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PREFACE

It is an honor and pleasure for me to chair the 23" PME conference in Haifa. This
conference has a special meaning to all of us. It marks a year since Efraim Fischbein,
the founder president of PME, left us. In his plenary address at the 20™ anniversary of
PME, Efraim Fischbein expressed his hope that every year we will meet and pass the
message of goodwill, of cooperation, of love for mathematics and reason, the love for
our students coping with the difficulties and fascination of learning mathematics. We
share this hope and look forward to a meeting that - in addition to its scientific merit -
conveys this message.

The papers in the four volumes of the proceedings are grouped according to types of
presentations: Plenary Addresses, Plenary Panel, Research Forums, Project Groups,
Discussion Groups, ‘Short Oral Communications, Posters, and Research Reports. The
plenary addresses and the research forum papers appear according to the order of
presentation. The Groups are sequenced according to their numbers. For the other
types of presentations, within each group, papers are sequenced alphabetically by the
name of the first author, with the name(s) of the presenting author(s) underlined.

There are two cross-references to help readers identify papers of interest to them:
* by research domain, according to the first author (p. 1-xxvii)
* by author, in the list of authors (p. 1-369).

I wish to extend my appreciation to all the people who took part in the production of
these proceedings. I am particularly indebted to Joop van Dormolen, Lea Keinan, and
Doron Zur for their dedication, cooperation and endless amount of work devoted to
the preparation of the proceedings.

This conference received support from many sources, without which we could not
have organized it to meet PME standards. We are grateful to the sponsors, especially
to the hosting institute, the Technion — Israel Institute of Technology, for the support
and facilities provided to the conference organizers.

Last, but not least, many thanks to the members of the Program Committee and the
Local Organizing Committee for sharing with me so willingly the responsibilities
involved in this enterprise.

Orit Zaslavsky
Haifa, July 1999
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THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY
OF MATHEMATICS EDUCATION (PME)

History and Aims of PME

PME came into existence at the Third International Congress on Mathematics
Education (ICME3) held in Karlsruhe, Germany in 1976. Its past presidents have
been Efraim Fischbein (Israel), Richard R. Skemp (UK), Gérard Vergnaud (France),
Kevin F. Collis (Australia), Pearla Nesher (Israel), Nicolas Balacheff (France),
Kathleen Hart (UK), Carolyn Kieran (Canada) and Stephen Lerman (UK). ’

The major goals of the Group are:

¢+ To promote international contacts and the exchange of scientific
information in the psychology of mathematics education;

¢ To promote and stimulate interdisciplinary research in the aforesaid area
with the cooperation of psychologists, mathematicians and mathematics
educators;

¢ To further a deeper understanding into the psychological aspects of
teaching and learning mathematics and the implications thereof.

PME Membership and other Information

Membership is open to people involved in active research consistent with the
Group's goals, or professionally interested in the results of such research.
Membership is on an annual basis and requires payment of the membership fees
(US$30 or the equivalent in local currency) per year (January to December). For
participants of PME 23 Conference, the membership fee is included in the
Conference Deposit. Others are requested to contact their Regional Contact, or the
Executive Secretary.

More information about PME as an association can be obtained trough its home
page at: http:/members.tripod.com/~IGPME (case sensitive) or through the
Executive Secretary.

Honorary Members of PME

Hans Freudenthal (The Netherlands, deceésed)
Efraim Fischbein (Israel, deceased)

Present Officers of PME

President: Gilah Leder (Australia)
Vice-president: Judith Mousley (Australia)
Secretary: Jodo Filipe Matos (Portugal)
Treasurer: Gard Brekke (Norway)
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Jodo Filipe Matos (Portugal)

Executive Secretary:  Joop van Dormolen

Members of PME23 Program Committee

Orit Zaslavsky (Technion, Israel) (Chair)

Janet Ainley (Warwick University, UK)

Abraham Arcavi (Weizmann Institute, Israel)

David Ben-Chaim (Oranim College, Israel)
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Toshiakira Fujii (University of Yamanashi, Japan)
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PROCEEDINGS OF PREVIOUS PME CONFERENCES

Copies of some previous PME Conferences are still available for sale. For
information, see the PME home page at
http:/members.tripod.com/~IGPME/procee.html (case sensitive!) or contact the
Executive Secretary Joop van Dormolen, Rehov Harofeh 48A, 34367 Haifa, Israel;
email: joop@tx.technion.ac.il; fax: +972 4 8258071.

All proceedings, except PME 1, are included in ERIC. Below is a list of the
proceedings with their corresponding ERIC codes.

PME International

No. Year Place ERIC number

1 1977 Utrecht, The Netherlands not available in ERIC

2 1978 Osnabriick, Germany ED 226 945

3 1979 Warwick, United Kingdom ED 226 956

4 1980 Berkeley, USA ED 250 186

5 1981 Grenoble, France ED 225 809

6 1982 Antwerpen, Belgium ED 226 943

7 1983 Shoresh, Israel ED 241 295

8 1984 Sydney, Australia ED 306 127

9 1985 Noordwijkerhout, ED 411130 (Vol. 1), ED 411131 (Vol. 2)

The Netherlands

10 1986 London, United Kingdom ED 287 715 .

11 1987 Montreal, Canada ED 383 532

12 1988 Veszprem, Hungary ED 411128 (Vol. 1), ED 411129 (Vol. 2)

13 1989 Paris, France ED 411140 (Vol. 1), ED 411141 (Vol. 2),
ED 411142 (Vol. 3)

14 1990 Oaxtepex, Mexico ED 411137 (Vol. 1), ED 411138 (Vol. 2),
ED 411139 (Vol. 3)

15 1991 Assisi, Italy ED 413 162 (Vol. 1), ED 413 163 (Vol. 2),
ED 413 164 (Vol. 3) '

16 1992 Durham, USA ED 383 538

17 1993 Tsukuba, Japan ED 383 536

18 1994 Lisbon, Portugal ED 383 537

19 1995 Recife, Brazil ED 411134 (Vol. 1), ED 411135 (Vol. 2),
ED 411136 (Vol. 3)

20 1996 Valencia, Spain being processed

21 1997 Lahti,Finland being processed

22 1998 Stellenbosch, South Africa being processed
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PME North American Chapter

No. Year Place ERIC number
2 1980 Berkeley, California (with ED 250 186
PME2)
3 1981 Minnesota ED 223 449
4 1982 Georgia ED 226 957
5 1983 Montreal, Canada ED 289 688
6 1984 Wisconsin ED 253 432
7 1985 Ohio SE 056 279
8 1986 Michigan ED 301 443
9 1987 Montreal, Canada (with ED 383 532
PMEI11)
10 1988 Illinois ED 411 126

11 1989 New Jersey
12 1990 Oaxtepex, Mexico (with
PME14)
13 1991 Virginia (with PME16)
14 1992 Durham,
New Hampshire
15 1993 California
16 1994 Louisiana
17 1995 Ohio
18 1996 Panama City, Florida
19 1997 Normal, Illinois
20 1998 Raleigh, North Carolina

ED 411 132 (Vol. 1), ED 411 133 (Vol.2)
ED 411137 (Vol. 1), ED 411138 (Vol. 2),
ED 411139 (Vol. 3)

ED 352 274

ED 383 538

ED 37291

ED 383 533 (Vol.1), ED 383 534 (Vol. 2)
ED 398 534

ED 400 178

being processed

being processed

The ERIC abstracts can be read on the Internet site of AskEric

(http://www/askeric.org).

Micro fiches with the content of the proceedings may be available for inspection at

university libraries.

You can also inquire about it by contacting:

ERIC/CSMEE, 1929 Kenny Road,
Columbus, OH 43210-1080

Tel: (614) 292-6717

Fax: (614) 292-0263

e-mail: ericse@osu.edu
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EST COPY AYAILABLE '

THE REVIEW PROCESS OF PME23

Research Forum

Four themes had been suggested by the Program Committee as research forum
themes for PME23: Learning and Teaching Undergraduate Mathematics;
Becoming a Mathematics Teacher educator; Visual Thinking in Mathematics; and
Assessment, Learning and Mathematics. The Program Committee received 12
research forum proposals for these themes (4 for the first theme, 3 for each of the
second and third themes, and 2 for the latter). For each theme, all the proposals
were reviewed and ranked by three reputable scholars with expertise i the
respective fields. The Program Committee considered and generally accepted the
research forum coordinators' evaluations of the reviews and their ranking of the
proposals. Consequently, 2 proposals were selected for each of the first three

‘themes. The two proposals of the latter theme did not seem to provide a rich and

wide enough scope of the field, thus, it was decided to cancel this forum.
Research Reports

The Program Committee received 202 research report proposals. Each proposal
was sent for blind review to three reviewers. As a rule, proposals with at least two
recommendations for acceptance were accepted. The reviews of proposals with
only one recommendation for acceptance were carefully read by at least two
members of the Program Committee. When necessary, the Program Committee
members read the full proposal and formally reviewed it. Proposals with 3
recommendations for rejection were not considered for presentation as research
reports. Altogether, 136 research report proposals were accepted. When
appropriate, authors of proposals that were not accepted as research reports were
invited to re-submit their work -- some in the form of a short oral communication
and some as a poster presentation.

Early Bird Proposals

The Program Committee received 21 early bird research report proposals. Each
proposal was sent to 3 reviewers who were asked to suggest ways to improve the
proposal for resubmission as a research report. Of the early bird proposals 18 were
re-submitted as research reports and one re-submitted as a short oral. Altogether, of
the 21 early bird proposals 16 were finally accepted as research reports and 3 were
accepted as short oral communications.

Short Oral Communications and Poster Presentations

The Program Committee received 72 short oral communication proposals and 17
poster proposals. Each proposal was reviewed by at least two Program Committee
members. Altogether, 59 short oral proposals and 12 poster proposals were
accepted. There were cases in which the program committee did not accept a
proposal in the form that it was intended but invited the author(s) to present it in a
different form.
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A TRIBUTE TO EFRAIM FISCHBEIN




Efraim Fischbein, 1920-1998, Founder President of PME
A Tribute

David Tall

The 23™ meeting of the International Group for the Psychology of
Learning Mathematics in Israel is touchingly the first in which we
cannot be joined by our Founder President, Professor Efraim
Fischbein, who left us on July 22" 1998. 1t is a time of sadness,
yes, but it is also a time for celebrating the achievements of this
gentle man who is responsible for the existence of our organisation.
In particular, it is to him that we owe our focus on the psychology
of learning mathematics.

Efraim Fischbein was born in Bucharest on January 20%, 1920.
He was a precocious child who leamed to read Hebrew from the
old testament at the age of three. He spent his formative years in : :
Romania where he had to cope with the hardship of living in a rising fascist state. When
World War II broke out he was forced into hard labour with other Jewish youths. His
sight was seriously damaged and at the end of the war he prepared for his university
examinations by listening to the reading of friends and conversation with his fellow
students. He graduated at the Bucharest University in 1947 with an MA in Psychology
and the qualification to teach mathematics in high school.

His first activity was to travel to Transylvania to care for a hundred orphans who were
survivors of death camps. In 1948 he returned to Bucharest as a high school teacher and
then, in parallel, as a lecturer in developmental psychology at the university. His long
association with the University of Bucharest culminated as head of the Department of
Educational Psychology from 1959 to 1975.

He was a prolific author of articles and books during this time, including the first
original Romanian text-book on Psychology (How do we know the world, 1958). His
monograph The Figural Concepts: the nature of geometric entities and their development
in children was published in 1963 and accepted for his PhD. Other titles published in
Romanian include: The Man, Master of His Habits (1955), Concept and Image in
Mathematics Thinking (1965), The Art of Thinking (1968), Hazard and Probability in
Children’s Thinking (1974).

He caught the eye of the international mathematics community and was invited to
address the first International Congress in Mathematics Education in 1969. His
outstanding presentation on “Enseignement mathémathique et développement intellectuel”
and his rising eminence led to his invitation to chair the Working Group on the
Psychology of Mathematics Education at the second ICME conference in 1972. This
highly successful working group continued under his chairmanship at the third Congress in
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Karlsruhe in 1976 where the participants voted to continue with conferences every year as
“The International Group for the Psychology of Mathematics Education”. Efraim
Fischbein was elected its founder president and served in this role from 1976 to 1980.
Meanwhile he was appointed Professor of Psychology and founder chairman of the
School of Education in Tel-Aviv University in 1975. He remained here for the rest of his
life, with many visiting positions abroad, at Nottingham, UK, Montréal, Canada, Pisa,
Italy, Georgia, USA, Heidelberg, Germany, and Granada & Valencia in Spain.

He continued to publish prolifically throughout his working life, including books in
English on The Intuitive Source of Probabilistic Thinking (1975) and Intuition in Science
and Mathematics (1987). His articles are a model of carefully designed research
methodology and generative theory. Although well-versed in the methods of psychology,
he was critical of its limited application to mathematics and saw that the psychology of
mathematics education must develop its own theoretical perspectives.

His greatest creation is surely the organisation to which we belong. Following the
decision to meet annually at Karlsruhe in 1976, the first meeting occurred the following
year at Utrecht, organised by Hans Freudenthal. At Osnabriich in 1978 the organisation
was formally constituted under the title “International Group for the Psychology of
Mathematics Education”, subsequently shortened from IGPME to PME.

I remember vividly the talk he gave at PME in 1978, for it was to change my whole
professional life. He presented his empirical and theoretical ideas on individual
conceptions of infinity. His slim, wiry frame resonated with vigour and emotion as he
passionately advocated the theoretical implications of his empirical findings. His
enthusiasm had a profound effect on me personally. My own, previously solitary studies in
undergraduate thinking suddenly began to take their place in the wider picture that he
painted. It inspired me to make the study of limits and infinity—and broader research in
undergraduate mathematics—as the focal point of my studies at that time. By 1985 a
growing interest in this area led to the formation of the Advanced Mathematical Thinking
group. Thus it was that Efraim’s interest in the psychology of school mathematics
permeated through to mathematics education at all levels.

He had a salutary wisdom that challenged those who professed to wear Emperor’s
clothes. I remember explaining to him that I could “see” an infinitesimal as a graph that
tended to zero. He challenged me forcefully, saying: “Show me an infinitesimal”. I was
taken aback. I could not do it. Though I could formulate the formal mathematical
framework, I had never analysed what it was that made the ideas work cognitively. It took
a perceptive genius to ask the right question that cause a new theory to blossom. In my
own case, this question from Fischbein spurred the journey of a life-time as I struggled to
understand the relationship between conceptions to think about mathematics and
processes that allow us to dbo it.

It is a salutary thought that he continued in vigour in his sixties and seventies,
producing books and research articles of great quality at a time when many others have
taken a well-earned retirement. At almost every conference of PME it has been my.
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privilege and delight to take my turn amongst his many friends and colleagues who sought
his wisdom and advice.

His research has a subtle balance between theory and empirical evidence that has
always been the hallmark of his scholarship. It is these qualities which should continue to
mark our present and future work in PME.

His work on primary and secondary intuitions, on children’s probabilistic thinking, on
the complex meaning of infinite concepts and on intuition in both mathematics and science
have been seminal. They provide us with fundamental notions on which we can continue
to build into the future. While we lament his passing, we therefore rightly celebrate his
achievement and his legacy:—the gift of “PME” which draws us together every year to
pursue our continuing quest to understand the subtleties of psychological studies in
mathematics education.

Farewell dear friend, our journeys continue in your footsteps.

¥ %k % % %
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WHERE IN SHARED KNOWLEDGE
IS THE INDIVIDUAL KNOWLEDGE HIDDEN?

Rina Hershkowitz
The Weizmann Institute of Science, Israel

In more and more research and development projects, it is rightly assumed that
"multiple interaction learning environments" (among students, between students
and teacher, with the tool or with the task, etc.) are desirable for a meaningful
construction of knowledge. It is then natural that social interaction within the
classroom community is currently the object of intensive investigation. However,
the individual as the one who uses the constructed knowledge, and shares it with
others in various communities, has been neglected in these investigations. The
relationships between construction of shared knowledge within a community and
the individual construction of knowledge, are discussed and exemplified. Related
issues concerning research paradigms and methodologies are also raised.

Background

Coming from the field of curriculum development, I view research questions from
within a very comprehensive setting, which includes:

(1) Design considerations before starting the actual development and research work;

(2) Implementation of activities in a few classrooms, accompanied with observations of
learning and teaching practices;

(3) Analysis of the data collected in order to redesign sequences of activities towards
the creation of a complete curriculum (compatible with an official syllabus);

(4) Dissemination of the curricular aims and "Spin't" on a national scale;
(5) Initiation of a new cycle of curriculum development (i.e. back to (1)).

About 6 years ago, we began a new cycle of such a curriculum development and
research program at the Weizmann Institute, the CompuMath Project -- leamning
mathematics with computerized tools. Like others (e.g., Balacheff, & Kaput, 1996;
Roth & Bowen, 1995), I believed that "multiple interaction learning environments", in
the form of activities among students and/or between students and teacher through the
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mediation of (computerized) tools, are desirable for a meaningful construction of
individual student knowledge. Computerized tools were chosen and used because of
their amplifying and reorganization capabilities, as mediators in meaningful learning of
mathematics (Dorfler, 1993; Kaput, 1992; Pea, 1985). Activities were designed as
multi-phased open-ended problem situations. For a detailed . description of the
CompuMath project, see Hershkowitz and Schwarz (1999). Experienced teachers, who
usually belonged to the project team, first implemented activities in a few classrooms.

We were carried away by the overwhelming and surprising processes we observed in
these classrooms, which differed from what we had observed in the last two decades of
development and research. We confess that our excitement was not only due to the
new activities and environment we created, but also because we decided to see the
reality through new lenses. The need to describe, understand, explain (to ourselves as
well as to others) and analyze what was going on in the classroom, naturally pushed us
closer to the concems of socio-cultural psychology. Like many others (e.f. Perret-
Clermont, 1993; Yackel & Cobb, 1996), we felt the shortcomings of the cognitive
theories, methodologies and tools we had at our disposal to describe and interpret
learning and teaching processes in the classroom. We needed different kinds of units of
analysis by which we would be able to describe meaningfully leaming practices
(Kuutti, 1996) and an appropriate "zoom of the lens" (Lerman, 1998) to observe,
document, analyze and explain.

The research, which is an integral part of our work, is mostly from an interactionist
perspective: the construction of knowledge is analyzed while students are investigating
problem situations in different contexts. For example, we studied pairs of students in
peer work during classroom activity or in an interview situation (Hadas &
Hershkowitz, 1998, 1999), collaboration of a small group of students to solve a
problem followed by a whole classroom discussion (Hershkowitz & Schwarz, 1997,
1999; Schwarz & Hershkowitz, 1995), or individual students interacting with a
researcher during an interview at the end of a course (Dolev, 1997; Hershkowitz,
Schwarz & Dreyfus, submitted).

The dilemma I would like to raise and discuss here arose and took hold during the
research I have already done, and becomes clearer as I plan my further research
program. My research is embedded in comprehensive socio-cultural paradigms of
current cognitive research, therefore the controversies and questions I would like to
discuss, are in a way derived from, and relevant to, these kinds of research as a whole.

The dilemma focuses on the individual construction of knowledge within the different
"ensembles" of which he or she is part. (I prefer to use the term “ensemble” rather
than the general term "community”. This term, defined by Granot (1998), designates
"the smallest group of individuals who directly interact with one another during
developmental processes related to a specific activity context”). It raises questions
about the difficulties in “zooming with our lens” on the individual’s development as
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he/she participates in the collective construction of shared cognition, in an ensemble (a
couple of students or a small group), or in the whole classroom community.

In the following I will attempt to detail the dilemma through considerations and
questions related to theory, research and methodology. The different questions will
emerge from, and be demonstrated by, the presentation and analysis of a few
examples.

Theoretical Considerations

Following Vygotsky, I consider the psychological development and learning of the
individual as participation in the social activity of hisher own community. For
Vygotsky the relationships between the two poles — the individual and the social - are
asymmetrical. In an article in which he argued and criticized Piaget's theory of the
child's speech and thought, he expressed his principle concerning the development of
thinking:

In our conception, the true direction of the development of thinking is not from the

individual to the socialized, but from the social to the individual (Vygotsky, 1986. p. 36).

Vygotsky’s research concerning the ways in which social communicative speech
becomes “inner speech” -- a mental function of the individual, was the basis of the
above theoretical claim, as well as additional theoretical claims of his colleagues and
successors. The influence of these theories on socio-cognitive research in the last
decade is expressed in more symmetrical perspectives.

For example, in a chapter entitled "The zone of proximal development: Where culture
and cognition create each other”, Cole (1985) expresses what he calls "culturally
grounded theory of cognition", and explains the incorporation of the "activity” as a
unit in which the study of "both systems of social relations and of internal (cognitive)
activity" can be done (p. 159). Cobb, (1998) in his plenary lecture, claimed that the
relationships, between the two perspectives, are reflexive, in the sense that one does
not exist without the other. This means that the psychological perspective implies that
"one analyzes individual students' reasoning as they participate in the practices of the
classroom community" and the social perspective implies that "communal practices are
continually generated by, and do not exist apart from the activities of the participating
individuals” (p. 44).

Pontecorvo (1993) in her opening paper to the special issue of Cognition and
Instruction, which aimed "to identify and describe the socio-cognitive mechanisms
through which thinking and learning are developed in different types of socially
interactive settings" (p. 192-193), summarizes some "general presuppositions"
common to research in such settings: |



1. The attempt to look at the interactive situation from the Participant's perspective
which is expressed in questioning "the meaning that participants attribute to the
interactional setting". ’

2. The assumption that "there is a continuous interchange between the interactional
event and the context, where the context is considered as the "cultural frame that
surrounds the specific interactional event and provides resources for its enactment and
interpretation”.

3. The relevant role-played by the Other - who is assumed to be "an active co-
participant in speech and in action, who gives support for acting, understanding, and
reasoning through both agreement and opposition”.

The above three points represent a modern perspective of socio-cognitive studies (see,
for example, some studies in the above special issue of Cognition and Instruction,
1993, as well as some of our papers mentioned above). These studies focus mostly on
the interaction or the interactional event itself. The individual student is mostly an
anonymous participant (even when he/she is named) in classroom episodes, which are
selected and analyzed with the intention of highlighting the social context in which
some cognitive processes take place. But, as "short stories” of quite complex situations,
these episodes do not have the potential to focus on one student’s cognitive changes
while participating in such episodes. Cobb, in a joint paper on "learning mathematics
through conversation" (Sfard, Nesher, Streefland, Cobb & Mason, 1988), criticizes the
kind of instruction done in order "to shape classroom discourse”, where "the issue of
whether students might be leaming any mathematics that is worth knowing is not a
focus of investigation" (p. 46).

I would like to stress that, on the one hand, I consider the interactional processes and
the "shared construction of knowledge" within the classroom community, that may be
grasped at least partially in such episodes, as very important, and justifies the heavy
research that has been done lately. On the other hand, I cannot ignore the fact that, in
the end, the individual is the smallest autonomist "unit" that can carry his/her
constructed knowledge to different communities even simultaneously (the pair, the
small group, the whole classroom community), and share it with other individuals in
various communities during a lifetime. One way is to investigate the individual actual
knowledge at the end of an interactive learning process (Perret-Clermount, 1993;
Schwartz & Hershkowitz, in press). But, this will tell us mainly about “end-products”,
and very little about the interactive processes of constructing this knowledge. The
individual's work takes place in the work of teams, so I believe that we need, in
addition, to investigate the developmental processes of his/her knowledge while
participating in team work. These teams tend to have a short life, meaning that the
individual belongs to numerous teams in different communities in her/his productive
years. In a study on collaborative problem solving, Granot (1998) showed that
ensembles formed, separated, and reformed naturally among participants within the
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same class activity. In this sense learning can be seen as "a changing membership of
communities of practice” (Lave & Wenger, 1991, p. 54). And therefore, as noted by
Pontecorvo (1993), the question of the "types of knowledge or of socio-cognitive tools
that can be accessed, built, and changed through collective discourse can be
subsequently used in other settings, including individual problem solving, writing tasks,
and answers to an interview", becomes very important.

The Dilemma through Empirical and Methodological Eyes

As can be concluded from the above, a central goal in empirical studies of socio-
cognitive development is an empirical investigation of the individual development
(learning) within the socio-cultural context of which he or she is part. I would like to
use Lerman'’s metaphor (1998) about the zoom of a lens, and to raise the following
question: If we put our lens on a socio-cognitive activity, can we, at the same time,
zoom on the individual, and if yes, what we might see? I would like to discuss this
issue through a presentation and analysis of some examples. The first example is
borrowed from "Alice's Adventures in Wonderland" (Carroll, 1865/1965). The second
stems from the investigative work done by Michal Tabach, a member of our team. The
other two, which will be discussed briefly, derive from two studies that have already
been completed and reported (Hershkowitz & Schwarz, 1999, and Hershkowitz,
Schwarz, & Dreyfus, submitted).

The King and the Hatter Example

I have chosen a short dialogue between the king and the hatter from Lewis Carroll’s
book, as a parable to demonstrate the complexity of describing and interpreting
individual cognitive behavior (in this case, without any evidence of leamning or
cognitive change) in an interactive situation. This episode is taken from the beginning
of the trial in chapter 11 (see the following figure). The sharpness of Carroll's logic, the
brevity of the episode, and the fact that there are only two "players”, make it easy to
follow and analyze the argumentation between the two figures.

I use different sets of arrows to show different kinds of links between the utterances of
the king and the hatter. If we read along the arrows of the first set (dotted lines), we
have the parts of the episode in their chronological order. In the second set (bold lines),
I have tried to demonstrate the logical structure which underlies these utterances. For
- example "I keep them to sell”, said the hatter to contradict the king's claim: “Stolen!”,
as well as ro explain his utterance "It is not mine" to the public at the trial, including the
jury, etc. We focus here on arguments of contradiction, explanation, etc., which are
relations between an utterance and previous utterances or gestures. Therefore, the
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arrows, in the second chain, are mostly in the opposite direction to the arrows in the
first.
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The main frame is embedded in a sequence of other frames: First, our immediate
interpretation (as notes within "clouds") of this episode and the roles of the two players
in it. For example, for the king, a hat on a person's head can be interpreted as either
belonging to this person, or stolen. The "hatter definition", given by the hatter himself,
includes a third possibility: a hat can be kept by a person "to sell". This way of
presentation and analysis of interactive episodes, which we will call "the hatter
method", is quite close to other analysis methods used in various studies on interaction
(e. g., Resnick, Salmon, Zeitz, Wathen, & Holowchak, 1993).

If we wanted to come closer to these two figures, and be able to grasp their different
character and their different ways of behavior and thinking, we would need to know
more about the contextual frames of the king and the hatter - their history, culture, etc.
This could be discovered, at least partially, from other episodes in which the king and
the hatter interact with other figures. Fortunately, Lewis Carroll was kind to us and left
us the whole book on Alice's adventures.

If we leave our fable, and come back to learning situations in an interactive
environment, we have to face questions such as: What kind of book do we need in
order to be able to trace the development of an individual in interactive situations? Do
we have proper methodologies with the help of which this book can be written and
interpreted? Do we have proper psychological tools to follow and analyze the
individual cognitive behavior, while observing it? It is more realistic to relate to the
above questions in the context of a real classroom situation.

The example of the pocket-money activity

The pocket-money activity is part of the year-long algebra course for seventh
graders, which we have developed in the CompuMath project. The course
consists of a sequence of multiphase problem situations and the use of a multi-
representational tool (a spreadsheet). In the "pocket-money" activity, which was
given about two months after the beginning of the year, students first investigated
the weekly pocket-money savings of three children governed by different linear
rules. After a few days, a new rule was proposed:

Sharon receives pocket-money each week as follows: At the end of the first week she
received 2ag ( 0.02 shekel). Each week she receives a sum equal to what she already
has in her pocket. Sharon does not spend any money.

Students were asked to hypothesize the rate of growth of Sharon's savings as
compared to other children’s savings, before obtaining the exact data from the
generalized rule found through the mediation of the spreadsheet (Excel). The
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investigation was done in peer collaboration. It had two steps. First students were
asked to hypothesize numerically the growth of Sharon's savings. After a “"symbolic
negotiation" with the Excel program (in order to write the savings rule in Excel
symbols) and dragging down to get the weekly totals of Sharon’s savings, they could
compare the totals with their hypothesis. In a second step, they were -asked to
hypothesize the shape of the graph of Sharon's saving from the numerical data they
had. Finally, after a "graphic negotiation" with the tool, they were asked to compare
the graph they sketched with the graph they drew by the tool. Michal Tabach,
investigated the construction of knowledge of few pairs of students working on such
activities through the year. As a silent observer, she documented the work of two
boys, Avi and Ben, on the above activity.

The figure on the next page is a presentation and analysis of one episode, in which the
two students are involved in the "symbolic negotiation" with the Excel program to
obtain the numerical data of the weekly sums of money.

In the analysis of this episode I have used "the hatter method" — two sets of arrows in
the main frame, and interpretations “around” it. The chronological set of arrows
seems to indicate a symmetric interaction between the two; each utterance is
immediately followed by an utterance by the interlocutor. A deeper analysis, expressed
by the second set of arrows (in bold), and the interpretations inserted outside the main
frame, presents a more complicated situation. The episode starts from Avi’s claim: 1A:
“We are supposed to start from 2”. It is impossible to know whether he meant that the
amount of money in the first week is 2 ag., or that the savings column has to start
from B2, or something else. He then explains to Ben (who asks “why?” (2B)) his idea
(3A): “1 times 1, 1 times 1, we should start from 2”. We interpreted this (see the “balloon”
interpretations) as first evidence that Avi sees the growth, at least implicitly, as
“repeated doubling”, and if expressed as a power with "base” 1, there is no growth.
From here until the end of this episode, the discourse between the boys does not seem
to evidence a significant cognitive interaction. Avi ignores Ben’s need for
understanding (expressed in 6B), and continues telling him what should be done (7A).
The two, work on the formula to be inserted in the weekly savings column, along
separate lines — as expressed by the fact that most of the bold arrows connect
utterances said by the same boy. Avi (11A) looks for a formula based on a power
operation, while Ben immediately translates the saving rule “verbatim” into Excel
symbols — B2 + B2 (10B), drags to obtain the whole picture numerically, and shows it
to Avi (12B). The two boys share the surprise caused by the numerical representation
of the exponential growth.
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Many things can be learned and many questions can be asked on this episode:

o  We have some information on the kind of interaction between the two boys, and
what each of them contributed (did not contribute) to the “interactive/non-
interactive” character of their work in this episode. Kieran & Dreyfus (1998), who
analyzed types of interaction between two boys solving problems together,
observed that moments when one boy participates in the "universe of thought”
(Trognon, 1993, p. 341) of the other, were quite rare. The episode above is similar,
in the sense that the universes of thought of Avi and Ben intersect only towards the
end, where they realize together the rate of growth.

« It seems that both of them constructed some knowledge. Is this knowledge
"shared"? NO! Because each of them has his own pace, and YES! Because both of
them got some feeling of exponential growth, through the same activity in the same
time.

 We can also explain the mediation role of the spreadsheet, where a combination
of a "local symbolization” -- B2 + B2 -- and the dragging operation, provide Ben
with a sort of a global rule of the growth, and because it is so simple and so fast, it
has a convincing potential that attracts both students.

But, there is not much information on the individual construction of knowledge. Does
Avi grasp a more mathematical construct of an exponential growth? If yes, how come
that Ben was the first one to put his hands on the numerical data which express this
growth? And does this numerical representation of the exponential growth prevent
Avi from further development of an exponential construct? We can make some
hypotheses and interpretations inspired by what was observed, but cannot be’
considered as resulting from the observations. Fortunately, in this activity, we have
more data on the actions of the boys, which give us one more clue: --Students were
asked to hypothesize the growth graph, and each boy proposed his own graph (see the
following figure).

Avi Ben




Ben's graph looks like a half of parabola, whereas Avi's graph is close to the
exponential. While sketching his graph, Avi added verbally: “at the beginning it grows.
slowly and slowly and then it grows faster and faster’.

But we still do not know much about whether each one of them constructed
knowledge about the exponential change, and if this knowledge was consolidated, in
the sense that each boy could use it as an artifact in further construction of knowledge.
To be able to answer this experimentally means o write a book for each boy working
on further activities, in different ensembles or individually. Suppose we do just that,
and that we had more data, do we have a proper methodology to analyze it? Is a
methodology like that used in the hatter model useful when we pass from one episode
in one activity, into a sequence of episodes in sequence of activities? How can we
follow the individual when we have more than two participants in small group
teamwork, or in a whole class interactive discourse? I shall try to come closer to the
last question in the third example. '

Where in the '"Overseas Activity'' is the individual knowledge hidden?

In a study on reflective processes in an interactive mathematics classroom
(Hershkowitz & Schwarz, 1999), we followed a group of four girls through the phases
of the Overseas Activity. A class of 40 students worked first individually during a
preparatory phase (phase 0). Then they collaborated to investigate and solve a problem
in small groups (phase 1), and subsequently wrote group reports (phase 2). Finally they
engaged in a teacher led discussion, in which different groups verbally reflected on the
processes they underwent, as well as on their learning styles (phase 3). I went back to
the protocols of our target group, while investigating and solving the problem (phase
1), and while reporting to the class community their investigating processes (phase 3),
and to the analysis and interpretations we did of these protocols. We claimed there that
"we juxtapose the cognitive-individual and the discursive-interactional perspectives,
without suggesting priority for either" (p. 78). Looking back, through the dilemma
eyes, it might be concluded that the cognitive-individual perspective meant for us the
presentation and explanation of the girls’ cognitive contribution as individuals to the
“shared cognitive process" of the group. This process was expressed in actions aimed
to obtain the most appropriate hypothesis about the right solution, and at the end to
elaborate the solution itself. This time I tried to go in the opposite direction, from the
social to the individual. I tried to re-analyze the data by zooming on one individual girl,
and to see what can be said about the contribution of the group interactive discourse
to her learning. I found only a few clues and identified the following difficulties:

* Asinthe previous example, I felt that one episode (which in this case was quite
long) is too narrow. We need a kind of book with more chapters on this girl, before
and after this episode. Can we write such a book for one girl? For all four?
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« The documentation of this episode was meant to show the whole group
investigation. process, so the camera changed its focus from one dominant
participant to the other, and the documentation of each individual was incomplete.
In spite of our desire to see both directions within the same activity, it seems that
we have to document and analyze data in two different ways within the same
situation.

« I have not (yet!) found a proper methodology to analyze and interpret one girl’s
cognition within the interactive discourse of the four girls. The “hatter method”, or
other similar methods, become very heavy when applied to four participants, even
in only one episode.

e We can learn about the cognitive development of the group through verbal
utterances and gestures. The individual development is dependent or expressed in
cognitive mental functions which, by their nature, are more hidden. It seems that
research should be done on “translating” these mental functions to actions that can
be observed, analyzed and interpreted. At this point we can rely and come back, in
a way, to the research and theoretical work done in classic cognitive research. The
question whether this kind of research can be incorporated in investigations done
within the “interactionist perspective”, and in what ways, becomes quite crucial. I
discuss this briefly in the next example.

Investigating Abstraction in Context

We undertook a sequence of studies (of which only the first one has recently been
completed) to investigate the mental activity of abstraction as embedded in its socio-
cultural mathematical context. In this first study (Hershkowitz, Schwarz & Dreyfus,
submitted), which is based on an interview of a Grade 9 student, we elaborated a
special approach to abstraction, as an activity of reorganizing previously constructed
structures into a new structure (see the introduction to the paper). Thus, the interview
was designed to enable and to observe the emergence of new knowledge constructed
out of already acquired knowledge. In the analysis of the interview we accounted for
the available tools (a grapher and a calculator), the social dimension of the interaction
between interviewer and student and the history of the student. This analysis led us to
propose a model for the genesis of abstraction on experimental grounds. At the center
of the model, we identified three epistemic actions, which are dynamically nested in
each other within the flow of the student’s actions. The action of Constructing a new
mathematical construct, in which actions of Recognizing and Building with already
constructed knowledge, are nested. Constructing is an action of reorganization of
knowledge to a new construct. By Recognizing we meant the action in which the
student makes use of a construct or structure which has been constructed earlier.
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Building with is an action performed by the student to combine structural elements in
order to achieve a given goal.

We also suggested a longitudinal dimension to the above model, which takes into
consideration the history, as well as future activity, as part of the proposed model. This
means that artifacts that result from earlier constructions mediate the three epistemic
actions, and the Constructing action leads to artifacts available for later epistemic
actions. This longitudinal part of the proposed model, especially the use of outcor-=s of
the epistemic actions in further activities, has been hypothesized only and needs
experimental confirmation. At this point, we feel that a further experimental study of
abstraction depends on the existence of a book containing the (hi)stories of students
along their engagement in activities in different groups during the year.

Concluding Remarks

Through the examples considered, I have tried to discuss our ability and maturity to
trace the development of individuals while participating in interactive processes in
classroom activities. I described the topic as a dilemma, because it either raises
questions for which we have mostly "wishful thinking" answers, rather than
experimental answers, or questions for which answers go in contradicting directions.

Research from an interactionist perspective seems to be developing dynamically, from
investigations of the interactive processes of learning per-se and the contributions of
the individuals participating to these processes, towards the investigation of the
contribution of the interactions within the ensemble to each individual. I have tried to
indicate some limitations and difficulties of the latter direction of research as illustrated
by the examples, which were taken from studies I share with my colleagues in ‘the
CompuMath project.

I have tried to show that, as the number of the participants in the ensemble grows, it
becomes more complicated to focus on the individual. There is a need for different
kinds of documentation within the same episode, and more longitudinal methods of
documentation, where the individual is observed in different contexts. The analysis of
these kinds of longitudinal data raises the need for new methodology. The question
whether longitudinal description and analysis may distort the analysis of the single
episode has also to be taken into consideration.

In addition, the analysis of the intra-cognitive processes within the inter-cognitive
processes raises the need to investigate the individual’s mental cognitive functions. In
such investigations the accumulated research findings, which we inherited from classic
cognitive research, should be incorporated into the global frame of research and
theory, enlarged, and continued.
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PROFESSIONAL DEVELOPMENT, CLASSROOM PRACTICES, AND
STUDENTS’ MATHEMATICS LEARNING: A CULTURAL
PERSPECTIVE

Geoffrey B. Saxe
University of California, Berkeley
Abstract

I present two studies designed to illuminate ways that ongoing reform efforts
in mathematics education are becoming interwoven with teachers’
classroom practices and children’s developing mathematics. The first study
examines patterns of K-12 mathematics teachers’ changing assessment
practices. The second examines the classroom practices of upper elementary
teachers participating in two professional development programs, each
designed to support implementation of a reform-oriented curriculum. Both
studies show the utility of a focus on practice for understanding teachers’
professional development and students’ developing mathematical
understandings in the context of ongding reforms.

My purpose in this paper is to sketch a cultural-developmental
framework for the analysis of conceptual change (broadly defined), using
two recent studies to illustrate the framework. In the first study, I present an
analysis of the shifting assessment practices of K-12 teachers in the context
of ongoing reforms in mathematics education. In the second, I present an
analysis of upper elementary classroom practices in our era of reform, with a
particular focus on students’ developing understanding of fractions linked to
classroom practices.

A CULTURAL-DEVELOPMENTAL APPROACH TO THE ANALYSIS
OF LEARNING IN PRACTICES

The research approach provides a cultural-developmental frame for

the analysis of learning in practices. The orientation is cultural insofar as
practices are analyzed as recurrent socially organized activities that permeate
daily life. A key assumption is that there is a reflexive relation between
individual activities and practices — individuals' activities are constitutive of
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practices and at the same time practices give form and social meaning to
individuals' activities. The orientation is developmental insofar as the focus
is on cognitive developments that emerge in individuals’ efforts to structure
and accomplish goals in practices. At core of the developmental perspective
is a concern with the interplay in development between cultural forms
—artifacts that have emerged over social history (such as forms of
assessment) — and cognitive functions, the purposes for which forms are used
(such as to gain insight into student understanding).

Study 1: Teachers’ Shifting Assessment Practices'

The field of mathematics education has experienced waves of reform
throughout its history, and each wave has been marked by challenges to
teachers (Tyack & Cuban, 1995). In the recent climate of reform, particular
value is placed on problem solving and conceptual understanding, a marked
departure from the more traditional focus on accuracy and procedural skills
(California State Department of Education, 1992; NCTM, 1989, 1993). New
mathematics curriculum has been developed to engage students in problem
solving, and new methods of assessment have been developed to evaluate
the ways that students interpret problems and construct strategies for their
solution. Mathematics teachers are pressed to implement these new
approaches or to adapt their existing practices to fit the reform
recommendations. We know that they are challenged, but to date we
understand little of the pathways by which they develop competence with
the new forms and functions of practice.

The purpose of the first study was to explore how mathematics
teachers’ assessment practices shift over time in relation to the presses to
change. The practice of assessment is conceptualized broadly (see Figure 1).
Assessment practices involve multiple stakeholder groups, including
students, teachers, parents, principals who vary in their relation to students’
performances. Stakeholders have different relations to the performances that
are the targets of assessment — as represented by the double arrows between

! Maryl Gearhart, Megan Franke, Sharon Howard, and Michele Crockett were collaborators in
this study
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each stakeholder group and student performance. Stakeholders may
communicate with one another about assessments as represented by the
double arrows between groups. Further, assessment also involves the
production of multiple artifacts, including primary artifacts (students’ class
work that may involve solutions to exercises and open ended problems),
evaluations of those artifacts (number correct, scores, rubric levels),
secondary artifacts, including composite scores (e.g., report cards, portfolio
evaluations), and “high stakes” scores (e.g., SAT, CTBS scores). Such
artifacts are often the foci of stakeholder reflection, evaluation, and
communication.

Principal

elicit ;
— i % y 3 P T
evaluate -, oy & K ; evaluate

Student

Figure 1: A sketch of stakeholder groups and principal artifacts in typical
assessment practices.

I limit my focus in this talk to teachers’ engagement with three forms
of assessment and the functions that these forms serve in their practices.
These included forms for eliciting student performances in class work such
as exercises or open-ended problems as well as forms for evaluating student
performances such as rubrics. While exercises are associated with traditional
practices, open-ended problems and rubrics are associated with reform



practices. A focus on shifts over time in both teachers’ differential
frequency of use of these assessment forms and the different functions that
these forms serve in assessment activities provides a window into the
changing practices of teachers in this era of reform.’

Methods

In the first phase of the study, colleagues and I fielded surveys to two
cohorts of K-12 teachers participating in a voluntary long-term professional
development program (N=59). To capture the patterns of change, we asked
the teachers to report on the frequency with which they were currently using
the three assessment forms. In addition, to gain insight into trajectories of
change. Therefore, we asked teachers to compare their current uses with
their uses in the past and their anticipated uses in the future of the targeted
forms.

We conducted a second phase of the study to shed light on the
functions that these forms of assessment were serving in teachers’ practices.
We interviewed teachers, eliciting narrative descriptions of how they used
targeted forms, the purposes that they served in their assessment practices,
and whether and /or in what way these purposes might be changing.

Frequency of Use of Assessment Forms and Shifts in Use over Time

We analyzed the frequency with which teachers used particular
assessment forms and the shifts in frequency (and projected frequency) over
time. Our findings point to changing patterns of use linked to the current
climate of reform and presses for change.

Though all teachers reported that they were implementing reforms,
most reported using exercises frequently for purposes of assessment.
Indeed, 75% of the teachers reported using exercises at least 2-3 times a
week for assessment. The same was not true for open-ended problems and
rubrics: Teachers reported using open-ended problems at more moderate |

2The way stakeholders pressures are manifest in teachers practices is also critical to
understanding shifting forms and functions of assessment, but will not be discussed in this paper
due to time and space constraints.
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levels, the majority reporting at least weekly use. The variability in use of
rubrics was quite pronounced. Indeed, 50% of the sample reported uses of
rubrics in the range between rare (once or twice a year) and relatively
frequently (weekly).

By comparing teachers’ reported uses of assessment forms last year,
this year, and next year, we were able to identify patterns of change. For
exercises, most teachers reported little change in frequency of use. Indeed,
more than 75% of the teachers reported stable (and high) use over past
through prospective practice. In contrast to the results for exercises, most
teachers showed shifts towards greater frequency of use for open-ended
problems and rubrics. Between 60% and 70% of the teachers’ profiles
indicated increases in frequency of use either from past to current and
current to projected practice.

Shifts in Functions of Assessment

Our interviews were designed to explore continuities and
discontinuities in functions of assessment forms in practices. In assessment
practices, continuity is manifested in a teacher’s decision to continue using
either an ‘old’ assessment form over time, or, a new form to serve an ‘old’
function. Discontinuity is manifested in a teacher’s decision to use a new
assessment form, or, to use an ‘old’ form for a new function. Core to our
approach is the assumption that continuity and discontinuity.are inherently
related to one another in the process of development -- continuity preserves
the coherence or integrity of practice while discontinuity allows for
adjustment to presses and organizational change.

We explored shifts in the purposes for which teachers used exercises,
open-ended problems, and rubrics with 12 teachers. We documented several
patterns of development. None of the patterns represents a radical re-
organization of practice. Rather, for each pattern, shifts over time were
marked by both continuity and discontinuity.

One pattern captures the ways that teachers may implement a new
form of assessment in a way that served ‘old’ functions. For example, some

1
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teachers used a ‘new’ form of assessment, open-ended problems, in ways
that served instructional function. They engaged children with the open-
ended problems to provide them the opportunity to invent strategies; for this
pattern, they did not examine students’ responses to open-ended problems to
gain insight into the character of their mathematical thinking, a function
linked to student inquiry promoted by reform documents.

A second pattern captures the ways that new forms of assessment may
be implemented in pro forma ways. Some teachers used rubrics developed
by others that focused on the completeness of students’ written explanations.
Teachers exemplifying this pattern did not revise such rubrics to capture
students’ mathematics.

A third pattern illustrates the ways that teachers may fashion or re-
fashion forms of assessment in order to assess students’ mathematical
thinking, the function of assessment recommended by reform. Some
teachers re-purposed an ‘old’ form of assessment, such as an exercise, to
serve a new function, supplementing the old form as necessary with new
forms (written explanations) that support the new function. In addition,
some appropriated a colleague’s rubric for evaluating students’ responses to
the open-ended problems, re-designing it to suit their curriculum and their
goals for her students’ mathematical learning.

A fourth pattern illustrates how teachers’ concerns for efficiency may
work against the quality of their assessments. Some teachers were
considering strategies for more frequent and more rapid rubric scoring.
Some as yet had no specific strategy for increasing the speed of scoring; at
least one was considering replacing her analytic rubric with a holistic
approach, expressing worries about tradeoffs between frequency of scoring
and quality of the evaluation.

This study provides a preliminary frame for analyzing the dynamics of
change in the professional development of teachers. A key notion here is
that in order to understand why 'change takes time,’ we need to identify
developmental patterns in the ways that teachers construct goals in their
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practices, goals that interweave the presses upon them, the resources

available to them, and their current knowledge and patterns of practice.

Study 2: Relations between Teachers’ Shifting Classroom Practices and
Student Learning in the Domain of Fractions®

In the second study, colleagues and I produced an analysis of
teachers’ changing classroom practices linked to ongoing reforms and the

relation of such change to student learning. To this end, we observed 23
upper elementary teachers implementing units on fractions, and assessed the
learning of their students. We sampled teachers who were committed to
traditional instructional approaches as well as teachers who were committed
to reform. The latter group was implementing a new unit on fractions
[Seeing Fractions (Corwin, Russell, & Tierney, 1990)].* In analyzing the
relation between classroom practices and student learning, we compared the
progress of two groups of students — those who began instruction with a
rudimentary understanding of fractions vs. those without a rudimentary
understanding of fractions. We assumed that these two groups of children
might be forming different goals related to fractions in classroom practices.
Further, we assumed that children’s progress would be related to the extent
to which classroom practices were aligned with reform frameworks. Thus,
our focus was the relation between (a) the alignment of classroom practices
with reform principles (b) students’ prior knowledge and (c) the developing
mathematics of each of these two groups of students.

Analyzing and Rating Classroom Practices

To evaluate the extent to which classroom practices were aligned with
reform principles, we developed rating scales and applied them both to
videotape and fieldnote records of whole class lessons (cf. Gearhart, Saxe,
Ching, Fall, Nasir, Schlackman, Bennett, Rhine, & Sloan. (in press)). The
scales were used to evaluate core instructional principles espoused in reform

* Maryl Gearhart and Michael Seltzer were collaborators in this study

4 Teachers implementing the reform curriculum were participating in one of two professional
development programs colleagues and I organized.
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documents — (a) the degree to which classroom practices elicit and build
upon students’ thinking (Integrated Assessment) and (b) the extent to which
conceptual issues are addressed in treatments of problem solving
(Conceptual Issues). To apply the Integrated Assessment scale, raters were
instructed to attend to teacher questioning and public problem solving and
the ways that these did or did not elicit and address students’ mathematical
understandings. To apply the Conceptual Issues scale, raters focused on the
ways that methods for solving fractions problems were linked to core
fractions concepts — part-whole relations, part-part relations, and
equivalence relations. Parallel scales were developed for videotape and for
fieldnotes, resulting in four scales in all. We then aggregated these measures
in order to produce a single index of alignment.

Assessing Students’ Rudimentagy Understanding of Fractions

To partition students into those who demonstrated a rudimentary
understanding of fractions and those who did not, we coded students’
performance on an additional set of elementary items that were included as
part of the pretest. These additional items were elementary fractions
problems depicted in Figure 2, one subset involving discontinuous quantity
(items in Figure 2A) and the other subset involved a continuous quantity
(items in Figure 2B). Consistency of adequate performance on at least one
subset was required for children to be regarded as displaying a rudimentary
understanding of fractions (see Methods seétion).

Figure 2. Elementary fractions problems.
A.

What fraction of the cards is gray?




Analyzing Shifts in Students’ Problem Solving and Computation with

Fractions as a Function of Instruction

Our assessments of student achievement in the dor\nain of fractionc
were designed to measure both students' computational skills and their
competence with problem solving. The distinction between computation
and problem solving is captured in similar ways by other researchers using
such constructs as procedural versus conceptual knowledge (Greeno, Riley,
& Gelman, 1984; Hiebert & Lefevre, 1986), the syntax versus semantics of
mathematics (Resnick, 1982), and skills versus principles (Gelman &
Gallistel, 1978). We recognized that the distinction between computation
and problem solving would become problematic when we operationalized it
as distinctive sets of items. Indeed, a child might solve what we regarded as
a computation task using an invented problem solving strategy, or might
solve what we classify as a problem using a memorized procedure.
Nonetheless, the items that we constructed provided a heuristically useful
way to measure students' skills with fractions and problem solving with
fractions. The computation items could be solved using routine algorithmic
procedures or commonly memorized facts. The problem solving items could
not easily be solved by standard computational approaches, and were more
likely to require insight into the concepts underlying representations of
fractions. In addition to the face validity of the distinction, we validated the
distinction between computations and problem solving through confirmatory
factor analytic techniques (Saxe & Gearhart, 1998).

Expected Relations between Practice and Achievement

We expected students’ performances on the problem solving and
computation scales to vary as a function of students’ prior understandings
and alignment of classroom practices with reform principles. For the
problem solving scale, we expected that students without rudimentary
understandings of fractions would be at risk for not learning from instruction
if there were little classroom support for children’s conceptual engagement
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with the subject matter (as indexed by a low level of support on our
classroom alignment ratings). These students should be prone to interpret
classroom activities involving fractions (e.g., representational forms
presented in lessons, small group work) in whole number terms. Thus,
classroom activities at lower levels of support should either be very
confusing or systematically misunderstood in terms of whole numbers.
However, if these students participated in classroom practices involving
fractions that were geared for building on their understandings (as indexed
by at least a moderate level of support on our classroom alignment ratings),

- we might expect to see growth in students fractions concepts, and even
greater growth at high levels of support.

In contrast, we expected that students with rudimentary
understandings at the start of instruction would show a different profile of
learning as a function of alignment. These students should be more able to
make sense of representational forms presented in lessons in terms of part-
whole relations even if engagement with fractions concepts was not a focus
of instruction (i.e., at low levels of alignment). Further, with greater support
for conceptual engagement (increasing levels of alignment on our scale), we
expected that these students would show greater gains in their
understandings.

For the computation scale, we did not expect to find the same pattern
of relations between alignment of practices with reform principles and
student performance. Indeed, there is little reason to expect that reform
practices would influence directly students’ developing competence with
computation tasks that are often readily solved through memorization of
routine facts and algorithms. Thus, we expected at best a weak relation
between alignment of whole class lessons with reform principles and
students’ computation achievement, regardless of students’ prior
understanding of fractions.

Relations between Alignment and Problem Solving Scale

Figures 3 and 4 contain plots of posttest performances on the problem
solving scale as a function of our measure of the alignment of classroom
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practices with reform principles (standard scores). The posttest means are
statistically adjusted for language background and pretest performance.
Visual inspection of the plots for students with and without a rudimentary
understanding reveals that both slopes show a positive relation between
posttest performance and classroom alignment. However, the character of
the slopes differs.

For students with a rudimentary understanding, the relation between
posttest performance and our measure of alignment appears linear (Flgure
3). Our HLM analyses confirm this. For every unit increase in the
classroom practice scale (a 1-4 point scale), there is a .87 increase in
classroom posttest performance (a 13-point scale); the t statistic shows that
the effect is significant (t(19)=4.91, p=.0000). We interpret this pattern as
evidence that these students’ rudimentary understandings of fractions

“allowed them to make sense of fraction problems in part-whole terms even
when classroom practices were relatively inconsistent with the principles of
reform.

Figure 3. Adjusted classroom posttest means on the problem solving scale
for students with rudimentary understanding as a function of classroom
alignment measure.
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For students without a rudimentary understanding, the relation
between posttest performance and our measure of alignment does not appear
linear (Figure 4). Indeed, for classrooms in which alignment with reform
principles was below the mean, the plot appears to show no relation between
posttest performance and alignment. In contrast, for classrooms in which
alignment with reform principles was above the mean, the plot appears to
show a linear relation between alignment and posttest performance. To
confirm the visual analysis of the plot in Figure 5, we fit a two-relation HLM
to the data. Our model allows for the possibility that the relationship
between class mean posttest scores and classroom practices may differ for
those classes in which alignment is below average and those classes in
which alignment is above average. The results of our HLM analyses
supported the “two-relation” model. When alignment of classroom practices
with reform principles is below average, we find no relation between
posttest score and alignment (1(16)=.81, p=.433). In contrast, when
alignment is above average, we find a significant effect. For every point
increase in classroom alignment, there is an expected posttest score increase
of 2.07 points (t(16)=2.48, p=.025). This is a significant relation that is .
almost five times the magnitude of the estimated effect for the relation for
below average alignment classrooms. We interpret this finding as evidence
that, in classrooms judged low on alignment (whether using traditional or
reform curricula), students without a rudimentary understanding had little
basis on which to structure mathematical goals in other than whole number
or procedural terms. In contrast, at higher levels of alignment, posttest
scores for students without rudimentary understandings were related to
alignment, and, indeed, those scores increased sharply. We interpret this
pattern as evidence of a threshold of support needed by such children. With
such support, students may become engaged with mathematical goals
involving fractions, leading to gains in their understanding of fractions.

Figure 4. Adjusted classroom posttest means on the problem solving scale
for students without rudimentary understanding as a function of classroom
alignment measure.
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Together, the considerations above point to the importance of the
coordinated analysis of students’ rudimentary understandings, curriculum,
and classroom practices in student achievement on the problem solving
scale.

Relations between Alignment and Computation

In contrast to the problem solving items, the slopes for students with a
rudimentary understanding and without a rudimentary understanding reveal
no relation between posttest performance and alignment of classroom
practice with reform principles. Our HLM analyses show that for students
with a rudimentary understanding, the estimated effect was -.26 (t(19)=-.70,
p=-49), and for students without a rudimentary understanding, the estimated
effect was also -.26 (t(19)=-.57, p=.58).

The lack of relation between student performance on the computation
scale and alignment of classroom practice with reform principles was
expected. In the short term, neither support for students’ conceptual
engagement with mathematics nor efforts to build on student understanding
are likely to enhance students’ memorization of arithmetical procedures.
Although some students may be able to extend their developing
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understandings of fractions to computational items, it may well be that
rehearsal of computational procedures under direct instructional methods is
more successful in enhancing computational skills. This latter conjecture
was beyond the purpose and scope of our analyses.

CONCLUDING REMARKS

Investigating relations between the shifting organization of classroom
practices and student learning related to reform efforts is a complex analytic
task. The cultural-developmental framework that I’ve sketched provides an
initial foothold into this complex arena of study. Through a focus on practice
and the way individuals’ are structuring and accomplishing goals in
classroom life, we gain insight into historical change in practice and shifts in
patterns of learning and development. My hope is that greater understanding
of the relations between development and practice will provide new insights
about how to usefully support the professional development of teachers and
mathematical understandings of students.
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RECONSTRUCTING THE MATHEMATICAL IN SociaL DiISCOURSE —
ASsPECTS OF AN EpisTEMOLOGY-BASED INTERACTION RESEARCH

Heinz Steinbring, Universitdt Dortmund, Germany

Abstract. Mathematical knowledge depends on human thinking and social interaction.
Neither symbols nor contexts alone provide the objective basic substance for mathemati-
cal existence. Mathematical knowledge is created by (mental and interactive) inter-
pretation of signs with regard to possible reference contexts. With this theoretical
perspective on knowledge in mind, mathematical interaction research is faced by a
complementary difficulty: The object of research — mathematical communication — as
well as its observation and scientific analysis are both “sign-interpreting-processes”
that are constituted in social interaction. The analysing reconstruction of mathematical
discourses requires the revelation of possible interactive interpretations of communicated
signs and in this way the analysis reflects its “own” understanding of mathematical
knowledge as a result of a social construction processes. This article presents crucial
components of the epistemology-based research of mathematical interaction by using
exemplary teaching episodes from an ongoing research project on “Social and epi-
stemological constraints of constructing new knowledge in the mathematics classroom”.

1. Introduction

The social construction of new mathematical knowledge in teaching and learning
processes depends on two important conditions: The special character of instructional
communication and the specific epistemological nature of mathematical knowledge. In
mathematics teaching at the primary level new knowledge cannot be constructed in a
formal manner by a kind of preview technique, i.e. using algebra or formulas, but this
construction is linked with the children’s situated contexts of learning and of experience
in a characteristic way. The young students have to learn — and they are able to do so by
their personal means — to see the general in the particular. To better understand this
problem is an important inquiry of the research project “Social and epistemological
constraints of constructing new knowledge in the mathematics classroom” (funded by
the German Research Society, DFG; see Steinbring et al. 1998). How are students of
elementary grades able to grasp the new, general mathematical knowledge with their
own conceptions and to describe it with their own words? And what factors support or
hinder this generalising interactive knowledge construction?

2. What is the Specific Nature of Mathematical Concepts?

Mathematical concepts and mathematical knowledge are not given a priori in the
“external” reality, neither as concrete, material objects, nor as independently existing
(platonic) ideas. For the individual cognitive agent mathematical concepts are “mental
objects” (Changeux & Connes 1995; Dehaene 1997); in the course of communication
mathematical concepts are constituted as ‘“‘social facts” (Searle 1997) or as “cultural

1-40

80



objects” (Hersh 1997). From an evolutionary point of view mathematical concepts
develop as cognitive and as social theoretical knowledge objects in confrontation with
the material and social environment.

In contrast to objects constructed by humans as for instance a chair, a table, a knife or a
screw-driver one cannot deduce the meaning of social facts, as for instance money, time
or the number concept neither from their form nor from their material. There are no
direct insights into the corresponding mathematical object when inspecting the “material”
or the functional form of number signs as v2,-3.17 or . The meaning of these theoretical,
social respectively mental objects has to be constructed by the individual in int=raction
with experience based and abstract referential contexts. In a general way, mathematical
concepts can be conceived as “‘symbolised, operational relations” between their formal
codings and certain socially intended interpretation.

Mathematical knowledge can be looked at in two complementary ways: On the one
side, each mathematical knowledge domain represents a consistent structural wickerwork,
in which all elements are linked in an equivalent logical manner. On the other side, new
concepts posing new questions and problems can be constructed in every mathematical
knowledge structure, concepts that are not yet imbedded in the actual logical structure,
and in this way producing new insights.

This distinction between the logical structure and the mathematical objects is in
accordance with the distinction made in philosophy between a subjective ontology of
reality and the subject independent structure of the world. “... the ontology of the world
is created by the cognitive agent, the structure of the world depends on the mind-inde-
pendent external reality. In this way, the experiential world can be seen as both created
and mind-independent at once. As there cannot be a structure without an ontology, it is
the cognitive ageént’s act of creating an ontology that endows external reality with a
structure” (Indurkhya 1994, p. 106).

The “logical coherence” and consequently the “unique generativity” of mathematical
knowledge often is taken as an irrefutable “proof” for the objective existence of
mathematical knowledge independent of any cognitive agent (Changeux & Connes 1995,

p- 12); but also this property — a specific, epistemological mechanism for the autopoietic
development of mathematical knowledge - needs the cognitive as well as the social
environment of the cognitive agent for its unfolding.

3. The Epistemological and Communicative Function of Signs
3.1 The Epistemological Dimension

The peculiar interrelation between “Signs / Symbols” and “Objects / Reference contexts”
is central for the description and analysis of mathematical teaching as a specific culture.
This relation also represents a basic item of the epistemologically based interaction
analysis. All mathematical knowledge needs certain systems of signs or symbols for
grasping and coding the knowledge in question. These signs themselves do not have an
isolated meaning; their meaning must be constructed by the learning child. In a general
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sense, to endow mathematical signs with meaning, one needs an adequate reference
context. Meanings of mathematical concepts emerge in the interplay between sign/symbol
systems and objects/reference contexts (Steinbring 1993; or Maier & Steinbring 1998).

The interrelation between coding signs of know- Object /refe- Sign /
ledge and reference contexts can be structured in rence context symbol
the epistemological triangle (cf. Steinbring 1989;

1991; 1998). The links between the corners in this \ /
epistemological triangle are not defined explicitly

and invariably, they rather form a mutually sup-
ported and balanced system. In the course of furt- . . .
her developing knowledge the interpretation of ~ 1he epistemological triangle

signs systems and their accompanying reference contexts will be modified and
generalised.

Fig. 1: Concept

Similar triangular schemes have been introduced in the philosophy of mathematics, in
linguistics and the philosophy of language for analysing the semiotic problem of the
relation between symbol and referent (Frege 1969; Ogden & Richards 1923).

Mathematical concepts are constructed as symbolic relational structures and are coded
by means of signs and symbols, that can be combined logically in mathematical
operations. With regard to the analysis of conditions for the construction of new
mathematical knowledge in classroom interaction, mathematical signs and symbols are
the central connecting links between the epistemological and the communicative
dimension of interactive construction processes; on the one hand, signs and symbols
are the carriers of mathematical knowledge, and on the other hand, they contain at the
same time the information of the mathematical communication.

3.2 The Communicative Dimension

The sociologist Niklas Luhmann characterises »communication« as the constitutive
concept of sociology: “... when communication shall come about, ... an autopoietic
system has to be activated, that is a social system, that reproduces communications by
communications and makes nothing else but this” (Luhmann 1996, p. 279).

The concept of “autopoietic system” has been introduced by Maturana and Varela (cf. i.
e. 1987); it characterises self-referential systems, that exist and develop autonomously
on the basis of this self-referential relation. These systems consist of components that
are permanently re-produced within the system for its maintenance. With the concept of
“autopoietic system” not only biologic processes are investigated but it is also applied
to social and psychic processes.

What is the essential difference between a social and a psychic process? The psychic
process is based on consciousness and the social system is based on communication. “A
social system cannot think, a psychological system cannot communicate. Nevertheless,
from a causal view there are immense, highly complex interdependencies” (Luhmann
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1997, p. 28). How these interdependencies can be understood? “Communication systems
and psychic systems (or consciousness) form two clearly separated autopoietic dom-
ains; ... But these two kinds of systems are linked in a special narrow relation and they
form remprocally a »portion of necessary environment«: Without the participation of
consciousness systems there is no communication, and without the participation of
communication there is no development of consciousness” (Baraldi, Corsi & Esposito
1997, p. 86).

Language is a central “linking mean” between communication and consciousness. Within
language one has to distinguish between »sound« and »sense«; accordingly within written
language one has to distinguish between »sign« (more exactly »signifier«) and »sense«.
This distinction between sign and intended meaning is the starting point — the take off
(Luhmann, 1997, p. 208) — for the autopoiesis of communicative systems.

For the analysis of the conditions of the auto-poie- signified signifier

sis Luhmann refers among others to the work of signifié signifiant
de Saussure, who made the following distinction

between signifier (signifiant), signified (signifié) \ /

and sign (signe). Luhmann writes: “Signs are also

forms, that means marked distinctions. They di- sign

stinguish, following Saussure, the signified (si- signe

gnifiant) from the signifier (signifié). In the form Fig. 2: The semiotic triangle

of the sign, that means in the relation between

signifier and signified, there are referents: The signifier signifies the signified. But the
form itself (and only this should be named sign) has no reference; it functions only as a
distinction, and that only when it is actually used as such” (Luhmann 1997, p. 208f.).

How the autopoiesis of the social, of communication, is possible? According to Luhmann,
in the course of interaction or in the communication system the participants provide
with their “conveyances” (or communicative actions) mutually “signifiers” which may
signify certain “information” (signifieds). “Decisive might be..., that speaking (and
this imitating gestures) elucidates an intention of the speaker, hence forces a distinction
between information and conveyance with likewise linguistic means” (Luhmann 1997,
p. 85).

The conveyor only can convey a signifier, but the signified intended by the conveyor,
which alone could lead to an understandable sign, remains open and relatively uncertain;

in principle, it can be constructed only by the receiver of the conveyance, in a way that
he himself articulates a new signified. Luhmann explains this in the following way:

“We do not start with the speech action, which will happen only when one expects, that
it is expected and understood, but we start with the situation of the receiver of the
conveyance, hence the person who observes the conveyor and who ascribes to him the
conveyance, but not the information. The receiver of the conveyance has to observe the
conveyance as the designation of an information, hence both together as a sign (as a
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form of the distinction between signifier and signified) ....” (Luhmann 1997, p. 210).
The receiver must not ascribe the possible signified strictly to the .conveyor of the
conveyance but he/she has to construct the signified himself/herself; the signified and
hence the sign is constituted within the process of communication.

The possible detachment of the information belonging to the conveyance from the
conveyor is the starting point of the autopoiesis of the communicative system. By this
“mechanism” that describes the autopoietic functioning of the communicative system
as an ongoing conveyance of signifiers which are simultaneously transformed into signs
by the contrasting conveyance of other, new signifiers, general properties of the
functioning of mathematical communication are explained, too. In a first approximation,
the epistemological triangle can be seen as analogue to the semiotic triangle (according
to de Saussure); in addition, the epistemological triangle contains very specific features
with regard to the particularities of mathematical communication.

4. Open and Superimposed Discourses in Mathematics Teaching -
Analysis of Exemplary Teaching Episodes

In the following, interactive patterns in two different teaching episodes are analysed in
the course of constructing and justifying new mathematical knowledge. In the first episode
students work within a learning environment about figurative numbers, where geometric
reference contexts are offered for the interpretation of mathematical signs. The second
episode is part of a teaching unit about special number squares, where the new
mathematical signs have to be interpreted with the help of structured arithmetical
reference contexts.

4.1 Whatis the “Correct” Representation of the Third Triangular Number?

The content of the observed lesson in a 4th grade can be summarised in the following
way. The teacher has placed a pattern of magnetic chips (little disks with one red and
one blue side) on the black board. This pattern obviously should show the first two
triangular numbers. The children are asked to construct the next pattern in this sequence.
They offer different interesting proposals. The teacher guides the interactive construction
process, and she asks for a justification of the last pattern she had accepted.

4.1.1 The Children’s Proposals for Continuing the Pattern

The teacher places two patterns on the blackboard. How to continue? She emphasises
that special numbers are involved having to do with the chips. Dennis continues the
pattern in the following way. His proposal can be seen indeed as a possible correct con-
tinuation, in which the hook is extended by placing down | ®

left and right above one chip each time. The teacher & &8
comments this proposal: “Is this already correct? ... One ®
could have the impression, but it is not yet quite right”(5). ) &
She refers to the shape and draws rectangular triangles @ O 06




around the two first patterns. Then the teacher points
to Dennis’ pattern and she says that one could not draw
such an triangle around it: “This could not yet be made

here.”(7). With her finger she goes around his pattern
and in this way she outlines the shape of a hook or an angle. The teacher seems to have

in mind that only one chip is still missing at the correct place and she tries to focus the
children’s attention to this fact. By asking the question: “Who could place this now, or
use something else?” (7), the teacher expects that the one missing chip will be inserted

now. But Lisa answers by making a completely dif- )
ferent proposal and constructs the following pattern. @
She seems to take the initial patterns as one single ﬁ e® 0

figure and looks for a possible continuation. Her :
proposal is a plausible continuation in which to each part of the complete initial figure
each time one chip is added, once in the horizontal line, and once in the vertical line.
The teacher refuses Lisa’s proposal by referring to the shape of the triangles. She points
to the base line and to the inclined line of the triangle.
Kai takes away all new chips from the blackboard and
starts to place his configuration. With the help of his
classmates he inserts the last missing chip. He has produced an isosceles triangle, as the
teacher then accentuates: “Well, first I have to look here. We have had such a form there
but now we have seemingly this [she draws an isosceles
triangle above the constructed configuration]” (14).
The teacher poses the question whether this is the same
(16); in this way she refutes Kai’s proposal. Kai takes
his chips off from the blackboard. Once again the
teacher tries to focus his attention to the drawn shape
of the two first patterns and she says that the new figure
should look the same as the two already existing figures,
only with more chips (18). First Kai places exactly the
same pattern as the second one. Then he adds two chips
in the following way. The teacher confirms: “Ooh, he
is very close!” (22). Also Kai’s classmates make
supporting comments that only one chip is still mis-
sing. But Kai is not able to finish the proposal. Tugba
places the missing chip on the left side in the base row. @

4.1.2 An Empirical Justification for the Correctness of the Third Pattern

Let us look more closely at the following short interaction phase wherein the justifica-

tion of the correctness for the third pattern is negotiated.

24 T « Who could now explain why this is correct now? That is
correct, you must know. Rabea.
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25 R Because it is again the same pattern.

26 L Mhm. Could you come and draw the pattern around it?
[Tugba goes to her place and Rabea comes to the
blackboard] .. Draw first the pattern! Go once around
it! [Rabea draws with chalk a triangle around the third -
configuration] Aha.

In principle, this justification consists of one statement: ‘ é
“Because it is again the same pattern.”, which then is 28 Gee
illustrated by Rabea as the “same pattern”. How could

this short statement gain the status of a justification? This justification function is only
possible on the basis of the earlier interaction process. We have seen that the continuations
of the teacher’s two initial patterns as proposed by the students could have been possible
and reasonable. But the teacher refused them one after the other and at the same time
she explicated the conditions of “similarity” in the patterns. The children’s proposed
continuations are excluded until in the end the teacher’s intended unique, correct third
pattern is produced.

With the scheme of the communicative analysis the final interactive justification with
Kai and Tugba can be described in the following manner. The teacher emphasises the
rectangular property of the figures and as a contrast she draws the isosceles triangle
according to Kai’s proposal.

T.:
signifier
signifiant / Al &
sign @ 99 6co
signe
el F Signifier Kai and Tugba: 6 @g
signifié A signifiant /@’ ©® oo
sign
signe
signified signifier Rabea: ®
signifié signifiant 0

Kai changes his signifier, and after Tugba has completed the pattern, the teacher accepts
this continuation of the series of patterns. By drawing the triangular shape of the pattern
Rabea makes the “similarity” between the different shapes more explicit and in this
way the “conformity” of the patterns becomes the justifying argument and this is
legitimised and agreed upon interactively.

The functioning of the autopoiesis of the communication system requires that a given
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signifier is not directly linked with the signified intended by the conveyor of the message.
This openness is essential for the communicative process. During the analysed episode
one can observe that the teacher’s denials of the children’s proposed signifiers aim at
identifying a definite relation between the given signifier (the two first triangular patterns)
and a fixed signified (the rectangular shaped pattern). The elaboration of this definite
third pattern takes place by a kind of negative delimitation in the course of this interaction.

This mathematical interaction is dominated by the idea that there exists one single correct
third pattern, and this idea is made explicit step by step. The teacher stresses this point
at different occasions: “Is this already correct? ... One could have the impression, but it
is not yet quite right”(5); “... mh, this is not yet quite correct.” (10); “... he is very
close!” (22); “... why this is correct now? That is correct, you must know.” (24).

The communication analysis shows that the interaction is used to point out the teacher’s
-a priori correct relation between the presented signifier (the two patterns) and the
appropriate fixed signified (the shape of a rectangular triangle). To give an acceptable
justification in this situation means to identify the correct relation between signifier and
signified. The basis is the dogma that in mathematics there always exists one single
correct relation between signi- Object /refe-
fiers and signifieds. From an rence context
epistemological point of view,
the new sign “third pattern” is 210 .

interpreted with regard to a re- \M -l 4 é 22
ference context of fixed rectan- A

gular shapes for triangles — all
other possible shapes are exclu-
ded. News signs / symbols and '

corresponding elements in the (special numbers]

Sign/
symbol

reference context are strictly fi- triangular numbers
xed with one another; the signs
become names for observed em- Concept

pirical objects (in this case for Fig. 3: The epistemological triangle

chip configurations).

The justification of the correctness for the third pattern can be characterised in this way:
The proposed patterns are compared with one invisible fixed pattern and differences or
similarities are remarked until the new pattern is in agreement with the teacher’s intended
pattern. The last pattern is an admissible one, but it is accentuated in a special social
manner as the only correct pattern. No specific reasons are provided for the choice of
this pattern; the sole basis is the teacher’s authority.

4.2 How is it Possible to Recover a Lost Number in the Number Square?

During this lesson in a mixed class of grade 3 and 4 the children had to work on the
following problem: How could one recover a lost number in a certain number square,
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in such a way that this number reproduces the former arithmetical structure? (cf. Fig.
4).The special number squares as used in this class can be constructed in the following
way: First one adds some given numbers in the border row and border column of a table
(cf. Fig. 5). The squares thus created have the following property: You can choose (circle)
in a (3 - 3) number square three numbers arbitrarily such that in every row and in every
column there is one and only one circled number. The sum of three numbers chosen is
always constant — independent of its choice (cf. Fig. 6). Such squares are called “cros-
sing out number squares”, because when circling a certain number in the square, all

15] 16 ] 17 +] 51 ¢ 7 )
10115116 | 17
14]15{ 16 v e @
13| 14 Tial1a @3) 14
Fig. 5 Fig. 6
Fig. 4 ig.

other numbers in the same row and in the same column have to be crossed out. The
children called such a square »magical square« and the constant sum the »magical num-
ber«. In this episode, the children reproduced the lost number with three different stra-
tegies.

4.2.1 First Strategy: Using Structures in the Arithmetical Pattern

By using the arithmetical pattern of the given numbers in the square, Kevin argues that
15 is the missing number: “... because here is the fifteen, sixteen, seventeen [points at
the first row of the magical square). There is the fif-, fourteen, fifteen, sixteen [points at
the second row of the magical square]. And here is the thirteen, fourteen [points at the
two numbers in the third row of the magical square]. And then comes there the fifteen
[points at the empty field in the third row]” (12). Kevin completes his argument by
refering to the arithmetical regularities in the columns, too.

4.2.2 Second Strategy: Reconstructing the Missing Number with
Numbers in the Border Lines

Some students reconstruct possible numbers in the border column and border row from
which the magical square could have been built up. They start with the additive
decomposition of 15 = 10 + 5 (cf. Fig. 7) and they calculate further numbers in the
border row (cf. Fig. 8) and finally in the border column (cf. Fig. 9). On this basis the
children determine 15 as the missing number; this is justified by checking all calculations.

+1 5 +| 5] 61 7 +| 51 61 7

10} 1516117 1011511617 101511617
14| 15116 14| 15|16 911411516
13114 Fig. 7 13114 Fig. 8 8| 13|14 Fig. 9




4.2.3 Third Strategy: Reconstructing the Missing Number by Using the
Magical Number

Already earlier in the course of this lesson Kim has sketched her idea. Later she explains

her plan in detail. First she calculates the magical number 45 by adding the numbers 13,.

15 and 17 in the diagonal. With this proposal she expresses that one can determine the

magical number in an incomplete magical square. Then her argumentation starts.

147 K And then one could already make it this way. One circles
the fifteen [points at 15 in the first row} and this
fifteen [points at 15 in the second row] and adds it up.

And then one still calculates, how much there must be up
to forty-five.

The signifier “One circles the fifteen and this fifteen and adds it up.” denotes the intention
to apply the known procedure for calculating the magical number to two numbers in the
diagonal. The second signifier “And then one still calculates, how much there must be
up to forty-five.” could be understood in this way: One has to calculate how much is left
from the sum of 15 + 15 up to 45 (one has to calculate the difference); seemingly, this
number has to be placed into the empty field.

At this moment, several classmates object that nothing could be really calculated here.
“Well, that really leads nowhere ... Where you would like calculate up to? ... Exactly.
After all, you do not at all know which number is the result here!” (152, 153).

Kim formulates further explanations.

161 K First one calculates, one first calculates these numbers,
that I have, which are there, what is their result. And
then .., and then one calculates ..

165 K These three, oh, yes, this, this and then afterwards one
calculates fifteen [circles 15 in the second row], one
takes this way. Cross out that, and that. And cross
out that and that [crosses the other numbers in the same
column and the same row]. Then one also takes the fifteen
[circles 15 in the first row]. Crosses out then the
seventeen and the thirteen [crosses out the still
uncrossed numbers in the same column and the same row] .
And then one circles this here, this here [circles the
empty field]. And then one has to calculate, fifteen and
fifteen this makes thirty, how much is left up to
forty-five.

The signifier “And then one circles this here, this here.” indicates the application of the

crossing algorithm for calculating the magical number to a missing third number ~ to

the empty field. On the one-hand, the second signifier “...one has to calculate, fifteen
and fifteen this makes thirty, how much is left up to forty-five.” intends the calculation
of the magical number from three circled positions: 15 and 15 makes 30. But with the
third circled position one cannot calculate in the known standard way. On the other
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'hand, one should now calculate in a “reversal manner” with the empty field: Here one
has to place the number that represents the difference between
thirty and forty-five (the magical number). Later, the addition @
task is written as a complementary task “15 + 15 + __ = 45",
This task displays the form of an addition task with three terms, | @
but in an unusual way. It reflects a generalised structure allowing O
to express the calculation with a partially unknown number. In
this way, new mathematical signs or symbols are created. By 13 +15+ 17 =45
applying the calculation scheme for the magical number to the 45,154+ =45
empty field and by writing the complementary task with an
unknown term, new mathematical signs are expressed and are
represented as abstract icons.

The epistemological analysis verifies that Kim constructs genuine new knowledge when
including the empty field into the mathematical operation to determine the magical
number. She argues that one cannot calculate with concrete numbers only, but the
algorithm for the magical number can be extended also to arbitrary fields — with or

Fig. 10

without numbers. The new mathe- Object /refe- Sign /
matical knowledge constructed in  epce context symbol
Kim’s argumentation can be descri- ('t ® )

bed with the help of the episte-
mological triangle. The new relati-
on (resp. “unknown number” or
“variable™) is symbolised in two
ways; once as a “circled number”
and then as a missing term in the

addition task. In this domain of re- /

presentation and of mathematical

©)

4> ()

13+15 417 =45
15+15+ =45
/

operation we can observe how Kim arithmetical
works with the “unknown number” relations in the
in a specific situated manner. Kim number square
places the unknown number into a

new mathematical relation with Concept

other numbers and in this way she
‘constructs new knowledge; the new
mathematical object is created as a relation in the extended and generalised operational
structure of the number square.

4.2.4 Eva Repeats the Strategy Using the Magical Number

During the discussion of Kim’s strategy, the teacher encourages other children to explain
how this “trick” works. Eva argues in the following way.

193 E Well. Ohm, one has to take three numbers out of the
magical square. Add them up. But not the empty field,

Fig. 11: The epistemological triangle
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there is not much to calculate, all right?

196 E Yes. And then you get the magical number. Then one must,
ohm, that, ohm take again three numbers, but now also the
empty field must be therein. And then you have to .. from
this number, you get then .. from these two, one has still
to go to forty-five.

With the first signifier, Eva intends the calculation of the magical number taking three
concrete arbitrary numbers from the square. She adds: “But not the empty field, there is
not much to calculate, all right?”. One cannot and should not use this field for the
calculation of the magical number.

The second signifier indicates that the scheme of the algorithm for the magical number
shall be transferred to three other numbers: ... take again three numbers, but now also
the empty field must be therein.” Here, the empty field is identified in a way with a
number; Eva characterises a mathematical unknown in a situation specific manner. When
transferring the algorithm the following calculation cannot be done in the usual direct
manner, because the third term is missing; consequently Eva modifies the calculation
procedure: “And then ...from these two, one has still to go to forty-five”.

In her description, Eva makes the distinction between the impossibility to calculate a
sum by using the empty field as one of the three terms and the possibility to operate with
the empty field (as a kind of pre-variable) in the same way as with a known concrete
number, provided that the result of the operation is already known. Her argument
expresses a fundamental epistemological dialectic between old and new mathematical
knowledge. In the frame of understanding subtraction as »taking away« — an example
for old knowledge — the task “5 —7” cannot be calculated; later, with a relational
understanding of the number concept — an example for new knowledge — the same task
can be calculated by developing and using the new concept of “negative numbers”.

5. Interrelations between the Epistemologicél and Communicative
Dimension of Mathematical Signs

Mathematical interactions are social systems, being at the same time characterised by
very specific intentions. On the one hand they are educational or instructional
communications, on the other hand mathematical knowledge is in some special way the
object of these communication processes.

* Interactions between teacher and students are pedagogically intended social
communications with the aim to mediate knowledge. This implies a superposition in
the autopoietic development of the social communication with an “additional sense”,
which is the result of the teacher’s intention linked with his teaching and instruction.
This intention dominates the educational communication for all participants (teacher
and students). When trying to realise their instructional intentions teachers often
unconsciously make the assumption that the separation between the social and the psychic
system could be bridged directly and the meaning conveyed in the communicative process
could be transported instantly and unchanged into the student’s consciousness (asitis
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tried with the well known interactive funnel patterns; cf. i. e. Bauersfeld 1978; Krumm-
heuer & Voigt 1991, p. 18; Wood 1994, pp. 153ff.; 1998).

 Mathematical communication copes with mathematical knowledge; this 1mp11es for
the (external) observer (the researcher) to analyse the knowledge which is generated in
the course of communication interactively from an epistemological perspective. The
analysis of the specific status of school mathematics and its interactively constituted
meaning shows that it can be interpreted as a “symbolically generalised communication
medium” (Luhmann 1997, p. 316ff.); in analogy to “scientific truth” (Baraldi, Corsi &
Esposito 1997, p. 190) one can speak here of “school mathematical correctness”.

In the course of the first episode on “triangular numbers”, one can observe a kind of
“compensating communicative strategy”. During the interactive process of constructing
new knowledge up to the short phase of the accepted justification, the teacher assists,
comments and refutes the children’s proposals. She uses a number of similar key words:
“... trying to place the next ...” (1); “Is this already correct? ... One could have the
impression, but it is not yet quite right” (5); “...this is not yet the right.” (10); “Is this
the same?” (16); “Ooh, he is very close!” (22); ... Who could now explain why this is
correct now? That is correct, you must know.” (24). With these descriptions, the teacher
indicates that she starts from a very definite idea about the third pattern. In the course of
the episode, the students are led to find out what, according to the teacher’s opinion, is
the only correct pattern. After having given their own, correct proposals for continuing
the pattern, now the students do no longer interpret the conveyed signifiers with reference
to other mathematical signifiers for constructing in this way new epistemological
mathematical relations, but they start to seek for the intended signified belonging to the
teacher’s signifier for attaining in this way the correct solution.

This episode shows in an exemplary manner that the necessary condition for starting
the autopoietic behaviour of the mathematical communication is “destroyed”. First of
all, the receiver of the conveyance (a student) can ascribe the given conveyance only to
the conveyor (the teacher or another student). The possibility to detach the information
of the conveyance that the conveyor “attached* to his conveyance implies the possibility
of the autopoiesis of the social system. The students are more and more urged to deduce
directly from the teacher’s signifiers the intended signified. Such a type of communication
takes place with the tacit assumption that mathematical conveyances (the signifiers; or
the mathematical signs) possess unequivocal information (definite referential signifieds),
which can be derived in a communication about the conveyances. In this way, the
referential links of the signifiers are shifted. The new signifiers no longer refer to
mathematical referential contexts immediately but they refer to the interpretation that is
postulated by the teacher in the existing reference context. The conveyances become
the new, proper object of communication. The signifiers are no longer conveyed in
communication for relating them to other mathematical signifiers or mathematical signs
mediated in interaction and thus constituting an interpretation.



During the second episode, the communication has a different character. The attempts
to reconstruct the missing number are not dominated by explicit aims of the teacher.
Different proposed strategies are allowed: Kevin uses the number pattern of the given
number square; then several children reconstruct the missing number by reproducing
possible numbers in the border row and border column. Subsequently, Kim presents her
ideas to calculate the missing number with the help of the magical number; moreover,
three children explain this strategy with their own descriptions. The teacher does not
confront these proposals with her own fixed ideas about the correct solution; she mode-
rates and supports the children’s construction of new knowledge that develops in the
course of interaction. Instead of pushing ahead her own ideas, the teacher places the
students’ solution strategies into the foreground of the communication process, and this
makes possible to maintain a “true” mathematical discourse inthis classroom.

The autopoiesis of the communication system is possible only if the signifiers are not

‘connected with the intention of the conveyor strictly but always have to be interpreted

in the course of communication in a new manner. For a given signifier there is no
definite, fixed signified in communication, and therefore there is no unique universal
sign, but different interactively evolving interpretations. Accordingly, a successful
authentic mathematical interaction requires that a communicated (new) mathematical
sign is not fixed a priori by a given referential object, but the participants have to develop
their own different and multiple readings of the communicated sign. Such multiple,
evolving interpretations of mathematical signs are possible only if these signs are not
explained by linking them with concrete properties of pre given empirical objects but if
the referents of mathematical signs are seen as relational structures.

An open referential interpretation of communicated signifiers or of mathematical signs
is indispensable for the progression of a mathematical communication process. A
successful mathematical discourse requires not to fix the mathematical signs definitely
and once for all, but to respect a rather open relation between mathematical signs and
referential contexts the learner permanently has to establish in new ways in interaction.
The realization of an open interpretation of mathematical signs strongly depends on the
acceptance of mathematical objects as »symbolic relational structures« in interaction.
When mathematical knowledge is reduced to its formal terminology and its logical
consistency with reference to fixed referents then the mathematical discourse is in danger
to turn into a communication about the definte “correct” interpretation of mathematical
signs what in the end is decided by the teacher’s authority.

The successful functioning of authentic mathematical interaction requires “open”
mathematical objects. A central implication is that every theoretical analysis of possible
reasons for the success or the failure of everyday mathematical interaction has to take
into account the very specific epistemological nature of mathematical knowledge as
“symbolised relations” and it has to reconstruct the social epistemology of mathematics
in interaction, i.e. the characteristic forms and situated descriptions for this knowledge.
The particularity of the mathematical in classroom interaction — and also in any
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reconstructing analysis of such interaction — is basically established by the symbolic,
relational character of mathematical concepts; these concepts represent open
interrelations between formal sign systems and situated referential structures that have
to be negotiated in mathematical interaction.

Consequently, the manner of interpreting mathematical knowledge influences the
mathematical communication process essentially: Strictly fixed readings of mathematical
signs may cause a paralysis of mathematical communication and they also may lead to
a transformed, a ritualised communication. Open readings of mathematical signs with
regard to multi relational, structural reference contexts are preconditions for any authentic
mathematical interaction. The development of a successful mathematical communication
requires to take into account the epistemological particularities of mathematical
knowledge and at the same time the specificity of instructional interactions between
teacher and students. Direct, intentional teaching and interactive construction of new
mathematical knowledge often constitute a fundamental dilemma that cannot be dis-
solved easily in mathematical discourse. -
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Constructing a calculator-aware number curriculum:
the challenges of systematic design and systemic reform

Kenneth Ruthven, University of Cambridge School of Education

Abstract: In England, the idea of developing a ‘calculator-aware’ number
curriculum for the primary school has been pursued over a lengthy period. Initial
explorations within a government-supported curriculum development project
proved a significant influence on the design of a national curriculum for
mathematics. Hence, the English experience provides an unusual case in which the
attempt to frame and implement a calculator-aware number curriculum has moved
beyond localised innovation io an attempt at national institutionalisation.

This paper will examine this experience, and some important emergent issues of
wide interest. First, it will outline the approach of the pioneering Calculator-Aware
Number (CAN) project, and its influence on the design of the national curriculum
for mathematics. Second, it will investigate the continuing experience of CAN
schools after the end of the project, coinciding with the introduction of the national
curriculum. Third, it will examine the progress of the cohort of pupils who entered
these schools at the start of this period. Fourth, it will relate pupils’ mathematical
strategies to aspects of the curriculum framework. Finally, it will suggest some
lessons to be learned from this experience.

The development of calculator use in English primary education

The Calculator Aware Number project

The Calculator-Aware Number (CAN) project (Shuard et al., 1991) was a

component of the Primary Initiatives in Mathematics Education (PrIME)

programme, sponsored by the government curriculum agency. Before recruiting
schools and teachers, the project team formulated a set of basic working principles:

* classroom activities would be practical and investigational, emphasising language
and ranging across the whole curriculum;

* exploring and investigating ‘how numbers work’ would be encouraged,;

* children would always have a calculator available; the choice as to whether to use
it would be the child’s not the teacher’s;

* the importance of mental calculation would be emphasised; children would be
encouraged to share their methods with others;

* traditional pencil-and-paper methods of column addition, subtraction,
multiplication and division would not be taught; children would use a calculator
for those calculations which they could not do mentally.

Between 1986 and 1989, the project team worked collaboratively with several
clusters of primary schools and teachers. The tangible outcomes of the project were
these curriculum principles, illustrated through a range of classroom activities and
accounts, rather than a structured curriculum plan. This reflected the pedagogical
approach adopted by the project teachers:

The teachers began to develop an exploratory and investigative style of
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working, which allowed the children freedom to take responsibility for their
own learning. Topics for exploration took the place of practice exercises as the
prevailing classroom activities. Because the number sections of the
mathematics schemes used in the schools had been discarded, the teachers were
able to move towards a different style of working. No longer did they have to
‘cover’ set topics in a set order. They began to notice that children’s
mathematics learning did not seem to progress in the ordered linear way in
which it was traditionally structured. Individual children seemed to be putting
together the network of mathematical concepts in their own individual ways
(Shuard et al., 1991, 44).

The project team reported favourable findings from a participating local authority
in which the mathematical achievements of first cohort of project pupils were
compared with those of peers in other schools (Shuard et al.; 1991). The following
year, the second cohort was involved in a similar comparison. The comparison was
still favourable, but less strongly so (Foxman, 1996).

Framing the National Curriculum

When the decision was made to introduce a national curriculum, it was not

surprising that the CAN project and its personnel should influence the proposals of

the working group charged with devising the programme of study in mathematics:
The universal availability of electronic calculators is changing our views about
the kinds of facility in computation which are needed of pupils ... Along with
the ability to use and interpret the results obtained from calculators there is
general agreement that a greater facility in mental arithmetic should be
encouraged (National Curriculum Mathematics Working Group, 1997: 8).

The rejoinder of the then minister of education was that:
it must be important that pupils themselves understand and are proficient in the
various mathematical operations that can now be done electronically
(Department of Education and Science, 1988: 100).

Later, he asked still more more pointedly:

Is it justifiable to exclude the pencil and paper methods for long .division and
long multiplication from the attainment targets for mathematics, as the
mathematics working group have recommended? (National Curriculum
Council, 1988: 92).

The final programme of study achieved a superficial resolution of this conflict
through the deliberate ambiguity of its references to ‘non-calculator’ methods of
computation, with a more explicit account of the approach favoured by the working
group confined to the accompanying pedagogical guidance which suggested that:

For most practical purposes, pupils will use mental methods or a calculator to
tackle problems involving calculations. Thus the heavy emphasis placed on
teaching standard written methods for calculations in the past needs to be re-
examined. Mental methods have assumed a greater importance through the
introduction of calculators, and the use of mental methods as a first resort in
tackling calculations should be encouraged. Work should be based in a firm
understanding of number operations, applied to problems in a variety of
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contexts, and encourage pupils to select from different methods with
confidence depending on the nature of the problem and the suitability of the
method. (National Curriculum Council, 1989, E6).

Discussing the new national curriculum, the CAN project team wrote:

The CAN project has been very fortunate that National Curriculum
mathematics is much in line with the thinking the project has developed.
Teachers who work in the project have welcomed the emphasis in the National
Curriculum on a broad curriculum in mathematics, on using and applying
mathematics, on the encouragement for children to use their own methods of
calculation, and on the possibility of using calculators for much of the work.
Teachers in project schools have commented on a number of occasions that
they need to make many fewer changes to their curriculum than other teachers
(Shuard et al., 1991, 71).

Calculators in the National Curriculum

The programme of study was designed within a levelled framework intended to
prescribe progression within teaching programmes and to describe the resulting
development of pupil capabilities. The expectation was that pupils in the lower
primary (infant) phase (known as Key Stage 1) would cover the material of levels 1
to 3, and that by the end of that phase (at age 7), the great majority would be
assessed as attaining a level between 1 and 3, with the average pupil at level 2.
Similarly, during the upper primary (junior) phase (known as Key Stage 2), it was
anticipated that, by the close of the phase (at age 11), the great majority of pupils
would achieve a level between 3 and 5, with the typical pupil at level 4, having
covered the programme of study to level 5; with level 6 ‘intended for only the most
able children performing significantly above the normal range’ (School Curriculum
and Assessment Authority, 1995).

Table 1 abstracts, from the mathematics programme of study, those references to
calculators relevant to the primary school (excluding levels 1 and 6 which make no
references of this type). This is certainly a curriculum which acknowledges the
calculator; but is it a calculator-aware curriculum? References to ‘using a
calculator’ start warily. At levels 2 and 3, this is to be for checking or ‘where
necessary’. Half of the examples concern money calculations. At levels 4 and 5,
cautiously affirmative references to ‘using a calculator where necessary’, working
‘with the aid of a calculator’ and ‘check[ing] using a calculator’ are easily
outnumbered by prohibitive references to working ‘without a calculator’ or ‘using
non-calculator methods’. A product of the fudged compromise over the relative
emphasis to be given to mental and written, standard and nonstandard methods, this
negative phraseology comes over as subversive of calculator use.

While there is an emphasis on interpreting results ‘on a calculator’ and ‘reading
calculator displays’, there is only one reference to the need to ‘translate the
problem...in order to use a calculator’. However, there is one important innovation,
in the form of ‘trial and improvement’ as a solution strategy. Clearly dependent on

calculator availability, although avoiding reference to it, this is the sole recognition
of the possibility of distinctive calculator methods.
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Table 1: Calculator references in National Curriculum mathematics

Level Programme of Study Example

2 Describe current work, record findings Devise stories for adding and subtracting

and check results. numbers up to 10 and check with calculator
or apparatus. [1989]

3 Solving problems involving multiplication Find the cost of four calculators at
or division of whole numbers or money, £2.45 each. (1989, 1991]
using a calculator where necessary. ‘

Using decimal notation in recording Know that three £1 coins plus six 1p coins
money. is written as £3.06, and that 3.6 on a
calculator means £3.60 in the context
of money. {1989, 1991]
Appreciating the meaning of negative Understand a negative output on a calculator.
whole numbers in familiar contexts. [1989, 1991]

4 Adding and subtracting two 3-digit Work out without a calculator how much
numbers, without a_calculator. longer 834 mm is than 688 mm. [1989]
Multiplying and dividing 2-digit numbers by
a single-digit number, without a calculator.

Solving addition and subtraction problems Work out how many chocolate bars can be

using numbers with no more than two bought for £5 if each costs 19p, and how

decimal places, and multiplication and much change there will be. (1989, 1991

division problems starting with whole without the aid of a calculator]

numbers. Find out how many 47-seater coaches will
be needed for a school trip for a party of
352. [1991 with the aid of a
calculator, interpreting the display]

Reading calculator displays to the nearest Interpret 7 + 3 x 3 = 6.9999999 if it occurs

whole number and knowing how to inter- on a calculator. [1989]

pret results which have rounding errors.

Recording findings and presenting them  Translate the problem of finding the number

in oral, written or visual form. of 28p packets of crisps that can be bought
for £5 into 500 + 28 = in order to use a
calculator; record the result as 17.857142
and thus decide that the result is 17. (1991}

5 Understanding and using non-calculator

methods by which a 3-digit number is
multiplied/divided by a 2-digit number

Calculating fractions and % of quantities

using a calculator where necessary.

Using ‘trial and improvement’ methods
and refining.’

Approximatiﬁg, using significant figures
or decimal places.

Make and test simple statements.

Use any pencil-and-paper method to find the
number of coaches needed to take 165 Year 7
pupils on an outing if each coach has 42 seats

Calculate 15% of 320; 35 of 170 m;
37% of £234; 110 of 2 m. [1989)

Estimate the square root of 10 and refine
to 3 decimal places. [1991]

Read a calculator display, approximating to

3 significant figures. [1989]

Explore the results of multiplying together -
the house numbers of adjacent houses, make
a statement about the results, and check using
a calculator. [1989]




Calculators and national testing

As the first pupils completed each Key Stage, a national programme of assessment
was introduced, incorporating external testing. Again, at first sight, the place of
calculators is acknowledged. To take the example of the 1995 Key Stage 2
mathematics tests, the opening instructions explain the use of icons to indicate where
the use of a calculator is stipulated or prohibited, and state that its use is permitted
on items without an icon. Of the 40 items across the two test papers, 14 prohibit use
of a calculator. A number of these items took the form of missing digit problems
presented in the vertical format of standard written methods, rather than in a more
methodically neutral, horizontal format. Such presentational features, combined
with concern about the acceptability of nonstandard approaches when meeting
requirements that pupils should show their working, led many teachers to conclude
that the testing process entailed a preference towards standard written methods. Use
of a calculator is stipulated on only one item within the two test papers. Only one
further item might be regarded as calculator affirmative both uses the machine as
its setting, and permits its use.

Beyond the optimistic speculation, then, and beneath the veneer of calculator
recognition, both national curriculum and national testing emerge as more
‘calculator-beware’ in spirit than ‘calculator-aware’.

Impact of the reforms on professional practice
The official evaluation of the implementation of the new curriculum found that
teachers made little reference to the non-statutory guidance, and were already
confident of their teaching of number (Brown et al., 1993). Combine these factors
with the tone of the curriculum document and national testing, and it is not startling
to find school inspections reporting a largely unchanged pattern of professional
practice: ,
In all the schools visited the teachers placed a strong emphasis on the written
practice of the basic operations of addition, subtraction, multiplication and
division. This dominated the work in half the schools ... For many schools
there was an imbalance between the written practice of basic number skills and
mental, oral and practical work involving number...The skills of using a
calculator were neglected in a high percentage of the schools; in only a tenth of
the lessons seen were calculators used ... Only in the most successful schools
was a policy of calculator use thought out in relation to the acquisition of
mental and ‘pencil-and-paper’ skills (Office for Standards in Education, 1993:
9-11).

However, let us now turn to examine a group of schools which had been involved
in the CAN project.

The evolution and long-term impact of CAN in project schools

As the CAN project drew to a close in the summer of 1989, the National
Curriculum came into force. A Cambridge research study examined the
mathematical experience of a cohort of pupils who entered reception class during
the 1989/90 school year, progressing to the final year of primary education in
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1995/96. Data was gathered in six neighbouring primary schools, all covering the
full primary phase. Three of these schools participated in the CAN project between
1986 and 1989, and in the much smaller-scale continuation project to 1992,

The influence of national reforms :

The accounts of teachers in the post-project schools indicate how their practice was
influenced by the national reforms. The general tenor was of seeking to retain
valued principles and activities from CAN; to establish the legitimacy of these
principles and activities within the new order; and to tighten aspects of their
implementation.

It’s made very little difference in the way I taught maths personally. Very
little. The other thing it had done in this school - it would have happened
without the National Curriculum anyway - it refocused people’s ideas on the
structure that was needed right through the year groups. [Richard)

I don’t think the delivery has done anything except become a little cleaner. It’s
forced me to sharpen up my act. I think if we want to hold on to this we’ve got
to really be able to...justify it. We’ve got to show that it can be done in this
way...It’s not that we’re being subversive. It’s there in the National
Curriculum. It’s that it’s not terribly common what we do. I feel we have to
Justify it. [Stephanie]

The substantive influence of these external pressures had been threefold. First,
some of the expansiveness of investigative work had gone, with a stronger
tendency to structure and foreclose an activity than in the past.

I'think what’s altered is that pre National Curriculum I would have had a much
broader, less clear picture of what I wanted to get out of a session, and
therefore I would have been more open to other things that came up, and
would have been able to pick up on those other things and delve a bit deeper
with the children. I think what its forced me to do is to keep on a much
narrower pathway. [Stephanie]

I would probably [have done] more longer investigations. Now, I do a lot more
shorter activities, to get the coverage in a year. [Tracy]

Second, although calculators continued to be readily available in the classroom,
there were occasions when their use was challenged or proscribed.

There might be some negative reference: ‘How are you going to do that, to use
the calculator?’... So there might be some kind of sideways swipe at it.
[Stephanie]

The policy is that they are there all the time, but [sometimes we say] ‘Actually
for this activity I don’t want you to use a calculator’. [Tracy]

Third, standard written methods of recording and calculating were now taught. At
Key Stage 1, teachers felt obliged to introduce pupils to vertical methods of
recording, and to ‘sums’ presented in this way.

[Tests] brought back more formal work. Having been through the first maths
test - it was formal sums set out, which the children were not used to seeing.
That’s when we decided that we were going to have to introduce formal sums
set out ready for them. They’d set them out any way they wanted. [Rachel]
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The first [tests] affected [the Key Stage 1 teachers]. After being used to CAN
and recording in their own way, after the first [tests] they were suddenly
putting everything in columns. Worried children wouldn’t understand. [Tracy]
At Key Stage 2, standard written methods were more prominent, although the
expectations of secondary schools were often cited as the direct reason for this.

Conceptually they had a pretty good insight of number, but on paper, when
they were presented with any kind of traditional sum on paper, which they
would be at the high school, the children were worried and the parents were
worried. We just felt we had to teach it them. [Richard]

(Emphasis on pupils’ own strategies] has caused some difficulty on transfer. If
they don’t use a traditional method, it is considered that they can’t do it. So
even if it is not their preferred option, they have been taught a traditional
method so they know how to use it, for that reason. [Stephanie]

Awareness of tensions within the CAN model

Teachers had developed a more subtle view of the complexities of supporting
-—  pupils’ development of methods of calculation. They were conscious of having to
manage an important tension between personal insight and authenticity on the one

hand, and accuracy and efficiency on the other.

We’ve built on what the children have actually used... try out the different
methods and encourage them to find the one they feel most happy with... There
is one child I did change ... because he was not accurate, and he was slow. His
methods were so long-winded ... It is important that children do have quick
accurate methods. One of the things which is really important is ... that the
children have conceptual awareness of what’s happening with the numbers. If
they know that then they are secure. But some of the children are going
through the motions with methods they don’t understand. [Richard]

We put [pupils’ strategies] very high up [but] the older a child is the more
likely I am to say ‘That’s fine but it takes twice as long as this one’...There is
kind of a seductiveness in working investigatively...and they forget that there
can be a directness that is important as well. [Stephanie]

Another issue which emerged from teachers’ accounts related to the
systematisation of CAN within schools. Salient themes here were of the uncertainty
and effort arising from the abandonment of a conventional mathematics scheme,
with limited alternative means of support.

I came to this school having a fairly sketchy knowledge of CAN, having seen it
in operation, but having a sketchy knowledge about how to proceed, and
finding no resources. The resources there were were photocopiable resources
and packs. There would be one copy so you had to have copies made. It was
incredibly hard work preparing lessons each day. [Richard) '

We more or less abandoned schemes and went in at the deep end with CAN.
Two members of staff in particular were heavily involved with it and went to
meetings and then fed back to staff. But, as I remember, you were left floating
about a bit and not knowing what was right or what was wrong to do. I
remember thinking if I just give them investigations and problems and help
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them to solve them, that’s how I’ll survive this. You felt as thought there was
nothing to support you...When you have a scheme, you don’t use it rigidly, but
you know it is there as a support for you if you need it...The two who went to
the meetings seemed to be more capable at it. You needed to g0 to the
meetings. They got the ideas from the meetings. We just got the ‘trickle down’.
[Tricia]
In these circumstances, it was difficult to plan for continuity and progression in
children’s learning, both from lesson to lesson and from year to year.

In CAN it was difficult to know how to progress. After an exciting lesson you
thought ‘Where do I go now? Where do I take them next?” You’d be rocting
around for ideas. [Tricia]

There was no structure through the school...I noticed in my first year that
teachers were photocopying an investigation for Year 3 children and the same
one was being used for Year 6 children, and nobody knowing what the
children had covered at all. [Richard] '

One important effect of the national curriculum and assessment reforms had been
to press schools to develop a more systematic approach to number, building on the
national frameworks. Indeed, this was an important strand of the ‘focusing’ and
‘sharpening up’ attributed to the reforms in the opening quotations of the previous
subsection.

The long-term influence of CAN on pupil attitude and attainmeny

The Cambridge study compared the progress of pupils in the post-project schools
with that of their peers in the non-project schools (Ruthven, Rousham & Chaplin,
1997). National assessment levels awarded at the end of Key Stage 1 (aged 7) and of
Key Stage 2 (aged 11) were analysed, to determine whether the odds of high or low
attainment in mathematics differed between schools, after taking account of the
general scholastic attainment of pupils.

At Key Stage 1, the odds of high mathematics attainment (level 3) were found to
be significantly greater in the post-project schools, as were the odds of low
mathematics attainment (level 1), with no individual school in either group
diverging from this pattern. In the post-project schools, then, pupils were more
likely to be found at either extreme of the attainment distribution. Comments from
the teachers of the CAN cohort suggest that a plausible explanation is that the
emphasis on investigative and problem-solving tasks within CAN produced a
greater differentiation of experience between pupils, creating higher expectations
of, and greater challenges for, successful pupils, but providing less systematic
structure and support for the learning of pupils who were making poor progress.

One of the things that keeps me working in this way is that low ability children
don’t get so complexed about it...I think the weak ones do benefit from a lot of
talk and being involved in things. They are not excluded because they didn’t
Mmanage to get quite as much done. And for the high flyers, I think it is a
brilliant way of working because they can g0 as far as they want; there is no
ceiling on them. They can take off and go a long way with things and the talk
is good for them at that end. [Stella]
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You always thought ‘Do children really understand - particularly the less able
children? Do they really understand what it is they are doing? I think it showed
up with more able children, if they got an answer which was clearly wrong,
they knew it was wrong. But that estimating thing was not there with less able.
You’d have outrageous answers and they wouldn’t have a clue it was not
right...I didn’t ensure that, like I do now, that children could add up quickly,
mentally in their head...Looking back I think I should have done that. That
would have helped the less able with their estimating...Some children
struggled, but the children who had a gift for maths did very well. If they had
a good understanding of the structure of numbers and estimating skills, then
they went quite far. [Tricia}

However, this differential pattern did not persist through to the Key Stage 2
results, where no significant group differences were found between non-project and
post-project schools, although in one non-project school the odds of low
mathematics attainment (level 2 or 3) were significantly greater.

Pupils were also tested on a range of concepts related to place-value, using five
blocks of items involving larger whole numbers and numbers with decimal parts.
Relative to overall mathematical attainment (as assessed by national test levels),
patterns of achievement on these blocks of items did not produce any significant
effects interpretable as differences between the groups of schools.

Pupils also completed an attitude questionnaire. No significant differences between
schools were found on the constructs Enjoyment of number work, Reluctance to use
a calculator and Calculator use as a support for number learning. However, on the
construct Preference for mental over machine calculation, there was a discernible,
but non-significant, trend for pupils in the post-project schools to be more positive.
And on the construct Mental calculation as a support for number learning, pupils in
the post-project schools were significantly more positive.

A further study strengthened these findings (Ruthven, 1998). It examined the
strategies used by a structured subsample of pupils -excluding those at the extremes
of attainment- in tackling a set of number problems. Whereas 38% of pupils from
post-project schools tackled all problems mentally, without any use of written or
calculator computation, and only 24% had recourse to these supports on more than
one occasion, the corresponding proportions for non-project schools were 19% and
52% respectively. Pupils from post-project schools were not only more prone to
calculate mentally, but also more liable to adopt relatively powerful and efficient
strategies for doing so.

These outcomes seem to reflect contrasting numeracy cultures in the two groups of
schools. In the post-project schools, pupils had been encouraged to develop and
refine informal methods of mental calculation from an early age; they had been
explicitly taught mental methods based on ‘smashing up’ or ‘breaking down’
numbers; and they had been expected to behave responsibly in regulating their use
of calculators to complement these mental methods. In the non-project schools,
daily experience of ‘quickfire calculation’ had offered pupils a model of mental
calculation as something to be done quickly or abandoned; explicit teaching of
calculation had emphasised approved written methods; and pupils had little
experience of regulating their own use of calculators.



Pupils’ computational strategies and the curriculum framework

We now return to consider the programme of study which guided the primary
schooling of these pupils, in the light of further evidence from the Cambridge
study. At level 4, pupils are expected to be able to ‘Find out how many 47-seater
coaches will be needed for a school trip for a party of 352, ‘with the aid of a
calculator, interpreting the display’; and at level 5, to ‘Use any pencil-and-paper
method to find the number of coaches needed to take 165 Year 7 pupils on an
outing if each coach has 42 seats’.

In the Cambridge study, then, pupils in the structured subsample were presented
with a version of the ‘coach problem’: 313 people are going on a coach trip. Each
coach can carry up to 42 passengers. How many coaches will be needed? How many
spare places will be left on the coaches? (Ruthven & Chaplin, 1997) Pupils had
been told that they could work out the problem however they liked; using their
head, pen and paper, or calculator, or a mixture of these. Drawn from across the
six schools, their attainment distribution corresponded very closely to that which
would have been found in a similarly truncated national sample.

Direct strategies for the coach problem

The first strategic idea used by most pupils was some form of direct division. Some
attempted to use a non-calculator method of computation (typically a standard
written method). None was able to accomplish the computation successfully.
Around a third proposed, nonetheless, an incorrect solution; around a third
switched to use a calculator to carry out the division; and around a third abandoned
the problem, or changed approach.
Many pupils appeared surprised by the result of the calculator division.

Karen keys [313][+][42][=]7.452380952

Karen: Whoopsee!

Interviewer: What have you got?

Karen: I've got loads of numbers.

Interviewer: Are they any good to you?

Karen: No

Interviewer: Why?

Karen: I don’t know

Interviewer: Can you understand what they say?

Karen shakes her head

Interviewer: Okay.

[pause]

Rekeys [313][+][42][=]7.452380952

[pause]

Keys [42][+](313][=]0.134185303

Karen’s initial interpretation of the string of digits on the calculator display was

that she has miskeyed; and when rekeying produced the same result, she then
supposed that she must have reversed numbers within the calculation. Behind such
responses lay an expectation -or perhaps an aspiration- that the result of a division
should be a whole number. Certainly, the ‘commonsense’ of this problem points in
this direction, as in Tom’s initial reaction: ‘You can’t split a coach up’. But other
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factors are also in play. For these pupils, from their experience of mental and
written calculation, division was a process yielding whole numbers as quotient and
remainder. By contrast, the calculator provides a (not necessarily whole) ratio. The
results of the two processes are the same only for ‘exact’ division. Karen did not
recognise the string of digits as incorporating a decimal resulting from a division.
Yet -on the evidence of testing a few weeks earlier- she was capable of working
successfully with the one- and two-digit decimals specified by the curriculum.

Although Damon did recognise the result as that of a division, his response
illustrates a common difficulty: that of confusing decimal part with remainder.
Damon keys [313][+][42][=]7.452380952
Interviewer: What have you got? Any good?
Damon: About seven coaches.
Interviewer: About seven coaches.
[pause]
Damon: I think it’s four.
Interviewer: Four.
Damon: Yeah.
Interviewer: Spare places?
Damon: Yeah.
Interviewer: How did you work that bit out?
Damon: Because it’s seven point four.

None of the pupils attempting this calculator division proceeded successfully to
interpret the calculated result as implying 8 coaches. Around a quarter carried
forward an estimate of 7 into a further strategy.

Vera shows how the calculator itself could be deployed to make sense of the result.

Vera keys [313][+](42][=]7.452380952
Interviewer: What does it say?

Vera: I don’t know

Interviewer: Okay, so that’s not helpful. What else could you do?
[pause]

Keys [313][+][14][=]22.35714285

Interviewer: Oh there’s another one.

[pause]

Interviewer: What do you think you could do?
Keys [42][+][10][=]4.2

Vera: Four point two.

[pause]

Interviewer: Any ideas?

Keys [42][x][7][=]294

Interviewer: Why did you try that?

Vera: I don’t know really

Vera gave little away, and any interpretation of her intermediate moves must be
speculative. One conjecture is that they enabled Vera to build a bridge between
incongruous digits and familiar decimals. The division of 313 by another number
resembling 42 confirmed the ‘appropriateness’ of the original result. By then
dividing 42 by 10, Vera produced a simple decimal, completing the process of



anchoring the unexpected result in a familiar category, and supporting the idea of
carrying forward 7 to the next move. In this interpretation, then, these moves
become transitional ones of sense-making. :

Kylie, too, carried forward 7, to the written multiplication 7 x 42 = 294, followed
by the written subtraction, 313 - 294 = 19, in effect translating the ratio result of
the calculator division into quotient and remainder form, although she then fell for
the tempting interpretation that this implied 7 coaches and 19 spare places.

These episodes highlight the special character of calculator division and the
demands that it makes on pupils’ mathematical understanding. Carrying out this
apparently simple computation proved to be anything but the mindless, au.omatic
process that using a calculator is commonly reputed to be.

Indirect strategies for the coach problem

Less direct strategies were also used to tackle the problem. Two pupils adopted
forms of trial and improvement as their opening strategy, using a calculator to
carry out the trial computations. Both solved the problem successfully in this way.

Joanne employed trial multiplication.

Joanne keys [42][x][12][=]504

Interviewer: Why did you do that?

Joanne: Forty two times any number, but it was a bit too high.

Keys [42][x][10][=]420

Joanne: Forty two times ten, that’s too high so..

Keys [42][x][8][=]336

[pause]

Joanne: They’d need eight coaches, and they’d have..

[pause]

Joanne: Twenty three places left over.
Note Joanne’s use of the calculator to multiply 42 by 10. Using the machine to carry
out computations in a predictably routinised way, Joanne freed her attention to
monitor her strategy and interpret results. She was very capable of doing such a
calculation mentally; a few minutes earlier she had successfully multiplied 24 by 10
in her head, answering within one second.

Around 30% of pupils employed some form of repeated addition as their opening
strategy, and a further 16% took up this type of strategy at a later stage. Around a
quarter of such attempts used the calculator for computation. Liam’s experience was
typical.

Liam: So you need to add up how many forty twos go into. I'll do that. I'm
sure you could do it a quicker way but, well.

Keys [42][+] [42](+] [42][+] [42][+] [42][+] [42][+] monitoring intermediate
totals

Keys [252][+]

Liam: Oh no!

Interviewer: Where have you got to? What’s happened?

Liam: Hmmm. Don’t know.

The calculator leaves no trace of intermediate results, making any extended
calculation incorporating a parallel mental computation extremely vulnerable to
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failure thfough miskeying or losing track of where the calculation has reached. All
calculator attempts of this type broke down in this way. Pupils who tried to
compute mentally without recording had similar difficulties.

Reviewing the curriculum framework

These pupil responses to the coach problem can be related to characteristics of the
National Curriculum under which their primary schooling had been conducted;
notably, to features of the progression implied within the levelled framework.

First, pupils such as Karen and Damon had difficulties in making sense of the
result of the calculator division. Interpretation of division calculations certainly
features explicitly in the curriculum framework in the form of ‘understanding
remainders in the context of calculation and knowing whether to round up or down’
at level 3; and ‘reading calculator displays to the nearest whole number’ at level 4.
For this problem, however, pupils needed not so much to read the display to the
nearest whole number, but to recognise it as a number lying between 7 and 8.
Equally, they needed not so much to understand remainders, but to distinguish
them from decimal parts. This highlights the importance of seeing curricular
objectives as embedded in a wider conceptual system.

Decimals appear in the curriculum framework for the first time at level 3:
explicitly in ‘using decimal notation in recording money’, and (hence) implicitly in
‘solving problems involving multiplication or division of whole numbers or money,
using a calculator where necessary’; then at level 4 in the form of ‘using, with
understanding, decimal notation to two decimal places in the context of
measurement’ exemplified as ‘read scales marked in hundredths and numbered in
tenths (1.89m)’, and ‘solving addition and subtraction problems using numbers with
no more than two decimal places’. Gaining familiarity with these monetary and
measurement contexts and the corresponding calculation schemes is undoubtedly
important, but too literal a treatment risks encouraging a view of the decimal point
as a ‘separator’ within a system of super- and sub-ordinate units such as pounds-
and-pence or metres-and-centimetres. Not until level 6, is there explicit reference to
underlying relationships between division, fractions and decimals in the form of
‘understanding and using equivalent fractions and equivalent ratios and relating
these to decimals’.

A similar issue arises in relation to checking. Repeating the original computation,
as illustrated by Karen, appeared to be the major strategy employed by pupils to
check their calculations and solutions. There was no evidence, in particular, of
pupils mentally calculating an approximate value for 313+42, either as a rough
check on a non-calculator or calculator division, or as the basis of some further
strategy. The pedagogical guidance certainly emphasises this issue.

Whether using mental, pencil and paper or calculator methods, pupils must be
able to estimate, approximate, interpret answers and check for reasonableness.
The development of these skills is crucial to pupils becoming effective and
confident in performing calculations, and should match the development of
methods and techniques for calculating. (National Curriculum Council, 1989).

However, closer analysis suggests that the curriculum framework does not actually
make provision for suitable methods of checking. The type of approximate mental
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calculation appropriate for estimating the result of this level 4 calculator division or
level 5 written division does not feature until level 6, in the form of ‘using
estimation and approximation to check that answers to multiplication and division

‘problems involving whole numbers are of the right order’, exemplified by

‘Estimate that 278 + 39 is about 7’. And no explicit reference is made within the
framework to the more viable alternative of checking the solution through working
back to the original data.

A third issue is the assumption that such checks should be mental; related to the
wider assertion -prominent within the pedagogical guidance- that pupils should be
encouraged to view mental methods as a first resort. Clearly, developing pupils’
expertise in mental calculation is an important curricular goal, not least because
components of this expertise underpin estimation through approximate calculation
as well as written methods of calculation. But an overgeneralised insistence on
prioritising mental calculation can impede pupils’ thinking and inhibit their learning
of other aspects of mathematics. We have already seen how, while focusing on a
higher level solution strategy, Joanne employed a calculator to execute a
computation which, under other circumstances, she had shown herself perfectly
capable of carrying out mentally. Equally, the reluctance of some pupils to make
use of a calculator to implement a direct division led them to adopt alternative
strategies based on addition, which they felt better able to compute mentally, but
which often proved unreliable.

Again, the programme of study largely ignores such issues. In particular, there is

no explicit reference to the importance of developing effective use of the calculator
constant. This reflects a more general lack of vision. With the exception of trial-
and-improvement, there is no recognition of the possibility of distinctive calculator
methods to parallel those of written computation.
Here, Kylie’s approach points the way to a distinctive calculator-based method of
quotient and remainder’ division. Figure 1 shows a systematic version, capable of
incorporating a range of checks. The scheme incorporates two parallel number
lines, spatially encoding the relationships between different elements of the record.
Might such a calculator method serve to cap the calculator-aware number
curriculum, drawing together and integrating important strands, in much the same
way as the proponents of the written long division method see it as capping the
traditional number curriculum?

<

Lessons of the English experience

There are two important lessons to be learned from the English experience. The
first is that the design of a calculator-aware number curriculum calls for more
thoroughgoing analysis -both of content and progression- than it has recejved to
date. This emerges both from the accounts of the teachers involved in CAN, and

. from the analysis of pupils’ performance in terms of the National Curriculum

framework. This is an important issue which deserves attention from researchers;
they should aim to develop and evaluate both a systematic design for a calculator-

aware curriculum and an appropriate pedagogy of calculator use (Ruthven,
forthcoming). '
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The second lesson is that, however well designed such a curriculum, its successful
implementation is likely to depend on it being treated as part of a coherent and
committed process of school development -and ultimately of systemic reform-
rather than as the isolated responsibility of individual teachers. This can be seen
both in the problems of coordination which emerged within the CAN schools, and
in the limited impact of the National Curriculum reforms on the teaching of
number across the system. These organisational issues are often neglected by
mathematics educators, but they emerge as critical to the successful
institutionalisation of change.

One and a half of these lessons have now been learned in England. A National
Numeracy Project has piloted and refined a more systematic programme for the
primary number curriculum; and its implementation has been treated as an aspect of
school improvement, calling for sustained commitment and support from school
managers, as well as the involvement and professional development of all teachers.
This will form the basis of a forthcoming national programme. (Department for
Education and Employment, 1998).

And the missing half? The new programme of study will be systematic, but far
from calculator-aware. In the moral panic over standards of numeracy in English
primary schools, the calculator has been cast as scapegoat, despite evidence that it
was little used; and that, where it was used, this was not to the detriment of pupils’
achievement (School Curriculum and Assessment Authority, 1997a; 1997b). The
political compromise that has emerged confines use of calculators to the last two
years of primary education, treated as a relatively isolated element of the number
curriculum, concerned with teaching children ‘when it is, and is not, appropriate to
use a calculator’ and ‘the technical skills needed to use it constructively and
efficiently’ (Department for Education and Employment, 1998: 53).

Figure 1:Calculator-based method for ‘quotient and remainder’ division

~+ 8 -+ 336
| 23
313+ 42 = - 7.4523809 -1 313
19
T7 1294
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Plenary panel:
Doing research in mathematics education in time of paradigm wars

Coordinator: Anna Sfard, The University of Haifa, Israel

Panelists: Pearla Nesher, The University of Haifa, Israel
Stephen Lerman, South Bank University, London, UK
Ellice Forman, University of Pittsburgh, USA

1. Panel overview

These days we are witnessing an unprecedented proliferation of research frameworks
in human studies at large, and in the field of mathematics education in particular.
Along with the wide range of traditional cognitive approaches and their updated
current versions, there is a steadily intensifying socio-cultural trend including a whole
spectrum of research frameworks, from situated cognition through distributed
cognition to a number of schools that include the term 'discourse' in their name. This
unusual situation provides researchers with many exciting possibilities, but at the
same time creates communication problems and leads to partitioning of the
community into a growing number of ‘camps’, only too likely to argue against each
other (see, €.g. Anderson et al., 1996; Greeno, 1997). The aim of the panel is to raise
and discuss some questions about research, which in these circumstances must
urgently be answered. This will be done by considering a research proposal of a
Ph.D. candidate who wants to devote her dissertation to mapping student’s
difficulties with negative numbers. The panel members will act as a Ph.D. committee,
which has to decide whether to accept the proposal. Each of the panelists will review
and evaluate the proposal from the vantage point of a certain well-defined research
framework: Pearla Nesher will take a cognitive approach, with its roots in Piagetian
theory, Steve Lerman will speak from a strong sociological/postmodern position, and
Ellice Forman will try to present a more moderate vision by taking a developmental
social constructivist stance. Discussion will then be opened to the audience who, by
the end of the 