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A Monte Carlo Simulation of an Omnibus Test Based on Normal Probability Plots:
The Line Test

‘ Abstract

Currently, there is disagreement regarding the importance of the assumption of normality; many
statistical techniques are robust to violations of normality under some conditions, but such robustness is
not universal. Furthermore, there is no generally accepted test for detecting departures from normality.

The current study was designed to derive the distribution of a test statistic based on normal
probability plots. The first purpose was to provide an empirical derivation of the critical values for the
Line Test (LT) with an extensive computer simulation. The goal was to develop a test that is sensitive to
a wide range of alternative distributions, applicable to a wide range of sample sizes, and easy to compute.
The second purpose was to determine the power of LT and compare it to that of several other test
statistics.

Monte Carlo simulation was used to generate the critical values of LT by randomly generating
500,000 replications from a normal distribution for sample sizes 10(1)100(25)1000(250)5000. For each
replication, the value of LT was calculated. The empirical critical values were determined for each of
three levels of significance for each sample size. These critical values were then “smoothed” using
nonlinear regression techniques.

The results indicated that LT provides adequate control over Type I errors while at the same time
providing statistical power comparable to the Shapiro-Wilk test. In conclusion, LT is easy to compute, is
powerful for detecting departures from normality under a wide variety of alternative distributions, and is

available for sample sizes up to 5,000.



A Monte Carlo Simulation of an Omnibus Test Based on Normal Probability Plots:

The Line Test

Introduction

The normal probability distribution is the most widely used distribution in statistics as the assumption of
normality allows us to employ some very sophisticated analytic techniques in the interpretation of our data.
However, improper analysis of data that deviate from normality can lead to inaccurate conclusions. Therefore,
knowing how to determine whether a sample of measurements is from a normally distributed population is crucial
both in the development of statistical theory and in practice. Currently, there appears to be some level of
disagreement regarding the importance of the assumption of normality. It has been established that many statistical
techniques are robust to violations of normality under some conditions, but such robustness is not universal
(Tabachnick and Fidell, 1996). Among the non-robust procedures are tests on variances (Box, 1953), structural
equation modeling (Bollen, 1989; Wang, Fan, and Willson, 1996), and meta-analysis (Glass, McGaw, and Smith,
1981; Greenhouse and Iyengar, 1994; Hedges and Olkin,1985).

Much effort has been exerted in developing techniques solely for the purpose of detecting departures from
normality. This effort began as early as the late 19th century with Pearson’s (1895) work on moments, particularly
the third and fourth moments which are commonly referred to as the skewness and kurtosis coefficients, respectively.
Since that time, there has been considerable attention devoted to these moments and how they may be used to assess
departures from normality (e.g., Bowman & Shenton, 1973; Bowman & Shenton, 1975; D’Agostino, Belanger, &
D’ Agostino, 1990; D’ Agostino & Cureton, 1972; D’Agostino & Pearson, 1973; D’ Agostino & Teitjen, 1973; Fisher,
1930; Fisher ,1973; Pearson, 1930; Pearson, 1931; Pearson, 1963; Pearson, D’ Agostino, & Bowman, 1977;
Williams, 1935). In another direction, there has been extensive work developing omnibus tests based on normal
probability plots (e.g., Brown & Hettmansperger, 1996; Filliben, 1975; Hegazy & Green, 1975; LaBrecque, 1977,
Looney & Gulledge, 1985; Royston, 1982; Royston, 1992; Shapiro & Francia, 1972; Shapiro & Wilk, 1965;
Shapiro, Wilk, & Chen, 1968; Verrill & Johnson, 1988; Weisberg & Bingham, 1975).

In addition to the two types of tests (moments and probability plots), there are several other “miscellaneous”

tests that have been developed. Among them are D’ Agostino’s D statistic (D’ Agostino, 1971), the Kolmogorov-



Smirnov test (Lilliefors, 1967), the ratio of the range to the standard deviation (David, Hartley, & Pearson, 1954),
and the ratio of the mean deviation to the standard deviation (Geary, 1935)

While many tests currently exist, there is no gold standard among them as there is no one test which is
sensitive to a wide range of alternative distributions, applicable to a wide range of sample sizes, and easy to compute.
In fact, the variability in normality tests used is evident by noting that even the major statistical packages such as
SAS, SPSS, STATA, SYSTAT, and BMDP have implemented different normality tests (D’Agostino, Belanger, &
D’Agostino, 1990; Hopkins & Weeks, 1990; Ware & Ferron, 1995).

Many would argue that the Shapiro-Wilk (1965) W test is the most sensitive test to a wide range of
alternative distributions. In fact, W was the first test for normality that was able to detect departures due to either
skewness or kurtosis, or both. However, because of the complexity of this test, no statistical package has
implemented W for sample sizes larger than 50. Large sample approximations have been developed (e.g., Royston,
1982), but Althouse (1997) showed that this approximation may not provide adequate control of the Type I error
rate.

At this time, there are two tests for normality that seem to stand out from the others. D’Agostino and his
colleagues have developed K2, which is one of several recommended by Bollen (1989) and currently available within
STATA. K? is defined as the sum of the standardized and normalized measures of skewness and kurtosis, and is
compared to x*(2). The Shapiro-Wilk W test is defined by considering the regression of the ordered observed values
on the expected deviates from a normal distribution and is recognized as the best of the test statistics based on
normal probability plots. However, the computation of W requires a set of coefficients, which have been derived
only for sample sizes less than or equal to 50 and approximated for larger sample sizes. Therefore, W is usually
limited to small samples and is not easily calculated.

Recently, a new test statistic based on moments has been developed, g2 (Ware & Ferron, 1995; Althouse,
1997; Althouse, Ware, & Ferron, 1997). This test statistic is modeled after K?, but makes no attempt to normalize
the measures of skewness and kurtosis nor does it rely on distributional theory to derive critical values. Rather, the
distribution of g? was determined through intensive computer simulation. Findings from those studies have

suggested that g’ is competitive with both K? and an approximation to W for leptokurtic distributions, especially, and



does not suffer from the inflated Type [ error rate evidenced by both K* and the approximate W (Ware & Ferron,
1995; Althouse, 1997; Althouse, Ware, & Ferron, 1997).

The current study was designed to derive the distribution of a test statistic based on normal probability
plots. The first purpose was to provide an empirical derivation of the critical values for the Line Test (L7) with an
extensive computer simulation. The second purpose was to determine the power of LT and compare it to the power
of several other test statistics: gz, K2, the standardized third moment test (‘lb]), the standardized fourth moment test
(b2), ana a large sample approximation of the W test (Royston, 1992).

Logic of Tests Based on Normal Probability Plots

A normal probability plot is a plot of ordered observed data values as a function of expected values based
on the assumption of normality. The various tests have all attempted to summarize the information available in these
plots, in one way or another. The Shapiro-Wilk W test is focused on the slope, while the work of Filliben (1975),
Weisberg and Bingham (1975), Looney and Gulledge (1985), and Verrill and Johnson (1988) is directed toward the
correlation coefficient. If the data were “perfectly” normally distributed, one would expect the correlation coefficient
to be equal to 1.0. As the data depart from normality, the expected value of » would be expected to decrease. To
demonstrate, four variables were randomly generated for 200 cases: normal, uniform, x2(2), and 1(4). These
variables represent normal, symmetric/flat, skewed/kurtotic, and symmetric/kurtotic distributions, respectively.
Normal probability plots for these four variables are shown in Figure 1. An inspection of Figure 1 shows quite
clearly that only the probability plot for the normal variate appears to be linear; the others are obviously non-linear.
Thus, a correlation between the ordered data and their expected cumulative frequencies under the assumption of
normality provides a measure of the degree to which the data are normally distributed.

Method

All the dlata were simulated using the SAS RANNOR function within PROC IML (SAS, 1995). The first
Monte Carlo simulation was used to generate the critical values of LT by randomly generating 500,000 replications
from a normal distribution for sample sizes 10(1)100(25)1000(250)5000. For each replication within each sample

size condition, the value of the correlation coefficient was calculated. The steps to compute LT are as follows.

1. Arrange the observed set of data in ascending order.



2. Determine the percentile rank for each value in the set of data. The percentile rank value is
defined as (j-0.5)/n, where j is the order of the value in step 1.

3. Calculate the standard normal quantiles for each of the percentile rank values. This set of
values is the expected set of values based on the assumption of normality and can be
obtained by using a normal probability table or by using an inverse normal distribution
function.
4. Compute the correlation between the ordered set of data (Step 1) and the expected set of
values (Step 3) to get LT.
An example of the computation of LT is provided in Table 1. The SPSS syntax and SAS code for computing LT are
provided in Appendices A and B, respectively.

Given that the observed correlation decreases from 1.00 as the data depart from normality, the empirical
critical values of LT for each sample size condition were obtained at the .10, .05, and .01 levels of significance by
determining the 10th R Sth, and 1* centiles of the 500,000 correlation coefficients at each sample size, respectively.
Using plots of these estimated critical values versus sample size as a guide, the model of best fit was determined for
each significance level using non-linear regression. These models served as the empirical distribution functions for
LT and were used to derive the smoothed critical values for sample sizes between 10 and 5000.

The obtained estimated critical values were validated by conducting a smaller Monte Carlo simulation in
which 10,000 samples were generated from a normal population for 45 samples sizes between 10 and 1000. The test
statistic L7 was calculated for each sample, as were the values of the other statistics (gz, K2, ‘/b], by, and ¥). For
each significance level, the proportion of times that each test statistic detected “non-normality” was determined.

To assess the power of LT relative to the power of the other five test statistics (g2, K2, ‘/b], by, and W),
another Monte Carlo simulation was conducted. Twelve alternative distributions were selected to ensure equal
representation from the following six shapes of distributions: near normal (discrete), near normal (continuous),
symmetric/flat, symmetric/peaked, skewed/flat and skewed/peaked. The 12 distributions are described in Table 2.
To calculate power, 10,000 samples were generated for sample of sizes n = 10, 25, 50, 75, 100, 250, 300, 400, 500,
750, and 1000 for the twelve alternative distributions. The number of times each test statistic detected “non-
normality” was determined.

Results

Calibration of LT



Empirical critical values were obtained for LT at the .10, .05, and .01 levels of significance. Examination of
these values as a function of the 143 sample sizes indicated a nonlinear relationship (See Figure 2). Regression
equations using inverse, inverse square roots, inverse cube roots, and inverse exponential functions were used to
account for over 99% of the variance at each significance level. The three resulting regression equations were as
follows:
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The proportions of variance (rounded to four decimal places) explained were 1.0000, 1.0000, and .9999,
respectively. Using these equations, the “smoothed” critical values of LT at each significance level were determined.
Selected values are presented in Table 3.
Type 1 Error Rates

The “smoothed” values were used to validate LT. The results are presented in Table 4. The proportions for
LT were similar to the theoretical proportions for each significance level, validating the use of the regression
equations and indicating no problems with Type I error rates. Similarly, the Type I error rates for g? , Vb, and b,
were fairly close to their expected values. However, for K, there was a slight, yet consistent, inflation of Type I
error rates at the .05 and .01 levels of significance, particularly for small sample sizes. Even more troublesome were
the Type I error rates for the approximation to W, which were largely inflated for all significance levels. As the
sample size increased, these Type | error rates were more exaggerated. Overall, the approximation to # was the
most liberal of the six tests. Once the Type | error rates were examined, the next step was to evaluate the power of
LT to determine how well it could detect departures from normality and to see how its power compared to those of

the competing test statistics. However, given the inflated Type I error rates for K* and W, we entered this next phase
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suspecting that the power of K? and W would be somewhat inflated.
Power Results

Power values for the six test statistics were established for each of the 13 sample sizes for each of the
twelve alternative distributions at each level of significance. We were also interested in seeing how these six test
statistics differed across the various distribution categories and across different sample sizes. Therefore, we report
the power results by distribution category. In addition, a visual examination of the power results indicated that there
was an interaction between the type of test statistic, the distribution category of the alternative distributions, and the
sample size. A full listing of the detailed power results at each of the significance levels for the 12 alternative

distributions can be obtained by contacting the authors.

Near Normal Discrete Distributions. The near normal discrete distributions consisted of the binomial (20,
.5) distribution and the Poisson (10) distribution. Each of these distributions have a skewness value close to zero and
a kurtosis value close to 3, making them almost indistinguishable from the normal distribution, particularly for
practical purposes such as the violation of the normality assumptions. The mean power of each test statistic for each
sample size is provided in Table 5. The test statistic L7 had relatively high power, trailing only behind the
approxima;tion of W. However, it was shown earlier that /# had an inflated Type I error rate which may result into
misleading higher power values. Regardless, for these near normal discrete distributions, LT and W were clearly the
two most powerful tests.

Near Normal Continuous Distributions. The near normal continuous distributions consisted of the Tukey

(1,5) distribution and the Johnson S Bounded (1,2) distribution. As with the earlier discrete distributions, the
skewness value is close to zero and the kurtosis value is close to 3, making these distributions similar to the near
normal discrete distribution, virtua"y indistinguishable from the normal distribution. The mean power of each test
statistic for each sample size is given in Table 6. As with the discrete distributions, the test statistic LT performed
nearly as well as the approximation to W, particularly for large sample sizes.

Symmetric/Platykurtic Distributions. This set of distributions included the Johnson B Bounded (0, .5) and

the Tukey (1, 1.5) distributions. The mean powers for this distribution are provided in Table 7. The test statistic LT
was as powerful as K2 b,, and the W approximation for sample sizes larger than 100 and only slightly less powerful

for smaller sample sizes. The test statistic, b,, had the highest power, but only slightly edged #, K% and LT. As



expected, the skewness test was the weakest test. One notable difference for this category of distributions from the
near normal distributions was the rate at which the power increased, particularly for the smaller sample sizes.
Therefore, sample sizes do not need to be large for most of the test statistics to have adequate power if we have data
that are symmetric and flat.

Symmetric/Leptokurtic Distributions. The symmetric and peaked set consisted of Johnson S Unbounded (0,

2) and the Johnson S Unbounded (0,.9) distributions. The mean powers for this set of distributions are presented in
Table 8. The test statistics g* and LT were as powerful or more powerful than all other test statistics for all sample
sizes withvg2 slightly more powerful than L7. In fact, the powers of g%, LT, K?, b,, and the # approximation were all
high. Also, the mean powers for g? were notably higher from what they were in the previous sets of distributions.
This pattern was also true for K2 b,, and Vb,. However, the W approximation and LT were slightly more powerful
in detecting departures from normality for the near normal continuous distributions than this category. As with the
symmetric/platykurtic distributions, Vb, provided the weakest power.

Skewed/Platykurtic Distributions. The skewed and platykurtic distributions were represented by the

Johnson S Bounded (.533, .5) and Beta (2,1) distributions. The mean powers for this set of distributions are
presented in Table 9. As with the earlier flat shaped distributions, the # approximation was clearly the most
powerful, particularly for sample sizes up to 100. For larger sample sizes, g%, LT, K?, Vb, and the # approximation
had equivalent power. The test statistic L7 was second to the # approximation in power for smaller sample sizes,
but became equal in power for sample sizes greater than 75. The patterns for g and LT were similar to the powers
for the symmetric, flat distributions indicating that the skewness of the distribution did not have an effect on power
when the distribution was flat.

Skewed/Peaked Distributions. The distributions in this category included the Johnson S Unbounded (1,1)

and the lognormal (0, 1, 0) distributions which are positively and negatively skewed, respectively. In addition, both
these distributions have a kurtosis value larger than 3. The mean powers for this set are presented in Table 10. For
sample sizes approaching 50, g seémed nearly equivalent to LT, K2, Vb,, and the ¥ approximation. The power for
LT was equivalent to the I approximation for all sample sizes. Also, LT was more powerful than all other tests,
except the approximation to # for small sample sizes. Once again, for the skewed distributions, b, had the lowest

power up until sample size 100 where it became equivalent in power to the other five statistics. All of the test

10
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statistics demonstrated higher power for skewed/peaked distributions than for the other distribution categories
considered earlier. In fact, absolute power was demonstrated at sample sizes greater than 100 for all test statistics.
Summary of the Results

Past research on using summary statistics (e.g., the correlation coefficient) to test for normality has shown
that this family of statistics is conceptually easy and that the power compares favorably with leading test statistics
(Filliben, 1975; Weisberg and Bingham, 1975; Looney and Gulledge, 1985; Verrill and Johnson, 1988). The results
from this study support these conjectures. The Type | error rates LT were as expected for each significance level.
Once again, the K? test statistic did not validate, having inflated Type I error rates at the .05 and .01 levels, and being
slightly conservative at the .10 level. In addition, Royston's approximation of ¥ had inflated Type I error rates at
each significance level, indicating that it may be liberal in detecting departures from normality which may account
for its high power. This inflated power is best seen when the power of the approximation to W for near normal
distributions is considered. For large sample sizes, the ¥ approximation had absolute power, yet for large sample
sizes these distributions approximate the normal distribution. Therefore, low power in these cases is acceptable,
perhaps even desirable. The two moment tests, Vby, and b, while having high power for some distributions, do not
provide an omnibus test for normality. That is, they only do well when the departure is due to skewness or kurtosis,
respectively.

Overall, the # approximation appeared to be the most powerful test. However, the power of ¥ could be
biased due to its inflated Type | error rates. The test statistic, LT, was close in power to ¥ for small sample sizes,
and equivalent to W for large sample sizes and did not have an inflated Type I error rate. The test statistic, g, was
the best overall test for peaked distributions regardless of sample size and symmetry. In particular, for symmetric,
peaked distributions, the power of g equaled or surpassed the other tests. The above results indicate that g? and LT
are competitive with competing test statistics for many alternative distributions. In addition, this power is

accomplished without a compromise in the Type 1 error rate.
Conclusions

As earlier mentioned, statistical packages differ in the test(s) they have implemented. Also, many of the

tests for normality are not easy to implement, making them hard to use for the average researcher. The ideal test for

11



normality would demonstrate high power without an increased risk of a Type I error and would be easy to compute
from the output of any of the major statistical packages. The results of this study indicate that LT has merit as a test

for normality as it is unbiased, easy to compute, readily available, and powerful for a wide variety of situations.
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Figure 1. Normal probability plots for four different random variables: normal, uniform,

skewed/kurtotic, and symmetric/kurtotic.
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Figure 2. Plot of empirically derived critical values of LT for the .10, .05, and .01 levels as a

function of sample size up to n = 100, inclusive.
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Table 1. Example for Computing LT for Sample of Size n = 10.
Sample Step 1: Order Step 2: Determine Step 3: Calculate Standard Step 4: Compute the
Data Set Observations Probability Values Normal Quantiles Correlation
-.098 -.603 (1-.5)/10 =.05 -1.645
.866 -.296 (2-.5)/10= .15 -1.036
=77 -277 (3-.5)/10 = .25 -.674
-.603 -.134 4-.5)/10 = 35 -.385
-.296 -.098 (5-.5)/10 = 45 -.125 LT=.9274
954 011 (6-.5)/10 = .55 A28 .
1.702 .024 (7-.5)/10 = .65 385
011 .866 (8-.5)/10 =.75 .674
.024 954 (9-.5)/10 = .85 1.036
-.134 1.702 (10-.5)/10 = .95 1.645
16
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Table 2. Categorization of the Alternative Distributions for the Power Study.

Distribution Category Alternative Distributions (parameters)

VB 117}
Near Normal Discrete Binomial (20, .5) 0 2.90
Poisson (10) 32 3.10
Near Normal Continuous Tukey (1, 5) 0 2.90
Johnson Bounded (1, 2) 28 2.77
Symmetric/platykurtic Johnson Bounded (0, .5) 0 1.63
Tukey (1, 1.5) 0 1.75
Symmetric/leptokurtic Johnson S Unbounded (0, 2) 0 4.71
Johnson S Unbounded (0, .9) 0 82.08
Skewed/platykurtic Johnson S Bounded (.533, .5) .65 2.13
Beta (2, 1) -57 2.40
Skewed/leptokurtic Johnson S Unbounded (1, 1) 530 93.40
Lognormal (0, 1, 0) 6.18 113.94
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Table 3. Critical Values of LT for a=.10, .05, & .01 as a function of sample size.

Sample Size

10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
45
50
55
60
65
70
80
90
100
125
150
175
200
300
400
500
750
1000
1500
2000
2500
3000
3500
4000
0

.10

0.93400
0.93834
0.94209
0.94535
0.94823
0.95079
0.95308
0.95515
0.95703
0.95874
0.96032
0.96310
0.96549
0.96757
0.96940
0.97102
0.97247
0.97378
0.97496
0.97604
0.97702
0.97915
0.98091
0.98239
0.98365
0.98474
0.98569
0.98727
0.98853
0.98956
0.99146
0.99275
0.99369
0.99439
0.99606
0.99692
0.99747
0.99827
0.99872
0.99919
0.99940
0.99952
0.99957
0.99960
0.99962
1.00000

.05

0.91838
0.92385
0.92855
0.93265
0.93626
0.93946
0.94233
0.94492
0.94726
0.94940
0.95135
0.95482
0.95779
0.96037

. 0.96264

0.96466
0.96645
0.96807
0.96953
0.97086
0.97208
0.97470
0.97687
0.97869
0.98024
0.98158
0.98274
0.98468
0.98622
0.98747
0.98978
0.99135
0.99248
0.99334
0.99534
0.99636
0.99701
0.99796
0.99850
0.99906
0.99931
0.99944
0.99951
0.99954
0.99955
1.00000

.01

0.87993
0.88808
0.89508
0.90119
0.90656
0.91133
0.91559
0.91944
0.92293
0.92611
0.92902
0.93416
0.93858
0.94242
0.94579
0.94878
0.95144
0.95384
0.95600
0.95797
0.95977
0.96366
0.96685
0.96954
0.97182
0.97379

0.97550

0.97833
0.98059
0.98241
0.98576
0.98801
0.98963
0.99083
0.99363
0.99503
0.99591
0.99723
0.99798
0.99876
0.99911
0.99929
0.99937
0.99940
0.99941
1.00000

© W.B. Ware and L. A. Althouse, 1998
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Table 4. Comparison of Type I Error Rates for Six Competing Statistics.

Level of Significance n g K? Vb, b, LT W app.
o=.10 10 .105 .096 .102 .090 .101 .098
’ 25 .103 .099 .102 .100 .101 119
50 .097 .098 .101 .102 .100 124
75 .103 .103 .104 .102 .102 125
100 .100 097 099 .104 .100 .129
150 097 .096 .097 .105 .097 132
200 102 .102 .101 .102 .100 141
250 099 097 .099 .099 .101 .144
300 .098 .099 .099 .098 .100 .140
400 .099 .096 .099 .103 .099 153
500 .099 .102 .103 .109 .099 .157
750 101 .102 .099 .105 .100 .160
1000 .099 .100 .100 .097 101 .170
Mean Type I Error Rate at a=.10 .1002 .0990 .1004 1012 .1001 .1378
a=.05 10 .051 .061 .054 .044 .052 .053
25 .050 .060 .052 .053 051 .063
50 .049 .057 051 .054 .047 .066
75 .052 .059 052 .056 .056 .073
100 .049 .054 .047 .055 .050 .072
150 049 054 .047 .055 .047 .074
200 .053 .055 .051 .054 .051 .084
250 .049 051 .047 .051 .049 .084
300 .048 .052 .048 .050 .050 .087
400 .050 .051 .049 .052 052 .093
500 051 .053 .049 .056 .049 .097
750 051 .053 .051 .054 .052 .104
1000 .050 051 .053 051 .051 113
Mean Type I Error Rate at a=.05 .0502 .0547 .0501 0527 0505 .0818
o=.01 10 012 025 013 .007 .103 013
25 011 .022 011 011 012 016
50 .009 018 .009 011 .008 014
75 011 019 011 .014 .011 .021
100 012 019 010 .015 010 .020
150 .009 016 010 .012 .010 .022
200 010 014 010 012 .010 025
250 011 014 010 .012 .010 025
300 .010 013 .008 .013 .009 027
400 010 014 010 .012 011 .034
500 .009 014 011 .012 .009 .032
750 013 014 011 .012 011 .040
1000 .011 013 010 012 .011 .045
Mean Type I Error Rate at a=.01 0116 0165 .0103 .0119 .0104 0257
19
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Table 5. Mean Power Values for Near Normal Discrete Distributions®: By alpha, sample size, and test

statistic.
» Test of Normality ,
Alpha N g K2 Skew Kurtosis W Approx LT
10 10.0 9.3 10.4 8.8 16.2 15.9
25 .10.8 10.6 11.6 10.3 27.0 222
50 13.0 13.4 14.7 11.7 46.9 38.4
75 14.7 14.9 17.8 11.8 68.1 58.8
100 16.9 17.4 20.7 12.4 84.4 77.2
10 150 21.6 21.8 26.2 12.4 96.8 93.8
200 25.4 26.2 30.7 13.2 99.8 99.1
250 29.8 30.4 35.4 13.2 100. 100.
300 34.0 34.6 39.0 14.1 100. 100.
400 40.0 40.9 44.5 14.2 100. 100.
500 44.8 45.8 48.3 14.8 100. 100.
750 51.5 52.8 52.4 17.1 100. 100.
1000 54.1 55.4 53.6 18.4 100. 100.
10 5.0 5.8 5.2 4.0 8.8 8.0
25 5.4 6.5 6.1 5.4 15.6 11.6
50 7.0 8.3 8.4 6.6 30.2 21.2
75 8.0 9.6 10.7 6.5 49.9 36.3
100 9.4 11.0 13.0 6.8 70.4 55.0
.05 150 12.6 14.3 18.1 7.2 91.6 84.0
200 15.9 . 17.8 22.0 7.6 98.6 94.8
250 1934 21.3 27.0 7.8 99.9 99.2
300 23.6 254 30.8 8.2 100. 100.
400 30.4 32.0 37.4 8.4 100. 100.
500 36.2 38.0 422 . 88 100. 100.
750 48.5 473 48.7 10.7 100. 100.
1000 50.1 51.6 50.9 11.5 100. 100.
10 | 8 2.3 1.0 .5 2.0 1.6
25 1.3 2.6 1.5 1.2 4.0 2.6
50 1.8 3.2 2.4 1.6 9.4 4.8
75 2.0 4.0 3.4 1.8 18.8 9.3
100 2.6 4.7 4.5 2.0 34.0 15.6
.01 150 3.7 6.4 7.2 23 70.6 41.6
200 4.9 82 10.1 2.4 89.3 72.4
250 6.4 10.1 13.2 2.3 97.4 87.5
300 8.8 132 17.0 2.7 99.7 95.0
400 - 13.2 18.6 23.8 2.8 100. 99.9
500 17.8 23.8 29.8 3.2 100. 100.
750 32.0 35.8 40.8 3.8 100. 100.
| 1000 41.6 44.4 46.7 4.3 100. 100.
* Binomial (20, 0.5) Skew = 0.00 Kurtosis = 2.90
Poisson (10) Skew =0.32 Kurtosis = 3.10
20
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Table 6. Mean Power Values for Near Normal Continuous Distributions®: By alpha, sample size, and

test
statistic.
Test of Normality . ]
Alpha N g’ . K? Skew Kurtosis W Approx LT
10 11.0 9.7 10.6 9.4 11.3 11.9
25 8.2 76 8.4 8.2 15.6 133
50 7.4 8.3 9.4 8.4 25.2 184
75 8.6 10.0 12.4 8.4 37.8 27.0
100 10.8 12.5 14.8 9.0 50.6 36.8
10 150 16.4 182 20.6 10.0 69.6 56.6
200 228 24.7 26.2 113 80.8 70.4
250 28.8 30.8 30.6 124 86.8 79.6
300 34.0 35.6 34.3 13.4 91.0 85.0
400 41.8 43.0 40.5 15.8 96.0 92.1
500 7465 472 45.0 17.8 98.4 96.3
750 [T 499 50.4 49.2 22.6 99.8 99.6
1000 506 51.1 50.3 28.0 100. 99.9
LU 54 6.1 5.4 4.4 6.0 6.4
25 3.7 42 4.0 38 8.4 6.7
50 3.0 4.6 4.9 43 14.9 9.4
5o 33 54 6.4 46 24.6 15.0
100 - 4.0 6.8 8.5 5.0 36.8 222
05 150 ™65 103 12.8 6.1 58.6 402
200 0.4 152 17.6 6.8 72.8 57.1
250 ‘57 20.6 22.0 7.8 81.2 69.8
300 212 26.0 26.0 8.4 86.4 773
400 36 354 33.7 10.2 93.4 86.3
500 40.1 42.5 39.7 1.8 97.2 929
750 48.4 49.0 47.0 15.6 99.7 98.8
1000 50.0 50.3 49.4 20.3 100. 99.9
10 1.1 25 1.2 6 1.4 1.4
25 6 1.3 8 6 2.1 1.4
50 4 13 9 1.1 3.9 1.8
75 4 1.5 1.2 1.2 8.2 3.0
100 4 1.9 1.9 1.6 14.6 4.7
01 150 6 3.0 3.7 1.9 332 13.1
200 1.0 4.2 6.0 24 52.6 26.0
250 1.4 6.2 8.7 26 66.6 42.4
300 26 9.4 11.8 3.0 74.8 54.8
400 6.1 17.1 18.4 3.8 85.2 71.4
500 13.0 25.6 25.5 4.6 92.5 80.9
750 35.0 422 38.6 6.8 98.8 942
_ __1000_ 46.2 48.5 47.6 9.8 99.9 99.0
® Tukey (1,5) Skew = 0.00 Kurtosis = 2.90
Johnson S Bounded (1, 2) Skew = 0.28 Kurtosis = 2.77
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Table 7. Mean Power Values for Symmetric/Platykurtic Continuous Distributions®: By alpha,
sample size, and test statistic.

Test of Normality
Alpha N g’ K? Skew Kurtosis W Approx LT

10 3.4 9.4 5.4 20.2 24.9 18.2

25 1.8 56.2 2.2 70.6 69.2 49.8

50 55.6 95.6 1.4 97.4 97.2 90.8

75 93.2 99.8 1.2 99.8 99.9 99.2

100 99.4 100. .8 100. 100. 99.9

.10 150 100. . 100. .9 100. 100. 100.
200 100. 100. .8 100. 100. 100.

250 100. 100. .8 100. 100. 100.

300 100. 100. .8 100. 100. 100.

400 100. 100. .8 100. 100. 100.

500 100. 100. .8 100. 100. 100.

750 100. 100. .6 100. 100. 100.

1000 100. 100. 7 100. 100. 100.

10 1.4 3.6 2.3 10.4 12.9 8.4

25 § 41.8 .6 59.0 52.6 31.2

50 A4 91.4 3 95.1 934 80.4

75 35.2 99.2 3 99.5 99.5 97.3

100 83.5 99.9 2 100. 100. 99.7

.05 150 99.8 100 2 100. 100. 100
200 100 100 2 100 100 100

250 100 100 2 100 100 100

300 100 100 2 100 100 100

400 100 100 2 100 100 100

500 100 100 2 100 100 100

750 100 100 2 100 100 100

1000 100 100 2 100 100 100

10 3 7 4 1.0 22 1.1

25 .0 20.4 .0 34.0 20.2 6.0

50 .0 79.2 0 86.4 74.6 44.0

75 .5 96.8 .0 98.2 96.2 82.9

100 .0 99.6 0 99.8 99.6 96.5

.01 150 8.9 100. .0 100. 100. 99.9
200 79.6 100. .0 100. 100. 100.

250 99.3 100. .0 100. 100. 100.

300 100. 100. .0 100. 100. 100.

400 100. 100. .0 100. 100. 100.

500 100. 100. .0 100. 100. 100.

750 | 100. 100. .0 100. 100. 100.

1000 | 100. 100. .0 100. 100. 100.

¢ Johnson S Bounded (0, 0.5) Skew = 0.0 Kurtosis = 1.63
Tukey (1, 1.5) Skew = 0.0 Kurtosis = 1.75

Table 8. Mean Power Values for Symmetric/Leptokurtic Continuous Distributions®: By alpha,
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sample size, and test statistic.

Test of Normality .
Alpha N g K2 Skew Kurtosis W Approx LT

100 | 292 27.0 27.6 23.6 24.7 272

25 ; 49.8 454 414 43.1 44.8 46.9

50 64.5 60.2 492 59.6 60.8 62.4

75 72.2 68.0 53.6 67.9 68.0 69.3

100 ‘ 76.3 724 56.0 73.0 72.8 73.6

10 150 if 820 78.6 58.9 79.4 79.0 79.3
200 l 86.2 82.9 60.8 84.4 834 83.4

250 90.2 87.1 62.6 88.9 87.8 87.8

300 91.8 89.4 63.0 91.2 90.2 90.0

400 95.4 93.6 64.6 95.4 94.2 93.8

500 97.4 96.3 65.2 97.4 96.8 96.4

750 99.4 99.2 67.8 99.6 99 .4 99.2

1000 99.9 99.8 68.8 99.9 99.9 99.8

10 20.4 21.7 20.4 16.7 18.2 19.8

25 40.7 39.2 33.6 352 37.7 39.0

50 57.6 54.6 42.4 52.6 55.2 55.7

75 66.2 62.8 47.0 62.0 63.6 64.0

100 71.0 67.6 50.0 67.6 68.8 68.6

.05 150 77.6 74.2 53.6 74.6 75.0 74.6
200 82.2 78.6 55.1 79.6 80.0 79.0

250 86.6 83.0 56.9 84.6 84.4 83.5

300 89.2 85.8 57.7 87.5 87.5 86.2

400 ; 93.4 90.8 59.6 92.8 92.3 91.0

500 96.0 94.2 60.0 95.8 95.6 94.5

750 99.0 98.5 62.9 99.0 99.0 98.6

1000 ‘. 99.8 99.7 64.2 99.8 99.8 99.7

10 9.8 14.2 10.1 7.3 9.4 9.7

25 26.0 29.2 22.0 22.2 27.0 26.8

50 43.8 44.4 31.8 40.0 46.5 44.6

75 54.5 53.7 36.8 51.0 55.8 54.5

100 60.6 59.4 402 57.7 61.4 59.8

.01 150 67.6 66.6 44.4 65.2 68.0 65.9
200 72.6 70.4 46.0 70.1 73.2 70.2

250 77.1 74.6 48.2 74.8 78.0 74.7

300 80.6 77.6 49.1 78.5 81.2 77.6

400 86.6 83.8 51.2 85.4 87.8 84.0

500 91.2 88.4 52.2 90.5 922 88.8

750 97.4 95.8 54.6 97.0 97.9 96.0

1000 | 992 98.8 56.3 99.2 99.5 98.7

4Johnson S Unbounded (0,2) Skew = 0.0 Kurtosis = 4.71
Johnson S Unbounded (0, 0.9) Skew = 0.0 Kurtosis = 82.08
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Table 9. Mean Power Values for Skewed/Platykurtic Continuous Distributions®: By alpha, sample
size, and test statistic.

' Test of Normality
Alpha N g K2 Skew Kurtosis W Approx LT

10 12.9 15.4 18.2 16.9 35.6 30.9

25 223 36.2 32.8 29.4 77.8 68.0

50 {715 78.6 52.9 43.0 97.3 94.0

75 1 930 95.1 78.7 53.6 99.8 99.4

100 98.8 99.2 89.6 62.8 100. 99.9

.10 150 100. 100. 98.0 74.7 100. 100.
200 100. 100. 99.8 834 100. 100.

250 100. 100. 99.9 88.8 100. 100.

300 100. 100. 100. 9.8 100. 100.

400 100. 100. 100. 96.9 100. 100.

500 100. 100. 100. 98.6 100. 100.

750 100. 100. 100. 99.8 100. 100.

1000 100. 100. 100. 100. 100. 100.

10 6.6 9.3 10.6 9.2 22.9 18.9

25 7.2 21.8 18.8 20.8 66.5 54.0

50 20.2 58.6 39.6 34.8 94.2 87.4

75 62.4 84.4 61.6 45.4 99.5 97.8

100 85.5 96.0 71.5 54.4 100. - 99.8

.05 150 99 4 99.9 94.2 67.7 100. 100.
200 100. 100. 98.8 77.4 100. 100.

250 100. 100. 99.8 84.0 100. 100.

300 100. 100. 100. 88.8 100. 100.

400 100. 100. 100. 94.5 100. 100.

500 100. 100. 100. 97.3 100. 100.

750 100. 100. 100. 99.6 100. 100.

1000 100. 100. 100. 99.9 100. 100.

10 2.1 4.0 2.8 1.7 7.4 52

25 9 7.8 4.0 9.0 40.2 25.1

50 6 24.0 10.8 21.6 81.6 58.4

75 1.4 58.2 . 23.9 30.8 96.3 88.4

100 4.6 71.8 40.3 39.4 99.6 97.0

01 150 49.6 96.4 71.8 53.1 100. 995
200 83.5 99.8 90.0 64.0 100. 100.

250 98.5 100. 96.9 72.2 100. 100.

300 99.9 100. 99.2 78.8 100. 100.

400 100. 100. 100. 87.2 100. 100.

500 100. 100. 100. 92.7 100. 100.

750 100. 100. 100. 98.4 100. 100.

1000 100. 100. 100. 99.7 100. 100.

¢ Johnson S Bounded (0.533, 0.5) Skew = 0.65 Kurtosis = 2.13
Beta (2,1) Skew = -0.57 Kurtosis = 2.40
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Table 10. Mean Power Values for Skewed/Leptokurtic Continuous Distributions: By alpha, sample
size, and test statistic.

Test of Normality ,
Alpha N g’ K? Skew Kurtosis W Approx LT
10 51.4 50.4 57.0 39.4 59.8 59.8
25 89.0 87.0 91.2 71.6 92.9 92.5
50 99.2 98.8 98.9 91.5 99 4 99.4
75 999 999 99.7 97.6 99.9 99.9
100 100. 100. 99.9 99 4 100. 100.
.10 150 100. 100. 99.9 99.9 100. 100.
200 100. 100. 100. 100. 100. 100.
250 100. 100. 100. 100. 100. 100.
300 100. 100. 100. 100. 100. 100.
400 100. 100. 100. 100. 100. 100.
500 100. 100. 100. 100. 100. 100.
750 100. 100. 100. 100. 100. 100.
1000 100. 100. 100. 100. 100. 100.
B 5 R DT B Lo b o .
10 39.8 43.6 46.8 32.2 50.5 50.2
25 81.1 82.5 86.8 64.8 90.4 89.5
50 97.8 97.9 98.2 88.0 99.] 99.0
75 998 997 99.6 96.2 99.9 99.9
100 998 99.9 998 990 100. 100.
05 150 100. 100. 99.9 99.9 100. 100.
200 100. . 100. 100. 100. 100. 100.
250 100. 100. 100. 100. 100. 100.
300 100. 100. 100. _100. 100. 100.
400 100. 100. 100. 100. 100. 100.
| 500 100. 100. 100. 100. 100. 100.
' 750 100. 100. 100. 100. 100. 100.
1000 100. 100. 100. 100. 100. 100.
10 24.5 324 28.0 19.5 33.2 31.6
25 62.8 73.0 74.2 49.9 83.1 79.9
50 91.0 95.1 95.8 78.5 98.0 97.2
75 98.3 992 99.0 91.6 997 99.6
100 998 998 99.6 97.1 100. 100.
01 150 100. 100. 99.9 99.6 100. 100.
200 100. 100. 99.9 99.9 100. 100.
250 100. 100. 100. 100. 100. 100.
300 100. 100. 100. 100. 100. 100.
400 100. 100. 100. 100. 100. 100.
500 100. 100. 100. 100. 100. 100.
750 100. 100. 100. 100. 100. 100.
1000 100. 100. 100. 100. 100. 100.
f Chi-squared (2) Skew =530  Kurtosis= 93.40

Lognormal (0,1,0) Skew = 6.18 Kurtosis = 113.94
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Appendix A

SPSS Syntax for Computing the Line Test (LT) for a Given Dataset and for Graphing the Normal
Probability Plot

* Testing for univariate normality.

* Assume that the name of your variable is “score”.

* First establish the number of cases by changing “xxxx” to the actual number of cases.
compute n = Xxxx.

* Now rank the cases according to their values, substituting your variable name for varname.
rank variables = varname (A) / rank/ print=yes/ties=mean.

* Compute the percentile rank for each case, changing rvarname to rname.

* For example, if your variable name is “score”, you would put “rscore” in the next line.
compute perc = (rvarname - .5)/n.

* Now translate the percentile rank to a normally distributed variate.

compute norm = idf.normal(perc,0,1).

execute.

* Graph the normal probability plot, changing varname to “score”.

graph / scatterplot (bivar) = varname with norm.

* Now compute the value of LT.

correlations / variables = varname norm.

Note: You can run this syntax file by making the appropriate changes and deleting the comment lines
(those lines beginning with “*”. For example, suppose that you had 72 cases and the variable name was
“ability.

compute n = 72,

rank variables = ability (A) / rank/ print=yes/ties=mean.

compute perc = (rability - .5)/n.

compute norm = idf.normal(perc,0,1).

execute.

graph / scatterplot (bivar) = ability with norm.

correlations / variables = ability norm.
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Appendix B
SAS Code Computing the Line Test (LT) for a Given Dataset
Note: This code assumes that any missing values for the variables you are testing have been removed.

proc iml;

use data_set_name;

read all var {variable_name} into p;
create dsl var {LT};

/* Step 1 - Arrange the observed data set in ascending order */
s=p;

s(|rank(s)))=p;

P=s;

/* Step 2 - Determine the probability value for each value in the dataset */
n=nrow(p);

i=l:n;

problev=i-.5/n;

/* Step 3 - Calculate the standard normal quantiles for each probability value */
m=probit((i-.5)/n),
m=m’;

/* Step 4 - Compute LT */

psqr=p##2;

msqr=m##2;

pm=p#m;

psum=sum(p);

psqrsum=sum(psqr);

msum=sum(m);

msqrsum=sum(msqr);

pmsum=sum{pm);
Itnum=((n)*(pmsum))-((psum)*(msum));
Itden=sqrt(((n*psqrsum)-(psum*psum))*((n*msqrsum)-(msum*msum)));
LT=ltnum/Itden;

print LT;

append;

293
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