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In this paper we study a new information-theoretically justified approach to missing data estimation
for multivariate categorical data. The approach discussed is a model-based imputation procedure
relative to a model class (i.e., a functional form for the probability distribution of the complete data
matrix), which in our case is the set of multinomial models with some independence assumptions.
Based on the given model class assumption an information-theoretic criterion can be derived to select
between the different complete data matrices. Intuitively this general criterion, called stochastic com-
plexity, represents the shortest code length needed for coding the complete data matrix relative to the
model class chosen. Using this information-theoretic criteria, the missing data problem is reduced
to a search problem, i.e., finding the data completion with minimal stochastic complexity. In the
experimental part of the paper we present empirical results of the approach using two real data sets,
and compare these results to those achived by commonly used techniques such as case deletion and
imputating sample averages.

Introduction

In most educational research contexts the available data
are typically incomplete and contain usually several ele-
ments with missing information. Missing elements are par-
ticularly typical to data from complex questionnaire based
surveys, where the lack of time or low motivation of the
respondents result in neglection of many .of the questions.
In most cases omission of incomplete data, i.e., concentra-
tion on only records with complete data, is infeasible, as the
amount of data for the analysis would be drastically reduced.
Therefore intelligent methods for handling missing data are
an important aspect of quantitative data analysis.

The problem of missing data estimation has been ad-
dressed widely in the statistics literature (see e.g., (Gelman,
Carlin, Stern, & Rubin, 1995; Rubin, 1987, 1996; Schafer,
1995)). The last quarter of a century has seen many de-
velopments in this area. The EM algorithm together with
its extensions (Dempster, Laird, & Rubin, 1977; McLachlan
& Thriyambakam, 1997), multiple imputation (Rubin, 1987,
1996; Schafer, 1995) and Markov Chain Monte Carlo (Gilks,
Richardson, & J., 1996) all provide tools for inference in
large classes of missing data problems. In practice, however,
these developments have not had large impact on the way
most data analysts handle missing values on a routine ba-
sis. This is partly due to the rather complex nature of these
approaches, but mostly because of their lack of support in
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statistical software.

The purpose of this paper is to study a new information-
theoretically justified approach to missing data estimation.
The method discussed is deeply related to Bayesian infer-
ence, but originates from the research on universal cod-
ing (Rissanen, 1984), which aims at finding good (short) en-
codings of data. We do not make an attempt to provide a
survey of the aforementioned developments in missing data
estimationan interested reader can consult the excellent
books by Little and Rubin (1987) and Schafer (1997). In or-
der to put our work in perspective, however, we would like to
remind that the proposed methods can essentially be catego-
rized into two general approaches: case deletion and imputa-
tion (Little & Rubin, 1987; Schafer, 1997). In case deletion
all the cases with missing data are omitted and the analysis is
performed only using the complete cases. Obviously this ap-
proach is a reasonable solution only if the incomplete cases
comprise a small fraction of all cases. In imputation-based
procedures the missing data values are filled with plausi-
ble values which forces the incomplete data set into a com-
plete data format. The methods in this group vary from sim-
ple sample average imputation approaches (Little & Rubin,
1987) to complex multiple imputation procedures (Schafer,
1997). The latter share the same underlying philosophy
as EM and data augmentation: an incomplete-data prob-
lem is solved by repeatedly solving the complete-data ver-
sion. In multiple imputation the unknown missing data are
replaced by several "simulated" values using Monte Carlo
approaches, and each of the resulting complete data sets is
analyzed by standard complete data methods. The resulting
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2 TIRRI AND SILANDER

variability is then taken to reflect the uncertainty caused by
the missing data.

The approach discussed here can be characterized as
a model-based imputation procedure. Of the existing ap-
proaches, the method described here is somewhat related
to Bayesianly proper multiple imputation (Schafer, 1997),
which uses independent realizations of the posterior predic-
tive distribution of the missing data under some complete-
data model and prior. The method discussed here is similar
in the sense that it is always relative to a model class, and
the criterion used for finding the values to be imputed can be
approximated by the Bayesian marginal likelihood (Berger,
1985; Bernardo & Smith, 1994; O'Hagan, 1994). However,
we are interested in the problem of finding a single optimal
completion of the incomplete data set instead of a set of com-
pletions typical to multiple imputation procedures. More-
over, as we will see in the next section, the augmentation
criterion has its foundations in information and coding the-
ory (Cover & Thomas, 1991) rather than Bayesian statistics.

Intuitively the approach can be described as follows. By
modeling the set of data records as a matrix of incomplete
discrete data, the missing part is estimated by assuming a
functional form for the probability distribution of the data
cases (i.e., a model class). Based on the given model class
assumption an information-theoretic criteria can be derived
to select between the different complete data matrices for the
more "likely" one (in abstract sense). Intuitively this general
criteria, called stochastic complexity (Rissanen, 1987, 1989,
1996) represents the shortest code length needed for cod-
ing the complete data matrix relative to the model class cho-
sen. Unfortunately in general the exact criteria is very hard
to compute for many interesting model families, but it can
be approximated by the Bayesian marginal likelihood com-
puted by integrating over all the possible models (parameter
settings) in the chosen model class.

Since we are interested in categorical data, we use the
set of (saturated) multinomial models for the complete data,
which is a more general descriptive "language" than the mul-
tivariate normal class in the sense that it allows also for
higher than two-way associations among the variables. In
addition to selecting the multinomial model class additional
independence assumptions for the variables have to be made
to make the approach feasible in practice. This leads us to
consider a special subclass of finite mixture models (Titter-
ington, Smith, & Makov, 1985) known as Naive Bayes mod-
els.

Having defined an evaluation criterion for our data com-
pletions, the missing data problem is reduced to a search
problem, where the goal is to find a data completion that min-
imizes the stochastic complexity of the completed matrix.
Due to the large discrete search space exhaustive search for
the minimal stochastic complexity completion among all the
possible completions is not feasible for data sets with large
fractions of missing data. However, locally optimal solutions
can be found by using stochastic search methods such as EM
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and simulated annealing (Aarts & Korst, 1989). In this pa-
per for the experiments we use a simple easy-to-implement
variant called stochastic greedy, which has a comparable per-
formance to the more complex search methods (Kontkanen,
Myllymaki, Silander, & Tirri, 1997a).

In the experimental part of the paper we present empir-
ical results of the approach using two real data sets, and
compare these results to those achieved by commonly used
techniques such as case deletion and imputating sample av-
erages. It should be observed that albeit we discuss the finite
mixture model class, the approach presented is general and
applicable to imputation of categorical data with other model
classes also.

The missing data problem

We will consider rectangular data sets whose rows can be
modeled as independent, identically distributed (iid) draws
from some multivariate probability distribution. The rows
represent observational units and the columns represent vari-
ables recorded for those units. In the following such rows
of the matrix are called data vectors d, and data set D is
defined as a set of N data vectors d1,... ,dN. Each com-
plete data vector d consists of m I value assignments,
d = (Xi = xi, ... ,X,+1 = xm+i), where each value xi is as-
sumed to belong to the discrete set {xii , ,xi,71}. Conse-
quently, a complete data set D can be regarded as aNxm -I- 1
matrix, where each component di; is a value assignment of
the form < X, = xi > . In the incomplete data case, one or
more of these assignments are initially unknown. In the se-
quel we partition the matrix D into two sets of components,
D = (Dobs)Drnis), where Dobs denotes the constant compo-
nents which are originally given (the observed data), and
Anis the missing components which are to be estimated by
using Dobs. The missing data estimation task is to augment
the missing values, i.e., assign values to elements in Dims, in
optimal manner with respect to the inference tasks for which
the data is to be used. Here we restrict ourselves to predic-
tive inference tasks (Bernardo & Smith, 1994; Gelman et al.,
1995), i.e., we aim at developing augmentation methods that
produce completions which result in good predictive perfor-
mance, when the completed data is used to build a predictive
model.

Completion criteria: Stochastic
complexity

As discussed earlier, the approach adopted here is based
on "scoring" alternative completions of the missing data
Dmis based on an information-theoretic criterion. This cri-
terion can be derived from the Minimum Description Length
(MDL) Principle developed by Rissanen (1989,1996). Ac-
cording to MDL, the goal of all (inductive) inference from
data is to compress the given data as much as possible, i.e.,
to describe it using as few bits as possible. Intuitively such
an argumentation can be justified by the fact that to compress
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data, one needs to find out regularities in it. The more we are
able to compress the data, the more regularities (e.g., depen-
dencies) we have found. Thus to be able to find the shortest
encoding of data, we need to have extracted all the existing
regularities. These regularities can then be used to character-
ize the underlying process generating the data, which is the
purpose of modeling in the first place.

Data compression involves the use of a description
method or code, which is a oneone mapping from datasets
to their descriptions. Without loss of generality, these de-
scriptions may be taken to be binary strings (Rissanen,
1989). Intuitively, the shorter the description or codelength
of a set of D, the more regular or simpler the set D is. Ris-
sanen (1987) defines the stochastic complexity informally as
follows:

The stochastic complexity of the data set D with
respect to the model class M is the shortest code
length of D obtainable when the encoding is
done with the help of class M (Rissanen, 1987,
1996).

Here "with the help of" has a clear intuitive meaning: if
there exists a model in M which captures the regularities
in D well, or equivalently gives a good fit to D, then the
code length of D should be short. However, it turns out to be
very hard to define "with the help of" in a formal manner.
Indeed, a completely satisfactory formal definition has only
been found very recently (Rissanen, 1996).

Note that the informal definition of stochastic complex-
ity (SC) as given above presumes the existence of a code: by
definition, the SC of a data set D is the length of the encoding
of D where the encoding is done using some special code C*
which gives "the shortest possible codelengths with respect
to gvf". In order to introduce a formula for the codelengths
obtained using this C*, the connection between probability
distributions and codes has to be first clarified.

In general, we denote the length (in bits) of the encoding
of D when the encoding is done using a code C by Lc(D). All
codes considered in MDL are prefix codes (Rissanen, 1989).
From the Kraft inequality (see for example (Rissanen, 1989)
or (Cover & Thomas, 1991)) it follows that for every prefix
code C, there exists a corresponding probability distribution
P such that for all data sets D of given length N (i.e., with
N data instantiations), we have log P(D) = Lc(D)1 . Sim-
ilarly, for every probability distribution P defined over all
data sets D of length N there exists a code C such that for all
datasets D of length N , we have L(D) = F- log P(D)-1 (here

is the smallest integer greater or equal to x). If we use
log P(D) instead of I-- log P(D)-1, our code lengths will

always be less than one bit off the mark; we may therefore
safely neglect the integer requirement for code lengths (Ris-
sanen, 1987). Once we have done this, the two facts above

'Throughout this paper, by "log" we denote logarithm to the
base two.
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imply that we can interpret any probability distribution over
sequences of a given length as a code and vice versa. This
correspondence allows us to identify codes and probability
distributions: every probability distribution P over data sets
of length N may equivalently be interpreted as determining
a code C such that L(D) = log P(D) for all D of length
N. We see that a short code length corresponds to a high
probability and vice versa: whenever P(D) > P(D'), we have

log P(D) < log P(D').
If our parametric class of models M is regular enough

(as it will indeed be for all instantiations of M we consider
in this paper), then there exists a maximum likelihood (ML)
estimator 0 for every data set D, and we can write:

0(D) = arg max P(DIO)
OEM

arg min log P(DIO)
OEM

arg min L(Die), (1)
'DEM

where the last equality indicates the fact that each 0 defines a
code such that the code length of D is given by log P(DI0).
Since this term can be interpreted as a code length, we denote
it by L(DIO).

Let us now consider a data set D of arbitrary but fixed
length N. The MDL Principle tells us to look for a short
encoding of D. The model within class M that compresses
the data most is the ML model 0(D), since by (1) it is the
model for which L(DI0), the codelength of D when en-
coded with (the code corresponding to) 0, is lowest. At
first sight it seems that we should code our data D us-
ing 0(D), in which case the MDL Principle would reduce
to the maximum likelihood method of classical statistics.
Howeverand this is the crucial observation which makes
MDL very different from maximum likelihood principle
MDL says that we must code our data using some fixed
code, which compresses all data sets for which there is a
good-fitting model in M (Rissanen, 1987). But the code
corresponding to 0(D), i.e., the_code that encodes any D'
using L(D'IO(D)) = log P(D'IO(D)) bits, only gives opti-
mal compression for some data sets (including D). For most
other data sets D' D, e(D) will definitely not be optimal:
if we had been given such a different data set D' (also of
length N) instead of D, then the code corresponding to
rather than e(D) would give us the optimal compression. In
general, coding D' using e(D) (i.e., using L(D'Ie(D)) bits)
may be very inefficient.

As discussed above, MDL says that we must code our
data using some fixed code, which compresses all data sets
that are well modeled by M. We can therefore not use the
code based on 0(D) if our data happens to be D and the code
based on 0(D') if our data happens to be D': we would then
encode D using a different code than when encoding D'. It
would thus be very desirable if we could come up with a code
that compresses each possible D as well as the maximum-
likelihood, or equivalently, mostly-compressing element in
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M for that specific D. In other words, we would like to have
a single code C1 such that Lc, (D) = L(D1e(D)) for all pos-
sible D. However, such a code cannot exist as soon as our
model class contains more than one element, since in gen-
eral a code can only give short codelengths to a very limited
number of data instantiations. Nevertheless, it is possible to
construct a code C) such that

Lc,(D)= log P(DIO(D)) + KN = L(DIO(D))+ KN (2)

for all D of length N. Here KN is a constant that may depend
on N but is equal for all D of length N. If, for some 0 E
we say that it fits the data D well, we mean that the probabil-
ity P(DIO) is high. Note that the code length obtained using
C., precisely reflects for each D how well D is fitted by the
model in the class that fits D best.

Picking C, such that the constant KN is as small as pos-
sible yields the most efficient code that satisfies (2). We call
the resulting code the stochastic complexity code and denote
it by C*. The corresponding minimal KN is denoted by
and is called the model cost of M. Consequently we are
finally ready to give the formal definition of the stochastic
complexity: the code length of D when encoded using the C*
code is the stochastic complexity of D with respect to model
class M, which we write as SC(D1M):

SC(D1M) = Lc. (D)

= L(D1O(D))+ K,, where 0(D) E M(3)

In many situations the model classes are such that (3)
cannot be easily calculated. Fortunately there exist several
good approximations to SC (Rissanen, 1989, 1996). One
good approximation is based on the equivalence between
codes and probability distributions discussed earlier. As ar-
gued before, we can map code C* to a probability distribu-
tion P* such that for all D, logP*(D) = SC. We saw that
C* can be seen as the code giving the shortest code lengths
with respect to M, similarly P* can be seen as the probability
distribution giving "as much probability as possible" to those
data sets for which there is a good model in M. A good can-
didate for such a distribution is the Bayesian marginal like-
lihood P(D1gtf) (Bernardo & Smith, 1994), also sometimes
known as the evidence, which can be computed by integrat-
ing over all possible models (parameter settings) 0,

P(DIM) = P(Dobs, Dinh

= f P(DobS, Dmis M, 0)P(OIM) de. (4)

As discussed in (Rissanen, 1996) for many model classes (4)
approximates SC(D11714) extremely well, and thus in the se-
quel we will use this approximation as the "pragmatic" defi-
nition of stochastic complexity.

Stochastic complexity for Naive
Bayes models

Since we are interested in categorical data, we use the
set of (saturated) multinomial models for the complete data,

which is a more general descriptive "language" than the mul-
tivariate normal class in the sense that it allows also for
higher than two-way associations among the variables. In
addition to selecting the multinomial model class some in-
dependence assumptions for the variables have to be made
to make the stochastic complexity approach feasible in prac-
tice. This leads us to consider a special subclass of finite
mixture models (Titterington et al., 1985) known as Naive
Bayes models. For Naive Bayes model class, the categori-
cal variables Xi,i s are assumed to be independent, given
the values of a specific observed variable X, often called the
class variable. For notational convenience we index these
independent variables from 1, ,m. From this assumption
it follows that the joint probability distribution for a data vec-
tor d can be written as

P(d) =

= P(X, = k)1121 P(Xi = = k). (5)
i=1

Consequently, in the Naive Bayes model case, distribution
P(W) can be uniquely determined by fixing the values of the
parameters 0 = (a, (213),

a = (al,... ,c4c), and
= (On Oim, OKI )43Km),

where the value of parameter ak gives the probability

P(X, = k) and

Oki = (4ki17 741kini)7

where Oki( = P(Xi = xj = k).

Here ni denotes the number of possible values for variable Xi,
and K the number of values for variable Xs. Using these de-
notations, we can now write

ni

P(C7) = P(X1 = XIII 7 7 X177 = x1711,77 Xs = k) = ak
i=1

In the following we assume that ak > 0 and Okil >
for all k,i, and I. Furthermore, both the variable distribu-
tion P(X.,) and the conditional distributions P(Xi1X5 = k)
are multinomial, i.e., X, Multi(1; al , , aK), and Xiik
Multi (1; Om 70kii). Since the family of Dirichlet densi-
ties is conjugate (see e.g., (DeGroot, 1970)) to the family
of multinomials, it is convenient to assume that the prior
distributions of the parameters are from this family (see,
e.g., (Heckerman, Geiger, & Chickering, 1995)). More pre-
cisely, let

(ai ,aK)

(Oka )(him)

Di ,ILK) , and

Di (aka 7 akini ) 7

where filk,aku 1 k = I,. .. ,m;l = 1, . . . , nil are
the hyperparameters of the corresponding distributions. For
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Figure I. The Expectation-Maximization algorithm for stochastic
complexity minimization.

Algorithm 1
Expectation-Maximization (EM)

1. Set t = 0. Initialize parameters OW randomly.
2. E-step: Determine

=
EpogP(Dobs, Anis le, 1M)P(019111)IDobs, e(`),

where O(') are the parameter estimates in time step t.
3. M-step: Set e(t+I) = arg max{Q(O, 00)10 E Q)}.

0
4. Set t = t + 1. Goto 2 if not converged.

simplicity, we will use here the uniform prior for the param-
eters, so all and au are set to 1. A more detailed discus-
sion on the priors can be found in (Kontkanen, My llymaki,
Si !ander, Tirri, & GrUnwald, 1998, 1997).

As shown in (Cooper & Herskovits, 1992; Heckerman
et al., 1995), with the above assumptions the posterior proba-
bility of complete data (Dobs, Anis) for a Naive Bayes model
where tz, is the number of values for k is

P(Dobs, Anis I Nine)

= f P(Dobs,Dmis I 6,11114.)P(O I M,) de

=
r (ELI line) fli r(hk+ Ilk)

(6)
F (N + EZL.i Ilk) k=1 r(14)
m m r

(
1 (4-1 aka) ni r(fkil+akil)

k=1 i=1 r (hk + E7L, aki,) 1=1 F(Gki/)
1111

Computing the stochastic complexity measure for the in-
complete data matrix requires marginalizing out the missing
data Arm, i.e.,

SC(Dobs I M ne) logP(Dobs I AO

log E P(Dobs)Dmis I M nr),
Dmis

where P(I),bs,Dmi, I Me) is given by (6), and the (expo-
nential) sum goes over all the possible assignments of the
missing data elements.

Search methods

Due to the exponential number of differenf completions
of D.*, for real data sets we cannot calculate SC for all
possible completions. In general we have several alterna-
tive approaches for searching the data matrix completion
with the minimal stochastic complexity. One possibility is
to use a variant of the Expectation-Maximization (EM) algo-
rithm (Dempster et al., 1977), which consists of two abstract
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Figure 2. The Simulated Annealing-algorithm for stochastic com-
plexity minimization.

Algorithm 2
Simulated Annealing (SA)

1. Generate an initial random guess Dims of the miss-
ing data. Set the temperature parameter T to its initial
value.
2. Repeat L times

(a) Generate a new candidate Omis for the missing data
by changing the estimate of one randomly chosen
missing data item in Dflus to a randomly chosen
value.

(b) If P(Dobs, DmisIM) > P(Dths,Dmisigd) then

set Dmis = bmis.

P(DObs,bmisP1)\ l IT(c) Else if P(Dob,,DSpf)) > Random(0, 1) then

set Dmis = bmis.

3. T = F * T . If not converged, goto 2.

steps, Expectation(E) and Maximization(M), presented in
Figure 1.

One should observe that the EM algorithm does not pro-
vide an estimate of the missing data directly. The EM al-
gorithm maximizes P(OlDobs, 9K), and the resulting candi-
date for maximum posterior probability model 0 can then be
used for estimating the missing data Dmis. However, it can
be shown that the stochastic complexity can be approximated
by

SC(Dobs, DmisIM");:f. log P(Dobs, DmislO, M)P(Olgif) C,

(7)

where C is a constant depending on the number of the model
parameters, and the number of the data vectors (Schwarz,
1978; Rissanen, 1989). As the expectation of the first term
of this approximation is maximized during the EM process,
it can be argued that the EM optimizes the stochastic com-
plexity indirectly by optimizing the approximation (7).

An alternative is to use simulated annealing
(SA) (Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953; Kirkpatrick, Gelatt, & Vecchi, 1983), a
stochastic global optimization method belonging to the
family of Markov Chain Monte Carlo (MCMC) stochastic
simulation algorithms. A commonly used version of SA
goes is given in Figure 2. In this scheme, the cooling
factor F is a constant parameter smaller than one. The
SA algorithm converges as the temperature T approaches
zero. It can be shown that if the initial temperature is high
enough, and the decrement of the parameter is done slowly
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enough, the process converges to the global optimum almost
surely (Aarts & Korst, 1989).

Finally, by the stochastic greedy (SG) algorithm we mean
a simple procedure where new solution candidates are gen-
erated as in simulated annealing, but the candidates are ac-
cepted only if the marginal likelihood is increased. Due to
its simplicity and good performance, this stochastic greedy
approach was used in the experimental part of the paper.

Experiments

Data

The use of the stochastic complexity based imputation
will be illustrated using two different educational data sets
containing categorical variables.

Subjects of the first "Popular kids" data set (POPKIDS)
were students in grades 4-6 from three school districts in In-
gham and Clinton Counties, Michigan. The data consists of
478 students were selected from urban, suburban, and rural
school districts. In the collected questionnaires students in-
dicated whether good grades, athletic ability, or popularity
was most important to them. They also ranked four factors:
grades, sports, looks, and money, in order of their impor-
tance for popularity. The questionnaire also asked for gen-
der, grade level, and other demographic information. The
study involved a classification task of correctly identifying
the one of the six schools using the other variables as predic-
tors.

The second data set was "Irish educational transitions
data" (IRISH) (Greaney & Kelleghan, 1984) reanalyzed
by Raftery and Hout (1993). Subjects of this data set
were 500 Irish schoolchildren aged 11 in 1967. The data
were also used, in a simplified form, as an example to
illustrate Bayesian model selection methods by Kass and
Raftery (1994). The data had 6 variables, and the classifi-
cation task was to predict the educational level (11 levels) of
the students.

Experimental setting

In order to validate our approach, we produced synthetic
missing data problems from the above real data sets by ran-
domly deleting a known portion of the data. In the experi-
ments also the sample sizes were controlled. Based on the
different completions of Anis, we performed a classification
analysis, i.e., used the completed data sets to solve a classi-
fication problem in order to study the practical implications
of different procedures for handling missing data.

For each data set, we created three different subsam-
pies of sizes 10% 25% and 50% of the original data set
size. Each time 50% of the data was reserved for the sub-
sequent out-of-sample classification analysis. In each data
sample we deleted (completely at random) 5%, 10%, 20%,
35% and 50% of the elements thus creating artificial missing
data problems satisfying the missing completely at random

BEST COPY AVAILABLE

Figure 3. The value of the stochastic complexity measure (y-
axis) of the imputed POPKIDS data matrix (N=239) as a func-
tion of the missing data percentage (x-axis). Different lines indi-
cate the different imputation schemes (ORG=the original complete
data matrix, AVG=imputing averages, RND=imputing by random,
SC=imputing by minimizing the stochastic complexity).
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(MCAR) assumption (Schafer, 1997). We then created com-
plete data matrices by imputing the missing values using two
alternative techniques. The first technique (AVG) was sim-
ply to impute the averages in the observed data. The second
technique (SC) was to use a simple greedy algorithm where
missing values were first imputed by random values (RND)
and then one by one replaced by the values that minimize
the stochastic complexity of the data. Since the missing data
situation was artificially created, we were able to also use
(as a reference point) the "oracle method" of always imput-
ing the original value (ORG). These two techniques (AVG
and SC) together with the two extreme reference techniques
(RND and ORG) were then evaluated using both the stochas-
tic complexity measure, and the percentage of correctly im-
puted values (correctness was judged by comparing the re-
sults to the original data). For each data set the setting de-
scribed above was created 100 times and the averages were
computed.

In order to study the practical implications of the differ-
ent imputation schemes with different sample sizes and dif-
ferent percentages of missing data, all the imputations were
used to build a model (classification rule) which was then
used to classify previously unseen data items (train and test
scheme). In this second set of experiments the result ob-
tained by imputation schemes were further contrasted with
the naive policy of building the model only using complete
data items, i.e., those left intact by missing data generation.
This policy corresponds to the case deletion methods widely
used in practice. Again for each data set the setting described
above was created 100 times and the averages were com-
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Figure 4. The success rate (y-axis) of recovering the origi-
nal complete POPKIDS data matrix (N=239) as a function of
of the missing data percentage (x-axis). Different lines indi-
cate the different imputation schemes (ORG=the original complete
data matrix, AVG=imputing averages, RND=imputing by random,
SC=imputing by minimizing the stochastic complexity).
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In Figure 3 we can see a typical example of the stochastic
complexity measure for the completed data as a function of
the different missing data percentages (POPKIDS data set).
It is worth noticing that while only the SC-scheme attempts
to minimize the stochastic complexity, also imputing sam-
ple averages (AVG) has the effect of minimizing complexity.
When comparing the Figures 3 and 4 the percentage of cor-
rectly imputed values can be seen to follow the (negative of)
stochastic complexity measure and is thus consistent with
the theoretical analysis. In addition it should be observed
that with respect to the average imputation approach the dif-
ference of recovering the original complete set is more than
15% on the average, and about 20% for missing data per-
centages less than 25%.

Comparing performance in classification also shows the
beneficial effect of SC-based imputation (see Figure 5). The
results also clearly demonstrate the inferior performance of
the case deletion approach for prediction tasks, from prag-
matic point of view the other commonly used technique, im-
putation of sample averages, is a significantly better alterna-
tive. However, imputing completely at random (RND) seems
to yield a surprisingly good classification results. This is due
to the fact that if missing completely at random assumption
holds even approximately, imputation of random values does
not bias the model construction.

The more detailed results for both data sets with all sam-
ple sizes, missing data percentages, and imputation methods

BEST COPY AVAILABLE
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Figure 5. The classification accuracy (y-axis) as a function of
of the missing data percentage (x-axis) when classifying 239 out-
of-sample data vectors in the POPKIDS data set. Different lines
indicate the performance of the models constructed from the com-
plete data matrices obtained by different missing data handling
schemes (ORG=the original complete data matrix, AVG=imputing
averages, RND=imputing by random, SC=imputing by minimizing
the stochastic complexity, DEL=case deletion).
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are listed in Tables 1-6.

50

Summary and discussion

We have studied the problem of missing data estimation,
and proposed a new information-theoretically justified ap-
proach to for incomplete multivariate categorical data. The
approach discussed is a model-based imputation procedure
relative to a model class, which in our case is the set of
multinomial models with some independence assumptions.
Based on the given model class assumption an information-
theoretic criteria can be derived to select between the differ-
ent complete data matrices. Thus the completion problem
in this approach can be reduced to a search problem, i.e.,
finding the data completion with minimal criterion value.

As demonstrated by the empirical results, the stochastic
complexity based approach performs well both in recovering
the original missing data. More importantly, it also succeeds
in augmenting the incomplete data matrix in such a manner,
that in a subsequent classification task the complete data can
be used to build a model that predicts better than the models
built from complete data matrices produced by alternative
methods. From practitioners point of view this latter aspect
is more interesting, as completion of the incomplete data ma-
trix is usually only an intermediate stage to applying various
analysis tasks.

It should be observed that the approach adopted is very
generic: changing the model class to a more descriptive
one (e.g., to general graphical models such as Bayesian net-
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Table 1
The value of the stochastic complexity measure of the im-
puted POPKIDS data matrix with different sample sizes
as a function of the missing data percentage (M%). Dif-
ferent columns indicate the different imputation schemes
(ORG=the original complete data matrix, AVG=imputing
averages, RND=imputing by random, SC=imputing by mth-
imizing the stochastic complexity).

Size M% AVG RND SC

47

5

10

20
35

50

638.83
641.07
639.57
624.41
588.79

640.72
646.05
653.97
662.24
667.62

631.23
627.29
620.56
610.69
599.39

119

5

10

20
35

50

1554.06
1563.74
1560.23
1509.18
1399.21

1563.32
1587.13
1623.03
1661.02
1684.87

1524.90
1513.33
1488.72
1452.33
1414.90

239

5

10

20
35

50

2999.84
3025.04
3026.34
2915.83
2679.93

3027.69
3089.80
3194.43
3304.16
3369.29

2928.01
2899.97
2841.77
2747.40
2649.96

Table 2
The success rate of recovering the original complete
POPKIDS data matrix with different sample sizes as a
function of the missing data percentage (M%). Dif-
ferent columns indicate the different imputation schemes
(ORG=the original complete data matrix, AVG=imputing
averages, RND=imputing by random, SC=imputing by min-
imizing the stochastic complexity).

Size M% AVG RND SC

47

5

10
20
35
50

34.76
34.98
35.32
35.96
35.55

29.12
29.37
29.95
29.63
29.60

53.04
52.12
47.55
43.34
38.22

119

5

10

20
35
50

35.68
35.88
35.87
35.95
36.12

29.88
29.42
29.92
29.98
29.83

57.34
54.97
51.68
47.64
42.14

239

5

10
20
35
50

36.50
35.78
35.89
35.71
35.78

29.95
30.26
29.89
29.92
29.67

57.67
56.27
54.02
49.61
45.06
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Table 3
The classification accuracy as a function of of the miss-
ing data percentage (M%) when classifying 239 out-of-
sample data vectors in the POPKIDS data set. Differ-
ent columns indicate the performance of the models con-
structed from the complete data matrices (sizes 47, 119 and
239) obtained by different missing data handling schemes
(ORG=the original complete data matrix, AVG=imputing
averages, RND=imputing by random, SC=imputing by min-
imizing the stochastic complexity, DEL=case deletion).

Size M%
5

10
47 20

35
50

5

10
119 20

35

50

AVG
46.39
43.04
34.81
23.78
17.75
60.67
56.49
46.00
31.90
25.58

RND
46.87
44.12
39.82
32.04
23.75
61.15
58.43
52.30
42.81
30.10

SC
46.03
44.24
39.85
32.05
25.07
61.13
58.26
52.85
44.70
33.82

DEL
41.68
33.97
24.03
14.99
14.23
55.21
46.27
31.10
16.85
14.38

5 70.08
10 66.07

239 20 56.59
35 42.02
50 33.81

70.86 71.13 66.47
68.10 69.11 57.13
61.83 63.29 37.21
51.92 53.67 18.23
39.60 42.93 14.45

Table 4
The value of the stochastic complexity measure of the im-
puted IRISH data matrix with different sample sizes as
a function of the missing data percentage (M%). Dif-
ferent columns indicate the different imputation schemes
(ORG=the original complete data matrix, AVG=imputing
averages, RND=imputing by random, SC=imputing by min-
imizing the stochastic complexity).

1 0

Size M% AVG RND SC
5 380.38 381.33 373.58

10 383.15 386.50 371.37
50 20 384.56 394.21 367.10

35 376.72 401.27 360.97
50 355.28 406.76 355.29

5 901.80 907.08 877.15
10 912.56 927.24 870.25

125 20 917.87 958.75 856.93
35 893.00 992.44 840.91
50 829.52 1013.40 820.93

5 1729.24 1746.24 1670.96
10 1755.35 1799.88 1656.73

250 20 1765.85 1880.21 1627.49
35 1708.64 1963.74 1584.08
50 1572.05 2016.08 1538.59
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Table 5
The success rate of recovering the original complete IRISH
data matrix with different sample sizes as a function of the
missing data percentage (M%). Different columns indicate
the different imputation schemes (ORG=the original com-
plete data matrix, AVG=imputing averages, RND=imputing
by random, SC=imputing by minimizing the stochastic com-
plexity).

Size M% AVG RND SC

50

5

10
20
35
50

36.73
36.47
35.90
35.38
34.78

29.87
29.80
31.72
31.15
29.80

57.60
57.23
54.82
48.55
42.52

125

5

10
20
35
50

37.59
37.56
37.05
37.21
36.73

29.89
29.81
30.49
29.89
30.34

62.51
59.37
56.79
51.44
44.85

250

5
10
20
35
50

36.85
37.08
37.58
37.26
37.11

30.57
30.03
30.49
30.76
30.56

62.13
60.37
57.44
52.13
46.69

Table 6
The classification accuracy as a function of of the missing
data percentage (M%) when classifying 250 out-of-sample
data vectors in the IRISH data set. Different columns in-
dicate the performance of the models constructed from the
complete data matrices (sizes 50, 125 and 250) obtained
by different missing data handling schemes (ORG=the
original complete data matrix, AVG=imputing averages,
RND=imputing by random, SC=imputing by minimizing the
stochastic complexity, DEL=case deletion).

Size M%
5

10

50 20
35
50

AVG
53.11
50.30
43.14
27.84
17.72

RND
53.21
51.58
49.19
43.75
33.69

SC
53.45
52.04
50.30
46.26
38.06

DEL
52.58
50.08
44.56
30.24
10.79

5

10
125 20

59.50
57.26
49.02

59.68
58.66
55.40

60.24
59.35
57.31

59.26
57.05
50.34

35 33.04 49.66 52.84 41.24
50 20.70 41.18 44.80 22.62

5 61.80 61.84 61.96 61.79
10 60.34 61.47 61.80 61.06

250 20 53.80 59.86 60.74 56.91
35 40.49 54.74 57.87 46.85
50 27.01 48.19 51.40 30.80
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works (Jensen, 1996; Pearl, 1988)) allows better "compres-
sion" of the data, i.e., better completions can be made. It
is important to notice that in this sense the information-
theoretic approach to modeling based on compression is akin
to Bayesian modeling, which also always is relative to a set
of models. Naturally missing data estimation is only one
particular application of the MDL-approach, for other in-
teresting applications such as model selection, time series
analysis and predictive modeling the literature on minimum
encoding modeling approaches should be consulted (see for
example (Baxter & Oliver, 1994; Kontkanen, Myllymaki, Si-
lander, & Tirri, 1997b; Rissanen, 1987, 1989; Wallace &
Freeman, 1987) and references therein).
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