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A Monte Carlo Simulation of an Omnibus Test Based on Normal Probability Plots:
The Line Test

Abstract

Currently, there is disagreement regarding the importance of the assumption of normality; many

statistical techniques are robust to violations of normality under some conditions, but such robustness is

not universal. Furthermore, there is no generally accepted test for detecting departures from normality.

The current study was designed to derive the distribution of a test statistic based on normal

probability plots. The first purpose was to provide an empirical derivation of the critical values for the

Line Test (LT) with an extensive computer simulation. The goal was to develop a test that is sensitive to

a wide range of alternative distributions, applicable to a wide range of sample sizes, and easy to compute.

The second purpose was to determine the power of LT and compare it to that of several other test

statistics.

Monte Carlo simulation was used to generate the critical values of LT by randomly generating

500,000 replications from a normal distribution for sample sizes 10(1)100(25)1000(250)5000. For each

replication, the value of LT was calculated. The empirical critical values were determined for each of

three levels of significance for each sample size. These critical values were then "smoothed" using

nonlinear regression techniques.

The results indicated that LT provides adequate control over Type I errors while at the same time

providing statistical power comparable to the Shapiro-Wilk test. In conclusion, LT is easy to compute, is

powerful for detecting departures from normality under a wide variety of alternative distributions, and is

available for sample sizes up to 5,000.
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A Monte Carlo Simulation of an Omnibus Test Based on Normal Probability Plots:

The Line Test

Introduction

The normal probability distribution is the most widely used distribution in statistics as the assumption of

normality allows us to employ some very sophisticated analytic techniques in the interpretation of our data.

However, improper analysis of data that deviate from normality can lead to inaccurate conclusions. Therefore,

knowing how to determine whether a sample of measurements is from a normally distributed population is crucial

both in the development of statistical theory and in practice. Currently, there appears to be some level of

disagreement regarding the importance of the assumption of normality. It has been established that many statistical

techniques are robust to violations of normality under some conditions, but such robustness is not universal

(Tabachnick and Fidell, 1996). Among the non-robust procedures are tests on variances (Box, 1953), structural

equation modeling (Bollen, 1989; Wang, Fan, and Willson, 1996), and meta-analysis (Glass, McGaw, and Smith,

1981; Greenhouse and Iyengar, 1994; Hedges and Olkin,1985).

Much effort has been exerted in developing techniques solely for the purpose of detecting departures from

normality. This effort began as early as the late 19th century with Pearson's (1895) work on moments, particularly

the third and fourth moments which are commonly referred to as the skewness and kurtosis coefficients, respectively.

Since that time, there has been considerable attention devoted to these moments and how they may be used to assess

departures from normality (e.g., Bowman & Shenton, 1973; Bowman & Shenton, 1975; D'Agostino, Belanger, &

D'Agostino, 1990; D'Agostino & Cureton, 1972; D'Agostino & Pearson, 1973; D'Agostino & Teitjen, 1973; Fisher,

1930; Fisher ,I973; Pearson, 1930; Pearson, 1931; Pearson, 1963; Pearson, D'Agostino, & Bowman, 1977;

Williams, 1935). In another direction, there has been extensive work developing omnibus tests based on normal

probability plots (e.g., Brown & Hettmansperger, 1996; Filliben, 1975; Hegazy & Green, 1975; LaBrecque, 1977;

Looney & Gulledge, 1985; Royston, 1982; Royston, 1992; Shapiro & Francia, 1972; Shapiro & Wilk, 1965;

Shapiro, Wilk, & Chen, 1968; Verrill & Johnson, 1988; Weisberg & Bingham, 1975).

In addition to the two types of tests (moments and probability plots), there are several other "miscellaneous"

tests that have been developed. Among them are D'Agostino's D statistic (D'Agostino, 1971), the Kolmogorov-
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Smirnov test (Lilliefors, 1967), the ratio of the range to the standard deviation (David, Hartley, & Pearson, 1954),

and the ratio of the mean deviation to the standard deviation (Geary, 1935)

While many tests currently exist, there is no gold standard among them as there is no one test which is

sensitive to a wide range of alternative distributions, applicable to a wide range of sample sizes, and easy to compute.

In fact, the variability in normality tests used is evident by noting that even the major statistical packages such as

SAS, SPSS, STATA, SYSTAT, and BMDP have implemented different normality tests (D'Agostino, Belanger, &

D'Agostino, 1990; Hopkins & Weeks, 1990; Ware & Ferron, 1995).

Many would argue that the Shapiro-Wilk (1965) W test is the most sensitive test to a wide range of

alternative distributions. In fact, W was the first test for normality that was able to detect departures due to either

skewness or kurtosis, or both. However, because of the complexity of this test, no statistical package has

implemented W for sample sizes larger than 50. Large sample approximations have been developed (e.g., Royston,

1982), but Althouse (1997) showed that this approximation may not provide adequate control of the Type I error

rate.

At this time, there are two tests for normality that seem to stand out from the others. D'Agostino and his

colleagues have developed K2, which is one of several recommended by Bollen (1989) and currently available within

STATA. K2 is defined as the sum of the standardized and normalized measures of skewness and kurtosis, and is

compared to x2(2). The Shapiro-Wilk W test is defined by considering the regression of the ordered observed values

on the expected deviates from a normal distribution and is recognized as the best of the test statistics based on

normal probability plots. However, the computation of W requires a set of coefficients, which have been derived

only for sample sizes less than or equal to 50 and approximated for larger sample sizes. Therefore, W is usually

limited to small samples and is not easily calculated.

Recently, a new test statistic based on moments has been developed, g2 (Ware & Ferron, 1995; Althouse,

1997; Althouse, Ware, & Ferron, 1997). This test statistic is modeled after K2, but makes no attempt to normalize

the measures of skewness and kurtosis nor does it rely on distributional theory to derive critical values. Rather, the

distribution of g2 was determined through intensive computer simulation. Findings from those studies have

suggested that g2 is competitive with both K2 and an approximation to W for leptokurtic distributions, especially, and
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does not suffer from the inflated Type I error rate evidenced by both K2 and the approximate W (Ware & Ferron,

1995; Althouse, 1997; Althouse, Ware, & Ferron, 1997).

The current study was designed to derive the distribution of a test statistic based on normal probability

plots. The first purpose was to provide an empirical derivation of the critical values for the Line Test (LT) with an

extensive computer simulation. The second purpose was to determine the power of LT and compare it to the power

. 2 2
of several other test statistics: g , K , the standardized third moment test (4131), the standardized fourth moment test

(b2), and a large sample approximation of the W test (Royston, 1992).

Logic of Tests Based on Normal Probability Plots

A normal probability plot is a plot of ordered observed data values as a function of expected values based

on the assumption of normality. The various tests have all attempted to summarize the information available in these

plots, in one way or another. The Shapiro-Wilk W test is focused on the slope, while the work of Filliben (1975),

Weisberg and Bingham (1975), Looney and Gulledge (1985), and Verrill and Johnson (1988) is directed toward the

correlation coefficient. If the data were "perfectly" normally distributed, one would expect the correlation coefficient

to be equal to 1.0. As the data depart from normality, the expected value of r would be expected to decrease. To

demonstrate, four variables were randomly generated for 200 cases: normal, uniform, x2(2), and t(4). These

variables represent normal, symmetric/flat, skewed/kurtotic, and symmetric/kurtotic distributions, respectively.

Normal probability plots for these four variables are shown in Figure 1. An inspection of Figure 1 shows quite

clearly that only the probability plot for the normal variate appears to be linear; the others are obviously non-linear.

Thus, a correlation between the ordered data and their expected cumulative frequencies under the assumption of

normality provides a measure of the degree to which the data are normally distributed.

Method

All the data were simulated using the SAS RANNOR function within PROC IML (SAS, 1995). The first

Monte Carlo simulation was used to generate the critical values of LT by randomly generating 500,000 replications

from a normal distribution for sample sizes 10(1)100(25)1000(250)5000. For each replication within each sample

size condition, the value of the correlation coefficient was calculated. The steps to compute LT are as follows.

1. Arrange the observed set of data in ascending order.
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2. Determine the percentile rank for each value in the set of data. The percentile rank value is
defined as (j-0.5)/n, where j is the order of the value in step 1.

3. Calculate the standard normal quantiles for each of the percentile rank values. This set of
values is the expected set of values based on the assumption of normality and can be
obtained by using a normal probability table or by using an inverse normal distribution
function.

4. Compute the correlation between the ordered set of data (Step 1) and the expected set of
values (Step 3) to get L7'.

An example of the computation of LT is provided in Table 1. The SPSS syntax and SAS code for computing LT are

provided in Appendices A and B, respectively.

Given that the observed correlation decreases from 1.00 as the data depart from normality, the empirical

critical values of LT for each sample size condition were obtained at the .10, .05, and .01 levels of significance by

determining the 10th , 5th, and l' centiles of the 500,000 correlation coefficients at each sample size, respectively.

Using plots of these estimated critical values versus sample size as a guide, the model of best fit was determined for

each significance level using non-linear regression. These models served as the empirical distribution functions for

LT and were used to derive the smoothed critical values for sample sizes between 10 and 5000.

The obtained estimated critical values were validated by conducting a smaller Monte Carlo simulation in

which 10,000 samples were generated from a normal population for 45 samples sizes between 10 and 1000. The test

statistic L7' was calculated for each sample, as were the values of the other statistics (g2, K2, 4bi, b2, and IV). For

each significance level, the proportion of times that each test statistic detected "non-normality" was determined.

To assess the power of LT relative to the power of the other five test statistics (g2, K2, 4b1, b2, and 111),

another Monte Carlo simulation was conducted. Twelve alternative distributions were selected to ensure equal

representation from the following six shapes of distributions: near normal (discrete), near normal (continuous),

symmetric/flat, symmetric/peaked, skewed/flat and skewed/peaked. The 12 distributions are described in Table 2.

To calculate power, 10,000 samples were generated for sample of sizes n = 10, 25, 50, 75, 100, 250, 300, 400, 500,

750, and 1000 for the twelve alternative distributions. The number of times each test statistic detected "non-

normality" was determined.

Calibration of LT

5
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Empirical critical values were obtained for LT at the .10, .05, and .01 levels of significance. Examination of

these values as a function of the 143 sample sizes indicated a nonlinear relationship (See Figure 2). Regression

equations using inverse, inverse square roots, inverse cube roots, and inverse exponential functions were used to

account for over 99% of the variance at each significance level. The three resulting regression equations were as

follows:

1 1 1
= 0.996357 0.036317(

n
+ 0.003680( 1 ) 0.432204(,) + 0.160390R.

expKo) Nin
vT,

1 1
yo5 0.995539 0.070244(;) + 0.004649(expIK0)) 0.522094(,) + 0.195069(-1

Nin
vT,1

1 1 1
Y.01 = 0.993098 0.102328(n + 0.007911( 1 ,) 0.786898(,---) + 0.298123R

expeoo) vn

The proportions of variance (rounded to four decimal places) explained were 1.0000, 1.0000, and .9999,

respectively. Using these equations, the "smoothed" critical values of LT at each significance level were determined.

Selected values are presented in Table 3.

Type 1 Error Rates

The "smoothed" values were used to validate LT. The results are presented in Table 4. The proportions for

LT were similar to the theoretical proportions for each significance level, validating the use of the regression

equations and indicating no problems with Type I error rates. Similarly, the Type 1 error rates for g2 ;Nib, and b2

were fairly close to their expected values. However, for K2, there was a slight, yet consistent, inflation of Type I

error rates at the .05 and .01 levels of significance, particularly for small sample sizes. Even more troublesome were

the Type I error rates for the approximation to W, which were largely inflated for all significance levels. As the

sample size increased, these Type I error rates were more exaggerated. Overall, the approximation to W was the

most liberal of the six tests. Once the Type I error rates were examined, the next step was to evaluate the power of

LT to determine how well it could detect departures from normality and to see how its power compared to those of

the competing test statistics. However, given the inflated Type I error rates for K2 and W, we entered this next phase
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suspecting that the power of K2 and W would be somewhat inflated.

Power Results

Power values for the six test statistics were established for each of the 13 sample sizes for each of the

twelve alternative distributions at each level of significance. We were also interested in seeing how these six test

statistics differed across the various distribution categories and across different sample sizes. Therefore, we report

the power results by distribution category. In addition, a visual examination of the power results indicated that there

was an interaction between the type of test statistic, the distribution category of the alternative distributions, and the

sample size. A full listing of the detailed power results at each of the significance levels for the 12 alternative

distributions can be obtained by contacting the authors.

Near Normal Discrete Distributions. The near normal discrete distributions consisted of the binomial (20,

.5) distribution and the Poisson (10) distribution. Each of these distributions have a skewness value close to zero and

a kurtosis value close to 3, making them almost indistinguishable from the normal distribution, particularly for

practical purposes such as the violation of the normality assumptions. The mean power of each test statistic for each

sample size is provided in Table 5. The test statistic LT had relatively high power, trailing only behind the

approximation of W. However, it was shown earlier that W had an inflated Type I error rate which may result into

misleading higher power values. Regardless, for these near normal discrete distributions, LT and W were clearly the

two most powerful tests.

Near Normal Continuous Distributions. The near normal continuous distributions consisted of the Tukey

(1,5) distribution and the Johnson S Bounded (1,2) distribution. As with the earlier discrete distributions, the

skewness value is close to zero and the kurtosis value is close to 3, making these distributions similar to the near

normal discrete distribution, virtually indistinguishable from the normal distribution. The mean power of each test

statistic for each sample size is given in Table 6. As with the discrete distributions, the test statistic LT performed

nearly as well as the approximation to W, particularly for large sample sizes.

Symmetric/Platykurtic Distributions. This set of distributions included the Johnson B Bounded (0, .5) and

the Tukey (1, 1.5) distributions. The mean powers for this distribution are provided in Table 7. The test statistic LT

was as powerful as K2, b2, and the W approximation for sample sizes larger than 100 and only slightly less powerful

for smaller sample sizes. The test statistic, b2, had the highest power, but only slightly edged W, K2, and LT. As
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expected, the skewness test was the weakest test. One notable difference for this category of distributions from the

near normal distributions was the rate at which the power increased, particularly for the smaller sample sizes.

Therefore, sample sizes do not need to be large for most of the test statistics to have adequate power if we have data

that are symmetric and flat.

Symmetric/Leptokurtic Distributions. The symmetric and peaked set consisted of Johnson S Unbounded (0,

2) and the Johnson S Unbounded (0,.9) distributions. The mean powers for this set of distributions are presented in

Table 8. The test statistics g2 and LT were as powerful or more powerful than all other test statistics for all sample

sizes with g2 slightly more powerful than LT. In fact, the powers of g2, LT, K2, b2, and the W approximation were all

high. Also, the mean powers for g2 were notably higher from what they were in the previous sets of distributions.

This pattern was also true for K2, b2, and Jbl. However, the W approximation and LT were slightly more powerful

in detecting departures from normality for the near normal continuous distributions than this category. As with the

symmetric/platykurtic distributions, -41 provided the weakest power.

Skewed/Platykurtic Distributions. The skewed and platykurtic distributions were represented by the

Johnson S Bounded (.533, .5) and Beta (2,1) distributions. The mean powers for this set of distributions are

presented in Table 9. As with the earlier flat shaped distributions, the W approximation was clearly the most

powerful, particularly for sample sizes up to 100. For larger sample sizes, g2, LT, K2, Nib, and the W approximation

had equivalent power. The test statistic LT was second to the W approximation in power for smaller sample sizes,

but became equal in power for sample sizes greater than 75. The patterns for g 2 and LT were similar to the powers

for the symmetric, flat distributions indicating that the skewness of the distribution did not have an effect on power

when the distribution was flat.

Skewed/Peaked Distributions. The distributions in this category included the Johnson S Unbounded (1,1)

and the lognormal (0, 1, 0) distributions which are positively and negatively skewed, respectively. In addition, both

these distributions have a kurtosis value larger than 3. The mean powers for this set are presented in Table 10. For

sample sizes approaching 50, g2 seemed nearly equivalent to LT, K2, 4b1, and the W approximation. The power for

LT was equivalent to the W approximation for all sample sizes. Also, LT was more powerful than all other tests,

except the approximation to W for small sample sizes. Once again, for the skewed distributions, b2 had the lowest

power up until sample size 100 where it became equivalent in power to the other five statistics. All of the test



statistics demonstrated higher power for skewed/peaked distributions than for the other distribution categories

considered earlier. In fact, absolute power was demonstrated at sample sizes greater than 100 for all test statistics.

Summary of the Results

Past research on using summary statistics (e.g., the correlation coefficient) to test for normality has shown

that this family of statistics is conceptually easy and that the power compares favorably with leading test statistics

(Filliben, 1975; Weisberg and Bingham, 1975; Looney and Gulledge, 1985; Verrill and Johnson, 1988). The results

from this study support these conjectures. The Type I error rates LT were as expected for each significance level.

Once again, the K2 test statistic did not validate, having inflated Type I error rates at the .05 and .01 levels, and being

slightly conservative at the .10 level. In addition, Royston's approximation of W had inflated Type I error rates at

each significance level, indicating that it may be liberal in detecting departures from normality which may account

for its high power. This inflated power is best seen when the power of the approximation to W for near normal

distributions is considered. For large sample sizes, the W approximation had absolute power, yet for large sample

sizes these distributions approximate the normal distribution. Therefore, low power in these cases is acceptable,

perhaps even desirable. The two moment tests, 4131, and b2, while having high power for some distributions, do not

provide an omnibus test for normality. That is, they only do well when the departure is due to skewness or kurtosis,

respectively.

Overall, the W approximation appeared to be the most powerful test. However, the power of W could be

biased due to its inflated Type I error rates. The test statistic, LT, was close in power to W for small sample sizes,

and equivalent to W for large sample sizes and did not have an inflated Type I error rate. The test statistic, g2, was

the best overall test for peaked distributions regardless of sample size and symmetry. In particular, for symmetric,

peaked distributions, the power of g2equaled or surpassed the other tests. The above results indicate that g2 and LT

are competitive with competing test statistics for many alternative distributions. In addition, this power is

accomplished without a compromise in the Type I error rate.

Conclusions

As earlier mentioned, statistical packages differ in the test(s) they have implemented. Also, many of the

tests for normality are not easy to implement, making them hard to use for the average researcher. The ideal test for



normality would demonstrate high power without an increased risk of a Type 1 error and would be easy to compute

from the output of any of the major statistical packages. The results of this study indicate that LT has merit as a test

for normality as it is unbiased, easy to compute, readily available, and powerful for a wide variety of situations.
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Figure 1. Normal probability plots for four different random variables: normal, uniform,

skewed/kurtotic, and symmetric/kurtotic.
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Figure 2. Plot of empirically derived critical values of LT for the .10, .05, and .01 levels as a

function of sample size up to n = 100, inclusive.

Table 1. Example for Computing LT for Sample of Size n = 10.

o CRITO1

o CRITO5

CRIT10

Sample
Data Set

Step 1: Order
Observations

Step 2: Determine
Probability Values

Step 3: Calculate Standard
Normal Quantiles

Step 4: Compute the
Correlation

-.098 -.603 (1-.5)/10 = .05 -1.645
.866 -.296 (2-.5)/10 = .15 -1.036
-.77 -.277 (3-.5)/10 = .25 -.674

-.603 -.134 (4-.5)/10 = .35 -.385
-.296 -.098 (5-.5)/10 = .45 -.125 LT=.9274
.954 .011 (6-.5)/10 = .55 .125 .

1.702 .024 (7-.5)/10 = .65 .385
.011 .866 (8-.5)/10 = .75 .674
.024 .954 (9-.5)/10 = .85 1.036

-.134 1.702 (10-.5)/10 = .95 1.645
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Table 2. Categorization of the Alternative Distributions for the Power Study.

Distribution Category Alternative Distributions (parameters)
4[3, 132

Near Normal Discrete Binomial (20, .5) 0 2.90
Poisson (10) .32 3.10

Near Normal Continuous Tukey (1, 5) 0 2.90
Johnson Bounded (1, 2) .28 2.77

Symmetric/platykurtic Johnson Bounded (0, .5) 0 1.63
Tukey (1, 1.5) 0 1.75

Symmetric/leptokurtic Johnson S Unbounded (0, 2) 0 4.71
Johnson S Unbounded (0, .9) 0 82.08

Skewed/platykurtic Johnson S Bounded (.533, .5) .65 2.13
Beta (2, 1) -.57 2.40

Skewed/leptokurtic Johnson S Unbounded (1, 1) -5.30 93.40
Lognormal (0, 1, 0) 6.18 113.94



Table 3. Critical Values of LT for a = .10, .05, & .01 as a function of sample size.

Sample Size .10 .05 .01

10 0.93400 0.91838 0.87993
11 0.93834 0.92385 0.88808
12 0.94209 0.92855 0.89508
13 0.94535 0.93265 0.90119
14 0.94823 0.93626 0.90656
15 0.95079 0.93946 0.91133
16 0.95308 0.94233 0.91559
17 0.95515 0.94492 0.91944
18 0.95703 0.94726 0.92293
19 0.95874 0.94940 0.92611
20 0.96032 0.95135 0.92902
22 0.96310 0.95482 0.93416
24 0.96549 0.95779 0.93858
26 0.96757 0.96037 0.94242
28 0.96940 0.96264 0.94579
30 0.97102 0.96466 0.94878
32 0.97247 0.96645 0.95144
34 0.97378 0.96807 0.95384
36 0.97496 0.96953 0.95600
38 0.97604 0.97086 0.95797
40 0.97702 0.97208 0.95977
45 0.97915 0.97470 0.96366
50 0.98091 0.97687 0.96685
55 0.98239 0.97869 0.96954
60 0.98365 0.98024 0.97182
65 0.98474 0.98158 0.97379
70 0.98569 0.98274 0.97550
80 0.98727 0.98468 0.97833
90 0.98853 0.98622 0.98059

100 0.98956 0.98747 0.98241
125 0.99146 0.98978 0.98576
150 0.99275 0.99135 0.98801
175 0.99369 0.99248 0.98963
200 0.99439 0.99334 0.99083
300 0.99606 0.99534 0.99363
400 0.99692 0.99636 0.99503
500 0.99747 0.99701 0.99591
750 0.99827 0.99796 0.99723

1000 0.99872 0.99850 0.99798
1500 0.99919 0.99906 0.99876
2000 0.99940 0.99931 0.99911
2500 0.99952 0.99944 0.99929
3000 0.99957 0.99951 0.99937
3500 0.99960 0.99954 0.99940
4000 0.99962 0.99955 0.99941

co 1.00000 1.00000 1.00000

W.B. Ware and L. A. Althouse, 1998



Table 4. Comparison of Type I Error Rates for Six Competing Statistics.

Level of Significance

a=.10

Mean Type I Error Rate at a=.10

a=.05

Mean Type I Error Rate at a=.05

2

10 .105
25 .103
50 .097
75 .103
100 .100
150 .097
200 .102
250 .099
300 .098
400 .099
500 .099
750 .101
1000 .099

.1002

10 .051
25 .050
50 .049
75 .052
100 .049
150 .049
200 .053
250 .049
300 .048
400 .050
500 .051
750 .051
1000 .050

.0502

a=.01 10 .012
25 .011
50 .009
75 .011
100 .012
150 .009
200 .010
250 .011
300 .010
400 .010
500 .009
750 .013
1000 .011

Mean Type I Error Rate at a=.01 .0116

K2 4bi b2 LT W app.

.096 .102 .090 .101 .098

.099 .102 .100 .101 .119

.098 .101 .102 .100 .124

.103 .104 .102 .102 .125

.097 .099 .104 .100 .129

.096 .097 .105 .097 .132

.102 .101 .102 .100 .141

.097 .099 .099 .101 .144

.099 .099 .098 .100 .140

.096 .099 .103 .099 .153

.102 .103 .109 .099 .157

.102 .099 .105 .100 .160

.100 .100 .097 .101 .170

.0990 .1004 .1012 .1001 .1378

.061 .054 .044 .052 .053

.060 .052 .053 .051 .063

.057 .051 .054 .047 .066

.059 .052 .056 .056 .073

.054 .047 .055 .050 .072

.054 .047 .055 .047 .074

.055 .051 .054 .051 .084

.051 .047 .051 .049 .084

.052 .048 .050 .050 .087

.051 .049 .052 .052 .093

.053 .049 .056 .049 .097

.053 .051 .054 .052 .104

.051 .053 .051 .051 .113

.0547 .0501 .0527 .0505 .0818

.025 .013 .007 .103 .013

.022 .011 .011 .012 .016

.018 .009 .011 .008 .014

.019 .011 .014 .011 .021

.019 .010 .015 .010 .020

.016 .010 .012 .010 .022

.014 .010 .010 .025

.014 .010
..012
.012 .010 .025

.013 .008 .013 .009 .027

.014 .010 .012 .011 .034

.014 .011 .012 .009 .032

.014 .011 .012 .011 .040

.013 .010 .012 .011 .045

.0165 .0103 .0119 .0104 .0257



Table 5. Mean Power Values for Near Normal Discrete Distributionsa: By alpha, sample size, and test
statistic.

Alpha N

10

25
50
75

100
.10 150

200
250
300
400
500
750
1000

10

25

50

75

100
.05 150

200
250
300
400
500
750
1000

10

25

50
75

100
.01 150

200
250

Test of Normality
g2

K2 Skew Kurtosis W APprox LT

10.0 9.3 10.4 8.8 16.2 15.9
.10.8 10.6 11.6 10.3 27.0 22.2
13.0 13.4 14.7 11.7 46.9 38.4
14.7 14.9 17.8 11.8 68.1 58.8
16.9 17.4 20.7 12.4 84.4 77.2
21.6 21.8 26.2 12.4 96.8 93.8
25.4 26.2 30.7 13.2 99.8 99.1
29.8 30.4 35.4 13.2 100. 100.
34.0 34.6 39.0 14.1 100. 100.
40.0 40.9 44.5 14.2 100. 100.
44.8 45.8 48.3 14.8 100. 100.
51.5 52.8 52.4 17.1 100. 100.
54.1 55.4 53.6 18.4 100. 100.

5.0 5.8 5.2 4.0 8.8 8.0
5.4 6.5 6.1 5.4 15.6 11.6
7.0 8.3 8.4 6.6 30.2 21.2
8.0 9.6 10.7 6.5 49.9 36.3
9 4 11.0 13.0 6.8 70.4 55.0

12.6 14.3 7.2 91.6 84.0
15.9 17.8 22.0 7.6 98.6 94.8
1934 21.3 27.0 7.8 99.9 99.2
23.6 25.4 30.8 8.2 100. 100.
30.4 32.0 37.4 8.4 100. 100.
36.2 38.0 42.2 8.8 100. 100.
48.5 47.3 48.7 10.7 100. 100.
50.1 51.6 50.9 11.5 100. 100.

.8 2.3 1.0 .5 2.0 1.6
1.3 2.6 1.5 1.2 4.0 2.6
1.8 3.2 2.4 1.6 9.4 4.8
2.0 4.0 3.4 1.8 18.8 9.3
2.6 4.7 4.5 2.0 34.0 15.6
3.7 6.4 7.2 2.3 70.6 41.6
4.9 8.2 10.1 2.4 89.3 72.4
6.4 10.1 13.2 2.3 97.4 87.5

300 8.8 13.2 17.0 2.7 99.7 95.0
400 13.2 18.6 23.8 2.8 100. 99.9
500 17.8 23.8 29.8 3.2 100. 100.
750 32.0 35.8 40.8 3.8 100. 100.
1000 41.6 44.4 46.7 4.3 100. 100.

a Binomial (20, 0.5)
Poisson (10)

Skew = 0.00
Skew = 0.32

Kurtosis = 2.90
Kurtosis = 3.10



Table 6. Mean Power Values for Near Normal Continuous Distributionsb: By alpha, sample size, and
test

statistic.

Alpha N

10

25
50
75
100

.10 150
200
250
300
400
500
750
1000

10

25
50
75
100

.05 150

200
250
300
400
500
750
1000

10

25
50
75

100
.01 150

200
250
300
400
500
750
1000

Test of Normality
g2

Skew Kurtosis W Approx LT

11.0 9.7 10.6 9.4 11.3 11.9
8.2 7.6 8.4 8.2 15.6 13.3
7.4 8.3 9.4 8.4 25.2 18.4
8.6 10.0 12.4 8.4 37.8 27.0

10.8 12.5 14.8 9.0 50.6 36.8
16.4 18.2 20.6 10.0 69.6 56.6
22.8 24.7 26.2 11.3 80.8 70.4
28.8 30.8 30.6 12.4 86.8 79.6
34.0 35.6 34.3 13.4 91.0 85.0
41.8 43.0 40.5 15.8 96.0 92.1

46.5 47.2 45.0 17.8 98.4 96.3
49.9 50.4 49.2 22.6 99.8 99.6
50.6 51.1 50.3 28.0 100. 99.9

5.4 6.1 5.4 4.4 6.0 6.4
3.7 4.2 4.0 3.8 8.4 6.7
3.0 4.6 4.9 4.3 14.9 9.4
3.3 5.4 6.4 4.6 24.6 15.0
4.0 6.8 8.5 5.0 36.8 22.2
6.5 10.3 12.8 6.1 58.6 40.2

10.4 15.2 17.6 6.8 72.8 57.1

15.7 20.6 22.0 7.8 81.2 69.8
21.2 26.0 26.0 8.4 86.4 77.3
31.6 35.4 33.7 10.2 93.4 86.3
40.1 42.5 39.7 11.8 97.2 92.9
48.4 49.0 47.0 15.6 99.7 98.8
50.0 50.3 49.4 20.3 100. 99.9

1.1 2.5 1.2 .6 1.4 1.4

.6 1.3 .8 .6 2.1 1.4

.4 1.3 .9 1.1 3.9 1.8

1.5 1.2 1.2 8.2 3.0
.4 1.9 1.9 1.6 14.6 4.7
.6 3.0 3.7 1.9 33.2 13.1

1.0 4.2 6.0 2.4 52.6 26.0
1.4 6.2 8.7 2.6 66.6 42.4
2.6 9.4 11.8 3.0 74.8 54.8
6.1 17.1 18.4 3.8 85.2 71.4

13.0 25.6 25.5 4.6 92.5 80.9
35.0 42.2 38.6 6.8 98.8 94.2
46.2 48.5 47.6 9.8 99.9 99.0

b Tukey (1,5)
Johnson S Bounded (1, 2)

Skew = 0.00
Skew = 0.28

Kurtosis = 2.90
Kurtosis = 2.77
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Table 7. Mean Power Values for Symmetric/Platykurtic Continuous Distributions': By alpha,
sample size, and test statistic.

Test of Normality
Alpha N g2

K2 Skew Kurtosis W Approx LT

10

25
50
75
100

.10 150

200
250
300
400
500
750
1000

10

25
50
75
100

.05 150

200
250
300
400
500
750
1000

10

25

50

75
100

.01 150

200
250
300
400
500
750
1000

3.4 9.4 5.4 20.2 24.9 18.2
1.8 56.2 2.2 70.6 69.2 49.8

55.6 95.6 1.4 97.4 97.2 90.8
93.2 99.8 1.2 99.8 99.9 99.2
99.4 100. .8 100. 100. 99.9
100. 100. .9 100. 100. 100.
100. 100. .8 100. 100. 100.
100. 100. .8 100. 100. 100.
100. 100. .8 100. 100. 100.
100. 100. .8 100. 100. 100.
100. 100. .8 100. 100. 100.
100. 100. .6 100. 100. 100.
100. 100. .7 100. 100. 100.

1.4 3.6 2.3 10.4 12.9 8.4
.1 41.8 .6 59.0 52.6 31.2
.4 91.4 .3 95.1 93.4 80.4

35.2 99.2 .3 99.5 99.5 97.3
83.5 99.9 .2 100. 100. 99.7
99.8 100 .2 100. 100. 100
100 100 .2 100 100 100
100 100 .2 100 100 100
100 100 .2 100 100 100
100 100 .2 100 100 100
100 100 .2 100 100 100
100 100 .2 100 100 100
100 100 .2 100 100 100

.3 .7 .4 1.0 2.2 1.1

.0 20.4 .0 34.0 20.2 6.0

.0 79.2 .0 86.4 74.6 44.0

.5 96.8 .0 98.2 96.2 82.9

.0 99.6 .0 99.8 99.6 96.5
8.9 100. .0 100. 100. 99.9

79.6 100. .0 100. 100. 100.
99.3 100. .0 100. 100. 100.
100. 100. .0 100. 100. 100.
100. 100. .0 100. 100. 100.
100. 100. .0 100. 100. 100.
100. 100. .0 100. 100. 100.
100. 100. .0 100. 100. 100.

Johnson S Bounded (0, 0.5) Skew = 0.0 Kurtosis = 1.63
Tukey (1, 1.5) Skew = 0.0 Kurtosis = 1.75

Table 8. Mean Power Values for Symmetric/Leptokurtic Continuous Distributionsd: By alpha,

22
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sample size, and test statistic.

Alpha N

10

25

50
75
100

.10 150
200
250
300
400
500
750
1000

10

25

50
75
100

.05 150

200
250
300
400
500
750
1000

10

25
50
75
100

.01 150

200
250
300
400
500
750
1000

Test of Normality
g2

K2 Skew Kurtosis W Approx LT

29.2 27.0 27.6 23.6 24.7 27.2
49.8 45.4 41.4 43.1 44.8 46.9
64.5 60.2 49.2 59.6 60.8 62.4
72.2 68.0 53.6 67.9 68.0 69.3
76.3 72.4 56.0 73.0 72.8 73.6
82.0 78.6 58.9 79.4 79.0 79.3
86.2 82.9 60.8 84.4 83.4 83.4
90.2 87.1 62.6 88.9 87.8 87.8
91.8 89.4 63.0 91.2 90.2 90.0
95.4 93.6 64.6 95.4 94.2 93.8
97.4 96.3 65.2 97.4 96.8 96.4
99.4 99.2 67.8 99.6 99.4 99.2
99.9 99.8 68.8 99.9 99.9 99.8

20.4 21.7 20.4 16.7 18.2 19.8
40.7 39.2 33.6 35.2 37.7 39.0
57.6 54.6 42.4 52.6 55.2 55.7
66.2 62.8 47.0 62.0 63.6 64.0
71.0 67.6 50.0 67.6 68.8 68.6
77.6 74.2 53.6 74.6 75.0 74.6
82.2 78.6 55.1 79.6 80.0 79.0
86.6 83.0 56.9 84.6 84.4 83.5
89.2 85.8 57.7 87.5 87.5 86.2
93.4 90.8 59.6 92.8 92.3 91.0
96.0 94.2 60.0 95.8 95.6 94.5
99.0 98.5 62.9 99.0 99.0 98.6
99.8 99.7 64.2 99.8 99.8 99.7

9.8 14.2 10.1 7.3 9.4 9.7
26.0 29.2 22.0 22.2 27.0 26.8
43.8 44.4 31.8 40.0 46.5 44.6
54.5 53.7 36.8 51.0 55.8 54.5
60.6 59.4 40.2 57.7 61.4 59.8
67.6 66.6 44.4 65.2 68.0 65.9
72.6 70.4 46.0 70.1 73.2 70.2
77.1 74.6 48.2 74.8 78.0 74.7
80.6 77.6 49.1 78.5 81.2 77.6
86.6 83.8 51.2 85.4 87.8 84.0
91.2 88.4 52.2 90.5 92.2 88.8
97.4 95.8 54.6 97.0 97.9 96.0
99.2 98.8 56.3 99.2 99.5 98.7

dJohnson S Unbounded (0,2)
Johnson S Unbounded (0, 0.9)

Skew = 0.0
Skew = 0.0

Kurtosis = 4.71
Kurtosis = 82.08



Table 9. Mean Power Values for Skewed/Platykurtic Continuous Distributions': By alpha, sample
size, and test statistic.

Alpha N

10

25
50
75
100

.10 150
200
250
300
400
500
750
1000

10

25
50
75
100

.05 150
200
250
300
400
500
750
1000

10

25
50
75
100

.01 150

200
250
300
400
500
750
1000

Test of Normality
g2

K2 Skew Kurtosis W Approx LT

12.9 15.4 18.2 16.9 35.6 30.9
22.3 36.2 32.8 29.4 77.8 68.0
71.5 78.6 52.9 43.0 97.3 94.0
93.0 95.1 78.7 53.6 99.8 99.4
98.8 99.2 89.6 62.8 100. 99.9
100. 100. 98.0 74.7 100. 100.
100. 100. 99.8 83.4 100. 100.
100. 100. 99.9 88.8 100. 100.
100. 100. 100. 92.8 100. 100.
100. 100. 100. 96.9 100. 100.
100. 100. 100. 98.6 100. 100.
100. 100. 100. 99.8 100. 100.
100. 100. 100. 100. 100. 100.

6.6 9.3 10.6 9.2 22.9 18.9
7.2 21.8 18.8 20.8 66.5 54.0

20.2 58.6 39.6 34.8 94.2 87.4
62.4 84.4 61.6 45.4 99.5 97.8
85.5 96.0 77.5 54.4 100. 99.8
99.4 99.9 67.7 100. 100.
100. 100. 98.8 77.4 100. 100.
100. 100. 99.8 84.0 100. 100.

100. 100. 100. 88.8 100. 100.

100. 100. 100. 94.5 100. 100.
100. 100. 100. 97.3 100. 100.
100. 100. 100. 99.6 100. 100.
100. 100. 100. 99.9 100. 100.

2.1 4.0 2.8 1.7 7.4 5.2
.9 7.8 4.0 9.0 40.2 25.1
.6 24.0 10.8 21.6 81.6 58.4

1.4 58.2 23.9 30.8 96.3 88.4
4.6 71.8 40.3 39.4 99.6 97.0

49.6 96.4 71.8 53.1 100. 99.5
83.5 99.8 90.0 64.0 100. 100.
98.5 100. 96.9 72.2 100. 100.
99.9 100. 99.2 78.8 100. 100.
100. 100. 100. 87.2 100. 100.
100. 100. 100. 92.7 100. 100.
100. 100. 100. 98.4 100. 100.
100. 100. 100. 99.7 100. 100.

e Johnson S Bounded (0.533, 0.5) Skew = 0.65 Kurtosis = 2.13
Beta (2,1) Skew = -0.57 Kurtosis = 2.40
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Table 10. Mean Power Values for Skewed/Leptokurtic Continuous Distributionsf: By alpha, sample
size, and test statistic.

Test of Normality
Alpha N g2

K2 Skew Kurtosis W Approx LT

10

25
50
75
100

.10 150
200
250
300
400
500
750
1000

10

25
50
75
100

.05 150

200
250
300
400
500
750
1000

10

25

50
75
100

.01 150

200
250
300
400
500
750
1000

51.4 50.4 57.0 39.4 59.8 59.8
89.0 87.0 91.2 71.6 92.9 92.5
99.2 98.8 98.9 91.5 99.4 99.4
99.9 99.9 99.7 97.6 99.9 99.9
100. 100. 99.9 99.4 100. 100.

100. 100. 99.9 99.9 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

39.8 43.6 46.8 32.2 50.5 50.2
81.1 82.5 86.8 64.8 90.4 89.5
97.8 97.9 98.2 88.0 99.1 99.0
99.8 99.7 99.6 96.2 99.9 99.9
99.8 99.9 99.8 99.0 100. 100.

100. 100. 99.9 99.9 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

24.5 32.4 28.0 19.5 33.2 31.6
62.8 73.0 74.2 49.9 83.1 79.9
91.0 95.1 95.8 78.5 98.0 97.2
98.3 99.2 99.0 91.6 99.7 99.6
99.8 99.8 99.6 97.1 100. 100.

100. 100. 99.9 99.6 100. 100.

100. 100. 99.9 99.9 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.
100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

100. 100. 100. 100. 100. 100.

f Chi-squared (2)
Lognormal (0,1,0)

Skew = 5.30
Skew = 6.18

Kurtosis = 93.40
Kurtosis = 113.94



Appendix A

SPSS Syntax for Computing the Line Test (LT) for a Given Dataset and for Graphing the Normal
Probability Plot

* Testing for univariate normality.

* Assume that the name of your variable is "score".

* First establish the number of cases by changing "xxxx" to the actual number of cases.

compute n = xxxx.

* Now rank the cases according to their values, substituting your variable name for varname.

rank variables = varname (A) / rank/ print=yes/ties=mean.

* Compute the percentile rank for each case, changing rvarname to rname.

* For example, if your variable name is "score", you would put "rscore" in the next line.

compute perc = (rvarname - .5)/n.

* Now translate the percentile rank to a normally distributed variate.

compute norm = idf.normal(perc,0,1).

execute.

* Graph the normal probability plot, changing varname to "score".

graph / scatterplot (bivar) = varname with norm.

* Now compute the value of LT.

correlations / variables = varname norm.

Note: You can run this syntax file by making the appropriate changes and deleting the comment lines
(those lines beginning with "*". For example, suppose that you had 72 cases and the variable name was
"ability.

compute n = 72.

rank variables = ability (A) / rank/ print=yes/ties=mean.

compute perc = (rability - .5)/n.

compute nonn = idf.normal(perc,0,1).

execute.

graph / scatterplot (bivar) = ability with norm.

correlations / variables = ability norm.



Appendix B

SAS Code Computing the Line Test (LT) for a Given Dataset

Note: This code assumes that any missing values for the variables you are testing have been removed.

proc iml;
use data set name;
read all var {variable name} into p;
create dsl var {LT};

/* Step 1 - Arrange the observed data set in ascending order */
s=p;
s(Irank(s)D=p;
p=s;

/* Step 2 - Determine the probability value for each value in the dataset */
n=nrow(p);
i=1:n;
problev=i-.5/n;

/* Step 3 - Calculate the standard normal quantiles for each probability value */
m=probit((i-.5)/n);
m=m';

/* Step 4 - Compute LT */
psqr=p##2;
msqr=m##2;
pm=p#m;
psum=sum(p);
psqrsum=sum(psqr);
msum=sum(m);
msqrsum=sum(msqr);
pmsum=sum(pm);
ltnum=((n)*(pmsum))-((psum)*(msum));
ltden=sqrt(((n*psqrsum)-(psum*psum))*((n*msqrsum)-(msum*msum)));
LT=Itnum/ltden;
print LT;
append;
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