
DOCUMENT RESUME

ED 431 792 TM 029 878

AUTHOR Egan, Karla L.; Sireci, Stephen G.; Swaminathan, Hariharan;
Sweeney, Kevin P.

TITLE Effect of Item Bundling on the Assessment of Test
Dimensionality. Laboratory of Psychometric and Evaluative
Research Report No. 328.

INSTITUTION Massachusetts Univ., Amherst. School of Education.

PUB DATE 1998-04-00
NOTE 35p.; Paper presented at the Annual Meeting of the National

Council on Measurement in Education (San Diego, CA, April
12-16, 1998).

PUB TYPE Reports - Evaluative (142) -- Speeches/Meeting Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Certified Public Accountants; *Evaluation Methods; Licensing

Examinations (Professions); Simulation; *Test Items

IDENTIFIERS *Dimensionality (Tests); *Item Bundles

ABSTRACT
The primary purpose of this study was to assess the effect

of item bundling on multidimensional data. A second purpose was to compare
three methods for assessing dimensionality. Eight multidimensional data sets
consisting of 100 items and 1,000 examinees were simulated varying in terms
of dimensionality, inter-dimensional correlation, and number of items loading
on each dimension. Analyses were also performed on two samples of examinees

from the November 1996 administration of the Uniform Certified Public
Accountant examination. The items from both data sets were grouped into
bundles that varied in size and content. Principal components factor
analysis, maximum likelihood factor analysis, and multidimensional scaling
were used to analyze the item bundles as well as the items themselves.

Results suggest that item bundling tends to obscure multidimensionality, but
analyses on the items themselves overestimate dimensionality.
Multidimensional scaling also appeared better able to recover the underlying
dimensionality of the data than the other two techniques. (Contains 13 tables

and 17 references.) (Author/SLD)

********************************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.
********************************************************************************



Effect of Item Bundling on the Assessment of Test Dimensionality1'2

Karla L. Egan
Stephen G. Sireci

Hariharan Swaminathan
University of Massachusetts, Amherst

Kevin P. Sweeney
American Institute of Certified Public Accountants

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
litis document has been reproduced as
received from the person or organization
originating it.

O Minor changes have been made to

improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL

HAS BEEN GRANTED BY

_lAcutoL, E5a,in

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

1 Paper presented at the National Council on Measurement in Education, San Diego, CA, April 1998.
2 Laboratory of Psychometric and Evaluative Research Report No. 328. University of Massachusetts at Amherst,
School of Education.

2
BEST COPY AVAILABLE



Abstract

The primary purpose of this study was to assess the effect of item bundling on multidimensional
data. A secondary purpose was to compare three methods for assessing dimensionality. Eight
multidimensional data sets consisting of 100 items and 1000 examinees were simulated varying
in terms of dimensionality, inter-dimensional correlation, and number of items loading on each
dimension. Analyses were also performed on two samples of examinees from the November
1996 administration of the Uniform CPA examination. The items from both data sets were
grouped into bundles that varied in size and content. Principal components factor analysis,
maximum-likelihood factor analysis, and multidimensional scaling were used to analyze the item
bundles as well as the items themselves. Our results suggested that item bundling tends to
obscure multidimensionality but analyses on the items themselves overestimate dimensionality.
And, MDS appeared better able to recover the underlying dimensionality of the data than the
other two techniques.
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Introduction

The assessment of test dimensionality remains an important endeavor for

psychometricians. Appraising the dimensionality of test response data is necessary for

understanding the construct measured by the test and for determining the number of scores

needed to adequately summarize test performance. Moreover, tests are increasingly being

developed or scored using unidimensional item response theory (IRT) models, which assume the

test is measuring a single latent trait (dimension). This increasing use of IRT underscores the

need for evaluating test dimensionality to ensure the unidimensionality assumption holds for the

data to which these models are applied.

Historically, principal components analysis (PCA) and common factor analysis have been

used to evaluate test dimensionality. However, most educational tests contain items that are

scored dichotomously, and factor analysis of dichotomous data has been shown to overestimate

true dimensionality when the item difficulties are not uniform (Bock, Gibbons, & Muraki, 1988;

Green, 1983; Hattie, 1985; McDonald & Ahlawat, 1974). To address this problem, newer

techniques have emerged designed specifically for evaluating the dimensionality of dichotomous

test data. Among these techniques are non-linear factor analysis (Bock et. al. 1988; McDonald,

1967) and DIMTEST (Stout et. al., 1991).

Unfortunately, these newer methods for appraising test dimensionality are designed to

handle only dichotomously-scored data, which limits their applicability. This limitation is

unfortunate because more and more educational tests comprise both items that are scored

dichotomously, such as multiple-choice items, and items that are scored polytomously, such as
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constructed-response items. Thus, appraising the dimensionality of current educational tests is

not straightforward.

PCA and common factor analysis can be used to analyze the dimensionality of a test data

that include both polytomous and dichotomous items; however, the mere presence of

dichotomous/polytomous scoring differences among items may produce "meaningless"

(artifactual) factors due the scoring differences among the item types. Furthermore, the expected

measurement error of the items would not be consistent across item type. In particular, the error

associated with a single multiple-choice item is expected to be high. As Dorans and Lawrence

(1987) state "item level data is fraught with noise due to the unreliability of a single item, ...

variation due to differences in item difficulty and examinee item responding strategies are likely

to dominate item level analyses" (p. 84). For these reasons, many dimensionality analyses have

used an item parceling (bundling) approach, where subsets of items, called parcels or bundles,

are created from subsets of individual items (e.g., Cattell, 1956, Cattell & Burdsal, 1975; Dorans

& Lawrence, 1987).

Bennett, Rock, and Wang (1991) provide a recent example of the use of bundling for

evaluating the dimensionality of a test comprising both multiple-choice and constructed-response

items: the Advanced Placement Computer Science Examination. This exam comprised 50

multiple-choice items (scored dichotomously) and 5 constructed-response items (scored on a ten-

point scale). Bennett et al. grouped the multiple-choice items into five bundles of ten items each.

Thus, each examinee had ten scores: five based on the five multiple-choice item bundles, and

five based on the constructed-response items. The 10X10 correlation matrix of bundles and

constructed response items was then factor-analyzed, rather than the original 55X55 matrix of
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multiple-choice and constructed response items. There are numerous other applications of

bundling in the evaluation of test dimensionality (e.g., Dorans & Lawrence, 1987; Lukhele &

Sireci, 1994; Thissen, Wainer, & Wang, 1994). The typical bundling procedure followed in

these studies is to form bundles within content area that are similar with respect to average item

difficulty and variance.

Although bundling items reduces the problems associated with item-level data and item

format scale differences, the effect of the bundling process itself on the detection of

dimensionality is relatively unknown. A legitimate concern is that the creation of bundles may

obscure unique and construct-relevant variance present in the item-level data. For example,

suppose a 30-item test measures three uthque dimensions. If two bundles of 15 items each were

created, obviously, a dimensionality analysis could not recover the three dimensions. If three

bundles of ten items each were created, the way in which the bundles were formed would greatly

determine whether the three dimensions are recovered. Although this example is extreme and

would not likely be followed in practice, it illustrates the more insidious problem: important

dimensionality information may be lost when items are bundled.

The primary purpose of this paper is to assess the effect of item bundling on

multidimensional test data. A secondary purpose is to compare three methods for assessing this

dimensionality. The methods are compared using both simulated and real test data.

Method

Simulated Data

Eight multidimensional data sets were generated varying in terms of dimensionality,

inter-dimensional correlation, and number of items loading on each dimension. The data were
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simulated to have one-, two-, or three-dimensions. The interdimensional correlation matrix for

the multidimensional data sets was specified to be either slightly correlated (.10) or highly

correlated (.60) similar to Hambleton and Rovinelli (1986). Within each of the correlation

conditions either equal or unequal number of items were specified to load on each factor. So, in

the equal loading conditions for the two-dimensional data, the first 50 items defined the first

factor while the second 50 items measured the second factor. In the unequal loading condition

for the two-dimensional data, 67 items measured trait 1 while 33 items loaded on trait 2. For the

three-dimensional data, under the equal loading condition, 34 items measured the first factor and

33 items were set to load on the second and third factors. For the three-dimensional data in the

unequal loading condition, 50 items loaded on the first latent variable while 25 defined the

remaining two factors.

Unidimensional data were also generated for comparative purposes. We wanted to ensure

that our techniques would be able to detect unidimensional data once the items were bundled

together. For the unidimensional data, all items loaded on one factor. Table 1 presents a

summary of the simulation conditions for each data set. All simulation conditions were

replicated 100 times.

For both the unidimensional and multidimensional data sets, 100 dichotomously scored

items were simulated with the 3-parameter logistic model. One thousand examinees were drawn

from a normal ability distribution (mean=0 and standard deviation=1). The items were specified

such that b was uniformly distributed in the interval (-2, 2); a was uniformly distributed in the

interval (0.6, 2.0); and c was uniformly distributed in the interval (0.00, 0.25) (Hambleton and

Swaminathan, 1985; Hambleton and Rovinelli, 1986).
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Bundling Procedure, Simulated Data

Two bundling techniques were used to create the item parcels. Since the size of the item

bundle is a question of interest, each technique was used to create four different sized bundles.

Bundles consisted of four, five, 10, or 20 items; therefore, analyses were performed on either 25,

20, 10, or five bundles of items. First, parallel item bundles were constructed using observed p-

values (percentage of examinees correctly answering an item) thereby creating bundles with

approximately equal mean difficulty and standard deviation.' To confirm that the bundles had

nearly the same difficulty and standard deviation, one-way ANOVAs were performed between

bundles within a subtest. Using a=.05, no significant differences were found between the

bundles. These bundles are called difficulty bundles.

Next, items were grouped randomly. Here, 100 numbers were randomly generated from

a uniform distribution. The items were then sorted according to the random numbers and

parceled. These bundles are called random bundles. For both the difficulty and random bundling

strategies, item bundle scores were computed for each examine and correlations were computed

between the bundles. The dimensionality of all bundling strategies were analyzed separately

CPA DATA

The Uniform Certified Public Accountant (CPA) exam consists of four subtests:

Auditing, Accounting and Reporting (ARE), Financial Accounting and Reporting (FARE), and

Legal and Professional Responsibilities (LPR). In order to pass the CPA exam, examinees must

pass all four sections of the test. The data come from two random samples of 4,032 examinees

who took all four sections of CPA exam in November, 1996. Three types of items (multiple

choice, other objectively scored answer format (00AF), and essay) are used in the CPA exam.
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OOAFs are questions that consist of, for example, 10 multiple true-false items. These items are

usually locally dependent within a single OOAF question.

Bundling Procedure, CPA Data

For the Uniform CPA exam, two item bundling strategies were used. First, we inspected

the dimensionality structure through the use of "item-type bundles". This bundling strategy

allowed us to evaluate the effects of item type on dimensionality. These bundles comprised items

that were of the same format (i.e. essay bundles, multiple-choice bundles, other objective answer

format (00AF) bundles). Bundles with 10-point scales were created since all essay and many

OOAF questions are on this scale. One OOAF item was split into two bundles and two OOAF

items were combined into one bundle in order to approximate this scale. The multiple-choice

items were then bundled according to subtest and item difficulty. So, the multiple-choice items

within a subtest, say Auditing, were ranked and then grouped according to their p-values using a

method similar to that used to create the difficulty bundles in the simulated data. This technique

ensured that the bundles had approximate equivalent difficulty distributions. Again, the total

score of the multiple-choice item-type bundles were calculated using the appropriate weights

when necessary.2 This process resulted in 39 item-type bundles worth 10 points each.

Next, we measured dimensionality with "content bundles". These bundles comprised

items that were listed in the same content area within a test section. This bundling strategy

allowed us to evaluate the presence of dimensions linked directly to the content area measured on

the exam. First, twenty content area bundles were constructed (using the test specifications) with

point values ranging from 4 to 43. The total score of each bundles was calculated using the

appropriate weights when necessary. In future analyses, content bundles might be created so that
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they are equal in size.

We also assessed the dimensionality of the exam or subtest at the item level. At the item-

level, our analyses were restricted to the objectively-scored dichotomous items. This method

allowed us to assess the affect that content as well as item type has on the dimensionality of the

exam.

Procedure

Three methods were used to assess the dimensionality of the data sets: principal

components factor analysis (PCFA), maximum-likelihood factor analysis (MLFA), and

multidimensional scaling (MDS). PCFA were performed on each of the item-bundle correlation

matrices and on the inter-item tetrachoric correlations matrices. Dimensionality was assessed by

inspection of plots of the eigenvalues. Typically, the number of significant factors is determined

by the appearance of an "elbow" in the plot (Hambleton and Rovinelli 1986). The number of

eigenvalues to the left of this elbow is usually taken to be the dimensionality. We also looked at

the proportion of variance explained by the first eigenvalue. If a data set is unidimensional, then

the first eigenvalue should explain a relatively large proportion of the variance. If it does not, the

data may be multidimensional despite the appearance of one dominant eigenvalue. This could

also signify a unidimensional data set with a great deal of error.

MLFA were performed on each of the item-bundle correlation matrices. MLFA allows

us to test hypotheses regarding the number of factors that should be fit to the data using a

likelihood ratio chi-square test. Here we tested the hypothesis of the fit of a one-factor model

versus a model with enough factors to fit the data perfectly. A non-significant chi-square

indicates good model-data fit. Of interest was the degree to which the chi-square would change
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both across and within the simulation conditions. These analyses were only performed on the 10,

20, and 25 bundle data sets. In the 5 bundle condition, there simply were not enough variables to

obtain useful results with the MLFA. At the item level, we encountered problems with non-

gramian matrices.

The chi-square test is adversely affected by sample size and the large samples used with

the CPA data rendered the chi-square test virtually useless. So, the Tucker-Lewis Rho

coefficient was used to assess dimensionality of the CPA exam. This coefficient measures the

adequacy of a model by expressing what percentage of the variance of a completely specified

model is accounted for by a reduced model. If the coefficient is large, usually .9 or greater, the

reduced model accounts for most of the correlation among the variables, thus any bias introduced

by leaving out factors is negligibly small.

Promax rotation was used to aid in the interpretation of the factor structure of the CPA

exam. This type of rotation was used, instead of varimax rotation, because it provides a more

realistic model of the data. The underlying traits detected by the MLFA are most likely

correlated, and promax rotation allows for this relationship among the latent traits. MLFA also

provides a measure of the uniqueness of the variables. Uniqueness is the variance of a variable

that is not explained by the retained factors.

The MDS analyses were conducted using the SPSS implementation of the ALSCAL

algorithm with the Euclidean distance options. Dimensionality was determined by inspecting

the fit values (STRESS and R2) and interpretability of the various dimensional solutions.

Typically STRESS values should be less than .10 and R2 values should be greater than .90. If

data are unidimensional, then the STRESS value might be as high as .15. Scree plots of STRESS
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and R2 values were also inspected to help determine the dimensionality of a data set. Like factor

analysis, dimensionality is determined by an "elbow" in the plot; here, however, the elbow

exactly marks the number of underlying dimensions. MDS was performed only in conditions

where, at least, 10 variables could be analyzed; fewer variables yielded unstable estimates for the

MDS scale values. So, MDS was only performed on the 20 bundle condition (5 items per

bundle), 25 bundle condition (4 items per bundle), and on the items themselves.

Results

The results presented below are averages across 100 replications. Also, the results of the

random and difficulty bundles were essentially identical for most of the analyses. The results of

the difficulty bundles will only be presented unless the result of analyses from the random and

difficulty bundles differed.

Unidimensional Data

PCFA: Results of the item bundle and item level factor analyses of the difficulty bundles for the

unidimensional data sets are presented in Table 2. Unidimensionality was correctly identified

for all item-bundle conditions. Not surprisingly, the proportion of variance accounted for

increases as the number of bundles in a data set decreases. The dimensionality of the item-level

condition is more difficult to determine. Examination of eigenvalue plots suggest either a one-

or two dimensional solution; however, the much larger proportion of variance explained by the

first factor, relative to the second factor, may lead some to conclude the data are unidimensional.

MLFA: Table 3 summarizes the chi-square statistic and degree of freedom for the MLFA. None

of the chi-squares are statistically significant, indicating unidimensionality for all conditions.

Also of note is that the ratio of the chi-square to its degrees of freedom decreases, albeit slightly,
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as the bundle size increases indicating a better model-data fit in the 10 bundle condition than in

the other two conditions.

MDS: Table 4 presents the STRESS and R2 values for the MDS analyses of both the difficulty

and random bundles. For the random bundles, MDS correctly identifies unidimensionality in the

20 bundle condition. The STRESS values in the 25 bundle condition as well as the item-level

condition are slightly above the .15 criteria indicating that the data are multidimensional.

However, R2 values in addition to the scree plots of the STRESS values suggest unidimensional

solutions. The MDS analyses failed to find a unidimensional solution for the difficulty bundles.

The fit statistics for the difficulty bundles reveal poor fit in three dimensions (the most

dimensions that could be specified and still yield stable results). The MDS analyses for both the

20 and 25 bundle condition suggest a multidimensional solution. This result is surprising given

the fact that both the PCFA and MLFA found the same data to be unidimensional. Moreover,

until this point the random bundle data performed in much the same way as the difficulty bundle

data. In order to attempt to explain this apparent aberration, we examined the stimulus

coordinates of one of the replications. We looked for relationships between the difficulty of the

bundle, the variance of the bundle, and the stimulus coordinates. As expected, the p-values

failed to be strongly correlated with stimulus coordinates. The variance of the bundles was

strongly correlated with the stimulus coordinates; however, the same relationship was found

between the stimulus coordinates of the random bundle data and the variance of the random

bundles. The two remaining hypotheses for these surprising findings are that the MDS solutions

are picking up on a subtle aspect of the difficulty bundling algorithm, or are having trouble

fitting data with such little variation.
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Two-dimensional data

PCFA: Table 5 summarizes the results of the PCFA of two dimensional data for all correlation

and loading conditions. For the 5 and 10 bundle conditions across all correlation and loading

conditions, the analyses incorrectly suggest unidimensionsality. From Table 5, it is clear that

PCFA detects more dimensions as the number of bundles increases; uncovering the most latent

variables when item-level data is used.

In the low correlation, equal loading (LCEL) and the low correlation, unequal loading

(LCUL) conditions for the 20 bundle data, the eigenvalue plots suggest one, or possibly two,

dimensions. In both of the conditions, examination of the percent of explained variance reveals

one dominant factor and a weak second factor. In the LCEL and LCUL conditions for the 25

bundle data, the scree plots of eigenvalues in Table 5 correctly suggest a two dimensional

solution while the proportion of variance explained again suggest one dominant factor and a

weak second factor. At the item-level for both conditions, the eigenvalue plots revealed a two-

dimensional solution; however, one could also argue that these plots showed a three- or four-

dimensional solution. The proportion of variance explained showed a two factor solution.

In the high correlation, equal loading condition (HCEL), the scree plots of eigenvalues

suggest a one or two-dimensional solution for the 20 and 25 bundle conditions. For both of

these bundling conditions, the proportion of variance explained suggests only a unidimensional

solution. The item-level analysis again shows multidimensionality. Here, the eigenvalue plot

suggested a unidimensional solution but a three- or four-dimensional solution is not

unreasonable. The proportion of variance revealed one dominant factor with a weak second

factor. In the high correlation, unequal loading condition (HCUL), the scree plots show a one-
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dimensional solution for the 20 bundle condition and a one- or two-dimensional solution for the

25 bundle condition. In both these conditions, the proportion of variance accounted for only

suggest a unidimensional solution. For the item-level analysis, the eigenvalue plot again showed

a unidimemsional solution but, again, a three- or four-dimensional solution could be interpreted

from these plots. The explained variance suggests a two factor solution.

MLFA: Table 6 summarizes the chi-square statistics for the maximum-likelihood factor

analysis. Across all correlation and loading conditions except HCUL, a three-dimensional

solution was suggested by the chi-square statistic for the 10 bundle data; in the HCUL condition,

a two dimensional solution was revealed. For both the LCEL and HCEL conditions, MLFA

uncovered a four-dimensional solution for both the 20 and 25 bundle data sets. In the LCUL and

HCUL, MLFA suggests a three-dimensional solution for the 20 bundle data and a four-

dimensional solution for the 25 bundle data. Of interest here is the degree to which this ratio

changes across and within data sets and correlation loading conditions. Within all correlation

and loading conditions, the 25 bundle data appears to have best model-data fit when a one-factor

model is fitted to the data. In both low correlation conditions, it continues to fit the model best

when a two factor model is used.

MDS: Table 7 presents the results of the MDS analyses of the items and item bundles. Using

our criteria of STRESS (near or lower than .1) and RSQ (above .9), unidimensionality is

correctly rejected across all conditions. At the item-level, the STRESS and R2 values suggest a

three-dimensional solution across all correlation and loading conditions. However, we could also

conclude a two-dimensional solution if we look at the scree plots of the STRESS and R2 values.

In the low correlation conditions, the fit statistic suggest a two-dimensional solution for the 20
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and 25 bundle data. Good fit in one dimension was observed for the high correlation conditions

for the 20 and 25 bundle data.

Three-Dimensional Data

PCFA: Table 8 summarizes the eigenvalues and proportion of variance explained across the 100

replications for the three-dimensional data. For all correlation conditions analyses of the 5 and

10 bundle data sets again led to a conclusion of unidimensionality. Within correlation

conditions, we again find that the proportion of explained variance by the first factor decreases as

the number of bundles increases. In both the LCUL and the LCEL conditions, eigenvalue plots

showed the data to be unidimensional in both the 20 and 25 bundle data sets but choosing three

dimensions for both of these data sets is not unreasonable. For both of these conditions, the

percent of explained variance suggested dominant first factors with weak second and third

factors. At the item level, scree plots showed the data to have at least 3 dimensions in the LCEL

and LCUL conditions; however, an argument could be made that the LCEL condition has at least

6 factors while the LCUL condition has 5 or 6 factors. In the high correlation conditions, plots

of the eigenvalues uncovered only one factor in the 20 bundle data but revealed one or possibly

two dimensions in the 25 bundle data. When the proportion of variance was examined under

these conditions, there appeared to be one dominant factor.

MLFA: Table 9 presents the chi-square statistics for the three-dimensional data. Inspection of

the table clearly reveals that as the number of bundles decreases, the number of dimensions

detected decreases. In the 10 bundle condition across all correlation and loading conditions,

three dimensions are detected. In the 20 bundle condition across all correlation and loading

conditions, four dimensions are detected. And, in the 25 bundle condition across all other
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conditions, the chi-square statistic suggests a five dimensional solution is necessary to fit the

data.

MDS: The STRESS and R-square fit statistics are summarized in Table 10 for the three-

dimensional data. Here, the item-level analysis again reveals a three-dimensional solution is

necessary to fit the data across all correlation and loading conditions. When the bundling

conditions were examined, the fit statistics showed the data to be multidimensional. The fit

statistics as well as the scree plots of the STRESS statistic suggest a two dimensional solution for

both the 20 and 25 bundle data across all conditions. In most of these cases the STRESS values

were not strictly at .10 but they were only slightly above (only .11) and the R2 indicated

acceptable fit at the two-dimensional level.

CPA Data

Table 11 reveals the results of the factor analysis on the Uniform CPA test data. The data

appear unidimensional for both bundling strategies (item type and content area) as well as for the

item-level analysis (this finding held across both random samples). Similar to the analysis of

simulated data, the amount of variance explained increases as the bundle size increases. Here we

see that, regardless of assessment strategy (items or bundles), the first factor is the dominant

factor. In the item-level analysis, however, this factor accounts for only 12% of the variance in

both samples; moreover, there are 6 eigenvalues greater than one. When item-type bundles are

examined, the first factor accounts for nearly 37% of the variance across both samples. Finally,

when content bundles are examined, the first factor accounts for almost 44% of the variance

across both samples. Thus, at the item level, the exam appears to be multidimensional. This is

probably due to a large amount error in the item-level data.
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Table 12 summarizes the results from the MLFA. Here we see that when item-type

bundles are analyzed, the three-factor solution accounts for about 95% of the variance in both

samples. Very little is added by going from a three to a four-factor solution; only 1.5% more

variance is explained by going from the three- to four-factor solution in Sample 1 and 1.4% in

Sample 2. Similarly when content bundles are analyzed, the TL Rho criterion indicates a three-

factor solution across both samples. Here, the three-factor solution accounts for nearly 97% of

the variance in both samples.

Inspection of the factor loadings for both bundling strategies reveal that the factors appear

to correspond to content area in both samples. The Auditing bundles appear to load strongly on

the first factor. Interestingly, this factor also seems to pull out the LPR item-type bundles. On

the second factor, there are strong factor loadings for the FARE and ARE bundles suggesting that

these items may be measuring similar concepts. The third factor appears to correspond to the

LPR and ARE content areas.

Table 13 shows the STRESS and R2 values for the MDS analyses of the CPA exam.

Analysis of the 20 content bundles suggested a one-dimensional. Analysis of the 39 item-type

bundles suggested a two-dimensional solution. Figure 1 presents the scatterplot of the stimulus

coordinates for the two-dimensional solution. In interpreting the two-dimensional solution for the

item-type bundles, it appears that one dimension separated the bundles according to content

(multiple-choice, 00AF, and essay bundles were created within content area). On this

dimension, LPR items appear to separate from FARE items. The other dimension appears to be

an item-type dimension separating essays from multiple choice items.
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At the item-level, at least three dimensions underlie the data based on the STRESS and

R2 scores (see Table 13). The first dimension was moderately related to item difficulty

(correlation between item p-values and the coordinates on this dimension was .80). The other

dimensions were more difficult to interpret, but did seem to be related to some distinctions

among the content areas.

Discussion

Item bundling is a popular method for handling the non-linearity problem of dichotomous

items. While this method helps overcome some of the shortcomings of dichotomous data, its

effect on dimensionality has been unclear. The results suggest that item bundles tend to obscure

multidimensionality but analyses on the items themselves tend to overestimate dimensionality.

For the unidimensional data, virtually all item-level analyses overestimated

dimensionality. When the data were bundled, all bundling conditions supported

unidimensionality, with the exception of the MDS analysis on the "difficulty" bundles. However,

in general, the results for the unidimensional data indicate that item bundling is useful for

compensating the dimensionality- increasing effects of the error inherent in the item-level data.

For the multidimensional data as the number of bundles increased, so too did detection of

dimensionality. It is hard to generalize beyond the specific conditions simulated, but for these

data, it is clear that more than ten bundles are needed to identify the two- or three-dimensions

underlying the data.

Across the different types of analyses the number of detected dimensions increased as the

size of the bundle decreased. Analyses of the large item bundles (5 and 10 bundle data) using

PCFA consistently detected unidimensionality regardless of the simulation condition. Using
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PCFA on the smaller bundles in the low correlation conditions, we correctly assessed the

dimensionality of the two and three dimensional data. However, in the high correlation

condition, the multidimensionality of the data sets were harder to detect, especially in the

unequal loading conditions. When PCFA was based on the items themselves, we overdetected

the number of dimensions even in the unidimensional data.

Using MLFA, multidimensionality was detected for all bundling conditions. MLFA

tended to overestimate the number of dimensions for all but the 10 bundle, three-dimensional

data sets. MLFA correctly estimated the number of dimensions when the unidimensional data

was analyzed. This suggest that MLFA may be a useful tool when one wants to detect the

presence of multidimensionality in a data set.

Finally, using MDS, multidimensionality was detected. However, for the three-

dimensional data, it was equivocal whether MDS supported a two- or three-dimensional solution.

So, when the bundles were analyzed, MDS recovered two dimensions across all conditions. Also,

MDS detected multidimensionality in the unidimensional data when the difficulty bundles were

analyzed. These problems suggest that MDS may be adversely affected by the bundling

procedure. When the items were analyzed, MDS recovered the correct number of dimensions in

the multidimensional data sets across all conditions as well as the unidimensional data.

Our results definitely suggest that the proportion of bundles relative to the size of the data

set is important in dimensionality analyses (i.e., the size and number of bundles is important).

One relevant question becomes at what point do we find an optimal bundle size that reflects the

underlying dimensionality of a data set without overestimating the dimensions (like the item-

level data) or underestimating the dimensionality (like most of the bundle-level data)? For our



data sets, it appears that the use of smaller bundles might better capture the underlying

dimensionality (i.e. more variables). This question can better be answered by examining more

bundling conditions. One must also question if our larger bundles were unsuccessful because

there were too few of them.

Our analyses concentrated on five bundling conditions (if you count the item-level

analysis as one item per bundle) for a 100 item test. We chose to analyze a large test to reflect

the conditions of the real data with which we were working. It might be useful to simulate a

shorter test with smaller bundling conditions. It would be also interesting to see how our

techniques detected dimensionality when smaller bundles are used.

A limitation of the current study is the method we used for bundling items. In practice,

items are bundled within a content area. We bundled our data across content areas because of the

way our multidimensional data was simulated. A more realistic situation might be for the items

to load jointly on traits, say .60 on one and .40 on the other. If we were to do this, we could

bundle within a content area and we could see if the bundles adequately capture the underlying

construct. Because our bundles were created across traits, we could not tell if the bundles were

loading on the correct dimensions. Nonetheless, this research does show that bundling may

confound the dimensionality detection process. Further study is required to better understand the

aspect of bundling that produces these effects.
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Endnotes

Here, items were sorted according to their p-values from hardest to easiest. They were then placed into, for
example, 25 bundles of four items by assigning a number from one to 25 for each of the first 25 items. In this
bundling condition, the items that ranked 26 to 50 in difficulty were assigned to bundles by reversing the order of
the assignment numbers so that we now went down from 25 to one. The items ranking from 51 to 75 in difficulty
were again placed in bundles by assigning numbers from one to 25. For the remaining 25 items, the assignment
numbers were again reversed.

2 In the CPA exam, some multiple choice items are differentially weighted according to content specifications.
These weights were used prior to dimensionality analyses.
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Table 1 Summary of Simulation Conditions for Each Data Set
Number of Items

Data Set Traits 1(8 1, 02) First Trait Second Trait Third Trait
1 1 n/a 100 n/a n/a
2 2 .10 50 50 0
3 2 .10 67 33 0
4 2 .60 50 50 0
5 2 .60 67 33 0
6 3 .10 34 33 33
7 3 .10 50 25 25
8 3 .60 34 33 33
9 3 .60 50 25 25



Table 2 Eigenvalues and Percent of Variance Accounted for Using Simulated Test Data, Difficulty
Dataset # of Bundles Factor

IV
Unidimensional 5 Bundles

4.36 (.03)
% of cr2 87.26 (.70)

I 0 Bundles
7.52 (.12)

% of o2 75.19 (1.16)
20 Bundles

11.77 (.29)
% of cr2 58.87 (1.44)

25 Bundles
X 13.29 (.37)
% of a 53.18 (1.48)

Items
40.28 (1.54)

% of a2 40.28 (1.54)

0.18 (.01) 0.17 (.01) 0.15 (.01)
3.66 (.26) 3.31 (.23) 3.04 (.18)

0.36 (.03) 0.32 (.02) 0.31 (.02)
3.55 (.28) 3.25 (.19) 3.05 (.18)

0.62 (.03) 0.58 (.02) 0.55 (.02)
3.12 (.17) 2.89 (.12) 2.75 (.12)

0.72 (1.48) 0.67 (.03) 0.64 (.03)
2.87 (.13) 2.69 (.11) 2.57 (.10)

4.88 (.51) 1.92 (.15) 1.73 (.08)
4.88 (.51) 1.92 (.15) 1.73 (.08)

Table 3 Maximum-Likelihood Factor Analysis Using Simulated Test Data, Difficulty
Dataset # of Bundles

Unidimensional 10 Bundles
X2 (df) 36.96(35)

sd 8.53
20 Bundles

X2 (df) 180.46 (170)
sd 18.16

25 Bundles
X2 (df) 295.57 (275)

sd 26.49

Factor
IV

21.47 (26) 11.55 (18)
5.56 3.92

145.49 (151)
14.58

249.16 (251)
23.26

117.91 (133)
12.30

212.21 (228)
20.88

94.94 (116)
10.42

180.78 (206)
18.47

Table 4 STRESS and R-Square Values for MDS Solutions using Euclidean Distance
Dataset # of Bundles

Unidimensional, Difficulty 20 Bundles
STRESS 0.40 (.04) 0.26 (.02) 0.17
R2 0.60 (.13) 0.75 (.08) 0.83

25 Bundles
STRESS 0.44 (.04) 0.27 (.02) 0.20
114 0.51 (.11) 0.69 (.06) 0.78

Items
STRESS 0.17 (.02) 0.13 (.01) 0.11
R2 0.92 (.02) 0.95 (.01) 0.96

Unidimensional, Random 20 Bundles
STRESS 0.15 (.03) 0.09 (.02) 0.06
R2 0.93 (.03) 0.97 (.01) 0.98

25 Bundles
SS 0.16 (.03) 0.10 (.02) 0.07

0.92 (.03) 0.96 (.02) 0.96
Items

STRESS 0.17 (.02) 0.13 (.01) 0.11
R2 0.92 (.02) 0.95 (.01) 0.96

2 6

Dimension(s)
IV V VI

(.01)
(.06)

(.01)
(.05)

(.01) 0.09 (.01) 0.08 (.01) 0.07 (.01)
(.01) 0.97 (.01) 0.97 (.01) 0.97 (.01)

(.01) 0.09 (.01) 0.08 (.01) 0.07 (.01)
(.01) 0.97 (.01) 0.97 (.01) 0.97 (.01)
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Table 5 Eigenvalues and Percent of Variance Accounted for Using Simulated Test Data, Difficulty
Dataset # of Bundles Factor

IV

2-Dim (r=.10; 50/50) 5 Bundles
3.76 (.09) 0.41 (.08) 0.31 (.02) 0.27 (.02)

% of a2 75.19 (1.71) 8.26 (1.53) 6.13 (.43) 5.47 (.33)
10 Bundles

X 5.72 (.17) 0.88 (.16) 0.54 (.04) 0.49 (.03)
% of a2 57.18 (1.72) 8.82 (1.56) 5.39 (.36) 4.90 (.28)

20 Bundles
7.79 (.30) 1.85 (.34) 0.84 (.06) 0.75 (.03)

% of cr2 38.95 (1.51) 9.24 (1.72) 4.19 (.28) 3.76 (.15)
25 Bundles

X , 8.47 (.33) 2.24 (.39) 0.96 (.08) 0.84 (.03)
% of a' 33.86 (.01) 8.95 (1.56) 3.86 (.31) 3.35 (.12)

Items
23.15 (1.10) 17.39 (.79) 3.18 (.27) 2.70 (.27)

% of cr2 23.15 (1.10) 17.39 (.79) 3.18 (.27) 2.70 (.27)
2-Dim (r=.60; 50/50) 5 Bundles

4.12 (.05) 0.28 (.03) 0.23 (.01) 0.02 (.01)
% of cr2 82.38 (.98) 5.36 (.58) 4.54 (.23) 4.07 (.23)

10 Bundles
X 6.74 (.14) 0.53 (.06) 0.43 (.03) 0.39 (.02)
% of cr2 67.36 (1.36) 5.34 (.62) 4.29 (.28) 3.70 (.22)

20 Bundles
X 9.90 (.29) 1.02 (.12) 0.71 (.04) 0.67 (.03)
% of cr2 49.49 (1.45) 5.09 (.61) 3.57 (.18) 3.33 (.15)

25 Bundles
X 10.96 (.35) 1.26 (.17) 0.81 (.04) 0.76 (.03)
% of a' 43.83 (1.41) 5.04 (.67) 3.25 (.15) 3.04 (.12)

Items
33.04 (1.55) 7.81 (.34) 3.55 (.35) 2.36. (.20)

% of a2 33.04 (1.55) 7.81 (.34) 3.55 (.35) 2.36 (.20)
2-Dim (r=.10;67/33) 5 Bundles

3.85 (.08) 0.38 (.07) 0.29 (.02) 0.25 (.02)
% of cr2 77.10 (1.65) 7.60 (1.41) 5.74 (.46) 5.06 (.35)

10 Bundles
5.99 (.18) 0.78 (.14) 0.52 (.03) 0.47 (.03)

% of cr2 59.92 (1.76) 7.79 (1.37) 5.16 (.33) 4.73 (.27)
20 Bundles

8.34 (.30) 1.58 (.27) 0.82 (.05) 0.74 (.03)
% of a2 41.68 (1.52) 7.90 (1.38) 4.08 (.24) 3.70 (.15)

25 Bundles
9.09 (.35) 2.01 (.02) 0.92 (.06) 0.83 (.03)

% of a' 36.35 (1.40) 8.03 (1.29) 3.68 (.23) 3.32 (.13)
Items

27.38 (1.39) 13.19 (.94) 3.67 (.36) 2.33 (.28)
% of a2 27.38 (1.39) 13.19 (.94) 3.67 (.36) 2.33 (.28)

2-Dim (r=.60;67/33) 5 Bundles
4.15 (.05) 0.26 (.03) 0.22 (.02) 0.20 (.01)

% of cr2 82.95 (1.05) 5.15 (.57) 4.40 (.30) 3.96 (.27)
10 Bundles

6.83 (.14) 0.51 (.06) 0.42 (.03) 0.38 (.02)
% of cr2 63.31 (1.40) 5.07 (.59) 4.20 (.26) 3.85 (.22)

20 Bundles
10.11 (.31) 0.97 (.12) 0.71 (.04) 0.65 (.03)

% of a2 50.56 (1.53) 4.86 (.60) 3.53 (.19) 3.26 (.14)
25 Bundles

, 11.24 (.38) 1.16 (.14) 0.80 (.03) 0.75 (.03)
% of a' 44.94 (.02) 4.63 (.57) 3.21 (.14) 3.00 (.10)

Items
33.96 (1.56) 6.92 (.37) 3.82 (.37) 2.15 (.19)

% of a2 33.96 (1.56) 6.92 (.37) 3.82 (.37) 2.15 (.19)
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Table 6 Chi-Square Statistic and Degrees of Freedom for Maximum-Likelihood Factor Analysis Using Simulated Test Data,
Difficulty

Dataset # of Bundles Factor
11 111 IV V

2-Dim (1=10; 50/50)

2-Dim (r=.60; 50/50)

2-Dim (r=.10;67/33)

2-Dim (r=.60;67/33)

10 Bundles
X2 (df)

sd

20 Bundles
X2 (dt)

sd

25 Bundles
X2 (df)

sd

10 Bundles
X2 (df)

sd

20 Bundles
X2 (df)

sd

25 Bundles
X2 (df)

sd

10 Bundles
X2 (df)

sd

20 Bundles
x2 (df)

sd

25 Bundles
X2 (df)

sd

10 Bundles
X2 (df)

sd

20 Bundles
X2 (df)

sd

25 Bundles
X2 (df)

sd

250.25 (35) 44.41 (26) 19.71 (18)
146.72 15.54 6.99

1064.42 (170)
325.87

1674.51 (275)
439.60

255.01 (151)
56.04

419.37 (251)
66.62

164.16 (133)
29.65

284.10 (228)
33.57

116.85 (116) 89.67 (100)
15.23 12.16

213.25 (206) 174.76 (185)
20.81 17.63

123.49 (35) 39.64 (26) 16.63 (18)
58.89 15.44 5.56

575.93 (170)
158.98

874.37 (275)
179.90

252.00 (151)
63.17

415.96 (251)
63.46

152.61 (133)
21.63

269.65 (228)
29.57

113.63 (116) 87.05 (100)
14.30 11.58

209.46 (206) 172.68 (185)
20.69 18.39

232.73 (35)
143.81

910.57 (170)
272.02

1313.50 (275)
311.32

44.61 (26) 18.63 (18)
15.86 5.67

257.26 (151)
48.56

412.76 (251)
65.20

155.39 (133)
21.55

266.68 (228)
29.75

115.45 (116) 88.77 (100)
15.64 12.66

208.65 (206) 171.78 (185)
23.91 20.44

115.65 (35)
58.83

519.89 (170)
139.43

766.39 (275)
158.33

17.84 (18) 7.55 (11)
5.12 3.02

257.08 (151)
56.38

414.26 (251)
60.53

152.79 (133)
20.03

267.17 (228)
27.84

116.37 (116) 89.89 (100)
14.67 12.99

213.10 (206) 175.49 (185)
20.75 18.78
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Table 7 STRESS and R-Square Values for MDS Solutions using Euclidean Distance, Difficulty
Dataset # of Bundles Dimension(s)

IV V VI
2-Dim (r=10; 50/50) 20 Bundles

STRESS 0.20 (.04) 0.09 (.02) 0.06 (.01)
R2 0.88 (.05) 0.97 (.01) 0.98 (.01)

25 Bundles
SIRESS 0.23 (.04) 0.10 (.02) 0.07 (.01)

0.85 (.07) 0.96 (.02) 0.98 (.01)
Items

STRESS 0.24 (.02) 0.13 (.01) 0.10 (.01) 0.08 (.01) 0.07 (.00) 0.07 (.
R2 0.84 (.03) 0.93 (.01) 0.95 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.

2-Dim (r--.60; 50/50) 20 Bundles
STRESS 0.17 (.05) 0.09 (.02) 0.06 (.01)
R2 0.91 (.07) 0.96 (.02) 0.98 (.01)

25 Bundles
STRESS
RL

0.18
0.91

(.03)
(.04)

0.10
0.96

(.02)
(02)

0.07
0.98

(.01)
(.01)

Items
STRESS 0.19 (.02) 0.12 (.01) 0.10 (.01) 0.09 (.01) 0.08 (.01) 0.07 (.
R2 0.90 (.02) 0.94 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.01) 0.98 (.

2-Dim (r-.10;67/33) 20 Bundles
STRESS 0.21 (.05) 0.09 (.02) 0.06 (.01)
R2 0.86 (.06) 0.96 (.02) 0.99 (.01)

25 Bundles
STRESS 0.21 (.04) 0.10 (.02) 0.07 (.01)

0.87 (.00) 0.96 (.01) 0.98 (.01)
Items

STRESS 0.24 (.02) 0.13 (.01) 0.10 (.01) 0.09 (.01) 0.08 (.00) 0.07 (.
R2 0.84 (.03) 0.93 (.011) 0.95 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.

2-Dim (r--.60;67/33) 20 Bundles
STRESS 0.17 (.03) 0.10 (.02) 0.06 (.02)
R2 0.92 (.04) 0.96 (.02) 0.98 (.01)

25 Bundles
STRESS 0.18 (.03) 0.10 (.02) 0.07 (.01)

0.91 (.03) 0.96 (.02) 0.97 (.01)
Items

STRESS 0.19 (.02) 0.13 (.01) 0.10 (.01) 0.09 (.01) 0.08 (.01) 0.07 (.
R2 0.90 (.02) 0.94 (.01) 0.96 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.



Table 8 Eigenvalues and Percent of Variance Accounted for Using Simulated Test Data, Difficulty
Dataset # of Bundles Factor

IV
3-Dim (r---.10; 34/33/33) 5 Bundles

3.44 (.09) 0.50 (.07) 0.39 (.03) 0.35 (.02)
% of 02 68.81 (1.89) 10.07 (1.30) 7.87 (.61) 6.97 (.45)

10 Bundles
4.95 (.18) 0.93 (.12) 0.71 (.07) 0.59 (.03)

% of a2 49.51 (1.83) 9.30 (1.15) 7.11 (.68) 5.87 (.33)
20 Bundles

6.37 (.27) 1.72 (.20) 1.28 (.15) 0.86 (.03)
% of a2 31.84(1.34) 8.61 (1.00) 6.40 (.76) 4.30 (.17)

25 Bundles
6.77 (.31) 2.09 (.25) 1.56 (.18) 0.96 (.04)

% of a' 27.09 (1.24) 8.37 (1.00) 6.26 (.74) 3.85 (.17)
Items

15.61 (.80) 13.53 (.65) 11.54 (.58) 2.72 (.24)
% of 02 15.61 (.80) 13.53 (.65) 11.54 (.58) 2.72 (.24)

3-Dim (r=.60; 34/33/33) 5 Bundles
4.02 (.05) 0.29 (.03) 0.25 (.02) 0.23 (.02)

% of 02 80.47 (1.10) 5.82 (.51) 5.04 (.34) 4.59 (.32)
10 Bundles

6.46 (.15) 0.55 (.05) 0.48 (.03) 0.43 (.02)
% of 02 64.57 (1.50) 5.47 (.46) 4.75 (.27) 4.33 (.24)

20 Bundles
9.27 (.31) 0.99 (.10) 0.82 (.05) 0.72 (.03)

% of 02 46.37 (1.56) 4.50 (.52) 4.10 (.27) 3.59 (.15)
25 Bundles

, 10.19 (.39) 1.20 (.10) 1.00 (.09) 0.81 (.03)
% of a' 40.74 (1.56) 4.78 (.40) 4.00 (.31) 3.24 (.12)

Items
28.39 (1.34) 6.32 (.30) 5.47 (.27) 3.13(.28)

% of cr2 28.39 (1.34) 6.32 (.30) 5.47 (.27) 3.13(.28)
3-Dim (r=.10; 50/25/25) 5 Bundles

3.52 (.09) 0.47 (.06) 0.28 (.03) 0.33 (.02)
% of a2 70.44 (1.75) 9.48 (1.20) 7.67 (.63) 6.59 (.45)

10 Bundles
5.14 (.17) 0.88 (.11) 0.69 (.07) 0.58 (.03)

% of 02 51.43 (1.71) 8.79 (1.15) 6.87 (.65) 5.76 (.32)
20 Bundles

6.75 (.30) 1.57 (.18) 1.22 (.14) 0.85 (.04)
% of a2 33.76 (1.48) 7.87 (.89) 6.09 (.71) 4.27 (.19)

25 Bundles
7.22 (.31) 1.95 9.22) 1.50 (.19) 0.95 (.04)

% of a` 28.87 (1.24) 7.79 (.88) 5.99 (.78) 3.78 (.17)
Items

20.12 (1.23) 11.17 (.67) 9.32 (.61) 3.07 (.29)
% of a2 20.12 (1.23) 11.17 (.67) 9.32 (.61) 3.07 (.29)

3-Dim (r=.60; 50/25/25) 5 Bundles
4.04 (.06) 0.28 (.02) 0.25 (.02) 0.22 (.02)

% of 02 80.88 (1.17) 5.63 (.50) 4.98 (.34) 4.49 (.32)
10 Bundles

6.51 (.16) 0.54 (.05) 0.47 (.03) 0.43 (.02)
% of 02 65.11 (1.61) 4.37 (.45) 4.67 (.26) 4.28 (.22)

20 Bundles
9.41 (.34) 0.96 (.09) 0.80 (.06) 0.71 (.03)

% of 02 47.04 (.02) 4.80 (.47) 3.99 (.28) 3.55 (.15)
25 Bundles

10.35 (.41) 1.17 (.11) 0.94 (.07) 0.81 (.03)
% of a' 41.39 (1.62) 4.67 (.43) 3.78 (.27) 3.22 (.13)

Items
29.20 (1.45) 6.34 (.29) 4.65 (.26) 3.28 (.27)

% of 02 29.20 (1.45) 6.34 (.29) 4.65 (.26) 3.28 (.27)
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Table 9 Chi-Square Statistic and Degrees of Freedom for Maximum-Likelihood Factor Analysis Using Simulated Test Data,Difficulty
Dataset # of Bundles Factor

IV V
3-Dim (r-..10; 34/33/33) 10 Bundles

X2 (df) 257.19 (35) 77.70 (26) 23.29 (18)
sd 102.63 39.55 8.70

20 Bundles
X2 (df) 1101.08 (170) 495.97 (151) 193.38 (133) 135.74 (116) 99.90 (100)

sd 291.70 134.85 34.49 21.64 16.79
25 Bundles

X2 (df) 1709.04 (275) 836.35 (251) 333.87 (228) 249.35 (206) 196.81 (185)
sd 447.31 233.12 50.68 36.12 28.91

3-Dim (r=.60; 34/33/33) 10 Bundles
X2 (df) 114.97 (35) 48.94 (26) 22.30 (18)

sd 40.34 17.83 7.67
20 Bundles

X2 (df) 541.55 (170) 306.72 (151) 190.24 (133) 131.08 (116) 98.55 (100)
sd 118.71 60.32 31.68 18.34 14.24

25 Bundles
X2 (dt) 853.32 (275) 510.12 (251) 327.36 (228) 237.23 (206) 188.88 (185)

sd 194.15 96.37 49.83 31.44 24.45
3-Dim (I=.10; 50/25/25) 10 Bundles

X2 (df) 247.50 (35) 77.60 (26) 23.34 (18)
sd 107.25 36.87 9.11

20 Bundles
X2 (df) 1022.38 (170) 453.32 (151) 193.87 (133) 131.19 (16) 97.63 (100)

sd 272.42 128.51 33.80 19.11 13.78
25 Bundles

X2 (df) 1482.10 (275) 741.04 (251) 339.43 (228) 242.62 (206) 193.50 (185)
sd 302.13 165.18 51.36 25.22 19.86

3-Dim (1=.60; 50/25/25) 10 Bundles
X2 (df) 112.44 (35) 45.05 (26) 19.95 (18)
sd 42.91 18.20 7.32

20 Bundles
X2 (df) 522.09 (170) 299.03 (151) 191.37 (133) 130.97 (116) 98.68 (100)

sd 151.67 72.50 38.21 25.50 19.76
25 Bundles

x2 (df) 812.28 (275) 490.06 (251) 327.20 (228) 237.72 (206) 192.06 (185)
sd 172.21 84.28 49.57 35.47 28.87



Table 10 STRESS and R-Square Values for MDS Solutions using Euclidean Distance, Difficulty
Dataset # of Bundles Dimension(s)

IV V VI

3-Dim (1=30; 34/33/33) 20 Bundles
STRESS 0.21 (.05) 0.11 (.02) 0.06 (.01)
R2 0.86 (.06) 0.95 (.03) 0.98 (.01)

25 Bundles
STRESS 0.22 (.04) 0.11 (.02) 0.07 (.01)

0.86 (.05) 0.94 (.02) 0.98 (.01)
Items

STRESS 0.23 (.02) 0.16 (.01) 0.10 (.01) 0.08 (.01) 0.07 (.00) 0.06 (.0
R2 0.85 (.03) 0.90 (.02) 0.94 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.0

3-Dim (r=.60; 34/33/33) 20 Bundles
STRESS 0.21 (.05) 0.11 (.02) 0.06 (.01)
R2 0.86 (.07) 0.95 (.03) 0.98 (.01)

25 Bundles
STRESS 0.22 (.04) 0.11 (.02) 0.07 (.01)

0.86 (.05) 0.94 (.02) 0.98 (.01)
Items

STRESS 0.18 (.02) 0.13 (.01) 0.10 (.01) 0.08 (.01) 0.07 (.01) 0.07 (.0
R2 0.91 (.02) 0.94 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.01) 0.98 (.0

3-Dim (r---.10; 50/25/25) 20 Bundles
STRESS 0.21 (.05) 0.10 (.02) 0.06 (.01)
R2 0.87 (.06) 0.95 (.02) 0.98 (.01)

25 Bundles
STRESS 0.22 (.04) 0.11 (.02) 0.07 (.01)

0.87 (.05) 0.95 (.02) 0.98 (.01)
Items

STRESS 0.22 (.01) 0.15 (.01) 0.10 (.01) 0.09 (.01) 0.07 (.00) 0.07 (.0
R2 0.86 (.03) 0.90 (.02) 0.94 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.0

3-Dim (r=.60; 50/25/25) 20 Bundles
STRESS 0.21 (.05) 0.11 (.02) 0.06 (.01)
R2 0.86 (.07) 0.95 (.03) 0.98 (.01)

25 Bundles
STRESS 0.22 (.04) 0.11 (.02) 0.07 (.01)

0.86 (.05) 0.94 (.02) 0.98 (.01)
Items

STRESS 0.18 (.02) 0.13 (.01) 0.10 (.01) 0.09 (.01) 0.08 (.01) 0.07 (.0
R2 0.91 (.02) 0.94 (.01) 0.96 (.01) 0.97 (.01) 0.97 (.01) 0.98 (.0



Table 11 Eigenvalues and Percent of Variance Accounted for Using CPA Test Data

Assessment Strategy Factor(s), Sample 1 Factor(s), Sample 2

I II HI IV V VI 1 II III IV V VI

Item Bundles
X 14.21 2.02 1.39 1.10 .972 .933 14.30 1.99 1.36 1.12 .958 .906
% of a2 36.44 5.17 3.56 2.83 2.49 2.39 36.67 5.10 3.48 2.88 2.46 2.32

Content Bundles
X 8.79 1.34 1.04 .897 .793 .731 8.81 1.31 1.01 .883 .809 .761
% of a2 43.94 6.72 5.18 4.48 3.96 3.66 44.05 6.56 5.05 4.41 4.04 3.81

Items
X 11.94 2.73 1.89 1.39 1.21 1.02 11.82 3.01 1.62 1.42 1.29 1.10
% of a2 11.94 2.73 1.89 1.39 1.21 1.02 11.82 3.01 1.62 1.42 1.29 1.10

:)3



Table 12 Tucker-Lewis Rho Coefficients from MLFA of CPA Test Data

Assessment Strategy Dimension(s), Sample
1

Dimension(s), Sample 2

I II III IV I II III IV

Item Bundles
TL Itho .85 .92 .953 .968 .85 .92 .95 .96

0 2 6 5 3 7

Content Bundles
TL Rho .85 .93 .966 .982 .86 .93 .96 .98

6 2 6 7 8 2



A

Table 13 MDS Solution for CPA Test Data based on Euclidean Distances

Assessment Strategy Dimension(s), Sample 1 Dimension(s), Sample 2

IV V VI I II III IV V VI

Item Bundles
STRESS .194 .102 .079 .069 .056 .048 .185 .098 .075 .062 .053 .047
R2 .928 .972 .980 .984 .988 .991 .935 .974 .983 .967 .990 .991

Content Bundles
STRESS .046 .028 .023 .044 .027 .020
R2 .995 .998 .998 .995 .998 .999

Items*
STRESS .249 .189 .147 .121 .105 .094 .250 .189 .147 .123 .106 .095
R2 .838 .874 .907 .927 .939 .947 .837 .876 .908 .926 .938 .946

*This is based on 100 randomly selected items. Due to limitations in the MDS program, all items could
not be used.
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