
DOCUMENT RESUME

ED 430 012 TM 029 725

AUTHOR Kim, Seock-Ho; Cohen, Allan S.
TITLE Accuracy of Parameter Estimation in Gibbs Sampling under the

Two-Parameter Logistic Model.
PUB DATE 1999-04-02
NOTE 55p.; Paper presented at the Annual Meeting of the American

Educational Research Association (Montreal, Quebec, Canada,
April 19-23, 1999).

PUB TYPE Reports Evaluative (142) Speeches/Meeting Papers (150)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS *Bayesian Statistics; *Estimation (Mathematics) ; Item

Response Theory; Markov Processes; Monte Carlo Methods;
Simulation

IDENTIFIERS *Gibbs Sampling; Parameter Identification

ABSTRACT
The accuracy of Gibbs sampling, a Markov chain Monte Carlo

procedure, was considered for estimation of item and ability parameters under
the two-parameter logistic model. Memory test data were analyzed to
illustrate the Gibbs sampling procedure. Simulated data sets were analyzed
using Gibbs sampling and the marginal Bayesian method. The marginal Bayesian
method combined with the expected a posteriori estimation of ability yielded
consistently smaller root mean square errors and better bias results than
Gibbs sampling. (Contains 12 figures, 29 tables, and 56 references.) (Author)

********************************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

********************************************************************************



Accuracy of Parameter Estimation in Gibbs Sampling

Under the Two-Parameter Logistic Model

Seock-Ho Kim
The University of Georgia

Allan S. Cohen
University of WisconsinMadison

April 22, 1998
Running Head: GIBBS SAMPLING FOR 2PL

Paper presented at the annual meeting of the American Educational
Research Association, Montreal, Canada.

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

LC)
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
telhis document has been reproduced as

received from the person or organization

originating it.

CN/

0 Minor changes have been made to

CD

improve reproduction quality.

Points of view or opinions stated in this

11"""

document do not necessarily represent

official OERI position or policy.

PERMISSION TO REPRODUCE AND

DISSEMINATE THIS MATERIAL
HAS BEEN GRANTED BY

S4 o t(0 Vi,04

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

BEST COPY AVAILABLE



Accuracy of Parameter Estimation in Gibbs Sampling
Under the Two-Parameter Logistic Model

Abstract

The accuracy of Gibbs sampling, a Markov chain Monte Carlo procedure, was considered for

estimation of item and ability parameters under the two-parameter logistic model. Memory

test data were analyzed to illustrate the Gibbs sampling procedure. Simulated data sets were

analyzed using Gibbs sampling and the marginal Bayesian method. The marginal Bayesian

method combined with the expected a posteriori estimation of ability yielded consistently

smaller root mean square errors and better bias results than Gibbs sampling.

Keywords: Bayesian inference, Gibbs sampling, item response theory, Markov chain Monte

Carlo, marginal Bayesian.

3



Introduction

For models with several parameters, statistical inference sometimes requires integration over

high-dimensional probability distributions in order to estimate any parameter of interest or

to obtain any particular function of the parameters. One such case is estimation of item

and ability parameters in the context of item response theory (IRT). Except for certain

rather simple problems with highly structured frameworks (e.g., an exponential family

together with conjugate priors in the Bayesian approach), the required integrations may be

analytically nontractable. As is true for many cases in statistics, the marginal density can

be approximated using various techniques (e.g., standard numerical integration, Laplacian

approximation, Edgeworth expansion, importance sampling, Metropolis algorithm; see

Bernardo & Smith, 1994; Leonard & Hsu, 1994). In this paper, we examine the accuracy

of Gibbs sampling, one of the Markov Chain Monte Carlo (MCMC) methods for marginal

density estimation, for estimation of IRT parameters. In particular, we focus on the accuracy

of Gibbs sampling (Geman & Geman, 1984) for estimation of item and ability parameters

under the two-parameter logistic (2PL) model when sample sizes are small.

A number of ways exist for implementing the MCMC method. [For a review, refer

to Bernardo and Smith (1994), Carlin and Louis (1996), and Gelman, Carlin, Stern, and

Rubin (1995).1 Metropolis and Ulam (1949), Metropolis, Rosenbluth, Rosenbluth, Teller, and

Teller (1953), and Hasting (1970) present a general framework within which Gibbs sampling

(Geman & Geman, 1984) can be considered as a special case. In this regard, Gelfand

and Smith (1990) discuss several different Monte Carlo-based approaches, including Gibbs

sampling, for calculating marginal densities. [See Gilks, Richardson, and Spiegelhalter (1996)

for a recent survey of applications.] Basically Gibbs sampling is applicable for obtaining

parameter estimates for the complicated joint posterior distribution in Bayesian estimation

under IRT (e.g., Mislevy, 1986; Swaminathan & Gifford, 1985; Tsutakawa & Lin, 1986).

A few studies have examined the use of Gibbs sampling under IRT. Albert (1992)

applied Gibbs sampling in the context of IRT to estimate item parameters for the two-

parameter normal ogive model and compared these estimates with those obtained using

maximum likelihood estimation. Baker (1998) has also investigated item parameter recovery

characteristics of Albert's Gibbs sampling method for item parameter estimation via a

simulation study. Patz and Junker (1997) developed a MCMC method based on the

Metropolis-Hasting algorithm and presented an illustration using the 2PL model.
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MCMC computer programs in the context of IRT have been developed largely only

for specific applications. For example, Albert (1992) used a computer program written in

MATLAB (The Math Works, Inc., 1996). Baker (1998) developed a specialized FORTRAN

version of Albert's Gibbs sampling program to estimate item parameters of the two parameter

normal ogive model. Patz and Junker (1997) developed an S-PLUS code (Math Soft,

Inc., 1995). Spiegelhalter, Thomas, Best, and Gilks (1997) have also developed a general

Gibbs sampling computer program BUGS for Bayesian estimation, using the adaptive

rejection sampling algorithm (Gilks & Wild, 1992). The computer program BUGS requires

specification of the complete conditional distributions.

The marginal maximum likelihood (MML) and marginal Bayesian (MB) methods using

the expectation and maximization (EM) algorithm, as implemented in the computer program

BILOG (Mislevy & Bock, 1990), have become the standard estimation technique for

obtaining item parameter estimates of IRT. Ability parameters are estimated in those

marginalized solutions using either maximum likelihood (ML), expected a posteriori (EAP),

or maximum a posteriori (MAP) estimation after obtaining the item parameter estimates

and assuming the estimates are true values. The Gibbs sampling procedure approaches the

estimation of item parameters using the joint posterior distribution rather than the marginal

distribution. In Gibbs sampling ability parameters can be estimated either jointly with item

parameters or after obtaining the item parameters. All of the estimation methods should

yield comparable item and ability parameter estimates, when comparable priors are used or

when ignorance or locally uniform priors are used when sample sizes are large. This study

was designed to evaluate the comparability of item and ability parameter estimates using the

2PL model. Specifically, estimation methods implemented in the two computer programs,

BUGS and BILOG, were examined and compared.

Theoretical Framework

Marginalized Solutions

Consider binary responses to a test with n items by each of N examinees. A response of

examinee i to item j is represented by a random variable Ili, where i = 1(1)N and j = 1(1)n.

The probability of a correct response of examinee i to item j is given by P(Yii = 1I9i, ei) = Pii

and the probability of an incorrect response is given by P(Yij = 010i, ei) = 1 P, =

where 0i is ability and ei is the vector of item parameters.
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For examinee i, there is an observed vector of dichotomously scored item responses

of length n, Y = , Yin)'. Under the assumption of conditional independence, the

probability of Yi given Oi and the vector of all item parameters, = , Cn)I, is

13(YilO).= 1111.1 (47Y .
(1)

j=1

The marginal probability of obtaining the response vector Yi for examinee i sampled from a

given population is

P(Yi10 = f P(3749i,e)1)(0)c101,
(2)

where p(0) is the population distribution of Oi. Without loss of generality, we can assume

that the ei are independent and identically distributed as standard normal, 0, --, N(0,1). This

assumption may be relaxed as the ability distribution can also be empirically characterized

(Bock Sz Aitkin, 1981). The marginal probability of Yi can be approximated with any

specified degree of precision by Gaussian quadrature formulas (Stroud Sz Secrest, 1966).

The marginal probability of obtaining the N x n response matrix Y is given by

Are) = IIP(YiIC) = l(07), (3)

where /(CIY) can be regarded as a function of C given the data Y. In MML, the marginal

likelihood is maximized to obtain maximum likelihood estimates of item parameters (Bock

Aitkin, 1981; Bock & Lieberman, 1970).

Bayes' theorem tells us that the marginal posterior probability distribution for C given

the data, Y, is proportional to the product of the marginal likelihood for C given Y and the

prior distribution of C. That is,

p(Y1)P() ccp(a) p(Y)
(4)

where a denotes proportionality. The marginal likelihood function represents the informa-

tion obtained about C from the data. In this way, the data modify our prior knowledge

of C. A prior distribution represents what is known about unknown parameters before the

data are obtained. Prior knowledge or even relative ignorance can be represented by such a

distribution. In MB estimation of item parameters, the marginal posterior is maximized to

obtain Bayes modal estimates of item parameters (see Mislevy, 1986).

Point estimates of ability parameters do not arise during the course of the marginalized

estimation of item parameters. They are calculated after the item parameters are estimated

4
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assuming the obtained item parameters are true values. Three methods are generally

available; ML, EAP (i.e., posterior mean), and MAP (i.e., posterior mode) (Bock & Aitkin,

1981; Bock & Mislevy, 1982).

Joint Estimation Procedures

Birnbaum (1968) and Lord (1980) describe the estimation of the 0 and by joint

maximization of the likelihood function
N n

p(Y119)e) = H H Pi(eeic4i(ei)'-Yij = 40,61Y), (5)
j=1 J.1

where 0 = (01, , 0 N)' . In implementation of joint maximum likelihood (JML) estimation

(see Lord, 1986 for a comparison of marginalized and joint estimation methods), the item

parameter estimation part for maximizing 1(eIY, o) and the ability parameter estimation part

for maximizing 1(0IY, t.) are iterated until a stable set of maximum likelihood estimates of

item and ability parameters are obtained.

Extending the idea of joint maximization, Swaminathan and Gifford (1982, 1985, 1986)

suggested that 9 and 6 can be estimated by joint maximization with respect to the parameters

of the posterior density

p(Y10, OW' 6) 0( 1(6), 6117)71(0, e),/3(9,a) = p(y) (6)

where p(9, 6) is the prior density of the parameters 0 and 6. This procedure is joint Bayesian

(JB) estimation. Under the assumption that priors of 0 and 6 are independently distributed

with probability density functions p(0) and p(6), the item parameter estimation part

maximizing 1(6IY, O)p(e), and the ability parameter estimation part maximizing l(OIY, .0p(0)

are iterated to obtain stable Bayes modal estimates of item and ability parameters.

Gibbs Sampling

The main feature of MCMC methods is to obtain a sample of parameter values from the

posterior density (Tanner, 1996). The sample of parameter values then can be used to

estimate some functions or moments (e.g., mean and variance) of the posterior density of

the parameter of interest. In the IRT estimation procedures via MML, MB, JML, or JB noted

above, however, the task is to obtain modes of the likelihood function or of the posterior

distribution.
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The Gibbs sampling algorithm is as follows (Gelfand & Smith, 1990; Tanner, 1996).

First, instead of using 9 and e, let w be a vector of parameters with k elements. Suppose

that the full or complete conditional distributions, p(wilwj, Y), where i = 1(1)k and j

are available for sampling. That is, samples may be generated by some method given values

of the appropriate conditioning random variables. Then given an arbitrary set of starting

values, ,4,10), , wv), the algorithm proceeds as follows:

Draw w11) from p(wi lwV), . , we), Y),
(I)Draw w2 from p(w2p11), 4),

Draw w(k1) from p(wkIw11),...,w1)1,Y),

Draw wi2) from 011), Y),

Draw w12) from p(w21w12), , Y),

(2) v. \
Ik rom p wk w1 , 3 Wk-17 A 1Draw w(2) f ( (2)

Draw w1t+1) from 1)(wIlwit), wr), Y),

Draw Lori) from p(w2Iwit+1), , Y),

Draw w(t+1) f ( (t+1)
0+1) 17\

k TOM p

The vectors w(°), . , w(t), . are a realization of a Markov chain with a transition probability

from w(t) to w(t+1) given by

w(t-I-1)) ilp(wr+1),, 4+1)

1=1

(7)

The joint distribution of w(t) converges geometrically to the posterior distribution p(wIY)

as t oo (Geman & Geman, 1984, Bernardo & Smith, 1994). In particular, wi(,t) tends to

be distributed as a random quantity whose density is p(wdY). Now suppose that there exist

m replications of the t iterations. For large t, the replicates c4f), , (4m') are approximately

a random sample from p(wilY). If we make m reasonably large, then an estimate, /3(wilY),

6
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can be obtained either as a kernel density estimate derived from the replicates or as

25(w1lY) = r;'(wilw(:),j 0 i, 11. (8)

77Z 1=1 3

In the context of IRT, Gibbs sampling attempts to sample sets of parameters from the

joint posterior density p(0,IY). Inferences with regard to parameters can then be made

using the sampled parameters. Note that inference for both 0 and 6 can be made from the

Gibbs sampling procedure.

An Example

Steps for Gibbs Sampling

The following example is presented using the 10-item memory test data for 40 examinees from

Thissen (1982) (see Table 1). Model parameters were estimated by Gibbs sampling using

the computer program BUGS (Spiegelhalter et al., 1997). These same data were analyzed

under the Rasch model in Thissen (1982).

Insert Table 1 about here

Gibbs sampling uses the following four basic steps (cf. Spiegelhalter, Best, et al., 1996):

1. Full conditional distributions and sampling methods for unobserved parameters must

be specified.

2. Starting values must be provided.

3. Output must be monitored.

4. Summary statistics (e.g., estimates and standard errors) for quantities of interest must

be calculated.

Discussion of the four steps involved are presented in detail below. In addition,

comparisons with the results from the marginalized methods (e.g., MB and MML) as

implemented in the computer program BILOG (Mislevy Sz Bock, 1990) are presented.

7
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Model Specifications

The model specifications are used as input to the BUGS computer program. In the memory

test data set, the item responses Yij are independent, conditional on their parameters P.

For examinee i and item j, each Pii is a function of the ability parameter 9i, the item

discrimination parameter ai, and the item difficulty parameter gi under the 2PL. The Oi

are assumed to be independently drawn from a standard normal distribution for scaling

purposes. Figure 1 shows a directed acyclic graph (see Lauritzen, Dawid, Larsen, & Leimer,

1990; Whittaker, 1990; Spiegelhalter, Dawid, Lauritzen, & Cowell, 1993) based on these

assumptions. Ai and (j are used in Figure 1 instead of ai and 13 (see Equation 11). The

model can be seen as directed because each link between nodes is represented as an arrow.

The model can also be seen as acyclic because it is impossible to return to a node after leaving.

It is only possible to proceed by following the directions of the arrows. Each variable or

quantity in the model appears as a node in the graph, and directed links correspond to direct

dependencies as specified above. The solid arrow denotes the probabilistic dependency, while

dashed arrows indicate functional or deterministic relationships. The rectangle designates

observed data, and circles represent unknown quantities.

Insert Figure 1 about here

We use the following definitions: Let v be a node in the graph, and V be the set of all

nodes. A parent of v is defined as any node with an arrow extending from it and pointing to

v. A descendant of v is defined as any node on a direct path beginning from v. For identifying

parents and descendants, deterministic links should be combined so that, for example, the

parent of Y2 is P. It is assumed in Figure 1 that, for any node v, if we know the value of

its parents, then no other nodes would be informative concerning v except descendants of v.

Lauritzen et al. (1990) indicated that, in a full probability model, the directed acyclic

graph model is equivalent to assuming that the joint distribution of all the random quantities

is fully specified in terms of the conditional distribution of each node given its parents. That

is,

P(V) fl p(viparents[0,
vEV

where PO denotes a probability distribution. This factorization not only allows extremely

complex models to be built up from local components, but also provides an efficient basis

(9)



for the implementation of MCMC methods (Spiegelhalter, Best, et al., 1996).

Gibbs sampling via the BUGS computer program works by iteratively drawing samples

from the full conditional distributions of unobserved nodes in Figure 1 using the adaptive

rejection sampling algorithm (Gilks, 1996; Gilks & Wild, 1992). For any node v, the

remaining nodes are denoted by V v. It follows that the full conditional distribution,

P(v(V v), has the form

P(vIV v) a P(v, V v)

oc P(v Iparent[v]) fl P(w lparents[w]) .

wEchildren[v]

(10)

The proportionality constant, which is a function of the remaining nodes, ensures that the

distribution is a probability function that integrates to unity.

To analyze the memory test data, we begin by specifying the forms of the parent and child

relationships in Figure 1. Under the 2PL model, the probability that examinee i responds

correctly to item j is assumed to follow a logistic function parameterized by the examinee's

latent ability 92, the item discrimination parameter, ozi, and the item difficulty parameter,

For estimation purposes, we use the form ai(Oi 3j) = AjOi + (j, where the slope parameter

Aj = otj and the intercept parameter (j = ajf33. Hence,

1 1

1 + exp [aj fl
(11)

j)] 1 + exp (Ajei +

Since Yij are Bernoulli with parameter Pij, we can define

Bernoulli(Pij) (12)

and
logit(Pij) = AjOi + (j. (13)

To complete the specification of a full probability model for the BUGS computer program,

prior distributions of the nodes without parents (i.e., Oi, Aj, and (j) also need to be specified.

We can define these priors in several different ways. We can impose priors on ).j and (j using

a hierarchical Bayes approach (e.g., Swaminathan & Gifford, 1985; Kim, Cohen, Baker,

Subkoviak, & Leonard, 1994) or, if it is preferred that the priors not be too influential,

uninformative priors could be imposed. Alternatively, it may also be useful to include

external information in the form of fairly informative prior distributions. According to



Spiegelhalter, Best, et al. (1996), it is important to avoid causal use of standard improper

priors in MCMC modeling, since these may result in improper posterior distributions.

Following Spiegelhalter, Thomas, et al. (1996), two prior distributions were chosen for

the memory test analyses: (1) Aj N(0, 1) with Aj > 0 and ci N(0, 1002) and (2)

Aj rs, N(0, 102) with Aj > 0 and (j N(0, 1002). An example input file for BUGS is given

in the Appendix.

Starting Values

The choice of starting values (e.g., con is not generally that critical as the Gibbs sampler

(and most other MCMC algorithms as well) should be run long enough to be sufficiently

updated from its initial states. It is useful, however, to perform a number of runs using

different starting values to verify that the final results are not sensitive to the choice of

starting values (Gelman, 1996). Raftery (1996) indicated that extreme starting values could

lead to a very long burn-in or stabilization process.

In this example, three runs were performed using the memory test data with three sets

of starting values for Aj and (j, j = 1(1)10. The starting values for the item parameters are

given in Table 2. The first run started at values considered plausible in the light of the usual

range of item parameters. The second run and the third represented substantial deviations

in initial values. In particular, the second run was intended to represent a situation in which

there was a possibility that items were highly discriminating, and the third run represented

an opposite assumption. The priors used in the three runs were the same; Aj ,--, N(0, 1) with

> 0 and (j N(0, 1002).

Insert Table 2 about here

Each of the three runs consisted of 10,000 iterations. Results for Ai and (I are presented

in Figure 2. The computer program CODA (Best, Cowles, & Vines, 1997) was used to obtain

these graphs. The top two plots in Figure 2 contain the graphical summaries of the Gibbs

sampler for Al. The top left plot shows the trace of the sampled values of A1 for the three

runs. Results for all three runs show that the A1 generated by the Gibbs sampler quickly

settled down regardless of the starting values. The top right graph shows the kernel density

plot of the three pooled runs of 30,000 values for Al. The variability among the A1 values



generated by the Gibbs sampler seems to be large, possibly due to the small sample size.

The distribution looks like a truncated normal form due to the positive constraints on

Insert Figure 2 about here

The bottom two pfots contain graphical summaries of the Gibbs sampler for (1. The

bottom left plot shows the trace of the sampled values of for all three runs. The

generated by the Gibbs sampler quickly settled down regardless of the starting values. The

bottom right graph shows the kernel density plot of the three pooled runs of 30,000 values

for (1. The variability of the A1 values seems to be large. The sampled values seem to be

concentrated around 2, and the sample values seem to follow a normal distribution.

The results for other item parameter estimates were very similar to those for ) i and (1.

Overall, the starting values appear to not have affected the final results. Useful starting

values for IRT problems can be found from the noniterative minimum logit chi-square

estimation solution (Baker, 1987) or from values based on Jensema (1976) and Urry (1974)

as employed in BILOG. Use of "good" starting values, such as from the above methods,

can avoid the time delay required by a lengthy starting period. Our experience with these

starting values indicates Aj = 1 and (j = 0 will work sufficiently well for applications under

the 2PL. In subsequent analyses, therefore, the values, ) j = 1 and (j = 0, were used as

starting values.

Output Monitoring

A critical issue for MCMC methods including Gibbs sampling is how to determine when one

can safely stop sampling and use the results to estimate characteristics of the distributions

of the parameters of interest. In this regard, the values for the unknown quantities generated

by the Gibbs sampler can be graphically and statistically summarized to check mixing and

convergence. The method proposed by Gelman and Rubin (1992) is one of the most popular

for monitoring Gibbs sampling. [Cowles and Carlin (1996) presented a comparative review

of convergence diagnostics for MCMC algorithms.]

We illustrate here the use of Gelman and Rubin (1992) statistics on three 10,000 iteration

runs. Details of the Gelman and Rubin method are given by Gelman (1996). Each 10,000

iteration run required about 10 minutes on a Pentium 90 megahertz computer. Monitoring

was done using the suite of S-functions called CODA (Best et al., 1997). Figure 3a shows
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the trace lines of the sampled values of Ai and for the two runs. The plots in Figure

3a indicate that the three runs yielded similar values. Gelman-Rubin statistics (i.e., shrink

factors) are plotted in Figure 3b for A1 and For both parameters, the medians were

stabilized after roughly 500 iterations and definitely after about 5,000 iterations.

Insert Figures 3a and 3b about here

For each parameter, the Gelman-Rubin statistics estimate the reduction in the pooled

estimate of variance if the runs were continued indefinitely. The Gelman-Rubin statistics

should be near 1 in order to be reasonably assured that convergence has occurred. The

median for Ai in the example was 1.00 and the 97.5 percentage point was 1.00. The median

for (i was 1.00 and the 97.5 percentage point was 1.00. These values indicated that reasonable

convergence was realized for these parameters.

The Gelman-Rubin statistics can be calculated sequentially as the runs proceed, and

plotted as in Figure 3b. These plots as well as other plots for )j and (j suggest the first

1,000 iterations of each run be discarded and the remaining samples be pooled. We used

5,000 iterations as burn-in and the subsequent 5,000 iterations for estimating.

BUGS and BILOG Parameter Estimates

The posterior mean of the Gibbs sampler was obtained for each parameter. Two different

sets of prior distributions for item parameters were employed in the BUGS runs. The

first set employed an informative prior on Aj N(0, 1) and an uninformative prior on

(j N(0,1002). In addition, a constraint was imposed on the ranges of Aj to allow

only positive values (i.e., Aj > 0). The prior distribution for Aj limits possible values.

Gibbs sampling-informative (GS-I) indicates this informative prior for A. The second set

employed two uninformative prior distributions, Aj N(0, 102) with the constraint Aj > 0

and (j N(0, 1002). This second set of priors is Gibbs sampling-uninformative (GS-U).

For BILOG runs, two procedures were used: MB/EAP (i.e, marginal Bayesian item

parameter estimation with expected a posteriori ability estimation) and MML/ML (i.e,

marginal maximum likelihood item parameter estimation with maximum likelihood ability

estimation). The default prior in BILOG for the estimation of item parameters in the 2PL

is only on the item discrimination parameter as p(log cei) = N(Plog , qog ) = N(0, .52).

Default options of BILOG yield MB/EAP. For MML/ML, no prior distributions were used



(although, technically speaking, the marginalization required the standard normal prior for

ability).

Insert Tables 3 and 4 about here

The information in Table 3 indicates that the four estimation methods yielded somewhat

different item parameter estimates. Differences between estimates from Gibbs sampling with

informative priors and marginal Bayesian were relatively small, indicating the estimates from

the methods were comparable. Both Gibbs sampling with uninformative priors and marginal

maximum likelihood yielded very unstable item parameter estimates.

The ability estimates and the standard errors from the memory test are presented in

Table 4. The maximum likelihood method after MML estimation of item parameters yielded

several unstable estimates. GS-I, GS-U, and MB/EAP yielded relatively similar results.

Recall that normal priors were used in those three Bayes methods of ability estimation.

It is important to note that the posterior interval from Gibbs sampling can be constructed

not from the normal based method using the standard errors but from the sampled values.

Figure 4 shows the trace lines of the 5,000 sampled values of Ai and (1 for the Gibbs sampling-

informative. The kernel density plots can also be found in Figure 4. Since the distribution

of the sampled values of Ai looks like a truncated normal form, it is also of interest to obtain

the posterior interval directly from the sampled values. The 95% posterior intervals of the

GS-I and MB are presented in Table 5. Table 6 presents the ability estimates and the 95%

posterior intervals. It is important to notice that GS-I may yield different ability estimates

for examinees who had the same response pattern (e.g., examinees 1 to 5).

Insert Figure 4 and Tables 5 and 6 about here

Method

Simulation Conditions

Although the example presented above is informative, it does not provide enough information

with regard to comparative characteristics of item and ability parameter estimates of Gibbs

sampling. A standard method for examining such characteristics is based on studies of

parameter recovery employing simulated data (e.g., Hu lin, Lissak, & Drasgow, 1982; Yen,
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1983). Hence, data were simulated under the following conditions; the number of examinees

(N = 50, 100, 200) and the number of items (n = 10,20, 40). Due to the small sample sizes,

informative priors were employed in the two estimation methods. The sample sizes and the

test lengths were selected to emulate a situation in which estimation procedures and priors

might have some impact upon item parameter estimates (e.g., Harwell & Janosky, 1991).

Sample size and test length were completely crossed to yield nine conditions.

For the Gibbs sampling procedure, an informative prior was used: Ai ,-- N(0, 1) with the

constraint Ai > 0 and (i N(0, 1002). For MB estimation via BILOG the default priors

were used with EAP estimation of ability. We denote these two methods as Gibbs sampling

and marginal Bayesian (MB) estimation.

Data Generation

Item response vectors were generated via the computer program GENIRV (Baker, 1982) for

the 2PL model. The generating parameters for item discrimination were distributed with

mean 1.00 and variance .09 (i.e., standard deviation .3), and the underlying item difficulty

parameters were distributed normal with mean 0 and variance 1. Item discrimination and

item difficulty parameters for the 10-, 20-, and 40-item tests are presented in Tables 7,

8, and 9, respectively. Item discrimination and difficulty parameters were not correlated.

The distribution of the underlying ability parameters distribution was normal (0, 1) and,

consequently, matched to the distribution of item difficulty. One hundred replications were

generated for each of the sample size and test length conditions. Nine hundred GENIRV

runs were needed to obtain the data sets for the study.

Insert Tables 7, 8, and 9 about here

Item Parameter Estimation

Each of the generated data sets was analyzed via the computer program BILOG (Mislevy

& Bock, 1990) for MB, and via the computer program BUGS (Spiegelhalter et al., 1997) for

Gibbs sampling. For example, the generated item response data set for the first replication

of sample size 50 and test length 10 was analyzed by two different computer runs, on each

for the MB and Gibbs sampling procedures.



For MB, a lognormal prior on item discrimination with mean 0 and variance .25 [i.e.,

log% N(0, .59] was used. This is the default prior specification in BILOG for estimation

of item parameters in the 2PL model. The ability estimates were obtained by EAP

estimation.

For the Gibbs sampling, an informative prior was used for Ai and an uninformative prior

for The prior distribution for Ai was set to have a normal distribution with mean 0

and variance 1 [i.e., Ai N(0, 1)] with range restricted to yield positive values of Ai (i.e.,

> 0). The prior distribution for ci was N(0, 1002). The prior distribution for Aj can

be seen as a half normal distribution or the singly truncated normal distribution (Johnson,

Kotz, & Balakrishnan, 1994). Since Ai, without the range restriction, was sampled from a

unit normal distribution, then E() = .798 and Var(Ai) = .363 (standard deviation .603).

The prior distribution for however, was similar to the uniform distribution defined on

the entire real line. The priors for MB and Gibbs sampling were 'similar but not exactly the

same.

Metric Transformation

In parameter recovery studies, such as the present one, comparisons between estimates and

the underlying parameters require that the item parameter estimates obtained from different

calibration runs be placed on a common metric with their underlying parameters (Baker &

Al-Karni, 1991; Yen, 1987). Parameter estimation procedures under IRT yield metrics which

are unique up to a linear transformation. To link both sets of estimates and parameters, it

is necessary to determine the slope and intercept of the equating coefficients required for the

transformation.

The estimates of the item parameters for each of the estimation procedures were placed on

the scale of the true parameters before comparisons were made. The test characteristic curve

method by Stocking and Lord (1983) as implemented in the computer program EQUATE

(Baker, 1993) was used.

Evaluation Criteria

The evaluation of accuracy in this study involved three criteria: root mean square error

(RMSE), bias, and correlation between estimates and parameters. The RMSE is the square

root of the average of the squared differences between estimated and true values. For item



discrimination, for example, the RMSE of item j is {(1/R)Er_Ak_ )2111'2, where R is

the total number of replications (i.e, R = 100).

It is also useful to examine the bias, B, between the expected value of the estimates and

the corresponding parameter. The bias of the item, discrimination estimates, for example,

is given as Bcv = goeik) ai, where the expectation is with regard to k = 1(1)R. This

estimate of bias was obtained for both parameters in the model across the 100 replications.

Results

RMSEs for Item Parameters

RMSEs for item parameters of the 10-, 20-, and 40-item tests are reported in Tables 10, 11,

and 12, respectively. As sample size increased, RMSEs for both item parameters decreased.

Insert Tables 10, 11, and 12 about here

The average RMSEs of the 10-, 20-, and 40-item tests are reported in Tables 13, 14, and

15, respectively. The patterns of the RMSE results were consistent across all tables. RMSE

results are also presented graphically in Figures 5, 6, and 7.

Insert Tables 13, 14, and 15, and Figures 5, 6, and 7 about here

In Gibbs sampling, the RMSEs for item discrimination increased as the values of

discrimination parameters increased. For MB, items with ai = .73 and ai = 1.00 yielded

somewhat smaller RMSEs. Overall, MB consistently yielded smaller RMDSs than did Gibbs

sampling. For item difficulty, the two extreme item difficulties /3.; = 1.83 and /3j = 1.83

yielded larger RMSEs for both MB and Gibbs sampling. MB also yielded consistently smaller

RMSEs for item difficulty for all conditions.

Bias Results for Item Parameters

The bias statistics for item discrimination and difficulty, presented in Tables 16, 17, and 18

for the 10-, 20-, and 40-item tests, appear to decrease as sample size increases.

Insert Tables 16, 17, and 18 about here



Tables 19, 20, and 21 summarize the average sizes of bias for different test lengths. Figures

8, 9, and 10 also present the bias results of the respective tests. Bias statistics decreased with

an increase in sample size for item discrimination. When priors of item discriminations were

used, it was expected that positive bias would be observed for the smaller item discrimination

parameters (i.e., ai = .45 or aj = .73) and negative biaS for the larger item discrimination

parameters (i.e., aj = 1.27 and ai = 1.55). This shrinkage effect was observed mainly for

MB and for Gibbs sampling, only for sample size 50.

Insert Tables 19, 20, and 21, and Figures 8, 9, and 10 about here

The bias patterns for item difficulty was somewhat different from the patterns for item

discrimination. Items with negative difficulty parameters had negative bias whereas positive

bias was observed for items with positive difficulty parameters. The same pattern was

observed across the three test lengths. MB consistently yielded better bias results than did

Gibbs sampling. The difference between the two methods decreased as the sample sizes

increased.

Correlation Results for Item Parameters

The average correlations between true and estimated values of both item discrimination and

item difficulty across 100 replications are given in Table 22. As sample sizes increased, the

average correlations increased. Only minor differences occurred between the two estimation

methods: Gibbs sampling yielded better results for item discrimination whereas MB yielded

better results for item difficulty.

Insert Table 22 about here

RMSEs for Ability Parameters

The average RMSEs for ability parameters for 50, 100, and 200 examinees are reported in

Tables 23, 24, and 25, respectively. As test length increased, RMSEs for ability parameters

decreased.

Insert Tables 23, 24, and 25, and Figure 11 about here
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Figure 11 summarizes the results from Tables 23, 24, and 25. When ability parameters

were close to zero, Gibbs sampling yielded smaller RMSEs. For extreme ability parameters,

MB yielded smaller RMSEs. RMSEs decreased around zero, that is, they were smaller

around the mean of item difficulty parameters. RMSEs increased when ability parameters

were not well matched with the mean of the item difficulty parameters.

Bias Results for Ability Parameters

Tables 26, 27, and 28 summarize the average sizes of bias from 50, 100, and 200 examinees.

Figure 12 presents the bias results for the three sample sizes. For all sample sizes, an increase

in test length was associated with a decrease in bias. Recall that both ability estimation

used in Gibbs sampling and MB (i.e., EAP) employed priors for ability. It was expected that

positive bias would be observed for the larger negative ability parameters and negative bias

for the larger positive ability parameters. This shrinkage effect was observed, in fact, for

all conditions. Increasing test length reduced the shrinkage effect. MB consistently yielded

smaller bias across all conditions.

Insert Tables 26, 27, and 28, and Figure 12 about here

Correlation Results for Ability

The average correlations between true and estimated values of ability parameters over 100

replications are given in Table 29. As test lengths increased, average correlations increased.

Differences in correlations were not associated with sample size. Gibbs sampling and MB

yielded the same results.

Insert Table 29 about here

Discussion

Previous work using Gibbs sampling and MCMC methods suggests this method may provide

a useful alternative method for estimation of IRT parameters when small sample sizes and

small numbers of items are used. Even though implementation of the Gibbs sampling method

in IRT is available in several computer programs, the accuracy of the resulting estimates has



not been thoroughly studied. The simulation results of this study indicate that MB via

BILOG yielded better item and ability parameter estimates than Gibbs sampling. This is

consistent with the results reported by Baker (1998).

The main difference between Gibbs sampling and the marginalized methods, MMLE and

MBE, is in the way these methods obtain parameter estimates. Gibbs sampling uses the

sample of parameter values to estimate the mean and variance of the posterior density of the

parameter. Under MML and MB, the marginalized likelihood function and the marginalized

posterior distribution, respectively, are maximized to obtain the marginal modes. Estimates

of the ability parameters do not arise during the cburse of item parameter estimation under

the marginalized methods. Instead, abilit3r parameters are typically estimated after obtaining

the item parameter estimates, under the assumption that the obtained estimates are true

values. In the Gibbs sampling approach, ability parameters can be estimated jointly with

item parameters as in this paper, and the method is similar, in this sense, to JML or JB.

Note that ability can be obtained not jointly but after estimating item parameters in Gibbs

sampling.

The computer programs BUGS (Spiegelhalter et al., 1997) and CODA (Best et al.,

1997) as well as the accompanying manuals are freely available over the Web. The uniform

resource locator (URL) of the Medical Research Council Biostatistics Unit at the University

of Cambridge is:

http://www.rarc-bsu. cam. ac .uk/bugs/

Gibbs sampling and general MCMC methods are likely to be more useful for situations

where complicated models are employed. For eXample, Gibbs sampling could be usefully

applied to the estimation of item and ability parameters in the hierarchical Bayes approach

(Mislevy, 1986; Swaminathan & Gifford, 1982, 1985, 1986). In this study, priors were imposed

directly on the parameters and the priors used for the Gibbs sampling and MB were not

precisely the same. Accuracy of Gibbs sampling with different kinds of priors has not been

investigated. This kind of research may be particularly valuable for small samples and short

tests.

The focus in this paper was estimation of item and ability parameters in terms of RMSE

and bias. In addition to RMSE and bias, future studies may also consider accuracy with

respect to the posterior intervals of the estimates. This is because of the fact that one of

the possible advantages of using Gibbs sampling or other MCMC methods is incorporation



of uncertainly in item parameter estimates into estimation of ability parameters (e.g. Patz

& Junker, 1997).

In this paper, we employed the 2PL model in the example and in the simulation section

without addressing the problem of model selection and criticism. The model criticism for

Gibbs sampling seems to be an important topic to investigate in future research. Also the

evaluation of Gibbs sampling for other models including the three-parameter logistic model,

the partial credit model, and the graded response model may provide guidelines for using

the method under IRT.
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Table 1
Memory Test Data from Thissen (1982)

Item

Examinee 1 2 3 4 5 6 7 8 9 10

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 0 1 1

8 0 0 0 0 0 0 0 0 1 1

9 0 0 0 0 0 0 0 0 1 1

10 0 0 0 0 0 0 0 1 0 1

11 0 0 0 0 0 0 0 1 0 1

12 0 0 0 0 0 1 0 0 0 1

13 0 0 0 0 1 0 0 0 0 1

14 0 0 0 0 1 0 0 0 1 0

15 0 0 1 0 0 0 0 0 0 1

16 0 0 0 0 0 0 0 1 1 1

17 0 0 0 0 0 0 0 1 1 1

18 0 0 0 0 0 0 1 0 1 1

19 0 0 1 0 0 0 0 1 0 1

20 0 0 1 0 0 0 1 0 0 1

21 0 1 0 0 0 1 0 1 0 0

22 1 0 0 0 0 0 0 0 1 1

23 1 0 0 0 0 0 1 0 0 1

24 1 0 0 1 0 0 0 0 1 0

25 0 0 0 0 0 0 1 1 1 1

26 0 0 0 0 0 1 0 1 1 1

27 0 0 0 0 0 1 0 1 1 1

28 0 0 0 0 1 0 1 0 1 1

29 0 0 0 1 0 0 1 0 1 1

30 0 0 0 1 0 0 1 1 0 1

31 0 1 0 0 0 0 0 1 1 1

32 0 1 0 0 0 1 0 0 1 1

33 0 1 0 0 1 0 0 1 1 0

34 0 1 0 0 0 0 1 1 1 1

35 1 0 0 0 0 1 1 1 0 1

36 1 0 0 1 1 0 1 1 0 0

37 1 1 0 0 1 0 0 1 0 1

38 0 1 0 0 0 1 1 1 1 1

39 1 1 0 0 1 1 0 1 0 1

40 0 1 1 1 1 0 0 1 1 1

Table 2
Starting Values for Item Parameters in the

Three Runs of the Gibbs Sampler

Parameter
Run Aj . Ci

First 1 0

Second 10 5

Third .1 5

BEST COPY AVAILABLE
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Table 3

Estimated Item Parameters and Standard Errors (s.e.) of the Memory Test Items

Item

BUGS
BILOG

Gibbs Sampling-Informative Gibbs Sampling-Uninformative Marginal Bayesian Margianal Maximum Likelihood

Ai (s.e.) (j (s.e.) Ai (s.e.) (i (s.e.) (s.e.) <11 (s.e.) Ai (s.e.) Ci (s.e.)

1 .671 (.463) -1.775 (.510) .793 (.615) -1.768 (.522) .869 (.382) -1.760 (.559) 2.344 (1.550) -.525 (.938)

2 1.416 (.662) -1.753 (.617) 27.800(22.320) -16.860(14.660) 1.413 (.793) -1.655 (.737) 6.066(30.895) -5.595(13.719)

3 .521 (.419) -2.484 (.614) .728 (.604) -2.488 (.630) .769 (.323) -2.403 (.659) .255 (1.932) -2.072 (1.730)

4 .700 (.511) -2.264 (.617) .843 (.667) -2.275 (.622) .906 (.409) -2.208 (.635) 1.395 (3.164) -1.619 (.863)

5 .782 (.512) -1.640 (.504) 1.256 (.858) -1.741 (.612) .932 (.398) -1.606 (.534) 1.153 (1.519) -1.979 (.951)

6 .827 (.536) -1.669 (.524) 1.733 (1.124) -1.968 (.799) .933 (.404) -1.606 (.537) .465 (.814) -1.719 (.520)

7 .595 (.421) -1.103 (.405) .598 (.437) -1.058 (.402) .834 (.356) -1.105 (.449) .177 (.849) -1.138 (.525)

8 1.380 (.633) -.163 (.459) 14.520 (1.932) -1.629 (4.836) 1.355 (.690) -.153 (.472) .761 (.985) -.647 (.588)

9 .517 (.367) -.007 (.345) .701 (.480) .006 (.361) .747 (.301) -.004 (.424) 2.168 (1.415) 1.105 (.922)

10 .727 (.477) 1.270 (.436) 1.040 (.647) 1.353 (.494) .914 (.365) 1.270 (.505) .624 (.910) 1.046 (1.049)

Table 4
Ability Estimates and Standard Errors (s.e.) of the Memory Test

Examinee

BUGS BILOG

GS-I GS-U MB/EAP MML/ML

Oi (s.e.) 0, (s.e.) 0, (s.e.) Oi (s.e.)

1 -1.167 (.788) -1.198 (.728) -1.309 (.738) -3.968 (2.549)

2 -1.148 (.793) -1.194 (.718) -1.309 (.738) -3.968 (2.549)

3 -1.148 (.779) -1.189 (.723) -1.309 (.738) -3.968 (2.549)

4 -1.160 (.776) -1.196 (.703) -1.309 (.738) -3.968 (2.549)

5 -1.144 (.780) -1.187 (.722) -1.309 (.738) -3.968 (2.549)

6 -.773 (.751) -.779 (.631) -.840 (.695) -1.873 (1.434)

7 -.509 (.734) -.557 (.577) -.495 (.666) -.348 (.622)

8 -.516 (.737) -.560 (.575) -.495 (.666) -.348 (.622)

9 -.516 (.754) -.566 (.582) -.495 (.666) -.348 (.622)

10 -.129 (.712) .121 (.448) -.234 (.646) -1.029 (.822)

11 -.135 (.709) .114 (.461) -.234 (.646) -1.029 (.822)

12 -.366 (.752) -.331 (.550) -.414 (.659) -1.259 (.948)

13 -.379 (.753) -.432 (.563) -.414 (.659) -.797 (.727)

14 -.489 (.770) -.520 (.598) -.487 (.665) -.152 (.597)

15 -.515 (.772) -.557 (.596) -.485 (.665) -1.476 (1.097)

16 .066 (.702) .203 (.408) .069 (.625) -.070 (.589)

17 .080 (.700) .212 (.405) .069 (.625) -.070 (.589)

18 -.222 (.734) -.399 (.529) -.140 (.640) -.281 (.612)

19 .116 (.714) .200 (.415) .077 (.625) -.872 (.754)

20 -.241 (.737) -.401 (.547) -.131 (.639) -1.289 (.967)

21 .478 (.746) .890 (.396) .329 (.609) .753 (.328)

22 -.195 (.731) -.366 (.525) -.126 (.639) .411 (.491)

23 -.157 (.731) -.398 (.550) -.090 (.636) -.215 (.604)

24 -.195 (.782) -.416 (.560) -.129 (.639) .568 (.412)

25 .330 (.687) .260 (.385) .385 (.607) -.010 (.583)

26 .416 (.706) .358 (.371) .421 (.605) .087 (.572)

27 .419 (.699) .358 (.375) .421 (.605) .087 (.572)

28 .100 (.726) -.176 (.477) .227 (.615) .120 (.568)

29 .066 (.744) -.247 (.495) .217 (.616) .197 (.556)

30 .403 (.700) .269 (.410) .443 (.605) -.285 (.613)

31 .641 (.707) .884 (.377) .595 (.601) .971 (.303)

32 .430 (.701) .556 (.522) .442 (.605) .944 (.301)

33 .659 (.722) .905 (.397) .602 (.601) 1.021 (.313)

34 .853 (.671) .940 (.415) .894 (.597) .988 (.306)

35 .687 (.693) .416 (.380) .766 (.599) .199 (.556)

36 .690 (.750) .368 (.391) .763 (.599) .555 (.420)

37 .982 (.694) 1.024 (.437) .972 (.596) 1.106 (.342)

38 1.189 (.683) 1.175 (.489) 1.223 (.592) 1.033 (.316)

39 1.302 (.716) 1.308 (.524) 1.300 (.592) 1.165 (.372)

40 1.415 (.711) 1.277 (.540) 1.519 (.597) 1.354 (.514)
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Table 5
Estimated Item Parameters and 95% Posterior Intervals of the Memory Test Items

Item

Gibbs Sampli ng-Informative
Marginal Bayesian

(Post. Interval) cj (Post. Interval) (Post. Interval) Ci (Post. Interval)

1 .671 (.035, 1.759) -1.775 (-2.881, -.883) .869 (.120, 1.621) -1.760 (-2.856, -.664)

2 1.416 (.219, 2.803) -1.753 (-3.153, -.733) 1.413 (-.141, 2.974) -1.655 (-3.100, -.210)

3 .521 (.019, 1.551) -2.484 (-3.826, -1.434) .769 (.136, 1.405) -2.403 (-3.695, -1.111)

4 .700 (.033, 1.894) -2.264 (-3.597, -1.186) .906 (.104, 1.711) -2.208 (-3.453, -.963)

5 .782 (.045, 1.936) -1.640 (-2.740, -.752) .932 (.152, 1.716) -1.606 (-2.653, -.559)

6 .827 (.050, 2.086) -1.669 (-2.842, -.757) .933 (.141, 1.728) -1.606 (-2.659, -.553)

7 .595 (.029, 1.613) -1.103 (-1.947, -.371) .834 (.136, 1.535) -1.105 (-1.985, -.225)

8 1.380 (.272, 2.765) -.163 (-1.089, .739) 1.355 (.003, 2.714) -.153 (-1.078, .772)

9 .517 (.027, 1.405) -.007 (-.694, .670) .747 (.157, 1.340) -.004 (-.835, .827)

10 .727 (.045, 1.819) 1.270 (.492, 2.182) .914 (.199, 1.633) 1.270 (.280, 2.260)

Table 6
Ability Estimates and 95% Posterior I ntervals of the Memory Test

Examinee
Gibbs Sampling-Informative MML/Expected A Posteriori

8, Posterior Interval 8, Posterior Interval

1 -1.167 (-2.736, .339) -1.309 (-2.755, .138)

2 -1.148 (-2.788, .334) -1.309 (-2.755, .138)

3 -1.148 (-2.716, .324) -1.309 (-2.755, .138)

4 -1.160 (-2.772, .290) -1.309 (-2.755, .138)

5 -1.144 (-2.732, .324) -1.309 (-2.755, .138)

6 -.773 (-2.366, .610) -.840 (-2.202, .522)

7 -.509 (-2.027, .883) -.495 (71.799, .809)

8 -.516 (-2.037, .859) -.495 (-1.799, .809)

9 -.516 (-2.075, .870) -.495 (-1.799, .809)

10 -.129 (-1.589, 1.216) -.234 (-1.500, 1.033)

11 -.135 (-1.630, 1.141) -.234 (-1.500, 1.033)

12 -.366 (-1.943, 1.003) -.414 (-1.706, .879)

13 -.379 (-1.917, 1.071) -.414 (-1.706, .878)

14 -.489 (-2.081, .975) -.487 (-1.790, .816)

15 -.515 (-2.089, .960) -.485 (-1.788, .818)

16 .066 (-1.420, 1.408) .069 (-1.157, 1.294)

17 .080 (-1.359, 1.440) .069 (-1.157, 1.294)

18 -.222 (-1.716, 1.197) -.140 (-1.394, 1.114)

19 .116 (-1.339, 1.533) .077 (-1.148, 1.302)

20 -.241 (-1.734, 1.167) -.131 (-1.384, 1.122)

21 .478 (-1.084, 1.854) .329 (-.865, 1.524)

22 -.195 (-1.695, 1.187) -.126 (-1.378, 1.126)

23 -.157 (-1.620, 1.277) -.090 (-1.338, 1.157)

24 -.195 (-1.765, 1.309) -.129 (-1.382, 1.124)

25 .330 (-1.093, 1.616) .385 (-.805, 1.574)

26 .416 (-1.034, 1.781) .421 (-.766, 1.607)

27 .419 (-.966, 1.763) .421 (-.766, 1.607)

28 .100 (-1.393, 1.508) .227 (-.979, 1.432)

29 .066 (-1.419, 1.509) .217 (-.990, 1.423)

30 .403 (-.970, 1.800) .443 (-.742, 1.628)

31 .641 (-.747, 2.018) .595 (-.582, 1.772)

32 .430 (-.974, 1.789) .442 (-.743, 1.627)

33 .659 (-.839, 2.045) .602 (-.576, 1.779)

34 .853 (-.486, 2.154) .894 (-.276, 2.064)

35 .687 (-.681, 2.007) .766 (-.407, 1.939)

36 .690 (-.813, 2.139) .763 (-.410, 1.936)

37 .982 (-.379, 2.322) .972 (-.195, 2.139)

38 1.189 (-.138, 2.545) 1.223 (.063, 2.384)

39 1.302 (-.094, 2.722) 1.300 (.140, 2.460)

40 1.415 (.033, 2.826) 1.519 (.349, 2.689)
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Table 7
Item Parameters of the 10 Item Test

Item
Parameter
a 13,

1 .45 .00
2 .73 -.91
3 .73 .91
4 1.00 -1.83
5 1.00 .00
6 1.00 .00
7 1.00 1.83
8 1.27 -.91
9 1.27 .91

10 1.55 .00

Table 8
/tem Parameters of the 20 Item Test

Item
Parameter
ai

1 .45 -.91
2 .45 .91
3 .73 -1.83
4 .73 .00
5 .73 .00
6 .73 1.83
7 1.00 -.91
8 1.00 -.91
9 1.00 .00

10 1.00 .00
11 1.00 .00
12 1.00 .00
13 1.00 .91
14 1.00 .91
15 1.27 -1.83
16 1.27 .00
17 1.27 .00
18 1.27 1.83
19 1.55 -.91
20 1.55 .91

BEST COPY AVAILABLE
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Table 9
Item Parameters of the 40 Item Test

BEST COPY AVAILABLE

Item
Parameter
a 13j

1 .45 -.91
2 .45 .00
3 .45 .00
4 .45 .91
5 .73 -1.83
6 .73 -.91
7 .73 -.91
8 .73 .00
9 .73 .00

10 .73 .91
11 .73 .91

12 .73 1.83
13 1.00 -1.83
14 1.00 -1.83
15 1.00 -.91
16 1.00 -.91
17 1.00 .00
18 1.00 .00
19 1.00 .00
20 1.00 .00
21 1.00 .00
22 1.00 .00
23 1.00 .00
24 1.00 .00
25 1.00 .91
26 1.00 .91
27 1.00 1.83
28 1.00 1.83
29 1.27 -1.83
30 1.27 -.91
31 1.27 -.91
32 1.27 .00
33 1.27 .00
34 1.27 .91
35 1.27 .91
36 1.27 1.83
37 1.55 -.91
38 1.55 .00
39 1.55 .00
40 1.55 .91
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Table 10
Root Mean Square Errors of the 10 Item Test

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

Item ai .13J a1 A i a
.7 Ai aJ i3j cli ri ai r3i

1 .358 .585 .281 .491 .189 .382 .338 .433 .273 .322 .196 .248

2 .357 .573 .305 .418 .231 .298 .242 .404 .219 .294 .177 .239

3 .365 .507 .335 .426 .242 .300 .257 .383 .236 .312 .184 .217

4 .381 .861 .372 .679 .290 .524 .245 .487 .260 .422 .222 .375

5 .412 .271 .342 .198 .242 .141 .257 .273 .226 .200 .181 .144

6 .472 .343 .370 .206 .269 .163 .311 .337 .255 .208 .206 .165

7 .358 .827 .365 .603 .313 .529 .217 .438 .253 .391 .228 .332

8 .400 .428 .396 .276 .313 .218 .311 .384 .310 .264 .261 .207

9 .425 .452 .391 .293 .290 .194 .323 .367 .300 .281 .263 .196

10 .420 .260 .361 .149 .330 .124 .425 .266 .374 .161 .316 .130

Table 11
Root Mean Square Errors of the 20 Item Test

Item

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

ai Oi 1a .7 aj tli aj Oj a i 13, a .1 1

1 .396 .719 .233 .694 .161 .572 .358 .500 .236 .389 .166 .309

2 .344 .856 .260 .578 .170 .592 .320 .521 .255 .377 .175 .341

3 .377 .842 .299 .727 .186 .531 .281 .499 .220 .387 .141 .313

4 .389 .480 .341 .381 .202 .197 .269 .379 .254 .302 .164 .189

5 .369 .436 .314 .277 .219 .205 .247 .371 .234 .260 .180 .197

6 .429 1.016 .280 .831 .205 .697 .301 .529 .202 .405 .155 .396

7 .380 .460 .341 .331 .208 .235 .243 .376 .244 .286 .162 .220

8 .378 .388 .333 .326 .246 .239 .248 .356 .242 .291 .199 .209

9 .314 .330 .282 .214 .243 .169 .200 .324 .206 .212 .202 .172

10 .391 .327 .323 .234 .223 .139 .257 .327 .231 .232 .181 .143

11 .381 .308 .345 .234 .237 .163 .270 .305 .243 .233 .195 .167

12 .446 .348 .365 .254 .228 .152 .316 .343 .265 .254 .182 .157

13 .406 .483 .329 .274 .231 .240 .278 .418 .232 .228 .184 .219

14 .425 .716 .292 .354 .215 .226 .269 .432 .206 .299 .170 .213

15 .443 1.034 .432 .744 .292 .360 .336 .672 .353 .533 .258 .336

16 .438 .264 .344 .168 .240 .127 .327 .278 .273 .181 .197 .134

17 .409 .255 .311 .192 .275 .127 .325 .270 .265 .204 .237 .133

18 .403 .819 .394 .645 .274 .406 .312 .588 .314 .456 .237 .375

19 .426 .335 .442 .279 .340 .178 .436 .360 .408 .283 .314 .192

20 .382 .315 .368 .223 .361 .207 .374 .327 .337 .224 .333 .216
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Table 12
Root Mean Square Errors of the 40 Item Test

Item

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

a cki

1 .351 .800 .253 .665 .158 .427 .327 .535 .250 .398 .150 .288

2 .362 .642 .258 .461 .183 .325 .335 .489 .256 .339 .185 .264

3 .369 .648 .221 .494 .151 .294 .341 .462 .229 .366 .154 .240

4 .311 .838 .206 .646 .152 .511 .306 .564 .209 .400 .150 .352

5 .380 .956 .311 .903 .213 .598 .269 .530 .231 .459 .170 .369

6 .337 .556 .287 .425 .205 .283 .240 .399 .214 .300 .167 .242

7 .344 .639 .283 .659 .193 .321 .237 .487 . 212 .393 .158 .269

8 .357 .531 .219 .303 .191 .240 .253 .436 .160 .287 .155 .231

9 .338 .429 .306 .308 .199 .203 .231 .386 . 233 .285 .161 .195

10 .364 .572 .266 .566 .176 .280 .260 .422 .193 .355 .143 .237

11 .383 .588 .240 .573 .185 .358 .276 .471 .172 .320 .146 .275

12 .329 .980 .296 .824 .239 .628 .232 .536 .218 .465 .189 .388

13 .415 .717 .322 .685 .279 .446 .285 .465 .242 .464 .232 .361

14 .398 1.060 .307 .649 .253 .424 .253 .574 . 221 .441 .203 .341

15 .413 .495 .316 .351 .229 .210 .281 .381 .231 .295 .182 .187

16 .426 .557 .304 .489 .259 .299 .298 .443 .226 .370 .215 .243

17 .382 .326 .311 .204 .184 .156 .251 .331 . 218 .206 .154 .159

18 .356 .324 .292 .255 .212 .151 .229 .308 .228 .259 .178 .154

19 .397 .324 .259 .234 .215 .168 .291 .320 .195 .240 .176 .173

20 .401 .346 .326 .251 .200 .158 .254 .356 .254 .251 .169 .162

21 .370 .331 .293 .210 .233 .133 .251 .329 . 217 .218 .187 .138

22 .365 .318 .317 .238 .191 .165 .242 .326 .243 .244 .155 .170

23 .363 .368 .267 .305 .199 .168 .250 .348 .207 .266 .172 .170

24 .372 .436 .318 .219 .233 .135 .242 .381 .241 .225 .190 .139

25 .412 .610 .364 .305 .233 .253 .288 .410 .274 .278 .187 .232

26 .343 .550 .304 .351 .207 .244 .229 .391 .225 .304 .173 .226

27 .429 .780 .337 .645 .242 .428 .299 .519 .243 .428 .195 .322

28 .402 .838 .291 .626 .218 .397 .268 .515 .208 .457 .173 .321

29 .433 1.056 .427 .691 .310 .506 .330 .719 .356 .521 .268 .430

30 .427 .362 .324 .231 .217 .158 .340 .336 .263 .231 .194 .166

31 .402 .414 .311 .269 .276 .172 .306 .382 .252 .269 .241 .173

32 .419 .342 .277 .210 .213 .143 .325 .343 .229 .226 .191 .150

33 .435 .262 .328 .186 .210 .138 .318 .278 . 264 .198 .183 .146

34 .370 .398 .313 .257 .268 .175 .298 .384 .258 .271 .235 .177

35 .419 .371 .373 .320 .247 .179 .311 .375 .301 .285 .238 .190

36 .402 .787 .376 .609 .277 .313 .308 .627 .315 .492 .245 .302

37 .414 .366 .374 .230 .314 .157 .381 .391 .373 .252 .299 .168

38 .417 .234 .310 .162 .276 .114 .386 .258 .316 .175 .257 .119

39 .398 .234 .341 .150 .266 .111 .378 .254 .335 .160 .254 .118

40 .405 .293 .331 .218 .278 .154 .381 .318 .302 .240 .259 .181
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Table 13
Average Root Mean Square Errors of the 10 Item Test

Gibbs Sampling Marginal Bayest an

Parameter N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

ai = .45 .358 .281 .189 .338 .273 .196

.73 .361 .320 .237 .250 .228 .181

1.00 .406 .362 .279 .258 .249 .209

1.27 .413 .394 .302 .317 .305 .262

1.55 .420 .361 .330 .425 .374 .316

f3i r--- -1.83 .861 .679 .524 .487 .422 .375

-.91 .501 .347 .258 .394 .279 .223

.00 .365 .261 .203 .327 .223 .172

.91 .480 .360 .247 .375 .297 .207

1.83 .827 .603 .529 .438 .391 .332

Table 14
Average Root Mean Square Errors of the 20 Item Test

Gibbs Sampling Marginal Bayesian

Parameter N = 50 N = 100 N = 200 N = 50 N =100 N = 200

ai = .45 .370 .247 .166 .339 .246 .171

.73 .391 .309 .203 .275 .228 .160

1.00 .390 .326 .229 .260 .234 .184

1.27 .423 .370 .270 .325 .301 .232

1.55 .404 .405 .351 .405 .373 .324

)3i = -1.83 .938 .736 .446 .586 .460 .325

-.91 .476 .408 .306 .398 .312 .233

.00 .344 .244 .160 .325 .235 .162

.91 .593 .357 .316 .425 .282 .247

1.83 .918 .738 .552 .559 .431 .386

Table 15
Average Root Mean Square Errors of the 40 Item Test

Gibbs Sampling Marginal Bayesian

Parameter N = 50 N = 100 N = 200 N = 50 N =100 N = 200
Q., = .45 .348 .235 .161 .327 .236 .160

.73 .354 .276 .200 .250 .204 .161

1.00 .390 .308 .224 .263 .230 .184

1.27 .413 .341 .252 .317 .280 .224

1.55 .409 .339 .284 .382 .332 .267

/32 = -1.83 .947 .732 .494 .572 .471 .375

-.91 .524 .415 .253 .419 .314 .217

.00 .381 .262 .175 .350 .247 .171

.91 .515 .405 .269 .417 .307 .234

1.83 .846 .676 .442 .549 .461 .333
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Table 16
Bias Results of the 10 Item Test

Item

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

#' o a 0j a 13; a 0j

1 .200 -.045 .107 -.026 .059 .005 .285 -.034 .214 -.024 .183 -.008
2 .135 -.029 .071 -.008 .065 .022 .136 .068 .091 .073 .075 .061

3 .105 .048 .094 .054 .055 .050 .124 -.059 .106 -.027 .070 -.003

4 .054 -.255 .046 -.212 .018 -.154 .001 -.143 .006 -.155 -.003 -.126

5 .148 .000 .105 .019 .080 .011 .044 -.002 .020 .015 .023 .010

6 .187 .019 .080 -.016 .048 -.009 .076 .012 .002 -.020 -.007 -.008

7 .073 .220 .103 .098 .091 .058 .005 .144 .041 .087 .045 .060

8 .039 -.083 .063 -.028 .021 -.036 -.106 -.136 -.079 -.096 -.074 -.084
9 -.005 .100 .075 .029 -.026 .050 -.136 .127 -.064 .092 -.110 .096

10 -.108 .026 -.033 .009 .010 -.018 -.290 .023 -.213 .010 -.116 -.021

Table 17
Bias Results of the 20 Item Test

Item

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

al 0j a 1 13; aj a 0j ai a .7* 0j

1 .235 .048 .083 -.102 .034 -.136 .302 .237 .189 .164 .127 .101

2 .176 .015 .095 .087 .040 .094 .266 -.218 .198 -.154 .132 -.134

3 .134 -.144 .049 -.181 -.005 -.124 .153 .074 .086 .039 .033 .019

4 .162 .017 .103 -.008 .044 -.010 .154 .002 .106 -.013 .055 -.010
.132 .041 .100 .031 .057 .016 .133 .029 .105 .023 .066 .012

6 .128 .125 .054 .166 .012 .148 .149 -.182 .087 -.072 .046 -.015
7 .102 -.015 .126 .011 .063 -.016 .018 -.020 .048 -.017 .016 -.045
8 .107 -.029 .043 -.033 .030 .019 .025 -.048 -.011 -.047 -.010 .002

9 .052 .014 .043 .027 .051 .014 -.019 .011 -.020 .027 .008 .014

10 .132 .059 .090 -.022 .047 -.011 .038 .058 .021 -.023 .003 -.011
11 .095 .009 .101 .005 .046 .034 .012 .003 .025 .004 .002 .036

12 .100 .044 .059 .012 .056 -.021 .022 .043 -.004 .011 .008 -.021
13 .109 .055 .098 .024 .050 -.012 .029 .057 .026 .051 .008 .011

14 .081 .189 .034 .114 .042 .013 .009 .119 -.021 .126 -.001 .037

15 -.033 -.451 .043 -.232 .007 -.087 -.121 -.371 -.044 -.247 -.058 -.149
16 .108 .023 .105 .002 .079 .001 -.051 .024 -.032 .001 -.007 .002

17 .024 -.007 .034 .005 .060 -.012 -.114 -.004 -.086 .006 -.027 -.012
18 -.024 .240 .002 .135 -.004 .117 -.126 .235 -.089 .167 -.070 .177

19 -.100 -.099 .033 -.040 .027 -.019 -.264 -.180 -.117 -.111 -.081 -.072
20 -.026 .047 .025 -.026 .037 .021 -.215 .132 -.137 .047 -.070 .073
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Table 18
Bias Results of the 40 Item Test

Item

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200
cei Cc j Oj

1 .195 .028 .096 -.107 .009 -.103 .275 .230 .194 .153 .103 .114

2 .190 .054 .107 .005 .060 -.006 .276 .041 .200 .010 .137 .000

3 .133 .114 .098 .030 .030 .012 .274 .079 .189 .011 .115 .003

4 .168 -.098 .053 .063 .014 .041 .262 -.281 .165 -.196 .107 -.173

5 .161 -.146 .047 -.229 .022 -.126 .163 .065 .091 .044 .053 .016

6 .124 -.037 .085 -.028 .046 -.007 .131 .057 .094 .034 .058 .025

7 .082 -.016 .081 -.058 .055 -.008 .105 .090 .094 .040 .061 .019

8 .085 .103 .038 .046 .040 .022 .107 .099 .056 .051 .047 .021

9 .138 -.034 .115 -.027 .047 -.023 .133 -.028 .113 -.031 .053 -.020

10 .139 -.062 .048 .038 .020 .000 .137 -.143 .071 -.057 .037 -.034

11 .160 .001 .032 .154 .038 .053 .155 -.075 .058 .047 .051 .010

12 .104 .179 .065 .141 .041 .076 .125 -.071 .096 -.082 .065 -.058

13 .122 -.132 .057 -.167 .027 -.105 .050 -.091 .020 -.138 .005 -.107

14 .084 -.266 .047 -.118 .047 -.032 .025 -.142 .009 -.093 .018 -.046

15 .106 -.069 .101 -.013 .074 .020 .030 -.057 .032 -.036 .031 -.003

16 .133 -.097 .047 -.087 .023 -.033 .053 -.088 -.005 -.088 -.010 -.042

17 .121 .021 .109 -,002 .038 -.001 .029 .025 .032 -.006 -.003 -.002

18 .095 -.030 .042 -.012 .022 -.024 .015 -.027 -.014 -.018 -.021 -.023

19 .082 -.013 .063 .016 .051 .000 .010 -.001 .001 .017 .008 .000

20 .157 -.055 .049 -.002 .017 -.014 .048 -.056 -.010 -.001 -.021 -.013

21 .089 .011 .065 -.019 .066 -.007 .011 .008 .001 -.019 .014 -.008

22 .095 .024 .097 .003 .045 -.005 .006 .024 .025 .002 -.001 -.006

23 .004 -.002 .006 -.049 -.004 -.017 -.043 -.004 -.038 -.043 -.040 -.017

24 .085 .001 .075 .009 .049 -.005 .009 -.003 .012 .007 .004 -.006

25 .093 .107 .117 .012 .070 .015 .023 .095 .048 .038 .025 .039

26 -.035 .177 .041 .061 .009 .061 -.068 .125 -.010 .073 -.024 .081

27 .139 .140 .086 .064 .016 .100 .072 .083 .040 .041 -.004 .097

28 .102 .170 .032 .144 .053 .004 .040 .093 -.006 .125 .024 .025

29 -.065 -.438 -.066 -.273 -.003 -.123 -.146 -.367 -.118 -.261 -.059 -.162

30 .093 -.037 .076 .012 .031 .007 -.053 -.097 -.037 -.048 -.046 -.038

31 .051 -.055 .053 .006 .065 .030 -.085 -.104 -.062 -.054 -.012 -.014

32 .029 .013 .059 -.007 .038 .005 -.110 .013 -.061 -.008 -.037 .006

33 .119 .035 .084 .021 .043 .000 -.041 .040 -.035 .021 -.039 .000

34 .000 .101 .063 .032 .048 -.017 -.124 .154 -.063 .102 -.028 .026

35 .090 .030 .040 .023 .010 .017 -.073 .100 -.066 .067 -.058 .061

36 -.005 .310 .017 .181 .011 .060 -.101 .315 -.062 .223 -.047 .118

37 -.009 -.093 .007 -.021 .008 -.010 -.198 -.180 -.130 -.095 -.090 -.059

38 .037 -.022 -.013 .012 .042 .011 -.173 -.022 -.172 .012 -.062 .012

39 .000 -.015 -.014 .003 .048 .004 -.202 -.015 -.159 .004 -.060 .004

40 .026 .015 .063 .001 .031 .048 -.168 .107 -.096 .078 -.069 .100
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Table 19
Average Bias Results of the 10 Item Test

Gibbs Sampling Marginal Bayesian

Parameter N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

ai = .45 .200 .107 .059 .285 .214 .153

.73 .120 .083 .060 .130 .099 .073

1.00 .116 .084 .059 .032 .017 .015

1.27 .017 .069 -.003 -.121 -.072 -.092

1.55 -.108 -.033 .010 -.290 -.213 -.116

= -1.83 -.255 -.212 -.154 -.143 -.155 -.126

-.91 -.056 -.018 -.007 -.034 -.012 -.012

.00 -.000 -.004 -.003 -.000 -.005 -.007

.91 .074 .042 .050 .034 .033 .047

1.83 .220 .098 .058 .144 .087 .060

Table 20
Average Bias Results of the 20 Item Test

Gibbs Sampling Marginal Bayesian

Paarame.t4er N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

.206 .089 .037 .284 .194 .130

.73 .139 .077 .027 .147 .096 .050

1.00 .097 .074 .048 .017 .008 .004

1.27 .019 .046 .036 -.103 -.063 -.041
1.55 -.063 .029 .032 -.240 -.127 -.076

= -1.83 -.298 -.207 -.106 -.149 -.104 -.065
-.91 -.024 -.041 -.038 -.003 -.003 -.004

.00 .025 .007 .001 .021 .005 .001

.91 .077 .050 .029 .023 .018 -.003
1.83 .183 .151 .133 .027 .048 .081

Table 21
Average Bias Results of the 40 Item Test

Gibbs Sampling Marginal Bayesian

Parameter N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

ai = .45 .184 .089 .028 .272 .187 .116

.73 .124 .064 .039 .132 .084 .053

1.00 .092 .065 .038 .019 .009 .000

1.27 .039 .041 .030 -.092 -.063 -.041
1.55 .014 .011 .032 -.185 -.139 -.070

= -1.83 -.246 -.197 -.097 -.134 -.112 -.075
-.91 -.047 -.037 -.013 -.019 -.012 .000

.00 .013 .002 -.003 .011 .001 -.003

.91 .034 .048 .027 .010 .019 .014

1.83 .200 .133 .060 .105 .077 .046

Table 22
Average Correlations Between Item Parameters and Estimates over 100 Replications

Gibbs Sampling Marginal Bayesian

N = 50 N = 100 N = 200 N = 50 N = 100 N = 200

Test roe, rot) roe, ro4 rad raa rod rfit4 rcka rim ra6 roes

10-Item .503 .920 .624 .950 .737 .968 .499 .948 .615 .969 .738 .980

20-item .521 .899 .658 .937 .788 .961 .520 .930 .653 .960 .782 .975

40-item .561 .892 .686 .927 .801 .963 .554 .927 .679 .955 .797 .974
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Table 23
Average Root Mean Square Errors of Ability for 50 Examinees

0

Gibbs Sampling Marginal Bayesian
n = 10 n = 20 n = 40 n = 10 n = 20 n = 40

-2.5 1.284 .962 .679 1.059 .745 .500
-2.0 .974 .730 .550 .812 .582 .433
-1.5 .726 .572 .434 .646 .508 .386
-1.0 .597 .469 .368 .586 .470 .381

-.5 .509 .437 .321 .559 .480 .355
.0 .507 .420 .309 .585 .478 .354
.5 .521 .441 .322 .579 .479 .353

1.0 .574 .493 .370 .566 .494 .371
1.5 .729 .529 .429 .635 .466 .366
2.0 .863 .691 .555 .697 .544 .437
2.5 1.248 .961 .696 1.022 .740 .519

Table 24
Average Root Mean Square Errors of Ability for 100 Examinees

Gibbs Sampling Marginal Bayesian
0 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40

-2.5 1.265 .928 .651 1.086 .773 .523
-2.0 .963 .691 .543 .840 .590 .456
-1.5 .732 .558 .434 .664 .509 .404
-1.0 .589 .470 .366 .584 .475 .371
-.5 .509 .418 .319 .551 .448 .338

.0 .481 .408 .307 .536 .452 .338

.5 .524 .406 .327 .563 .434 .349
1.0 .588 .463 .372 .581 .463 .375
1.5 .737 .560 .428 .676 .511 .394
2.0 .950 .717 .467 .823 .616 .392
2.5 1.247 .937 , .631 1.075 .776 .505

Table 25
Average Root Mean Square Errors of Ability for 200 Examinees

Gibbs Sampling Marginal Bayesian
0 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40

-2.5 1.218 .885 .630 1.112 .795 .556
-2.0 .936 .669 .490 .859 .608 .444
-1.5 .703 .532 .407 .662 .508 .388
-1.0 .571 .451 .343 .570 .454 .343
-.5 .514 .419 .326 .540 .437 .339

.0 .502 .412 .317 .536 .440 .336

.5 .503 .421 .315 .529 .438 .328
1.0 .563 .465 .342 .560 .467 .345
1.5 .701 .542 .406 .663 .516 .386
2.0 .898 .647 .479 .824 .581 .434
2.5 1.192 .871 .604 1.091 .776 .527
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Table 26
Average Bias Results of Ability for 50 Examinees

0
Gibbs Sampling Marginal Bayesian

n = 10 n = 20 n = 40 n = 10 n = 20 n = 40
-2.5 1.233 .892 .597 .987 .633 .353

-2.0 .913 .609 .428 .713 .393 .220

-1.5 .591 .392 .257 .427 .219 .086

-1.0 .390 .230 .129 .273 .112 .005

-.5 .182 .104 .059 .127 .039 -.006
.0 -.012 -.012 -.004 -.014 -.012 -.001
.5 -.147 -.135 -.068 -.090 -.077 .001

1.0 -.354 -.246 -.166 -.244 -.128 -.042
1.5 -.600 -.355 -.287 -.431 -.178 -.111
2.0 -.763 -.595 -.424 -.535 -.375 -.206
2.5 -1.191 -.890 -.589 -.942 -.625 -.334

Table 27
Average Bias Results of Ability for 100 Examinees

Gibbs Sampling Marginal Bayesian
0 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40

-2.5 1.214 .844 .560 1.019 .657 .393
-2.0 .882 .565 .399 .722 .409 .254
-1.5 .595 .381 .231 .469 .257 .111

-1.0 .360 .211 .126 .274 .124 .040
-.5 .140 .090 .078 .092 .042 .036

.0 -.017 .000 -.008 -.019 -.000 -.009

.5 -.186 -.100 -.063 -.143 -.054 -.020
1.0 -.365 -.232 -..136 -.278 -.145 -.054
1.5 -.584 -.383 -.229 -.459 -.257 -.111
2.0 -.869 -.581 -.317 -.708 -.425 -.170
2.5 -1.194 -.869 -.531 -1.000 -.687 -.364

Table 28
Average Bias Results of Ability for 200 Examinees

Gibbs Sampling Marginal Bayesian
0 n = 10 n = 20 n = 40 n = 10 n = 20 n = 40

-2.5 1.162 .812 .530 1.048 .703 .435
-2.0 .841 .537 .334 .743 .443 .249
-1.5 .551 .329 .201 .474 .254 .130
-1.0 .313 .190 .126 .258 .138 .076
-.5 .140 .092 .051 .110 .064 .025

.0 .009 -.010 -.000 .010 -.010 .000

.5 -.140 -.104 -.054 -.112 -.075 -.027
1.0 -.330 -.210 -.106 -.277 -.157 -.054
1.5 -.545 -.346 -.209 -.469 -.269 -.138
2.0 -.802 -.526 -.308 -.703 -.431 -.221
2.5 -1.138 -.796 -.521 -1.026 -.684 -.423

Table 29
Average Correlations Teo Between Ability Parameters and Estimates over 100 Replications

Gibbs Sampling Marginal Bayesian
Examinee n = 10 n = 20 n = 40 n = 10 n = 20 n = 40

50 .796 .875 .932 .802 .879 .933
100 .798 .880 .932 .802 .882 .933
200 .801 .880 .934 .803 .881 .935
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Figure Captions

Figure I. A Directed Acyclic Graph for Memory Test Data.

Figure 2. Convergence with Starting Values for Memory Test Item 1.

Figure 3a. Traces Plus Gelman and Rubin Shrink Factors for Memory Test Item 1.

Figure 3b. Gelman and Rubin Shrink Factors for Memory Test Item 1.

Figure 4. Trace Lines of the Sampled Values and Kernel Density Plots for Memory Test

Item 1.

Figure 5. Root Mean Square Error Plots for the 10-Item Test.

Figure 6. Root Mean Square Error Plots for the 20-1tem Test.

Figure 7. Root Mean Square Error Plots for the 40-Item Test.

Figure 8. Bias Plots for the 10-Item Test.

Figure 9. Bias Plots for the 20-Item Test.

Figure 10. Bias Plots for the 40-Item Test.

Figure II. Root Mean Square Error Plots for Ability.

Figure 12. Bias Plots for Ability.
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Appendix

model memory;

const

I = 40,

J = 10;

var
theta[I], larnbda[J], zeta[J], b[.3];

data in "memory.dat";

inits in "memory.in";

for (i in 1:I) {

for (j in 1:J) {
logit (p [i , j] ) <- lambda [j] *theta [i] + zeta [j] ;

y[i,j] dbern(p[i,j]);

theta[i] dnorm(0,1);

for (j in 1:J) {

lambda[j] dnorm(0,1) I(0,);

zeta[j] dnorm(0,0.0001);

b[j] <- zeta[j]/lambda[j]
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