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1. Overview

To be self-sustaining is a goal held by creatures ranging from bacteria to bureaucracies.

Computerized adaptive testing programs prove no exception, administering new or experimental items

alongside operational tests to gather the pretest data needed to replenish and replace their own item pools.

The two basic strategies commonly used to combine pretest and operational items are embedding and

appending. Embedded pretest items appear in the midst of an operational test, either in a contiguous

block or scattered throughout. Appended pretest items are simply tacked to the end of the operational

test.

The differences between embedding and appending are important from several perspectives. The

first is the view that, for best effect, examinees should not know whether a particular item is operational

or being pretested. Because the purpose of pretesting is to predict how items will perform once

operational, pretest data are most useful when gathered under conditions that most approximate

operational testing. An embedded approach that mingles pretest with operational items is therefore

preferred to appending, where pretest items are segregated at the back of the test.

A second important difference becomes clear when examinees are put under time pressure.

Examinees would certainly prefer to run out of time during an unscored pretest section after having

completed all operational items. A test with appended pretest items is therefore functionally less speeded

than one with both pretest and operational items scattered throughout. Whether or not this is a desirable

outcome depends on the nature of what is being measured and the uses to which test scores are put.

In some cases, speededness is an unwelcome measurement intrusion that obscures the relationship

between test scores and criterion measures. For example, the test taken to obtain a driver's license is

perhaps best left unspeeded, even if most individuals prefer that their fellow motorists be able to think and

react quickly. However, in other cases, the speed with which examinees respond is an important predictor

of success on criterion measures. For example, air traffic controllers work in a fast-paced environment in

which they are routinely asked to make split-second decisions that put at risk the lives of hundreds of

travelers. It is therefore only proper that a selection test for these positions would pressure candidates to

think and respond quickly, and that the ability to do so would be predictive of job success.

Where embedded items are located also affects the extent to which a test is speeded. Putting all of

the pretest items forward in a test increases speededness by guaranteeing that examinees who don't finish

leave only operational items unanswered. Clustering pretest items near the back of the test approximates

appending and reduces speededness. Distributing pretest items evenly throughout the test is a nice

balance that penalizes examinees in direct proportion to the number of items left unanswered.

1



The remainder of this paper begins, curiously enough, with a brief discussion of fixed- and variable-

length adaptive tests. The intent of this section is to promote the use of variable-length tests, with one

notable caveat. An elaboration of the pretest strategies presented above follows next, arguing in favor of

the embedded approach, particularly for speeded tests. It is when variable-length testing and embedded

pretesting are conjoined that problems arise, because evenly distributing pretest items across operational

tests of unknown length can be a tricky proposition. To do so properly requires that the expected length

of each examinee's test be continually predicted as the test progresses. Examinees expected to receive

fewer operational items would be administered more pretest items throughout their test; examinees

expected to take longer operational tests would receive fewer pretest items throughout. The paper

concludes by focusing on the procedures for making the necessary predictions, and by discussing their

impact on operational testing.

2. Fixed- and variable-length adaptive tests

The relative advantages and disadvantages of fixed- and variable-length adaptive tests have been

debated elsewhere. Arguments favoring fixed-length tests cite the method's simplicity and its avoidance

of a certain sort of measurement bias (Stocking, 1987). Proponents of variable-length tests contend that

they are more efficient and allow test measurement properties to be precisely specified (Davey &

Thomas, 1996; Thompson, Davey & Nering, 1998). Both views are briefly summarized below.

As its label suggests, fixed-length adaptive tests administer the same number of items to each

examinee. The number of items administered is determined by weighing such factors as content

coverage, measurement precision, and the time available for testing. Measurement precision is usually

specified in the aggregate, or averaged across examinees at different proficiency levels (Thissen, 1990).

However, the measurement models that underlie adaptive tests recognize that precision varies across

examinees. Examinees whose proficiency levels- are quickly and accurately identified can be repeatedly

targeted with items of an appropriate difficulty and consequently measured very efficiently and reliably.

Examinees whose performance levels are located in a range where an item pool is particularly strongare

also likely to be well measured. Conversely, examinees who are difficult to target or whose proficiency

levels fall where the item pool is weak will be measured more poorly.

The function traced by measurement precision over proficiency level can be manipulated in limited

ways by test developers. Item pools can be bolstered where they are weak and weakened where they are

unnecessarily strong. Test length can be shortened or lengthened. Item selection and exposure control

procedures can be finessed. However, the level of control is far short of complete, leaving conditional

measurement precision more a function of chance than of design.

Variable-length tests allow measurement precision to be addressed directly by using it as the

criterion of when a test ends. Rather than administering a specified number of items to each examinee,

variable-length tests instead administer items until a specified level of precision is met. Examinees who

are measured efficiently, because they are well targeted for example, will reach the criterion quickly and
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take shorter tests. Other examinees in other circumstances will take longer tests. However, regardless of

test length both sorts of examinees will be measured with the precision specified. Test precision is

dictated rather than left to fate.

Being able to exactly specify test precision is a crucial advantage in test development. However, it

does not come without cost, as variable-length tests have two faults, one relatively trivial and the second

potentially important. The first problem is that the rule by which tests are stopped is necessarily a

function of estimated examinee proficiency. Properly, it should be a function of true proficiency which,

alas, is unavailable to us. The result is that bias in proficiency estimates influences, and in turn is

influenced by, test length. Specifically, low-proficiency examinees who are administered shorter tests are

generally underestimated, as are high-proficiency examinees who receive longer tests. Conversely,

longer tests administered to low-proficiency and shorter tests administered to high-proficiency examinees

will generally produce higher-than-expected proficiency estimates. However, the effect is subtle and

disappears almost entirely as test length and reliability increase.

The larger problem with variable-length tests becomes apparent when they are administered under

time limits. Equity concerns abound unless these limits are generous enough to allow all examinees to

comfortably finish even the longest test they might be administered. Short of this, examinees who receive

longer tests are put at a disadvantage. This situation must be addressed before variable-length tests, with

their attendant benefits, can be a viable option for most high-stakes testing programs. One solution is to

vary test time with test length. However, even this is open to the criticism that examinees taking longer

tests are subject to increased fatigue. An alternative solution will be described below.

3. Pretesting

Pretesting has two basic goals. The first is to gather data on new or experimental items to determine

whether they are suitable for future operational use and, if so, how they should be used. The second is to

avoid interfering with operational testing. Unfortunately, these goals can conflict with each other. Pretest

data, which are used to predict how experimental items will perform operationally, are most useful if

gathered under conditions that are most nearly operational. Pretesting alongside operational tests is

therefore preferable to pretesting with special test forms or with special examinee populations. The idea

is to hide pretest items inside the operational test and leave examinees none the wiser as to their location.

Examinees unsure whether or not their answer to an item will contribute toward a score they care about

are apt to respond to the best of their ability and provide the most data.

The danger is that mixing pretest with operational items can somehow affect performance on the

latter. This is a particular concern with speeded tests. An ambiguous, poorly written, or just inordinately

difficult pretest item can cause an examinee to waste time better put to more productive use on items that

count.

Three strategies have evolved for pretesting, each offering a different balance between obtaining

quality data and avoiding impact on the operational test (Millman & Greene, 1989):
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1. Separately timed sections. This approach completely prevents pretest items intruding on

operational testing by isolating them in separately timed "special" sections. Although these may look and

function like the real thing, savvy examinees can readily identify them as pretests. However, there is a

long history of effective use with high-stakes testing programs. When stakes are high, any uncertainty as

to the value of an item apparently ensures a motivated response.

2. Appending to operational tests. Here, pretest items are attached to the end ofan operational

test, with the whole administered under a single time limit. The hope is that the pretest items at the end of

the test will not affect how examinees respond to the operational items at the front. Since no indication is

given of where the operational test ends and the pretest begins, there is also the hope that examineeswill

treat all as operational. However, given a little instruction and practice most examinees could be taught to

identify the boundary that separates the important scored items from the time-wasting pretest. The cues

might be a dramatic change in item difficulty, a change in item format, a change in the number of options

per item, or a change in the number of items attached to stimulus passages. In any case, examinees would

know that it's better to leave items at the end of the test unanswered rather than those at the front or in the

middle. The test is functionally less speeded for examinees who know this or are able to recognize the

Pretest component and focus their time and attention elsewhere.

3. Embedding in operational tests. A third strategy is to better disguise pretest items by

surrounding them by the operational test. Although the clues listed above would still be valid, the

contrast between pretest and operational items is less stark. Spotting pretest items distributed individually

or in small blocks throughout an operational test is a daunting task. Few examinees would be confident

enough in their judgement to risk slighting what they believe to be unscored items. An embedding

strategy is therefore most likely to yield the best possible pretest data.

Embedding is also likely to be more equitable with speeded tests. Assume that the penalty for

failing to finish a test is proportional to the number of operational items left unanswered. Other sorts of

penalties will be discussed later. When pretest items are appended, the penalty function declines to zero

at the end of the operational test. For example, consider a 50-item test where the first 40 items are

operational and the last 10 pretest. Examinees who finish fewer than forty items are penalized in

proportion to the number of items unanswered. An examinee Who answers 26 items is less penalized than

one answering 25. But since the penalty drops to zero at the end of the operational test, examinees who

finish the entire test derive no advantage over examinees who answered only the first 40 items. This is

satisfactory if test developers have explicitly decided that response speed should impact the scores of only

the slowest examinees. However, in many cases speed of responding is worth measuring for all

examinees. This is best done by distributing pretest items evenly throughout the test. In the example,

pretest items might take positions 5, 10, 15,...,50 rather than the last ten slots.

The problem with embedding is that it maximizes the risk of pretesting impacting operationaltest

scores. Since most examinees work through a test from front to back, time unnecessarily spent on pretest
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item early in a test can detract from performance on later operational items. This is particularly

problematic if pretest items differ across examinees. Examinees receiving difficult, ambiguous or

otherwise time-consuming pretest items are at a disadvantage to examinees who take an easier, shorter

more straightforward pretest. The problem is not simply that different examinees took different items.

This occurs whenever alternate test forms are administered and is a necessity of adaptive testing.

However, in these cases the operating characteristics of items are usually known and taken into account

when forms are assembled or adaptive tests selected. Pretest items, in contrast, are by definition unknown

quantities. Minimizing disparate impact might therefore depend on little more than randomizing sets of

pretest items across examinees and hoping for the best. A more satisfying alternative is to carefully

screen pretest items either judgmentally or with small samples before administering them more widely.

4. Variable-length testing and embedded pretesting

The previous sections have extolled the virtues of variable-length adaptive testing and embedded

item pretesting. This section tries to fit these ideas together. Recall that the drawback of variable-length

tests was their unfairness under speeded conditions. Examinees taking shorter tests have an advantage

over those taking longer tests when time limits are equal. We propose to correct this by attaching to each

variable-length operational test a variable number of pretest items so that all total tests are brought to an

equal length. Suppose that total test length is fixed at forty items. Then examinees taking 32 and 35-item

operational tests would be administered eight and five pretest items, respectively, bringing each test to 40

total items. Provided pretest items are not identified as such, tests will appear to examinees to be of equal

length.

Equalizing perceived test length goes a long way toward the goal of minimizing differential

speededness across examinees. However, two other factors are also important. The first is how

examinees are penalized for not completing a test. With conventional tests, omitted or unreached items

are usually scored as incorrect. When tests are scored by number correct, it is therefore in the examinee's

best interest to answer all items, even if with random guesses. Any correct guesses will increase a score

and wrong answers don't carry additional negative weight. The situation is different when a test is

formula scored, where right answers count positively and wrong answers fractionally negative'. Unless

an examinee is certain of their ability to guess correctly more often than chance would suggest, there is no

benefit to completing a test with random responses.

Penalty schemes and optimal guessing strategies are more complicated with adaptive tests. One

approach tried was to require examinees to complete a certain minimum number of items in order to

receive a score, but attach no penalty to failing to complete the entire test (Schaeffer, Steffen, Golub-

Smith, Mills & Durso, 1995). Unfortunately, examinees quickly learned that there was no reward for

completing the whole test and so instead spent all of their time on the minimum number of items. This

The usual formula is to count right answers as +1 and wrong answers as 1/m, where m is the number of response
options.
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left the test less speeded than designed and introduced inequities between examinees who were aware of

this strategy and those who were not.

A second approach is to mimic conventional tests by scoring unanswered items as incorrect.

However, this has two fundamental problems. This first is determining exactly which items are to be

scored as incorrect. Adaptive tests select subsequent items depending on current responses. Requiring

that a test conclude with a string of incorrect responses will cause successively easier items to be selected

as the examinee's ability estimate declines. How much the ability estimate declines is based not just on

the number of items unanswered, but also on the ability estimate when time ran out and on the items

selected subsequently. The strong random component to item selection due to exposure control also

causes different examinees to be affected in different ways despite their having left the same number of

items unanswered. One approach to this problem is to determine an average or expected penalty for

incompletion and to apply it uniformly to all examinees in the same circumstances (Schaeffer, Steffen,

Golub-Smith, Mills & Durso, 1995).

The second problem with scoring unanswered questions as wrong concerns the process that

examinees must follow to respond to a computerized questions. With paper-and-pencil tests it takes no

more than a few seconds to quickly fill in any remaining ovals on the answer sheet just before time is

called. But clicking your way through a computerized test to accomplish the same thing will likely take

much longer. Telling examinees that it is in their best interest to answer all items is no help if they are

logistically unable to do so. It may therefore be unfair to count nonresponses as incorrect.

A better approach may be to do for examinees what they would have done for themselves had they

been able to, namely fill in unreached items with random guesses. Because the problem of figuring out

exactly which items are guessed at still applies, the idea of determining and applyingan average or

standardized penalty still makes sense.

The other major influence on test speededness is where pretest items are located within the

operational test. Distributing them evenly has already been argued as most equitable. We will try to

strengthen and extend this argument in the context of a variable-length CAT.

The difference between appending and embedding pretest items in variable-length tests can be made

concrete by considering a test that administers 40 total items. Now compare the tests of two examinees,

one (A) who receives 36 operational and 4 appended pretest items, and a second (B) who receives 32

operational and 8 appended pretest items. Their tests are represented schematically below:

Examinee A
I 36 operational (-) / 4 pretest (x) items.

10 20 30 40

=mom(
Examinee B

I I I I 32 operational (-) / 8 pretest (x) items.
10 20 30 40
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Suppose both examinees were able to finish only 30 items. Then Examinee A would have the six

remaining operational items completed with random responses, 1/6 of the operational test. But Examinee

B would have only two random responses, a mere 1/16 of the operational test. Examinee A would thus

pay a much stiffer price for non-completion although both examinees worked at the same rate.

Now suppose that pretest items were embedded and evenly distributed throughout the test. Then

examinees are matched at every point of their tests in the proportions of operational items taken, even

when the number of operational items taken differs. So after 10 items have been administered, every

examinee should have taken 25% of their operational items. After 20 items have been administered,

every examinee should have taken 50% of their operational items, after 30 items 75%, and so on. This

situation can be represented as follows:

x x x x
Examinee A

I I I
I 36 operational (-) / 4 pretest (x) items.

10 20 30 40

x x x x x x x x
Examinee B

I I I
I 32 operational (-) / 8 pretest (x) items.

10 20 30 40

If both examinees completed 30 items, A would have 9 operational items answered randomly, 1/4 of the

total. Examinee B would have only 8 guessed responses, but this is the same 'A of the total operational

test. Equity reigns.

How to distribute pretest items evenly within the operational test is the problem. The length of the

operational test is not known until it has ended, leaving the necessary number of pretest items also

unknown. The trick is to evenly mix these two sets of items of unknown size. One solution is to

continually predict the final length of the operational test as it proceeds and use these predictions to

determine how many pretest items will be needed and where they should be located. Examinees

predicted to take shorter operational tests would take more, and more closely spaced, pretest items.

Examinees expected to take longer operational tests would be administered fewer, more widely spaced

pretest items. Every pretest item administered would be followed by an operational item, and the

prediction computed again. Equitable variable-length testing is therefore possible to the extent that

accurate prediction of final test length is possible. The next section describes our attempts at making

these predictions.

5. Predicting variable test lengths

The particular sort of variable-length adaptive tests considered here use test (Fisher) information as the

stopping criterion (Thissen & Mislevy, 1990). Fisher information is calculated after each item has been

answered as a function of the items so far administered and of the current ability estimate. Information
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values computed following each response are continually, compared with a specified target value. The

test ends when accumulated information exceeds the target2.

Various data are available following each item administration to be used to predict final test length.

Values that seem like they should be useful as predictors include the number of items already

administered, the current ability estimate, the amount of information so far accumulated at the current

ability estimate and the amount of additional information needed to meet the stopping target. Other

values are less obvious, but may be important as well. For example, the stability of the current ability

estimate indicates how likely it is that information is being accumulated at the right place. It is not

unusual early in a test to see information at the current ability estimate actually decline as that estimate

changes. The rate at which information is accumulating is another potential predictor. As tests lengthen

and ability estimates stabilize, item targeting and test efficiency improves and information accumulates

more quickly.

A number of models were investigated to determine-whether accurate prediction of test length was

possible. This was examined in a realistic simulation context in which examinees and itemswere

modeled multidimensionally (Davey, Nering & Thompson, 1997). Although simpler models adequately

capture the gross properties of observed response data, they lack the complex, subtle, 'noisy' features

characteristic of actual response behavior. Accordingly, more realistic simulation procedures based on

high-dimensional item response models were developed and implemented. All evaluations of testing

procedures are conducted exclusively under these simulation conditions. It is not enough that a testing

procedure work effectively when examinees respond as we hope that they will. A test procedure must

also be robust enough to work effectively when exarninees respond as we know that they will.

The simulation process begins by fitting high-dimensional compensatory logistic item response

models to real examinees and real test items. This can be done with any of several software packages

(Fraser, 1986; Wilson, Wood & Gibbons, 1991). No attempt is made to interpret the resulting solution.

The fitted model is simply treated as a template from which new data can be generated. There is also no

concern regarding overfitting or "capitalizing on chance". In fact, since the intent is to generate new data

that embodies all of the characteristics of the real data, a certain degree of overfitting is desirable.

The estimated multidimensional item response functions are used to generate data by procedures

directly analogous to.those used with unidimensional simulations. The important difference is that

multiple ability parameters are generated for each simulated examinee, all of which influence each item

response. The item and ability parameters combine to produce probabilities of correct responses, just as

they do with simpler unidimensional models. Data are generated by comparing these probabilities to

random draws from a uniform distribution.

2 Other conditions can be added to the stopping rule. For example, tests that impose content constraints on item
selection can require that these constraints be adequately satisfied before the test is allowed to end. The prediction
methods outlined are unaffected by these additional conditions.
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Adaptive test data were simulated under the particular conditions set forth in Table 1. Tests included

a minimum of one and a maximum of 60 items, with test length averaging about 25 items. Most

examinees took between 20 and 40 items. The test ended when accumulated information exceeded a

specified target, one that varied across ability levels. Items selected for administration were those that

had maximum information at the current ability estimate. Item selection was further controlled by

imposing content constraints and an exposure control procedure known as hybrid (Nering, Davey &

Thompson, 1998). Current or provisional ability estimates were by Bayes mean (EAP). Once each test

was completed, a maximum likelihood final ability estimate was computed.

Table 1. Test Conditions used to Create Prediction and Cross-Validation Samples.

Minimum test length 1

Maximum test length 60

Provisional ability estimate EAP

Final ability estimate MLE

Item selection Maximum information

Stopping criterion Information exceeds target3

Exposure control Hybrid

The simulated CAT environment was used to generate two independent samples, each containing a

complete examinee record of item responses, provisional ability estimates, standard errors of ability

estimates, and target and examinee information, over all items taken for 4800 total examinees. Counting

each presented item (and its accompanying statistics) as an observation, these samples contained about

120,000 observations each. The first sample (the prediction sample) was used to develop and examine

various prediction models. The second sample was used to cross-validate the model that looked most

promising.

The prediction sample was reduced by randomly selecting one item (observation) from each

examinee. However, the last item taken was not eligible for selection because at that time the stopping

criterion is met, and there is no need to predict final test length's. The item selected for each of the 4800

examinees ranged between 1 and 54, and was about 12.6 on average. pe item selected will be referred to

as "item position" because it represents the position in the sequence of items taken.

A variety of regression models were fitted to predict the final test length from variables

characterizing items and examinees at the item position. Equivalent models predicting the number of

3 The target information is presented in detail in Fan, Thompson & Davey (1999).
4 In the case of a handful of examinees, the stopping criterion was not met at the maximum test length, so that final
test length was the maximum test length.
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items remaining to be taken at the item position (final lengtlf item position) were also explored. Models

were chosen by a combination of stepwise regression procedures, clinical judgment and women's

intuition. Predictions of the number of items remaining were consistently poorer than predictions of final

test length. All results presented here are therefore based on predictions of final test length.

Predictors characterizing the items and examinees at the item position included (in addition to item

position itself) the current ability estimate, the proportion of information target met at the current ability

estimate and the standard error of the current ability estimate. Transformations of these variables were

also considered, for example the arc sine of the proportion of target met and the absolute value of the

current ability estimate. More complicated predictors summarized test progress so far by measuring the

rate at which observed information was approaching the target criterion or the rate of change of the

current ability estimate.

Preliminary model fitting generally yielded predictions that were unacceptably poor. However,

things improved markedly when prediction was attempted only after at least five items had been

administered. The results presented here are based on this restricted sample (N=3695). By far the best

single predictor of final test length was the rate at which information was accumulating, as measured by

the change averaged across adjacent items (R2=.48). Combinations of different variables, however,

substantially outperformed the single predictor. Simpler variables were also consistently better than more

complex alternatives. Further additions of some interaction terms increased R2 substantially.

The model judged as best included five predictors: item position, the difference between the

observed information and the target, the current ability estimate, an interaction term between item

position and difference in target and observed information, and an interaction term between provisional

ability estimate and difference in target and observed information. The model fit was significant overall

with p < .0001, and individual t-statistics for each variable were also significant with p < .0001. In all,

the model accounted for 77% of the variance in final test length. Figure 1 shows the predicted final

lengths versus the observed final lengths based on the final model. Numeric results are shown in Table 2.

As might be expected, predictions were poorest when made from the earliest item positions. As the

item position increased, the quality of the prediction improved. However, smoothing predictions by

computing the predicted final length as the average of the predicted score for the curr6nt item and the two

previous items did not increase R2.

The selected model and its estimated parameters were cross-validated by applying them to the

second data sample. For convenience, this sample was also reduced by randomly selecting one

observation from each examinee. Results demonstrated remarkable stability, the model attaining an R2 in

the second sample essentially equal to that from the first.

To gain insight into how the prediction methods worked, and when they did not, we looked in detail

at individual examinees. Results for four selected test administrations are given by the plots in Figure 2-

5. The plotted symbols show the series of predictions of final test length made after each item response.
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Recall that no prediction is possible until at least five items have been answered. The solid line on each

plot indicates the final test length actually observed. Figures 2 and 3 are typical of the large bulk of tests,

which are generally well-predicted. Final test length is predicted accurately and consistently from the

fifth item through the next-to-last.

Figures 4 and 5 are the exception, representing cases where the prediction methods failed to varying

extent. In Figure 4, final test length is badly underpredicted until the test was about half completed, after

which predictions began tracking reality. Close examination of the items administered and responses

offered revealed the explanation. This simulated examinee had a "true"5 ability of around zero.

However, after five items the current ability estimate of less than 1.0, the responses following the classic

pattern of a "slow starter." Because the information target at abilities below 1.0 was much lower than

the target around zero, the prediction system quite reasonably assumed the test would be a short one. In

fact it would have been had the ability estimate remained at 1.0. Instead, the examinee recovered from

the poor start and the ability estimate crept up toward zero. Because the information target increased

steadily as the ability estimate approached zero, the predicted test length increased correspondingly each

step of the way. Recovery was complete by the 15- or 20-item mark, with predicted lengths becoming

accurate from that point onward. This sort of prediction error will inevitably affect a small percentage of

examinees, and little can be done to correct it:

The situation in Figure 5 is different, with test length consistently and badly underpredicted

throughout. This examinee also had a true ability near zero, but responded in a much steadier fashion

than the previous simulee, the ability estimate never straying far from zero. What went wrong was the

fault of exposure control. Since the information target at zero is relatively high, examinees there need to

receive more than a few discriminating items in order to reach the stopping criterion. Unfortunately,

these are the very items that are most stingily protected by the exposure control procedures. We routinely

compute a statistic that indicates the extent that an examinee's test was degraded due to exposure control.

Essentially, this statistic counts the average number of items denied from use by exposure control for each

item that is allowed to be used. This average was much higher for the examinee in Figure 5 than it is

generally. The predictions underestimated test length because they overestimated the discriminations of

the items that would be administered. More will be said about this below.

6. Using test length predictions

The primary reason for predicting test length is to allow pretest items to be evenly distributed

throughout each examinee's operational test. Assume that each examinee is to receive 40 total items.

'Because simulated examinees were modeled in multiple dimensions, a single "true" ability does not exist. Each
examinee instead has a vector of 50 true abilities. However, for convenience it's nice to be able to compare the
unidimensional ability estimates produced during the CAT administration to some unidimensional reference value.
Happily, there are numerous ways of projecting or summarizing the true 50-dimensional ability vector as a single
value. Here, we use a type of " true score" obtained by summing for an examinee the true (multidimensionally
determined) response probabilities across all pool items. This is the examinee's expected number correct, if the
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Suppose that after the fifth item we predict that a given test will end after 35 items. Then we have five

pretest items to embed, at positions 8, 16, 24, 32 and 40. We would thus hold off administering a pretest

item for the time being. If. on the other hand, final test length was predicted at 30 items then we would

have ten pretest items to distribute. These would ideally appear in positions 4, 8, 12..., 40. Since we

have already administered five operational items, we are behind schedule and would immediately

administer a pretest item.

Simply put, the strategy is to predict final test length following each item response and, contingent

on that prediction, decide whether or not a pretest item should be administered next. However, several

considerations complicate this decision. The first, and most important is to prevent pretesting from

compromising the operational test. A good example of how compromise might occur is offered by the

examinees in Figures 4 and 5. Both of their test lengths are underpredicted, at least in their early stages.

This could lead to a large number of pretest items being administered early on. By the time it was

realized that the test was actually to be much longer than anticipated, too many pretest items may have

been administered to allow the operational test to meet the information target. The examinee would

therefore be measured less precisely than specifications called for.

Overprediction of test length is also possible. The problem in this case is that pretest items would be

spread too thinly across the test. The remaining pretest items needed to complete the test might then be

concentrated toward the end, making the test functionally less speeded than is desirable. The decision

rule that dictates when pretest items are administered must weigh the danger of reduced speededness

against the competing problems of degraded measurement.

Test length predictions can also be more tightly integrated into item selection to correct a number of

related problems that beset adaptive tests generally and variable-length tests in particular. Consider

dividing an item pool into two or more strata based on item discrimination. Doing so will roughly divide

items by the frequency with which they are selected for administration, with more discriminating items

generally being more frequently selected. Chang and Ying (1999) suggest an item selection procedure

that chooses items from successively more discriminating strati as a test proceeds. Thus, early selections

'are made from among the least discriminating items, items in the middle of the test are chosen from

middle strata, and final items drawn are most discriminating.

Test length prediction can improve Chang and Ying's procedure by transitioning item selection from

one stratum to the next based on need rather than some programmed schedule. An examinee expected to

take a long test would be given proportionally more items from higher-discriminating strata. Conversely,

examinees predicted to take shorter tests would receive ftems mostly from less discriminating strata. This

has several salutary effects on the tests delivered. First, test length will be more nearly equalized across

examinees. Although tests will almost certainly remain varied in length, the range of difference will be

entire pool were presented. The true score is then converted back to the unidimensional ability metric using the
(inverted) unidimensional test characteristic curve for the full pool.
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smaller. This makes the problem of evenly distributing pretest items more tractable by lessening the

chance that poor predictions will leave pretest items clustered at the back of the test, or that operational

tests will be deficient because of excessive pretesting. However, occasional poor predictions like those

shown in Figure 4 remain inevitable and little can be done about them.

A second, related positive effect is that very short operational tests are made unlikely. By dividing

required test information over more rather than fewer operational items, problems with extreme ability

estimates are avoided. With very short tests, the odds are good that some number of examinees will

respond either entirely correctly or entirely incorrectly. Lengthening these tests by administering less

discriminating items makes perfect patterns far less probable.

Test length predictions can also be used to amend exposure control procedures and prevent the

situation exemplified by Figure 5. Recall that this examinee was forced to take an exceptionally long test

because exposure control procedures barred access to most of the pool's discriminating items. That some

small number of examinees will be treated this way is inevitable with any sort of probabilistic exposure

control. Where test length prediction can help is by again distributing discriminating items by need rather

than by chance. Exposure control would be relaxed for examinees expected to take longer tests and

stiffened for examinees destined for shorter tests. This would lead to more equal test lengths and perhaps

even improved exposure control.

7. Discussion

We began by arguing the advantages of both variable-length adaptive tests and embedded item

pretesting. Variable-length tests were preferred largely because of the control they give test developers

over what is measured and the precision of that measurement. Efficiency is a second advantage.

Embedded pretesting was advocated both because it is more equitable under speeded test conditions and

because it is likely to yield better pretest data. The problem was to evenly distribute embedded pretest

items within a variable length operational test. Test length prediction was proposed as one way of

attacking this problem.

Accurate prediction of test length was shown possible, at least in the context ofa realistic simulation.

Multiple correlations of nearly .80 were demonstrated provided prediction begins only after at least five

items have been administered. Predictions also improve with increasing test length, a welcome state of

affairs since decisions made early in a test are less crucial than those made later when there is less time to

recover from error. Very simple regression models proved both effective and highly stable in cross
validation.

Obviously, much remains to be done. Decision rules for spacing embedded pretest items given test

length predictions need to be developed and evaluated. Similar rules for equalizing test lengths across

examinees need to also be examined. The current work is perhaps best seen as a feasibility study for

these next steps.
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Table 2. Regression Results for Final Model

Model Summary:

R2 RMSE
2495.32 .0001 .78 4.63

Parameter Summary:

Variable Estimate se
Intercept 2.06 0.27 7.58 .0001
Item Position 0.96 0.01 70.07 .0001
Difference in Information 1.78 0.05 37.67 .0001
Ability Estimate 0.76 0.09 8.06 .0001
Item Position*Information Difference 0.06 0.00 15.89 .0001
Ability Estimate*Information Difference -0.52 0.03 -20.51 .0001
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Figure 1. Predicted and Observed Final Test Lengths for Prediction Sample.
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Figure 2. Predicted and Observed Final Test Lengths for an Examinee (Final Test Length =
17 Items).
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Figure 3. Predicted and Observed Final Test Lengths for an Examinee (Final Test
Length = 27 Items).
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Figure 4. Predicted and Observed Final Test Lengths for an Examinee (Final
Test Length = 34 Items).
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Figure 5. Predicted and Observed Final Test Lengths for an Examinee (Final Test
Length = 57 Items).
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