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Estimating IRT Equating Coefficients for Tests with
Polytomous and Dichotomous Scored Items

Abstract

Recent years have seen growing use of a test with mixed item

formats, e.g., partly containing dichotomous scored items and partly

consisting of polytomous scored items. Matching two test characteristic

curves method (CCM) for placing these mixed format items on the same

metric is described and evaluated in this paper under a common-item

linking design in which tests containing a set of common items are

administered to two goups of examinees.

The BIAS statistics of the recovery equating coefficients across all

research conditions are usually expected to be close to zero as happened

here and the corresponding RMSE (root mean squared error) statistics, in

general, are relatively small. The shapes of the empirical sampling

distributions of the estimated equating coefficients obtained from a variety

of conditions are symmetric-bell shapes with small variances and few or

no outliers or other abnormalities. The CCM is capable of producing

accurate transformation of parameter estimates when applied to a test with

mixed items as well as to only dichotomous-scored or polytomous-scored

tests.

Key Words: Item Linking; Item Bank; Test Equating
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Estimating IRT Equating Coefficients for Mixed-format Tests

I. Introduction

A. Motivation

Item response theory (IRT) consists of a family of probabilistic models that

hypothesize the relationship between an examinee's latent ability(ies) and a correct response

to an item. Various IRT models have now been routinely used to construct a large item bank

with all items on the same metric. This is possible because of the property that the metric thus

calibrated is invariant under a linear transformation (Stocking & Lord, 1983). Recent years

have seen growing use of a test with mixed item formats, e.g., partly containing dichotomous

scored items and partly consisting of polytomous scored items (e.g., Beaton & Zwick, 1992;

Maryland State Department of Education, 1997). When constructing mixed-format item

banks, interesting problems present themselves. Methods for placing these mixed format

items on the same metric are described and evaluated in this paper under a common-item

linking design (Vale, 1986) in which tests containing a set of common items are administered

to two groups of examinees.

It is important to emphasize that we are assuming in this paper that each type of item

is measuring one single latent trait. Hence dimensionality differences and procedures for

equating multivariate item response tests (Li & Lissitz, in press) for various types of items are

not a subject of this paper. Fitting a unidimensional IRT model to the mixed-format test data

may be suitable if the dichotomous- (e.g., multiple-choice items) and polytomous- scored

items (e.g., free-response items) are counterparts of one another to measure an identical latent

ability, unless there are effects of the item formats themselves (Thissen, Wainer and Wang,

1994). The results based on factor analysis on test data (e.g., Bennett, Rock & Wang, 1991;

Thissen, et al, 1994) suggested that a one-factor solution may provide a more parsimonious fit

although even a relatively small amount of local dependence among the free-response items

will produce a small degree of multidimensionality. However, if the free-response items are

genuinely intended to measure something different than the multiple-choice items, using the

unidimensional IRT model to capture the mixed-format test data is unacceptable. Apparently,
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the dimensionality issue of examinee's item responses to mixed-format items is substantive

and needs to be closely explored before conducting an IRT-based item linking. Assessing

unidimensionality of dichotomous and polytomous data exist (Nandakumar, Yu, Li & Stout,

1998).

B. Background of IRT-based Common-item Linking

Linear Transformation Method:

In reviewing the research on common-item linking methods by a linear transformation

procedure for dichotomous- (e.g., Divgi, 1985; Linn, Levine, Hastings & Wardrop, 1981;

Stocking & Lord, 1983 ) or polytomous- (e.g., Baker, 1992; Kim & Cohen, 1995) scored

items, we found that the characteristic curve method (CCM) which matches the test

characteristic curves between the base and the equated tests (Stocking & Lord, 1983) is the

most widely adopted approach to estimating the equating coefficients. The basic principle

behind CCM is to minimize the squared difference between the two expected true scores

derived directly from the two sets of common-item parameter estimates for arbitrary ability

points, where the expected true score is obtained by summing the probabilities of correct

responses of common items.

Several features are particularly salient when CCM is applied to estimate equating

coefficients for a dichotomous- or polytomous- scored test. One is that the sampling

distributions of equating coefficients produced by the CCM method either for dichotomous-

scored tests (Baker, 1996) or for polytomous-scored tests (1997) "were approximately bell-

shaped, had small variances, and no outliers or other abnormalities." Another is that local item

dependence (LID) that will often occur on the free response items (e.g., performance

assessment) is not expected to affect the accuracy of equating unless LID has significantly

different impact on the parameter estimates of the same items (Yen, 1993). This is because

item independence is not assumed at the process of computing the true score. Finally, the

CCM equating method seems better than the other approaches if the primary concern of a test

practitioner is the equivalence of the expected true scores between two groups of examinees.

Accordingly, the CCM is a promising equating method to be investigated when a test is
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Estimating IRT Equating Coefficients for Mixed-format Tests

constructed with mixed-format items. Algorithms for finding CCM's equating coefficients for

mixed-format common items are introduced in the section of literature review.

The results from the study conducted by Donoghue (1994) indicated that, on average,

four-category polytomous items yield 2.1 to 3.1 times as much IRT information as

dichotomous items. This level of additional information may be used to estimate equating

coefficients by matching test information curves (MTIC) provided by a set of common items

between the base and equated tests. Unfortunately, informal work with several equating

examples shows that in some cases the MTIC's equating coefficient estimates are far from the

true values. One likely reason behind this is that locally maximum values exist in the

quadratic loss function defined by minimizing two test information curves. Thus, the MTIC

method was not considered in this study.

Using the equating coefficients (e.g., produced from the CCM equating method), the

linear transformation procedure put item parameter estimates calibrated from different tests on

the same scale. Besides that, two alternatives are available for item linking without estimating

equating coefficients. Each has been applied in some testing settings and illustrated in the

following section.

Concurrent Calibration Method

One is the concurrent calibration method. The process of this linking method is, first,

to combine test datasets by treating those items not taken by any particular group as "not

reached items" during compilation (Hambleton, Swaminathan & Rogers, 1991). Item (or

ability) parameters from different tests are then simultaneously estimated and transformed

onto a common scale via a single computer run. The principle behind this is that the metric of

item parameter estimates from different test forms are jointly referred to the same identical

ability scale. This equating method satisfied Mislevy and Bocks' (1982) requirement that "the

information needed for a proper link is found in not just the item parameter estimates and their

standard errors, but in the matrix of correlations among the estimates as well (p.15)." Popular

computer software packages such as BILOG (Mislevy & Bock, 1990) for dichotomous scored

items and PARSCALE (Muraki & Bock, 1996) for polytomous (or mixed) scored items
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provide this nice feature. This linking method has been applied to the large-scale testing

program of the National Assessment of Educational Progress (NAEP) (Beaton & Zwick,

1992).

Since the concurrent calibration method makes complete use of the available

information and may potentially remove some equating errors produced by the inaccurate

transformation functions that are used to equate the two tests, this linking method may

produce a more stable equating result than other linking methods did. For polytomous-IRT

item parameter linking (Kim & Cohen, 1997), this method yielded consistently, albeit only

slightly, smaller root mean square differences than the CCM. On the other hand, the results

from linking dichotomous-IRT parameter estimates (Kim & Cohen, 1998) showed this linking

method produced larger root mean square difference than CCM for smaller number of

common items, but yielded the same results for larger number of common items.

A potential problem that confronts the concurrent calibration method is that this

equating method may encounter problems of locating item parameter estimates when the test

data are originated from groups with extreme differences with respect to the locations and

variabilities of the ability distributions (see Kim & Cohen, 1997).

Fixed Precalibrated Item Parameter (FPIP) Method

Another item-linking method is to fix the precalibrated item parameters (FPIP) during

the calibration process. Mislevy and Bock (1990) pointed out that "By specifying tight priors

on selected item parameters, the user may hold these values essentially fixed while estimating

other item parameters. This feature is useful in linking studies, where new test items are to be

calibrated into an existing scale without changing parameter values for old items (pp.2-6, 2-

7)." FPIP holds similar nice properties as the concurrent calibration methods have. It also

takes advantage of its flexibility in being adaptable to a variety of data collection methods (see

Vale, 1986). For instance, it may be employed on the CAT's (computerized adaptive testing)

"on-line" item linking that is carried out while the preequating items and new non-linking

items are being administered simultaneously.

However, caution should be exercised for FPIP because in most situations the context

and positions of the precalibrated items cannot be fixed from one testing to the next. The
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Estimating IRT Equating Coefficients for Mixed-format Tests

critical question of whether this linking method can produce fairly robust linking results under

those circumstance needs to be further investigated.

A simulation study conducted by Li, Griffith and Tam (1997) to compare the

performance between the FPIP and CCM on dichotomous-IRT parameter linking showed that

both methods produced similar root mean square difference for item discrimination estimates

or for medium difficulty estimates. The FPIP performed slightly better on easy items; in

contrast, it produced less precision on hard and medium difficulty items.

C. Statement of Research Question

The findings from Baker (1996; 1997) suggested that CCM is a sound equating

method for linking dichotomous- or polytomous- item parameter estimates. The practical

question of "Can the CCM produce accurate transformation of parameter estimates when

applied to a test with mixed-format items?" was closely examined under several simulation

conditions in this study.

The relative importance of determining the equating coefficients under CCM for each

type of item depends on the magnitude of corresponding expected item true score variance.

The expected true score can be analogous to the weighted raw score, where the weight is a

function of an IRT model. In other words, the factor of the relative importance of each type

item is very critical to determining the equating coefficients for tests with mixed-format items.

Determining the impact of weighting the proportion of different item formats was one of the

research questions evaluated in this study. This special issue was unable to be investigated in

the study using dichotomous-scored tests (Baker, 1996) or the study using polytomous-scored

tests (Baker, 1997).

It is important to stress that weighting k-category polytomous items the same as

dichotomous items for computing total scores will probably not be indicative of their true

relative importance within the total set of items in a constructed test form. Although this

problem is irrelevant to our research questions, it may have impact on the precision of the

equipercentile equating (Kolen & Brennan, 1995) results when the total raw score is used, for

example.
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since the measurement errors of item parameter estimates produce inaccurate equating

coefficients, modeling measurement errors of item estimates is another key feature. The

approach to modeling standard errors of item estimates (refer to Thissen & Wainer, 1982)

employed in Li and-hissitz'sstudy (in press) was adopted in this study. This approach is

discussed later, where the comparison with the approach used in Baker's studies (1996; 1997)

is made. Besides that, several factors such as sample size, equating situations, etc. that account

for the variation of the equating parameter estimates were also included in this study.

II. Literature Review

A. IRT Models for Dichotomous and for Polytomous Test Data

Three-Parameter Logistic IRT Model for Dichotomous Data

The commonly-used three-parameter logistic IRT model was used to model the

dichotomous scored items in this study. Under the three-parameter logistic model, the

probability, Pip of a correct response to the i item for the j examinee with ability Oi is given by

(Lord, 1980):

pji(oj)= ci +(lc.)
1 + exp(Da (0 b )

where "exp' in Equation 1 stands for the mathematical function of the natural logarithm

exponential, ai is the item discrimination, bi is the item difficulty, ci is the lower asymptote

parameter (also known as the guessing parameter), and D (usually equal to 1.702) is a scaling

factor.

exp(Dai (0 bi)
(1)

Generalized Partial Credit Model

The test data from polytomous scored items was modeled by the generalized partial

credit model (GPCM) (Muraki, 1992), in which the probability, Poo of the categorical

response k on item i for an individual j with ability 8 is given by the familiar logistic function:



Pjik(ej)

Estimating IRT Equating Coefficients for Mixed-format Tests

emiit Da. (0 j
b. + d

k
)1 exp[E Da . (0 j

b.
ilc

)]

E exp[±Da. (0 . b. +doi E exp[±Dai (Ai bik
c.1 v=1 c.1 v=1

(2)

where ai is a slope parameter (or item discrimination), b, is an item-location parameter (or item

difficulty), and dk is a category (or step) difficulty. The values of dk within an item are not

necessarily ordered sequentially. It is interpreted as the relative difficulty of category k with

other category parameters within an item or the deviate from corresponding item location, bi.

Only m1-1 item-category parameters can be identified when the number of response categories

is mi. The step difficulty of the first category (d, )on each item is arbitrarily set to zero and the

m,

location constraint of Edk .0 is imposed to eliminate indeterminacy (Muraki, 1992). And,
k=2

b1k equals to b1-dk.

B. Rescaling the Metric of Ability or Item Parameter Estimates

Numerical estimates of the IRT item parameters depend upon the ability (0) scale

(Baker, 1992). Although, the ability scale is usually standardized to have a mean of zero and

a standard deviation of one in "any" item response data being analyzed, the original (not

standardized) ability scale is different from one test dataset to another. Thus, when the "same"

set of test items is administered to two different groups and the resultant response data are

calibrated separately, the two sets of item parameter estimates are usually different because

they refer to different underlying ability scales. This problem can be resolved by using one of

the item linking methods reviewed previously. However, the fact that IRT scales can be

exchangeable only holds when the model selected fits the data (see McKinley & Mills, 1985;

Reise, 1990; Tam & Li, 1997, for reviews of popular methods for evaluating model-data fit).

If there is significant lack of fit, this property will no longer be valid. Besides, we should be

aware that the common scale thus constructed is still arbitrary. Its interpretation must be

carried out with caution.

The principle behind the IRT-based item linking is that the metric of item parameter

estimates from different test forms taken by different groups are forced to refer to a
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"common" ability scale that is carried out by re-scaling the multiple-group ability scales. This

common scale is performed by a linear transformation, given below for the case of two

groups. This transformation illustrates the relationship between two groups' (base and

equated) ability scales.

A* A

0 B = A0E+ B (3)

where the superscript * represents the transformed values from the equated scale to the base

scale, A is the slope, and B is the intercept. The subscripts "B" and "E" represent the base and

equated groups, respectively. In this case, the ability scale for the base group remains

unchanged so that the metric of the item parameter estimates for the base group are not needed

to be re-scaled. In contrast, the ability scale for the equated group is transformed into the scale

defined by the base group. The probability of a correct response for any item given an

individual's new-scaled ability values for the equated group remains unchanged only if the

original item parameter estimates are rescaled by the following linear transformations. For the

three-parameter item parameter estimates,

b*B =AbE + B (4)

a*B =aE/A. (5)

The lower asymptote parameter is measured on the probability metric, no transformation

(c*B=cE) needs to be applied, although in reality, it is affected by sampling fluctuation (Li, et

al, 1997). For the transformation of the GPCM item parameter estimates,

b*B =AbE + B (6)

d*kB=IkdkE (7)

b*KB=AbkE + B (note: bk = b-dk) (8)

a*B =aE/A. (9)

After the above transformations, the original values of item parameter estimates that

depend on an equated-group ability scale are re-referenced to the base-group ability scale.

C. Algorithms for Finding CCM's Equating Coefficients for Mixed-format Tests

Under the CCM equating method, the equating coefficients of A and B are chosen so

that the average squared difference between the two expected true scores directly from the two

sets of common-item parameter estimates for N arbitrary ability points is as small as possible.

8
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Estimating IRT Equating Coefficients for Mixed-format Tests

The equating parameter estimates are relatively stable when N is larger than 100. The function

below to be minimized is (refer to Hambleton, Swaminathan & Rogers, 1991):

1 N ,6
f (A, B) =

[(E j13) t (0 JE )
N j=i

where

A L m

= EE xikpoc = X ik
1=1 k=1

(10)

6) and (11)

A L m

t * jE = EE X ikP(X; = xik
i=1 k=1

(12)

Where, xik is the observed score of category k in item i, ranging from 0 to 1 for a dichotomous

scored item or 1 to 4 (or 0 to 3) for a four-category scored item. L is the number of common

items, m is the number of category scores, and the probability of the categorical response k,

P( ), can be computed either from the three-parameter model (see Equation 1) for

dichotomous scored items or from the GPCM model (see Equation 2) for polytomous scored

items. The expected true scores of an examinee with an ability 0j on a set of common items in

the base (B) and equated (E) tests are computed in Equations 11 and 12, respectively.

The scaling coefficients of A and B that minimize the function (Equation 10) can be

derived by differentiating this function with respect to A and B and by setting the two partial

derivative equations equal to zero. By fixing B to a constant Bo and considering f(A, Bo) as a

one-solution function in the case of the two-solution function f(A, B) (Equation 10), the

difference approximation for the partial derivative with respect to A at Ao can derived and

written as (refer to Nakamura, 1996):

af (A, B) f ((A0 + AA), Bo ) f (A0, Bo ) 0 (13)
aA AA

where AA is an interval between two consecutive points on the numerical line in the A

estimate. It is usually set to a very small value such as 0.001. The same principle is applied to

the partial derivative with respected to B at Bo and is given below:

91 2
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af (A, B) f (A 0 (Bo + AB)) f (A0, B0)

aB AB
(14)

where AB is an interval between two consecutive points on the numerical line in the B

estimate. The two nonlinear equations (13 and 14) can be resolved for A and B iteratively

using the Newton-Raphson procedure (Baker, 1992). Within the tth iteration, the parameter

estimates of the common items in the equated test are re-scaled using the tth iterative A and B

solutions while computing the expected true score (see Equation 12). The iterative equation is

given below.

A

[ :3;1

1 t

a2f

aA 2a2f

_aBaA

-1a2f

aAaB aA
2 af

aB aB

where the difference approximations for the second derivatives of the two-dimensional

function f(A, B) at (A0, Bo) are illustrated as (refer to Nakamura, 1996):

a2f(A,B) f((A0 + AA),B0) 2f(A0,B0) + f((A0 AA),B0)

aA 2
AA 2

a' f(A,B) f(A0,(B0 + AB)) 2f(A0,B0) + f(A0,(B0 AB))

aB 2
AB 2

a2f(A,B) f((A0 + AA), (Bo + AB)) f((A0 AA), (Bo + AB))

aAaB AAAB

f((A0 + AA), (Bo AB)) + f((A0 AA), (Bo AB))
AAAB

3 2 f (B , A) a 2 f (A, B)

aBaA aAaB

(15)

(19)

The starting values of A and B are critical for solving the iterative equation (15). The

starting values for A and B computed by the equations given below have resulted in

successful convergence in most cases.
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AStart Value

BStart Value AStratValue
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( L
E

(20)

(21)

After obtaining the equating parameters, the ability- and item- estimates derived from

the different test forms will be transformed to the same scale.

D. Modeling Errors in the IRT Parameter Estimates

Standard Error Estimates From Empirical Replication Approach

The level of precision of the equating parameter estimates produced by the CCM is

dependent on the magnitudes of error in the item parameter estimates. The error in each

individual parameter estimate is narrowly defined as the amount of variance around the true

parameter value. The magnitude of this error in the simulation study is usually manipulated

by the following procedures: (1) A test dataset is generated based on two pieces of

information, a set of true item parameters and a set of known simulee's ability parameters; (2)

Each test item is calibrated and linked to the metric of the true item parameter; (3) Repeat

steps 1 and 2 a large number of times, which results in a large number of estimates for each

individual item parameter; and (4) The standard deviation of these estimates is an estimate of

the standard error of this item parameter estimate. The test length and sample size usually

have impact on the magnitude of the standard error of an item parameter. The above empirical

approach of modeling error in the item estimate was adopted by Baker (1996; 1997) to

investigate the sampling distribution of equating coefficients produced by the CCM.

Asymptotic Standard Error Estimates From Analytic Approach

The empirical replication approach of modeling errors of item estimates is very time-

consuming. In contrast, the analytic approach to estimate the asymptotic standard errors of

item estimates developed by Thissen and Wainer (1982) is much easier to employ for some

1 1
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research topics. For example, when Li and Lissitz (in press) evaluated the precision of

equating coefficients produced by the three multidimensional IRT (MIRT) equating methods

developed in their study, the analytic approach was adopted to manipulate the magnitudes of

error in the MIRT item estimates.

Sample size, the shape of the examinees' ability distribution and the characteristic of

test items can each cause differences in the errors in the parameter estimates. A mathematical

expression for this relationship has been developed by Thissen and Wainer (1982) for

dichotomous item response data when the model selected fits test data and the maximum

likelihood approach is used to estimate item parameters. For an item i, the likelihood of the

observed dichotomous responses for N independent examinees is:

LD = (22)
1=1

where P can be calculated from a three-parameter model, u=1 for correct response; u=0 for

incorrect response. The loglikelihood of Equation 22 is

N r
logLD = E log(133) + (1 u) log(1 P )} (23)

i=1

The maximum likelihood estimates of each parameter (a bi, ci ) are located where the partial

derivatives of Equation 23 are zero. For ease of expression, represents the three-parameter

item parameters (ai, d, c). Given a density of 0 (e.g. normal distribution, N(0, 1)), for any

pair of parameters and the negative expected value of the second derivative of the

loglikelihood function, Equation, 23, has the form (refer to Thissen, Wainer, 1982),

E(a2 log 1 aP(9)= N j aP(9) (0)d0 (24)
.04 (34

s
PQ

00 t ,

where E is the expectation and Q=1-P. Equation 24 requires the derivatives of P(0)

with respect to its parameters. The numerical approximation of the integral in Equation 24

can be calculated by the Gauss-Hermite quadrature and is presented in Equation 25,

1 1 (X) P(X) }A(X
) (25)13pL(4040= NZ

1pQ aPa aa

q=1 4s 4t

12
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Estimating IRT Equating Coefficients for Mixed-format Tests

where X is a quadrature point in the ability dimension, q is the number of quadrature in the

ability dimension and A(X) is the corresponding weight of the quadrature. The number of

quadrature points for numerical integration are set to 39 in this study. The partial derivatives

of P(X) with its parameters can be resolved using difference approximation (Nakamura,

1996) and substituted in Equation 25 to give a 3 x 3 (for the three-parameter model)

information matrix corresponding to the triplet item parameters (a, b, and c). The inverse of

that information matrix is the asymptotic variance-covariance matrix of the three parameters

and is given in Equation 26. The square roots of the diagonal elements of the variance-

covariance matrix are the asymptotic standard errors of the parameters.

VarCOV3PL =

I3PL (a, a)

I3PL (b, a)

3PL (c, a)

I3PL (a, b)

I3PL (b, b)

I3PL (c, b)

I3PL (a, c)

I3PL (b, c)

I3PL (c, c)

(26)

For an item i, the likelihood of the observed polytomous responses for N independent

examinees is:

nN M

L Pa(1Pjk)I-UkP Jk
J=1 k=1

(27)

where Pk can be calculated from a GPCM model, u=1 for the categorical response k; u=0 for

responses other than category k. The loglikelihood of Equation 27 is

N M r

logLp =1E {U k log(Pik )+ (1 uk )log(1-13jk )]
j=1 k=1

Similar principles used in the three-parameter model can be applied for the GPCM

model to derive the information function when any pair of GPCM item parameter estimates is

given. That is:

(28)

IGPCN4(404t)=NE
q=1

1 i[aPk (x) aPk (x) }

PkQk a4t
(29)

The inverse of that information matrix is the asymptotic variance-covariance matrix of the

four parameters (ai, 13;2, b13,b14) and is given in Equation 30 for the case of a four-category

GPCM model. The square roots of the diagonal elements of the variance-covariance matrix

are the asymptotic standard errors of the parameters.

13
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VarCovGpcm =

IGPCM (a, a )
IGPCM (b2, a )

IGPCM (b3 9a )

IGPCM (134,a )

IGPCM (a, b 2 )

1GPCM 032 b2

TGPCM 0'351)2 )

IGPCM (b4 b 2 )
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III. Methodology

A. Key Variables

Several variables are critical factors in accounting for the variation of the equating

coefficients. They are:

1. Proportion of Polytomous Items to Dichotomous Items

One factor is related to the proportion of dichotomous items to polytomous items.

Under the circumstance of 5 four-category polytomous items to be included into the common

items, three conditions of ten, fifteen and twenty dichotomous items have been created to

reflect that they can provide information relatively less, equivalent, or more than 5 four-

category polytomous items, respectively. These conditions were selected because of the

results of the study by Donoghue (1994).

2. Sample Sizes and Standard Error

The item parameters of the simulated test were taken from the Reading/Writing test

administered to grade four students at a school district. Each simulated item parameter from a

set of parameters for an item was computed from the summation of the corresponding true

item parameter and the expected measurement error, generated as a random value from

multivariate normal distribution, MVN(0, V), where V is the asymptotic variance-covariance

matrix corresponding to this set of item parameters (refer to Li, 1997). Matrix V is computed

by Equation 26 or 30 for the three-parameter or GPCM model, respectively. As indicated

previously, the magnitude of entries in the V matrix is varied by different sample sizes (e.g.,

N=1000, 2000 and 3000).
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3. Equating Situations

Two study situations were explored. One is a parameter recovery study, where error of

the parameter estimates only exists in the equated test; the other is an equating study of a real

dataset, where the error of the parameter estimates exists in both the equated test and the base

test.

4. Horizontal and Vertical Linking

Two types of item linking were explored. One is horizontal equating where tests

measuring a common trait are administered to groups of examinees at similar ability levels

and placed on a common scale. The other is vertical equating where tests measuring the same

trait are administered at different ability levels (sometimes different developmental stages,

e.g., 3rd grade and 6th grade) for groups of examinees and placed on a common scale.

Referring to Equation 3, we can see that, by setting B=0 and A=1, the shape of

examinee's abilities from base and equated groups are the same. This condition is one of

horizontal linking. In contrast, by setting B=0.5 and A=1.2, the equated group has lower mean

trait score than the base group. Also, the corresponding ability variance for the equated group

is lower than the base group. The value of 0.5 was chosen because groups that differ by 1/2 a

S.D. are different enough to consider the problem as vertical equating and the value of 1.2

used as variance multiplier would be a reasonable level of difference in ability variances

between groups (note, 1.2 was used in Baker's studies (1996, 1997). Therefore, the latter set of

transformation coefficients is considered one of vertical linking.

B. Data Analysis and Evaluation of Result

Finally, there are 36 different combinations of conditions (Three proportions of the

two types of items X Three sample sizes X Two study situations X Two linking situations).

One thousand replications were conducted for each combination. The accuracy of the CCM's

equating coefficients was assessed by using the BIAS (average differences between the true

parameters and the corresponding estimates) and the RMSE (root mean square errors).

The approach of modeling standard errors of common-item parameter estimates will

have impact on recovering equating coefficients. And the level of the precision on recovering
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equating coefficients will then affect the accuracy of BIAS or RMSE statistic for each of

equating coefficients. Since the assumptions (e.g., data-model fit, the distribution of abilities

is known, see Thissen & Wainer, 1982) made for estimating asymptotic standard errors of

item parameter estimates adopted in this study is unlikely to be exactly true in practice, the

asymptotic standard error estimates from analytic approach represent lower limits for actual

standard errors (Thissen & Wainer, 1982). Accordingly, caution in interpreting the BIAS or

RMSE indices produced in this study must be maintained since they can be larger if they are

estimated from real test data.

Regression models regressing the Log[RMSE] (a log transformation of RMSE) of the

transformation-parameter estimates on the factors of the study has been conducted to examine

whether one simulation factor has significant impact on the precision of an equating

coefficient when other simulation factors are held constant (Harwell, Stone, Hsu & Kirisci,

1996),It should be noted that a log transformation for the outcome variable RMSE was

conducted in order to better satisfy (approximate) the normality assumption. In additiOn, the

main reason for choosing a multiple regression method rather than an analysis of variance

(ANOVA) as an inferential approach is that one of the simulation factors such as sample size

is quantitative.

Since two equating situations were used in this study, an indicator variable (dummy

variable) was coded for representing the equating situation (Horizontal coded as 0; Vertical

coded as 1). Similarly, two study situations (Parameter Recovery coded as 0; Equating coded

as 1) were separately coded as dummy variables. Meanwhile, since there were three types of

the proportion of mixed-format items, two dummy variables (called as DM01 and DM02)

were coded for representing the three levels, where the 5+10 was coded "0 0" as a reference.

The characteristics of the empirical sampling distributions of the estimated equating

coefficients obtained from various combinations of research conditions are used to help

determine whether these coefficient estimates are well-behaved. If the obtained sampling

distributions are symmetric-bell shaped, with small variances and few or no outliers or other

abnormalities, they are considered well-behaved (Baker, 1996).
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IV. Research Results and Discussions

A. Equating Parameter Recovery

The descriptive statistics of BIAS and RMSE for each of the equating coefficients

under the Recovery Study situation are reported on the top half of Table 1. Similarly, the

results for the Pairwise Equating situation are presented on the lower half of Table 1. The

descriptive statistics are sequentially listed under the simulation factors of equating situation

(Horizontal or Vertical), sample size and the proportion of polytomous items to dichotomous

items. For example, the value of -0.0027, reported in the first data row and second data

column of Table 1, represents the BIAS statistic of the estimate-A under the combination of

parameter recovery study, horizontal linking, sample size=1000 and 5 polytomous-scored

items with 10 dichotomous-scored items.

As seen in Table 1, the BIAS values produced by the CCM equating method across all

combinations of conditions are close to zero as expected. The magnitudes of RMSE produced

from the CCM equating method across all simulation conditions become smaller as the

sample size increases. The histogram graphs for the recovery equating parameter estimates A

and B for the three increasing levels of sample sizes (N=1000, 2000 and 3000) were depicted

for better interpretation, for instance, under the combination of conditions, recovery study,

vertical linking and TL=5+20. The histogram graphs clearly indicate that the larger the sample

size, the lower the variances of A and B estimates when the rest of the conditions were held

constant. The shapes of the empirical sampling distributions of the estimated equating

coefficients obtained from these conditions are generally symmetric-bell shapes with small

variances and few or no outliers or other abnormalities. Similar results were found for the rest

of the sampling distributions of equating coefficients.

These results obtained from descriptive statistics and graphical analysis imply that the

CCM method for finding equating parameters is an empirically unbiased and effective

estimator when it is applied to a test with mixed-format items, as well as to dichotomous-

scored test (Baker, 1996) and polytomous-scored test (Baker, 1997).

[Insert Table 1 about here]

[Insert Figures 1 and 2 about here]
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B. The effect of the Proportion of Dichotomous Items to Polytomous Items on the
Precision of Equating parameter estimates

The effect of the proportion of dichotomous items to polytomous items on the

precision of equating parameter estimates was examined. The descriptive statistics of BIAS

and RMSE listed in Table 1 did not clearly indicate that the higher number of dichotomous

items, the less BIAS and RMSE statistics of equating coefficients was produced when the

number of poltytomous items was held constant (5 four-category items). The histogram

graphs for the recovery equating parameter estimates A and B for the three types of mixed-

format items (5+10, 5+15 and 5+20), for instance, under the combination of conditions,

recovery study, horizontal linking and sample size=1000, were prepared to demonstrate this

phenomena. When a four-category item is equivalent to three dichotomous items in terms of

computing the total raw score, the set of common items (5+10) can be considered as 25

dichotomous test items that are usually sufficient to produce stable equating coefficients (see

Baker, 1996). This is one tentative reason why the set of common items, either 5+15 or 5+20,

did not apparently produce less errors of equating coefficient estimates. Further analyses

presented below will provide more defensible reasons.

[Insert Figures 3 and 4 about here]

Regression models regressing the Log[RMSE] of the transformation-parameter

estimates on the factors of the study have been conducted to examine whether the factor of the

proportion of dichotomous items to polytomous items has significant impact on the precision

of an equating coefficient with other simulation factors held constant. The standardized

regression coefficients of the two dummy variables of this factor were statistically significant

from zero, indicating that this factor has significant impact on the precision of an equating

coefficient. As the mixed-format items of 5+10 was coded the " 0 0", as indicated previously,

the positive regression coefficients of dummy variables showed that the mixed-format items

of 5+15 and 5+20 produced more RMSE of equating coefficients of A and B. This is an

unexpected finding.
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When the number of the polytomous-scored items was held constant, why did the test

with higher number of dichotomous items not produce lower BIAS and RMSE statistics of

equating coefficients? The search for the reasons goes back to examine the method of

modeling errors in the IRT parameter estimates. As illustrated previously, Equation 26 was

used to generate the standard error estimates of the three-parameter item parameter estimates.

Using this equation, the average standard errors of item-discrimination, difficulty and

guessing parameters for the set of 15 or 20 dichotomous-scored items were larger than those

from the set of 10 items (see Table 3). The unintended design effect of the larger standard

errors obtained from the two long test lengths rather than the short test length might cause the

two long tests to produce more true-score (see Equation 11 or 12) variance. This effect will

subsequently cause the two long tests to produce less precision of the CCM-based recovery

equating coefficients. This unintended design effect seemed to play a more substantive role in

producing the variance of the recovery equating coefficients than the factor of the number of

common items. The question of determining the impact of weighting the proportion of

different item formats on the precision of equating coefficients has been evaluated but not

been clearly resolved in this study.

C. The effect of the Simulation Factors on the Precision of Equating parameter

estimates

Separate regression analyses were performed to predict Log[RMSE] in each of the

transformation-parameter estimates (A and B ) by fitting those simulation factors. The

adjusted R2 and standardized regression coefficients for each predictor in the regression model

are presented in Table 2.

Regarding the regression model of the Log[RMSE] of A or B estimate, all the

standardized regression coefficients were statistically significant from zero. These results

indicate that each simulation factor chosen in this study has significant impact on the

precision of an equating coefficient with other simulation factors held constant.

The results of adjusted R's for each of the Log[RMSE] models, ranging from 0.983 to

0.986, reported on the right side of Table 2, suggest that this set of simulation factors was

very sensitive to variations in each of the transformation-parameter estimates. Thus, the
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accuracy of estimating each of the transformation-parameter estimates appeared to depend

heavily on these simulation factors.

Several specific findings were highlighted in Table 2. The pairewise equating study

produced more RMSE of equating coefficients and the larger sample size produced less

RMSE of equating coefficients. The vertical equating study could produce more RMSE of

equating coefficient A and less RMSE of equating coefficient B. The latter result was unusual

partly because the true value of B in this study was set to zero which is usually relatively hard

to estimate so that its variance could be relatively large.

V. Summary and Conclusion

The general issue of whether the CCM produce accurate transformation of parameter

estimates when applied to a test with mixed items was closely examined under several

simulation conditions in this study. The BIAS statistics of the recovery equating coefficients

across all research conditions are usually expected to be close to zero, as happened here, and

the corresponding RMSE statistic, in general, is relatively small. Caution in interpreting the

BIAS or RMSE indices produced in this study must be maintained since they can be larger if

they are estimated from real test data.

The shapes of the empirical sampling distributions of the estimated equating

coefficients obtained from these conditions are symmetric-bell shapes with small variances

and few or no outliers or other abnormalities.

The relative importance of determining the equating coefficients under CCM for each

type of item partly depends on the proportion of dichotomous items to polytomous items. This

issue was explored by comparing three types of mixed-format items as describdd in the

section of methodology. Under the circumstance of 5 four-category polytomous items to be

included into the common items, the higher number of dichotomous items did not produce

lower BIAS and RMSE statistics of equating coefficients. This fmding was unexpected. The

unintended design effect that the 15 or 20 dichotomous-scored items used in this study had

larger average measurement errors than the 10 dichotomous-scored items may cause this to

occur. We are wondering whether this unintended design effect will also be generated by the

empirical-replication approach to modeling measurement errors of the same set of item
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parameters used in this study. On the whole, the question of determining the impact of

weighting the proportion of different item formats on the precision of equating coefficients

was not clearly resolved in this study. This question needs clarification by manipulating

different research conditions such as using the optimal design of tests with mixed-format

items (e.g., Berger, 1998), choosing different sets of item parameters or composing different

types of the proportion of mixed-format items.

Although the impact of the item-parameter characteristics on producing equating

coefficients is not a subject of this paper, the unexpected result may remind test practitioners

that the item-parameter characteristics of the set of common items used for item linking

might play a more significant role in producing the precision of equating coefficients than the

factor of the number of common items.

Regarding the regression model of the Log[RMSE] of A or B estimate, all the

standardized regression coefficients were statistically significant from zero. The adjusted les

for the two regression models were very high (.983 and .986). These results suggest that this

set of simulation factors was very sensitive to variations in each of the transformation-

parameter estimates and the accuracy of estimating each of transformation-parameter

estimates appeared to depend heavily on these simulation factors.

One of the more interesting unanswered questions has to do with modeling

measurement errors from empirical replications used in Baker's studies (1996 & 1997). Can

we obtain similar results under the same conditions? Whether these findings can be

generalized to equating two real test data sets is an important question to be investigated at

some future time.
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Figure Headings

Figure 1. Comparison of Sampling Distributions of the Equating Coefficient A for Three

Types of Sample Size under a Specific Combination of Research Conditions

Figure 2. Comparison of Sampling Distributions of the Equating Coefficient B for Three

Types of Sample Size under a Specific Combination of Research Conditions

Figure 3. Comparison of Sampling Distributions of the Equating Coefficient A for Three

Types of Mixed-format Items under a Specific Combination of Research

Conditions

Figure 4. Comparison of Sampling Distributions of the Equating Coefficient B for Three

Types of Mixed-format Items under a Specific Combination of Research

Conditions
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Table 1
BIAS and RMSE Statistics of Equating Coefficients for TWo Equating Contexts (Recovery
Study and Pairwise Equating), Two Equating Situations (Horizontal and Vertical), Three Sample
Sizes and Three Types of Mixed-format Items (Replications=1000)

TrueA BIASA RMSEA Trues BIASB RMSEB
Recovery Study
Horizontal
N=1000 TL=5+10 1.0000 -.0027 .0306 .0000 -.0014 .0449

TL=5+15 1.0000 -.0076 .0344 .0000 .0025 .0521
TL=5+20 1.0000 -.0084 .0371 .0000 .0005 .0511

N=2000 TL=5+10 1.0000 -.0001 .0212 .0000 -.0011 .0309
TL=5+15 1.0000 -.0059 .0245 .0000 .0023 .0367
TL=5+20 1.0000 -.0061 .0254 .0000 .0018 .0348

N=3000 TL+5+10 1.0000 -.0015 .0166 .0000 .0003 .0245
TL=5+15 1.0000 -.0017 .0206 .0000 -.0008 .0318
TL=5+20 1.0000 -.0039 .0222 .0000 .0002 .0302

Vertical
N=1000 TL=5+10 1.2000 -.0036 .0352 .5000 -.0025 .0305

TL=5+15 1.2000 -.0081 .0412 .5000 -.0006 .0373
TL=5+20 1.2000 -.0122 .0418 .5000 -.0006 .0374

N=2000 TL=5+10 1.2000 -.0027 .0260 .5000 -.0005 .0212
TL=5+15 1.2000 -.0045 .0300 .5000 .0002 .0272
TL=5+20 1.2000 -.0065 .0307 .5000 -.0007 .0257

N=3000 TL=5+10 1.2000 -.0011 .0198 .5000 -.0006 .0179
TL=5+15 1.2000 -.0037 .0226 .5000 .0007 .0215
TL=5+20 1.2000 -.0030 .0251 .5000 -.0010 .0210

Pairwise Equating
Horizontal
N=1000 TL=5+10 1.0000 -.0011 .04.27 .0000 .0019 .0619

TL=5+15 1.0000 .0012 .0512 .0000 .0005 .0746
TL=5+20 1.0000 .0022 .0509 .0000 -.0021 .0714

N=2000 TL=5+10 1.0000 -.0010 .0302 .0000 .0005 .0449
TL=5+15 1.0000 .0006 .0345 .0000 -.0013 .0535
TL=5+20 1.0000 .0004 .0361 .0000 .0010 .0504

N=3000 TL=5+10 1.0000 .0008 .0240 .0000 -.0011 .0344
TL+5+15 1.0000 .0017 .0286 .0000 -.0016 .0436
TL=5+20 1.0000 -.0002 .0295 .0000 .0022 .0401

Vertical
N=1000 TL=5+10 1.2000 .0042 .0524 .5000 -.0013 .0448

TL=5+15 1.2000 .0065 .0605 .5000 -.0026 .0554
TL=5+20 1.2000 .0048 .0608 .5000 -.0016 .0503

N=2000 TL=5+10 1.2000 .0023 .0366 .5000 -.0007 .0312
TL=5+15 1.2000 .0042 .0426 .5000 -.0018 .0388
TL=5+20 1.2000 .0007 .0439 .5000 .0009 .0373

N=3000 TL=5+10 1.2000 .0002 .0293 .5000 -.0002 .0254
TL=5+15 1.2000 .0018 .0342 .5000 -.0001 .0316
TL=5+20 1.2000 .0030 .0353 .5000 -.0012 .0294

0 n
4
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Table 2
The Standardized Regession Coefficients and the Adjusted R2 in Each Regression Model Using
those Simulation Factors to Predict the Log[RMSE] of the Equating Parameter Estimate

Predictors Adjusted R2

Type of Mixed Study Equating Sample
Outcome Item Format Situation Situation Size

Loa [RMSE]

DM1 DM2
A .230* .288* .564* .275* -.723* .983

B .281* .213* .510* -.481* -.657* .986

(5+15 VS 5+10) (5+20 VS 5+10)

Table 3
The Average Value of Item Parameters for the Set of 10, 15 or 20 Dichotomous-scored Items
and the Corresponding Average Standard Error Estimate (N=2000)

Item Mean Average Mean Average Mean Average
Length a Standard Error b Standard Error c Standard Error

10 .8819 .0845 -.3445 .1347 .1172 .0641

15 .8606 .0858 -.2025 .1517 .1278 .0645

20 .8902 .0866 -.3272 .1489 .1309 .0674
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