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Abstract

Item scores that do not fit an assumed item response theory model may

cause the latent trait value to be inaccurately estimated. Several person-fit

statistics for detecting nonfitting score patterns for paper-and-pencil tests have

been proposed. In the context of computerized adaptive tests (CAT), the use

of person-fit analysis is hardly explored. Because it has been shown that the

distribution of existing person-fit statistics is not applicable in a CAT, in this

study new person-fit statistics are proposed and critical values for these statistics

are derived from existing statistical theory. Statistics are proposed that are

sensitive to runs of correct or incorrect item scores and are based on all items

administered in a CAT or based on subsets of items, using observed and expected

item scores and using cumulative sum (CUSUM) procedures. The theoretical

and empirical distributions of the statistics are compared and detection rates are

investigated. Results showed that the nominal and empirical type I error rates

were comparable for CUSUM procedures when the number of items in each

subset and the number of measurement points were not too small. Detection

rates of CUSUM procedures were superior to other fit statistics. Applications of

the statistics are discussed.

Key won* : appropriateness measurement, computer adaptive testing,

cumulative sum, item response theory, person fit.

4



CUSUM-Based Person-Fit Statistics - 3

CUSUM-Based Person-Fit Statistics for Adaptive Testing

An examinee's test score may not reveal the operation of undesirable influences of

test taking behavior such as faking on biodata questionnaires and personality tests, or

guessing, or knowledge of the correct answers due to test preview on achievement tests.

These and other influences may result in inappropriate test scores which may have serious

consequences for practical test use, for example, in job and educational selection, where

classification errors may result.

In the context of item response theory (IRT) modeling, several methods have been

proposed to detect item score patterns that are not in agreement with the expected item

score pattern based on a particular test model. These item score patterns should be

detected because scores of such persons may not be adequate descriptions of their trait

level (8). This area of research is commonly referred to as person-fit research, and most

person-fit studies have concentrated on the development of fit statistics that can be used

to identify nonfitting response vectors; examples of fit statistics can be found in Levine

and Rubin (1979), Drasgow, Levine, and Williams (1985), Levine & Drasgow (1988),

and Molenaar and Hoijtink (1990).

Most fit statistics have been proposed in the context of paper-and-pencil (P&P) tests.

In almost all statistics, for an individual examinee with a latent trait value 0, the residual

of the observed and expected item scores on the basis of an IRT model is compared across

items. When, under the null model of fitting response behavior, the null distribution of a

statistic is known, item score patterns can be classified as fitting or nonfitting.

Recently, the use of person-fit statistics has been explored in the context of adaptive

testing. Nering (1997) and van Krimpen-Stoop and Meijer (in press-a) showed that the

use of existing person-fit statistics in adaptive testing is not straightforward. One of the

problems is, that the characteristics of a computerized adaptive test (CAT) are unfavorable

for the assessment of person fit (Reise & Due, 1991, Molenaar & Hoijtink, 1990, 1996). A

CAT contains relatively few items compared with a P&P test. Because the detection rate

is sensitive to test length - longer tests will result in higher detection rates (e.g., Meijer,

Molenaar, & Sijtsma, 1994) - the detection rate for a CAT will, in general be lower than

for a P&P test. A second problem is that almost all person-fit statistics use the spread of

the item difficulties: generally speaking, nonfitting item score patterns consists of many
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CUSUM-Based Person-Fit Statistics - 4

incorrect (0) scores to easy items and many correct (1) scores to difficult items. In a CAT,

the spread in the item difficulties is relatively modest: in particular at the end of the test

when the estimate of 9, 8, is close to true 0, items with similar item difficulties will be

selected and as a result it will be difficult to distinguish fitting from nonfitting item score

patterns. Due to the modest spread in the item difficulties, the assumed null distribution

of most existing person-fit statistics is also underdispersed, which results in empirical

type I errors that are too small compared to the nominal type I errors (van Krimpen-Stoop

and Meijer, in press-a). Furthermore, for both P&P testing and adaptive testing, the null

distribution of existing person-fit statistics varies across different 9- values (Reise, 1995,

van Krimpen -Stoop & Meijer, in press-a). As a result, it is difficult to use one critical

value for all examinees to classify item score patterns as nonfitting.

In this study, statistics will be proposed that are especially designed for use in a CAT

and critical values for these statistics will be derived on the basis of which item score

patterns can be classified as fitting or nonfitting. This paper is organized as follows.

First, existing literature on person-fit statistics in adaptive testing is discussed. Second,

new statistics are proposed. Third, the distribution of these statistics is obtained from

existing statistical theory and by means of simulation studies, the nominal type I errors

are compared with the empirical type I errors. Finally, the detection rates of these statistics

are investigated.

Item Response Theory and Person-Fit Research

IRT models describe the probability of a correct response to an item as a function of

item and person parameters (e.g., Hambleton & Swaminathan, 1985, pp. 35-48). Let Xi

be the binary (0, 1) response to item i (i = 1, ..., I), where 1 denotes a correct or keyed

response, and 0 denotes an incorrect or not keyed response. Further, let ai denote the item

discrimination parameter; bi the item difficulty parameter, and 0 the latent trait value. The

probability of correctly answering an item according to the two-parameter logistic IRT

model (2-PLM) can be written as

P i (Xi = 1 le, bi) = (9)
exp [ai (9 bi)]

1 + exP [ai (9 bi)]
(1)

In this study we use the 2-PLM because it is less restrictive with respect to empirical data
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CUSUM-Based Person-Fit Statistics - 5

than the one-parameter logistic model and it does not have the estimation problems of

the guessing parameter in the three-parameter logistic model (e.g., Baker, 1992, pp.109-

112). The results obtained in this study, however, are easily generalized to the one- and

three-parameter logistic model.

In a P&P test the same items are administered to each examinee. To investigate

an examinee's fit to an IRT model in almost all person-fit statistics the residual of the

observed and expected item score is compared across items. Let wi (0) and wo (0) be

suitable functions. Following Snijders (in press), a general form in which most person-fit

statistics can be expressed is

xiwi (0) - " (0) . (2)

To have a person-fit statistic with expectation 0, many person-fit statistics are expressed

in the centered form

W (9) E [xi Pi (0)1wi (9) (3)
i=i

which results in a function of the residuals of the observed and expected item scores. Note

that, as a result of binary scoring X? = Xi; thus, for a suitable function vi (0), statistics

of the form

E [xi (0)12 vi (0) ,

i=i

can be re-expressed as statistics of the form in Equation 2. Often the variance of the

statistic is taken into account to obtain a standardized version of the statistic. For example,

Wright and Stone (1979) proposed person-fit statistics based on squared standardized

residuals, where the residuals are weighted with the variances of the item scores of the I

items

[X, (e)12V (0) =
(0) Qs (9)

where Qi (0) = 1 Pi (0).

For classifying an item score pattern as nonfitting, an important tool is the probability
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of exceedance or significance probability. Let t be the observed value of the person-fit

statistic T and assume that larger values of T denote nonfitting item score patterns. Then,

the one-sided significance probability is defined as the probability that the value of the

test statistic is larger than the observed value: p* = P (T > t). When p* < a, where a

is the one-sided significance level, an item score pattern can be classified as nonfitting.

The value of a test statistic with p* = a will be denoted as the critical value at one-sided

significance level a.

Person-Fit Research in CAT

Van Krimpen-Stoop and Meijer (in press-a) (see also Nering, 1997) investigated the

empirical distribution of an often used fit statistic in the context of P&P tests, the

standardized log-likelihood statistic lz (Drasgow, Levine, & Williams, 1985) and an

adaptation /: (Snijders, in press) that corrects for the use of the estimated 9 instead of true

in I,. Both statistics were assumed to be asymptotically standard normally distributed.

Van Krimpen -Stoop and Meijer (in press-a) found that, for simulated P&P data when

was used instead of 8, the nominal and empirical type I errors of /: were similar, whereas

these errors for lz were different, especially for short tests. For CAT data, however,

there was a large discrepancy between the empirical and theoretical distribution for both

statistics. Consequently, decisions about the fit of a score pattern on the basis of theoretical

critical values were inappropriate. As an alternative, van Krimpen -Stoop and Meijer (in

press-a) proposed to simulate the asymptotic sampling distribution for a given 9 through

parametric bootstrapping. Given a fixed 9- value, P&P and adaptive response vectors were

generated and the distribution of the (one-sided) significance probabilities was determined

on the basis of b. For P&P tests the results were promising in the sense that the empirical

type I errors were in agreement with the nominal type I errors. However, for a CAT the

empirical type I errors were too low, which hamper the use of these statistics in a CAT

environment.

McLeod and Lewis (1998) examined whether examinees were successful in attaining

higher test scores in a CAT, when they had preknowledge of some of the items that were

used. Item prelmowledge was modeled by a modified three-parameter logistic IRT model,

and the probability of a correct response was a combination of the probability of obtaining
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a correct response based on preknowledge and the probability of a correct response based

on the ability of the examinee. An assumption of the model was, that the probability

of a correct response was equal to one when the item was memorized. McLeod and

Lewis (1998) proposed to use a posterior log-odds ratio to identify examinees using item

preknowledge. However, the effectiveness of this ratio to detect nonfitting item score

patterns could not yet be investigated because of the unknown null distribution and thus

of the critical values for the log-odds ratio.

Both Van Krin3pen -Stoop and Meijer (in press-b) and Bradlow, Weiss, and Cho (1998)

proposed to use statistical process control techniques to detect person-misfit in a CAT.

Van Krimpen-Stoop and Meijer (in press-b) proposed statistics to investigate person fit

in an on-line application and after complete administration of a CAT. Critical values to

classify a score pattern as nonfitting were determined by means of a simulation study,

which were found to be stable across 9 values. Bradlow et al. (1998) discussed several

Bayesian methods to simulate a norming distribution that can be used to classify an item

score pattern as fitting or nonfitting. They discussed the use of a posterior predictive

density and the use of a prior predictive density to generate a distribution for the item score

patterns and thus for the person-fit statistics. Because they did not have an item selection

algorithm available, they used a permutation distribution to generate a distribution for

the item score patterns and illustrated the use of this distribution to detect different types

of nonfitting response behavior on empirical CAT data. Although simulation algorithms

are useful, they may be computerintensive, and in some situations difficult to apply (for

example, in the situation discussed in Bradlow et al., 1998 when the researcher has no

disposal to the item selection algorithm). An alternative is to use a theoretical distribution

to classify score patterns as fitting or nonfitting. In this paper, we will investigate under

which conditions a theoretical distribution can be used when statistics from statistical

process control are used in a CAT and which test and person characteristics influence this

distribution.

New Person-Fit Statistics

In a CAT, using IRT models of the form of Equation 1, items are often selected for which

the probability of correctly answering an item is close to 0.5. As a result, an alternation of
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correct and incorrect item scores is expected, and strings of correct or incorrect item scores

may indicate nonfitting response behavior. Person-fit statistics are often defined in terms

of the residual of the observed and expected item scores (Equation 3), where a correct

score (1) results in a positive residual and an incorrect score (0) in a negative residual.

For example, suppose an examinee with average 0 value takes a test with preknowledge

of the items administered in the last part of the CAT. As a result, in the first part of the test

the responses will be an alternation of zeros and ones, whereas in the second part more and

more items are correctly answered due to item preknowledge. Then for this examinee,

runs of positive residuals are expected in the second part of the item score pattern. To

detect such score patterns, we will define person-fit statistics that are sensitive to strings of

positive or negative residuals of observed and expected item scores, corrected for the use

of 0. Two different strategies are used to define a person-fit statistic. Person-fit statistics

are determined based on (1) the responses to all the items in a CAT, and (2) the responses

to a subset of items in a CAT.

General Form of the Z Statistics

Consider an item pool consisting of i = 1, ..., I items and assume that a CAT is

administered with fixed test length (for a discussion of the pro's and con's of fixed- and

variable-length tests in a CAT, see Davey, Pommerich, & Thompson, 1999). Let Xik

denote the response to item ik, the kth item administered in the CAT, with k = 1, N

with N the fmal test length. Define

W (9) = E [xik Pik (°)1
k=1

as the sum of the residuals of the observed and expected item scores in a CAT. It can be

shown (Snijders, in press) that, provided that 0 is known,

Z (0)
W (0)

N (0,1) for N 00 .

APik (0) Qik (0)

However, in practice 0 is unknown and has to be estimated. Molenaar and Hoijtink (1990)

(see also Snijders, in press) showed that when 0 is replaced by 9, the null distribution of
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W and thus also of Z is affected.

Let, for notational simplicity, Pik = Pik ()) Qik = Qik (), Plk °Pik 100, and

= &Pik/802. Consider S subsets of items, each subset consisting of n items,

where the first subset of items contains the first 71 items administered, the second subset

contains the next n items administered, and so forth. The number of items, n, in each

subset is chosen so that S = n is an integer; that is, S complete subsets of n items

are administered. For the sake of simplicity, we assume subsets of equal size, but the

theoretical results obtained in this paper can easily be extended in terms of subsets of

unequal size. Let s = 1, S be the index for the subsets. Defme 9N as the final ability

estimate. Furthermore, let f = N indicate that the fit statistic is calculated across all

items in the test and f = s that the statistic is calculated across the items in subset s.

Defme

where, for f = N

and for f = s

W (*) = > [xik Pik] wik,f,
k=1

tvi,N = 1, for all items k,

1 1 for all items k in subset s
wsk'' 0 otherwise

Snijders (in press) showed that, provided that some regularity conditions hold (that is,

3M < oo such that i+.4. < ai < M and 1bi1 < M for all i),

1471 (.) .f Oro (.) N (0,1) for NZ f ( ) (4)

VEk=1 tilk,f 0 Pik Qik

where, for weighted maximum likelihood estimator (Warm, 1989), 9N, and the 2-PLM

EN PI kPii: I PikQik

ro

(Pk)2 /Pik Qik
k=1

1

N

E Pik Qik Pik)
k=1

N
2 E aZ,PikQi

k=1
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r,k (.) = Plk

Pe. Qik
= aik

N N

E PI.Wik,f E aik PikQikUliklf
k=1 k=1Cf () = N N , and

E Plkri, E 4 Pik C2i,
k=1 k=1

Iiiik If () = Wik,f Cf (*) ri () = wiki aikcf (')

Two Strategies

In the first strategy, the statistic ZN (6N) is determined; this statistic uses all administered

items and the fmal ability estimate bN. Then, provided that N is large enough, an

examinee can be classified as nonfitting at, for example, significance level a = 0.01

when ZN > 12.581, where 2.58 is the critical value of the standard normal distribution

with two-sided a = 0.01. A disadvantage of ZN is that a run of negative (positive)

residuals may be compensated for by a run of positive (negative) residuals.

Therefore, to minimize this effect, in the second strategy the item score pattern is

divided into disjoint subsets consisting of n > 1. items. For each subset Z. (eN) is

determined, and provided that N and n are large enough, critical values can be based on

the standard normal distribution. For example, a CAT of N = 30 items can be divided

into three subsets each consisting of 10 items, where the first subset contains the first

10 administered items, the second subset contains items 11 20, and the third subset

contains items 21 30. Then, Z, can be computed for each subset using .eN and it can

be investigated whether nonfitting behavior occurred on the first 10 items due to, for

example, warming-up or item preview. When warming-up occurred, in the first part of

the CAT a number of items will be answered incorrectly, resulting in a negative value of

the statistic. Thus, nonfitting response behavior is checked for each subset.

By investigating whether the individual scores of Z. fall in between two bounds, as

described in the second strategy, it is investigated whether a shift or change occurred

in the mean of Zs compared with the assumed mean (i.e., zero) of the standard normal

distribution. This shift has to be of considerable size to let the value of Z. fall outside

the bounds. As a result, this procedure will be insensitive to small shifts in the mean.

Moreover, a disadvantage of using Zs is that because only part of the CAT is considered the

2
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power to detect nonfitting score patterns may be low. An alternative is to use a cumulative

sum procedure where the values of Z9 are accumulated in a clever way, and all item scores

in the test are taken into account.

Cumulative Sum Procedure

A procedure from Statistical Process Control which accumulates (standard normally

distributed) statistics is the cumulative sum procedure (CUSUM), originally proposed

by Page (1954). An assumption underlying the CUSUM procedure is, that the process is

assumed to be in statistical control; that is, the variable or statistic being measured has a

stable distribution, for example, a normal distribution with a stable mean and variance.

In the CUSUM procedure, sums are accumulated as follows. Let Z be the value of

statistic Z obtained from a sample of size n at time point t, where Zt is assumed to be

independently identically distributed. Let R be a predefined reference value. Then, the

two-sided CUSUM procedure can be written in terms of C? and C;-, where

= max [0, (Zt R) + Ct_l] and

Ct --= min [0, (Zt + R) +

with starting values Co = Co = 0. Thus, the CUSUM procedure starts as soon as

IZI > R. Note that the cumulations can be running on both sides concurrently, where

the sum of positive values of (Zt R) is reflected by Ct and the sum of negative values

of (Zt + R) by CT . Let h denote some threshold value. The process is 'out of control'

when C+ > h or C- < -h at some time point and 'in control' otherwise; that is, after

a run of positive or a run of negative values of the statistic, the process becomes 'out of

control'.

The values of R and h are often based on the assumption that the Zt-values are

independently (asymptotically) standard normally distributed. The value of R is usually

selected as one-half of the magnitude of the shift (in Zt-units) one wishes to detect; for

example, R = 0.5 is the appropriate choice for detecting a shift of one times the standard

deviation of Z. Based on the chosen values of significance level a and reference value R,

boundaries h and -h of the CUSUM procedure can be determined. Note that, although the

standard normally distributed statistic, Z, is used, C+ and C- are not standard normally
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distributed. The critical value h for the two-sided CUSUM procedure can be determined

by solving Siegmund's approximation (Siegmund, 1985)

2 exp [2R (h + 1.166)] 2R (h + 1.166) 1

a 2R2

where R is the (fixed) reference value and a is the (fixed) two-sided significance level.

In Table 1 values of h are given for R = 0.5 and 1.0 for a's between .05 and .01.

Insert Table 1 about here

For an appropriate person-fit statistic Z, a CUSUM procedure is sensitive to runs of

positive or negative values of that statistic and becomes 'out of control' when a number

of positive or negative values of the statistic occurs. When in the CUSUM procedure

the statistic Z, (BN) is used, that is, the standardized residual of observed and expected

scores of the items in subset s, an examinee may be classified as nonfitting when a number

of consecutive positive or negative values of Z, (BN) occurs. Using Z, (BN) results in

a CUSUM procedure that can be applied after complete administration of the CAT and

can be written as

= 1118X[0, (Zs (eN)

C; = min [0, (Zs (BN) + C7--1]

(5)

(6)

with starting values Co = Co = 0. An examinee can be classified as nonfitting the IRT

model when C: > h or when C; < h after some subset s.

Simulation Studies

This study is divided into three parts. First, the nominal and empirical type I errors are

compared of the statistics ZN (bN), Z(BN3), and the CUSUM procedure. Second, it

is investigated whether ZN and the CUSUM procedure are confounded with O. This is

important because person-fit studies (e.g., Molenaar and Hoijtink, 1990, Reise, 1995)

have shown that statistics are confounded with 9 and as a result examinees are classified

as nonfitting depending on 9 which is obviously undesirable. Finally, the detection rates

are investigated for several types of nonfitting score patterns.

14
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In all simulation studies, an item pool of 400 items fitting the 2-PLM with ai ti

N (1; 0.2) (truncated at the interval (0; 3]) and bi ti U (-3.5; 3.5) was used to simulate

the adaptive item score patterns. True 9 was assumed to be standard normally distributed

(truncated at the interval [-3; 3]).

A fitting item score pattern was simulated as follows. First, true 9 of a simulee was

drawn from a standard normal distribution. Then, the first item of the CAT selected was

the item with maximum information given 9 = 0. For this item, P (9), according to

Equation 1 was determined. To simulate the answer (1 or 0), a random number y from

the uniform distribution on the interval [0, 1] was drawn; when y < P (0) the response

to the item was subset to 1 (correct response), 0 otherwise. The first four items of the

CAT were selected with maximum information for 9 = 0, and based on the responses to

these four items, 9 was obtained using weighted maximum likelihood estimation (Warm,

1989). The next items were selected to have maximum information at bik. For that item,

P (9) was computed, a response was simulated, and bik was updated. This procedure was

repeated until a test of N items was obtained.

Study 1: Empirical vs Nominal Type I Errors

Method

ZN (9N)

Datasets containing 500 fitting adaptive item score patterns were constructed each with

a fixed test length N, with N = 10, 20, 30, 40, and 50. For each item score pattern,

statistic ZN (eN) was computed, resulting in 500 values of ZN for each dataset. For

each dataset, the empirical type I error was determined as the percentage of item score

patterns that attained a value of ZN larger than 12.581; that is, the critical value of the

standard normal distribution at significance level a = 0.01.

Z, (eN) and CUSUM

A dataset containing 500 fitting adaptive item score patterns was constructed with a fixed

test length N = 40 and the size of the subsets was set to n = 20, 10, or 5. For each item

score pattern, statistic Z, was determined for each subset s. The empirical type I error for

subset s was determined as the percentage of item score patterns that attained a value of Z.

larger than12.581. Also for each item score pattern the CUSUM procedure was performed

.15
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using statistic Zs and R = 0.5. The empirical type I error for the CUSUM procedure was

determined as the percentage of item score patterns for which C+ > 3.49 or C- < -3.49

at some subset s; that is, h = 3.49 is the critical value of the CUSUM procedure with

R = 0.5 at significance level a = 0.01. For ZN, Z8 and CUSUM, the procedure was

repeated ten times for each dataset, in order to obtain the mean and standard deviation of

the type I errors.

Results

ZN (BN)

In Table 2 the mean and standard deviation of the empirical type I errors for ZN (eN) are

given at a nominal level of a = 0.01. Table 2 shows that the empirical type I errors were

in agreement with the nominal type I errors for tests with length 40 and 50, and for tests

of 10, 20, and 30 items they were a little smaller than the nominal error rates.

za (9N)and CUSUM

In Table 3 the mean and standard deviation of the empirical type I errors for Z8 and the

CUSUM procedure are given at a = 0.01. Table 3 shows that the empirical type I errors

of Z8 for s = 1 and for all n are a little smaller than the nominal type I error. It also

shows that for s > 1 the empirical type I errors are considerably smaller than expected.

For the CUSUM, for n = 10 the empirical type I error is similar to the nominal type

I error, whereas for n = 20 it is smaller and for n = 5 it is larger. The smaller type I

errors are due to the fact that the CUSUM procedure is based on only a few subsets which

might result in low power. Some additional simulations, using more subsets, illustrated

this effect. For example, increasing test length to 80 items with subsets of size n = 20

a mean type I error rate of 0.010 with standard deviation 0.04 was found. On the other

hand, for n = 5, the subsets are too small to guarantee an accurate approximation of Z8

to the standard normal distribution. Using the CUSUM procedure it is thus important to

use (1) subtests that are not too small and (2) an adequate number of measurement points.

Insert Tables 2 and 3 about here
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Study 2: Dependence on 9

Method

Five datasets containing 500 fitting score patterns were constructed with fixed test length

N = 40, whete for each dataset 9 was set to 2, 1, 0, 1, or 2. For each score pattern,

statistic ZN (9N) was determined, and the CUSUM procedure was performed with

subsets size n = 10 and R = 0.5. For each dataset, the empirical type I error for ZN

was determined as the percentage of item score patterns that attained a value of ZN larger

than 12.581 and for the CUSUM procedure as the percentage of item score patterns for

which C+ > 3.49 or C- < 3.49.

Results

In Table 4 the mean and standard deviation of the empirical type I errors at nominal level

a = 0.01 for ZN and CUSUM, conditional on 9, are given. Table 4 shows that, across 9,

the empirical type I errors for ZN are similar to the nominal type I error. For the CUSUM

procedure, the empirical type I errors are quite comparable across 9, although there are

small deviancies between the empirical and nominal type I errors for 9 = ±2.

Insert Table 4 about here

Study 3: Detection Rates

Method

Datasets containing 500 nonfitting item score patterns were constructed for a test of

N = 40. Nonfitting score patterns were simulated for a two-dimensional value of 9.

It was assumed that during the first half of the test an examinee had another 9 value than

during the second half. Datasets containing score patterns with a two-dimensional 9 were

simulated by drawing the first ability value, 01, from the standard normal distribution

truncated [-3; 3], and the second ability value was determined as 02 = 91+ r, where

r = 2, 1.5, 1, 1, 1.5, or 2 were used. Thus, during the first half of the test P (01)

was used and during the second half P (02) was used to simulate the item scores to the

items. Examples of response behavior with r > 0 are item preknowledge of items in the

second half of the CAT or warming-up in the first half of the test. Examples of r < 0 are

7
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prelmowledge of the items in the first half of the CAT or carelessness in the last part of

the CAT.

For each item score pattern in each dataset, ZN, Zs, and the CUSUM procedure with

n = 10 and R = 0.5 were computed. Z8 was used with s = 1 and s = 2, because in

Study 2 it was shown that using s = 3, 4 resulted in type I errors that were much too

small. An item score pattern was classified as nonfitting at significance level a = 0.01,

when Z1 > 12.581 where f = N or s, or when C+ > 3.49 or C- < 3.49 at some subset

s. For each dataset, the detection rate was determined as the percentage of item score

patterns classified as nonfitting. For each value of r, 10 datasets containing 500 nonfitting

item score patterns were generated and the mean and standard error were computed. The

same procedure was performed using 10 datasets containing 500 fitting adaptive response

vectors (r = 0).

Results

In Table 5 the detection rates of ZN (eN), N) and the CUSUM procedure are given.

Table 5 shows that for fitting item score patterns (r = 0), the empirical type I error is

around 0.01 as expected at level a = 0.01. The detection rates for the CUSUM procedure

are considerably higher than the detection rates for ZN and Z, for all .s, for all values of

r # 0. Interesting is, that the detection rates for Z, at set s = 2 are higher than ZN

and Z8 with s = 1 for all values of r 0 except r = 1. This can be explained by the

observation that B at the beginning of the test is not yet estimated accurately. Consequently,

the residuals in Equation 3 are small and Z. will not obtain large values.

Insert Table 5 about here

Discussion

In this study, we examined the application of person-fit statistics using known statistical

distributions in the context of a CAT. Two strategies were investigated: person-fit statistics

were determined based on (1) the responses to all the items (statistic ZN and the CUSUM

procedure), and (2) the responses to a subset of items (statistic Z8).

Study 1 showed that the critical values of the standard normal distribution can be used
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for ZN, although for small test length (N = 10, 20) empirical type I errors are somewhat

smaller than expected. Results also showed that for N = 40 and n = 10 the critical

values (Table 1) can be used for the CUSUM procedure. However, care should be taken

when the size of the subsets n is large compared with N. At a fixed test length, increasing

the number of items in a subset (increasing n), will result in a smaller number of subsets

S. For a small number of subsets, the CUSUM procedure is based on only a few subsets

which might result in low power. On the other hand, when n is small, the number of

subsets increases and the asymptotic normality of the statistic might no longer hold. This

combined with large N results in an accumulation of error and in an inaccurate empirical

type I error of the CUSUM procedure. An assumption of the CUSUM procedure is that

the statistics Z, are independently distributed. Here, the fmal ability estimate 9N is based

on all item scores, and 9A, is used for computing each value of Z3. As a result, some

dependence might be introduced. This may explain the somewhat inflated empirical type

I error rates for large N in combination with small n.

Based on the simulation studies reported here and some additional experience with

the procedure, we propose the following rule of thumb: the CUSUM procedure can be

used when n > 10 and S = 3, 4 or 5. The best strategy is to construct subsets as large

as possible and to divide the test into 3, 4, or 5 subsets. This protects the user against

incorrect type I errors that will result in liberal or conservative classification of nonfitting

item score patterns.

In this paper we examined the detection rate for nonfitting item score patterns with

a two-dimensional 0-value and found that the proposed statistics, especially the CUSUM

procedure, were sensitive to this type of nonfitting response behavior; that is, the detection

rates were between 0.12 and 0.67 at a = 0.01 for the CUSUM.

All person-fit statistics proposed in this paper need to be determined after complete

administration of the CAT due to the use of the fmal ability estimate 0N. An alternative

is to construct similar statistics where the updated ability estimate is used; this results in

an on-line application of person fit. However, this alternative is less attractive than the

assessment of person fit after complete administration of a CAT for at least two reasons.

First, the best estimate of true 0 available is the fmal ability estimate 0N. Additional

simulation studies showed that using updated ability estimates resulted in large differences
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between empirical and nominal type I error rates. Second, the fit of an item score pattern

given the fmal ability estimate will be used most often in practice because decisions in

job and educational selection using personality tests and achievement tests are based on

the fmal estimate.

The statistics proposed in this study are sensitive to runs of correct or incorrect item

scores. An alternative to the proposed statistics might be to use nonparametric statistics

such as the number of runs or the length of the longest runs in a series of alternatives;

a crucial assumption underlying the distribution of these statistics, however, is that the

expected item score is equal to 0.5 for all items in the test. Especially in the beginning

of a CAT, the expected item score may deviate from 0.5. Our experience is that this

seriously influences the error rates. The statistics proposed in this study are less sensitive

to violation of this assumption, because here the residuals of the observed and expected

score on the basis of an IRT model are taken into account.

Future research may also investigate subgroupings of items, for example

subgroupings on the basis of content area. Doing so, person-fit statistics can be used

as diagnostic tools. In practice two research strategies may be followed depending on the

application envisaged. In the first situation the researcher may like to have information

about the answering behavior on specific subsets of items. When analyzing the score

patterns on, for example, an achievement test a researcher may only be interested in

detecting unusual score patterns on particular subsets of items because these patterns may

be indicative of a particular kind of nonfitting behavior. Examples may be test preview

and lack of concentration. In this case, the researcher has a priori expectations with respect

to score patterns and he/she can test these hypotheses using the theoretical distributions

discussed in this paper. A limitation may be that the subsets may not be too small, say not

smaller than 10-15 items. In the second situation, the researcher may have no idea about

which type of aberrance he/she may expect to fmd. In that case, first a regular overall fit

statistic such as ZN or the CUSUM procedure can be used. Next these nonfitting patterns

can further be investigated using statistics that are sensitive to nonfitting items scores in

subsets of the test.
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Thb le 1

Critical values h for several values
of R and a

a
h

R = 0.5 R = 1.0
.0500 2.02 1.06
.0250 2.64 1.39
.0100 3.49 1.84
.0050 4.16 2.18
.0025 4.84 .2.53
.0010 5.75 2.98
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le 2

Mean and standard deviation of the
empirical type I errors at a = 0.01 for ZN (ON)

ZN
N mean SD
10 .005 .008
20 .006 .008
30 .005 .009
40 .010 .004
50 .009 .004
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amble 3

Mean and standard deviation of the empirical type I

errors at a = 0.01 for Z8 (eN) and the CUSUM
procedure for a CAT with N = 40

n s mean SD
20 Z. 1 .006 .004

2 <.001
CUSUM < .001

10 Z8 1 .005 .003
2 .002 .001
3 < .001
4 <.001

CUSUM .008 .004
5 Z. 1 .004 .003

2 .002 .002
3 .001 .001
4 < .001
5 < .001
6 < .001
7 < .001
8 <.001

CUSUM .067 .015
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Table 4

Mean and standard deviation of the empirical type I

errors at a = 0.01 for ZN (19 N) and CUSUM procedure,

conditional on 9, for a CAT with N = 40 and n = 10

ZN CUSUM
mean SD mean SD

0 = 2 .011 .003 .002 .0021 .009 .004 .007 .003
0 .009 .005 .008 .003
1 .008 .003 .005 .003
2 .010 .004 .002 .001
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Thb le 5

Mean and standard deviation (in brackets) of the detection rates of ZN (BN),

Z8 (e N) and the CUSUM procedure for a CAT with N = 40 and n = 10

r2 1.5 1 0 1 1.5 2

ZN .163 .108 .053 .012 .042 .079 .122
(.018) (.011) (.012) (.004) (.010) (.020) (.015)

CUSUM .667 .360 .123 .006 .116 .348 .641
(.021) (.024) (.016) (.005) (.020) (.028) (.018)

Z8, s = 1 .194 .092 .033 .003 .031 .094 .214
(.015) (.014) (.008) (.003) (.007) (.011) (.019)

Z8, s = 2 .552 .229 .051 .001 .056 .213 .494
(.023) (.022) (.011) (.001) (.007) (.020) (.020)
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