries, three from
research into proportional reasoning, and three from research examining the com-
parison of probabilities. She defined ten categories, and made reasonable matches
between these categories and those suggested by other workers. However, because
the approaches differed markedly in the number of categories they defined, the
match was inevitably far from perfect.

Matching Situations with a Cognitive Scale
An alternative approach has been to rank questions into a hierarchy, rather than
responses, to claim that a subject who has correctly answered all questions up to a
certain level has reached a certain stage of cognitive development. For proportion,
this approach has been carefully developed by Noelting (1980) using a battery of
comparisons covering "all possible variations of the particular situation" (p. 218)
each of which was matched with a particular Piagetian level.

Noelting's approach has been taken up by Caiiizares et al. (1997), but with a much
more restricted range of questions. They found some conflict with Noelting's find-
ings, possibly from the slightly different forms of their questions, and possibly
because their stochastic setting brought subjective responses into play which would
not have arisen in Noelting's deterministic problems.

Matching Heuristics with a Cognitive Scale
Finally, Watson & Moritz (1998) have used written reasons for responses to prob-
lems to assign cognitive achievement levels within the neo-Piagetian SOLO Taxo-
nomy (Structure of Observed Learning Outcomes), based on the level of co-
ordination of the relevant features of a problem. The size and longitudinal focus of
the survey (with testing every two years) make its results of special value. Only one
comparison problem was used ({6-4: 60:40 }) and significant group improvements
were found as children moved from Year 3 to Year 7, and Year 6 to Year 10.
However, 37% of the children did not increase their assessed cognitive level of
response in four years, which matches Ritson's (1998, p. 211) finding that some
heuristics are remarkably persistent over time. Watson & Moritz also found that
those who did develop did so in a remarkably diverse set of ways.

The Problem of Inconsistent Heuristics
These three different approaches have yielded no consistent general conclusions.
Their striking common feature has been the diversity of responses offered. "Success
in difficult items was due to strategies valid for this problem, but not for the gen-
eral case," observed Caiiizares et al. (1997, p. 54); "children as young as 5 years
possess a repertoire of strategies to select from in reaction to the type of ratio pairs
presented to them," said Way (1997, p. 574). Our personal experience suggests that
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the heuristics are chosen to minimise computational demands, as is suggested by the

following examples from a Year 8 boy (aged 13: 7):

(2-3; 1-2)
Box X
Can you say why?
With box Y, for each G one there are 2 Bs and in this one it's, on one G there are 2

Bs and in the other one there is only one.

(2-1; 3-3)
Box Y.
Why box Y?
You've got equal chances in box Y and you are outnumbered in box X, no sorry

I'm going for G, you've got more chance in X because there's more of them.

Because researchers tend to use small, familiar numbers, this hypothesis has not

been examined in detail. Nor has the effect of replacing small numbers by larger

and/or less familiar numbers. Yet Collis (1975) has shown that number size and abi-

lity to achieve "closure" are relevant for understanding real numbers, so are likely

to be relevant here as well.

This inconsistency of response has several implications. Firstly, it strongly suggests

that data from small numbers of questions with familiar numbers will be poor

indicators of the level of cognitive development obtained. It is probably not possible

to rank either responses or questions into a hierarchy. Certainly, Piaget's research

team knew that their questions did not represent "a ladder of difficulties in the

development of the theory of probability" (Folder "calcul. probab.", Box "Hasard",

Archives Jean Piaget, Geneva).

Secondly, we need to be aware that children are often not conscious that their think-

ing is inconsistent as the follow example from a Year 8 boy (aged 12: 11) suggests:

(4-3; 5-4)
Both the same.
Why?
Because there is one more G in X than what you have B and one more G in Y than

what you have B.

(2-4: 3-6)
The same again because you've got 4 B and 3 G, you've got 4 Bs which is double

the two Gs and in Y you have got 3 G and 6 Bs so it is double the G again.

Is that the same sort of method that you were using on the question before that?

Yes.

Thirdly, researchers need to appreciate and investigate further the significance of

this inconsistency for the classroom teacher. Working with proportion, Hart (1984)

showed that specific teaching could help to eliminate additive comparisons, but the

improvements tended to be ephemeral, possibly because of weakness in working

with fractions. Given that there are so many heuristics employed, and that they tend

to be employed sub-consciously, this result suggests that deliberate correctional

teaching is unlikely to be successful.



The Value of a Graphical Probability Measure
To our knowledge, only one piece of research has tried to find an holistic way of-
overcoming inconsistency of approach. Acredolo, O'Connor, Banks & Horobin
(1989) asked children to place a mark on a probability number line to indicate the
probability of success in a stochastic situation, thus allowing comparisons to be
made indirectly by examining the relative positions of the marks. As a result child-
ren concentrated more on the relative values of both elements, and probably also on
their totals as well, and performed much better than had been reported in research
involving standard comparison of proportions, perhaps because they better
appreciated that holistic estimates were required. This seems reasonable on
theoretical grounds: the procedures were non-verbal, did not emphasise specific
component numbers, dealt with only one proportion at a time, and encouraged clos-
ure at a point on the number line. But this valuable finding, which builds on the
tendency which children already have to examine all of the relevant data, does not
provide them with any reason for not reverting to their intuitive approaches.

Difficulties in Verifying Judgements
In stochastics, providing counter-examples to encourage accommodation (in the
Piagetian sense) is difficult, especially in classrooms, Because large numbers of tests
are needed, especially for naive students. We propose two gamesrace-track and
gang-plankwhich our experience has suggested may be helpful, but this
hypothesis has not been tested rigorously.

The games are inherently interesting, capable of elaboration, and encourage com-
parison of RGs. In a basic race-track game, two or more players operate their
chosen RG in turn, and move forward one square if they obtain the desired out-
come. In a basic gang-plank game one player stands in the middle of a gang-plank
with an odd number of squares where the outer squares represent the ship's deck
and falling off into the shark-ridden ocean respectively. A positive outcome allows
one step towards the deck; otherwise, it is one step towards the sharks!
We know that individual experiences can prejudice judgements (the "availability"
heuristic) as may be seen in this quotation from a Year 9 girl (aged 13:8) a few
minutes after she had (a) played two gang-plank games with 2G 1 B, and had lost
the first and won the second, and (b) made 9 successive draws from an urn with 2G
1B and obtained 4G and 5 B:

{1-2; 2-5)
Box X.
Why?
The smaller number seems to come up more. In box Y there's more B ones, there's
a fair few more B ones than G ones and in box X there is still a better chance of
coming up with a blue one.

{3-3; 4-5)
Box Y.
Why?
Coz the lesser number seems to come up more and in box X they're both equal.
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Just as Hart (1984) found the calculator to be helpful in reducing the cognitive load

for working with fractions, so it is likely that computer simulation may be helpful

for testing decisions made when comparing probabilities in either the standard form

or in that used by Acredolo et al. (1989). Pratt (1998, ch. 8) has shown that the op-

portunity provided by a computer-world for rapid, repeated experimentation is

helpful for changing some children's interpretations, but for some children the

micro-world may not be seen as an exact model of the real-world.

So at this stage, research can suggest that computer simulations of RGs in a game

context may be effective in providing counter-examples which will discourage the

inconsistent use of different heuristics, but these suggestion still need to be tested.

A Handbook Model Summary of the Research Findings

Here, as was also reported in J. Truran (1998), we have shown that children's

responses to stochastic situations are inconsistent. A Handbook Model which is

directed at teachers who have to think on their feet requires providing a unifying

structure for interpreting such behaviour. Research and theory suggest that the

stochastic nature of RGs should be emphasised by using an interesting context where

judgements may be tested many times, and suggesting holistic ways for estimating

probabilities to by-pass the known inconsistent intuitive approaches.

As with J. Truran (1998), to save space, and to highlight the main themes, refer-

ences are omitted and terms defined in the main part of this paper are not re-

defined. Most may be easily deduced from the discussion above.

Comparison of Two-Outcome Random Generators (TORGs)

Deciding which of two TORGs to use to achieve a desired outcome in, say, a race-track or gang-

plank game is valuable for investigating chance processes and for encouraging and then testing

careful choices. Making a good choice in a situation like {a-b; c -d} normally uses skills which

are related to fractions, ratio and proportion, but stochastic situations introduce extra constraints.

Children's Varied and Inconsistent Numerical Strategies

The probability scale is defined only between 0 and 1 inclusive, so some comparisons, such

as (0-2; 0-4) involve values at its extrema. Such situations are useful for helping children to

see the value of a probability scale defined in this way.

Many heuristics for making choices may be observed in classrooms, often from the same

child. These choices are not fickle: they represent serious attempts to find a computationally

easy solution, and hence vary with the numbers presented. The most common incorrect ones

compare the absolute number of either Gs or Bs, or make subtractive comparisons like b- a

with d- c. Logically correct solutions used by children involve proportional comparisons using

any of three basic approaches, viz., comparing a with b, or withwith , or A-) with -c d.

The first two of these fail for cases at the extrema of the scale if the denominator is zero; only

the third is always appropriate, and is, of course, the standard way of measuring probability. It

is the least likely to be used by naive children because it involves both addition and division.
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While it is useful for a teacher to recognise that all these heuristics might be used, it is even
more important to realise that children do not use any one consistently. Rather they adjust
their heuristics to the numbers involved, usually to achieve simple arithmetic, so the mere
provision of a wide variety of a different situations is unlikely to lead by itself to children's
developing a totally consistent and generalisable approach.

Possible Stochastic Strategies

Children may well use heuristics which arise specifically from the stochastic situation. These
may include making purely subjective decisions, considering that both outcomes are equally
likely (by analogy with coins), or thinking that they are being asked to make a pred;,:.iion of
outcome (perhaps based on previous experiments) rather than a long-term judgement based
on the structure of the RG.

Problems of Verifying Proposed Solutions

Correct responses are hard to verify, because they may still lead to failure in an individual
game, especially if the race-track or gang-plank is relatively short. Computer models can be
an effective, time-saving aid here, but some children may not accept that they are true models
of "real life" situations.

Pedagogic Implications

Many children do not develop sound comparison methods over time without assistance.
Teaching designed to eliminate specific poor heuristics is unlikely to be of lasting value.
Using computer models in "estimate-test-revise estimate" situations will often prove helpful,
especially if the estimates are done by marking them on a probability number scale. This
encourages the students to co-ordinate simultaneously all the relevant aspects of the problem.
Race-games and gang-plank games can be good motivators.

Conclusion and Implications for the Future
We have shown that when comparing proportions in stochastic situations nave
children use a variety of approaches with little consistency. The "standard" probab-
ility approach is not intuitive, as implied by many curriculum documents, but may
be encouraged with skilful teaching. We have presented a structure for conveying
the research findings to teachers which sees psychological findings as relevant to the
environment in which children construct their meaning of probability. Finally, by
focussing on what pedagogues need from researchers, we have highlighted
important gaps in the research .findings, such as determining what classroom
approaches are most likely to engender sound and stable understanding. Without
decrying the value of pure research, we observe that such questions are more likely
to be seen as worth funding by those who hold the relevant purse-strings.
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ARE DICE INDEPENDENT? SOME RESPONSES FROM CHILDREN
AND ADULTS

Kathleen M. Truran John M. Truran
University of South Australia University of Adelaide, Australia

This paper examines some understandings of the concept of inde-
pendence of dice by comparing the results of an Italian study with
that of four Australian studies. Roughly comparable groups pro-
duced quite different results, and similar reasons based on control
were used to justify quite different responses. Some implications of
these findings are discussed, especially with respect to the place of
intuition in probabilistic thought and the lack of understanding of
probability held by some by pre-service teachers.

BACKGROUND
Independence is an important and difficult probabilistic idea. "People seem to find it
hard to consider an event as separate and detached from a series of similar events in
which it occurs" (Cohen & Hansel, 1955, p. 178). "The belief that successive out-
comes of a random process are not independent is supposedly one of the most com-
mon misconceptions about probability" (Konold, 1989a, p. 203). Yet independence
is frequently given inadequate attention by researchers and teachers. Most research
into children's understanding of independence has examined predictions of the next
outcome in a sequence (e.g., Green, 1986). But Fischbein, Nello & Marino (1991)
examined independence from a different perspective, and here we present and
compare results from some replications of this study.

SELECTION OF A SUITABLE THEORETICAL MODEL
There are two principal models we might have used. Piaget & Inhelder (1951/1975)
described understanding of probability using conceptual levels and claimed that a
full understanding did not develop until about age 12. Fischbein (1975), on the
other hand, claimed that effective probabilistic intuitions may be identified in child-
ren as early as pre-school age. But Green, working within a Piagetian framework,
suggested that because of the deterministic aspect of mathematics, sometimes for
probability 'performance declines with age' (1982, p. 774). Furthermore, speaking
of young adults, Konold, Pollatsek, Well, Lohmeier, Lipson (1993, p. 193) have
observed "that incorrect reasoning frequently occurs ... and that a subject can
switch from correct to incorrect reasoning, while reasoning about what an expert
would consider to be the same situation". Clearly neither of the principal models is
totally comprehensive. Indeed, as Shaughnessy (1992, p. 485) has observed:

[t]here are very few models of conceptual development in probability and
statistics. ... The difficulty with building models in research on stochastics is
that if a model were to try to incorporate the results of all the different types
of studies by mathematics educators and psychologists, that model would
run the risk of being so complicated that it may be of no practical use either
to researchers or to teachers.

EST Copy v 1 LE4 - 289

14 :54



We have chosen to follow Fischbein's approach using intuition because such diverg-

ent responses are found at different ages, and because of the important finding by

Fischbein et al. (1991) that some children do not regard the simultaneous tossing of

three dice as mathematically equivalent to tossing them one after the other. For

these children, when random generators (RGs) are operated together they are seen

to lose any independence they might have.

Interestingly, the eighteenth century French polymath and encyclopaedist, Jean le

Rond d'Alembert, also believed that the outcomes from successive and simultaneous

tossings would be different (Todhunter, 1865, p. 279). If such a view was held by a

trained mind at the time when the theory of probability was being developed, it is

not surprising that it is held by many naive children today.

FISCHBEIN'S STUDY

Fischbein et al. (1991) gave a questionnaire to c. 300 children attending schools in

Pisa, Italy, aged from 9-14 years who were in Years 4 & 5 (Middle Primary) and

7,8 & 9 (Junior Secondary). This was to obtain "a better understanding of the nat-

ure and origins of some probabilistic intuitive obstacles" (p. 523) prior to writing

materials for teaching probability in Italian elementary and junior high school

classes. Some of the students had experienced a formal teaching programme in

probability, others had not (p. 529); only those students not involved in the teaching

programme are included in our analysis. The questionnaire was given in the child-

ren's usual classroom setting, and comprised 14 questions, including:

Are you more likely to get five on each of these three dice by rolling one dice

three times or by rolling all three dice together, or are they both the same?

Can you say why?

FOUR REPLICATIONS

We report four replications of Fischbein's question. An exact replication was not

possible because the precise wording of the question was not reported, but the

wording for a parallel question for two coins was:

When tossing two coins which result is more likely: to get 'head' with one

coin and 'tail with the other, or to get 'head' with each of the two coins; or is

the probability the same for both results? (p. 532)

Given the problems of any translation, and the fact that children's reasons are cited

in the paper, we believe our reconstruction is sufficiently accurate to permit the

comparison of results. It is not clear whether Fischbein's students were interviewed

or wrote their reasons on the questionnairesthe latter seems the more likely.

The first two replications were administered to Australian primary school students

aged from 7-12 years, as part of a larger study investigating children's perceptions

of the behaviour of different, but related RGs, and whether they see the outcomes

of such RGs as independent. The smaller of the two replications was a pilot study,

but both groups produced remarkably similar results, even though the children

came from several different schools. None of the children had experienced prior
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teaching of probability. Data was collected from group tests administered in a
normal classroom, with each RG demonstrated at the time the question was asked,
and then left in the children's view while they considered and made their responses.
They wrote onto prepared sheets, and a random set of students was interviewed
soon after to clarify their understandings.

The other two replications were given to sets of Australian Pre-service primary
teaching students, with ages ranging from 19 to c. 50, in 1996 and 1998. These are
discussed after the discussion on school aged groups..

RESULTS FROM SCHOOL AGED GROUPS
While ages and year groups in both school-aged studies are not identical, we believe
that there is sufficient similarity to make credible comparisons. We are much more
concerned with understanding the reasoning of those involved than with precise age
comparisons. But where there are gross differences between groups of approx-
imately equal age, we believe it is appropriate to try to find the reason. The results
are shown in Table I, which is followed by some points of clarification.
Table I
Percentage distribution of "Best way to get 3 fives on 3 dice"School Students

Fischbein
Year 4 & 5

n= 102

Truran
Year 5
n = 43

Truran
Year 5

n= 135

Fischbein
Year 7, 8, 9

n = 139

Truran
Year 7
n=36

Truran
Year 7
n=98

No answer 12 0 0 16 0 0
Both the same 50 6 5 63 19 16
Successive 23 67 64 14 63 59
Simultaneous 13 27 29 4 13 20
Other (unspecified) 2 0 2 3 0 4
Combination 0 0 0 0 5 1

100 100 100 100 100 100

The 'No answer' response in the Italian study was not found in our study, and may
have been due to the way the test was administered. 'Successive' refers to rolling the
three dice separately; 'Simultaneous' to all three dice being rolled together. The
term 'Combination' was used to refer to the response of one student in our study
who specified tossing two dice together and then one alone. It was claimed that a
better result would occur that way, because three dice together were "too many".

DISCUSSION OF SPECIFIC RESPONSES
Two features of the results are of special interest. The first is that both sets of
Australian students in our study made very different responses from the Italian
ones; the second is that different children used the same reasoncontrolfor
choosing the different responses, 'Both the Same' and 'Successive'.

Both The Same
Most Italian students selected 'Both the Same' as the correct answer while very few
Australian students did so. This is surprising: as part of our larger study students
had been given situations where the option ... or are they both the same?' was
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always offered. Where appropriate, this option was increasingly chosen with

increasing age, so we had not expected responses that indicated such apparent lack

of confidence in the independence of RGs. This suggests that the unexpected Aus-

tralian responses indicate a real, wide-spread confusion about the ideas involved.

We cannot offer an explanation for this difference. We note that the results from

Fischbein's work with students who had received probability teaching (not included

in our table), were not markedly different from this naïve group. We shall meet a

similar unexpected difference in the results from the tertiary students.

It is clear that the 'Both the Same' response increases a little with increasing age,

but the difference and the sample sizes are rather too small, and the older Italian

group is too diverse, to draw many conclusions from this.

Successive

Nearly 3
of both the Australian year groups chose the "Successive" response, and it

is also the most frequently chosen of the incorrect Italian responses. The reasons for

this are not conclusive even though all of our students offered a reason for their

choice. Some claimed that they had more control over successive tosses; a common

response was, "If you throw the dice together they rub against each other, and the

numbers change". They believed each die had an intended trajectory and outcome

which 'rubbing together' would affect, and inhibit, their control of the die.

AK (Year 7, F, 11:3) Well because when you shake them in your hand they

sort of get all jumbled, and if you just concentrate on one at a time you have

a pretty good chance. But all three, it's sort of a bit harder to concentrate on
all three getting five, because it's not really that you would get five like that.

M-AN (Year 5, F, 10:5) I think toss them one at a time because they won't

bump into each other. Like if you get a five and another one bumps into it,

you'd get another number. So I think one at a time.

Some Italian children expressed the same views.

Because the dice do not knock against each other and therefore do not

follow diverse paths (Year 7).

Simultaneous

Far fewer chose this strategy, but those who chose it, both Australian and Italian,

believed they could better exert a constant influence on all three dice.

AD (Year 7, M, 11:6) Because then you'd throw them the same height and

the same way, so there's a better chance of getting all the same numbers.

KS (Year 5, F, 9:8) Well probably if you had them all on one [uppermost

before they were tossed] it be easier to get all fives. So if you're holding them

on one and then you throw them all together they'd come down on fives.

Because the same force is imparted ( Year 5).

One can launch in the same way (Year 7).
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It is clear that the majority of children who did not choose 'Both the Same' did so
because they believed they could exercise some control over the dice. However,
these children expressed two quite different judgements about how best to effect this
control. Fischbein et al. (1991, p. 529) found a slight tendency for more junior
secondary students who had been taught probability to offer 'Simultaneous' than for
those who had been taught.

It is not surprising that children have offered 'control' as a reason for their choices.
This phenomenon has been reported by many researchers (e.g., J. Truran, 1985).
One group has written

The ability to calculate proportions as such does not necessarily signify an
understanding of probability. A realisation of the impossibility neither of
controlling or predicting the outcome of the immediate event is crucial (R.
& R. Falk & Levin, 1980, p. 183).

The phenomenon was also found in response to other questions during the Austral-
ian study (K. Truran & Ritson, 1997). But, as well, although some of the Australian
students had also expressed belief that there is a force, beyond their control, which
determines the eventual outcome of an RG or that the RG itself 'knows' the result
the child wants and behaves accordingly (K. Truran, 1995), they did not offer such
explanations for this question. 'Animistic' responses have been extensively studied
(Wollring, 1984), but, to our knowledge, the influence of question form on the
persistence of such an approach has not been investigated.

What we find surprising in these results is that "control" has been used to justify
two totally different responses. Perhaps the common feature, as we shall discuss in
more detail later, is that children do not appreciate that randomness arises from the
interaction of a large number of inter-dependent events.

Tertiary Group
Of the two tertiary groups few students had completed any Year 12 academic math-
ematics course. Both groups were studying a methodology subject including a single
lecture and an associated workshop on probability. The 98 group also did a small
probability experiment as part of an assignment. Responses to the question from the
96 group were written during a subsequent workshop, and were two or three lines
long. Responses from the 98 group formed part of an examination where a response
of about 15 lines was suggested. No students were interviewed individually. The 96
group had a weaker mathematics background than did the 98 one: increased
employment prospects are attracting academically better students to teaching.
Table II summarises these results, which are mainly from young adults, and are
strikingly different from each other. The responses of the 96 group are very sim-
ilar to both Australian primary school groups, with nearly 3 opting for 'Successive'.
While the vast majority of the 98 group gave the "correct" answer, the majority of
the "incorrect" answers belonged to a new category`Ambivalent' . Such responses
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typically began with 'Both the Same', then went on to choose a different response,
which seemed to be the preferred response. Two examples are:

It doesn't matter it is merely chance that you will land all three on five.

However, if one was to throw each die individually on the same angle from

the same height and with the same force. The chances of rolling all three of

five are increased. (98).

It does not matter which method you use as there will always be a 1- chance

of rolling a 5. However it would be easier to control the experiment if you

tossed one dice at a time (98).

Table II
Percentage distribution of "Best way to get 3
fives on 3 dice"Tertiary Students

1996 1998

n = 87 n = 140

No answer 0 0
Both the same 25 81

Successive 57 6
Simultaneous 18 3

Ambivalent 0 10

100 100

Because the 98 students were advised to write about 15 lines we perhaps received

more revealing answers than from those using questionnaires with limited response

space, or from relatively focused interviews. Given that the independence of RGs

had been discussed in the class lecture, it is possible that the responses represent a

"textbook" response, followed by a more personal one. Ritson has observed that

primary students 'coached' for an important exam shortly after revert to their 'real

belief , and this may be what is happening here (K. Truran & Ritson, 1997, p. 239).

Some reasons for the 'incorrect' responses were the same as given by the children.

But others are of some interest, given that these students will receive no further

formal instruction in probability, and will be teaching in schools in two years time.

A few students provided no reasons for their 'incorrect' response, but relied on

dogmatic assertion.
The best and correct way is to toss all three at once (96).

It is better to throw three separately. Throwing three together lowers the

odds as the chance lessens as you add each die (98).

One gave an example of the 'Combination' argument, again without reasons.

It wouldn't matter if I tossed all three dice at once or if I tossed them one at a

time. ... It is much easier to obtain two fives if you are throwing two dice at a
time as the chance to obtain a five is quicker and more possible (98)

Many students, even those who made the 'Both the Same' choice, saw this question

as an actual experiment rather than a theoretical situation, in a way which is

reminiscent of the 'Outcomes Approach' defined by Konold (1989b). Their concern
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was with illustrating the idea to a class, which some saw as impractical because of
the "long time it would take"

Finally, for some the question seemed other-worldly. Two asked if it were a trick
question, and several stated, 'usually you would do them one at a time anyway'.
These findings corroborate that of Watson (1995, pp. 120-121) who wrote that "the
inclusion of probability and statistics in recent years has meant that many high
school teachers find that they are not adequately prepared by their own education to
teach these topics". But the findings also have things to say about the nature of
probabilistic intuition.

CONCLUSION
This question, whose very structure discourages the use of animistic responses, has
been particularly valuable in bringing some misconceptions further into the open.
Its moderately complex structure suggests that it may be one of the situations which
Green described, as mentioned above, where performance declines with age.
While it is probably true that some probabilistic intuitions exist at a very early age,
the results from this question show that they do not transfer well into a moderately
complicated, but not unusual, situation. It is less clear that the students possess ways
of judging whether a generator is producing random outcomes, even, for the adults,
five years of secondary schooling (which will have included some work on
probability) have not clarified these misconceptions. Since deciding whether two
RGs are independent is essentially a subjective process (J. & K. Truran, 1997, pp.
90-92), and since we can see that this skill is not always intuitively acquired by
many children and adults, it seems that it needs more explicit attention in schools.
The suggestion from Konold quoted at the beginning of this paper that it is a lack of
understanding of independence which is the principal problem becomes more pre-
cisely that it is a failure to know how to identify random generators. The principal
problem seems to be a belief that the initial tossing is more powerful than the
subsequent large number of forces which impinge on the RG.
Fischbein et al. claimed that:

The general idea is then, that the outcomes can be controlled by the
individual. The mathematical, probabilistic structure has not yet been
detached from the concrete circumstances and considered in its abstract
generality (p. 530).

We have earlier written that
[sluch strong beliefs in the physical behaviour of dice frequently over-ride
any understanding of independence. Not only do RGs have no constancy of
existence in the mind of many children [and adults], but when they are
operated together, they are seen to lose any independence they might have
had (J. & K. Truran, 1997, p 94).

We would now argue that the issue is deeper still. For both children and adults an
understanding of how to decide if an generator is random is a critical pre-requisite
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for developing a sound concept of independence. Such a skill is probably not

intuitive, but learned.

One final comment. When we set this question we assumed (from our own

childhood experiences) that subjects would normally toss dice using a cylindrical

shaker. It has become clear that many use only their cupped hands. The extent to

which this influences their responses is not known, but needs to be investigated.

because the shaker ensures that many forces operate on the dice without direct

human intervention.
References

Cohen, J. & Hansel, G. (1955) The Idea of Independence British Jour'l of Psychology 46: 178-190

Falk, R. Falk, R. & Levin, I. (1980) A Potential for Learning Probability in Young Children

Educational Studies in Mathematics 11 (2): 181-204
Fischbein, E. (1975)The Intuitive Sources of Probabilistic Thinking in Children Dordrecht, Nether-

lands: D. Reidel
Fischbein, E., Nello, M.S. & Marino, M.S. (1991) Factors Affecting Probabilistic Judgements in

Children and Adolescents Educational Studies in Mathematics 22: 523-549
Green, D.R. (1982) A Survey of Probability Concepts in 3000 Pupils Aged 11-16 Years. In D.R.

Grey, P. Holmes, V. Barnett & G.M. Constable (eds), Proceedings of the First International

Conference on Teaching Statistics (pp. 766-783)Sheffield UK: Organising Committee of First

International Conference on Teaching Statistics
(1986) Children's Understanding of Randomness: report of a survey of 1600 children aged 7-11

years. In R. Davidson & J. Swift (eds) Proceedings ofthe Second International Conference on

Teaching Statistics (pp. 287-291) Victoria, BC: University of Victoria

Konold, C. (1989a) An Outbreak of Belief in Independence? in C. Maher, G. Goldin & B. Davis

(eds)The Proceedings of the Eleventh Annual Meeting of the North American Chapter of the

International Group for the Psychology of Mathematics Education (pp. 203-209) Newark NJ:

Rutgers University Press
(1989b) "Informal Conceptions of Probability" Cognition and Instruction 6 (1): 59-98

Konold, C., Pollatsek, A., Well, A., Lohmeier, J. & Lipson, A . (1993) Inconsistencies in Students'

Reasoning about Probability Journalfor Research in Mathematics Education 24 (5): 390-414

Piaget, J. & Inhelder, B. (1951/1975) La genese de l'idie de hasard chez l'enfant. Translated by L.

Leake, jr, P.D. Burrell, & H.D. Fischbein (1975) The Origin of the Idea of Chance in Children

London: Routledge & Kegan Paul
Shaughnessy, J.M. (1992) Research in Probability and Statistics: Reflection and Directions. In D.A.

Grouws (ed.) Handbook ofResearch on Mathematics Teaching and Learning (pp. 465-494)

New York: Macmillan
Todhunter, I. (1865) A History of the Mathematical Theory ofProbability: From the Time of Pascal

to That of Laplace London: Macmillan
Truran, J. (1985) Children's Understanding of Symmetry Teaching Statistics 7 (3): 69-74

Truran, K. (1995) Animism: A View of Probability Behaviour. In B. Atweh & S. Flavell (eds)

MERGA 18: Galtha Proceedings of the 18th Annual Conference of the Mathematics Education

Research Group of Australasia (pp. 537-541) Darwin, NT: MERGA

Truran, J. & Truran, K. (1997) Statistical IndependenceOne Concept or Two? in B. Phillips (ed.)

Papers on Statistical Education (pp. 87-100) Hawthorn, Vic: Swinburne University of Tech-

nology
Truran, K. & Ritson, R. [I.] (1997) Perceptions of Unfamiliar Random GeneratorsLinks Between

Research and Teaching. In E. Pehkonen (ed.) Proceedings of the 21st Conference of the

International Group for the Psychology of Mathematics Education (Vol. IV pp. 238-245) Lahti,

Finland: Program Committee of the 18th PME Conference
Watson, J.M. (1995) Probability and Statistics: An Overview. In L. Grimison & J. Pegg (eds)

Teaching Secondary School MathematicsTheory Into Practice (pp. 120-139) Marrickville,

NSW: Harcourt Brace & Co.
Wollring, B. (1984) Animistische Vorstellungen vor Vor- and Grandschulkindern in Stochastischen

Situationen Journal fiir Mathematik Didaktik 15: 3-34

1461 4 - 296



Testing the Cultural Conceptual Learning Teaching Model (CCLT):
Linkage between children's informal knowledge and formal knowledge

Wen Huan Tsai
National Hsin-Chu Teachers College, Taiwan

TsaiAnhctc.edu.tw

Thomas R. Post
University of Minnesota

Postx001@tc.umn.edu

The purpose of this research was to test the effects of teaching students arithmetic
based on the Cultural Conceptual Learning Teaching Model (CCLT) and to
create a learning environment for children to link their informal and formal
knowledge of mathematics by using lessons based on their cultural activities.
625second graders in sixteen classes selectedfrom four schools were involved in
an experimental teaching design. Children who learned arithmetic based on
cultural-conceptual activities scored higher than children who learned arithmetic
based on nation-wide textbook in computation problems, word problems, and
simulated problems. Children involving the CCLT group solved everyday task
problems more flexibly, more accurately, and more efficiently than children in the
control group.

Introduction

Several studies (Lave, 1989; Carraher, carraher, & Schliemann, 1987) have
suggested that situation in which arithmetic problems occur play an important role
in eliciting different types of strategies in solving problems. In-school situations
are likely to elicit formal procedures, and out-of-school situations are likely to
elicit informal procedures. There are growing evidences that schooling does not
contribute to performance outside of school and that knowledge acquired outside
of school is not always used to support in-school learning (Ginsburg & Allardice,
1994). Although this gap is evident, there are not enough researches trying to
design a curriculum to bridge this gap. This study was to develop a learning-
teaching model, the Cultural Conceptual Learning Teaching Model (CCLT), and
tried to link children's formal knowledge and informal knowledge based on this
model.
Developing the Cultural Conceptual Learning Teaching Model (CCLT)

Many researchers have suggested that the strategies of solving daily problems
created by children could be used as a starting point to learn school mathematics
(Bishop & Abreu, 1991; Hiebert, 1988). Children gain the informal knowledge
through cultural activities of daily life. According to Resnick's view (1987), when
teaching mathematics, teachers need to consider the cultural aspects that are
meaningful ways for students to make sense of the abstract symbols of school
mathematics. Brown, Collins, & Duguid (1987) also emphasize the importance of the
relationship among activity, concept and culture. They suggest that learning must
involve all of the three. Based on above points of view, this study develops a
learning teaching model called the Cultural Conceptual Learning Teaching Model
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(CCLT) (see figure 1). This model tries to combine individual, activity, concept, and

culture together.
Figure 1 shows that CCLT contains three learning environments: construction

environment, connection environment, and reapplication environment and six

learning stages: play stage, construction stage, connection stage, re-application stage,

practice stage, and reflection stage. Play stage provides some cultural-conceptual

activities for children to do role-plays. In this stage, children share, take, negotiate,

and construct their immediate experiences to solve arithmetic problems with peers

and old comers (teacher or expert children). In the construction stage, the teacher

designs a guide sheet that has structural objectives that need to be accomplished by

students. In connection stage, based on children's experiences or strategies, teacher

tries to connect children's experiences to mathematical symbols and procedures. In

re-application stage, teacher provides another similar cultural-conceptual activity for

children to re-apply the learned mathematical concept. In practice stage, children are

provided some opportunities to practice school mathematics in everyday situations. In

reflection stage, children are trained to monitor their thinking and to be aware of

where and how they can apply school mathematics in their everyday activities.

Authors call the learning model as Cultural Conceptual Learning Teaching Model

(CCLT).

(A) Construction environment

. Constructing stage

Structured activity:
organize children
experiences

. Play stage

Role play stage in the
cultural-conceptual
activities

(B) Connection
Environment
3. Connecting stage

Connect to
mathematical symbols
or procedures

6. Reflection sage

C) Practice environment

4. Re-application stage

Apply to other
cultural-conceptual
activities

5. Practice stage

Practice math in
Children everyday
activities

Figure 1: The Cultural Conceptual Learning Teaching Model (CCLT)

How to integrate children's cultural conceptual activities into classroom

lessons and to improve children's learning of mathematics is the main purpose of this

research. According to Piaget's view (1977), children's cognitive development

depends on the cultural activities that are provided and the psychological

development of children. Most children in elementary school are staying in the

concrete-operation stage. Their thinking is closely tied to their immediate

experiences. The environment of socioculturally organized activities in which

children can learn is referred to as the zone of proximal development (Vygotsky).

Therefore, there are two steps to develop the cultural-conceptual activities. In the first
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step, the interview method is used to explore children's everyday cultural activities,
social interactions, sign forms and cultural artifacts, and prior understanding, and to
find out what kinds of children's cultural activities were related to the mathematical
concepts of this study: three-digit place value, addition, and subtraction. In the second
step, the cultural activities are organized according to those mathematical concepts.
The conceptualized cultural activities were called the cultural conceptual activities.

According to Dienes' theory, mathematics learning contains four basic
principles: dynamic principle, perceptual variability principle, mathematical
variability principle, and constructivity principle (Post, 1992). This research modified
the perceptual variability principle and the mathematical variability principle to
design the cultural conceptual activities. Teaching activities are designed based on
the dynamic principle and the constructivity principle. This study hypothesizes that
children's learning arithmetic based on the cultural conceptual activities through the
CCLT teaching model not only would improve their learning in school mathematics
but also their abilities to solve everyday problem tasks.

Methodology

Sixteen-second grade classes in Hsin-Chu, a city of Taiwan, participated in this
study. Half (n = 8) of the classes were assigned randomly to the treatment group and
half to the control group. Teachers of the treatment groups participated in a one-week
workshop, and met together on each Saturday within the period of study to design
teaching activities. The researcher presented the interview data of children's everyday
activities to the teachers of treatment group and designed the cultural-conceptual
learning activities with their cooperation. There are five cultural conceptual activities
in the CCLT model: Three activities of counting lucky money in an red envelope
(New Year activity) and two activities of shopping and selling toys. The other teachers
(n=8) were involved in a control group and participated in two 2-hour workshops
focused on discussion of the arithmetic content of the national textbook.

Three different tests were used to get a broader understanding of the effects of
teaching children arithmetic based on the CCLT model. They were Standardized Test
(ST), Three Testing Conditions, and Interview Task Problems. The Standardized Test
was developed by the Taiwan Provincial Elementary School Teacher Training and
Research Institution. Three Testing Conditions contained Computation Problems,
Word Problems, and Simulated Problems. The idea of testing conditions came from
the research of Nunes, Schliemann, and Carraher (1994) but was redesigned and
modified according to Ginsburg's (1982) classification of computation problems and
Carpenter's (1985) classification of word problems. For testing the differences
between the CCLT group and the control group in solving everyday arithmetic
problems, students were required to accomplish the task problems. The task problems
came from parts of Saxe's (1991) research problems and were modified by the
researchers to fit the research questions of this study. There are two interview task
problems: Identifying currency from a numeral (ICN) and identifying a numeral from
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a pile of currency (INC). When students solved these task problems, their answers

were recorded correct or incorrect and their strategies also were recorded. Each test,

except the interview task problems, was taken by all. Four students were randomly

chosen from four levels on the Standardized Test in each class as the target students to

be interviewed. Three testing conditions and Interview task all contained three-digit

and four-digit number. The three-digit problems were designed to test the teaching

effect and the four-digit problems were designed to test the transfer of learning.

Results
Standardized Test

The Standardized Test was administrated before teaching and treated as the

covariate for the other test. However, there is no statistically significant difference

between the CCLT group (M=28.14; SD=1.98) and the control group (M=29.66;

SD=4.10) on the Standardized Test (F (1,12)=2.20; P=1.64 >. 05). Therefore, the

Standardized Test can not be used as the covariate for comparing the CCLT group

and the control group.
Children's Different Achievement in Different Teaching Contexts

This section describes the hypothesis being tested that the CCLT group would

score higher on the simulated problems than the control group. On the other hand, the

control group would score higher on the computation problems and word problems

than the CCLT group. The hypothesis has been rejected. Table 1 summarizes the

means and the standard deviations of three test conditions.

Tablel: Means and Standard Deviations of Test Results on the Overall Test, Three Digit Test

Conditions, and Four Digit Test Conditions.
Three test conditions: Treatment

CCLT Control

Location
Urban Suburban

M (SD) M(SD) M (SD) M(SD)

Overall Test:
Computation Problems (1=24) 10.38(.33) 9.73 (.81) 10.34 (.50) 9.76(.75)

Word Problems (1=24) 8.45(.62) 7.66 (.71) 8.26 (.90) 7.85 (.58)

Simulated Problems (1=24) 8.48(.60) 7.64 (.74) 8.27 (.74) 7.86 (.80)

3D Test:
Computation Problems (I=12) 7.30(.21) 6.58 (.51) 6.98 (.30) 6.63(.51)

Word Problems (1=12) 5.58(.43) 5.0 (.48) 5.43 (.58) 5.16 (.47)

Simulated Problems 5.54(.43) 5.01 (.49) 5.33 (.51) 5.23 (.53)

4D Test:
Computation Problems (I=12) 3.35(.17) 3.15 (.32) 3.36 (.25) 3.14(.25)

Word Problems (1=12) 2.87(.22) 2.56 (.27) 2.84 (.34) 2.69 (.13)

Simulated Problems (1=12) 2.94(.23) 2.62 (.31) 2.94 (.28) 2.63 (27)

M = Means, SD = Standard Deviation, I= item. 3D =three digit numeral; 4D =four digit numeral.

Table 2 summarizes the analysis of variance of different test conditions taken

by treatment groups and locations. On the overall test problems, the three- digit test

problems, and the four-digit test problems, the CCLT group scores significantly
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higher than the control group. Therefore, this study indicates that students who learn
arithmetic based on their cultural activities improve their learning of both formal
mathematics (computation problems and word problems) in school and informal
mathematics (simulated problems) outside of school better than the students who
learned arithmetic based on the traditional textbooks. Another impressive result is
that the CCLT group does the transfer of learning more ably than the control group.
This research does not address the issue of the main effect of three test conditions so
the researchers did not do the follow-up t-tests. Although this research does not focus
on this issue, it is interesting to note that children in urban school performed better on
both school transfer problems and out-of-school transfer problems than children in
suburban schools.

Table 2: Summarization of Analysis of Variance of Different Testing Conditions
by Treatment Groups and Locations

Testing
condition Between

F tests
Within

T L T x L C TxC LxC TxLxC
Overall Test 9.81** 3.79 .95 86.11** .14 .15 .76

3D Test 9.35** 2.05 1.17 108.36** .13 .59 .20
4D Test 8.12* 7.35* .40 31.67** .38 .77 2.12

P < .05; ** p< .01; T = Treatment; L = Location; C = Test Condition; 3D =three digit numeral;
4D =four digit numeral.

Identifying the relation between numeral and currency values
Children learn counting and summing up money and the price of each item of

merchandise from everyday activities. The interview task problems are to examine
children's ability to deal with the relationship between numeral and currency value.
This task consists of ten items. Each of the items deals with three-digit or four-digit
number. Each item is written on one card. Children's strategies for solving the task
that deals with the relationship between numeral and currency value are analyzed as
follows.
(1). Children's strategies used in solving the ICN problems.

When presented a card, each child was asked to pick the currency up from piles of
fake money to match the given number on the card. Children's responses are
classified into two categories: correct and incorrect. Children's strategies used in
solving the task were identified as formal method and informal method. For instance,
when a child was given the number 567, he solved it by picking 5 hundred-dollar
bills, 6 ten-dollar coins, and 7 one-dollar coins (written as 5 x $100 + 6 x $10 + 7 x
$1). This strategy is identified as a formal method. Other strategies were
characterized as informal methods, such as one 500-dollar bill, one 50-dollar bill, one
10-dollar coin, and seven 1-dollar coins (written by 1 x $500 + 1 x $50 + 1 x $10 + 7
x $1). Formal methods were presented in textbooks, but children are found to have a
preference for using informal method to solve everyday problems.
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(2) Children's strategies used in solving the INC problems.

Children's cultural activities frequently deal with counting money. A task

includes ten piles of fake money. Each pile consists of coins and bills with various

values. A child was presented a pile of fake money at one time and was asked to

count the amount. In the INC problems, five are three-digit numeral and five are four-

digit numeral. Students' correct answers and strategies used in solving the problems

were analyzed. Four strategies used by children were identified: grouping, grouping

with iterating, iterating, and others. Grouping strategy means that students regroup

the currency by the same bill or coin denomination, and then regroup the currency by

thousands, hundreds, tens, and ones and then report the sum according to one, tens,

hundreds, and thousands. Grouping with iterating strategy means regrouping

followed by counting the currency one by one from one pile to another pile. Without

regrouping, children's strategy of counting the given money one by one is identified

as an iterating strategy. When the strategies are not included in the three strategies,

they are identified as others. For instance, students who don't know the way of

counting, even if they do the regrouping.
(3) The results of solving two interview task problems

Table 3 summarizes the means, standard deviations of correct answers given

and frequencies of the strategy used by students, and ANOVA analysis for between-

group differences in identifying ICN problems and on identifying INC problems.

Table 3: Summary of Means, Standard Deviation, and ANOVA Results for Between-Group

Differences On Identifying the Relationship between Numeral and Currency Values Test

Sub tests (number of items) CCLT Control F tests

M (SD) M (SD)

Identifying ICN problems
3D Test (5) 4.97 (.25) 4.72 (.92) 1.675

formal method 1.16 (1.05) 2.91 (1.30) 34.945***

Informal method 3.81 (1.03) 1.78 (1.29) 48.527***

4 D Test (5) 4.49 (.18) 4.47 (1.22) 5.285*

formal method 2.22 (1.01) 3.66 (1.01) 34.929***

Informal method 2.75 (1.05) 1.19 (.93) 39.784***

Identifying INC problems
3D Test (5) 4.43 (.79) 3.03 (.90) 38.673***

Grouping strategy 3.6 (1.22) 1.00 (.84) 62.171***

Grouping with iterating strategy 1.41 (1.10) 2.97 (.97) 36.317***

Iterating strategy .47 (.51) .94 (1.01) 5.471*

Others .062 (.35) .94 (.53) .077

4D Test (5) 4.47 (.72) 3.22 (1.24) 24.433***

Grouping strategy 3.94 (1.34) .94 (.95) 106.603***

Grouping with iterating strategy .78 (1.18) 2.98 (1.1 8) 54.917***

Iterating strategy .13 (.51) .88 (I.13) 12.977**

Other strategy .031 (.18) .22 (.91) .255

*P < .05; **P<. 01; ***P<. 001; 3D =

1461

three digit numeral; 4D = four digit

4 - 302

numeral.



Overall, children who learn arithmetic based on the cultural-conceptual
activities perform significantly better than children who learn arithmetic based on the
national textbook on four-digit problems of ICN, three-digit problems of INC, and
four-digit problems of INC. No significant difference is found between groups in
identifying three-digit problems of ICN. These results reveal that different teaching
methods do not affect children in solving simple ICN problems but they do affect
children in solving complicated larger number problems (four-digit problems).
Different teaching methods also affect children's use of different strategies to solve
the ICN and INC problems. Children in the CCLT group use informal methods to
solve the ICN problems more often than children do in the control group. Conversely,
children in the control group use formal methods more often than children do in the
CCLT group. On the INC problems, children in the CCLT group use the grouping
strategy more often than children do in the control group. Conversely, children in the
control group use both the strategies of grouping with iterating and iterating to solve
the INC problems more often than children did in CCLT group. These results reveal
that different teaching methods lead children to using different strategies to solve
their everyday problems.

Conclusion and Discussion

This study reveals that children who learn arithmetic through the CCLT
learning model based on the cultural-conceptual activities score significantly higher
than children who learn arithmetic based on the traditional textbook no matter what
they solve computational problems, words problems, or simulated problems. Those
results support Hiebert's suggestions (1988) that in school settings children's
informal knowledge could serve as basis for the development of understanding of
mathematical symbols and procedures.

Other evidence shows that there is no significant difference between two
groups in solving the three-digit ICN problems, however,. the treatment group solves
the four-digit ICN problems at a higher rate than the control group. In fact, most of
the children in Taiwan are often given several hundred dollars by their parents to buy
foods, drinks, or school supplies for themselves, therefore both groups can solve the
tree-digit ICN problems easily, but few children are given thousand dollar bills to buy
things. This result indicates that connecting children's everyday experiences with
mathematical symbols and procedures can improve children's transfer of learning
when they solve the four-digit ICN problems.

The CCLT group uses more efficient and flexible strategies to solve task
problems as compare with the control group. One possible reason is that the CCLT
program provided an arena for children to assimilate, accommodate, negotiate, and
reconstruct their rich experiences between peers and teachers more frequently than
the control group provided, and in this way children in the CCLT group increase their
understanding more than students in the control group. In the cultural conceptual
activities, children are full participants and act as "whole persons" to conduct their



business based on their prior understanding. This learning environment is very

different from the traditional teaching based on the national textbook that follows the

teacher's guide step by step. However, further studies need to consider how to

increase the degree of students' participation in classroom and everyday activities.

Students learning mathematics need to extend their learning to the entire social

community, parent's involvement with children's mathematics learning, not just in

school.
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PROSPECTIVE TEACHERS' ACCEPTENCE OF THE ONE-TO-ONE
CORRESPONDENCE CRITERION FOR COMPARING INFINITE SETS'

PESSIA TSAMIR

Kibbutzim Teachers' College Tel Aviv University

This paper examined the tendencies of121 prospective teachers who had studied a
Cantorian set theory course and 71prospective teachers who had not, 10 declare that "1:1
correspondence", "inclusion" and "single infinity" are acceptable criteria far the
comparison of infinite sets. It also investigated their tendency to accept illustrated
comparisons conducted by 1:1 correspondence and the effects of these illustrations on the
participants' acceptance of the three above mentioned criteria. The findings usually show
significant differences betweenparticipants who had Cantorian set theory and those who
had not. Prospective teachers who had studied frequently accepted 1:1 correspondence,both as a general method for comparing infinite sets and Ibr specific comparison tasks.
Yet, a substantial number of them declared that inclusion and single infinity are also
suitable for comparing infinite sets. Moreover, many tended to reject the illustratedsolution by 1:1 correspondence ofan unusual comparison task,

The notion of actual infinity is a crucial one in mathematics and plays a major
role in the theoretical basis of various mathematical systems. Still, its
acceptance in the mathematical community was not smooth and simple. When
Cantor introduced his theory of infinite sets late in the 19th century, a number of
great mathematicians and philosophers, such as Poincare and Gauss, fiercely
objected to it. Moreover, even those who enthusiastically accepted the notion of
actual infinity, like Cantor himself, Hahn, Russell, Hilbert, and Dedekind,
highlighted its counter-intuitive nature: it goes against the grain ofour everyday
experience and of finite sets.

Indeed, research in mathematics education over the last two decades, has
indicated that, when comparing infinite sets, students intuitively use a wide
range of criteria, but generally neglect to use 1:1 correspondence for their
comparisons (e.g., Borasi, 1985; Fischbein, Tirosh, & Melamed, 1981).
Students' responses seem to be representation-dependent and influenced, for
instance, by non-significant, visual aspects (e.g., Duval, 1983). Moreover,
students reach contradictory conclusions by using various criteria, such as,
"single infinity", (i.e., all infinite sets are equal), "inclusion" (i.e., a set that is
included in another set has fewer elements than that set), and "incomparable"
(i.e., infinite sets are incomparable). However, they usually are unaware of
these contradictions (e.g., Tsamir & Tirosh, 1992).
Questions that arise are: how would an intervention that presents students with
the Cantorian set theory, affect their tendency to accept 1:1 correspondence as
the criterion for comparing infinite sets, and what kind of intervention should be
used for this purpose?

"Comparing infinite sets" here means comparison of the number of elements in infinite sets.
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The common view of leading, 19th century mathematicians who accepted the

notion of actual infinity was that the problems rooted in its counter-intuitive

nature could "easily" be overcome. Russell, for instance, claimed that:

... a little practice enables one to grasp the true principles of Cantor's doctrine, and to

acquire true and better instincts as to the true and the false. The oddities then become no

odder than the people at the antipodes, who used to be thought impossible because they

would find it so inconvenient to stand on their heads.

Russell, 1916/1988, Vol. 3, p. 1560

One may wonder how little "a little practice" exactly would be and how "true

and better instincts" are actually acquired?

Mathematics educators reported a number of attempts to promote students'

acceptance of 1:1 correspondence as the single criterion for comparing infinite

sets. For instance, Tirosh (1991) described satisfactory results of a set theory

course for middle school students. The course used, among other things, the

cognitive conflict approach, which was based on research findings regarding
students' intuitions about infinity. Two additional interventions centered on

different representations of infinite sets. The first was aimed at raising cognitive

conflict and promoting high school students' awareness of their inconsistent

ideas when comparing infinite sets (Tsamir & Tirosh, 1994). The second

presented a sequence of assignments advancing from an anchoring task to a

target (counter-intuitive) task using the analogy approach (Yehoshua, 1994). In

another intervention, Sierpinska (1989) presented suggestions to two girls (10

and 12 years old), for creating 1:1 correspondence between matching elements

in infinite sets. One of the girls accepted the "pairing idea", while the other

found it counter-intuitive. However, the subjects in all the above mentioned

studies were younger than the students who study Cantorian set theory as part of

their curriculum.

Nowadays, the concept of actual infinity is customarily presented at the college

or university level to mathematics majors and to prospective mathematics

teachers for secondary schools. It is usually introduced as an axiomatic system,

by consistently and sequentially presenting axioms, basic notions, definitions

and theorems within the Cantorian set theory, with reference to Zermelo and

Fraenkel. Comparison tasks are discussed pointing to 1:1 correspondence or to

the examination of the powers of the sets as the methods for determining
equivalency within this theory. However, students' intuitive tendencies either to

compare infinite sets by inclusion or to grasp infinity as a single infinity are

usually neglected. Thus, it seems important to investigate prospective teachers'

tendencies to accept these criteria for the comparison of infinite sets, before and

after studying a set theory course.

Therefore, the questions posed in the present study were: (1) Do prospective

teachers regard the criteria 1:1 correspondence, inclusion and single infinity as

being suitable for the comparison of infinite sets? (2) Are illustrated ways of

applying 1:1 correspondence accepted by prospective teachers for the
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comparison of infinite sets? (3) How may the illustrated solutions affect the
prospective teachers' acceptance of 1:1 correspondence, inclusion and single
infinity for the comparison ofinfinite sets? and (4) Will there be significant
differences between prospective teachers who already studied the topic and
those who did not?

Methodology
Participants were 181 prospective secondary school mathematics teachers,sampled from Israeli state teachers colleges. Seventy-one of them had never
studied Cantorian set theory [N-ST] and 110 had completed a year long
Cantorian set theory course [C-ST] three months prior to this research.
The participants were given about 45 minutes to answer, in writing, a
questionnaire, which consisted of the following parts:
Part I an explanation illustrating the notions of 1:1 correspondence, singleinfinity and inclusion, asking the subjects to determine whether each of the
criteria seemed suitable for comparing infinite sets.
Part II five illustrations of the use of 1:1 correspondence to compare givenpairs of infinite sets. Three of these were:
1. A={1/2, 1, 11/2, 2, 21/2, 3,... } 2. B={1,2,3,4,5,6,...} 3. 1={4,8,12,16,20,...}B={ 1, 2, 3, 4, 5, 6,...} E={3,4,5,6,7,8,...} J={ 1,4, 9, 16,25,...}
Which all have the same number of elements (do). One pair of sets related to thepoints on two concentric circles having the same number of elements (c). The
last pair consisted of non-equivalent sets. The comparison dealt with the
number of points in a segment (power c) with the number of midpoints in that
segment, created by an infinite process of halving the segment and the
sub-segments (n<g>2"-1, power N0). In all cases, participants were asked to statewhether they found the suggested solution acceptable and to justify their
judgments.

Part III was a repetition of part I.

The participants received each part of the questionnaire only after handing inthe previous one. After the written assignment, ten participants in each group
were also interviewed orally, in order to get a better insight into their ideas.

RESULTS
Part I: Declaring 1:1 Correspondence, Inclusion and Single Infinity as

Acceptable Criteria for the Comparison of Infinite Sets
Table 1 shows that in stage I of the research, 1:1 correspondence was the
criterion most frequently accepted by prospective teachers who had C-ST and
inclusion was the criterion most frequently accepted by those who had N-ST.
Single infinity was the least accepted criterion by both N-ST and C-ST
participants. It should be noted that even among those who had C-ST, about
17% still viewed single infinity as suitable for comparing infinite sets and about32% of them still viewed inclusion as suitable.
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Participants' justifications for their use of the various criteria were of the

following two types:

1. This criterion is the best emphasizing that the suggested criterion must be
used for comparing infinite sets. About half of those who accepted 1:1
correspondence presented such a justification. Interestingly, about 20% of the
C-ST participants who regarded 1:1 correspondence as a suitable criterion,
justified this claim in terms of 'power', by claiming that "actually, in order to

compare the number ofelements one should examine the powers of the sets,
but I:1 correspondence is also quite OK" .

Table I
Frequencies (in %) of Accepting 1:1 Correspondence, Inclusion, and Single Infinity

for Comparison of Infinite Sets in Parts I and III

Criterion accepted: 1:1 Correspondence Inclusion SinEle infinity

Study of Set Theory N-ST C-ST N-ST C-ST N-ST C-ST
n=71 n=110 n=71 n=110 n =71 n=110

Part 1 54.3 76.4 63.4 31.8 31.4 17.3

Part 73.9 91.6 60.9 32.4 54.3 25.5

Moreover, about 60% of the N-ST and half of the C-ST participants who
accepted inclusion expressed the idea that "the use of inclusion is ideal because
it allows you to reach definite conclusions". About 40% of the N-ST and half of
the C-ST participants who claimed single infinity to be a suitable criterion,
justified their claim by stating that "infinity is always the same infinity, so
obviously you should follow only this criterion".

2. Practical considerations expressing a general attitude that any criterion

may be applied when suitable. About 30% of the N-ST participants presented
this explanation for each of the three criteria. Among the C-ST participants,
about 20% of those who accepted 1:1 correspondence, 30% of those who
accepted single infinity and 40% of those who accepted inclusion presented this

line of reasoning. They claimed, for instance, that "not in all cases is there
inclusion, but when one set is included in the other, it is only natural to use this
criterion" or "it is hard to find matching elements, but when possible, this
method should be used to compare the sets".

The justifications given by the prospective teachers to explain their rejection of
the various criteria were of the following four types:

1. Direct counter-arguments excluding the use of a criterion due to its
attributes or the nature of infinity. Most frequent claims were: (a) "a criterion
that always gives the same conclusion is useless". This was given by
participants who rejected single infinity, about 40% of the C-ST and about 70%

of the N-ST; and (b) "even when I find 1:1 correspondence between matching
elements, I can only control a finite number of "pairs", so I can never be sure
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that the matching rule keeps working infinitely". This was presented by about
60% of all participants who rejected 1:1 correspondence.
2. Indicating another criterion as more suitable for comparing infinite sets.This line of justification was used by 15% of the N-ST participants who
rejected single infinity because "one should use inclusion"; and by about 20%of the N-ST participants who rejected inclusion because "there is one, single
infinity ". Among the C-ST participants, about 25% of those who rejected
inclusion and 40% of those who rejected single infinity argued that power is the
only correct criterion. Surprisingly, the idea ofpower even served about 20% of
the C-ST participants who rejected 1:1 correspondence to explain their
rejection. They claimed, for instance, that "we have learned that only the
powers of sets indicate the numbers ofelements they have. Obviously, in order
to compare the number of elements in two sets, one needs to know thesenumbers".

3. Practical considerations excluding the use of a certain criterion due to its
practical limitations. About 30% of all participants justified the rejection of
inclusion by claiming that "the criterion is inadequate, as frequently there is no
inclusion relationship between the sets". Similarly, about 30% of the N-ST
participants who rejected 1:1 correspondence said, "in many cases it is
extremely dcult to find a way to match the elements".
4. Consistency considerations expressing the need to preserve consistency.
Only when rejecting inclusion did a few N-ST and C-ST participants claim that"inclusion is not valid as it can contradict solutions arrived at by using 1:1
correspondence."

Part II: Acceptance of Illustrations of Using
1:1 Correspondence when Comparing Infinite Sets

Graph I shows that for each of the four problems that presented equivalent sets,the tendency of C-ST participants to accept the illustrated 1:1 correspondence(about 90%) was significantly higher than that of the N-ST participants (about
60%). In problem 1 (n<g>1/2n) x2=22.6 DF=2p<0.01, in problem 2 (n' n +2)2
x 36.04 DF=2p<0.01, in problem 3 (4n* n2) x2=13.2 DF=2 p<0.01, and inproblem 4 (points on two circles) x2=20.9 DF=2 p<0.01. However, in the fifth
problem, which dealt with an unusual presentation of non-equivalent sets, there
were insignificant differences between the tendencies of N-ST participants and
C-ST participants to accept the illustrated 1:1 correspondence. Only about 40%of the N-ST participants and about 50% of the C-ST accepted the suggested
comparison of the number of points in a segment (power c) with the number of
midpoints (n '2° -1, power No).

Most prospective teachers provided no justifications for their acceptance or
rejection of the given solutions. Nevertheless, among those who did give
justifications, N-ST participants most frequently explained rejecting the given
solutions to the equivalent sets by specifying another, more preferable, criterion.
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Most prevalently they related to inclusion "One set is included in the other,
thus they don't have the same number of elements", but they also mentioned

single infinity "1:1 correspondence is unnecessary. It is known that infinities

are always the same". However, C-ST participants who accepted the
suggested 1:1 correspondence frequently confessed that the given solutions
reminded them of rules they had studied. Those who rejected the suggested
solution, however, usually accepted the equivalency, but said that power and not
1:1 correspondence was the criterion to be used.
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Graph I
Frequencies (in %) of the acceptance of illustrated '1:1 correspondence' solutions

ON-ST
DC-ST

f.>1/2n n<:>n+2 4n<g> n2 points on points on segment
two circles midpoints-segment

The one justification most commonly used to reject the fifth solution, used by
all participants (both N-ST and C-ST) was that "By endlessly choosing
midpoints, one eventually deals with the whole segment. So, the collection of
all midpoints matches the collection of all points." Others used the single

infinity idea, and a few prospective teachers argued, in all cases, that infinite

sets are incomparable.

Part III: Re-Declaring 1:1 Correspondence, Inclusion and Single Infinity
as Acceptable Criteria for the Comparison of Infinite Sets

Table 1 shows that when advancing from Part Ito Part III there was an increase

in the percentage of N-ST and C-ST participants who declared that 1:1
correspondence is suitable for comparing infinite sets. However, the growing

acceptance of 1:1 correspondence was not accompanied by an increased
tendency to reject the other criteria. The same rates of N-ST and C-ST
participants as in part I viewed inclusion as acceptable, and surprisingly, more
N-ST and more C-ST than before accepted the single infinity criterion.
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Usually participants either gave no justification or wrote that they had already
explained their judgements in Part I. Prospective teachers who justified their
claims often followed two lines of reasoning: (a) "I was convinced by the
illustrations in Part II that 1:1 correspondence can be vet)/ useful even in cases
where 1 couldn't provide the matching rule" or "the previous examples [in
Part II] reminded me" (used by prospective teachers who rejected '1:1
correspondence' in Part I and accepted it in Part III); and (b) "All these
questions confuse me and make me believe that infinity is extremely strange.There is probably a single infinity" or "Inclusion seems more reasonable than
creating a correspondence between an infinite number of pairs" (used by
prospective teachers who accepted 1:1 correspondence in Part I but rejected it in
Part III). A few participants consistently expressed in both Parts I and III the
notion of single infinity to reject 1:1 correspondence, while some others argued
in both parts that "infinite sets are incomparable".

DISCUSSION
The findings of this research, in line with those of previous research with
younger students, indicate that prospective teachers intuitively regard the criteriaof 1:1 correspondence, inclusion and single infinity as suitable for the
comparison of infinite sets (e.g., Tsamir & Tirosh, 1992). Participants who had
not followed a set theory course tended to view inclusion as most applicable,
but even a substantial number of C-ST participants declared that inclusion orsingle infinity were acceptable.

Moreover, practical considerations and the availability of the various criteria
played an important role in prospective teachers' decisions whether to accept orreject a specific criterion. However, similar, practical considerations led to
contradictory conclusions. On the one hand "to accept" (e.g., "It is not always
possible to use 'inclusion', but as this is a criterion which is easy to use, itshould be used whenpossible"); and on the other hand "to reject" (e.g., "Sets
are not always inclusive, so this is not a good criterion").
Interestingly, C-ST participants used the consideration of powers to reject 1:1
correspondence as a valid criterion, failing to grasp that 1:1 correspondence is
the notion underlying powers. Moreover, even the C-ST participants examined
each problem in isolation with no regard to the contradictions which may arisewhen accepting more than one of the above mentioned criteria as being valid.
Consistency was only rarely mentioned as the means by which to decide
whether to accept a suggested criterion, and as a means to determine validity in
mathematics (see also Tsamir & Tirosh, 1994).
After having been presented in Part II with illustrations of the use of 1:1
correspondence as a criterion for comparing infinite sets, in Part III there was an
increase among all participants in the acceptance of 1:1 correspondence.
However, the rate of N-ST and even C-ST participants who accepted inclusion
was unchanged, while the rate of the acceptance of 'single infinity' rose. It
seems that while "familiarizing" the N-ST with the correct solution and
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"reminding" the C-ST participants of it strengthens their tendency to accept this

criterion, it does not weaken their tendency to reject other criteria.

The findings also indicate that, as could be expected, prospective teachers who

had studied Cantorian set theory exhibited a significantly higher tendency to

accept 1:1 correspondence than prospective teachers who had followed no

course. These findings were detected in both types of questions when asked

to state whether 1:1 correspondence is a suitable criterion for the comparison of
infinite sets, and when asked to judge illustrated solutions to specific
comparison tasks. However, this tendency was no longer apparent when the
participants were presented with an unusual comparison task the fifth problem

in Part II. This problem was unusual both in that it intuitively triggered the
single infinity notion and in that it was a type of problem not dealt with in C-ST

courses.

In light of these findings, it seems that "showing students the right way" does

not decrease their tendencies to accept incorrect, intuitive ideas when
comparing infinite sets. Thus, students' primary intuitions should be taken into

consideration when planning instruction. Students should be made aware of
their tendency to view all infinities as equal and of their tendency to use
considerations of inclusion. Moreover, they should understand that using more

than one of these criteria to compare infinite sets will lead to contradiction.

Some ideas for practical applications of these conclusions will be offered in the

oral presentation.
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-THE CONCEPT OF A VARIABLE; GAUGING STUDENTS' UNDERSTANDING
Elizabeth Warren, Australian Catholic University

This paper explores the use of written tests and semi-structured interviews in
ascertaining students' understanding of the concept of a variable. A written
algebra test was administered to 379 students and from the results students
were selected for a semi-structured interview. The types of questions asked
and the medium in which they were asked appeared to influence the
responses given. It is conjectured that these issues must be considered when
endeavouring to reach a richer understanding ofthe students' perception of
the concept of a variable.

Algebra has long held a place of distinction in the mathematics curriculum (NCTM,
1989; National Statement for Australian Schools, 1991). Few have contested the
importance of algebra as it is seen as 'the language through which most mathematics is
communicated' (NCTM, 1989, p. 150). Critical to the algebraic domain is the variable
construct. The literature identifies common misconceptions students experience when
interpreting algebraic symbols.

Common misconceptions of the concept of a variable
Through his large-scale study of students' interpretations of literal terms, Kuchemann
(1978, 1981) identified many misconceptions. These were:
Letter evaluated: Students assign numerical values to letters at the outset of a problem.
For example, when asked to describe the expression 2+3x children often assign a value
to x , such as 1, and compute the answer. Thus 2+3x=2+3x1=5.
Letter not used: Here, students ignore the letters, or at best acknowledge their existence
but without giving them meaning. For example, the algebraic expression 2x+8y+3x is
equated to 13xy. Such an answer is obtained by simply adding up all the numbers, then
writing down each letter that occurs.
Letters used as objects: Here, students regard the letter as shorthand for an object or as
an object in its own right. For example, 2a+3b represents adding 2 apples to 3 bananas.
This is referred to in the literature as `fruit salad' algebra (Booth, 1988).
Letters used as a specific unknown or constant: Students perceive the letter as a specific
but unknown number. For example, the expression L+M+N would never equal L+P+N
as N cannot equal P. Even though both N and P are acknowledged as variables they must
always be different values from each other as they are represented by different letters of
the alphabet.
Letter used as a generalised number: Here, students perceive the letter as representing,
or at least as being able to take, several values rather than just one. For example, if
students are asked to list all the possible values for the expression x+y =10, they will list
more than one of the whole numbers which will satisfy the condition.

Kuchemann (1981) found that most students (aged 13-15 years) could not cope
consistently with items that required the use of the letter as a specific variable.

A further three misconceptions identified in the literature were as follows:-
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Changing the variable symbol as changing the referent. That is, different variables must

take on different values. For example, the expression 3n is not the same concept as 3x as

n and x could never be equal (Booth, 1984; Chalouh & Herscovics, 1983; Wagner &

Parker, 1993).
Assigning numerical values to letters according to their rank in the alphabet, for

example, a=1 and z=26, or if x=3 then y=4 and z=5. (Booth, 1984; Chalouh &

Herscovics, 1983).
Assigning the letter as a subdivisional label, for example, 3a refers to the first part of the

problem (Chalouh & Herscovics, 1983).

Misconceptions also occur when examining expressions. Some of these are: -

Closure: Some students exhibit a need to have a 'single' answer. For example, a+b

becomes ab (Chalouh & Herscovics, 1988).
Equal sign: In arithmetic `=' tends to mean compute,. 'makes', or a place for the answer.

Students fail to recognise the equality relation between the left and right hand side of the

equation (MacGregor, 1991).

This research is a replication study. Kilpatrick (1993) claimed that mathematics

education 'has suffered from a lack of replication studies [which] ... would help confirm

and refute conclusions drawn from previous work.' This is particularly imperative in

ascertaining students' understanding variable of the variable concept. Most of the

misconceptions identified in the literature were delineated from the results of large

studies involving written tests. The types of questions asked and the medium in which

they were asked could influence the responses given. Through written responses students

may not be able to exhibit their full understanding or misunderstanding of the concept of

a variable. This paper goes beyond pure replication. It compares the results from written

responses and a semi-structured interview and explores how each contributes to reaching

a richer understanding of students' perceptions of the concept of a variable.

Methodology
This study comprised whole class testing to select students for in-depth interviews.

The sample for the whole class testing comprised 379. The students' ages ranged

between 12 years and 2 months and 15 years and 10 months. Half of the sample were

in their first year of algebraic studies and half were in their second year. Both schools

chosen for the study consisted of students from lower-middle socio-economic status,

with a variety of ethnic backgrounds represented.

Whole class test: The whole class test was administered as a written test and

completed within a one-hour period. The test consisted of three components, namely,

generalising from visual patterns, generalising from tables ofdata, and understanding

the concept of a variable. The results from 3 of the 8 questions selected for the

variable component of the written test are discussed in this paper. These 3 questions

were believed to probe students' view of the variable, their need for closure of

algebraic expressions, their propensity to concatenate algebraic expressions, and why

students allowed "= constant" to limit possible values for the variable. These questions

were also used in the semi-structured interview.
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Semi-structured interview: The results for each component were ranked and three
students were selected at the 1st, 25th, 75th and 100th percentile for each of the written
components. Each interview was videotaped and transcribed.
Instrument The selected questions were:
Question I. This question is about t+t and t+4.

(a)

(b)

(c)

Is t+t ever larger than t+4? Ifso when?
Is t+4 ever larger than t+t? Ifso when?
Are t+t and t+4 ever equal? Ifso when? (Modified Harper, 1979)

This item was modeled on an item used by Harper (1979) and Quinlan (1992). The item
used in their studies was as follows:

This is a question about t+t and t+4

(a)

(c)

Which is larger, t+t or t+4? WHY?
When is t+4 larger?

(b)

(d)

When is t+t larger?
When are they equal?

In the interview stage of the pilot study, concern was expressed about the inconsistency
in the wording of the Harper item. For example, "When is t+t larger?" seemed to alert to
the fact that perhaps t+t could be larger. This proved confusing for students who had
chosen t+4 for part (a). Hence the question was reworded so that such inconsistencies no
longer existed.

Question 2. For a school excursion, 3 buses take f students each and 4 cars take g student each.
(a) Give the total number of students taken by these buses and cars.

(b) One car leaves early with g students. How many students remain? (Quinlan, 1992b)
This question was created to obtain information on students' ability to interpret the
meaning of letters when they referred to quantities as objects rather than mere numbers
(as in question 1) and to carry out operations on numerical variables without knowing
their values. This question was not reworded for this study.

Quest 3. (a) If c+d=10, tick ALL the meanings that c could have:
3 10 12 7.4 the number of apples in box
an object like a cabbage an object like an orange

(b) If c+d=10, what happens to d as c gets bigger?
(c)If c+d=10, and c is always less than d, what valuesmay c have

The origin of this item is threefold. It is based on the CSMS project question (Hart,
1981) "What can you say about c if c+d=10 and c is less than d," (Kuchemann 1980, p.
67) and on Harper's (1979) equation task, "If x+y=10 when is x less than y." Kuchemann
(1980) regarded this question as one which required students to view letters as
generalised numbers. Quinlan (1992, p. 106) added parts (a) and (b) to the original
question. Part (a), measured the types of possible meanings students are prepared to
accept for alphabetic symbols in algebra. Part (b) tested students' understanding of the
covarying relationship between.the two variables (i.e., as the value of c varies so does the
value of d). This question was adapted for the semi-structured interview. In the semi-
structured interview students were asked "If p +m =12, put a ring around all the possible
values p can have. 4, 12, 15, 0, 3.9, -2, an object like a pear, the number of children in
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the class." Students were then asked to articulate their reasons for including or excluding

certain values.
Results

Written component For each part of question 1, students were required to give two

responses. Students were asked to reply either in the affirmative or negative to the

question and then elaborate on their response with an appropriate reason. Table 1

summarises the results for this question.

Table 1 Percentage of Students who correctly responded to Each Part of Question 1

Question 1 Correct response Valid reason

(a) Is t+t ever larger than t+4? If so when? 46.4 28.8

(b) Is t+4 ever larger than t+t? If so when? 45.9 29.0

(c) Are t+t and t+4 ever equal? If so when? 43.0 36.1

Less than half the students answered this question. The results indicate that giving a

valid reason for the equality situation was easier than the other two situations. The

rewording of the Harper Quinlan question appeared to result in a greater percentage of

students reaching correct solutions. While Quinlan (1992) found that 50% of his sample

(517 students) responded correctly, 241 of these had completed at least 2 more years of

schooling with 108 students being in their final year. Thus only 27% of students with

comparable formal algebraic studies correctly responded to the Harper Quinlan question.

Responses to both 2(a) and 2(b) seemed to fall into four distinct levels Table 2 presents

a description of the levels together with the percentage of students whose responses were

considered to be at that level.

Table 2 Levels of responses to Question 2 & % of correct responses

Level Description 2 (a) 2(b)

0 Did not attempt or assigned a number 29.0 31.4

1 Incorrect algebraic response 14.5 21.4

2 Correct response but the need for closure 7.7 10.8

3 Correct response 48.5 36.4

Students found 2(a) easier to respond to than 2(b). This question was not reworded for

this research and results were similar to those obtained by Quinlan (1992).

Table 3 summarises the percentage of students who chose the various options in 3(a)

Table 3 Percentage of Responses to each Choice for Question 3(a)

Choice

3 10 12 7.4 number in box object cabbage object orange

Accepted 76.5 51.5 11.9 66.5 40.4 22.7 21.4
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The majority of students accepted 3 and 7.4 as possible values for the variable c but were
less confident in allowing c to be 10. When c is 10 the value of d is zero. Only twelve
percent accepted c as 12. When c is 12 the value of d is negative. These findings seem to
indicate that the nature of the product, "equal ten," of the equation plays a significant role
in limiting the permissible values for the associated variables. This could reflect
reluctance by the students to assign zero or negative values to the variable d. This trend
was difficult to delineate in the Kuchemann (1980) format of the question. This issue
was investigated in the semi-structured interview. Only 40.4 percent of the students
accepted that c could be the number of apples in a box, whereas up to 22.7 percent
allowed c to stand for an object such as an orange or cabbage. This seems to indica' that
the students had difficulty in accepting the variable as a generalised number and in
differentiating between this interpretation and the variable as an object.

Levels were developed for classifying responses to 3(b) and 3(c). For 3(b), the levels
indicated whether the students could see the covarying relationship between c and d in
the equation c+d=10. 68.3% of the students reasoned correctly that d would get smaller.
For 3(c), the levels indicated the possible values students would accept for c. Table 4
summarises the results for this question.

Table 4 Levels of Responses for Question 3(c)
Level Description % response

0 omitted response or incorrect list of numbers e.g., 1,2,3,4,5,..10 29.4
1 one or two numbers as response e.g., 3,4 4.5
2 1,2,3,4 included only integer responses 42.9
3 included 0, negatives and/or fractions 20.6
4 < 5 2.1

5 < 5 and included 0, negatives & fractions 0.05
As can be seen from the above results very few students responded correctly to question
3(c). Over half of the students tested gave at least four values for c. Kuchemann (1981, p.
108) found that nearly 40% of his sample of 14 year old students (n=1000) gave only
one value for c and that 30% gave four or more. For this study, approximately 43% of
the students gave four values for c. As indicated by Quinlan (1992), it appears that the
inclusion of the first two components helps students frame appropriate answers to (c).
In summary, these 3 questions from the written test indicated that the rewording of
questions can influence the responses given. Also, when examining the relationship
between two variables in an expression of the form x-1--)c, where c is a constant, the
value of the constant seems to play an important role in the permissible values students
will accept for the variables themselves. Students exhibited a reluctance to choose values
for either x or y that were greater than c. Even students who were considered by their
teacher to be very capable of understanding algebraic concepts, included the letter
standing for an object in a number of their responses. A very small percentage of the
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students perceived the variable as a generalised number. Most students tended to see the

variable as being represented by up to 4 specific integer values. These trends were

investigated further in the semi-structured interview.

Semi-structured interview Twelve students were chosen to be interviewed on their

understanding of the concept of a variable. The following section presents a summary of

students' perceptions.

Variable as an object: The results for question 3 from the written algebra test indicated

that 22.7% of students allowed c to stand for `an object like a cabbage' and 21.4%

allowed c to stand for 'an object like a orange' (see Table 3). From an analysis of the

written responses, some of the more able students seemed to hold this misconception.

The inclusion of "object like a pear" in the third interview question probed why students

accepted the variable as standing for an object. Not one of the twelve students

interviewed accepted p as "shorthand for pear." When questioned, those students who

ringed 'an object like a pear' seemed to assign a number to p. For example, Jason at the

1st percentile said, "Yes it could be about the number of pears and number of apples."

Michelle, also at the 1st percentile said, "Could be 14 pears." One student at the 100th

percentile could clearly articulate why 'an object like a pear' was not a valid option.

Mary said, "Object like a pear and 12 have no relationship," indicating that she viewed

`pear' as an object and not as a number. The two other students at the 100th percentile

said, "p could be an object like a pear only if m was 11 pears and then you would have

12 pears." The interview seemed to indicate that, contrary to the belief held when

analysing the written component, simply ringing 'object like a pear' did not necessarily

mean students saw p in expressions like p+m standing for pear, but rather as 'a pear', that

is, 'one pear'. This seems to indicate that relying solely on written responses could lead

to erroneous conclusions with respect to students' understanding of variable concept.

Specific unknowns: From the students' responses there seemed to be a growth of

acceptable values for the variable. Students at the 1st and 25th percentile made decisions

about the two expressions t+t and t+4 using one specific value for the variable. Adam

said, "t+t is bigger when t=5, t+4 is bigger when 1=2 and they are the same when t equals

4." By contrast, one student at the 75th percentile reached a conclusion by using a series

of specific unknowns for t (e.g. "t+t is bigger when t=5, 6, 7, 8....).

Generalised number: For the expressions t+t and t+4, two students at the 75th percentile

and three students at the 100th percentile immediately articulated the general case, that

is, "t+t is larger when t is greater than 4, t+4 is larger when t is less than 4 and they are

equal when 1=4." It was conjectured that they had an understanding of the variable as a

generalised number.

Closure: For question 2, 3 students at the 1st and 25th percentile wrote c+f=, indicating a

need for closure. All the students at the 75th and 100th percentile did not need to close

the expression, writing c+f.

Product component of an equation: For the expressions p+m=12 it seemed that the `=12'

component of the question was not the only factor that limited the number of acceptable
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values for p. The addition sign before m also seemed to play an important role. The six
students at the 1st and 25th percentile failed to accept 15 for the value of p. A common
response was "15 plus anything is over 12," indicating that the value of m must be
positive as it was preceded by `+'. Of particular interest was the fact that they all
accepted `-2' as a value for p. One student stated that, "-2 was alright as it is below
12."The other six students at the 75th and 100th percentile accepted 15 as a valid value
for p, stating that m would need to be negative.

Concatenation of algebraic expressions: Three students exhibited a need to concatenate
the variables. All of these students were either at the 1st or 25th percentile. For question
1, Chris at the 1st and James at the 25th percentile indicated that they would have cf
trucks'. When comparing t+t and t+4, Chris also suggested that, "t+t is 2t and t+4 is 4t so
t+4 would be bigger."

In summary, the results of the interviews indicated:-Students at the 1st and 25th
percentile were characterised by their need to evaluate, close and concatenate algebraic
expressions, and by perceiving the variable as representing a specific unknown. Two
students at the 75th percentile and the three students at the 100th percentile perceived the
variable as a generalised number and did not concatenate or close any of the algebraic
expressions.

Discussion and conclusion
Both the results of the written test and the interview support Kucheman's stages of
understanding. Not only did the less able students, students at the 1st and 25th percentile,
seemed to perceive the variable as representing a specific unknown but they also
exhibited a need to close algebraic expressions. By contrast, the more able students did
not need to close algebraic expressions and they perceived the variable as a generalised
number.

The results also seem to indicate that care must be taken when conjecturing about
students understanding from written responses. First, the framing of the question itself
could limit the types of responses given. The use of appropriate prompts could help elicit
students' full understanding of the concept of a variable. For example, as indicated by
Question 3 in the written test, the inclusion of (a) and (b) helped students frame a
response to (c), and for question 1 the rewording resulted in a greater percentage of
students with similar algebraic experience reach correct solutions.

Second, the medium in which questions are posed needs also to be considered when
reaching conclusions from students' responses. From an analysis of the results of the
written algebra test it seemed that many students perceived the variable as a letter
standing for an object. The results of the interview seemed to indicate that this
assumption was too simplistic. None of the students interviewed believed that p was
"shorthand for pear." All the students who selected p as standing for an object like a
pear, had valid reasons for its inclusion and these reasons relied on p standing for a
number of pears and not pear. While these results point tot he limitation of asking
questions only in written format, further probing is needed to ascertain how the context
of the problem can influence this common misconception (Clement, 1982). Also, for the
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expressions p+m=12 the product component (=12) is not the only factor that limited

students' thinking. It seemed that the placement of `+' before the variable also played a

key role. Students at the 1st and 25th percentile believed that `+m' meant that the value

of m must always be positive. This seems to indicate that some students are not capable

of delineating between `+' as the operation of addition and `+' indicating a positive value.

Both of these misunderstandings are difficult to identify in a written test format.

The results of this study seem to confirm generalities found in previous studies. First,

the wording of questions can influence the type of response given. A slight change in

how the question is framed can lead to a very different array of responses. Second,

adding prompts, lead ins and explain components to questions appears to help students

frame appropriate responses. The role of these components needs to be further

explored. Third, the value of interviewing and listening to students explanations to

how they solve problems can not be underestimated when gaining insights into

students' understanding of algebraic concepts. Fourth, when teaching arithmetic and

algebra there is a need to delineate between `+' as an operation and `+' as denoting a

positive number. Recent research has already acknowledged this need for `-` but not

for `+'. The results of this study also indicate that rewording of questions can

significantly influence the responses given by students. Rewording of questions in

previous areas of mathematical research needs to be carried out in order to both

confirm and refute conclusions drawn.
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TYPES OF RESEARCH IN MATHEMATICS EDUCATION
Dylan Wiliam

King's College London

Different approaches to research are described in terms of the different emphases
accorded to the hermeneutic notions oftext, context and reader. Knowledge-building
in mathematics education is defined as a dual process of establishing warrants for
particular beliefs, and eliminating plausible rival hypotheses,, where 'plausibility' is
established either by explicit reference to a theoretical frame, or implicitly wf.'!;in a
discourse. These perspectives are then integrated by a classification based on
whether the primary source of evidence is reason, observation, representation,
dialectic, or ethical values. It is then argued that educational research, as well as
building knowledge by the process identified above, requires subjecting the
consequences of the research to the ethical judgements of the community.

Introduction
The community of PME is heterogeneous, and while there appears to be reasonable
agreement about the purposes of research in the Psychology of Mathematics
Education, there is much less agreement as to how that research should be conducted
and disseminated and what is to count as evidence or knowledge (Lester, 1998).
Supplementing the traditional paradigms of experimental psychology, recent work
has borrowed heavily from ethnographic traditions of research, and more recently
still, there has been an increasing interest in 'action research'that is research
carried out by teachers in their own classrooms for their own benefit. With this
proliferation of paradigms, there is a danger that debates about the quality of
research are clouded by differences in researchers' views about what counts as
evidence rather than about the quality of the research. The purpose of this paper is to
present a framework for thinking about research in mathematics education, with a
view to clarifying the debate about the quality of thatresearch.

Evidence and inference
The relationship between different approaches to research in mathematics education
can be clarified by the use of some ideas from hermeneutics. Traditionally, it had
been assumed that an utterance, picture, piece of writing etc (collectively referred to
as text) has an absolute meaning. In hermeneutics, it is acknowledged that the same
text has different meanings when presented in different contexts, and when presented
to different readers. For example, when a student says that the work that she has been
asked to do is "boring", in one context, and to a particular teacher, this might be an
informed comment that the work was too repetitive, not sufficiently challenging, and
unlikely to effect any meaningful learning. In another context, or to another person,
"boring" might mean almost the opposite work that is too challenging, or even
threatening. The text (in this case "It's boring") will be interpreted differently in
different contexts, and by different readers (eg teachers). These three key ideas
text, context and reader are said to form the hermeneutic circle.

4 - 321



In educational research the 'text' is usually just 'data'. Sometimes the fact that the

data has to be elicited is obvious, as when we sit down with someone and ask them

some questions and tape-record their responses. At other times this elicitation pro-

cess is less obvious. Observing and making notes on a teacher's actions does not feel

like 'eliciting' evidence. It feels much more like the evidence presenting itself.

However, it is important to realise that the things I choose to make notes about, and

even the things that I observe (as opposed to those I see), depend on my personal

theories about what is important. In other words, all data is, in some sense, elicited.

This is true even in the physical sciences, where the physicist Werner von

Heisenberg remarked that "What we learn about is not nature itself, but nature

exposed to our methods ofquestioning" (quoted in Johnson, 1996 p. 147).

For some forms of evidence, the process of elicitation is the same as the process of

recording the evidence. If I ask a school for copies of its policy documents in a par-

ticular area, all the evidence I elicit comes to me in permanent form. However, much

of the evidence that is elicited is ephemeral, and only some of it gets recorded. I

might be interviewing someone who is uncomfortable with the idea of speaking into

a tape recorder, and so I have to rely on note-taking. Even if I do tape-record an in-

terview, this will not record changes in the interviewee's posture which might sug-

gest a different interpretation of what is being said from that which might be made

without the visual evidence. The important point here is that it is very rare for all the

evidence that is elicited to be recorded.
During the process of elicitation and recording, and afterwards, the evidence is

interpreted. Research based on approaches derived from the physical sciences

emphasises text at the expense of context and reader. The same educational

experiment is assumed to yield substantially the same results were it to be repeated

elsewhere (for example in another school), and that different people reading the

results would be in substantial agreement about the meaning of the results. Other

approaches will give more or less weight to the role played by context and reader.

For example, an ethnography will place much greater weight on the context in which

the evidence is generated than would be the case for more positivistic approaches to

educational research, but would build in safeguards that different readers would

share, as far as possible, the same interpretations. In contrast, a teacher researching

in her own classroom might pay relatively little attention to the need for the

meanings of her findings to be shared by others. For her, the meaning of the evidence

in her own classroom might well be paramount.
In what sense, then, can the results of educational research be regarded as

`knowledge'? The traditional definition of knowledge is that it is simply 'justified

true belief' (Griffiths, 1967). In other words, we can be said to know something if we

believe it, if it is true, and if we have a justification for our belief. There are at least

two difficulties with applying this definition in educational research.

The first is that even within a subject as precisely defined as mathematics or

science, it is now acknowledged that there are severe difficulties in establishing

what, exactly, constitutes a justification or a 'warrant' for belief (Kitcher, 1984). The
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second is that these problems are compounded in the social sciences because the
chain of inference might have to be probabilistic, rather than deterministic. In this
case, our inference may be justified, but not true!

An alternative view of knowledge, based on Goldman's (1976) proposals for the
basis of perceptual knowledge, offers a partial solution to the problem. The central
feature is that knowing something is, in essence, the ability to eliminate other rival
possibilities. For example, ifa person (let us call her Chris) sees a book in a school,
then we are likely to say that Chris knows it is a book. However, if we know (but
Chris does not) that students at this school are expert in making replica books that, to
all external appearances, look like books but are solid and cannot be opened, then
with a justified-true-belief view of knowledge, we would say that Chris does not
know it is a book, even if it happens to be one.

Goldman's solution to this dilemma is that Chris knows that the object she is
looking at is a book if she can distinguish it from a relevant possible state of affairs
in which it is not a book. In most cases, the possibility that the book-like object in
front of Chris might not be a book is not a relevant state of affairs, and so we would
say that Chris does know it is a book.

However, in our particular case there is a relevant alternative state of affairsthe
book might be a dummy or it might be genuine. Since Chris cannot distinguish
between these two possibilities, we would say that Chris does not know.

Within educational research, therefore, we can view the task of producing
`knowledge' as having two requirements. The first is establishing that the inferences
that are made from the evidence are warranted. This is something at which most
researchers are relatively good. The second requirement, honoured more in its breach
than its observance, is establishing that the chosen interpretation is more warranted
than plausible rival interpretations.

Such a process can never be completethere are no 'off-the-peg' methods; only a
never-ending process of marshalling evidence that the chosen interpretation is a)
supported by the available evidence, and b) more warranted than plausible rival
interpretations.

This solution to the problem of 'knowledge' in education is only partial, because it
leaves open what counts as a plausible rival hypothesis. In practice, even in the
physical sciences, this is decided by the consensus of a community of researchers.
Sometimes what is and is not plausible is made absolutely explicit, in the form ofa
theoretical stance. In other words, a researcher might say "because I am working
from this theoretical basis, I interpret these results in the following way, and I do not
consider that alternative interpretation to be plausible". More often, communities of
researchers operate within a shared discourse that rules out some alternative
hypotheses, although these tend to be implicit and are often unrecognised.

To sum up, evidence is elicited, recorded in some form and interpreted (not
necessarily in that order!). The interpretations are validated by the elimination of
plausible rival interpretations of the evidence, and the definition of what counts as
`plausible' is determined by the discourse within which the validation takes place.
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Meanings and consequences
The above description has dealt with the production of 'educational knowledge',

which, although it acknowledges the role of context in interpreting text, still places

substantial emphasis on the production of shared meanings within a community of

researchers.
During the 1980s, this concern with sharing of meanings across readers was ques-

tioned in what is sometimes called action research. In action research, what is im-

portant is the potential of the research to transform practice in the individual school

or even for the individual teacher. Even if the research has different meanings (or

even if it is meaningless) for those in different contexts, this is not a problem, as long

as it has meaning for the teacher. There is no doubt that action research has huge

transformative potential for the individuals involved in the research, but many have

argued that it cannot be classed as research per se, because the research makes no

effort to produce meanings that are shared beyond the immediate context and

readers.
My concern here is not, however, with whether action research is valid research or

not, but to show how it can fit into a theoretical framework and to examine how it

differs from other approaches to research.
In all research, there is a tension between the meanings and consequences of re-

search. For example, it would not be unusual for a researcher to discover something

about a teacher's practice (perhaps through interviews with students) that appeared

to be preventing the students from learning effectively. The question is, then, should

the researcher communicate this to the teacher? In the traditional research paradigm,

the answer would be a resounding 'no'. Feedback by the researcher to the teacher

might change the teacher's subsequent behaviour, thus rendering the results of the

research much more difficult to interpret. At the other extreme, many advocates of

action research would say that such important evidence should be fed back to the

teacher, and if this changes what is being investigated, then so be it. Put crudely, in

traditional text- and context-focused research, unfortunate. (or non-existent!) conse-

quences are frequently justified and legitimated by the need for shared meanings. In

action research, weakness in the extent to which meanings of the research findings

are shared are justified and legitimated by the consequences of the research.

A full consideration of the nature of educational research must, therefore, take

account of the consequences as well as the meanings of the research. The role of

consequences in the validation of research is made much more explicit in the

classification of inquiry systems developed by Churchman, to which we now turn.

Inquiry systems
Different methods of inquiry were investigated by Churchman who regarded all

kinds of inquiry as being classifiable into 5 broad categories, each of which he

labelled with the name of a philosopher (Leibniz, Locke, Kant, Hegel, Singer) he felt

best exemplified the stance involved in adopting the system, and in particular, what

is to be regarded as evidence.
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More detailed accounts of the systems can be found in the work of Churchman
(1971) and his colleagues (Mitroff & Sagasti, 1973; Mitroff & Kilmann, 1978), and
Messick (1989). However, it is perhaps easier to understand the framework when it
is applied to a 'real' research question in mathematics education should students
be allowed unrestricted access to calculators when learning mathematics?

One approach to this problem is to use only rhetorical tools to attempt to establish
the truth of the proposition. For example a report by the London Mathematical
Society, the Institute of Mathematics and Its Applications and the Royal Statistical
Society (1995) argues that "To gain a genuine understanding ofany process is
necessary first to achieve a robust technical fluency with the relevant content" (p9).

This would be an example of what Churchman calls a Leibnizian inquiry system,
in which certain fundamental assumptions are made, from which deductions are
made by the use of formal reasoning rather than by using empirical data. In a
Leibnizian system, reason and rationality are held to be the most important sources
of evidence. Although there are occasions in educational research when such
methods are appropriate, it is usually far more appropriate to use some sort of
evidence from the situation under study (usually called empirical data) in the inquiry.

The most common use of data in inquiry in both the physical and social sciences is
via what Churchman calls a Lockean inquiry system. In such an inquiry, evidence is
derived principally from the observations of the physical world. Empirical data is
collected, and then an attempt is made to build a theory that accounts for the data.
This corresponds to what is sometimes called a 'naive inductivist' paradigm in the
physical sciences, and is most appropriate for well-structured problems.

In the context of our investigation into the use of calculators, we might design an
experiment in which students were tested on their mathematical attainment,
randomly assigned to one of two groups: one given unrestricted access to calculators
and one given no access to calculators, and then re-tested after some period of
teaching. From the resulting data, we would then attempt to build a coherent account
of what was going on (see, for example, Hembree and Dessart, 1986).

The major difficulty with a Lockean approach is that, because observations are
regarded as evidence, it is necessary for all observers to agree on what they have
observed. Because what we observe is based on the theories we have, different
people will observe different things, even in the same classroom.

For less well-structured problems, or where different people are likely to disagree
what precisely is the problem, a Kantian inquiry system is more appropriate. This
involves the deliberate framing ofmultiple alternative perspectives, on both theory
and data (thus subsuming Leibnizian and Lockean systems). One way of doing this is
by building different theories on the basis of the same set of data. Alternatively, we
could build two theories related to the problem, and then for each theory, generate
appropriate data (different kinds of data might be collected for the two theories).

For the issue of access to calculators, this could involve development of two alter-
native theories. For example, we might examine the relative effectiveness of
calculator use and non-calculator use in terms of achievement, or in terms of

tie*
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attitudes towards mathematics and confidence. It is not immediately apparent where

these two theories overlap and where they conflict, but by attempting to reconcile the

alternative conceptualisations, new theories can develop.

This idea of reconciling two (or more) rival theories is more fully developed in a

Hegelian inquiry system, where antithetical and mutually inconsistent theories are

developed. Not content with building plausible theories, the Hegelian inquirer takes

the most plausible theory, and then investigates what would have to be different

about the world for the exact opposite of the most plausible theory itself to be

plausible. The tension produced by confrontation between conflicting theories forces

the assumptions of each theory to be questioned, thus possibly creating a synthesis of

the rival theories at a higher level of abstraction.
An Hegelian approach to our inquiry into the use of calculators would involve

researchers who have adopted an 'achievement' perspective on the use of calculators

to think through what would have to be different about the world for the exact

opposite of their theory to be true. Those who adopt the 'attitude' perspective would

do the same, which might then result in sufficient clarification ofthe issues to make

a synthesis of the two perspectives, at a higher level of abstraction, possible.

The differences between Lockean, Kantian and Hegelian inquiry systems were

summed up as follows by Churchman:
The Lockean inquirer displays the 'fundamental' data that all experts agree are accurate and

relevant, and then builds a consistent story out of these. The Kantian inquirer displays the same

story from different points of view, emphasising thereby that what is put into the story by the

internal mode of representation is not given from the outside. But the Hegelian inquirer, using

the same data, tells two stories, one supporting the most prominent policy on one side, the other

supporting the most promising story on the other side (Churchman, 1971 p. 177).

However, the most important feature of Churchman's typology is that we can

inquire about inquiry systems, questioning the values and ethical assumptions that

these inquiry systems embody. This inquiry of inquiry systems is itself, of course, an

inquiry system, termed Singerian by Churchman after the philosopher E A Singer

(see Singer, 1957). Such an approach entails a constant questioning of the

assumptions of inquiry systems. Tenets, no matter how fundamental they appear to

be, are themselves to be challenged in order to cast a new light on the situation under

investigation. This leads directly and naturally onto examination of the values and

ethical considerations inherent in theory building.

In a Singerian inquiry, there is no solid foundation. Instead, everything is

`permanently tentative'; instead of asking what 'is', we ask what are the implications

and consequences of different assumptions about what 'is taken to be':
The 'is taken to be' is a self-imposed imperative of the community. Taken in the context of the

whole Singerian theory of inquiry and progress, the imperative has the status of an ethical judg-

ment. That is, the community judges that to accept its instruction is to bring about a suitable tac-

tic or strategy [...J. The acceptance may lead to social actions outside of inquiry, or to new kinds

of inquiry, or whatever. Part of the community's judgement is concerned with the appropriate-

ness of these actions from an ethical point of view. Hence the linguistic puzzle which bothered

some empiricistshow the inquiring system can pass linguistically from "is" statements to

"ought" statements is no puzzle at all in the Singerian inquirer: the inquiring system speaks

exclusively in the "ought," the "is" being only a convenient facon de parler when one wants to
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block out the uncertainty in the discourse. (Churchman, 1971 p. 202; my emphasis in fourth
sentence).
The important point about adopting a Singerian perspective is that with such an in-

quiry system, one can never absolve oneself from the consequences of one's
research. Educational research is a process of modelling educational processes, and
the models are never right or wrong, merely more or less appropriate for a particular
purpose.

A Singerian approach to calculator use would then look at all possible
perspectives, but also at the ethical and value positions underlying such perspectives.
Even if restricting access to calculators results in higher average achievement, who
are the winners and losers, and what are the resulting costs to society? Such difficult
questions can be avoided within Leibnizian, Lockean, Kantian and Hegelian inquiry
systems, but must be confronted within a Singerian inquiry system.

Educational research can therefore be characterised as a never-ending process of
assembling evidence that:
1) particular inferences are warranted on the basis of the available evidence;
2) such inferences are more warranted than plausible rival inferences;
3) the consequences of such inferences are ethically defensible.
Furthermore the basis for warrants, the other plausible interpretations, and the ethical
bases for defending the consequences, are themselves constantly open to scrutiny
and question.

Conclusion
In this paper, different approaches to educational inquiry have been characterised in
terms of the hermeneutic notions of text, context and reader. Traditional
`positivistic' forms of research seek to produce texts (eg data, research findings etc.)
whose meanings are shared by different readers, and across a variety of contexts.
Other approaches (particularly those sometimes labelled 'qualitative') acknowledge
the context-dependent nature of the research findings, but nevertheless seek to
produce texts whose meanings are widely shared. However, research results that
have widely shared meanings appear to be more difficult for teachers to 'make sense
of' and to make use of in improving their practice.

The approach sometimes called 'action research' addresses this by not even trying
to generalise meanings across readerswhat matters is the meaning of the research
findings for the teacher in her own classroom. This lack of generalizable meaning for
action research is justified by its potential to transform the practice of the individual
teacher. There appears, therefore, to be a trade-off between meanings and
consequences. Put crudely, in action research, the lack of shared meanings are
justified by the consequences, while in other kinds of research, the lack of
consequences are justified by their more widely-shared meanings.

The tension between meanings and consequences was then further explored in
terms of Churchman's five-fold classification of inquiry systems, based on what is
taken to be the primary source of evidence:
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Inquiry system Source of evidence

Leibnizian Reasoning

Lockean Observation

Kantian Representation
Hegelian Dialectic
Singerian Ethical values

Adopting a Singerian perspective, it was argued that educational research involved

marshalling evidence that:
1) the interpretations made of the data were warranted;

2) the interpretations were more warranted than plausible rival interpretations;

3) the consequences of such interpretations were ethically defensible.

From the point of view of the individual researcher, the important message is that

nothing that is written about the process of research relieves the individual

researcher of the responsibility for the research she undertakes, and what happens as

a result of that research.
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A MATHEMATICS ANALOGUE OF
CHOMSKY'S LANGUAGE ACQUISITION DEVICE?

Carl Winslow
Department of Mathematics

Royal Danish School of Educational Studies

Abstract. The aim of this paper is to suggest a perspective on mathematical
knowledge and its learning which is radically different from both Platonism (an old
favorite of mathematicians) and constructivism (currently popular among
educators,); in particular, to stress that the denial ofone does not imply the other. The
starting point is what Chomsky (1986) calls Plato's problem: explain how we know so
much, given that the evidence available to us is so sparse. Some major theories
related to this problem in the contexts of linguistics and cognitive psychology are
discussed. In particular, I propose a mathematics analogue of Chomsky's language
acquisition device, and discuss the relations between the two that emerge from the
description of mathematics as a linguistic 'register' (Pimm, 1991; Winslow, 1998).

1. Background: LAD, LASS and so on.
Plato's problem arises for Chomsky (1957, 1988) in the following way: it can be
theoretically argued that natural language is too complex to be acquired from finite
input alone (thus, the constructivist idea of an initial tabula rasa must be abandoned).
The radical Chomskyan proposal to solve Plato's problem for language acquisition is
the hypothesis of the language acquisition device (LAD): an innate' mental structure,
common to all human beings, which takes, as input, primary linguistic data a finite
number of more or less 'correct' utterances in the language to be acquired and
produces a 'grammar' of this language, i.e. a system of rules which allows the learner
to speak the language creatively to 'perform' linguistically. The original LAD
hypothesis (Chomsky, 1965) is very strong concerning the detailed 'mechanics' of
the device; as a reconstruction, I have represented the whole mechanism in process-
diagrammatic form in Fig. 1. For a detailed explanation, the reader should consult
(Chomsky, 1965, §1.6-8); the basic idea is that, given the finite input, LAD chooses
among an infinity of in-built 'possible grammars' one which is in optimal consistency
with the input.

The scientific status of LAD is, so far, unclear; at best, it is an unverified
hypothesis about the innate language competence of the human mind, but as it is even
quite unclear how it could be scientifically rejected, a Popperian critique might claim
that no substantially stronger claim to scientific status can be made for it than for
Homer's collected stories from the Olympus (Popper, 1963, §1). Of course, the point
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Figure 1: LAD

of bringing up the idea of a LAD here is not to reject it in this way (let alone that

Popper's falsification criteria are widely acknowledged to be impracticable in any

science). The aim is, first, to point out the LAD model as an outstanding example of

an unverified hypothesis which has inspired many fruitful research efforts, in this

case not only in linguistics, but also in educational psychology, as evidenced e.g. by

(Bruner, 1983) and (Karmiloff-Smith, 1992). Secondly, and more importantly, alike

hypotheses form the indispensable lifeblood ofresearch regarding the mechanisms of

cognition, where measurable evidence in a direct physical sense is still very sparse, in

spite of recent progress (to which we return below). A parallel may be found e.g. in

nineteenth century chemistry, which used notions such as valence and molecule as

convenient myths devised to help organize experience (Chomsky, 1986, p. 7).

Later works on language acquisition have provided various auxiliary

hypotheses and modulations, such as pointing out the necessity of taking into account

the interaction between input and output in a language community setting, e.g. the

language acquisition support system (LASS) discussed in (Bruner, 1983), or

proposing domain-specific cognitive 'modules' as discussed (and questioned) in

(Karmiloff-Smith, 1992). Recently, the notion ofmetaphor has been used as a central

explanatory model for language related cognitive mechanisms, including natural

language, e.g. in (Lakoff, 1987); the idea is also exemplified in the context of

mathematics (Lakoff - Nunez, 1997).
Until fairly recently, the study of cognition had to be based solely on

evidence of performance, with no possibility to gain direct evidence of cognitive

structures
2. The interest of theories (systems of hypotheses about cognitive structure)

derived from analysis of performance is increased by current developments in

cognitive neuroscience which suggest that measurable evidence for such theories may

become available; see (Dehaene, 1997) for a leisurely introduction to this exciting

area as it applies to mathematics. As in any experimental science, techniques to gain
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evidence have to be complemented by theories suggesting what to look for; only
explicit (and, at least initially, simple) theories will do here.

2. Linguistic aspects of mathematical knowledge.
The striking similarity between discourse in natural language and mathematical
discourse (in the sense of (Winslow, 1998)) has at least the following aspects, which
form together a strong indication that Plato's problem arises for mathematical
knowledge much in the same way as for language3:

the complexity of the rules governing discourse,
the extent to which consensus may be reached (within a community of discourse)
about the rules,
the implicit nature of the vast majority of those rules.

We already mentioned (in sec. 1) one sense of the first point in the case of natural
language (even when considering only syntax), and Chomsky's argument is actually
to demonstrate the possibility of embedding a non-finite state mathematical structure
into English4. The third point is in fact an immediate corollary of the first, and poses
Plato's problem exactly as for natural language. The second aspect is not theoretical
but empirical in nature, but is theoretically essential to counterbalance the other two;
without it, neither natural languages nor mathematics would represent useful means
of communication. The paranthesis about consistency referring to a community is
essential, though; it marks the difference between languages and registers, which we
proceed to explain (see also Pimm, 1991). A language is a system of structured
knowledge applicable to express human thoughts, while a register of language is a
systematic way of using language in some specifiable settings. Thus, the second
aspect is about registers (within natural languages, and in mathematical discourse).

To penetrate deeper into the connection between natural language use and
mathematical discourse, we shall study more closely how they interact. As suggested
in (Winslow, 1998) and further elaborated below, mathematical registers integrate
natural language use with the use of certain symbolic languages:
1. Parts of the word and sentence inventory of natural language are semantically

defined or redefined for use in the mathematical register.
2. Symbol strings may replace word strings in phrases of natural language, whose

syntax remains otherwise unchanged. Replacement does, in this context, not mean
that an ordinary meaningful phrase in verbal language is transformed into a phrase
of the mathematical register by simply replacing some syntactic elements (e.g., a
noun) by a symbol string, but rather that the phrase in the mathematical register
can be formally derived from a syntactically correct (but possibly meaningless)
phrase in verbal language by such a replacement6. Very specific rules can be given
about how replacement takes place within a given mathematical register.

3. Finally, the symbolic inventory (producing symbol strings) has its own syntax, as
explained in (Winslow, 1998, Sec. 3.2). The basic concepts (called universal
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syntactic features) here are those of object, relation and operator, and for

syntactic relations among symbol strings the derived concept of transformation.

The syntax of symbol strings (at a deeper level than the universal syntactic

features, for instance, the construction of objects), and not least their semantics,

can be given in detail only for very specific subregisters, as it is highly context

dependent (cf. e.g. Woodrow, 1982).

The most important point here is the crucial relation between natural

language and mathematics the fact that mathematical knowledge, understood as

knowledge of the mathematical register, is to a large extent depending on knowledge

of natural language. The impact of childrens language background on their

performance in mathematics learning contexts has indeed been the subject of

numerous studies7, and it has been shown beyond reasonable doubt that this influence

is both strong and many-sided, even when discounting external factors that correlate

with natural language capacities8. We need hypotheses convenient myths

regarding the intrinsic source of those correlations. As was argued in this section,

such a model of mathematics acquisition will have to relate to (or even contain) a

model of language acquisition. One may consider the LAD as a simple yet significant

model of the last sort, and we use it as a working hypothesis for natural language

acquisition in the following.

3. Contours of a minimal MAD.
Our task now is to determine a minimal set of competencies for acquiring

mathematical knowledge which are not themselves acquired, but which are part of the

human cognition apparatus. It is obvious that minimality is most desirable, as we are

not willing to settle with the easy but mystifying Platonic solution (claiming all

mathematical knowledge to be 'built in'). On the other hand, as argued in sec. 2, if

the overall aim is a model accounting for all mathematical knowledge not just the

chess-type parts then this minimal set is not empty. In fact, language acquisition

competencies are necessary but not sufficient. The existence and importance of such

a minimal solution is a main point of this paper. Notice that uniqueness is neither

implied nor claimed to be implied.
The discussion in Sec. 2 does suggest some elements of the cognitive

faculties which the human capacity to learn and foster mathematical knowledge

seems to necessitate. The most basic one is the ability to perceive symbolic language

and to distinguish it from natural language. This it not in itself a faculty which is

solely related to mathematics in a strong sense (like mathematical registers as

considered here); the human use of symbolic inscription and signification is likely to

be as old and broad in scope as natural languages. We may think of this as a

supplementary feature belonging to the 'input representation device': the capacity to

perceive and distinguish symbol type input in different surface forms (audile and

visual). This faculty is related to 'mental imagery' as studied in cognitive
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psychology (Paivio, 1971) and some of its effects are (in a more direct way) studied
in iconography. Where the properly mathematical enters the scene is in the ability to
represent and manipulate structures involving states and processes of symbolic
entities. This faculty clearly pertains to structural description of represented symbol
input, that is, it belongs to what is called the structural description device in
Chomsky's LAD. It accounts for the universal syntactic features of mathematical
knowledge: some symbols are perceived as distinguished objects which may be found
in the state of relation to other objects, while other symbols represent processes by
which objects are changed (operators); and finally that such processes induce new
relations when related objects are changed by the same operator (the state structure is
changed by what we call transformation). However, the concrete transformational
rule relate different structural descriptions and hence it belongs to the domain of
`grammar', just as in the case of natural language. Assuming further the capacity of
evaluating different transformational grammars of symbol language against structural
descriptions of represented input, we have situated all the elements of a MAD
(construed in analogy and even in addition to the LAD) required to account for the
universal syntactic features of mathematical symbol language.

To accomplish our task set out at the beginning, we must reconsider the
phenomena of (re)naming and replacement (point 1 and 2 in sec. 2) by which the
mathematical register is brought together as a whole.

Naming, which effectuates semantic (re)definition, carries greater weight
in mathematics than the mere assignment of lexical signifiers (Sfard, 1991). I believe
it is important to distinguish two different naming procedures here, as suggested by
the following examples.
(a) 'A function G from A to B is a subset of AxB such that for every aEA there

is precisely one b EB such that (a,b) E G.'
(b) 'Let G be a function.' (Equivalent: 'Let a function be given; call it G.')
The first kind assigns a name to a mathematical structure, and this relation name-
structure becomes part of the 'lexicon' much as in the case of natural language. If we
are, at a later point, told that a function is a non-commutative group, this leads to
conflict. By contrast, the second kind of naming feeds a short-memory name-symbol
lexicon which can easily be changed the same way by later namings. The last naming
of a symbol prevails and must often be available in the lexicon before applying the
syntactic parts of the structural representation device to the whole sentence (as in 'Let
G be a function with G' 0...'). Any revision of the structure-name lexicon must
be based on the structured description of the whole sentence, as in the feeding of the
natural language lexicon. To sum up: the structural representation device contains
two semantic components handling two kinds of naming, one which feeds a symbol-
name lexicon directly, and one which marks (parts of) the sentence as a naming of
structure, which (via the evaluation measure) causes a relation name-structure to be



activated in the corresponding lexicon. Both lexicons are part of the grammar used in

(and affected by) the structural description of a sentence.

The simplest way to accomodate the phenomenon ofreplacement at this

final stage, seems to be twofold: an 'inverse replacement' component of the structural

representation device, adding to the structural description a base phrase from natural

language from which the sentence can be derived by lexical insertions; and an

addition to the grammar, consisting of rules for replacement by symbol strings (just

as rules ofreplacements are built into the grammar of natural language, cf. (Harris,

1965, §2)).
The tentative model of a MAD developed above is summarised

schematically in Fig. 2, which contains (and is built upon) Chomsky's LAD as

interpreted in Fig. 1.

mathe-
matical
input

Figure 2: MAD

INPUT REPR. DEVICE
sentence with

strings
WITH SYMBOL FILTER

GRAMMAR INVENT.
SYNTACTIC
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STRUCTURE REPR

of Natural Language
- of Symbol Language
- of Inverse Replacem.

SYMBOL
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[EXTENDED
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This picture only aims to reflect the `acquisitionise aspects of learning, but it should

be clear that output (and hence participation in mathematical discourse) is not ignored

because of this. On the contrary, the value of the evaluation measure (specific

lexicons and syntactic rules) at any time reflects the linguistic type knowledge based

on which the learner performs mathematically (or, as LAD is built in, using natural

language alone). What cannot be accounted for by such a model is the actual
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production of output. However, it is clear that in addition to linguistic type
knowledge, a central item is memory and associative use of it.
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Notes.

Notice that this does not imply acceptance of Plato's idea world, but may be

explained (as Chomsky does) as a product of evolution.

2 As an early exception, Skemp (1987) noticed with enthousiasm what he saw as a

neuropsychological confirmation of his analytically based theory of visual-

geometrical thinking as opposed to verbal-algebraic thinking; Skemp's theory was

published in 1971, and the relevant work in neuropsychology (due to Shannon) in

1980.
3 This is in a way also the original setting, as described in Plato's dialogue Menon.

4 In (Chomsky, 1957, n.3), it is also explicitly noted that any formalized system of

mathematics or logic willfail to constitute a finite state language.

5 The definition of concept of register goes back to (Halliday, McIntosh, Strevens,

1964; p. 87), although formulated in different wording and with a narrower definition

of language than given here.
6 In more technical terms: the phrase structure is the same, but in addition to usual

lexical insertion, some elements of a phrase may be filled by symbol strings. One

may think of the latter as 'replacing' a natural language string by the symbol string,

although no such replacement actually takes place.

A classical collection of such studies may be found in (Cocking and Mestre, 1988).

8 That is, one has identified even purely intrinsic effects, in the sense of (Saxe, 1988).
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DIVISION WITH FRACTIONS IS NOT DIVISION BUT MULTIPLICATION:
on the Development from Fractions to Rational Numbers in terms of

the Generalization Model Designed by DOrfler

Takeshi YAMAGUCHI Hideki IWASAKI
Fukuoka University of Education, Japan Hiroshima University, Japan

(Abstract) Division with fractions is the "capstone " of elementary school arithmetic and
the " cornerstone " of algebra. It is a teaching material of calculation depending finally
upon quantities and considering division as the special case of multiplication.
Conceptual understanding of both the expression and algorithm on it is traditionally
planed based on the proportional relation about two concrete quantities in the elementary
school of Japan. Only simple procedure "invert and multiply", however, is confirmed as a
result of teaching and learning for lack of "constructive abstraction" in the sense of
Dorfle-r's generalization.

Most students cannot reach at the idea of division by way of schema of proportion,
and moreover schema of share and measure known by students cannot induce and deduce
division with fractions. We, therefore, propose here that schema of comparison is quite
applicable for making the expression about it and algebraic treatment learned by students
is much relevant for understanding the algorithm of the expression. As a matter of fact,
both of them were abstracted constructively in the classroom lesson of sixth grade(twelve
years old). The educational significance mentioned at the opening paragraph was
realized in this practice, and this teaching and learning process was more successful than
the present treatment based on the proportional reasoning.

1. Conceptual Understanding of Division:
separation of division with natural numbers and that with fractions

Conceptual understanding of division with fractions is traditionally and carefully taught on
the base of proportional relation between two concrete quantities in the sixth grade of Japan.
Proportional reasoning plays an important role there, and moreover in the transition from
elementary mathematics to advanced mathematics as Lesh, Post, and Behr say as follows (1988,
pp .93 -94):

We view proportional reasoning as a pivotal concept. On the one hand, it is the capstone
of children's elementary school arithmetic; on the other hand, it is the cornerstone of all
that is to follow.

What is firmly established in the sixth graders, however, is only the procedure "invert and
multiply" concerning a divisor. Most of them cannot make a reason why division becomes
multiplication suddenly in the case of fraction as well as they cannot often make a division
expression to the word problem including fractions. Such an outstanding difference between the
concept and procedure is due to the following fact: the schema of share and measure concerning
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divisions with natural numbers learned by students cannot be assimilated and accommodated to

that of proportion on division with fractions. Constructive abstraction about this, therefore, is

almost impossible on the presupposition of partitive and quotitive divisions because their

characteristics are quite different from that of division with fractions except dividend(See Table

1). They are definitely division as it is, and cannot induce or deduce multiplication with the

inverse of a divisor.
The idea of Lesh, Post, and Behr is theoretically right but is not practically right in the

case of division with fractions as the national achievement survey showed in Japan. Many

teachers also know this fact from their experience. The expression and algorithm of division

with fractions, therefore, should not be induced and deduced over the proportional relation

between two concrete quantities. The expression of it can easily get the meaning in the schema

of comparison which is as fundamental as that of share and measure. The algorithm of it can be

deduced from the calculation rule which students have already learned. This is our proposal and

point.

Table 1. Characteristics of Partitive and Quatitive Division

Partitive Division Quatitive Division

Image Sharing a quantity Measuring a quantity
into equal parts with some quantity

Meaning To ask how much To ask how many units
the unit is there are.

Dividend Rational number Rational number

Divisor Natural number Rational number

Quotient Rational number Natural number

Remainder No existence Principally existence

2. The Result of the National Survey concerning Division with Fractions

The achievement survey, which was implemented by Ministry of Education in Japan, 1994

and had 16,000 samples in each grade fifth and sixth, shows that 27.2 % of students correctly

answered the word problem mentioned at Table 2 to make an expression of division with

fractions. On the other hand, 89.7 % of same students calculated the division expression with

fractions 2/7 ÷ 3/4 correctly. Furthermore in the same survey, 65.9 % of students in fifth grade

correctly answered the word problem mentioned to make an expression of division with decimals

which has the same mathematical structure as the case of fractions. There is much difference

between division with fractions and that with decimals in making an expression.

Both are typical problems for introducing division with decimals and fractions in each

grade fifth and sixth of the elementary school. To make a division expression as well as to

understand its algorithm in both cases are taught and learned on the base of proportional relation

between two concrete quantities in the classroom lesson. Making a division expression first, the

case of decimals and fractions are extrapolated into the case of natural numbers referring

concrete quantities. Next its algorithm is explained using usually two number lines which



Table 2 Achievement tasks of division with fractions and decimals

(Problem for fifth graders) There is a steel pipe. Its weight is 4.2 kilogram to the length of
3.5 meter. How much weight is it for one meter steel pipe? Write an expression to get
an answer.

(Problem for sixth graders) There is a water tank. Water is poured 5/6 liter per 2/3 minute
into the tank. How much water is poured for one minute? Write an expression to get
an answer.

represent proportional relation figuratively. Proportional reasoning, therefore, plays a
fundamental roll to understand not only the division expressions but also their algorithm.

But there is big difference in the rate of correct answer between two problems although
they have the same mathematical structure. According to the Dorf ler's generalization,
"constructive abstraction" and "intensional generalization" are well conducted in classroom lesson
about division with decimals consequently speaking. On the other hand, division with fractions
has a serious problem in the process of intensional generalization for understanding the algorithm
even if it succeed in constructive abstraction for making the expression.

Division with decimals is division and not multiplication. It is a kind of extension of
division with natural numbers. But division with fractions is not division but multiplication.
This algebraic reconstruction cannot be overwhelmed only by proportional reasoning. We think
that whether there is this transformation or not reflects the results of the national survey
consequently, and this is the problem of "constructive abstraction" and "intensional
generalization".

3. Analysis of Teaching and Learning of Division with Fractions
from DOrfler's Generalization Model

(1)Critical Analysis of Division with Fractions Based on Schema of Proportion from Diforfler's
Generalization Model

In the teaching and learning process of division with fractions, division is supposed to be
integrated into the special case of multiplication with the extension of meaning of division.
Therefore we can regard conceptual understanding of it as a kind of generalization process. In
this sense, DOrfler's generalization model (1991) as shown in Fig.1 gives us some suggestions
which clarify the reason of serious detachment between making the expression and understanding
the algorithm about division with fractions.

In DOrfler's generalization model, the pre-stage of "symbols as objects" is called
"constructive abstraction", the objective and method of activity are reflected upon first and the
properties of elements of activities and the relation of elements are extracted as a result.
Furthermore, the applicability of these properties and relation is considered in the "extensional
generalization". After this stage, symbolical description of the invariants is detached from the
original context and the symbol itself has become object of thinking. This is to say "symbols as



objects", which connotes to
proceed to "intensional

generalization". It is a

symbolic operation to

multiply divisor and dividend
or denominator and numerator

of fraction by the same

number on the assumption of
"symbols as objects".

Conceptual understanding

of calculation is composed of

an expression and its

algorithm. The expression is
induced from a word problem

using a number line and

extrapolation particularly in

the case of division with both

decimals and fractions. After

that their algorithms is

deduced in terms of

proportional reasoning.
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abstraction and understanding
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1
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Fig.1 Dorf ler's generalization model (1991,p.74)

through proportional relation between two quantities. On

the other hand, the algorithm of division with fractions is intensionally generalized into

proportional relations, and transformed into multiplication. Most students suppose that they

invent new algorithm "invert and multiply" from division. They, therefore, repeat constructive

abstraction for understanding the algorithm although they arrived at "symbols as objects" through

it.
The similar processes in the different meaning interfere mutually and restrain each other.

The process of making an expression consequently fades away from cognition and the procedure

"invert and multiply" fades in it and is firmly established as a result. We think this is the reason

why there is a big difference in the rate of correct answer of the national survey. In other word

of the DOrfler's generalization, the division with decimals could have "constructive abstraction"

but the division with fractions could not have "constructive abstraction". Then we should
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choose another schema and devise the teaching way other than the schema of proportion aboutdivision with fractions.

(2)Division with Fractions Based on Schema of Comparison as the Alternative Framework
In order to overcome this issue, we propose new instructional framework based on "schema

of comparison". Schema of comparison has two mathematical aspects which are difference and
ratio between two quantities. One typical word problems in the context of schema of ratio is"There are the tape A and tape B. The length of tape A is 3/5 meter and that of B is 2/7 meter.How many times is tape A as long as tape B ?". This kind of situation more easily induces the
division expression than that of the proportional relation.

After making the expression, however, it is a significant issue that schema of comparison
can not work in itself as the driving force which forms conceptual understanding of the
procedure "invert and multiply". So students are requested to remind of some rules about
fractions and division learned by them, and to figure out the algorithm as follows:

(A) 3

5

3
= ( x

2

7

35)÷(7 x 35)

(B) 3 2 3 x 14 2

3 7 5 x14 7

3x(14 =2) 3x7
5x(14+-2) 5x2

3 x7
3 7-(3x7)÷(2 X5)-

2x5 x
5 23 7

5 2

These ideas are not related to quantities directly but mathematical operation of fraction and
calculation. Furthermore these activities would contribute to build up new conceptual network
among properties of fraction, rules about calculation, and cognitive schema of division depending
on partitive or quatitive division, which is the essence of the "intensional generalization" in the
sense of DOrfler's generalization.

4. Design and Evaluation of Teaching Practice Based on Schema of Comparison
(1)The Result of Pre-test of Division with Fractions

Prior to the teaching practice in this study, we conducted the pre-test of division with
fractions. Subjects in this pre-test were sixth graders at Ukiha Elementary School in Fukuoka,
Japan. Problems in this pre-test are shown as below. Problem 1 is about division with fractions
on the base of schema of proportion and Problem 2 is about that of comparison. We should
note that sixth graders had already learned division with fraction before we gave them this test.

1 We can paint 2/5 m 2 of the board per 3/4 dl. How much area of the board can we paintfor 1 dl ?
2. The length of Kaori's tape is 2/3 meter and that of Shiho's tape is 5/7 meter. How many

times is Shiho's tape as long as Kaori's tape ? (Note: Kaori and Shiho are names of
Japanese girls.)
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Results of this pre-test are shown in Table 3. Only four of sixth graders (14%) made

correct expression in Problem 1, although they had already learned this subject matter. In

addition to this, table 4 shows the number of students who made the expression of division in

Problem I and 2 respectively. According to this table, we can see the tendency that the word

problem based on schema of comparison is more closely related to division expression than that

of proportion. As Problem 2 is briefly requested to find the value of ratio between two

quantities, the schema of comparison is accessible to that of measure for quatitive division even

if both divisor and dividend are fractions. This is one of reasons why this difference between

division based on schema of proportion and that of comparison is caused. According to these

two results, at least, we can suppose that making an expression based on schema of comparison

is easier for sixth graders than that based on schema of proportion.

Table 3. Results of Pre-test = 28
Probleml (Schema of Proportion) Problem2 (Schema of Comparison)

The Number of
Students

Method The Number of
Students

Method

Correct 4 2/5 ÷ 3/4 (4) 9 5/7 -:- 2/3 (9)

Wrong 2 0 3/4 X 2/5 (8) 1 7 2/3 ÷ 5/7 (13)
3/4 ÷ 2/5 (7) 5/7 X 2/3 (3)
4/4 X 2/5 (2) 5/7 2/3 = 3/4
Others (3) (1)

No
Response

4 2 .--'---
Table 4. The Number of students who made the expression of division

Problem Schema The number of students
1 Proportion 11 Correct 4

Wrong 7

2 Comparison 22 Correct 9
Wrong 13

(2)Design and Evaluation of Teaching Practice Based on Schema of Comparison

Based on the results in the pre-test, we designed teaching practice of two lessons based on

schema of comparison for sixth graders. The objective of this teaching practice was, to verify

empirically that students could make the expression of division with fractions based on schema

of comparison and deduce the procedure "invert and multiply" logically, referring and using

properties of fractions and rules about the calculation which students had already learned. The

class was, for necessity, divided into small groups of 6 to 7 members so that they felt it easy to

make discussion. We report here the brief sketch of sixth graders' activities below.

At the beginning of this lesson, the following problem situation was presented by a

teacher: "Hana has the tape whose length is 3/4 meter. Yuki has 2/5 meter. Compare the length

of Hana's tape with that of Yuki's tape". At the earlier stage of this lesson, to this task, some

students showed three types of method as follows:
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(a) 3 2 3x5 2x4_15_ 8 7
4 5 4x5 5x4 20 20 20

Hana's tape was longer than Yuki's one by 7/20 meter.
(b) 3 2 3 5 15

4 5 4 x 2 8

The length of Hana's tape was 15/8 times as long as Yuki's tape.
(c) 3 2 15 8

4 5 20 20 =15 8
(The length of Hana's tape) : (The length of Yuki's tape) = 15 : 8

Most students could easily make an expression of division with fractions such as (b) or
understand meaning of this expression by others' explanation.

After this, teachers asked students to explain the reason why we could calculate division
with fractions by the algorithm of "invert and multiply" since they had already learned it.
Students, however, felt much difficulty as we anticipated it because the proportion schema could
not be driven for the explanation and the comparison schema could not either generate the
algorithm of multiplication with the inverse of divisor in itself. Then a teacher need to inform
of some mathematical knowledge known by students. The teacher helped them to reconfirm the
property of fractions such as "The value of fraction is constant when both denominator and
numerator are multiplied by the same number" and to make sure of rules about division such as
"The quotient of division is constant when both divisor and dividend are multiplied by the same
number." (for example, "0.6 = 0.2 = 6 ± 2"). There happened to be a student who explained
the way of calculation by the idea of transformation of division with fractions into that with
decimals as follows.

2
= (3÷4)÷(2 0.75 ÷ 0.4 = 75 ÷ 40 75

40

Though this idea itself did not produce the algorithm "invert and multiply" at all, students could
apply another meaning of fractions such as "a/b = a ± b".

Then a teacher gave students a word of advice to multiply both divisor and dividend by
any other numbers than 100. Following this advice, one students wrote the following
explanation on the blackboard and explained in detail.

3 ÷(x20)+(xM)
4

2

5

3 2
=(34 5

3 x5 3x5 3

4

5
x

2
x5)+(2 x4) =

2 x4 =
4x 2

Some opinions about this explanation were exchanged among students in the class as follows:

SI: Why is the multiplier twenty in this expression ?
S2: It is the reason why twenty is the least common multiple of four and five.

S3: Why is the expression " (-3
5

x 20)÷ (-2
4

x 20) " transformed into the expression
"(3 X 5) ÷ (2 X 4)" ?

S4: The reduction of four and twenty or that of five and twenty produce this transformation of the
expression.
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S3: I don't understand your explanation.

S4: We can reduce twenty to five in the fraction

the expression "3 X 5".

3x20 like this (reducing twenty to five) and get
4

S5: I think that the fraction " 3x 5 " will be transformed into the expression " x 5 " by this

manner. Is it OK ?
2x4 2 4

3 5

S6: Because we can change "2 X 4" into "4 X 2", we can get the algorithm "

Students in the class: All right. I can understand the meaning of the procedure "invert and

multiply".

As this protocol shows, students in this class deduced the algorithm of division with

fractions logically for themselves, referring properties of fractions and rules about division, and

negotiated the meaning of it through the social interaction among students in the class. These

exchanges of ideas represents the process of building up new network by means of combining

prior cognitive schema of division with properties of fractions and rules about division.

5. By Way of Conclusion

We consider division with fractions as the transitional teaching material from arithmetic to

algebra. According to Lesh et al., proportional reasoning is supposed to play a role of bridge

between them. And division with fractions is carefully taught in sixth grade in Japan in terms of

proportional reasoning. But the conceptual understanding of it is not taken place but only the

procedure "invert and multiply" is firmly remained as shown in the national survey. Therefore it

is our research concern of this paper to overcome this difficulty on the instruction of division

with fractions by setting up new instructional framework based on schema of comparison as the

alternative instructional framework.
As a result, in the teaching practice in this paper, we have confirmed that sixth graders

easily made an expression of division based on schema of comparison, and that most of them

can deduce the procedure "invert and multiply" logically and understand conceptual meaning of

this algorithm sufficiently, referring properties of fractions and rules about division.

In the present practice of division with fractions, proportion schema does not work

substantially as the bridge. On the other hand, comparison schema facilitates to cope

algebraically with the division expression because the expression is well established by

comparison schema but can not be calculated in terms of it. In this sense, division with

fractions realizes its teaching objective mentioned at the head of this section. This is our

proposal and main finding in this paper.
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TEACHING MATHEMATICAL MODELING
WITH A COMPUTER ALGEBRA SYSTEM

Nurit Zehavi and Giora Mann

Weizmann Institute of Science, Israel Levinsky College of Education, Israel

Abstract

Here we present an approach to studying mathematical models using a Computer
Algebra System (CAS). Pupils (ages 13-14, n = 141) were introduced to the
mathematical model of the classical problem "How long did Diophantus live" They
examined the model by solving problems, manipulating the parameters, and inventing
similar story problems; and found that the model is more than an equation and that
the implicit restrictions are an integral part of the model. The interaction ofpupils
with the computer disclosed some of the cognitive processes involved in the modeling
activities and caused teachers to reflect on their methods of teaching.

Introduction

Probably all generations of pupils, who studied algebra, were introduced to the
famous problem from the Greek Anthology, "How long did Diophantus live". It is
known that Diophantus (about 250 AD) solved arithmetical problems, not equations,
but he was interested in exact rational solutions. Therefore, his title as the father of
algebra is a matter of historiographical study (Boyer, 1968, pp. 196-216). Father of
algebra or not, his place in algebraic textbooks is secure.
Algebraic word problems are notoriously difficult to solve for most pupils. The
challenge for educators is to somehow overcome the difficulties. We describe here a
few attempts that are relevant to our approach. Stacy and MacGregor (1995) used
different verbal descriptions of the same problem to encourage pupils to form mental
representations. Many pupils, as they worked, extended their mental models to
encompass additional features of the mathematical structure. Hoz et al. (1997) studied
in depth the role of structural and semantic factors in the solution of speed problems.
They recommend that teachers use similar/isomorphic problems in order to clarify the
inference of the relations embedded in the structure of the problems. Inspired by
cognitive science, educators attempted to use computers to enhance word problem
solving. One such system, Animate (Nathan, 1992) creates animations of the story
problem derived from the algebraic equations constructed by the pupils. Experiments
with the system indicated that the animated simulations of the problem provided



experiential feedback for error detection and correction (Nathan, 1998). In this paper

we approach mathematical modeling using a Computer Algebra System.

The appearance of Computer Algebra Systems (CAS) on personal computers in the

mid-eighties opened the way to new teaching strategies and curricular developments.

Research on the use of CAS in mathematics education is relatively new. Most of the

work in this area concentrated on the student-knowledge-technology triangle,

realizing that computer algebra software does not answer questions; rather it reacts to

an action and produces something that needs to be interpreted. Therefore it is

essential to teach pupils how to make the most effective use of the output of the

software (Hunter et al., 1995). It is commonly believed that a CAS, by freeing

students from syntactic manipulation, allows them to concentrate on semantic or

conceptual aspects of algebraic reasoning. Pozzi (1994) studied this in a qualitative

case study with students of ages 16-17. He has pointed out that students, who do not

fully comprehend a CAS output, will develop informal and possibly erroneous ideas

of what the computer is doing. Pozzi has concluded that using a CAS may necessitate

a closer conceptual understanding of the algebraic manipulations. With a CAS

executing the procedures efficiently, we can now reflect on relationships that connect

the formal notation and the procedures for performing mathematical tasks (Zehavi,

1996, 1997). The implication of studies on learning with a symbolic manipulator, is

that the teacher plays a far more complex role while teaching in this new environment

(Heid, 1996). This was the motivation for Drouhard (1997) to generalize the didactic

triangle (student-knowledge-teacher) by defining the double didactic pyramid with

two new vertices, the CAS and the group. He challenges researchers to pursue studies

in mathematics education that investigate the construction of knowledge in CAS

environment.

The Math Comp project

The Math Comp (mathematics on computers) project was initiated in 1996 in the

Science Teaching Department at the Weizmann Institute of Science with the aim of

integrating CAS into teaching, to improve the learning of mathematics with the

following goals.

Student goals:
1. Creating a network of relations between concepts and the procedures leading to

them. This became possible because CAS frees the student from the tedious work

involved in carrying out the procedures;
2. Enriching the mathematical language used by students while they "do"

mathematics;
3. Developing independent and critical thinking especially while using CAS;

4. Using technology to stimulate and motivate students to do mathematics.



Teacher goals:
1. Using technology to increase teachers' awareness of the cognitive aspects of

learning and to design tools to deal with these aspects;
2. Challenging rethinking of curricular and didactical aspects of mathematics

learning and teaching;
3. Developing independence and creativity when incorporating CAS into the

professional lives of mathematics teachers.

These goals seem adequate to any technology-based educational project. Indeed, what
really matters are the ways to achieve these goals. We decided to develop
mathematical learning units with computer algebra to be worked out in a computer
lab. The units accompany the syllabus for junior high school mathematics. Each of
the units that have been developed includes a variety of tasks aimed at improving
skills, understanding concepts, and investigating problems. These tasks create a
network of mathematical connections, which in turn, give deeper meaning to the
subject at hand and open windows for new mathematical experiences.

The basic assumption in the design of the MathComp units is that for the time being,
pupils do algebra with paper and pencil in class, and use CAS in the lab to broaden
learning opportunities and to promote mathematical understanding. This assumption
is affected by practical circumstances, as well as, by the current state of CAS in
education. The topics that are dealt with in the units were selected by considering the
potential use of Derive (by Soft Warehouse) to achieve new didactic opportunities,
new learning strategies, and new curricular relations. It is our hope that the units will
act as a stimulus for teachers developing their own tasks. Here we bring a unit for
Grade 8 "Equations and problems". We explain the rationale of this unit and the
formative development process of the tasks. An exploratory study in four classes that
worked on the unit using the CAS software Derive is described, and the conclusions of
the study are discussed.

Equations and problems: A learning unit with Derive
The unit "Equations and problems" deals with building a model (equation) for a
`story' problem. It is clear that CAS cannot translate a story into an equation - so how
can a CAS support modeling activities? Our idea was to choose story problems that do
not fall into the common schemas (e.g., velocity problems, mixture problems) for
which teachers and their pupils 'pretend' to have algorithms for solving the problems.
The old puzzle about the School of Pythagoras (Problem 1) seemed suitable for our
needs. This problem also includes fractions, which are both intimidating and difficult
to calculate for pupils, but not for CAS. The idea was that pupils will interact with the
software by using the solve command and other commands for feedback and for
debugging their models. After solving the problem, we do not proceed immediately to
another problem; rather, we challenge the pupils to invent similar word problems of
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their own. The main goal of such an activity is to shed light on the equation itself as

an object for exploring, and not as just a tool for finding an answer to the puzzle. The

design of similar problems forces the designer to realize that there are implicit

restrictions in the model, in addition to the equation itself.

Problem 1: Pythagoras' school

Pythagoras, who lived in the sixth century BC, ran a school. He was once asked

how many students are in his school. After thinking for a while, he said:

1/2 of the students do mathematics.

1/4 of the students deal with science.

1/7 of them are silently exercising their mind.

And in addition to all the above we have three girls.

How many students were in Pythagoras' school?

We have observed that pupils are motivated to play "teacher" and to express

themselves by inventing problems close to their heart. Naturally, some girls

expressed their disagreement with the "three girls" item. However, in the first

experiments we realized that they write whatever comes to their heads, sometimes

without writing the algebraic model. Those who set equations and applied the solve

command often got 'unreasonable' solutions (e.g., a negative solution for the

equation x/2 +x/3 + x/4 + 5 = x). We therefore need to prepare them to reflect on their

stories/models. Hence we added tutorials for making explicit the implicit restrictions

of the model. For example: (a) "Pythagoras' secretary reported that 1/2 of the

students do math, 1/3 do science, 1/6 think in silence, and there are also 3 girls". The

model that describes this story simplifies to x + 3 = x, which evidently has no

solution; (b) How do we change the problem so that the number of students in the

school will be 280 instead of 28? The second example (which, in fact was suggested

by a pupil) leads to the relation between the number of girls in the school and the

total number of students.

The unit includes a built-in assessment tool based on the famous story about

Diophantus (Problem 2). The model is similar to the previous one, only a little more

complex. Both models simplify to an equation of the form 25/28 x + "number" = x.

Again, pupils are encouraged to write their own story. (Note that we modified the

authentic story, in which a son was born and later died, because we realized that the

context of students' stories was affected by the tragic fact.)
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Problem 2: Diophantus' life

A puzzle, similar to the following, was written on the grave of Diophantus:
Diophantus spent 1/6 of his life as a child, 1/12 as a young man,
and more 1/7 of his life as bachelor.
Five years after he got married he left his hometown.
He returned to his hometown 4 years before his death.
Diophantus stayed away from his hometown '/2 of his life.
How long did Diophantus live?

Exploratory study
An exploratory study was carried out in four Grade 8 classes (n = 141) of average and
above ability. The students worked on three Derive-based units in which they became
familiar with the following computer procedures: substituting numbers in
expressions, solving (in)equalities, and performing operations on both sides of an
(in)equality (using the F4 key). Then they were asked to solve Problem 1 and to
explain how they used Derive. We show three lines from a Derive file created during
one pupil's work:

#7 x X + X + X 3
2 4 7

User

#8 3-- = 3 Simp (# 7)
28

#9 x = 84
Solve(#8)25

In the following lines the student modified the equation until he got the correct one.
All four teachers were impressed by the fact that after about 10 minutes, all the pupils
managed to get the correct answer, "28 students", with only a little help from the
teacher and their classmates. This was not so when students in other classes worked
on the problem with paper and pencil.

In Table 1 we summarize students' work on Problem 1 based on what students wrote
in their worksheets and on Dei-ive files that were created during their work. In row 1
we see two equations that represent the two basic types of equations that students
came up with. The first is a straightforward translation of the story, and the second is



the result of some data processing that pupils did in their heads. (It is not surprising

that the pupils who constructed the second model could later find more easily than the

others that we get the solution, x = 280, if we change the number of girls from 3 to

30). In the last row we have the percentages of pupils who concluded their answers,

without being explicitly asked, with the calculation of the number of students

engaged in various activities of the story.

Table 1: Distribution ofsolutions to Problem 1

Solution to Problem 1:
School of Pythagoras

Class A
n = 38

Class B
n = 33

Class C
n = 36

Class D
n = 34

EQ

I'R.
CoC
7EDLI
R._E
S

x x x- +
4
- +

7
- + 3 = x

2

x - x(-
1

+ -1 + -1) = 3
2 4 7

84%

16%

100%

0%

75%

25%

60%

40%

soLve, (Simplify) 35% 45% 30% 73%

Simplify, soLve 60% 15% 40% 18%

F4 - Operations on
both sides ,

Sim &iffy, soLve
5% 40% 30% 9%

Calculation 5% 3% 33% 20%

We discussed with the four teachers the distribution in each class and the differences

between the classes. Each teacher described his didactical strategies, techniques, and

goals in teaching algebra in the class. Together we came up with the conclusion that

pupils' work on the problem with Derive reflect their previous experience. The

teachers could make specific inferences to their teaching.

Another source of insight to the teachers was the story problems that students wrote

that. followed Problem 2. The number of complete story problems (i.e. story, equation

and reasonable solution) in each class varied from 33% to 61%. To illustrate a typical

story and model formulated we show in Table 2 a Derive file related to the story of

Uncle Moses who challenged his friends, on his birthday, with the puzzle: How old

am I? The file illustrates, somewhat transparently, the monitoring, evaluating, and

planning processes that were part of pupils' reasoning. We can see that he used the

solve command for monitoring the model, and the simplify command for evaluating

the expressions. It seems that in his planning he referred to the fact that the sum of the

fractions should be less than 1(see line #7), but the role of the "number" in

5 I 5
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determining the solution was not yet clear to him (see the trial and error in lines #10
#12). Based on the findings of the study, we are currently revising the unit. We are
considering including of a parametric form of the model, which can easily be
manipulated by the software, to enhance the understanding of the structure of model.

Table 2: Modeling the story of Uncle Moses' birthday

#1: 19-x"Uncle Moses' birthday"

119: 7 =
20

+ x
1 1 1

112: 4 =----x + 3
2

+ ----x +
3

+ ----x X

4 1 1 1
1110: x +4 +----x + 3 + x = x

113: "soLue" 2 4 7

114: x = -84 1%
#11: x =

115: "Simplify" 3

13-x 25-x
116: 7 x 1112: 7 =+

12 28
+ x

1 1 1 1 1 187: #13: x + 3 +
----x + 3 + x + 4 + ----x =x - -x + 3 + ----x =x2 4 5 4 7

118: x = 140 1114: = 56

Conclusion

In designing learning units in a CAS environment we have at least three concerns: (a)
What is the balance between student interaction with the system and student
reflection? (b) Does the complexity of the system simplify the parts that cause the
student the most trouble? (c) How do conceptual and procedural knowledge interact
when the CAS is performing the procedures?

In this study we have found that the use of technology does not replace reflection on
the part of the student, but rather enhances it. When a pupil is using CAS to solve a
word problem and immediately gets a solution, he is free to check if the solution does
not make sense. In such a case he knows that the source of the trouble is the
model/equation and not the algebraic manipulations. He may reflect on the way he
constructed the model and try to resolve the problem. This is a big advantage over the
conventional way of teaching, where pupils do not have the immediate control over
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their work, and therefore they have to wait until the teacher reacts to their solution

before they start to reflect, if at all.

The weight we placed on the model emphasizes the fact that usually the complete

model of a word problem includes, in addition to the equation(s), some implicit

restrictions. Because the pupils were asked to play the role of the teacher by inventing

their own story problems, they realized the importance of those implicit restrictions.

Thus, the design of the unit leads in a natural way to parametric equations, which we

plan to investigate further. Our experience so far indicates that the use of CAS in this

unit and in others creates networks of relationships between conceptual and

procedural knowledge that facilitate mathematical understanding.
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BOYS, MATHEMATICS AND CLASSROOM INTERACTIONS: THE
CONSTRUCTION OF MASCULINITY IN WORKING-CLASS MATHEMATICS

CLASSROOMS.

Robyn Zevenbergen
Griffith University

This paper explores the interactions between teacher and students in attempting to
understand the ways these contribute to the construction of masculinity with the
primary school setting. Research suggests that not all boys or girls are winners in
mathematics, but rather, it is important to consider the intersection between gender
and other variables such as ethnicity, rurality, class and poverty. This paper
examines the intersection of gender and social class namely boys and working
class. It analyses a transcript taken from a series of videotaped lessons during the
last year of primary school (12-13 year old).

A considerable amount of research has investigated aspects of mathematics and
mathematics education which have resulted, or have the potential to result in, the
marginalisation of girls in and through mathematics. Such research has been very
powerful in changing the status and outcomes for girls and women in the study of
mathematics. However, as has become increasingly evident across Australia and
internationally, there is a recognition of the polarisation of the performance of boys.
In part, such foci are a result ofa backlash against many of the political and economic
reforms sweeping the world. Traditional male roles have come under challenge
within the economic and workplace reforms of the post-Keynesian reforms. Such
changes have seriously challenged the role and place of men in society, and just as
women's movements had taken up the challenge in the 60s for girls, men's
movements are now taking up the challenge for boys' education.

Boys simultaneously have a clear at a disadvantage and advantage in the study of
mathematics. In the 1999 Year 12 results for Queensland, boys dominated both the
top and lowest 10 percentile in results. Similar results have been noted in other state-
wide testing regimes. However, as Teese, Davies, Charlton, and Polesel (1995) have
noted that it is not gender alone that compounds success, but also socio-economic
privilege, rurality and culture. In Australian schools, in both literacy and numeracy,
Aboriginal girls outperform Aboriginal boys, but as a group, they score considerably
lower than other Australian students (Gilbert & Gilbert, 1998; Zevenbergen, 1996);
and those living in remote areas do not perform as well as those in urban areas
(Gilbert & Gilbert, 1998; Lamb, 1997). Similar patterns occur for working-class
students who do not do as well as their middle-class peers, but in study of
mathematics, middle-class girls are likely to score as well as their middle-class male
peers, whereas working-class girls are less likely to score as well as their working-
class male peers (Teese et al, 1995).
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In examining the teaching of mathematics from feminist standpoints, studies of

questioning in mathematics classrooms have shown similar results where boys are

asked significantly more questions than girls, (Leder, 1990) boys are asked more

challenging questions whereas girls are more likely to be asked closed questions;

girls tend to be more focused on writing and presentation whereas boys are concerned

and rewarded for experimentation (Forgasz & Leder, 1995, Walkerdine, 1989).

Whereas this literature arose from the needs to recognise the girls in mathematics, it

also is useful in documenting potential areas for boys' education. Just as the gender

identity literature has alerted educationalists and the wider society to the restricted

versions of masculinity open to boys, so too does the literature on girls and

mathematics. The options open to boys, while may be more empowering, they are

only empowering for a restricted number of boys.

Studies of classroom interactions have demonstrated a regularity in the

interactions which become taken-for-granted to constitute what becomes part of a

mathematics culture. The culture of the mathematics classroom has been well

documented and had often been described by teachers and students within restricted

frameworks. Teachers' widely-held beliefs that they are responsible for teaching

students specified procedures in order to solve mathematical problems (Good land,

1983; Stodolosky, 1988) facilitates the development of traditional forms of

classroom cultures which are so familiarly recalled by students. Most often it is

described as teacher directed, students undertaking routine exercises and pencil-and-

paper testing procedures (Leder & Forgasz, 1992). With a greater emphasis on

inquiry modes of pedagogy, mathematics classrooms which have adopted these

approaches have been placed under scrutiny. Bauersfeld, Krummheuer and Voigt,

(1989) along with Wood (1994) note that the changes in the epistemological

approach adopted by the teacher produces changes in the patterns of interactions

within the reformed classroom.
"Triadic dialogue" (Lemke, 1992) has been documented as one of the most

frequently occurring interactions within the classroom and is not unique to any

particular curriculum area. This form of interaction consists of three key parts: the

teacher initiates a question to which the answer is usually known by the teachers; the

student responds; and the teacher then evaluates the response (Sinclair & Coulthard,

1976; Mehan, 1982). Such interactions serve the purpose of controlling the

interactions as well as the content of the lessons. Lemke (1990) argues that the rules

for interacting are not explicitly taught and hence students come to learn them

through participation in the interactions. However, Lemke also notes that the patterns

of interaction are not consistent across the three phases of a lesson. Triadic Dialogue

is common in the introductory phase of a lesson where the teacher attempts to keep

tight control of the content and students. Hence a significant amount of power

resides with the teacher. Similar observations are made of the concluding phase of

the lesson. However, during the work phase of the lesson, the patterns of power are

somewhat more equal and students can express their lack of understanding. This

phase of the lesson adopts patterns of interactions that are somewhat more equal

151:i
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between teacher and students. The role of teachers' questions are critical in
controlling the interactions with classrooms. As Lemke (1990) has shown through
Triadic Dialogue, questions are used to control the flow of the lesson, the content to
be covered, the behaviour of students and to provide progressive evaluation of
student learning and lesson implementation.

Wood (1994) contends that many of these interaction types found in mathematics
classrooms do not require the students to be working mathematically to participate.
In her work with inquiry classrooms, she contends that the questions asked are
substantially different in form where the answer is often unknown; and :,..:eking
further information and/or encouraging reflective thinking from the students (p.152).
Extending the notion of interaction to include extended interactions, two key forms of
interactions have been identified as potentially contributing to mathematical
understanding. Funnel interactions (Bauersfeld, 1988; Voigt, 1985) are those where
the students "narrowing of a joint activity to produce a predetermined solution
procedure by teacher... [by] providing students with leading questions" (Wood,
1994, p. 155). Focussing patterns of interactions occur when the teacher uses
carefully worded questions to guide the students to the more critical components of
the task. In so doing the teacher poses problems to the students so as to ensure that
the interaction is focused on the student and that she/he assumes responsibility for the
resolution of the problem.

These studies have been useful in identifying micro and macro patterns in
classroom interactions, but they do not address gendered aspects of the interactions.
Such studies are valuable in identifying key aspects of the hidden components of the
classroom culture which may be instructional in understanding the ways in which
masculinity is exercised in mathematics classrooms.

Studies of classroom talk of who talks, for how long, with what forms of questions
and about what, show that boys dominate the linguistic space usually within
masculinist and often aggressive ways. However, as Gilbert and Gilbert (1998) are
quick to recognise, it is not all boys who are advantaged by such interactions. Just as
narrow readings of femininity constrained girls education, so too can the narrow
versions of masculinity constrain boys education. This project critically examines the
interactions within a mathematics classroom in order to understand the ways in which
masculinity is being constructed in and through mathematic for working-class boys.

The Study
The study was conducted in a working-class school in a major regional centre of

Australia. The school was selected on the basis of its nationally computed
disadvantage index. The class "self-selected" with the teacher volunteering to
participate when the school was approached to participate in the study. The class was
in the last year of primary school (12-13 year olds), mixed gender with approximately
equal representation of boys and girls. There were approximately 30 students in the
class. The teacher adopted an interactive approach to teaching mathematics in which
debate and discussion were actively encouraged. The project involved the
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videotaping of weekly mathematics lessons for one school term (11 weeks). All

videotapes were transcribed and analysed. For the purposes of this paper, the

analysis was conducted on the introductory phases of the mathematics lessons and the

ways in which interactions were gendered.
The lesson to be discussed in this paper is one which is focused on co-ordinates.

The lesson begins with the teacher sketching a very crude map of Australia on the

board over which a 3 x 2 grid is drawn with the y-axis labelled A and B, the x-axis as

1-3. The teacher uses this grid work to revise co-ordinates before setting the students

to the task in which they have a series of co-ordinates which they must plot and then

produce a sketch. Students are able to discuss and help each other with the task

during the work phase. The conclusion of the lesson is very brief with teacher and

students discussing their drawings, any areas of difficulty including the incorrect

co-ordinate provided in the activity sheet.
The following is a short segment from the introductory phase

1. T: This is a very rough map, making it as clear as mud. OK. Got that.

123AB. Can you look up here please?

2. B: Do we have to do it?
3. T: Just look at this. Just look at it. OK. Right, this mud map is a mud map of

Australia. Here is our little map of Australia. Tasmania down here.

4. B: Where's New Zealand?
5. [T draws in New Zealand]
6. B: It's not a very good one!

7. T: The other island over here .... Near enough, OK.

8. B: Yeah rub off New Zealand

9. T: If we were looking up a particular place on this map, you would use the

grid reference and the grid reference is the numbers and letters. Can

anybody tell me the grid reference for let's see..... Tasmania? What is the

grid reference for Tasmania?
10. B: B2
11. T: Put your hand up please. Rebecca?
12. G: B2
13. T: Yes. So ...B2. And what if you wanted to go from Tasmania to say...

Perth. What is the grid reference for where you would find Perth? Tate?

14. B: B1
15. T: Right, Thank you. Now it would look this. So you would say from B2 to

B 1. Now it's pretty unclear exactly [referring to map], I mean it could be

from here to here because we're not exactly certain. Who can tell me what

it would be if you want to draw or show someone from Tasmania to

Darwin?
16. B: [calling out] I don't know where Darwin is.

17. T: Guess if you don't know exactly.....Yes, what do you think it will be?

18. B: Al.
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19. B: Yeah
20. T No, we want to go from ...to
21.B: B2 to Al
22. T: Right B2 to Al ....thank you.

The introduction continues on as the teacher and students plot a few more cities and
draw the connecting lines between two points. The interactions continue in a very
similar fashion, with no girl being asked a question until the work phase where one
seeks clarification of the task.

All lessons analysed produced similar results, confirming earlier research on the
girls and mathematics. Boys were asked substantially more questions that girls,
frequently in excess of 80% of the questions. In some cases, very few, if any
questions were asked to the girls in the introductory phase of the lessons. In 3
lessons, no girls were asked any questions in the introductory phases. These
outcomes convey very subtle message to boys and girls about the nature of
mathematics and mathematics teaching. From a feminist standpoint, this could be
seen to be very disempowering for girls while being very empowering for boys.
However, such a position does not consider how some boys (and girls) are being
marginalised from the study of mathematics. In considering the social-class variable,
these interactions are very disempowering for girls and arguably could be a
significant factor in the marginalisation of working-class girls in and through
mathematics. As noted, this group is one of the most-disadvantaged groups in
Australian education. However, as it will be shown, the interactions can equally be
disempowering for the working-class boys.

In considering the Triadic Dialogue identified by Lemke (1990), it is clear that
such a strategy is useful in controlling the classroom and content of the lesson. At the
end of line 13, where the teacher asks Tate where is Perth, to which the boy answers
correctly, the teacher then evaluates the response, acknowledges that it is correct and
then is able to move on to the next step of the lesson content. In contrast, in
interactions 9 to 13, the teacher asks the question, but admonishes the student for
calling out and then asks another student (a girl) to respond. From this interaction, it
can be seen that when a student violates the taken-for-granted rules of the classroom
(in this instance, it is improper to call out) the response is ignored and the student's
response is rendered invisible and another response is called for. Using this simple
Triadic Dialogue, the teacher is able to keep the lesson flowing effectively both in
terms of the mathematical content where the students are being asked to identify co-
ordinates for different locations (eg B1) and the tracks between two co-ordinates (eg
from B2 to Al). Simultaneously, the interactional pattern is useful in controlling the
social norms of the classroom rules such as putting hands up to give answers,
sitting in seats, not writing during instructions and so forth are often made explicit.
However, as Lemke (1990), the patterns of interaction are never made explicit, they
must be learned through participation.



Although not apparent in this extract from the transcript, this lesson and others

contained interactions that supported notions of funnel interactions and focussing

interactions. Such extracts support the notion that such interactions facilitate a

stronger mathematical understanding to be developed. In contrast, the interactions in

this extract support only minimal mathematical working. They tend to be low level

and more at the level of revision and/or consolidation.
What is worthy of discussion is the ways in which gender, vis-à-vis masculinity, is

being constructed for this group of boys. As noted in the introductory sections,

working-class boys do not perform as well in mathematics as middle-class boys and

middle-class girls (Teese et al, 1995). In line 2, the first challenge from the floor is

made when a boy asks whether he has to do this work. The unspoken rules of

classroom behaviour is that there is little or no leeway in participation. There may be

coersive means by which the students may resist participation, but these are most

frequently left unspoken. After seven years of formal schooling most students know

this rule. In this interaction, the boy openly challenges the teacher as to whether

participation is compulsory. The teacher's response indicates the type of

participation that he is expecting.
In the fourth line a student (from New Zealand) challenges the teacher and asks

where New Zealand is to which the teacher responds by drawing New Zealand on the

map. Another male student interjects that New Zealand should be removed from the

board. This friendly banter was common in the classroom but it was almost always

instigated by a boy. The verbal challenges and rebuffs made by the boys can be seen

to be masculine ways of interacting and reinforced in the public domain of the

introductory phase. The challenges being drawn out through the interaction are

among the boys and are not overt challenges to the teacher.

In line 16, a boy calls out, but unlike like 10, is not punished. Given that the top

western quarter of Australia lies in the quadrant A1, then the location of Darwin is

not really an issue. In this case, the student knew the location of Darwin, but was

making overtures about the poor drawing of Australia. The boy has challenged the

teacher's control of the lesson through this transgression, but has been able to ward

off any retribution from the teacher. The transgression has been successful, and the

boy's reputation was left in tact.
The disruptive behaviour in classrooms is often for the purposes of attention

seeking. Frequently such behaviour was generated by the boys to gain approval from

their peer group. Interviews with students at the end of the project confirmed that the

most popular students were those who had strong profiles in the classroom. The

profiles were not often associated with academic performance, but rather the social

aspects of classroom antics. For example, one student thought that Daniel was the

"best kid in the class because he could muck around a bit, you know, give the teacher

a bit of a hard time. He made us laugh." Such comments indicate that status within

the peer group for boys is often achieved through transgressing the social norms of

the classroom.



Disruptive behaviour can be a seen as exciting in that it pushes the boundaries,
exerts a sense of independence and challenges authority. In some cases, the pushing
of boundaries may be valid when the lessons are boring, slow or repititive, but in
other cases it may not be so legitimate. By displaying disruptive behaviour, the boys
challenge the teacher's authority and in so doing, can be seen to be engaging in risk-
taking behaviour. In some cases, the boys were successful in transgressing the social
norms of classroom behaviour, in other instances they were not. When unsuccessful,
they risk humiliation among their peers. Overall, disruptive behaviour is a key
component of boys' school culture. In the playground, the events can be relived and
celebrated with laughter and backslapping, cementing the bonds of boyhood and
camaraderie. Boys' behaviour is closely linked to their public persona and their need
to establish themselves in the public arena in a way which they feel is acceptable.
For the boys in this classroom, this often was seen to take on quite masculinised ways
of working and resisting the school mathematics culture. In so doing, they were
effectively and progressively excluding themselves from mathematical content and
knowledge.

In another study (Zevenbergen, 1995), it was found that such disruptive behaviour
was not as evident in middle-class mathematics classrooms. Boys and girls complied
with the Triadic Dialogue so that both social and mathematical norms were
unchallenged. In these classrooms, students were exposed to far greater
mathematical content and language than their middle-class peers, suggesting an area
for the potential differences between class and gender.

Conclusions
Boys' education has alerted researchers to the unique aspects of boys' schooling.
The study of interactions in mathematics classrooms provides scope for

understanding how the classroom context contributes to the personal development of
how students come to understand and construct themselves as learners of
mathematics. How students construct and are constructed by classroom dynamics is
an area worthy of in-depth investigation. As has been shown here, the interactions
within a working-class classroom offer restricted outcomes for learning mathematics.
Potentially the interactions ,restricted in the content, are constrained by the
transgressions posed by students. Such transgressions appear to be male dominated
both quantitatively and qualitatively. In many cases, the boys are positioning
themselves within practices which reflect their emerging senses of masculinity. The
challenges posed by the boys tend to disrupt the flow and content of the mathematics
lessons. To this end, both the working-class boys and girls are potentially exposed to

a restricted offerings of mathematical understanding. As a consequence of such
actions, it is suggested that emerging sense of the masculine self, may contribute to
the marginalisation of working-class boys and girls in the study of mathematics
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