AUTHOR TITLE	Batman, Kangan; Gadd, Nick; Lucas, Michele Farm Management and Leadership. Numeracy. Level 1. Level 2. Level 3. Support Materials for Agricultural Training.
INSTITUTION	National Languages and Literacy Inst., Melbourne (Australia).
SPONS AGENCY	Australian Dept. of Employment, Education, Training and Youth Affairs, Canberra.
PUB DATE	1998-00-00
NOTE	117p.; For related documents, see CE 078 731-738. An initiative of the Victorian Farmers Federation and Primary Skills Victoria.
AVAIIABLE FROM	```Language Australia National Resource Centre, GPO Box 372F, Melbourne, Victoria 3001, Australia; e-mail: lanrc@la.ames.vic.edu.au```
PUB TYPE	Guides - Classroom - Learner (051)
EDRS PRICE	MF01/PC05 Plus Postage.
DESCRIPTORS	Adult Education; Agribusiness; *Agricultural Education;
	Agronomy; Calculators; Comparative Analysis; Cost
	Effectiveness; *Costs; Decimal Fractions; Developed Nations; Expenditures; Foreign Countries; *Income; Instructional
	Materials; Land Use; Learning Activities; Mathematics
	Skills; *Measurement; *Numeracy; Percentage; Postsecondary Education; Secondary Education; Vocational Education; Volume (Mathematics)
IDENTIFIERS	*Australia (Victoria)

Abstract

This publication contains the three numeracy units of the three levels of Support Materials for Agricultural Training (SMAT) in farm management and leadership: Level 1 (starting), 2 (continuing), and 3 (completing). The units are designed to help the learner improve his or her numeracy skills needed to deal with farm management. SMAT materials can be used by the individual, with a mentor, or in a group or class. An introduction describes how to use the materials, types of activities, and materials needed. Each level contains agriculture-related mathematics activities. Model answers are provided. Topics covered in Level 1 are as follows: calculator use; invoices and payment advice sheets; percentage and decimals; and measuring length, area, and perimeter. Topics covered in Level 2 are budgets, costs, and comparing costs to income. Topics covered in Level 3 are measuring and volume. (YLB)


```
* Reproductions supplied by EDRS are the best that can be made
from the original document. *
```

***)

Support Materials for Agricultural Training

x

Acknowledgments

These units were developed as an initiative of the Victorian Farmers Federation and Primary Skills Victoria. They have been written and prepared by Kangan Batman TAFE.

Project Development Team:

Project Manager:	Barbara Goulborn
Writers:	Nick Gadd, Michele Lucas
Illustrations:	Tracey Lean
Graphics and	
Desktop Publishing:	Kelisha Dalton, Simon Colvey, Maryjeanne Watt, Betty Franklin
Editing:	Helen Yeates, Philip Kofoed, Angela Costi
Instructional design:	Elizabeth McInerney
Reviewers:	Dr. Barbara Johnson, McMillan Campus, University of Melbourne
	Lynne Fitzpatrick, Language Australia, 1997
	Pam Lambert, B.A.C.E.
	Merna Curnow, industry representative
	Rob Tabener, Wimmera Rural Counselling Service
Series reviewer:	Malcolm Trainor, Instructor, Agricultural Education Centre,
	University of Ballarat

Project Steering Committee:

Clare Claydon:	Victorian Farmers Federation, 1997
Airlie Worral:	Victorian Farmers Federation
Lyn Hughes:	Primary Skills Victoria
John Nicholls:	Department of Employment, Education, Training and Youth Affairs
Tony Audley:	United Diary Farmers of Victoria
Ken Stone:	Victorian Farmers Federation, industry representative
Colin Hunt:	Victorian Farmers Federation, industry representative
Margaret Brodie:	Victorian Farmers Federation, industry representative
Michael Kearney:	Victorian Farmers Federation, industry representative
Nickie Berrisford:	Grain Industry Training Network
Andrew Sullivan:	Agricultural Education Centre, University of Ballarat
Malcolm Trainor:	Agricultural Education Centre, University of Ballarat

Published and distributed by:
The Language Australia National Resource Centre
Language Australia
GPO Box 372F, Melbourne Victoria 3001
Telephone: (03) 99264779
Facsimile: (03) 99264780
Email: lanrc@la.ames.vic.edu.au
(C) 1998 Commonwealth of Australia.

Funded under the Workplace English Language and Literacy Programme by the Commonwealth through the Department of Employment, Education, Training and Youth Affairs.

Contents

Introduction 1
Where this fits 1
How to use these materials 1
Outcomes 2
How long should I spend? 2
Activities 2
What you need 3
Assessment 3
Calculator use 4
Clear keys 6
Percentage key 8
To find what percentage: 8
To find the percentage of: 9
To find a percentage increase or mark up: 9
To find a percentage decrease or mark down: 9
Memory keys 11
Estimating 16
Invoices and payment advice sheets 19
Percentage and decimals 24
Activity 5 24
Changing percentages to decimals 25
Measuring length, area and perimeter 31
Area and perimeter 32
Optimising space 38
Model answers 41
Activity 1 41
Activity 2 42
Activity 3 44
Activity 4 44
Activity 5 45
Activity 6 46
Activity 7 48
Activity 8 49
Activity 9 49
Activity 10 50

Introduction

Welcome to this unit of the SMAT materials, Farm Management and Leadership 1 - Numerag.

SMAT stands for Support Materials for Agricultural Training. SMAT will help you improve your written and spoken communication skills and your numeracy skills, so you can succeed at training programs or communicate more successfully in your workplace.

Where this fits

SMAT has four topics: Agricultural Production, Farmers as Employers, Farm Management and Leadership and Occupational Health and Safety.

This unit is Level 1 of Farm Management and Leadership Numeray. There are three units of Farm Management and Leadership - Numeracy. Level 1 (starting), 2 (continuing) and 3 (completing). Each unit has two parts: Communication Skills and Numeracy.

After you finish this unit, you could try the other units at the same level: Agricultural Production 1 - Numeracy, Farmers as Employers 1-Numeracy, Occupational Health and Safety 1 Numeracy.

Then you could try the units at a higher level.
You do not have to complete every unit in SMAT. It is up to you to choose the most useful parts and work through them.

How to use these materials

You can use the SMAT materials by yourself, with someone to help you, or in a group or class. It is hard to work by yourself, so it is a good idea to have someone who can give you advice and feedback (a mentor). This person could be a trainer from a college or community centre, a relative, a neighbour or a friend.

The unit is written so you can start at the beginning and work through it. Or if you like you can choose parts of the unit and only do those parts. Spend more time on the parts which are most useful for you. If something is not useful, you can skip it.

There is no certificate to go with the SMAT materials. But SMAT helps you improve your skills so you can do other courses and get other certificates. For example: Farm\$mart, Rural Business Management, and courses run by the Department of Natural Resources and Environment. You will also find that working through SMAT improves the communication and numeracy skills that you need in your working life.

Outcomes

After you finish the SMAT materials you will be able to communicate more effectively in speech and writing and use numeracy skills more effectively. You will be able to use the calculator to find percentage and calculate using the memory keys.

How long should I spend?

This depends on you. The amount of time will be different if you are working by yourself or in a group, with a mentor or without, and if you do all the activities or not. Take enough time to do all the activities that are relevant to you, to a standard high enough to satisfy you.

Activities

Each unit has a number of activities for you to do. In the communications units there are four types of activities:

- key word activities
- reading activities
- writing activities
- spoken communication activities.

In the numeracy units there are numeracy activities.

Sometimes you can write answers to these activities in the book. Sometimes it is better to write them in a notebook. Sometimes for the spoken communication activities you will need to go and speak to some other people.

In some places there are also practice writing and practice reading activities. These are extra activities. You can choose to do them if you think you want extra practice in something.

Most of the activities have model answers in the back of the book. You can also ask your mentor to check your answers.

What you need

Before you start, make sure you have the following:

- a notebook (A4 size is best)
- pens, pencils, highlighter pens
- a file or folder to keep extra papers.

Assessment

There is no formal assessment for SMAT. But it is a good idea to have a mentor look at what you have done. That way you can decide together what you have learned and what you need to improve.

Remember, the SMAT materials are a resource for you to use to improve your skills. It is up to you how you use them and how much of them you use.

Calculator use

People often think using calculators is cheating. They think that calculators stop you from thinking for yourself.

Calculators are only a tool that makes the calculation easier and quicker but a calculator cannot do your thinking for you.

Calculators are a useful tool. They can be used to:

- do difficult calculations quickly and accurately
- check estimates and calculations you have done in your head.

You can buy all sorts of calculators. There are scientific, graphical and statistical calculators. But for most everyday jobs, a basic calculator is all you need. In this unit we will be using a basic calculator.

A basic calculator looks something like this:

Figure 1: Basic calculator
Reproduced with permission from Understanding Farm Chemical Labels, published ly The Workplace Language Unit, Suinburne University, Melbourne 1996.

Does your calculator look like this one?
It is not important that your calculator be exactly the same as the one shown here. It will have the same functions.

If you have an instruction booklet for your calculator, take time to read it.

Let's look at the special keys on the calculator.

Clear keys

There are two clear keys.

- One of them is the "All clear" key.

Figure 2: "All clear" key
This key will clear all numbers entered. This function is usually on the same key as "ON". On the calculator in the picture this is " C ". On some calculators this key may be called AC/ON ("All Clear"/"On")

- The other is the "Clear entry" key.

Figure 3: "Clear entry" key
This key will clear the last number you entered. On the calculator in the picture, this is " Cl ".

On some calculators the keys may be marked differently. You will need to check your own calculator.

Let's practise using these keys. Try keying in the following calculation:

On the calculator, key in: $12+15 \mathrm{Cl} 18+25=$

The display screen will show: 55
Now try the same calculation but using the other clear key:
On the calculator, key in: $12+15 \mathrm{ON} / \mathrm{C} 18+25=$

The display screen will show: 43

- Why did you get two different answers?
- What is the difference between the two clear keys?
- Why is this useful?
- When do you use the two different keys?

There are two different answers because the clear buttons do different functions.

The Cl key cleared the last entry. When you used this key it cleared only the 15 because it was the last entry. 12 was added to 18 then to 25 .

The C key cleared all numbers entered. Both the 12 and the 15 were cleared. 18 was added to 25 .

The Cl key is very useful. It means that you do not have to start a calculation from the beginning again if you make a mistake. You can clear the mistake and continue with the calculation. This is very handy if you enter a long list of numbers and then put in a wrong number.

Percentage key

We will now look at doing percentage calculations on the calculator.

Here are some examples of how the percentage button works:

To find what percentage:

Margaret and David own a sheep farm. Each year they hire a team to shear the sheep. They need to know what percentage of the total shearing costs involved in shearing are from the shearers. The shearers cost $\$ 9446$ out of total costs of \$21 842.

On the calculator, key in: $9446 \div 21842 \%$
The display screen will show: 43.2470
So the shearers costs are 43% of total shearing costs.

To find the percentage of:

$\$ 90$ million is spent on eggs each year in Australia. 6% of this is for free range eggs. How much is spent on free range eggs each year?

On the calculator, key in: $90 \times 6 \%$
$8 \quad 13$

The display screen will show: 5.4
So $\$ 5.4$ million dollars a year is spent on free range eggs.

To find a percentage increase or mark up:

A new Holland harvester cost $\$ 242293$ in 1996. It has gone up 2.3% in 1997 . What is the new price?

On the calculator, key in: $242293+2.3 \%$
(Check your own calculator instructions. Your calculator may do this operation by keying in: $242293 \times 2.3 \%+$)

The display screen will show: 247865.73
A new Holland harvester was $\$ 247865.73$ in 1997.

To find a percentage decrease or mark down:

The Australian wheat board deducts 2.9% in levies from payments. Colin is paid $\$ 3604.54$ minus the levies. How much does Colin receive?

On the calculator, key in: 3604.54-2.9\%
(Check your own calculator instructions. Your calculator may do this operation by keying in: $3604.54 \times 2.9 \%$-)

The display screen will show: 3500.0084

Colin will receive $\$ 3500.01$ for the wheat.
Note that the equals key is not used in these calculations.
Let's try some similar problems.

Activity 1

1. In the Western District of Victoria during September 1996 there was a 150% increase in the number of lamb deaths due to wet and windy weather. If the normal number of deaths is 3500 , how many lambs died in September 1996?
2. 36% of 920 farmers surveyed said they suffered from ill effects from using chemicals. How many farmers is this?
\qquad
3. Triple Superphosphate was $\$ 365$. It is now $\$ 5$ less. What percentage decrease is this?
\qquad
4. Farmers can expect an increase in costs of 0.5% this financial year. If the operating costs of a farm were $\$ 126638$ last financial year, what will they be this year?
5. Machine repairs are 5% of the operating costs. From your answer to question 4 find the machine costs for this year.
6. 9% of the 127000 bales of wool offered for sale at auction were passed in. How many bales were passed in?
\qquad
7. Flavoured milk sales have increased by 36% from 1991 1992 to 1995-1996. 19 million litres of flavoured milk was sold in 1991-1992. How many litres were sold in 1995-1996?

Memory keys

Memory keys store the number on the display screen so you can use it later.

There are a number of memory keys. They are:

- M+ stores a number in memory or adds the number on the display screen to the number in memory
- M- subtracts the number on the display screen from the number in memory
- $\mathrm{RM} / \mathrm{MR}$ recalls the number from memory and shows it on the display screen
- CM clears the memory.

Figure 4: Memory keys
The memory key can be used to do difficult calculations. Let's use the memory key.

A farmer produced 27.24 tonnes of canola and 65.74 tonnes of wheat. She wants to work out the total payment she will receive from the wheat board. The canola is sold for $\$ 337.90$ per tonne, wheat is sold for $\$ 188.15$ per tonne.

To work this out she needs to multiply the number of tonnes by the price per tonne. She does the canola first.

Canola

On the calculator, key in: $27.24 \times 337.90=M+$
The display screen will show: 9204.396
The amount of payment for canola is now stored in the memory. She now does the wheat calculation.

Wheat

On the calculator, key in: $65.74 \times 88.15=\mathrm{M}+$

The display screen will show: 5794.981
The wheat payment has been added to the canola payment in memory.

Total Payment

To find out the total payment you need to display the number in memory.

Press the RM key.
The display screen will show: 14999.377
The farmer will receive $\$ 14999.38$ for the two crops.

Activity 2

John and Marjorie Spencer fill out an application for interest subsidy. On the form they are required to work out the production and cost for this year and the expected cost for next year.

Figure 5: Filling out an application for interest subsidy
This is the section of the form they have filled out. To find the value, John and Marjorie need to multiply the amount sold by the unit price. So 80 tonnes were sold and the unit price is $\$ 105$. These two numbers are multiplied together. The first one has been done for you.

On the calculator key in: $80 \times 105=$
The display screen will show: 8400

Use your calculator to fill in the missing values.

FARM PROGRAM - LAST YEAR						
Month/Year End 30/6/96	Production			Sales		
Details of Production eg. Butterfat, Wood 23 Micron, Oats, Whest	Area Used ha. (if u of	No of Head (f) 4 dact	$\begin{array}{\|c\|} \hline \text { Amount } \\ \text { Produced } \\ \text { No./Tonnes/ } / \mathrm{Kg} \\ \hline \end{array}$	No.or Amount Sold	Unit Price	$\begin{gathered} \text { Value } \\ \delta \end{gathered}$
Oats	100		120	80	105	8400
Triticale	246		250	220	140	
Wheat	720		1190	1146	171	
Cattle	1100	74		80	512.50	
TOTAL PRODUCE SOLD						
PARM PROGRAM - THIS YEAR						
Month/Year End 30/6/97	Production			Sales		
Details of Production ef Buterfat, Wool 23 Micron, Onts, Wheat	Area Ubed ba. (if (t)	No. of Head (ffappist	$\begin{gathered} \text { Amount } \\ \text { Produced } \\ \text { No/ Tonnes/ Kg } \end{gathered}$	No. or Amount Sold	Unit Price	Value $\$$
Oats	120		140	120	110	
Triticale	300		330	296	150	
Wheat	750		1250	1190	170	
Cattle		80		78	500	
TOTAL PRODUCE SOLD						
FARM PROGRAM - NEXT YEAR						
$\begin{gathered} \text { Month/Year End } \\ 30 / 6 / 98 \end{gathered}$	Production			Sales		
Details of Production eg. Butterfat, Woul 23 Microm: Oats. Wheat	$\begin{gathered} \text { Area Used } \\ \text { ha. } \\ \text { foppotis. } \end{gathered}$	No. of Heàd (foppoic)	Amount Produced No. $/$ Tonnes $/ \mathrm{Kg}:$	No. or Amount Sold	Unit Price	$\begin{aligned} & \text { Value } \\ & \$ \end{aligned}$
Oats	140		170	145	110	
Triticale	320		400	370	160	
Wheat	800		1300	1240	170	
cattle		100		97	500	
TOTAL PRODUCE SOLD						
Where production/retums less than normal, specify cause and effect. For affected crops include quantitics and gradings.						
Next years production and prices only a forecast.						

Figure 6: Farm program

BEST COPY AVAILABLE

Estimating

As we said before, calculators cannot do your thinking for you!
It is good to have a rough idea of the answer before you start using the calculator. You can then check if the answer on the display screen looks okay. This is called estimating.

You can estimate on paper or in your head. For example, last year John and Marjorie sold 80 tonnes of oats for $\$ 105.00$ per tonne. To estimate the amount of money received for the oats you would multipy 80 by $\$ 100$. This means the answer is about $\$ 8000$.

Skills: Using a calculator

Follow these steps when using a calculator to minimise the mistakes.

1. Work out what the problem is asking then estimate an answer.
2. Work out which operation $(+,-, x, \div)$ you need to use.
3. Do the calculation on the calculator.
4. Check that the answer on the calculator is similar to your estimate. If it isn't, go back and recalculate the problem checking that you have keyed it in properly.

One of the most common mistakes made on the calculator is not putting in the decimal point or putting in a decimal point for a comma. There is no comma on the calculator.

For example, the number 3,456 is keyed in as 3456 with no spaces, commas or decimal points.

When you write large numbers, a space is left between every three digits like this: 1352670 . But there are no spaces on the calculator.

Here are some worked examples. Follow the examples and use your calculator to check that you get the same results.

Colin received a payment of $\$ 9204.40$ for wool. From this, two levies were deducted of $\$ 90.33$ and $\$ 9.20$. How much was the final payment to the farmer?

1. Colin estimates the total deductions to be about $\$ 100$. The payment is about $\$ 9200$. $\$ 9200$ less $\$ 100$ is $\$ 9100$. The farmer should get about $\$ 9100$.
2. The two deductions are added then taken away from the payment.
3. On the calculator, key in: $90.33+9.20=\mathrm{M}+9204.40-$ $\mathrm{RM}=$

The display screen shows: 9104.87
4. This answer is close to the estimate so Colin will assume it is correct.

Here is another worked example.
The Australian Wheat Board paid an advance of $\$ 83.82$ per tonne of wheat. If Marj sold 14.36 tonnes, how much would she be paid?

1. Marj estimated that $\$ 83.82$ is about $\$ 80$ and 14.36 is about 15.15 lots of 80 is 1200 .
2. "Lots of" means multiply so this is a times (x) sum.
3. On the calculator, key in: $83.82 \times 14.36=$

The display screen will show: 1203.6552
4. Marj will be paid $\$ 1203.66$. This answer is close to her estimate so she will accept it.

22

Activity 3

Try these examples. This is to help you with estimating.
Make an estimate of the answer in your head or on paper, then circle the correct answer. Do not use a calculator for this activity.

1. An employee earns $\$ 473$ per week. She has $\$ 94.50$ in tax taken out. How much does she take home each week?
$\$ 178.50 \quad \$ 378.50 \quad \$ 227.50 \quad \$ 37850$
$\$ 3785.00$
2. Bonlac collected 34210 litres of milk, 34890 litres and 36340 litres for three 10 day periods in the year. What was the total amount collected over the 30 days?
$105440 \quad 1054400 \quad 105441054$
3. Australians eat 34.2 kg of beef per person each year. If there are 18 million (18 000000) people in Australia, how many kilograms of beef are eaten each year?

6156 million $\quad 61560$ million $\quad 615$ million
4. A free-range chook farmer has 750 birds on one hectare (10000 sq m). How many square metres is this for each hen?
$\begin{array}{lllll}13.333 & 1.333 & 0.133 & 133.33 & 0.013\end{array}$

Invoices and payment advice sheets

In farm management, it is very important to keep accurate records of buying and selling. If you are on top of the figures it helps see where the money is going. It also helps when you talk to banks and other financial organisations.

payment advice	A payment advice form is a form that shows how much product you sold, how much was paid for it and what deductions were made
invoice	An invoice is a form that shows you what you bave bought and bow much it costs

Use the calculator to check if the invoices and payment advice sheets following are correct.

Activity 4

1. Helen and Colin Jamieson receive the following payment advice form from the Australian Wheat Board.

GROWER ENQUIRIES

1800054433
VICTORIAN STATE OFFICE 528 Lonsdale Street, Melbourne VIC 3000
Payment Advice
1997-98 Season Payment

Payment Date
1st Dec 1997

Total Amount Paid to Your Account
$\$ 62736.68$

Registration No.	Tonnage Summary For This Payment				
	Grain	Grade	Your Share Tonnes	Business* Activity/	Season
	WHT	ACP1	21.78	Pool P3P8	97/98
	WHT	APW	347.34	P3P8	97/98
	WHT	ASW	157.28	P3P8	97/98

Figure 7: Harvest Payment Advice
Reproduced with the permission of $A W B$ Ltd.

Look at the sheet and answer these questions:

- When was the payment made?
\qquad
- How much were Helen and Colin paid?
\qquad
- How much was taken out in levies?
\qquad
- How many tonnes were sold?
\qquad
- What grades of wheat were sold?
\qquad
Some of the numbers have been left off this advice sheet. Use your calculator to find the missing values then fill them in on the form.

2. Colin received the following invoice.

Figure 8: Account Sales of ewes and lambs

- What did he buy?
\qquad
- How much did he pay for each lamb?
- What was the total cost of the sheep and lambs?
- How much commission did the stock and land agent get?
- Work out the missing values and fill them in.

Percentage and decimals

We looked at how to do percentages on the calculator before. This is not the only way to calculate with percentages.
Sometimes it is easier to change a percentage to a decimal and use the decimal to calculate with.

Let's look at converting percentages to decimals.
10% means 10 out of 100 or $10 \div 100$. If you work this out on the calculator you will get 0.1

On the calculator, key in: $10 \div 100=$
The display screen will show: 0.1

So 10% is the same as 0.1

Activity 5

1. Work out these percentages as decimals

$$
\begin{aligned}
& 12 \%= \\
& 67 \%= \\
& 84 \%= \\
& 15 \%= \\
& 56.6 \%= \\
& 123 \%=
\end{aligned}
$$

2. Can you see a pattern?
\qquad
\qquad

Changing percentages to decimals

Can you find the decimal equivalent of the percentage without using a calculator?

There is a quick way of finding the decimal equivalent. When we divide by 100 , the decimal point in a number is moved two numbers to the left (because there are two zeros in 100).

If there is no decimal point shown in a number, it is placed at the end of the number.

For example:
23% can be written as $23 . \%$. To change it to a decimal the point is moved two numbers to the left as shown:

$$
\text { 23. } \%=0.23
$$

We put a zero in front of the point so it can be seen where the point is.

Similarly 245% can be changed by putting a decimal point at the end of the number then moving the point two places to the left.

$$
2 \sqrt{45} . \%=2.45
$$

If the percentage already has a point then that point is moved two places to the left.

Look at this example:

$$
23.6 \%=0.236
$$

Here is a table of some of the common decimal percentage equivalents.

Percentage	Decimal
10%	0.1
20%	0.2
25%	0.25
33%	0.33
50%	0.5
67%	0.67
75%	0.75
100%	1.00

We can now use this method to calculate percentages.
The Victorian Dairy Industries Association (VDIA) take 17.89% of Karen's milk production. If Karen produces 80980 litres of milk in a month, how much of it goes to VDIA?

To find out how much will go to VDIA first work out 17.89% as a decimal.
17.89% is the same as 0.1789 .

Now multiply 0.1789 by 80980 (the litres of milk produced).

On the calculator, key in : $0.1789 \times 80980=$
The display screen will show: 14487.322
To make the calculations easier, Karen's litres will be rounded off to 14490 .

14490 litres of Karen's milk will go to VDIA.

Here is another example.

Rollalog North Angus stud farm sells 150 heifers for $\$ 400$ each. The stock and station agent takes 8% of the sale. How much does the stock and station agent get?

Let's work out how much the heifers will sell for first.

On the calculator, key in: $150 \times 400=$

The display screen will show: 60000

150 heifers at $\$ 400$ each is $\$ 60000$.

Now we calculate the percentage the stock and station agent gets. She receives 8% or 0.08 of the $\$ 60000$.

On the calculator key in: $0.08 \times 60000=$
The display screen will show: 4800

So the stock and station agent gets $\$ 4800$.

Activity 6

It is always worth checking bills and invoices. Maybe there are some mistakes.

Now check the following invoices and circle any mistakes.

Write the correct answers.

Invoice \mathbf{A}

Spot On Seed Farm

P.O. BOX P99N, GIPPS Postal Address:
P.O. BOX 899N, GIPPSLAND, VIC 3555 Telephone: 55551111 Fax: 55551112 Spectalising in Vegotabliss, Herts and Fiower Seeds

T\&M Smythe
WSD 38
Kilmore, VIC

Invoice B

Under Franchise To Franco's Seed Services

Sutbect N	cuent detals Namo in BLock Letters... F. JONES	$\text { Prono: } 0391994026$	hundotedishire name	date:
Cliont Codo....1.	Adtrasa SONES FARM, UTOPIA	Pastroda. 3949		M. .N. 22004

Grain	Treated	Untreated	Screenings	Tonnes	Total Bags	Rate	Total	$\begin{gathered} \text { Baytan } \\ \text { Kgs } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Vitavax } \\ \text { Kgs } \end{array}$	$\begin{aligned} & \hline \text { Raxil } \\ & \text { Kgs } \end{aligned}$	$\begin{gathered} \text { Sibutol } \\ \mathrm{Kgs} \end{gathered}$	P' Pickel Ltrs	Price	Total	
WHEAT	160		14	174		1.15			9.4				28.48	287	71
						-							-		
BARLEY						-							-		
						-							-		
OATS						-							-		
PEAS						-							-		
LUPNS						-							-		
TRI-RYE						-							-		
OTHER						-							-		
TOTAL							200						K,		
Grain	Hrs		Screenings	Tonnes	Total Bags	Rate	Total	$\begin{gathered} \hline \hline \text { Baytan } \\ \text { Kgs } \end{gathered}$	$\begin{gathered} \hline \text { Vitavax } \\ \text { Kgs } \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { Raxil } \\ \mathrm{Kgg} \end{gathered}$	$\begin{gathered} \hline \text { Sibutol } \\ \mathrm{K}_{\mathrm{gs}} \end{gathered}$	$\begin{gathered} \hline \mathbf{P}^{\prime} \text { Pickel } \\ \text { Ltrs } \end{gathered}$	Price	Total	
						-							-		
						-							-		

Invoice \mathbf{C}

Invoice D

UNDER FRANCHISE TO
 Cartman-Probe International

Subject. No.. CLIENT DETALLS

पАТЕ:...................... ..M. Number 222738

Grain	Treated	Untreated	Screenings	Tonnes	Total Bags	Rate	Total	$\begin{array}{\|c\|} \hline \text { Baytan } \\ \text { Kps } \end{array}$	$\begin{array}{\|c} \hline \text { Vitavax } \\ \text { Kps } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \operatorname{Raxixi1} \\ \mathrm{K}_{\mathrm{Ks}} \\ \hline \end{array}$	$\left.\begin{gathered} \text { Sivurol } \\ \mathrm{Kps} \end{gathered} \right\rvert\,$	$\begin{gathered} \hline \text { P' Pickel } \\ \text { Ltrs } \\ \hline \end{gathered}$	Price	Tot	
Wheat															
BARLEY															
						-									
OATS															
PEAS						-									
LUPINS															
TRI-RYE															
OTHER B		175	40		215	1.20									
TOTAL						\%	268100						\%		
Grain	Hrs		Screenings	Tonnes	Total Bags	Rate	Total	$\begin{array}{\|c} \hline \text { Baytan } \\ \text { Kgs } \\ \hline \end{array}$	$\begin{gathered} \hline \text { Vitavax } \\ \mathrm{K}_{g s} \end{gathered}$	$\begin{array}{\|c\|} \hline \hline \begin{array}{c} \text { RaxiII } \\ \mathrm{K}_{5 S} \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Silustol } \\ \mathrm{K}_{\mathrm{pss}} \end{gathered}$	$\begin{gathered} \hline \mathbf{P}^{\prime} \text { Pickel } \\ \text { Ltrs } \end{gathered}$	Price	Tot	
													.		
				.			GRA	DING					s	268	00
							MAR	KET GRA	Ading				s		
							BAS	C SERVIC					s		
							NET AMOUNT PAYABLE ON DOCKET							268	00

Measuring length, area and perimeter

Farmers often need to measure lengths. Some of the things they need to find are:

- length of fencing
- building measurements
- distance from one place to another.

Can you think of any others?

Activity 7

Yvonne has problems when she moves her sheep from one paddock to another. The sheep from one paddock sometimes get mixed up with the sheep from the paddock she is driving them through. She wants to put a laneway between the paddocks so she can move her stock easily.

Here is a plan of the paddocks she wants to add a laneway to.

Figure 9: Plan of paddocks with laneway

1. How long will the laneway fence be?
2. If the fence has three strands of wire, how many metres of wire would she need?
3. How many posts does she need to put in if the posts are 3 metres apart?

Area and perimeter

In the above example, Yvonne needed to make one measurement. Farmers need to sometimes combine measurements. One common combination is of length and width. Length and width are used to find area and perimeter.

area and perimeter

area	The amount of floor space or ground space that a shape takes up
perimeter	The distance around an object or shape

Perimeter

The distance around an object or shape is called the perimeter. A fence goes around the perimeter of a paddock. The outside walls of a shearing shed go round the perimeter of the shed. To find the perimeter of straight sided objects, add together the lengths of the sides. For example this paddock is 300 m long by 200 m wide.

Figure 10: Square-shaped paddock
The perimeter is $300+200+300+200$ which is 1000 m .

On the calculator, key in: $300+200+300+200=$

The display screen will show: 1000
Here is a part of a plan of James's farm paddock. It is shaped like this.

Figure 11: Non-square shaped paddock
It has a perimeter of $150 \mathrm{~m}+230 \mathrm{~m}+180 \mathrm{~m}+220 \mathrm{~m}$. The perimeter of this paddock is found by adding theses.

On the calculator, key in: $150+230+180+220=$

The display screen will show: 780

Activity 8

1. A paddock has the measurements as shown in the diagram below. How much wire would be needed to fence the paddock if three strands are used?
\qquad
\qquad

2. A house needs guttering placed around the edge of the roof. How many metres of guttering are needed to fix this house?

34
39
3. A shed needs a concrete floor laid. The floor has to be boxed in before the cement can be poured. Lengths of wood are used to box in the floor space. How many metres of timber will be needed to do the job?

Area

The area is the amount of floor space or ground space that a shape takes up. The area of a rectangle is found by multiplying the width by the length.

Area $=$ length x width

A farmer plans to plant a windbreak across the front of the house. The windbreak will be 36 m by 12 m .

Figure 12: Plan of house and windbreak
What area will the windbreak cover?
The area covered by the windbreak is 12×36 which is $432^{2} \mathrm{~m}$.

Activity 9

1. Find the area of the following rectangles.

Rectangle 1 Rectangle 2 Rectangle 3 Rectangle 4

2. Calculate the area and perimeter of each of these shapes.
Rectangle 1 Rectangle 2 Rectangle 3 Rectangle 4

- Do they all have the same perimeter?
\qquad
- Which one has the biggest area?
\qquad

3. Try these shapes. Calculate the area and perimeter for each of these shapes.

Shape 1

$P=$
$A=$

Shape 2

$$
\begin{aligned}
& P= \\
& A=
\end{aligned}
$$

$P=$

$A=$

- Do these shapes all have the same perimeter?
\qquad
- Which shape has the largest area?

Using space well

A well laid out farm can save both time and money.
We can use this information about perimeter and area to plan the shapes of paddocks.

Activity 10

1. Nicks owns a dairy farm. She often needs to divide a paddock in half with temporary fencing. Temporary fencing is expensive so she designs her paddocks so that she does not have to use much temporary fencing. Look at the following two paddocks.

Paddock 1

Paddock 2

- Which way would you divide paddock 1 in half?
Across
Down
- How much fencing would you use to divide it?
- Which way would you divide paddock 2 in half?
Across
Down

- How much fencing would you use to divide it?
- Which paddock would use the shortest amount of temporary fencing?
\qquad
- Fill in the missing word. Choose a word from these:

wide narrow short

Paddocks should be long and \qquad if you plan to divide them with temporary fencing often.
2. Michael is going to divide a large paddock into four smaller paddocks. He wants to use as little fencing as possible.

- How many metres of fencing would option 1 use?
\qquad
- How many metres of fencing would option 2 use?
\qquad
- Which option would Michael use?
\qquad

Activity 1

Question 1

On the calculator, key in: $3500+150 \%$

The display screen will show: 8750
8750 lambs died in September 1996 in the Western district of Victoria.

Question 2

On the calculator, key in: $920 \times 36 \%$
The display screen will show: 331.2

331 farmers suffered from ill effects from chemicals.

Question 3

On the calculator, key in: $5 \div 365 \%$

The display screen will show: 1.369863

Triple Superphoshate has decreased by 1.4%

Question 4

On the calculator, key in: $126638+0.5 \%$
The display screen will show: 127271.19
The operating cost for the farm will be $\$ 127271$.

Question 5

On the calculator, key in: $127271 \times 5 \%$
The display screen will show: 6363.55
Machine repairs will be $\$ 6363.55$

Question 6

On the calculator, key in: $127000 \times 9 \%$

The display screen will show: 11430
11430 of the bales of wool will be passed in.

Question 7

On the calculator, key in: $19+36 \%$
The display screen will show: 25.84
25.84 million litres of flavoured milk was sold in 1995/96.

Activity 2

On the calculator, key in: $80 \times 105=\mathrm{M}+$
The display screen will show: 8400
Then
On the calculator, key in: $220 \times 140=\mathrm{M}+$
The display screen will show: 30800
Then
On the calculator, key in: $1146 \times 171=M+$
The display screen will show: 195966
Then
On the calculator, key in: $80 \times 512.50=\mathrm{M}+$
The display screen will show: 41000
Then
On the calculator, key in: MR
The display screen will show: 276166
Similarly the other two columns can be filled in.
Check your answers on the form below.

FARM PROGRAM - LAST YEAR						
Month/Year End 30/6/96	Production			Sales		
Details of Production eg. Butterfat, Wool 23 Micron, Oats, Whea	Area Used ha. (if appici).	No. of Head (if applic).	Amount Produced No./Tonnes $/ K g$	No. or Amount Sold	Unit Price	
Oats	100		120	80	105	8400
Triticale	246		250	220	140	30800
Wheat	720		1190	1146	171	195966
Cattle	1100	74		80	512.50	41000
TOTAL PRODUCE SOLD						276166
FARM PROGRAM - THIS YEAR						
Month/Year End 30/6/97	Production			Sales		
Details of Prodüction eg. Butterfat; Wool 23 Micron, Oats, Wheat:	$\begin{gathered} \text { Area Used } \\ \text { ha:d } \\ \text { Hfoppici: } \\ \hline \end{gathered}$	$\begin{aligned} & \text { No. of } \\ & \text { Head } \\ & \text { (ff:pphic) } \end{aligned}$	Amount Produced No. $/$ Tonnes $/ K g$	No:or Amount Sold		
Oats	120		140	120	110	13200
Triticale	300		330	296	150	44400
Wheat	750		1250	1190	170	202300
Cattle		80		78	500	39000
TOTAL PRODUCESOLD						298900
FARM PROGRAM - NEXT YEAR						
Month/Year End 30/6/98	Production			Sales		
Details of Production eg, Butterfat, Wool 23 Micron, Oats, Wheat	Area Used ha. hf:pplic).	No. of Head (ffappic)	Amount Produced No./Tonnes $/ K 8$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { No. or } \\ \text { Arnount } \\ \text { Sold } \end{array} \\ \hline \end{array}$	Unit Price	
Oats	140		170	145	110	15950
Triticale	320		400	370	160	59200
Wheat	800		1300	1240	170	210800
Cattle		100		97	500	48500
TOTAL PRODUCESOLD						334450
Where production/returns less than normal, specify cause and effect. For affected crops include quantities and gradings.						
Next year's production and prices only a forecast.						

Activity 3

Question 1

\$378.50

Question 2

105440 litres of milk.

Question 3

615 million kilograms of beef.

Question 4

1.333 square metres per bird.

Activity 4

Question 1

- The payment was made on $1^{\text {st }}$ December 1997.
- Helen and Colin were paid $\$ 62736.68$
- $\$ 1928.66$ was taken out in levies.
- On the calculator, key in: $21.78+347.34+157.28=$ The display screen will show: 526.4
526.4 tonnes were sold.
- The grades sold were AGPI, APW and ASW.

Question 2

- Colin bought Merino ewes and lambs.
- Colin paid $\$ 50$ for each lamb.
- On the calculator, key in: $10 \times 58=\mathrm{M}+$ The display screen will show: 580

Then
On the calculator, key in: $50 \times 50=\mathrm{M}+$ The display screen will show: 2500

Press the RM key.
The screen will show: 3080
The total cost was $\$ 3080$.

- The stock and land agent got $\$ 308$.

Activity 5

Question 1

- 0.12
- 0.67
- 0.84
- 0.15
- 0.566
- 1.23

Activity 6

Invoice A

Invoice B

BEST COPY AVAILABLE

Invoice C

Invoice D

Activity 7

Question 1

The corridor fence should be 500 m long.

Question 2

On the calculator, key in: $500 \times 3=$
The display screen will show: 1500
1500 metres of wire is needed.

Question 3

On the calculator, key in: $500 \div 3=$
The display screen will show: 166.666666
You will need 168 posts because this only includes one end post.

Activity 8

Question 1

On the calculator, key in: $620+840+620+840=$ The display screen will show: 2920

Then

On the calculator, key in: $\times 3=$
The display screen will show: 8760 8760 metres of wire is needed.

Question 2

On the calculator, key in: $6+4+14+11+20+15=$ The display screen will show: 70
70 metres of guttering is needed.

Question 3

On the calculator, key in: $20+6+20+6=$ The display screen will show: 52
52 metres of timber is needed.

Activity 9

Question 1

Rectange 1: $\mathrm{A}=30 \mathrm{sq} \mathrm{m}$
Rectangle 2: $\mathrm{A}=88 \mathrm{sq} \mathrm{cm}$

Rectangle 3: $A=36 \mathrm{sq} \mathrm{mm}$
Rectangle 4: $A=25 \mathrm{sq} \mathrm{km}$

Question 2

Rectangle 1: $\mathrm{P}=24 \mathrm{~m}$

$$
\mathrm{A}=11 \mathrm{sq} \mathrm{~m}
$$

Rectangle 2: $\mathrm{P}=24 \mathrm{~m}$

$$
\mathrm{A}=27 \mathrm{sq} \mathrm{~m}
$$

Rectangle 3: $\mathrm{P}=24 \mathrm{~m}$

$$
\mathrm{A}=35 \mathrm{sqm}
$$

Rectangle 4: $\mathrm{P}=24 \mathrm{~m}$

$$
A=36 \mathrm{sq} \mathrm{~m}
$$

- Yes they all have the same perimeter.
- The square has the biggest area.

Question 3

Shape 1: $\quad P=36 m$

$$
\mathrm{A}=32 \mathrm{sq} \mathrm{~m}
$$

Shape 2: $\quad P=36 \mathrm{~m}$

$$
\mathrm{A}=80 \mathrm{sq} \mathrm{~m}
$$

Shape 3: $\quad P=36 \mathrm{~m}$

$$
\mathrm{A}=65 \mathrm{sq} \mathrm{~m}
$$

Shape 4: $\quad \mathrm{P}=36 \mathrm{~m}$

$$
\mathrm{A}=81 \mathrm{sq} \mathrm{~m}
$$

- Yes, they all have the same perimeter.
- The square has the largest area.

Activity 10

Question 1

- Paddock 1 would be divided across.
- 41 metres of fencing would be used to divide it.
- Paddock 2 could be divided either across or down.
- 60 metres would be used to divide it.
- Paddock 1 uses the least amount of fencing.
- Paddocks should be long and narrow if you plan to divide them with temporary fencing often.

Question 2

- Option 1 would use 1120 metres of fencing.
- Option 2 would use 1680 metres of fencing.
- He should use option 1 if minimising the length of the fence is the only factor.

ERIC

Acknowledgments

These units were developed as an initiative of the Victorian Farmers Federation and Primary Skills Victoria. They have been written and prepared by Kangan Batman TAFE.

Project Development Team:

Project Manager:	Barbara Goulborn
Writers:	Chris Tully
Illustrations:	Tracey Lean
Graphics and	
Desktop Publishing:	Kelisha Dalton, Simon Colvey, Maryjeanne Watt, Betty Franklin
Editing:	Helen Yeates, Philip Kofoed, Angela Costi
Instructional design:	Elizabeth McInerney Reviewers:
	Dr. Barbara Johnson, McMillan Campus, University of Melbourne Colin Andrews, Goulburn Ovens Institute of TAFE
	Clare Clyadon, industry representative
Rob Tabener, Wimmera Rural Counselling Service	

Project Steering Committee:

Clare Claydon:	Victorian Farmers Federation, 1997
Airlie Worral:	Victorian Farmers Federation
Lyn Hughes:	Primary Skills Victoria
John Nicholls:	Department of Employment, Education, Training and Youth Affairs
Tony Audley:	United Diary Farmers of Victoria
Ken Stone:	Victorian Farmers Federation, industry representative
Colin Hunt:	Victorian Farmers Federation, industry representative
Margaret Brodie:	Victorian Farmers Federation, industry representative
Michael Kearney:	Victorian Farmers Federation, industry representative
Nickie Berrisford:	Grain Industry Training Network
Andrew Sullivan:	Agricultural Education Centre, University of Ballarat
Malcolm Trainor:	Agricultural Education Centre, University of Ballarat

Published and distributed by:
The Language Australia National Resource Centre
Language Australia
GPO Box 372F, Melbourne Victoria 3001
Telephone: (03) 99264779
Facsimile: (03) 99264780
Email: lanrc@la.ames.vic.edu.au
© 1998 Commonwealth of Australia.
Funded under the Workplace English Language and Literacy Programme by the Commonwealth through the Department of Employment, Education, Training and Youth Affairs.

Contents

Introduction 1
Where this fits 1
How to use these materials 1
Outcomes 2
How long should I spend? 2
Activities 2
What you need 3
Assessment 3
Budgets 4
Determining income 5
Listing costs 6
2 Income 7
Costs 9
Grouping costs 10
Averaging invoices 11
Predetermined costs 15
Crop costs 16
Using formulae 18
Listing costs 19
Comparing costs to income 22
Model answers 24
Activity 1 24
Activity 3 24
Activity 4 24
Activity 5 25
Activity 6 26
Activity 7 27

Introduction

Welcome to this unit of the SMAT materials, Farm Management and Leadership 2 - Numeracy.

SMAT stands for Support Materials for Agricultural Training. SMAT will help you improve your written and spoken communication skills and your numeracy skills, so you can succeed at training programs or communicate more successfully in your workplace.

Where this fits

SMAT has four topics: Agricultural Production, Farmers as Employers, Farm Management and Leadership and Occupational Health and Safety.

This unit is Level 2 of Farm Management and LeadershipNumeracy. There are three units of Farm Management and Leadership - Numeracy: Level 1 (starting), 2 (continuing) and 3 (completing). Each unit has two parts: Communication Skills and Numeracy.

After you finish this unit, you could try the other units at the same level: Agricultural Production 2 - Numeracy, Farmers as Employers 2 - Numeracy, Occupational Health and Safety 2 - Numeracy.

Then you could try the units at a higher level.
You do not have to complete every unit in SMAT. It is up to you to choose the most useful parts and work through them.

How to use these materials

You can use the SMAT materials by yourself, with someone to help you, or in a group or class. It is hard to work by yourself, so it is a good idea to have someone who can give you advice and feedback (a mentor). This person could be a trainer from a college or community centre, a relative, a neighbour or a friend.

The unit is written so you can start at the beginning and work through it. Or if you like you can choose parts of the unit and only do those parts. Spend more time on the parts which are most useful for you. If something is not useful, you can skip it.

There is no certificate to go with the SMAT materials. But SMAT helps you improve your skills so you can do other courses and get other certificates. For example: Farm $\$$ mart, Rural Business Management, and courses run by the Department of Natural Resources and Environment. You will also find that working through SMAT improves the communication and numeracy skills that you need in your working life.

Outcomes

After you finish the SMAT materials you will be able to communicate more effectively in speech and writing and use numeracy skills more effectively. You will be able to verify invoices, calculate farm costs and comapre those with income.

How long should I spend?

This depends on you. The amount of time will be different if you are working by yourself or in a group, with a mentor or without, and if you do all the activities or not. Take enough time to do all the activities that are relevant to you, to a standard high enough to satisfy you.

Activities

Each unit has a number of activities for you to do. In the communications units there are four types of activities:

- key word activities
- reading activities
- writing activities
- spoken communication activities.

In the numeracy units there are numeracy activities.
Sometimes you can write answers to these activities in the book. Sometimes it is better to write them in a notebook. Sometimes for the spoken communication activities you will need to go and speak to some other people.

In some places there are also practice writing and practice reading activities. These are extra activities. You can choose to do them if you think you want extra practice in something.

Most of the activities have model answers in the back of the book. You can also ask your mentor to check your answers.

What you need

Before you start, make sure you have the following:

- a notebook (A4 size is best)
- pens, pencils, highlighter pens
- a file or folder to keep extra papers.

Assessment

There is no formal assessment for SMAT. But it is a good idea to have a mentor look at what you have done. That way you can decide together what you have learned and what you need to improve.

Remember, the SMAT materials are a resource for you to use to improve your skills. It is up to you how you use them and how much of them you use.

Budgets

Often a bank will require farmers to present a budget when they apply for a loan. Here is a recent newspaper article.

budget

income
expenditure
the money gained from your work

It can be gross income (total money gained without compulsory deductions eg. tax or net income (total money remaining after ccompulsory deductions)
costs or charges (money that you pay out)

Determining income

When you are working out a budget, you need to record your income against your expenditure so that you see where your money is going.

Income on the farm, comes mainly from two sources:

- product sales
- livestock sales.

For example, a dairy farm sells milk and surplus cows, a piggery sells pigs for pork and bacon and also sells culled stock.

Income may also come from off farm sources such as, contracting other employment, investments etc.

Expenditure is what farmers spend to make the income. Some expenditure is common to all farmers such as machinery costs and living expenses. Other expenditures are more specific such as animal costs and seed costs.

Marjorie and Bill Spencer own a crop and sheep farm in the Wimmera. They have 1865 merino sheep and plant 1260 hectares of crop.

Listing costs

They prepare a budget each year. They:

- make a list of where their income comes from first
- write down what they think their income will be.

They use last year's payment advice sheets to give them an idea of what they will earn this year.

Income

This is Marjorie and Bill's predicted income.

Income	$\mathbf{\| c \|}$
Wool	53880
Sheep trading	16391
Oats	8400
Triticale	30800
Wheat	195966
Total	

Activity 1

1. Study the above table. What is Marjorie and Bill's total income?
2. Where does your income comes from? List the produce sold off your farm. Estimate the income from each commodity for this year and write the figures in the following table.

Produce	\$

Costs

Then list all the areas where Marjorie and Bill spend money.

Activity 2

What costs do you have? List them.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Grouping costs

Marjorie and Bill have organised their costs into groups. This helps them think about all the costs involved. This is their list.

Livestock costs	Wool costs	Crop costs
A nimal health	Freight	Seed bed preparation
Supplementary feed	Wool tax	Seed
Stock selling expenses	Wool selling expenses	Fertiliser
	Shearing and crutching	Chemicals
		Fuel Machinery Maintenance

Overhead costs	Living costs	Capital costs
Labour	Food	Repayments on loans
Administration	Clothing	Building a new shed
Rates	Household utilities	
Vehicle registration and insurance	Entertainment	
Repairs and maintenance	School expenses	

They then draw up a table and write costs against them. They make an estimate from the costs they had last year.

Averaging invoices

Why do you need to use more than one year to work out your costs?

You may want to use more than one year's figures for working out your costs because each year has been different or last year wasn't a normal year.

Calculating the average is described in Agricultural Production 1 Numeracy.

Think of reasons why you may want to use more than one year's figures.

Marjorie and Bill put all the invoices for the same things together.

Activity 3

1. Here are some copies of the receipts they have. Add up the total Marjorie and Bill spent on machinery.

FARMING PARTS LTD.
INVOICE 000112
sol ro mr: : ü spencers
AGENTS FOR: MITSUBISHI, DAMHATSU, WHITE TRACTORS
MASPORT MOWERS. MCCULLOCH CHAINSAWS

FARMING PARTS LTD.
INVOICE 00015
SOLD TO MF. . W. Someese--

BESTCOPY AVAILABLE

2. Because the machinery costs have varied so much over the years, Marjorie and Bill decide to find the average cost for the last 5 years and use that figure as their estimate. Listed below are the costs for the last five years:

Year	$\boldsymbol{\$}$
1997	11730
1996	10150
1995	11230
1994	8490
1993	9630
Total	

Find the average.
Total costs for 5 years =
No. of years =
Average $=$
total costs divided by the no. years $=$

Predetermined costs

Sometimes Marjorie and Bill can use other information to calculate their costs.

Activity 4
How will they calculate the cost of drenching?
They have 1000 ewes, 850 weaners and 850 lambs. Calculate the total cost of drenching. The first sum has been done for you.

Ewes	1000 sheep x 3 doses x \$0.12	$\$ 360$
Weaner		$\$$
Lambs		$\$$
Total		$\$$

Crop costs

Some of the crop costs are worked out by this method. When Marjorie and Bill chisel plough the fields before sowing they know that the chisel plough can do $5.6 \mathrm{ha} / \mathrm{hr}$ and the cost is $\$ 20.31$ per hour. They need a total cost for the chisel plough. Let's look at their costs.

Chisel plough 2 times at $5.6 \mathrm{ha} / \mathrm{hr}$ @ $\$ 20.31$ per hour
(for oats and triticale)

6 times at $5.6 \mathrm{ha} / \mathrm{hr}$ @ $\$ 20.31$ per hour
(wheat)
Marjorie and Bill plan to plant 140 hectares of oats, 320
hectares of triticale and 800 hectares of wheat.

They first need to calculate the time it takes to plough once. They do this by dividing the hectares by the number of hectares that can be ploughed in an hour. Oats will take 25 hours to plough once because 140 hectares $\div 5.6 \mathrm{ha} / \mathrm{hr}$ is 25 .

A paddock that will be planted with oats needs to be ploughed two times. It will take 50 hours to plough the paddock twice. The total time is then multiplied by the hourly rate. So for oats it will be $50 \times \$ 20.31$ which is $\$ 1015.50$.

Complete the following table using the information you have from Marjorie and Bill's property:

Crop	Hectares	Time taken to plough paddock once	Total ploughing time	Cost
wheat				
oats	140	$140 \div 5.6=$ 25 hours	$2 \times 25=$ 50	$50 \times 20.31=$ 1015.50
triticale				
Total cost				

It is also possible to calculate the fertiliser like this too.
Wheat uses $80 \mathrm{~kg} / \mathrm{ha}$ of Urea at $\$ 463$ per tonne, $80 \mathrm{~kg} / \mathrm{ha}$ of double super 2.5% Zinc at $\$ 400$ and Urea pre-drill costs are $\$ 3.33$ per hectare. Oats and triticale uses $55 \mathrm{~kg} / \mathrm{ha}$ of MAP at $\$ 471$ per tonne.

Activity 6

1. Complete the following table. The first entry has been done for you. Work out the total fertiliser costs.

Crop/ fertiliser	Hectares	Total kilograms fertiliser	Total tonnes of fertiliser	Cost
wheat-Urea				
wheat- double fertiliser				
oats	140	$140 \times 55=$ 7700	$7700 \div 1000=$ 7.7	$7.7 \times 471=$ $\$ 3626.70$
triticale				
Total				

Using formulae

formulae

$\left.\begin{array}{ll}\text { formula } & \begin{array}{l}\text { is a general rule used to find } \\ \text { answers, for example, the }\end{array} \\ \text { formula for the area of a } \\ \text { rectangle is } A=L x W \\ \text { (Area }=\text { Length } x \text { Width) }\end{array}\right\}$

Sometimes costs can be worked out from formulae.

The cost of post sowing herbicides can be worked out from the formula:
$\mathrm{L} / \mathrm{ha} \times$ ha $\times \$ / \mathrm{L}=$ total cost of herbicides.

Here L / ha is litres per hectare and $\$ / \mathrm{L}$ is cost per litre.
By reading the label on the herbicide you can find out how many litres per hectare you require. In some instances Roundup is sprayed at 1.2 L per hectare. If you were spraying Roundup on the hectares that were sown with wheat you would need 1.2 $\mathrm{L} / \mathrm{ha} \times 800$ ha $\times \$ 11.50 / \mathrm{L}=\$ 11040$.

Listing costs

Marjorie and Bill fine tuned their fertilzer plans and then worked out the rest of the costs. Listed below are the costs:

Costs

Livestock costs

Animal health \$2026
Supplementary feed $\$ 9655$
Stock selling expenses \$865

Wool costs

Freight \$802
Wool tax 4% of $53880 \quad \$ 2155$
Wool selling expenses $\$ 2452$
Shearing and crutching $\$ 9446$

Crop costs

Seed bed preparation

Chisel plough	wheat	$\$ 5500$	
	oats	$\$$	840
	triticale	$\$$	2100

Seed

Triticale
$\$ 2700$

Fertiliser

Triticale and oats $\$ 10920$
wheat
Pre-sowing herbicide to control
Grass and broadleaf weeds \$ 3750
application/incorporation \$ 1500
Sowing
Air seeder $\$ 3780$
Post sowing herbicides
Broadleaf weeds \$ 1680
Capeweed, thistles, legumes, skeleton weeds application $\$ 24150$
Harvesting
SP Harvester \$ 8820
Insurance
Cartage to Silo oats \$ 240
triticale \$ 592
wheat \$ 6678
Overhead costs
Labour \$25 920
Administration \$ 3520
Rates \$ 1800
Vehicle registration and insurance $\$ 20000$
Repairs and maintenance \$10 246
Loan repayments \$26 393
Living expenses
Clothing $\$ 3500$
Household utilities (gas, electricity) \$ 1957
Entertainment \$ 2000
School expenses \$ 5000
Food $\$ 7820$

Activity 7

1. What are the total costs on Marjorie and Bills farm? Use this list to create your own budget and put prices against your costs.
2. What are the total costs of your farm?
\qquad
3. Are your costs more than your income?
4. What effect will this have?

Comparing costs to income

income

gross margins	the difference between income and costs
cost minimisation	is an individual's plan to reduce costs
cash flow	the amount of money that is gained compared with the amount of money tbat must
be paid out	

Marjorie and Bill compare their income to their costs. The difference between the income and the costs from the farm are called gross margins. These costs do not include living expenses. If the costs are bigger than the income then the gross margin is negative. In this case the costs are less than the income. Marjorie and Bill have money left over to use in other areas on the farm.

Having set out the budget in this way they can talk about reducing some of the costs. This is called cost minimisation. By leaving the stubble on the paddock after harvesting they may be able to save tillage and herbicide costs. Zero tillage is also environmentally friendly. This practice is already widely practiced in Victoria.

Bill and Marjorie also prepare a monthly budget to show them when and how receipts come in and payments go out. This is called the cash flow budget.

They also may choose to lease some of their land or become more diversified.

Marjorie and Bill can now investigate various practices.

1. Can you think of some changes you could make on your farm?
\qquad
\qquad
\qquad
2. How much do you think these changes would save or cost you?

Model answers

Activity 1

1. Total income $=\$ 305437$

Activity 3

1. The invoices add up to $\$ 3447.20$
2. Total costs for 5 years $=51230$

No. of years $=5$
Average $=$ total costs $/$ no. years $=51230 \div 5=10246$

Activity 4

Ewes	1000 sheep $\times 3$ doses $\times \$ 0.12$	$\$ 360$
Weaners	850 sheep $\times 3$ doses $\times \$ 0.12$	$\$ 306$
Lambs	850 sheep $\times 2$ doses $\times \$ 0.12$	$\$ 204$
Total		$\$ \mathbf{8 7 0}$

Activity 5

Crop	ha	time taken to plough paddock once	total ploughing time.	cost
wheat	800	$800 \div 5.6=$ 142.9 hours	$142.9 \times 6=$ 857.4	857.4×20.31 $=\$ 17413.79$
oats	140	$140 \div 5.6=25$ hours	$2 \times 25=50$	50×20.31 $=\$ 1015.50$
triticale	320	$320 \div 5.6=$ 57.1 hours	$57.1 \times 2=$ 114.2	114.2×20.31 $=\$ 2319.40$
Total cost				$\mathbf{\$ 2 0 7 4 8 . 6 9}$

Activity 6

Question 1

Crop/ fertiliser	Hectares	Total kilograms fertiliser	Total tonnes of fertiliser	Cost
wheat- Urea	800	$800 \times 80=$ 64000	$64000 \div 1000=$ 64 t	$64 \mathrm{t} \times \$ 463=$ $\$ 29632$
wheat- double fertiliser	800	$800 \times 80=$ 64000	$64000 \div 1000=$ 64 t	$64 \mathrm{t} \times \$ 400=$ $\$ 25600$
oats	140	$140 \times 55=$ 7700	$7700 \div 1000=$ 7.7 t	$7.7 \mathrm{t} \times \$ 471=$ $\$ 3626.70$
triticale	320	$320 \times 55=$	$17600 \div 1000=$	$17.6 \mathrm{t} \times \$ 471=$ $\$ 8289.60$
Total				$\$ 600$

* including pre-drill costs
wheat Urea (pre drill costs)
800 ha @ 3.33

$$
=2664.00
$$

$$
\text { Total } \quad=69812.30
$$

Activity 7

1. Total costs are $\$ 262807$

85

Acknowledgments

These units were developed as an initiative of the Victorian Farmers Federation and Primary Skills Victoria. They have been written and prepared by Kangan Batman TAFE.

Project Development Team:

Project Manager:	Barbara Goulborn
Writers:	Chris Tully
Illustrations:	Tracey Lean
Graphics and	
Desktop Publishing:	Kelisha Dalton, Simon Colvey, Maryjeanne Watt, Betty Franklin
Editing:	Helen Yeates, Philip Kofoed, Angela Costi
Instructional design:	Elizabeth McInerney
Reviewers:	Dr. Barbara Johnson, McMillan Campus, University of Melbourne David Stewart, Goulburn Ovens Institute of TAFE
Series reviewer:	Rob Tabener, Wimmera Rural Counselling Service Malcolm Trainor, Instructor, Agricultural Eduction Centre,
	University of Ballarat

Project Steering Committee:

Clare Claydon:	Victorian Farmers Federation, 1997
Airlie Worral:	Victorian Farmers Federation
Lyn Hughes:	Primary Skills Victoria
John Nicholls:	Department of Employment, Education, Training and Youth Affairs
Tony Audley:	United Diary Farmers of Victoria
Ken Stone:	Victorian Farmers Federation, industry representative
Colin Hunt:	Victorian Farmers Federation, industry representative
Margaret Brodie:	Victorian Farmers Federation, industry representative
Michael Kearney:	Victorian Farmers Federation, industry representative
Nickie Berrisford:	Grain Industry Training Network
Andrew Sullivan:	Agricultural Education Centre, University of Ballarat
Malcolm Trainor:	Agricultural Education Centre, University of Ballarat
	Published and distributed by:
	The Language Australia National Resource Centre
Language Australia	

Contents

Introduction 1
Where this fits 1
How to use these materials 1
Outcomes 2
How long should I spend? 2
Activities 2
What you need 3
Assessment 3
Measuring 4
Volume 11
Practical applications of volume formulae 16
Converting weights to volumes 20
Converting, volumes to litres 22
Model answers 25
Activity 1 25
Activity 2 25
Activity 3 26
Activity 4 28
Activity 5 28

Introduction

Welcome to this unit of the SMAT materials, Farm Management and Leadership 3-Numeracy.

SMAT stands for Support Materials for Agricultural Training. SMAT will help you improve your written and spoken communication skills and your numeracy skills, so you can succeed at training programs or communicate more successfully in your workplace.

Where this fits

SMAT has four contexts: Agricultural Production, Farmers as Employers, Farm Management and Leadership and Occupational Health and Safety.

This unit is Level 3 of Farm Management and Leadership 3Numeracy. There are three units of Farm Management and Leadership 3 - Numeracy: Level 1 (starting), 2 (continuing) and 3 (completing). Each unit has two parts: Communication Skills and Numeracy.

After you finish this unit, you could try the other units at the same level: Agricultural Production 3 - Numeracy, Farmers as Employers 3-Numeray, Occupational Health and Safety 3-Numeracy.

You do not have to complete every unit in SMAT. It is up to you to choose the most useful parts and work through them.

How to use these materials

You can use the SMAT materials by yourself, with someone to help you, or in a group or class. It is hard to work by yourself, so it is a good idea to have someone who can give you advice and feedback (a mentor). This person could be a trainer from a college or community centre, a relative, a neighbour or a friend.

The unit is written so you can start at the beginning and work through it. Or if you like you can choose parts of the unit and only do those parts. Spend more time on the parts which are most useful for you. If something is not useful, you can skip it.

There is no certificate to go with the SMAT materials. But SMAT helps you improve your skills so you can do other courses and get other certificates. For example: Farm\$mart, Rural Business Management, and courses run by the Department of Natural Resources and Environment. You will also find that working through SMAT improves the communication and numeracy skills that you need in your working life.

Outcomes

After you finish the SMAT materials you will be able to communicate more effectively in speech and writing and use numeracy skills more effectively. You will be able to calculate the area of a triangle, square-off accurately and calculate the volume of cubes, cylinders and other shapes.

How long should I spend?

This depends on you. The amount of time will be different if you are working by yourself or in a group, with a mentor or without, and if you do all the activities or not. Take enough time to do all the activities that are relevant to you, to a standard high enough to satisfy you.

Activities

Each unit has a number of activities for you to do. In the communications units there are four types of activities:

- key word activities
- reading activities
- writing activities
- spoken communication activities.

In the numeracy units there are numeracy activities.

Sometimes you can write answers to these activities in the book. Sometimes it is better to write them in a notebook. Sometimes for the spoken communication activities you will need to go and speak to some other people.

In some places there are also practice writing and practice reading activities. These are extra activities. You can choose to do them if you think you want extra practice in something.

Most of the activities have model answers in the back of the book. You can also ask your mentor to check your answers.

What you need

Before you start, make sure you have the following:

- a notebook (A4 size is best)
- pens, pencils, highlighter pens
- a file or folder to keep extra papers.

Assessment

There is no formal assessment for SMAT. But it is a good idea to have a mentor look at what you have done. That way you can decide together what you have learned and what you need to improve.

Remember, the SMAT materials are a resource for you to use to improve your skills. It is up to you how you use them and how much of them you use.

If you want to run your farm efficiently and not waste money you need to make clear decisions based on accurate information.

You must measure and calculate accurately when you:

- predict resource usage
- order materials
- make management decisions.

It is important to be as accurate as possible when measuring because inaccuracy may mean you over or under order resouces.

For example, if you are inaccurate in measuing the concrete needed for a shed extension by as much as 20 cms you could over order or under order by as much as 2 to 3 cubic metres.

Squaring off is an important way of making sure you don't waste resources. It is sometimes necessary to square off corners.

Ruth wants to put up a new machinery shed. She needs to square off the corners. She wants a $18.3 \mathrm{~m} \times 7.6 \mathrm{~m} \times 2.45 \mathrm{~m}\left(60^{\prime}\right.$ by 25 ' by 8^{\prime}) shed. She needs to pour a concrete floor first. She wants to make a rectangular box to pour the concrete into. Ruth needs the box to have right angle corners (squared off).

She could do this by pegging out the known right angled triangle of $3: 4: 5$ with string, where 3 metres and 4 metres are the length of the sides and 5 metres is the diagonal as shown.

However when making a long thin rectangle, it is more accurate to find the length of the diagonal.

Ruth runs a piece of string this length from one side of the rectangle to the other as shown.

Ruth uses the Pythagoras theorem for right angle $\left(90^{\circ}\right)$ triangles to find the length of the diagonal.

The formula for this theorem is:
$\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$
where c is the longest side (called the hypotenuse) of the triangle, and a and b are the other two sides.

For any rectangle, the hypotenuse is the diagonal. Ruth needs to find this length. She knows the length of the other two sides.

Putting the values into the formula, she calculates the hypotenuse:
$c^{2}=7.6^{2}+18.3^{2}=57.76+334.89=392.65$

Remember that 7.6^{2} means 7.6×7.6 and 18.3^{2} means 18.3×18.3 that is c^{2} (the hypotenuse ${ }^{2}$) $=392.65$

To find the length of the hypotenuse c (the diagonal), it is necessary to find the square root of 392.65 on your calculator. The square root will usually be shown on the calculator as: $\sqrt{ }$
so
$c^{2}=392.65$
and $c=c=\sqrt{a^{2}+b^{2}}=19.815398 \mathrm{~m}(19.815398 \times 19.815398=$ 392.65)

The diagonal of the rectangle is 19.815 m long rounding off. Ruth runs a piece of string 19.815 metres diagonally long across the rectangle. When side a is measured at 7.6 m , side b at 18.3 m and the diagnonal c is 19.815 m there is a right angle at point x .

The rectangle is now square. The rectangle now has a right angle at point x .

Other diagonals can easily be checked to make sure the other corners are also right angled.

Squaring and square root

To find the square of a number it is multiplied by itself. The product (or answer) of the multiplication is called the square.

For example, $2 \times 2=4$
therefore $2^{2}=4$.
$3 \times 3=9$
$3^{2}=9$.

The square of 2 is 4 .

The square of 3 is 9 .

Finding the square root is the opposite operation of finding the square. To find the square root of a number use your calculator or find it in a set of square root tables.

For example, $4 \div 2=2$
$c=\sqrt{a^{2}+b^{2}}$
$9 \div 3=3$
$c=\sqrt{a^{2}+b^{2}}$
The square root of 4 is 2 .
The square root of 9 is 3 .

Activity 1
Try these examples

1. Use this formula to check that a building or small yard that you have is laid out square. Measure the length and width of the rectangle. Calculate the length of the diagonal (hypotenuse). It should be in a right angled triangle. Compare this with the actual measurement.

Remember the formula for right angled triangles:
$c^{2}=a^{2}+b^{2}$
for the hypotenuse (or diagonal)
$c=\sqrt{a^{2}+b^{2}}$
$\mathrm{c}^{2}=$ \qquad $.^{2}+$ \qquad
$c^{2}=$ \qquad $+$ \qquad
Answer $\mathrm{c}^{2}=$ \qquad

$$
c^{2}=\sqrt{a^{2}+b^{2}}
$$

$c^{2}=\sqrt{\ldots . \ldots ~}+$ \qquad
$c=\sqrt{ }$ \qquad
Answer $\mathrm{c}=$ \qquad
2. Michael is adding on to his sheepyards. He wants to add a pen that is 6 metres by 6 metres. How long is the string line if the sides are at right angles?

\qquad
\qquad
\qquad
\qquad
\qquad
3. Helen is erecting a foal crib. It is 2 metres by 3.5 metres. How long is the diagonal if the sides are squared off (that is the sides are at right angles)

\qquad .
\qquad
\qquad
\qquad
\qquad
\qquad
4. Jo wants to concrete more of her dairy run. She plans to add on an additional 100 metres. If the run is 3 metres wide calculate the length of the diagonal.
\qquad
\qquad
\qquad
\qquad
\qquad

Volume

Ruth also needs to calculate other measurements. She sometimes needs some volume formulae.

An example of when she needed this was when Ruth was offered some wheat at a cheap rate. She needed to build a temporary silo to store the wheat. If the silo she built was too large she would have paid for materials she did not use. If the silo she built was too small she would not be able to store all the cheap grain.

It is important that she calculate her measurements accurately. By calculating accurately Ruth will make sure that she is cost effective in her planning and use of resources.

When she works out the volume of a feed trough she uses the formula for a prism (or parallel sided shape). She multiplies the area of the base by the height.

Area of base $=l \mathrm{x} w$
For example the volume of a rectangular prism (or brick shape) is:

Area of base x width
Area of base $=$ length x width
so volume $=$ area of base x height
$=$ length $(l) \times$ width $(w) \times$ height (b).
$\mathrm{A}=l \mathrm{x} w \times b$

To find volume of this prism (brick shape) Ruth multiplies the length by the width by the height.

The volume of the prism (brick shape) is $.5 \times .5 \times 1=.25 \mathrm{~m}^{3}=$ cubic metres.

The length of the diagonal is found by the following calculation:
$\sqrt{3^{2}+100^{2}}=\sqrt{9+10000}=\sqrt{10009}=100.04 \mathrm{~m}$
The diagonal is 100.04 metres long.

Activity 2

Find the volume of the following shapes.

1. Triangular Prism (shape of piece of cake)

The formula for the area of a triangle is:
$\mathrm{A}=1 / 2 \mathrm{bxh}$
where the h is the altitude or perpendicular height of the triangle.

Area of triangular base $=1 / 2 \mathrm{bxh}$
$=1 / 2 \mathrm{bh}$

Answer = \qquad

Volume of triangular prism
$=$ Area of base of the triangle x height of the prism
$=$ \qquad x

Answer $=$
2. Cylinder

The formula for the area of a circle is:
$\mathrm{A}=\pi \mathrm{r}^{2}$
where r is the radius of the circle and π is 3.14 .

Volume of cylinder

Area of base x height
Area of base (circle) $=\pi r^{2}$
$=3.14 \times 2^{2}$
$=3.14 \mathrm{x}$ \qquad

Answer $=$ \qquad

Volume $=$ Area of base x height
$=$ \qquad x \qquad

Answer $=$ \qquad

3. Cube

The formula for the area of a square is:
$\mathrm{A}=l \mathrm{x} l$
$\mathrm{A}=l^{2}$
where l is the length.

Volume $=$ Area of base x height

Area $=l \times l\left(\right.$ or $\left.l^{2}\right)$
$=$ \qquad x

Answer $=$ \qquad

Volume $=l \mathrm{x} l \mathrm{x} l\left(\right.$ or $\left.l^{3}\right)$
$=$ \qquad x x
\qquad

Answer $=$ \qquad

Not all shapes are regular. Sometimes shapes that we need to find the volume for are more unusual. Here is one example.

The area of the end of this shape can be found by using the formula for the area of a trapezium. The formula for the area of a trapezium is $\left(\frac{a+b}{2}\right) h$ where a, b and h are:

The volume of the trapezium is:
$\left(\frac{2.4+3.2}{2}\right) \times 1.5 \times 8=33.6 \mathrm{~m}^{2}$

Practical applications of volume formulae

Ruth uses these volume formulae for ordering materials, working out construction sizes or for finding the amount of litres in a container.

For example, Ruth wants to know how many cubic metres of cement she needs to make the dairy run from activity 1 number 4. Ruth lays the concrete 10 cm thick. The volume of concrete is worked out using the volume formula for rectangular prisms l xwxh.

Figure 1:
Before Ruth can do this, she needs to convert all the units to the same measurement. The 10 centimetres $(10 \mathrm{~cm})$ need to be converted to metres.

For more information on conversions see Agricultural Production 1 -Numeracy.
$10 \mathrm{~cm}=0.1 \mathrm{~m}$
The volume is $100 \times 3 \times 0.1=30 \mathrm{~m}^{3}$ (cubic metres)
Ruth needs 30 cubic metres of concrete.
(Remember to always have an estimate of the answer in your head before working it out.)

Activity 3

1. Vin is going to put gravel onto a farm track for 200 m . If the track is 2.5 metres wide and the gravel is laid 15 centimetres thick, how many cubic metres of gravel does Vin need?
\qquad
\qquad
\qquad
\qquad
2. Isabel is installing a temporary silo with a circular base and a height of 3 metres and a radius of 2.5 metres. Find the volume of the silo.
\qquad
\qquad
\qquad
\qquad
\qquad
3. A trench 200 m long is dug beside a track. If the width at the top is 3.0 m and at the bottom is 1.8 m and the trench has a depth of 1.2 m , find the volume of the trench.
\qquad
\qquad
\qquad
\qquad
4. Find the volume of a hay shed if the dimensions are as shown:

Note this is a combination shape. Calculate the volume of the section with the rectangular end and the volume of the section with the triangular end then add the two volumes together.
\qquad
\qquad
\qquad
\qquad

- What is the volume of a bale of hay if the dimensions are $0.9 \mathrm{~m} \times 0.45 \mathrm{~m} \times 0.45$? (What shape would the base be?)

Volume $=$ \qquad
$=$ \qquad m^{3}

- How many bales of hay will fit into the shed, if the shed is stacked up to the beginning of the roof?
\qquad
\qquad
\qquad
\qquad

Converting weights to volumes

Ruth has been offered 60 tonnes of wheat at a cheap price if she takes it from the paddock. She needs a temporary silo to store the wheat in. Ruth plans to build the silo on a concrete floor using reinforcing mesh and shade cloth.

She can buy reinforcing mesh that is 3 metres wide. Ruth needs to calculate the length of mesh needed to hold 60 tonnes of wheat. To do this she needs to find the radius of the cylinder and then calculate the circumference.

Transforming the volume formula for a cylinder $\left(\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}\right)$ to $\mathrm{r}=\sqrt{\frac{\mathrm{V}}{\pi \mathrm{h}}}$ she can now calculate the radius.

For example, a temporary silo with a volume of 35 cubic metres is needed. The silo will be 3 metres high. What will the radius be? What will the circumference be?

The volume of a cylinder is $v=\pi r^{2} h$

The radius of the cylinder will be $\mathrm{r}=\sqrt{\frac{\mathrm{v}}{\pi \mathrm{h}}}$
$\mathrm{v}=35$ cubic metres, $\pi=3.14, h=3$ metres
radius, $\mathrm{r}=\sqrt{\frac{\mathrm{v}}{\pi \mathrm{h}}}$
$r=\sqrt{\frac{35}{3.14 \times 3}}$

$$
\begin{aligned}
& r=\sqrt{\frac{35}{9.32}} \\
& =35 \div 9.32=3.7155 \\
& r=\sqrt{3.7155} \\
& r=1.93 \mathrm{~m} \\
& \text { Circumference }=2 \pi r \\
& =2 \times 3.14 \times 1.93 \\
& =12.12 \mathrm{~m}
\end{aligned}
$$

Ruth also needs to convert the wheat from tonnes to cubic metres.

She knows that 1 cubic metre of wheat weighs about 740 kg .

Activity 4

1. How many cubic metres will 60 tonne of wheat take up if $1 \mathrm{~m}^{3}$ (one cubic metre) contains 740 kg ?
\qquad
\qquad
\qquad
\qquad
2. If the volume of a cylinder is $81.08 \mathrm{~m}^{3}$ and the height is 3 m , find the radius using the formula $\mathrm{r}=\sqrt{\frac{\mathrm{v}}{\pi \mathrm{h}}}$.
\qquad
\qquad
\qquad
\qquad
3. If a circle has a radius of 2.93 m find the circumference of the circle using the formula $\mathrm{C}=2 \pi \mathrm{r}$.
\qquad
\qquad
\qquad
\qquad
4. Ruth requires 18.41 metres of reinforcement mesh to build the temporary silo. Using the same process as above calculate the amount of mesh required if the wire is 3.5 metres wide.
\qquad
\qquad
\qquad
\qquad
\qquad
5. Ruth has been offered 60 tonnes of oats instead of wheat. If 1 cubic metre of oats weighs 490 kg calculate the length of reinforcing mesh that Ruth needs for a temporary silo if the mesh is 3 metres wide.
\qquad
\qquad
\qquad
\qquad

Converting, volumes to litres

Sometimes Ruth needs to know how much water a container or space will hold. She can work this out using the conversion: 1 cubic metres equals 1000 litres.

For example, Ruth plans to install a container on the back of her ute. She wants to know how many litres it will hold. Using the dimensions below:

Ruth calculates the volume as $0.5 \times 1.5 \times 0.4=0.3 \mathrm{~m}^{3}$. She converts this to litres $0.3 \times 1000=300$ litres. This container will hold 300 litres.

Activity 5

Find the litres each of the following holds:

1. A water tank whose height is 2 m and has a radius of 1.5 m .

$$
\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h}
$$

\qquad
\qquad
\qquad
\qquad
2. A water trough of the following dimensions:

$$
\begin{aligned}
\mathrm{a} & =0.6 \mathrm{~m} \\
\mathrm{~b} & =0.4 \mathrm{~m} \\
\mathrm{c} & =1.2 \mathrm{~m} \\
\mathrm{~V} & =\left(\frac{a+b}{2}\right) h l
\end{aligned}
$$

3. A rectangular prism whose dimensions are:

Model answers

Activity 1

2. $6^{2}+6^{2}=36+36=72$.

The string line is $\sqrt{72}=8.5 \mathrm{~m}$ if the sides are at right angles.
3. $2^{2}+3.5^{2}=4+12.25=16.25$

The diagonal on the foal crib is $\sqrt{16.25}=4.03 \mathrm{~m}$ if the sides are at right angles.
4. $a=100 \mathrm{~m}, \mathrm{~b}=3 \mathrm{~m}$.

100 m

Activity 2

1. \quad Area of base $=1 / 2 b b$
$=1 / 2 \times 4.5 \times 1.8=4.05 \mathrm{~m}^{2}$
Volume $=$ area of base x height
$=1 / 2 \times 4.5 \times 1.8 \times 2=8.1 \mathrm{~m}^{3}$
The volume of the triangular prism is $8.1 \mathrm{~m}^{3}$
2. \quad Area of base $=\pi r^{2}$
$=3.14 \times 2^{2}$
$=3.14 \times 4$
Area of base $=12.56 \mathrm{~m}^{2}$
Volume $=$ Area of base x height
$=12.56 \times 1.5$
$\pi \times 2^{2} \times 1.5=18.8 \mathrm{~m}^{3}$

The volume of the cylinder is $18.8 \mathrm{~m}^{3}$
3. $\quad 1.2^{3}=1.2 \times 1.2 \times 1.2=1.73$

Activity 3

1.

First change the 15 centimetres to metres.
$15 \mathrm{~cm}=0.15 \mathrm{~m}$

Volume $=l \times w \times b$

Volume $=200 \times 0.15 \times 2.5=75 \mathrm{~m}^{3}$
2.

Volume $=\pi \times 2.5^{2} \times 3=58.875 \mathrm{~m}^{2}$
(3.14 was used as an approximation for π)

114
3.

The volume of the trench is

$$
\left(\frac{3.0+1.8}{2}\right) \times 1.2 \times 200=576 \mathrm{~m}^{2}
$$

4.

Volume of the rectangle:

$$
\mathrm{V}=7.5 \times 12 \times 3.4=306 \mathrm{~m}^{3}
$$

Volume of triangle:

$$
\mathrm{V}=1 / 2 \times 7.5 \times 1.8 \times 12=81 \mathrm{~m}^{3}
$$

Total volume $=306 \mathrm{~m}^{3}+81 \mathrm{~m}^{3}=387 \mathrm{~m}^{3}$

- The volume of a bale of hay is:

$$
\mathrm{V}=0.9 \times 0.45 \times 0.45=0.18225 \mathrm{~m}^{3}
$$

- The number of bales of hay that would fit into the hay shed would be:

$$
306 \mathrm{~m}^{3} \div 0.18225 \mathrm{~m}^{3}=1679 \text { bales }
$$

Activity 4

1. First we need to convert the tonnes and kilograms to the same units. Both will be converted to kg :

60 tonnes $=60000 \mathrm{~kg}$
So the volume will be:
$60000 \div 740=81.08 \mathrm{~m}^{3}$
2. $r=\sqrt{\frac{81.08}{3.14 \times 3}}=2.93 \mathrm{~m} \quad(\pi=3.14$ was used $)$
3. $C=2 \times 3.14 \times 2.93=18.41 \mathrm{~m}$
4. $r=\sqrt{\frac{81.08}{3.14 \times 3.5}}=2.72 \mathrm{~m}$
$C=2 \times 3.14 \times 2.72=17.08 \mathrm{~m}$
5. Volume of oats is:
$60000 \div 490=122.45 \mathrm{~m}^{3}$
$\mathrm{r}=\sqrt{\frac{122.45}{3.14 \times 3}}=3.61 \mathrm{~m}$
$\mathrm{C}=2 \times 3.14 \times 3.61=22.67 \mathrm{~m}$

Activity 5

NOTE 3.14 is used for the value for π in all examples.

1. $\mathrm{V}=3.14 \times 1.5^{2} \times 2=14.13 \mathrm{~m}^{3}$
$14.13 \mathrm{~m}^{3}=14.13 \times 1000=14130$ litres.
2. $V=\left(\frac{0.6+0.4}{2}\right) \times 0.5 \times 1.2=0.3 \mathrm{~m}^{3}$
$0.3 \mathrm{~m}^{3}=0.3 \times 1000=300$ litres.

$$
\begin{aligned}
& \text { 3. } V=2.3 \times 1.7 \times 1.5=5.865 \mathrm{~m}^{3} \\
& 5.865 \mathrm{~m}^{3}=5.865 \times 1000=5865 \text { litres. }
\end{aligned}
$$

117
29

NOTICE

REPRODUCTION BASIS

\starThis document is covered by a signed "Reproduction Release (Blanket) form (on file within the ERIC system), encompassing all or classes of documents from its source organization and, therefore, does not require a "Specific Document" Release form.

\squareThis document is Federally-funded, or carries its own permission to reproduce, or is otherwise in the public domain and, therefore, may be reproduced by ERIC without a signed Reproduction Release form (either "Specific Document" or "Blanket").

