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Abstract

This research compares four of the most commonly used multiple comparison
procedures (Dunn-Bonferroni, Dunn-Sidak, Holm’s sequentially-rejective, and Tukey’s
HSD), applied to pairwise comparisons, relative to control of per-experiment and
experimentwise Type I errors when conducted as protected or unprotected tests. Monte
Carlo methods were used to generate replications expected to provide .95 confidence
intervals of +/- .001 around the nominal alphas of .10, .05, and .01 for 42 combinations
of n (5, 10, 15, 20, 30, 60, and 100) and numbers of groups (3, 4, S, 6, 8, and 10). Means
and standard deviations of observed Type I error-rates and percentages of observed Type
I errors within the .95 CI’s were determined for per-experiment and experimentwise
conditions. Effects of number of groups and group sizes on these Type I error rates were
examined.

Of primary concern was the accuracy of these procedures compared with the
nominal alpha. To what extent were mean error rates close to nominal alpha, what was
the variance around nominal alpha, what percent of the error rates were within the
expected .95 confidence intervals, and what procedures were least affected by number of
groups and sample sizes?

Results indicate that none of these tests should be conducted as protected tests,
only as unprotected tests, particularly when alpha is .05 or less. If the Type I error
control philosophy is experimentwise, Tukey’s HSD, conducted as an unprotected test, is
clearly the most accurate procedure across all three alpha levels. The other three
procedures are clearly more conservative in this case. However, if alpha is .05 or greater,
the number of groups is significantly inversely related to error rate. If alpha is set at .01,
there is a significant direct relationship with sample size. If the Type I error control
philosophy is per-experiment, the Dunn-Bonferroni, conducted as an unprotected test, is
clearly the most accurate procedure across all three alpha levels. At alpha of .10, Dunn-
Sidak and Holm were slightly more liberal, but this difference became less as alpha
decreased. In all three alpha conditions, HSD was much more liberal compared with
Dunn-Bonferroni, but became less so as alpha decreased. For the Dunn-Bonferroni,
when alpha was .05 or .10, number of groups was inversely related while sample size was
directly related. Per-experiment Type I error rate of Holm’s procedure was highly
inversely related to number of groups, while HSD was highly directly related to number
of groups when alpha was .05 or .10.

In conclusion, if experimentwise Type I error control is desired across all alpha
conditions, Tukey’s HSD, conducted as an unprotected test, is most highly
recommended. If per-experiment Type I error control across all alpha levels is desired,
which we believe is more consistent with actual hypothesis decision-making practice, the
Dunn-Bonferroni, conducted as an unprotected test, is most highly recommended.



Choosing a Multiple Comparison Procedure Based on Alpha

Whenever a researcher has more than two comparisons to test, control of the
Type I error-rate becomes a concern. Soon after Fisher developed the process of analysis
of variance (ANOVA), he recognized the potential problem of the error-rate becoming
inflated when multiple t-tests were performed on three or more groups. He discusses this
problem in the 1935 edition of his famous book, The Design of Experiments. His
recommendation of using a more stringent alpha when performing his Least Significant
Difference Procedure (LSD) is based on this concern. However, researchers still
criticized the LSD as providing inadequate control of Type I error. This early recognition
of the problem has resulted in hundreds of multiple comparison procedures being
developed over the years.

The earliest example of what we now know as a multiple comparison procedure
could be found in 1929, when Working and Hotelling applied simultaneous confidence
intervals to regression lines. The Fisher (1935) reference cited earlier was the first
application to the process of ANOVA. The Type I error-rate control problem was also
referred to by Pearson and Sekar in 1936 and Newman in 1939. Newman described a
multiple comparison test that used the “Studentized Range Statistic.” It is said that his
work was prompted by a discussion he had with Student. Years later, Keuls published an
updated version of the procedure (1952) using the Studentized range. We now know that
multiple comparison procedure as the Student-Newman-Keuls Procedure.

Most studies of Type I error rates for follow-up of pairwise mean differences
have been based on what is referred to as experimentwise or familywise error control
philosophies. These terms were more extensively described by Ryan (1959) and Miller
(1966). Experimentwise (EW) Type I error relates to finding at least one significant
difference by chance for the specified alpha level. In these cases, the only difference of
concern is the largest mean difference. Experimentwise Type I error control ignores the
possibility of multiple Type I errors in the same experiment. The pairwise mean
differences for those other than the largest mean difference are not considered. Type I
error control is such that not all possible Type I errors are evaluated. In these cases,
many procedures such as Tukey’s HSD are considered to have conservative Type I error
control since the actual probabilities of finding at least one Type I error are lower than
the nominal alpha level.

Per-experiment (PE) Type I error control considers all the possible Type I errors
that can occur in a given experiment. Thus, more than one Type I error per experiment is
possible and reasonably likely to occur if there is an experimentwise Type I error on the
highest mean difference. Klockars and Hancock (1994) pointed out the importance and
risks associated with this distinction. They found, using a Monte Carlo simulation, that
there was a difference of .0132 in the per-experiment and experimentwise Type I error
rates for Tukey’s HSD when alpha was set at .05. This discussion was expanded in their
1996 review titled “The Quest for o (Hancock & Klockars). Thus, when one has exact
control of Type I error in the experimentwise situation, the per-experiment Type I error
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probability is higher. One of the purposes of this research was to examine how much of
a difference there may be between experimentwise and per-experiment Type I error rates
for four of the most commonly used pairwise multiple comparison procedures when used
with alpha levels of . 10, .05, and .01, and to determine the relative influence on this
difference of number of groups and number of subjects per group. While most Type I
error research is based on an experimentwise mode, the per-experiment Type I error is
more consistent with the reality of pairwise hypothesis testing. It considers not only the
largest mean difference subjected to error control, but all the pairwise differences.

There seems to be an inconsistency of logic when comparing the power of various
methods and manners of Type I error control. When we say the Student-Newman-Keuls
is more powerful than Tukey’s HSD or Holm’s procedure is more powerful than Dunn-
Bonferroni, the notion is that one method leads to more rejections of partial null
hypotheses. However, if one considers the notion of experimentwise Type I error (the
largest pairwise difference or more being rejected), then SNK and HSD have the same
power and Dunn-Bonferroni and Holm have the same power. Differences in power only
come when considering pairwise differences that are found beyond the K number of
means steps. Thus, shouldn’t error rate take into account the possible false rejections in
the entire structure of mean differences, not just the largest one? We believe per-
experiment Type I error control is more consistent with actual pairwise hypothesis
decision-making.

Four multiple comparison procedures were selected for this research: Dunn-
Bonferroni, Dunn-Sidak, Holm’s sequentially rejective, and Tukey’s HSD. Based on a
review of current literature and commonly used statistical texts, we have concluded that
these are among the most frequently used pairwise procedures and represent a variety of
approaches to control for Type I error. Since the names of these procedures tend to vary
slightly in texts, statistical software, and in the literature, each is described briefly below:

Dunn-Bonferroni Procedure. The Dunn-Bonferroni procedure uses the
Bonferroni inequality (cpg < Zatpc) as authority to divide equally the total a prion error
among the number of tests to be completed, often following the application of the Fisher
LSD procedure. The LSD procedure is equivalent to conducting all pairwise
comparisons using independent t-tests with the MS_, as the common pooled variance
estimate (Kirk, 1982). An example of the application of the Dunn-Bonferroni would be
identifying the a priori o as .05 where tests are required to compare means of five groups
using 10 comparisons, running each individual test at the .05/10=.005 level (Hayes,
1988).

Dunn-Sidak Procedure. Sidak’s modification of the Dunn-Bonferroni Procedure
substituted the multiplicative computation of the exact error-rate, ot = 1 - (1 - atpc)’
where ¢ is the number of comparisons for the Bonferroni Inequality (cipg £ Z0tpc),
otherwise following the same procedures (Kirk, 1982).



Holm’s Sequentially Rejective Procedure. This procedure was proposed by Holm
in 1979 and is also referred to as the Sequentially Rejective Bonferroni Procedure.
Assuming a maximum of ¢ comparisons to be performed, the first null hypothesis is
tested at the o/c level. If the test is significant, the second null hypothesis is tested at the
o/(c - 1) level. If this is significant, the testing continues in a similar manner until all ¢
tests have been completed or until a nonsignificant test is run. The testing stops when
the first nonsignificant test is encountered (Hancock & Klockars, 1996).

Tukey’s Honestly Significant Difference Procedure (HSD). This procedure was
presented originally in a non-published paper by Tukey in 1953. Its popularity has grown
to the point where it is, possibly, the most widely used multiple comparison procedure.
The HSD is based on the Studentized Range Statistic originally derived by Gossett
(a.k.a., Student) (1907-1938). This statistic, unlike the t-statistic, takes into account the
number of means being compared, adjusting for the total number of tests to make all
pairwise comparisons (Kennedy & Bush, 1985).

Many researchers follow the practice of conducting post-hoc pairwise multiple
comparisons only after a significant omnibus F test. Protected tests are conducted only
after a significant omnibus F test, while unprotected tests are conducted without regard to
the significance of the omnibus F test. Many common statistical texts either recommend
or imply the use of a protected test for all post-hoc multiple comparison procedures (e.g.,
Hayes, 1988; Kennedy & Bush, 1985, Kirk, 1982; Maxwell & Delaney, 1990). While
these texts provide a logical basis for this, and excellent reviews of multiple comparison
procedures are available (e.g., Hancock & Klockars, 1996; Toothaker, 1993), little
empirical evidence is presented, either analytically or empirically, to justify this practice.

The research questions are:

1. Which of these four multiple comparison procedures has the most accurate
control of Type I error across the three alpha conditions?

2. Should these tests be conducted as protécted or unprotected tests?
3. Do methods differ relative to experimentwise vs. per-experiment control?
4. What are the relative influences of number of groups and group sizes on the
error rates?
Methodology
Monte Carlo methods were used to generate the data for this research (Barnette &
McLean, November 1997). All data comprising the groups whose means were compared

were generated from a random normal deviate routine, which was incorporated into a
larger compiled QBASIC program that conducted all needed computations. The program
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was written by the senior author. All sampling and computation, conducted with double-
precision, routines were verified using SAS® programs. The program was run on a Dell
Pentium II, 266 MHz personal computer. Final analysis of the summary statistics and
correlations was conducted using SAS®.

Several sample size and number of groups arrangements were selected to give a
range of low, moderate, and large case situations. The number of groups was: 3, 4, 5, 6,
8, and 10 and the sample sizes for each group were: 5, 10, 15, 20, 30, 60, and 100, which
when crossed gave 42 experimental conditions. This was replicated for three nominal
alphas of .10, .05, and .01. The approach used was to determine what number of
replications would be needed to provide an expected .95 confidence interval of +/- .001
around the nominal alpha. This is an approach to examination of how well observed
Type I error proportions are reasonable estimates of a standard nominal alpha. In other
words, if alpha is the standard, what proportion of the estimates of actual Type I error
proportions can be considered accurate, as evidenced by them being within the expected
.95 confidence interval around nominal alpha?

This was based on the assumption that errors would be normally distributed
around the binomial proportion represented by nominal alpha. Thus, when alpha was
.10, 345742 replications were needed to have a .95 confidence interval of +/- .001 or
between .099 and .101. When alpha was .05, 182475 replications were needed to have a
.95 confidence interval of +/- .001 or between .049 and .051 and when alpha was .01,
38032 replications were needed to have a .95 confidence interval of +/- .001 or between
.009 and .011. Observed Type I error proportions falling into the respective .95
confidence intervals are considered to be accurate estimates of the expected Type I error
rate.

Within each nominal alpha/sample size/number of groups configuration, the
number of ANOVA replications were generated. Each replication involved drawing of
elements of the sample from a distribution of normal deviates, computation of sample
means, and the omnibus F test. Error rates were determined for protected and
unprotected tests for each of the four multiple comparison procedures. While Dunn-
Bonferroni, Dunn-Sidak, and HSD use only one critical value for all differences, the
pairwise differences were recorded in a hierarchical fashion to determine pairwise
differences significant at each of the numbers of steps between means from K down to 2.
This approach permitted determination of experimentwise Type I error (at least one Type
I error per experiment) or a Type I error for the largest mean difference, and per-
experiment Type I errors or the total number of Type I errors observed regardless of
where they are in the stepwise structure.

Summary statistics were computed for each alpha level for experimentwise and
per-experiment conditions including: the mean proportion of Type I errors, standard
deviation of the proportion of Type I errors, and the percentage of proportions falling in
the three regions associated with the .95 confidence interval. Additional analysis
included computation of differences between per-experiment proportions and

47



experimentwise proportions (PE-EW) and correlation analysis to determine relative
influences of number of groups and sample sizes on the error rates and differences.

Results

Some preliminary analyses were run using the Monte Carlo program to test its
accuracy. First, 500,000 standard normal scores (z-scores) were generated and the
statistics for the distribution were computed. This resulted in a mean = -.00096,
variance = 1.0013, skewness = .00056, kurtosis = .00067, and the Wilk-Shapiro D =
.000734 (nonsignificant). Thus, we concluded that the program generates reasonable
normal distributions. Second, 900,000 cases were computed with K ranging from 2 to 10
and n ranging from 5 to 100 with no differences between the group means. In each case,
the proportions of significant F-statistics were computed corresponding to preset alphas
of .25, .10, .05, .01, .001, and .0001. The resulting proportions of rejected null
hypotheses were .24989, .10106, ,05071, .01022, .001004, and .000103 respectively.
These results support the accuracy of the Monte Carlo program.

The results for each of the three alpha conditions are presented in Tables 1 -
through 3. The first research question is: Which of these four multiple comparison
procedures has the most accurate control of Type I error across the three alpha
conditions? If you want the best control of per-experiment Type I error, the Dunn-
Bonferroni, conducted as an unprotected test, is the most accurate across all three levels
of alpha. It consistently provides a mean Type I error rate closest to nominal alpha, has
the lowest variance, and captures the highest proportion of observed Type I errors in the
expected .95 confidence interval. While the Dunn-Sidak and Holm provide values that
are reasonably close, they tend to be slightly more liberal and less accurate, particularly
with higher nominal alpha. As alpha decreases, both the Dunn-Sidak and Holm approach
the level of accuracy of the Dunn-Bonferroni. Tukey’s HSD is liberal as an unprotected
test in control of per-experiment Type I error, although this decreases as alpha decreases.

If the error control philosophy is experimentwise, Tukey’s HSD is the most
accurate, conducted as an unprotected test. It has a mean error closest to nominal alpha,
the lowest variance, and the highest proportion of observed Type I errors in the expected
.95 confidence interval. When alpha is .10, HSD is slightly less accurate than when
alpha is .05 or .01. The other three methods are conservative, with the Dunn-Sidak being
slightly less conservative compared with Dunn-Bonferroni and Holm.

The second research question is: Should these tests be conducted as protected or
unprotected tests? If one is interested in using any of these methods as a protected test, a
practice not generally supported by these data, the HSD provides the most accurate
control of experimentwise Type I error although it is very conservative at all alpha levels.
The other three methods are very conservative in control of experimentwise Type I error.
If per-experiment control of Type I error is the philosophy, HSD is liberal when alpha is
.10 or .05 but becomes more accurate, even somewhat conservative, when alpha is .01.
Of the remaining three, Holm’s procedure tends to be more accurate across the three
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alpha levels. It is clear and expected that unprotected tests are more powerful than
protected tests.

The third research question is: Do methods differ relative to experimentwise vs.
per-experiment control? It seems pretty clear that the results vary a great deal depending
on the Type I error control philosophy. By the very nature of these philosophies, there
will be a higher proportion of Type I errors in the per-experiment condition compared
with the experimentwise condition. In every case, across alpha levels and for both
protected and unprotected tests, the lowest difference between these rates was for the
Dunn-Bonferroni and the highest difference was for the HSD. Thus, the issue is more a
concern if one is using the HSD as compared with the other three methods.

The fourth research question was: What are the relative influences of number of
groups and group sizes on the error rates? Results of the correlations of number of
groups and error rates for all three levels of alpha are presented in table 4. When used as
unprotected tests, the effect of number of groups on per-experiment Type I error was
relatively low for the Dunn-Bonferroni and Dunn-Sidak. For Holm, the relationship was
negative, i.e. as number of groups increased, Type I error rate decreased. But for HSD,
the relationship was positive, i.e. as number of groups increased, Type I error increased.
For all of the methods, the influence of number of groups decreased as alpha decreased.

If experimentwise Type I error control is the philosophy when unprotected tests
are used, there was a negative relationship between number of groups and Type I error
rate for all methods and all alpha levels except for HSD. Relationships were lower for
HSD and at alpha of .01, there was no relationship of number of groups and Type I error
rate. In all four methods, group size had lower influence on experimentwise Type I error
rate as alpha decreased. When protected tests are used, there are strong negative
correlations between number of groups and Type I error rate, i.e. as number of groups
increases, Type I error rate decreases. These do not vary much across the alpha values.

The same relationship is observed within the per-experiment condition with one
very interesting exception. The pattern of correlations across the alpha levels for the
HSD is quite varied. When alpha is .10, there is a strong positive correlation, i.e. as
number of groups increases so does per-experiment Type I error rate; there is no
relationship when alpha is .05, and a strong negative one when alpha is .01, i.e. as
number of groups increases, per-experiment error decreases. This unexpected finding is
one that should be explored further.

Comparing the results presented in Table 4 with those found in Table 5, it is clear
that number of groups is more highly related than is group or sample size to both types of
Type I errors. When conducted as protected tests, sample size doesn’t have much of an
effect on either Type I error rate or on the difference between the rates, except for
difference when Holm’s procedure is used with alpha of .05 and .01. As alpha decreases
the difference between the two rates is more influenced by sample size, with the
relationship being that as sample size increases the difference between the two rates
decreases.
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Sample size is more influential when these methods are conducted as unprotected
tests, although in most situations the relationship is relatively low. If per-experiment
Type I error control is the philosophy, Holm’s procedure and HSD are not related to
sample size. However, Dunn-Bonferroni and Dunn-Sidak have moderate, positive
relationships with Type I error rate when alpha is .05 or .10, i.e. as sample size increases
per-experiment Type I error rate increases. If experimentwise Type I error control is the
philosophy, sample size is related to Type I error rate when alpha is low (.01) but not
when alpha is .05 or .10. It is interesting to note that for Dunn-Bonferroni and Dunn-
Sidak, the relationship is lowest when alpha of .01 is used with per-experiment control
but highest when experimentwise control is used. When experimentwise Type I error is
the control philosophy, there is a higher sample size influence as alpha decreases for all
four of these methods.

Summary

These results provide insights on two major controversies. One is the need for a
significant omnibus F test as the gateway for conducting pairwise follow-ups. Is it not
possible, as Hancock and Klockars (1996) point out, that this requirement overprotects
against finding pairwise differences? Our results certainly support that claim,
particularly when experimentwise Type I error is the control philosophy. Protected tests
were more conservative in every case. It can clearly be concluded that none of these four
tests should be used as protected tests when experimentwise error control is used. If per-
experiment error control is desired, only the Holm procedure with alpha of .10 was more
accurate as a protected test than as an unprotected test. However, that accuracy was
lower when alpha was .05 or .01.

The other controversy is the use of experimentwise vs. per-experiment Type I
error control. Clearly there is a difference in the error rates of these philosophies. We
contend that per-experiment mode is closest to the realities of pairwise hypothesis
testing, since more than just the largest pairwise difference is of interest and all pairwise
comparisons are tested. The conventional wisdom, based on experimentwise Type I
error control, is that the Dunn-Bonferroni is very conservative and that the HSD is
conservative, but less so. The HSD is often recommended because it is conservative, yet
provides reasonable power for finding significant differences; but this relates to
experimentwise control and a protected test. Yet, arguments could be made that the
HSD gets its power from a higher-than-nominal alpha level. In our research, when HSD
is used as a protected test with alpha of .10 or .05, the actual per-experiment Type I error
rates are .12741 and .05531 respectively and actual experimentwise Type I error rates
were much lower at .08134 and .03865. Thus, the operational alpha level is not the
nominal level, but a higher level.

If one is truly interested in maintaining an accurate level of control of Type I
error, then methods which are shown to provide accurate actual controls should be used,
and the power available can be determined by other comparison conditions: sample size,
effect size, number of groups, and error variance. This research indicates that Tukey’s
HSD, conducted as an unprotected test, is the most accurate control of experimentwise
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Type I error; and if you desire accurate, as advertised, control of per-experiment Type I
error, there is one method that seems to provide that regardless of alpha level, number of
groups, or number of subjects: the Dunn-Bonferroni conducted as an unprotected test.

We realize these findings are not consistent with common wisdom or with
recommendations found or implied in most statistics texts. However, we hope this
research influences others to replicate our work, possibly using other methods. Only
when we are willing to question our current practice are we able to improve on it.

Additional study of the discrepancy between experimentwise and per-experiment
Type I errors is needed. We need to determine just how important this discrepancy is.
The current study did not consider the case of unequal sample sizes or heterogenous
variances. [s it the same under conditions of unequal sample sizes and/or variances?
While it might be useful to include other procedures such as the Student-Newman-Keuls,
Scheffe’, and modifications of Holm’s procedure, we believe it is unlikely that any of
these methods will fare better as methods of Type I error control than Tukey’s HSD
when experimentwise is the control philosophy, or the Dunn-Bonferroni when per-
experiment is the control philosophy. ‘ )
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Table 1

Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple Comparison -
Procedures when Conducted as Protected and Unprotected Tests with Alpha= .10

Protected Unprotected i
Test Test :
Per- Experiment- | PE - EW Per- Experiment- | PE -EW
Experiment | wise Error Difference Experiment | wise Error Difference |
Error (PE) (EW) Error (PE) (EW)
Dunn- M .09466 .06695 02771 .10011 .07239 .02772
Bonferroni i
M-a -.00534 -.03305 +.00011 -.02767
SD .00427 .00962 .00075 .00626
% in Cl o, 19.0 0 85.7 0
Dunn-Sidak M .09834 .06885 .02949 .10481 .07535 .02946
M-a -.00166 -.03115 +.00481 -.02465
SD .00401 .00972 .00093 .00625
% in Cl o, 19.0 0 0 0
Holm M .10036 .06695 .03341 .10582 .07239 .03343
M-a +.00036 -.03305 +.00582 .02767
SD .00739 .00962 .00346 .00626
% in Cl o, 2.4 0 7.1 0
HSD M 12741 .08134 .04607 .14579 .09940 .04639
M-a +.02741 -.01866 +.04579 -.00060
SD .00906 .00755 .01472 .00102
% in Cl o 0 0 0 78.6
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Table 2

Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple Comparison
Procedures when Conducted as Protected and Unprotected Tests with Alpha= .05

Protected Unprotected
Test Test
Per- Experiment- [ PE - EW Per- Experiment- | PE - EW
Experiment | wise Error Difference Experiment wise Error Difference
Error (PE) (EW) Error (PE) (EW)
Dunn- M .04483 .03352 01113 .04998 .03864 .01134
Bonferroni
M- -.00517 -.01648 -.00002 -.01136
SD .00315 .00534 .00054 .00294
% in Cl o 7.1 0 92.9 0
Dunn-Sidak M .04560 .03395 .01165 05110 03943 .01167
M- -.00440 -.00405 +.00110 -.01057
SD .00308 .00536 .00052 .00291
% in Cl o, 16.7 0 50.0 0
Holm M .04696 .03352 .01344 .05208 .03864 .01344
M= -.00304 -.01648 +.00208 -01136
SD .00433 .00535 .00146 .00294
% in CI ,, 19.0 0 333 0
HSD M .05531 .03865 01666 .06674 .04993 .01681
M= +.00531 - -.01135 +.01674 -.00007
SD .00324 .00458 .00541 .00048
% in CI ,, 2.4 0 0 97.6
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Table 3

Observed Per-Experiment and Experimentwise Type I Error Rates for Selected Multiple Comparison
Procedures when Conducted as Protected and Unprotected Tests with Alpha= .01

Protected Unprotected
Test Test
Per- Experiment- { PE -EW Per- Experiment- PE - EW
Experiment | wise Error Difference Experiment wise Error Difference
Error (PE) (EW) Error (PE) (EW)
Dunn- M .00790 .00647 .00143 .01003 .00860 .00143
Bonferroni
M- -.00210 -.00353 +.00003 -.00140
SD .00103 .00123 .00048 .00059
% in Cl o, 11.9 0 97.6 26.2
Dunn-Sidak M .00793 .00649 .00144 .01007 .00865 .00142
M- -.00207 -.00351 +.00007 -.00135
SD .00103 .00122 .00049 .00058
% in Cl o, 14.3 0 92.9 26.2 B
Holm M .00814 .00647 .00167 .01026 .00860 .00166
M- -.00186 -.00353 +.00026 -.00140
SD .00119 .00123 .00054 .00059
% in Cl,, 31.0 0 92.9 26.2
HSD M .00878 .00702 00176 .01181 .01002 00179
M- -.00122 -.00298 +.00181 +.00002
SD 00097 .00116 .00080 .00043
% in Cl o, 42.9 24 143 100.0
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Table 4

Correlations of Number of Groups (K) with Observed Per-Experiment and Experimentwise Type I
Error Rates for Selected Multiple Comparison Procedures when Conducted as Protected and
Unprotected Tests

Protected Test Unprotected Test
Per- Experiment- | PE - EW Per- Experiment- PE - EW
Experiment | wise Error Difference | Experiment wise Error Difference
Error (PE) (EW) Error (PE) (EW)
Dunn- A0 -.95535 -.95896 85172 -.33533 -.86553 .85433
Bonferroni o} .0001 .0001 .0001 .0299 .0001 .0001
05 |r -.93707 -.96456 .81078 -.32003 -.81844 81734
o} .0001 .0001 .0001 .0388 .0001 .0001
Ol |r -.86974 -.95484 .65051 -.01051 -.50480 .62677
o} .0001 .0001 .0001 >.05 .0007 .0001
Dunn-Sidak d0 ir -.94053 -.96126 .85298 .26202 -.86678 .86097
p .0001 .0001 .0001 > .05 .0001 .0001
05 |r -.93304 -.96640 .81670 -.07783 -.81888 .82351
o} .0001 .0001 .0001 >.05 .0001 .0001
01 |r -.86785 -.95276 62915 .00825 -.49366 .63163
. o} .0001 .0001 .0001 > .05 .0009 .0001
Holm A0 r -.96261 -.95896 .58048 -.94621 -.86553 .59028
p .0001 .0001 .0001 .0001 .0001 .0001
05 |r -.94400 -.96456 .56376 -.88871 -.81844 .58107
p .0001 .0001 .0001 .0001 .0001 .0001
0l |r -.87719 -.95484 .33738 -29110 -.50480 .33923
p .0001 .0001 .0289 > .05 .0007 .0280
HSD A0 |r .62073 -.98207 .87999 .87035 -.68768 .89081
p .0001 .0001 .0001 .0001 .0001 .0001
05 |r .00219 -.97524 .82661 .83184 -36785 .84360
o} > .05 .0001 .0001 .0001 .0165 .0001
Ol |r -.68947 -.94583 66036 .56627 .00233 .67422
p .0001 .0001 .0001 .0001 > .05 .0001
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Table §

Correlations of Sample Size (n) with Observed Per-Experiment and Experimentwise Type I Error Rates
for Selected Multiple Comparison Procedures when Conducted as Protected and Unprotected Tests

Protected Test Unprotected Test
Per- Experiment- | PE -~ EW Per- Experiment- PE ~-EW
Experiment | wise Error Difference Experiment wise Error Difference
Error (PE) (EW) Error (PE) (EW)
Dunn- A0 | -.06321 05717 -.13551 .47065 .18638 -.13446
Bonferroni p > .05 >.05 >.05 .0017 > .05 >.05
05 |r -.06736 .05310 -.18203 .47597 .26054 -.18646
P > .05 > .05 > .05 .0014 > .05 > .05
0l |r -.13822 -.00686 -.30405 .20592 41717 -31315
P > .05 > .05 >.05 > .05 .0060 .0435
Dunn-Sidak d0 | -.08213 .05673 -.13493 .39886 .19314 -.12739
P > .05 > .05 > .05 .0089 > .05 >.05
05 Ir -.07727 .05045 -.18063 45673 .26095 -.18345
P > .05 > .05 >.05 .0024 >.05. .0165
0l |r -.13539 -.01044 -.28835 21761 42777 -.30924
P > .05 > .05 > .05 > .05 .0047 .0463
Holm A0 ir -.05882 .05717 -.27032 .05079 .18638 -.27239
P > .05 > .05 > .05 > .05 > .05 > .05
05 |r -.07206 .05310 -.31368 12245 .26054 -.30888
P > .05 > .05 .0431 > .05 > .05 .0466
01 |r -.13843 -.00686 -.39151 .14272 41717 -.40760
P > .05 > .05 .0103 > .05 .0060 .0074
HSD A0 | -.25752 -.03866 -.13775 -.14070 -.03593 -.13407
P > .05 > .05 > .05 > .05 > .05 > .05
05 |r -.31669 -.01001 -.18121 -.15317 28737 -.17419
P .0401 > .05 > .05 > .05 > .05 > .05
01 |r -.24197 -.04574 -.28254 -.03525 .39943 -.29967
P > .05 > .05 > .05 > .05 .0088 > .05
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