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Abstract

In this paper a two-level regression model is imposed on the ability parameters in an

IRT model. The advantage of using latent rather than observed scores as dependent variables

of a multi-level model is that this offers the possibility of separating the influence of item

difficulty and ability level and modeling response variation and measurement error. Another

advantage is that, contrary to observed scores, latent scores are test-independent, which offers

the possibility of entering results from different tests in one analysis. Further, it will be shown

that also problems of measurement error in covariates in multilevel models can be solved in the

framework of IRT-multilevel modeling. In this paper, the two-parameter normal ogive model

will be used for the IRT measurement model. It will be shown that the parameters of the two-

parameter normal ogive model and the multilevel model can be simultaneously estimated in

a Bayesian fraMework using Gibbs sampling. Various examples using simulated data will be

given.

Key words: Bayes estimates, Gibbs sampler, item response theory, Markov chain

Monte Carlo, multi-level model, two-parameter normal ogive model.
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Multi-level IRT 3

Introduction

In educational and social research, there is a growing interest in the problems

associated with describing the relations between variables of different aggregation level. In

school effectiveness research, one may, for instance, be interested in the effects of the school

budget on the educational achievement of the students. However, the former variable is defined

on the school level while the latter variable is defined on the level of students. This gives

rise to problems of properly modeling dependencies between variables. These problems can

be coped with by multilevel models (Bryk & Raudenbush, 1992; De Leeuw & Kreft, 1986;

Goldstein, 1987; Longford, 1993; Raudenbush, 1988). In the above example, students are

nested in schools, and in a multilevel model the students would make up a first level and

the schools a secondary level. Although most applications of the multi-level paradigm are

found in regression and analysis of variance models (see, for instance Bryk & Raudenbush,

1992), multi-level modeling does, in principle, apply to all statistical modeling of data where

elementary units are nested within aggregates. Longford (1993), for instance, gives examples

of multi-level factor analytical models and generalized linear models. Also in the field of item

response theory some applications of the multi-level paradigm can be found (see, Adams et al.,

1997; Mislevy & Bock, 1989) .

In the present paper, the following problem related to multilevel modeling is studied.

In educational research, many variables are measured subject to error. This does predominately

concern the dependent variables, but also covariates on the student and school level can be

subject to measurement error. In practice, the multilevel models used belong to the framework

of the usual linear multivariate normal model and solutions to the problem of measurement

error boil down to applications of classical test theory (see, Longford, 1993, 1998). One of the

drawbacks of classical test theory is that measurement error is supposed to be independent

of the score level of the testee. In modern test theory, i.e. item response theory (IRT),

measurement error is defined conditionally on the value of the latent ability variable. Therefore,

it seems worthwhile to tackle the problem of measurement error in multilevel models in the

framework of hierarchical IRT models.

This paper consists of six sections. After the introduction section, a general multi-

level-IRT model will be presented. In the next section, a Markov chain Monte Carlo (MCMC)

estimation procedure will be described. Then, the model will be generalized further to allow for

measurement errors on the predictor variables and the estimation procedure will be generalized

to allow for this kind of measurement error. In Section 5, examples of the procedure will be

given. And finally, the last section contains a discussion and suggestions for further research.
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Multi-level IRT 4

Multi-level IRT models

One-way random effects IRT ANOVA

Consider a population of units, say schools, from which a sample of units indexed

j = 1, . . . J is drawn. Individuals, say students indexed i = 1, ... ni, are nested within units.

In this framework, Bryk & Raudenbush (1992) consider a two-level one-way random effects

ANOVA model. For the first level, the model is given by

the second level is given by

=13j + eii, with eij N (0, a2), (1)

0; =-- + ui, with u; N(0, 72). (2)

So the model entails that the level one unit means are sampled from a normal distribution with

mean and variance 72. Persons within a unit are independent and the disturbances of the

regression coefficients in different schools are uncorrelated. This model can be generalized to

an IRT-framework by imposing the linear structure on unobserved latent variables 0.,j rather

than on observed variables Yij. The assumption is introduced that unidimensional ability

paranieters 8i, are independent and normally distributed given 03. So let Oij I N (/3.,a2).

Further, /3i N(-y,T2). Combining these two assumptions results in

Olj /3 o a2 o o o

02j 0 o a2 0 0

Onjj Oj o o 0-2 0

(3)

13j _ _ 0 0 0 T2

Without conditioning on group membership the ability parameters of the respondents are

dependent. To see this, consider the transformation

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1
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Then it follows that
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- 0.2 + 72 r2 2 2T

72 2 . T2 2 2

T2 0.2 + T2 T2T2
2 72T2 T2

(5)

So over groups, the ability parameters of the respondents are dependent. The ability parameters

are iinked to observed dichotomous responses yijk, k = 1, . . . , K . Let yij be the response

pattern of person i in group j, and let Y be the data matrix. One of the major estimation

procedures in IRT is marginal maximum likelihood (MML, Bock & Aitkin, 1981; Mislevy,

1986). The impact of the above dependency structure on an MML estimation procedure can

be assessed by inspection of a likelihood function marginalized over all random effects. This

likelihood function can be written as

L(7,0 ,T; ) = nf j,,/llgyi I
ij)g(Gi I Op 0-2 )43 I 7 . . ,d0d13i

= HI rif,,,,,,,,,,,, ,,,a2)aii ,,,,,,,,[ , (6)

where p(yij I Oi,) is the IRT model specifying the probability of observing response pattern

yij as a function of Oki, g(8j
I

2) is the density of Oij and h(0 I 7, T) is the density of

0j. It can be seen that the dependency structure results in nesting of integrations that might

complicate an MML estimation procedure. Therefore, below an alternative approach will be

studied. But first the model will be generalized further.

A Multi-level IRT model

Bryk & Raudenbush (1992) present the above one-way random effects ANOVA model

as a special case of a general model given by

Yi. = 130j + .. 130Xgjj + + 13QiXch:j + eii, with eii N(0, (3-2), and

= 7 qO + + 7 qsW sqj + + 7 qsW5'qj Uq , for q = 0, , Q.

(7)

(8)

Let uj be a vector with elements uo, q = 0, , Q, which has a normal distribution

with mean zero and covariance matrix equal to T, that is, uj N(0, T). In (7), X qij and

7



Multi-level IRT 6

qj are level one predictor variables and regression coefficients, respectively. The latter are

assumed to be random variables modeled by (8), where Wsqj and 7qs are level two predictor

variables and regression coefficients, respectively.

In an IRT context this model translates to a structural model defined by

8ij = 00, + . + Oq + + 1Jc2iX(2i, + eii, with eii N(0, cr2), (9)

with the distribution of 00, q = 0, , Q as defined in (8).

Below, it will prove convenient to write the model in matrix notation. Let Xi represent

the matrix with explanatory variables for the ni pupils on school j, j = 1, . . . J, that is,

Xi = (X13, , Xfi.ii)t and X = (Xoo, XQii)t . Consider the block diagonal matrix

X with (ni x (Q + 1)) blocks Xi. This matrix can be written as {Xi} 0 I j, where 0 signifies

the direct product. So X is an (n1 + + n j = N) x (J (Q + 1)) block diagonal matrix, with

the X1, , X J as the diagonal blocks. Further, 03 = (01;,.. . ,0ii)t, the ability parameters of

the pupils of school j, and ei can be stacked as 0 = {0;} 01N and e = {ei} 01N, where 1.N is

a column vector in Ile with 1 in every component. In the same way, f3i = , f3Qi) are

the regression coefficients for the level one model for the ability parameters of the pupils of

school j, and the J (Q + 1)-vectors 3 can be defined as 13 = {t3i } 0 ij. Then (9) can be

written as

0=X13+e, (10)

with E (e) = 0, and E (eet) = c12IN.

The matrices Wq, = (Wo, . . , Wso)t contain the explanatoiy variables for the

regression coefficient 130. Define W, = {Wq,} 0 Ig±i and W is the (J (Q + 1)) x
((Q + 1) (S + 1)) matrix W = {W,} 0 1j. Further, define u = {u;} 0 1j and F =
{-yq } 0 1(2+1, with u, = (u03, , uch)t and ryq = (70, -Yqs)t, respectively. Then (8)

can be written as

0 = wr + u, (11)

with E (u) = 0, E (uut) = I j 0 T = Y. Y is a block diagonal matrix with J blocks T.

In the above formulation the coefficients of all the predictors in the level 1 model are

treated as random, that is, as varying across level 2 units. In certain applications, it can be

BEST COPY AVAILABLE



Multi-level IRT 7

desirable to constrain the effects of one or more of the level 1 predictors to be identical across

level 2 units. This is accomplished by reformulating the hierarchical model as a mixed model

(Raudenbush, 1988). However, the issues and procedures discussed below also apply to mixed

model settings.

Up to this point, the ability parameter 0 is unspecified and unknown. In the next

section, an IRT model and an estimation will be introduced.

A MCMC estimation procedure for a multilevel IRT model

Recently, Albert (1992) derived a procedure for simulating sampling from the

posterior distribution of the item and person parameters of the two-parameter normal ogive

model using the Gibbs sampler (Gelfand et al., 1990; Gelman et al., 1995; Geman & Geman,

1984) . In this paper, this approach will be generalized to the multilevel IRT model considered

above. In the normal ogive model, the probability of a correct response of a person indexed ij

on an item indexed k, Yijk = 1, is given by

P (Yok = 118 ök) = (ak0ii (12)

where .13 denotes the standard normal cumulative distribution function, and ak and 6k are the

discrimination and difficulty parameter of item k, respectively. Below, the parameters' of item

k will also be denoted by k = (ak, ok)t.

As can be seen from (6), making inferences about the parameters of the multilevel

IRT model in an MML framework entails integrating over high dimensional probability

distributions. By drawing samples from these distributions, sample averages can be computed

to approximate expectations. Unfortunately, no procedure is known to obtain the required

samples directly. Therefore, a Bayesian perspective where all parameters are viewed as random

variables will be adopted and a Markov chain Monte Carlo (MCMC) procedure will be used for

evaluating the posterior distributions of the parameters. The MCMC chains will be constructed

using the Gibbs sampler.

Gibbs sampling proceeds as follows. Divide the vector cd into n components, co =

(wi . . wn). In each iteration of the Gibbs sampler each component will be drawn conditional

on previously drawn values of all the others. So at each iteration m, each tolkn is sampled from

9



Multi-level IRT 8

the conditional distribution given all the other components of w

(wien I w,Y),

with comk (w= wnin-1) In this way each component wk is updated
conditionally on the latest values of w for the other components. The idea is to construct the

model using a sequence of conditional probability distributions, and apply the Gibbs sampler

to obtain samples from the posterior (target) distribution.

To implement the,Gibbs sampler for the normal ogive model, Albert (1992) augments

the data by introducing independent random variables Zijk, which are assumed to be normally

distributed with mean akk bk and variance equal to one. It is assumed that Yijk = 1 if
Zok > 0 and Yijk = 0 otherwise. Though the joint distribution of (Z, 0, has an intractable

form, the fully conditional distribution of each of the three parameters are easy to simulate.
So each iteration m cOnsists of three steps: (1) draw Zin+1 from its distribution given

and Om, (2) draw 0'1 from its distribution given zrn-fi and 171., and (3) draw ff1.+1 from

its distribution given Zn2+1 and Om+1. In the next section, it will be shown that this idea can
be extended to simultaneously estimating the posterior distribution of all parameters in the
multilevel IRT model.

Estimation of the Multilevel IRT Model Using Gibbs Sampling

To implement the Gibbs sampler a vector of independent random variables Z =
(Zni, ,ZnJJK) is introduced, where Z.* is distributed as defined above. With the
introduction of Z the joint posterior distribution of the parameters of the multilevel model
and the normal ogive model (Z, 0, ,a2 , r, T Y) is given by

p (Z,I9 3,a2 ,r ,T Y, X, VV) oc ft (flp (Zijk 00, Yijk))13 (00
j=1 i=l k=1

P (13j r,T,w;)p(r T)
(alp (T) (13)

with

p (Zi I cij 1c)Yijk) a 0 (Zijk; ak0ij 4,1) V (Zijk > 0) I (yijk = 1)

+ I (zik < I(yijk = 0)1-

10



Multi-level IRT 9

A vague prior p = I (ak > 0) is chosen for the item parameters to insure that each

item will have a positive discrimination index. The other priors will be discussed below. The

distribution (13) has an intractable form and will be very difficult to simulate. Therefore,

a Gibbs sampling algorithm will be used where the three steps of the original algorithm by

Albert (1992) are replaced by seven steps. Each step consist of sampling from the posterior of

one of the seven parameter vectors Z, 0, cr2, F, T conditionally on all other parameters.

These fully conditional distributions are each tractable and easy to simulate. So the remaining

problem is finding the conditional distributions of Z, 0, r,a2 and T, respectively.

Step 1: Sampling Z. Given the parameters 9 and the variables Z .k are independent, and

Zijk 0, Y distributed
N (ak0i; 5k, 1) truncated at the left by 0 if k = 1
N (ak0i; bk, 1) truncated at the right by 0 if k = 0.

(14)

Step 2: Sampling O. The ability parameters are independent given Z, 13 and o-2. Using

equation (10) and (14) it follows that

p

with

3 Xij) oc p (Zij Oii, p (0i; I ft, 0-2 ,Xj;)

1 -1
cx exp (Zijk + ak8ii)2] exp [-gri (8i; Xiji3j)

k=1

OC exp [-Tv' (eii Zij) 21 exp [20.12 (9i3 Xi313.7) 2] (15)

(Zijk (5k)

Eik(-1 a2k

-1K 2and v = (Ek=iak) . Inspection shows that (15) is a normal model for the regression of

Zijk+Sk on ak with 0ii as a regression coefficient, where Oii, has a normal prior parameterized

by Oi and o-2 (e.g., see, Box & Tiao, 1973; Lindley & Smith, 1972). So the fully conditional

posterior density of Oi; is given by

9i.; I Zij,C i3 ;7

BEST COPY AVMLA
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Multi-level IRT 10

Step 3: Sampling Conditional on 0, Zk = (Z11k, Zn,11c) , ZJk)t satisfies the linear

model

Zk = [ 0 1 Ek) (17)

where ek = (Ellk). )enjJk)t is a random sample from N (0,1). Combining (17) with the

prior for p = 11,c_ I (ak > 0), it follows that

J nj

P(k I Z, 0 03) oc flfJcb(Zjk;ak oi, 6k, 1-)1)(G)
j=1 i=1

exp

(1
-T (Zk Ikk)t (Zk HCc)) P (Cc)

with H = [ e 1 ] . Therefore,

Cc I 0 Zk N (Zic, (Htli) 1) I (ak > 0) ,

where Zk is the usual least square estimator based on (17).

Step 4: Sampling O. The fully conditional posterior density of is given by

,o-2, r, T) cc p (0i I f 3 j, a2) p (0i I r,

cc exp (13 13j) V.ix; (0 ) X

1
exp (f3 T-1 (0i Wir))

(18)

with -f-ji = (ViX;) Vi 0i. Notice that the fully conditional posterior of f3i entails a model for

the regression of Oi on Xj, with as regression coefficienis, where the regression coefficients

have a normal prior induced by the level 2 model (11), that is, the regression of ir3i on Wi.

Define Ei = (72 d = E.T1-1j +T-1Wir and D = T-1)-1. Then

it follows that

0, ,r,T N (Dd,D) . (19)

12



Multi-level IRT 11

Step 5: Sampling F. The matrix F is the matrix of regression coefficients for the regression of

1(3j on MT3. The unbiased estimator for r will be the generalized least square estimator. Because

(1' I )33,T) CC Hp (33 r ,T) P (r T)
j=1

cc exp (-7
i=

-1
(p, wir)t T-1 w,r)) ,

using an improper noninformative prior density for F it follows that

r I f3j, T N
-1 J

WT-1W
3.

ENATT-1,3.
3 3 33 3

j=1 j=1
(20)

Step 6: Sampling a-2. The conjugated prior density for the variance a-2 is the Inv X2 (vo, a).

Upon setting vo = 0, it follows that the noninformative prior density for the variance is

p (a-2) cx a-2. Then the conditional posterior distribution for a2 is given by

with S2 = E2j.=1

6, 0) cc I) (0 1 , a2) (a2)

(0.2)-(4+1) (-2:2 s2)

Oi Xii3j)t -Xj0j), thus

0-2 I 0,0 "- Inv x2 (N, S2) . (21)

The prior density for the variance a-2 is improper, but yields a proper conditional posterior

density for a2.

Step 7: Sampling T. Above, Wi and f3i are defined as the matrix of explanatory variables

and the vector of regression coefficients for school j, respectively. The level 2 model for this

sChool can be written as Oi = Wir + ui,with E = 0, E (tkiuti) = T. Therefore,

oc p (03 I r, T) p (T)

pc ITO exp w3rY T-1 (3; w3r) P (T)

EST COPY MIA LE 13



Multi-level IRT 12

Assuming a non-informative prior for T, aggregating over schools results in

p (T I 0,F) a ITO exp (-- (pj Wil) ' T-1 0, ;11) 73, (r)
J

1 x---.

j=1

= ITO exp ( -1- tr (ST-1)) p (T)

= ITI-(4±1) exp (--tr (sT-1)) ,

with

and thus,

S=
j=1

w,r) w,r)t

T 3r inv Wishart (J,s--1) . (22)

With initial values OM, e), OM, (72(°) , F(0), TO) the Gibbs sampler repeatedly

samples Z, r, a2 and T from the distributions (14), (16), (18), (19), (20), (21), (22)

(in that order). The values of the initial estimates are important for the rate of convergence.

When poor initial values are chosen, convergence will be very slow. Consider, for example,

formula (16). When the parameters of the multilevel model are estimated conditional on poor

estimates of 0, the poor estimates of the multilevel model parameters will subsequently produce

poor estimates of the ability parameters. This is because, in step 2 the prediction of 0 from the

multilevel model will dominate the sampled values of 9 when the level 1 residual variance a2

is smaller than the variance of -6, that is, v. So after some iterations, all the sampled values

of the parameters are far away from the optimal parameter values, while cr-2 remains smaller

than v. It will take a lot of iterations to alter this pattern. Therefore, the following procedure

can be used to obtain better initial estimates. First, MML estimates of the item parameters are

made under the assumption that 9 is normally distributed with 11 = 0 and a = 1 (see, Bock

& Aitkin, 1981; Mislevy, 1986). Another suggestion might be to compute initial values using

a distinct ability distribution for every subgroup j. These estimates can be computed using the

program Bilog-MG (Zimowski et al., 1996). Then, using draws from the normal approximation

of the standard errors of the parameter estimates of Bilog-MG as starting values, the MCMC

procedure of Albert (1992) for estimating the normal ogive model can be run. That is, with the

14
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Multi-level IRT 13

(23)

and Z, 0 and can be sampled from the distributions (14), (23), (18). As the Gibbs sampler has

reached convergence compute the means of the sampled values of (Z, to start sampling

from the distributions (19), (20), (21) and (22). After convergence, means of the sampled

values of (0, r, a2, T) are used as initial estimates. It is also possible to use an EM algorithm

for estimating (0, r,a2, T) with the e (see, for instance Bryk & Raudenbush, 1992). Once all

initial values are estimated, equation (23) can be replaced by (16), and the complete seven-step

MCMC procedure can be started for a simultaneously estimation of (Z, 0, (3, r,a2, T).

An important point is that the prior distributions for 0 in the MML model and the

multilevel model have different means and variances. Therefore, the transition between the

two models must be accompanied by introducing identification constraints which are practical

in both models. This can, for instance, be accomplished by identifying both models by setting

ak = 1 and Ek = 0 .

Measurement Error on the Predictor Variables

In this paper, measurement error in explanatory variables will be modeled by

introducing an IRT model for the item responses related to these explanatory variables. First,

measurement error on level 1 predictors will be considered. Assume that the latent variables CO j

are related to observable variables Xqjj, (q=1,...,Q) via a normal ogive IRT measurement

model. In this case Xqij = (Xqiji, , with realization (xqiii, . . . xqijic)t , denotes

a response vector on a test with Kg items. Notice that predictor Xqi; has been replaced by a

vector of item responses xqii. The posterior distribution of the parameters, (13), now becomes

p (Z, 0,C f 3,a2 ,F,T, Y, X, W) = p (Z, p,a2,r,T I Y, C, W) (C I X) , (24)

where p X) is the posterior of C given X, that is,

p(C I X) a p(X I ()PM- (25)

In (25), p (X I C) is an IRT model and p (C) is a prior distribution. Because it is not realistic to

15



Multi-level IRT 14

assume that that the predictor variables are independent, (25) entails a multivariate IRT model.

Before the actual parameters ( will be identified, consider a parametrization (*. Let

be the vector of latent predictor variables for a person indexed i and j, that is, Ci has

elements Further, suppose that for every predictor a two-parameter normal ogive model

holds, that is, P (Xqijk = 11 Cz*qij) *qk *qk) = (aq*k(q*ii rgic), where aq*k and 6;k are item

parameters of an item of predictor q. Because the predictor variables (;ii are considered

dependent, it will be assumed that (i*j has a multivariate normal distribution with mean zero and

covariance matrix E*. However, the parametrization (* can be transformed to a parametrization

( such that ( has a multivariate normal distribution with mean zero and covariance matrix I,

that is, the variables cqi j become independent. Under this transformation, the normal ogive

model transforms to

P (Xqijk = 11 (ij, k,(5qk) = 42' eakC2 6qk)

that is, every item response now depends on all latent dimensions. This gives rise to the

following procedure.

To sample from (24), the above seven-step procedure can be used to sample from

p (Z, 0 (3,a2 , r, T I Y, , W), the only difference is that X is replaced by (. Further,

sampling from p (( I X) precedes with a multivariate version of the procedure by Albert (1992).

So analogous with the above procedure, a random vector V = (V, , VQ7IJJKQY

is introduced, where Vqijk N (cticCi; öqk,1), and it is supposed that Xqijk = 1 when

Vqijk > 0 and Xqijk. = 0 otherwise. After deriving the fully conditional distributions, the

Gibbs sampler can again be used to simultaneously estimating the posterior distributions of all

parameters.

Step 8: Sampling V. This step is completely equivalent to step 1, so Vqiik, given (ii and is

independent with

N akCi; 6qk, 1 truncated at the left by 0 if Xotijk = 1
V I C (26)

qz3k N cxk(ij bqk, 1 truncated at the right by 0 if Xqjjk = 0.

Step 9: Sampling (ii. Let be the vector with latent predictor variables for a person indexed

i and j. These are the regression coefficients in the normal linear model

Vi; + = AC1 + Eii,

16



Multi-level IRT 15

j A .

where V = , VQijKQ ) , u = (611) QKQ ksi; = ((lip ,(Qi; anu IS

a (Eq Kg x Q) matrix with elements akg. Furtermore, the vector ei; has elements Eqijk)

q = 1 . . . , Q) and (k = 1, . . . , Kg) , which are independent and standard normally distributed.

Using the fact that has a multivariate standard normal prior, it follows that

C,3 N ((I + 11J-1)-1 xli-1Z,3, (I + W-1)-1) , (27)

with Zi3 = (AtA)-1 At(V2, + 6) and %If = (AtA)-'.

Step 10: Sampling (ik qk = (a k, öqk)t , q = . . , Q) and k = (1, . . . , Kg) Given C, the

Vgk = (Volk, Vqn., .nc)t satisfies the linear model

V qk = [ eqk (28)

where = (Ci, , (C0(Q) with (g = k 13 )(-gnj I)t The Eqk = (egllk, . . Egnj Jk)t is

a random sample from N (0, 1). Combining the prior for p (C?k) = FLQ=0 I (akg > 0) with

equation (28) gives

gk I CV qk N (Zqk, (litH)-1) H (akg > 0) ,
q=0

where H = [ 1 and gk is the least square estimator based on (28).

The model is identified by specifying a multivariate standard normal prior for (.

A Numerical Example

In this section, a data set generated with a multilevel IRT model will be analysed. The

data are simulated using a multilevel model with one explanatory variable without measurement

error on both levels. The model is given by

0o3 + X1i; + ei;

Ooj = -Yoo + )'01W1cli + uoi

01j = 7io + 71113/41j + ul

(29)

with ei; N (0, o-2) and ugi N (0, r2q) . Response patterns are generated according to a

normal ogive IRT model for a test of K = 20 dichotomous items with item parameters a = 1

BEST COPY AVAILABLE
1 7
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and sampled from N (0, .5). The ability parameters of 2, 000 students are divided over J = 10

groups of n; = 200 students each, and generated with the multilevel model given by (29). In

this multilevel model is 70 = .1, Ti = .1 and cr = .2. The explanatory variables X ahd W are

drawn from N (0,1) and N (1/2, 1), respectively.

The convergence of the Gibbs sampler will be checked by monitoring the expected

a posteriori estimate of each parameter and its standard deviation (sd) for several consecutive

sequences of 1000 iterations of the Gibbs sampler. The Gibbs sampler has reached convergence

if differences are small.

The sample variance of the estimates will underestimate the variance of the

posterior mean due to the positive autocorrelation. Subsampling from a Markov chain

to get approximately identical independent subsamples only results in poorer estimates,

(MacEachern and Berliner, 1994). A computational simple and less naive method of estimating

is through batching, (Ripley, 1987). The single long run of length 7/ = ml, is divided into m

successive batches of length 1, with batch means B1, ... B. The posterior mean .B equals

771-i Bi, and the variance estimator is

V = var (B-) =
1

m(m
) i=1

(B, B) 2 .

Correlation between the batches will be neglible if 1 is large enough, and in must be large

enough to get a reliable estimate of var (Bi). The batch length 1 must be set in such a way

that the lag-one autocorrelation of B. is less than .05. A side effect of batching with large m

will be that each Bi is approximately normally distributed. If m is large enough to make Bi

approximately independent and normally distributed, the (1 a) confidence interval for the

parameter of interest will be of the form

where is the upper a point of a t-distribution with rn 1 degrees of freedom.

In the simulation study, 1, 000 iterations with 500 burn in iterations were needed

to compute the initial estimates. After that, 50, 000 iterations were made to estimate the

parameters of the multilevel IRT model.

In Table 1, the item parameter estimates issued from the Gibbs sampler and Bilog-

MG, (Zimowski et al., 1996) are given. With respect to parameter recovery, it can be seen
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that the Bilog-MG estimates of the discrimination parameter are lower than the simulation

values. The Gibbs sampler produces higher discrimination estimates than Bilog-MG, because

two item parameters, a6 = 1 and 63 = 0, were fixed instead of choosing the location (p, = 0)

and scale (a = 1) of the latent continuum. The values of the difficulty parameters estimated

with the Gibbs sampler are generally quite similar to those estimated with Bilog-MG. The small

standard deviations of the Gibbs estimates can be explained by the fact that the method of batch

means often severely underestimates the true standard deviations, (Geyer, 1992). It is used here

as a quick and dirty method, more sophisticated methods as the Window Estimator (Carlin &

Louis, 1996; Geyer, 1992; Ripley, 1987 ) are also available.

Both procedures represent different approaches to estimating the item parameters:

Bilog-MG entails computing the posterior mode and in the Gibbs sampler the posterior mean

is issued as the item parameter esti:mate. Thus, the symmetry of the distributions created using

Gibbs sampler is of interest. In the present paper Bilog-MG is only used as a reference for the

item parameter values.

Insert Table 1 about here

Figure 1 presents the posterior densities of ak for four specific items. In each plot of

Figure 1, two lines are plotted, these reflect the density estimates based on 1, 000 and 50, 000

simulated values. It can be seen that the first 1, 000 values produced with the Gibbs sampler

to get initial estimates are quite close. The posterior modes are generally smaller than the

posterior means because the items are skewed to the right, and appear to have heavy right tails.

The conclusion is that the ak are not exact normally distributed, as assumed.

Insert Figure 1 about here

Table 2 presents the results of estimating the fixed and random effects of the multilevel

model with HLM for Windows (Bryk et al., 1996) using the normally unknown 0 and the Gibbs

sampler. Looking at the fixed effects it can be seen that they are generally quite similar. Also

estimates of the random effects are almost identical for both methods.

Insert Table 2 about here

Finally, it is of interest to evaluate whether the multilevel IRT model is an improvement

19



Multi-level IRT 18

over the usual multilevel model. The model will be less complex without the IRT model,

but also less precise. It will be shown that using observed scores instead of latent scores as

dependent variables will result in less precision in parameter recovery.

The observed mean scores are scaled differently, so first the latent and observed

variables are normally standardized. After standardization the group means are zero. So all

there is left to do is modeling the variance among the groups and among students in groups.

The model, given by formula (29), becomes

oji = 00i + 01jX1ii "4-

130j = Oi

01 = "Yio + 711W11 ui 7

(30)

with eij N (0, (72) and uqj N (0, r2q) . Table 3 presents the results of estimating the

structural model using standardized latent scores and standardized observed mean scores (sum-

scores) as dependent variables.

Insert Table 3 about here

The parameter estimates of the fixed effects computed using sum-scores differ much

more from their true values than those computed using latent scores as dependent variables.

To see this, compare the differences between the estimates of the fixed effects in Table 2 with

the differences in Table 3. Also, the difference between the level 1 variance is much greater

compared to the one in Table 2. An analogous difference can also be seen with the intraclass

correlation coefficient. This coefficient expresses the proportion of variance in 0 accounted for

by group-membership, that is,

Po =
To

+

From Table 2 it can be seen that using the estimates from HLM results in Po = .300 and using

the estimates from Gibbs sampler results in = .336. In Table 3 it can be seen that using

the standardized latent scores results in Po = .327 and using the standardized observed scores

results in Po = .199. This shows that using observed scores instead of latent scores leads to

faulty parameter estimates and interpretation of the multilevel model.
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Discussion

In the present article, it was shown that the Gibbs sampler can be used to

simultaneously estimate all the parameters of the multilevel IRT model. Obtaining the marginal

posterior distributions by integrating over all the unknows is highly impractible when the joint

posterior is of high dimension. The method presented is very powerful because their are no

limitations on the number of parameters or the number of explanatory variables. Even when

there are many explanatory variables with measurement error, it is still a matter of sampling

from all fully conditional posterior distributions. Although good initial values will speed up

convergence, there are still many iterations necessary for a reliable estimate of all parameters.

Further research will concentrate on the use of a Monte Carlo EM (MCEM) algorithm to limit

the amount of iterations (Wei & Tanner, 1990).

It is easy to incorporate different types of prior beliefs about the item parameters

The example illustrates that the posterior density of the discrimination parameters appears

to have heavy tails. Therefore it could be interesting to use a log-normal prior for the

discrimination parameters (Mislevy, 1986). It is also possible to incorporate different priors

for ^y, cr2 or T. In this paper Jeffreys' prior is used for the variance components, that is,
(a2 0.-2 (7 ) 7-1. Jeffreys' prior for 7 is potentially a problem in cases where J is

small (Morris, 1983; Rubin, 1981 ).

The Gibbs sampling formulation presented in this article can be extended to settings

in which the fixed effects are distributed with heavy tails (Seltzer, 1993), to study the extent to

which posterior means and intervals change as the degree of heavy-taildness assumed increases.

Finally, this article has concentrated on inferences that assumes that the model is

correct. The problem of model criticism is rather difficult. Posterior predictive checks has the

problem that (predictive) data has to be generated from the estimated normal ogive IRT model,

in order to compare the data, Y, with the posterior predictive values. When prior information

is weak there are difficulties with the use of Bayes factors. And the problem is not just the

use of improper prior distributions. O'Hagan (1995) showed that Bayes factors are inherently

sensitive to errors of specification of prior distributions. Promising in this regard is the use of

Fractional Bayes Factors in a hierarchical model, mentioned by Gilks (1995).
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Table 1. Item parameter estimates of the normal ogive IRT model using Bilog-MG and the

Gibbs sampler.

Item

Bi log-MG Gibbs sampler

ak sd bk sd a k sd bk sd

1 .816 .068 -.165 .045 .944 .045 -.218 .016

2 .911 .078 .978 .063 1.015 .048 .882 .017

3 .856 .070 -.003 .045 .969 .046 -.101 0

4 .818 .067 .042 .045 1.032 .048 -.054 .017

5 .838 .071 -.098 .045 1.006 .047 -.179 .017

6 .942 .085 1.311 .079 .901 0 1.026 .021

7 .767 .063 .208 ,045 .892 .042 .175 .015

8 .758 .063 .316 .046 .876 .041 .253 .015

9 .837 .072 -.297 .047 .944 .043 -.337 .016

10 .824 .070 -.166 .045 .892 .043 -.300 .015

11 .755 .062 -.239 .044 .938 .042 -.279 .016

12 .878 .073 .428 .048 .972 .042 .337 .017

13 .876 .071 .231 .046 .988 .043 .129 .017

14 .919 .076 -.405 .049 1.021 .045 -.483 .018

15 .869 .076 .833 .059 .981 .044 .833 .017

16 .886 .075 .688 .056 1.045 .046 .630 .017

17 .813 .069 .119 .045 .963 .042 .051 .016

18 .823 .069 -.111 .045 .965 .042 -.200 .017

19 .792 .072 -.666 .053 .914 .040 -.762 .016

20 .771 .063 -.085 .044 .944 .041 -.154 .016
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Table 2. Parameter estimates of the multilevel model, with the Gibbs sampler and HLM for

Windows.

HLM Gibbs sampler

Fixed Effect F sd r sd

7oo -.237 .092 -.114 .013

7ot .191 .122 .208 .010

7th .352 .069 .352 .013

711 1.109 .144 1.015 .048

Random Effect To, 71, a To, 71, a sd

uoi .085 .103 .004

/Li; .131 .140 .001

.198 .203 .002
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Table 3. Parameter recovery of the multilevel model with latent scores andobserved scores
as dependent variables.

FILM FILM (sum-scores)

Fixed Effect F sd F sd

7io .387 .071 .505 .060

-Yu 1.240 .144 .793 .127

Random Effect ro, T1)0.

uoj .107 .117

uu .144 .108
.220 .470
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Figure 1. Posterior densities of ak for items 2, 5, 7 and 9. Dotted line is an estimate of
density after 1,000 values, and solid line is an estimate after 50,000 values.
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