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Abstract

In this paper a two-level regression model is imposed on the ability parameters in an
IRT model. The advantage of using latent rather than observed scores as dependent variables
of a multi-level model is that this offers the possibility of separating the influence of item
difficulty and ability level and modeling response variation and measurement error. Another
advantage is that, contrary to observed scores, latent scores are test-independent, which offers
the possibility of entering results from different tests in one analysis. Further, it will be shown
| that also problems of measurement error in covariates in rrjlultilevel models can be solved in the
framework of IRT-multilevel modeling. In this paper, the two-parameter normal ogive model
will be used for the IRT measurement model. It will be shown that the parameters of the two-
parameter normal ogive model and the multilevel model can be simultaneously estimated in
a Bayesian framework using Gibbs sampling. Various examples using simulated data will be
given.
Key words: Bayes estimates, Gibbs sampler, item response theory, Markov chain

Monte Carlo, multi-level model, two-parameter normal ogive model.
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Introduction

In educational and social research, there is a growing interest in the problems
associated with describing the relations between variables of different aggregation level. In
school effectiveness research, one may, for instance, be interested in the effects of the school
budget on the educational achievement of the students. However, the former variable is defined
on the school level while the latter variable is defined on the level of students. This gives
rise ’to problems of properly modeling dependencies between variables. These problems can
be coped with by mulitilevel models (Bryk & Raudenbush, 1992; De Leeuw & Kreft, 1986;
Goldstein, 1987; Longford, 1993; Raudenbush, 1988). In the above example, students are
nested in schools, and in a multilevel model the students would make up a first level and
the schools a secondary level. Although most applications of the multi-level paradigm are
found in regression and analysis of variance models (see, for instance Bryk & Raudenbush,
1992), multi-level modeling does, in principle, apply to all statistical modeling of data where
elementary units are nested within aggregates. Longford (1993), for instance, gives examples
of multi-level factor analytical models and genéralized linear models. Also in the field of item
response theory some applications of the multi-level paradigm can be found (see, Adams et al.,
1997; Mislevy & Bock, 1989) . _

In the present paper, the following problem related to multilevel modeling is studied.
In educational research, many variables are measured subject to error. This does predominately
concern the dependent variables, but also covariates on the student and school level can be
subject to measurement error. In practice, the multilevel models used belong to the framework
of the usual linear multivariate normal model and solutions to the problem of measurement
error boil down to applications of classical test theory (see, Longford, 1993, 1998). One of the
drawbacks of classical test theory is that measurement error is supposed to be independent
of the score level of the testee. In modern test theory, i.e. item response theory (IRT),
measurement error is defined conditionally on the value of the latent ability variable. Therefore,
it seems worthwhile to tackle the problem of measurement error in multilevel models in the
framework of hierarchical IRT models.

This paper consists of six sections. After the introduction section, a general multi-
level-IRT model will be presented. In the next section, a Markov chain Monte Carlo (MCMC)
estimation procedure will be described. Then, the model will be generalized further to allow for
measurement errors on the predictor variables and the estimation procedure will be generalized
to allow for this kind of measurement error. In Section 5, examples of the procedure will be

Q
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iven. And finally, the last section contains a discussion and suggestions for further research.
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Multi-level IRT models

One-way random effects IRT ANOVA
Consider a population of units, say schools, from which a sample of units indexed
j =1,...J is drawn. Individuals, say students indexed 7 = 1, ... n;, are nested within units.
In this framework, Bryk & Raudenbush (1992/) consider a two-level one-way random effects

ANOVA model. For the first level, the model is given by
Y;; = B, +eij, withe;; ~ N(0,0%), )
the second level is given by
B; = +u;, withu; ~ N(0,7°). )

So the model entails that the level one unit means are sampled from a normal distribution with

mean 7 and variance 72

. Persons within a unit are independent and the disturbances of the
regression coefficients in different schools are uncorrelated. This model can be generalized to
an IRT-framework by imposing the linear structure on unobserved latent variables 8;; rather
than on observed variables Y;;. The assumption is introduced that unidimensional ability
parameters 6;; are independent and normally distributed given 3. So let 6;; | 8; ~ N(8;, a?).

Further, 8; ~ N(v,7%). Combining these two assumptions results in

91]'_:3]' 0 0'2 o - 0 0
625 — B, 0 0 o .- 0

; ~N NI 2R 3)
6ny; — B, 0 0 ot 0

B; ¥ 0 0 T

Without conditioning on group membership the ability parameters of the respondents are

dependent. To see this, consider the transformation

01 - 01 025 — B; 02

: =] | Q)
00 11| | 6ny -5 On,;
0 0 01 8, ;
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Then it follows that

01; y o+ 72 72 T T2
B2; v T2 0% + 12 T 72
: ~N ol : : : : : . &)
On,j; y T2 72 o472 2
8, y 72 2 o 72 2

So over groups, the ability parameters of the respondents are dependent. The ability parameters
are linked to observed dichotomous responses y;x,k = 1,..., K. Let y;; be the response
pattern of person 4 in group 7, and let Y be the data matrix. One of the major estimation
procedures in IRT is marginal maximum likelihood (MML, Bock & Aitkin, 1981; Mislevy,
-1986). The impact of the above dependency structure on an MML estimation procedure can
be assessed by -inspection of a likelihood function marginalized over all random effects. This

likelihood function can be written as

L(y,6%, 1Y) = VH//,...,/Hp(yij|9ij)g(9ij | B;,0% (B, | v, 7)dbyj, . .., dBn,;dB;

iy

I1 [ [T1 [ 205 160ty 1 85,07 | 148, 1 i)as, ©

ij

where p(y;; | 6;;) is the IRT model specifying the probability of observing response pattern
yi; as a function of 6.5, g(6:; | B;, 0?) is the density of 6;; and h(8; | v, 7) is the density of
B;. It can be seen that the dependency structure results in nesting of integrations that might
complicate an MML estimation procedure. Therefore, below an alternative approach will be

studied. But first the model will be generalized further.

A Multi-level IRT model
Bryk & Raudenbush (1992) present the above one-way random effects ANOVA model

as a special case of a general model given by

Yij = Bo+ .. +ByuXgis+ ...+ Bo;Xaij + €ij, with e ~ N(0,6%), and (7

Bai = Yot - +VgsWegi + -+ 7sWsg; +ug;, forg=0,...,Q. 8)

Let u; be a vector with elements u,;, ¢ = 0,...,Q, which has a normal distribution

with mean zero and covariance matrix equal to T, that is, u; ~ N(0,T). In (7), X4; and

1t



Multi-level IRT 6
B,; are level one predictor variables and regression coefficients, respectively. The latter are
assumed to be random variables modeled by (8), where W,,; and 7,5 are level two predictor
variables and regression coefficients, respectively.

In an IRT context this model translates to a structural model defined by

0ij = Boj + .- + By Xgij + . .. + Bo; Xoij + €35, withey; ~ N(0,?), )
with the distribution of 8,;, ¢ = 0,. .., Q as defined in (8).

Below, it will prove convenient to write the model in matrix notation. Let X represent
the matrix with explanatory variables for the n; pupils on school j, j = 1,...J, that is,
X; = (Xuj,..., Xny;)" and Xyj = (Xoij, .- -, Xoi;)' . Consider the block diagonal matrix
X with (n; x (Q + 1)) blocks X;. This matrix can be written as {X;} ® I, where ® signifies
the direct product. So Xisan (n) +...+n;=N) x (J(Q + 1)) block diagonal matrix, with
the X, ..., X, as the diagonal blocks. Further, 8; = (6y;,...,0,,;) !, the ability parameters of
the pupils of school 7, and e; can be stacked as @ = {0;} ® 1y and e = {e;}® 1, where 1 is
a column vector in R with 1 in every component. In the same way, 3; = (8, .- ,ﬁQj)t are
the regression coefficients for the level one model for the ability parameters of the pupils of
school j, and the J (Q + 1)-vectors 3 can be defined as 8 = {3,} ® 1;. Then (9) can be

written as
0 =Xg3+e, (10)

with E () = 0, and E (ee') = o?Iy.

The matrices W,; = (Woy;, ..., Ws,;) contain the explanatory variables for the
regression coefficient 3,;. Define W; = {ij} ® Igs1 and W is the (J(Q + 1)) x
(@ +1)(S+1)) matrix W = {W;} ® 1,. Further, define u = {u;} ® 1; and ' =

{7} ® 1041, with u; = (ugj, .. ., ug;)* and Yo = (Yg00- - .,'yqs)t, respectively. Then (8)

can be written as
B =WI +u, (11
with E (u) =0, E(uu*) =I; ® T = Y. Y is a block diagonal matrix with J blocks T.

In the above formulation the coefficients of all the predictors in the level 1 model are

treated as random, that is, as varying across level 2 units. In certain applications, it can be

3ESTCOPY AVAILABLE O
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desirable to constrain the effects of one or more of the level 1 predictors to be identical across
level 2 units. This is accomplished by reformulating the hierarchical model as a mixed model
(Raudenbush, 1988). However, the issues and procedures discussed below also apply to mixed
model settings. '

Up to this point, the ability parameter @ is unspecified and unknown. In the next

section, an IRT model and an estimation will be introduced.

A MCMC estimation procedure for a multilevel IRT model

Recently, Albert (1992) derived a procedure for simulating sampling from the
posterior distribution of the item and person parameters of the two-parameter normal ogive
mode] using the Gibbs sampler (Gelfand et al., 1990; Gelman et al., 1995; Geman & Geman,
1984) . In this paper, this approach will be generalized to the multilevel IRT model considered
above. In the normal ogive model, the probability of a correct response of a person indexed i

on an item indexed k, Y;, = 1, is given by

P (Y =1]60;,04,6c) =8 (abi; — b)), (12)

where ® denotes the standard normal cumulative distribution function, and a4 and é are the
discrimination and difficulty parameter of item k, respectively. Below, the parameters of item
k will also be denoted by &, &, = (a, 6x)". '

As can be seen from (6), making inferences about the parametérs of the multilevel
IRT model in an MML framework entails integrating over high dimensional probability
distributions. By drawing samples from these distributions, sample averages can be computed
to approximate expectations. Unfortunately, no procedure is known to obtain the required
samples directly. Therefore, a Bayesian perspective where all parameters are viewed as random
variables will be adopted and a Markov chain Monte Carlo (MCMC) procedure will be used for
evaluating the posterior distributions of the parameters. The MCMC chains will be constructed
using the Gibbs sampler. _

Gibbs sampling proceeds as follows. Divide the vector w into n components, w =
(w1, - . .,wy). In each iteration of the Gibbs sampler each component will be drawn conditional

on previously drawn values of all the others. So at each iteration m, each w}* is sampled from
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the conditional distribution given all the other components of w
-1
p (wrlcn I wr—nk ) ) )

! w~!). In this way each component wy, is updated

with w™ = (WP, ... W Wi W
conditionally on the latest values of w for the other components. The idea is to construct the
model using a sequence of conditional probability distributions, and apply the Gibbs sampler
to obtain samples from the posterior (target) distribution. _

To implement the Gibbs sampler for the normal ogive model, Albert (1992) augments
the data by introducing independent random variables Zijk, which are assumed to be normally
distributed with mean aifi; — 6x and variance equal to one. It is assumed that Yije = 11if
Zije > 0 and Yijr = 0 otherwise. Though the joint distribution of (Z, 8, ¢) has an intractable
form, the fully conditional distribution of each of the three parameters are easy to simulate.
So each iteration m consists of three steps: (1) draw Z™*! from its distribution given £™
and 6™, (2) draw ™" from its distribution given Z™+! and £™, and (3) draw £™*! from
its distribution given Z™*! and ™. In the next section it will be shown that this idea can
be extended to simultaneously estimating the posterior distribution of all parameters in the

multilevel IRT model.

Estimation of the Multilevel IRT Model Using Gibbs Sampling -
To implement the Gibbs sampler a vector of independent random variables Z =
(Zi11,- -+, Zn,1x) is introduced, where Zjr is distributed as defined above. With the
introduction of Z the joint posterior distribution of the parameters of the multilevel model

and the normal ogive model (Z, 8, ¢, 8,0%,T, T | Y) is given by

Jon K '
p (Z>0>§iﬁy021F>T I Y7X7 W) & HH <<HP(Z‘1]’C l 9‘ij7§k7y‘ijk)> p (91] l ﬁj702>xj)>

k=1

p(€)p(o?) p(T),

j=1i=1

with

P(Zijk | 055,k wijk) < @ (Zije; by — bk, 1) (I (Zijk > 0) I (yijr = 1)
+ 1 (Zije < 0) I (yije = 0))].

10

(13)
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A vague prior p(§) = Hiil I (a4, > 0) is chosen for the item parameters to insure that each

item will have a positive discrimination index. The other priors will be discussed below. The
distribution (13) hgs an intractable form and will be very difficult to simulate. Therefore,
a Gibbs sampling algorithm will be used where the three steps of the original algorithm by
Albert (1992) are replaced by seven steps. Each step consist of sampling from the posterior of
one of the seven parameter vectors Z, 8, &, 3,02, T, T conditionally on all other parameters.
These fully conditional distributions are each tractable and easy to simulate. So the remaining
problem is finding the conditional distributions of Z, 8, &, 3, T, 0% and T, respectively.

Step 1: Sampling Z. Given the parameters 8 and &, the variables Z;;; are independent, and

N (ax8i; — 6k, 1) truncated at the left by 0 if Y;, =1

Zijn | 9,6, Y dlstnbuted{ N (o48;; ~ 6k, 1) truncated at the right by 0 if Y, = 0. (14)

Step 2: Sampling 6. The ability parameters are independent given Z, &, 3 and 0%, Using
equation (10) and (14) it follows that

p(01] I Zijvgzﬁjaazzxij) X p(Z‘LJ I 01_7,5)1)(01_7 l'ﬁj,UZ,Xij)

K
X exp [_71 Z (Zijk + 6k — akeij)zjl exp [2 12 (6 — Xi;8;) }

=1

k
_ ~ 2
X exp {—1 (017 —eij) }exp [2 12 (6:; — X438;) ] (15)
with

Zf:l ak (Zije + k)

0ij = ZK 2
k=1 Ok

)

and v = (Z,’;l a,%)_1 . Inspection shows that (15) is a normal model for the regression of
Z;jk + 6k on oy, with ;5 as a regression coefficient, where 8;;, has a normal prior parameterized
by B; and o? (e.g., see, Box & Tiao, 1973; Lindley & Smith, 1972). So the fully conditional
posterior density of 8;; is given by .

0ij I Zij7£7ﬁj702 ~ N (

1/v+1/02 ’1/v+1/0?

FRICST COPY AVAILABLE 11
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Step 3: Sampling £. Conditional on 8, Zy, = (Z11k, - - -, Zngiks -« - » ZnJJk)‘ satisfies the linear

model
Zi=[0 -1]¢ +e, ‘ (17)

where e, = (e11k,. . - ,anJJk)‘ is a random sample from N (0,1). Combining (17) with the

prior for p (§) = 2{:1 I (o > 0), it follows that

J nj .

p(x1Z,0,8) IIIII¢(Zijk§ak0ij_6k71)p(£k)
pcgh
- o (5 (B~ HE)' (B - Hey) ) p (6
withH=[ 8 -1 ]. Therefore,
61020~ N (B (HE) ) I >0, (18)

where Ek is the usual least square estimator based on (17).

Step 4: Sampling 3. The fully conditional posterior density of B, is given by

p(B;16;0*T,T) o p(8;]B;,0%)p(8;|T,T)
( & exp <2_T‘12 (ﬂ_BJ‘)tX;-Xj (ﬂ‘B,)) X

exp <_71 (B, -W,D)' T (B, - W,T))

with B, = (X}X;) - X!8;. Notice that the fully conditional posterior of 3; entails a model for
the regression of 8; on X;, with 3, as regression coefficients, where the regression coefficients
have a normal prior induced by the level 2 model (11), that is, the regression of 3; on W.

Define $; = 02 (X!X;) ', d = £7'8;+ T'W,Land D = (X;' + T~') ™" Then
it follows that

B,16;,0%T, T ~N(Dd,D). (19)

12
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Step 5: Sampling I'. The matrix I is the matrix of régression coefficients for the regression of

B, on W;. The unbiased estimator for I’ will be the generalized least square estimator. Because

J

(T8, T) « |[p(B;IT,T)p(T|T)
(ri6,1) « I

j=1

J
o exp (_71 (ﬁj - VVJT)tT‘1 (ﬁj — W,T)) ,
-1

7

using an improper noninformative prior density for I it follows that

J -1y J _ -1
I3, T~N (Z W;T-IW,) > wWit'g,, (Z W;T‘IWj) . Qo)
=1 =1 =1
Step 6: Sampling 2. The conjugated prior density for the variance o2 is the Inv — x2 (vg, 02).

Upon setting vp = 0, it follows that the noninformative prior density for the variance is

p(0?) o« 0=2. Then the conditional posterior distribution for o2 is given by

p(c?16,8) « p(618,6%p(c?)

o (02) " exp (;71\2’32) ,

with 52 = & ZJ» L (85 - Xjﬁj)t (6; — X;8;), thus

=
U2|0,ﬁ~lnv—x2(N,SQ). 21

2 is improper, but yields a proper conditional posterior

The prior density for the variaﬁce o
density for o2.

Step 7: Sampling T. Above, W and 3; are defined as the matrix of explanatory variables
and the vector of regression coefficients for school j, respectively. The level 2 model for this

* school can be written as 8; = W, + u;,with E (u;) = 0, E (u;u}) = T. Therefore,

p(T18,T) . p(8,IT,T)p(T)

o [T bexp (=5 (8, - W) T (8, - Wir) ) p(T).

ERICigT COPY AUAILABLE 13

Full Tt Provided by ERIC.



Multi-level IRT 12

Assuming a non-informative prior for T, aggregating over schools results in

Zﬁ ~-W,n) T (8, wr)) (T)

j=1

l\JIr—-

p(T|BT) « |T| Fexp (

— T exp (—-21-tr (ST‘1)> p(T)

|Tj—(%+1) exp (—-l-tr (ST‘1)> ,

2
with
! t
S=>(8,-W,T) (8, -W,T)".
j=1
* and thus,
T|8,T ~ inv— Wishart (J, S_l) . (22)

With initial values 8©,¢© B© 52 1O TO the Gibbs sampler repeatedly
samples Z, 8, €, 3, T, o and T from the distributions (14), (16), (18), (19), (20), (21), (22)
(in that order). The values of the initial estimates are important for the rate of convergence.
When poor initial values are chosen, convergence will be very slow. Consider, for example,
formula (16). Wﬁen the parameters of the multilevel model are estimated conditional on poor
estimates of @, the poor estimates of the multilevel model parameters will subsequently produce
poor estimates of the ability parameters; This is because, in step 2 ihe prediction of € from the
multilevel model will dominate the sampled values of 8 when the level 1 residual variance o?
is smaller than the variance of 5, that is, v. So after some iterations, all the sampled values
of the parameters are far away from the optimal parameter values, while o* remains smaller
than v. It will take a lot of iterations to alter this pattern. Therefore, the following procedure
can be used to obtain better initial estimates. First, MML estimates of the item parameters are
made under the assumption that @ is normally distributed with &+ = 0 and o = 1 (see, Bock
& Aitkin, 1981; Mislevy, 1986). Another suggestion might be to compute initial values using
a distinct ability distribution for every subgroup j. These estimates can be computed using the
program Bilog-MG (Zimowski et al., 1996). Then, using draws from the normal approximation
of the standard errors of the parameter estimates of Bilog-MG as starting values, the MCMC

procedure of Albert (1992) for estimating the normal ogive model can be run. That is, with the

14
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assumption that € is standard normal distributed formula (16) becomes

B:; 1
0i; | Zijx, & ~ N ( Thd ) , (23)

1jv+1' 1/v+1

and Z,  and £ can be sampled from the distributions (14), (23), (18). As the Gibbs sampler has
reached convergence compute the means of the sampled values of (Z, 0, £) to start sampling
from the distributions (19), (20), (21) and (22). After convergence, means of the sampled
values of (3,T, 0%, T) are used as initial estimates. It is also possible to use an EM algorithm
for estimating (3, T, 02, T) with the [ (see, for instance Bryk & Raudenbush, 1992). Once all
initial values are estimated, equation (23) can be replaced by (16), and the complete seven-step
MCMC procedure can be started for a simultaneously estimation of (Z, 8, £, 3,T, %, T).

An important point is that the prior distributions for € in the MML model and the
multilevel model have different means and variances. Therefore, the transition between the
two models must be accompanied by introducing identification constraints which are practical

in both models. This can, for instance, be accomplished by identifying both models by setting

[lyoax=1and} B, =0.

Measurement Error on the Predictor Variables

In this paper, measurement error in explanatory variables will be modeled by
introducing an IRT model for the item responses related to these explanatory variables. First,
measurement error on level 1 predictors will be considered. Assume that the latent variables (;;
are related to observable variables Xy;;, (¢ =1,...,Q) via a normal ogive IRT measurement
model. In this case Xi; = (Xgi1, - - -, Xqij,) » with realization (zgijn, . ..  Taisk,) » denotes
a response vector on a test with K, items. Notice that predictor X;; has been replaced by a

vector of item responses X;;. The posterior distribution of the parameters, (13), now becomes
p(Z,G,E,b,az,F,T,C 1Y, X,W)=p(Z,6,§,B80°T,T|Y,{(W)p(|X), 249

where p (¢ | X) is the posterior of ¢ given X, that is,
pIX)xpX[{p(Q)- (25)‘

In (25), p (X | ¢) is an IRT model and p (¢) is a prior distribution. Because it is not realistic to

15
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assume that that the predictor variables are independent, (25) entails a multivariate IRT model.

Before the actual parameters ¢ will be identiﬁed, consider a parametrization ¢*. Let
¢;; be the vector of latent predictor variables for a person indexed ¢ and 7, that is, ¢;; has
elements (g,;. Further, suppose that for every predictor a two-parameter normal ogive model
holds, that is, P (Xgijk = 1| C5ij0 03k, 6) = @ (afiClij — O3c)> where o and 6}, are item

parameters of an item of predictor q. Because the predictor variables (7. are considered

qtj
dependent, it will be assumed that ¢;; has a multivariate normal distribution with mean zero and
covariance matrix £*. However, the parametrization {* can be transformed to a parametrization
¢ such that ¢ has a multivariate normal distribution with mean zero and covariance matrix I,

that is, the variables ( ;. become independent. Under this transformation, the normal ogive

qij

model transforms to
P (Xqijk, =1 | Cij) Qy, 6qk) =& (akcij — 6qk) ,

that is, every item response now depends on all latent dimensions. This gives rise to the
following procedure.

To sample from (24), the above seven-step procedure can be used to sample from
»(Z,0,¢,8,0°,T,T|Y,(,W), the only difference is that X is replaced by (. Further,
sampling from p (¢ | X) precedes with a multivariate version of the procedure by Albert (1992).

So analogous with the above procedure, a random vector V = (Vi111, .. ., Von, JKQ)t
is introduced, where Vijx ~ N (aC; — Ogk, 1), and it is supposed that X5 = 1 when
Viyje > 0 and X = 0 6therwise. After deniving the fully conditional distributions, the
Gibbs sampler can again be used to simultaneously estimating the posterior distributions of all
parameters.

Step 8: Sampling V. This step is completely equivalent to step 1, so V., given ¢;; and &, is

independent with

N gakcij — bgks 1; truncated at the left by 0 if X i, = 1 26)

Vaiie | C4j» € Xaige ~ { N (aC;; — 64k, 1) truncated at the right by 0 if X ;. = 0.

Step 9: Sampling (;;. Let (;; be the vector with latent predictor variables for a person indexed

i1 and 7. These are the regression coefficients in the normal linear model

Vij +6 = ACij + €45,

16
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where V = (‘/11‘]'1, ey VQinQ)t, 0 = (611, Ceey (5QKQ)t, Cij = (Clij: N ,CQij)t and A is

a (Zq K, x Q) matrix with elements ax,. Furtermore, the vector €;; has elements eg;x, -
(g=1,...,Q)and (k =1,..., K,), which are independent and standard normally distributed.

Using the fact that ¢;; has a multivariate standard normal prior, it follows that
Gy "‘N((I+‘I’_l)_l‘l’_lzu’(IJf‘I’_l)_l)> @7)

with C;; = (A*A) 7' AY(Vi; + 8) and & = (A*A) 7
Step 10: Sampling £, £, = (o, 6q)", ¢ = (1,...,Q)and k = (1,..., K,) . Given ¢, the

Ve = (Vaiks - - -, Vynyax)' satisfies the linear model
: Vae=[¢ -1 ] €u+ea (28)

where ¢ = (C1,-.-,Co) With €, = (Courr---Conys) - The e = (€quiks .- -, Eqnyur)’ is
a random sample from N (0,1). Combining the prior for p (£,.) = HqQ=OI (akq > 0) with
equation (28) gives

Q
€| & Voo~ N (€ (HH) ) [ 1 (2 > 0),
q=0

where H=[ ¢ -1 ]and Eqk is the least square estimator based on (28).

The model is identified by specifying a multivariate standard normal prior for ¢.

A Numerical Example

In this section, a data set generated with a multilevel IRT model will be analysed. The
data are simulated using a multilevel model with one explanatory variable without measurement

error on both levels. The model is given by

01‘]' = ,30]- + ,Bleh‘j + €ij (29)

Yoo + Yo1Wio; + uoj

= ™
& &
I I

Y10 + Y11 Whij + wj,

with e;; ~ N (0,0?) and ug; ~ N (0,7Z) . Response patterns are generated according to a
. normal ogive IRT model for a test of K = 20 dichotomous items with item parameters a = 1
v
ERIC 17
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and 6 sampled from N (0, .5). The ability parameters of 2, 000 students are divided over J = 10

groups of n; = 200 students each, and generated with the multilevel model given by (29). In
this multilevel model is 7o = .1, 7, = .1 and ¢ = .2. The explanatory variables X and W are
drawn from N (0,1) and N (1/2,1), respectively.

The convergence of the Gibbs sampler will be checked by monitoring the expected
a posteriori estimate of each parameter and its standard deviation (sd) for several consecutive
sequences of 1000 iterations of the Gibbs sampler. The Gibbs sampler has reached convergence
if differences are small.

The sample variance of the estimates will underestimate the variance of the
posterior mean due to the positive autocorrelation. Subsampling from a Markov chain
to get approximately identical independent subsamples only results in poorer estimates,
{MacEachem and Berlinér, 1994). A computational simple and less naive method of estimating
is through batching, (Ripley, 1987). The single long run of length n = ml, is divided into m
successive batches of length I, with batch means By, ... B,,. The posterior mean B equals

L 5" | Bi, and the variance estimator is

m

~ 1 —

Vzvar(g) =m;(&_3)2.
Correlation between the batches will be neglible if [ is large enough, and m must be large
enough to get a reliable estimate of var (B;). The batch length [ must be set in such a way
that the lag-one autocorrelation of B; is less than .05. A side effect of batching with large m
will be that each B; is approximately normally distributed. If m is large enough to make B;
approximately independent and normally distributed, the (1 — ) confidence interval for the

parameter of interest will be of the form
(B-tmsaVV. B+ tnaaVV),

where t,,_1 o is the upper o point of a ¢-distribution with m — 1 degrees of freedom.

In the simulation study, 1,000 iterations with 500 burn in iterations were needed
to compute the initial estimates. After that, 50,000 iterations were made to estimate the
parameters of the multilevel IRT model.

In Table 1, the item parameter estimates issued from the Gibbs sampler and Bilog-
MG, (Zimowski et al., 1996) are given. With respect to parameter recovery, it can be seen

ERIC 18
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Multi-level IRT 17
that the Bilog-MG estimates of the discrimination parameter are lower than the simulation
values. The Gibbs sampler produces higher discrimination estimates than Bilog-MG, because
two item parameters, ag = 1 and b3 = 0, were fixed instead of choosing the location (. = 0)
and scale (o = 1) of the latent continuum. The values of the difficulty parameters estimated
with the Gibbs sampler are generally quite similar to those estimated with Bilog-MG. The small
standard deviations of the Gibbs estimates can be explained by the fact that the method of batch
means often severely underestimates the true standard deviations, (Geyer, 1992). It is used here
as a quick and dirty method, more sophisticated methods as the Window Estimator (Carlin &
Louis, 1996; Geyer, 1992; Ripley, 1987 ) are also available.

Both procedures represent different approaches to estimating the item parameters:
Bilog-MG entails computing the posterior mode and in the Gibbs sampler the posterior mean
is issued as the item parameter estimate. Thus, the symmetry of the distributions created using
Gibbs sampler is of interest. In the present paper Bilog-MG is only used as a reference for the

item parameter values.

Insert Table 1 about here

Figure 1 presents the posterior densities of «y, for four specific items. In each plot of
Figure 1, two lines are plotted, these reflect the density estimates based on 1, 000 and 50, 000
simulated values. It can be seen that the first 1,000 values produced with the Gibbs sampler
to get initial estimates are quite close. The posterior modes are generally smaller than the
posterior means because the items are skewed to the right, and appear to have heavy right tails.

The conclusion is that the ay, are not exact normally distributed, as assumed.

Insert Figure 1 about here

Table 2 presents the results of estimating the fixed and random effects of the multilevel
model with HLM for Windows (Bryk et al., 1996) using the normally unknown € and the Gibbs
sampler. Looking at the fixed effects it can be seen that they are generally quite similar. Also

estimates of the random effects are almost identical for both methods.

Insert Table 2 about here

Finally, it is of interest to evaluate whether the multilevel IRT model is an improvement

19
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over the usual multilevel model. The model will be less complex without the IRT model,
but also less precise. It will be shown that using observed scores instead of latent scores as
dependent variables will result in less precision in parameter recovery.

The observed mean scores are scaled differently, so first the latent and observed
variables are normally standardized. After standardization the group means are zero. So all
there is left to do is modeling the variance among the groups and among students in groups.

The model, given by formula (29), becomes

9,']' = ﬂOj + ﬂleh'j + €5 (30)
ﬂoj = Ugj
Biy; = Yot 1uWhy +uy,

with e;; ~ N (0,0%) and ug; ~ N (0,72). Table 3 presents the resuits of estimating the
structural model using standardized latent scores and standardized observed mean scores (sum-

scores) as dependent variables. -

Insert Table 3 about here

The parameter estimates of the fixed effects computed using sum-scores differ much
more from their true values than those computed using latent scores as dependent variables.
To see this, compare the differences between the estimates of the fixed effects in Table 2 with
the differences in Table 3. Also, the difference between the level 1 variance is much greater
compared to the one in Table 2. An analogous difference can also be seen with the intraclass
correlation coefficient. This coefficient expresses the proportion of variance in 8 accounted for

by group-membership, that is,

~ To

Po = =< -
To+ 0O

From Table 2 it can be seen that using the estimates from HLM results in py = .300 and using
the estimates from Gibbs sampler results in 7, = .336. In Table 3 it can be seen that using
the standardized latent scores results in p, = .327 and using the standardized observed scores
resuits in Py = .199. This shows that using observed scores instead of latent scores leads to

faulty parameter estimates and interpretation of the multilevel model.
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Discussion

In the present article, it was shown that the Gibbs sampler can be used to
simultaneously estimate all the parameters of the multilevel IRT model. Obtaining the marginal
posterior distributions by integrating over all the unknows is highly impractible when the joint
posterior 1s of high dimension. The method presented is very powerful because their are no
limitations on the number of parameters or the number of explanatory variables. Even when
there are many explanatory variables with measurement error, it is still a matter of sampling
from all fully conditional posterior distributions. Although good initial values will speed up
convergence, there are still many iterations necessary for a reliable estimate of all parameters.

- Further research will concentrate on the use of a Monte Carlo EM (MCEM) élgorithm to limit
the amount of iterations (Wei & Tanner, 1990).

" It is easy to incorporate different types of prior beliefs about the item parameters &.
The example illustrates that the posterior density of the discrimination parameters appears
to have heavy tails. Therefore it could be interesting to use a log-normal prior for the
discrimination parameters (Mislevy, 1986). It is alsoipossible to incorporate different priors
for v, 0 or T. In this paper Jeffreys’ prior is used for the variance components, that is,
p(0?) o« 072, p(1) o« 771. Jeffreys’ prior for 7 is potentially a problem in cases where J is
small (Morris, 1983; Rubin, 1981 ).

The Gibbs sampling formulation presented in this article can be extended to settings
in which the fixed effects are distributed with heavy tails (Seltzer, 1993), to study the extent to
which posterior means and intervals change as the degree of heavy-taildness assumed increases.

Finally, this article has concentrated on inferences that assumes that the model is
correct. The problem of model criticism is rather difficult. Posterior predictive checks has the
problem that (predictive) data has to be generated from the estimated normal ogive IRT model,
in order to compare the data, Y, with the posterior predictive values. When prior information
is weak there are difficulties with the use of Bayes factors. And the problem is not just the
use of improper prior distributions. O’Hagan (1995) showed that Bayes factors are inherently
sensitive to errors of specification of prior distributions. Promising in this regard is the use of

Fractional Bayes Factors in a hierarchical model, mentioned by Gilks (1995).
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Table 1. Item parameter estimates of th
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¢ normal ogive IRT model using Bilog-MG and the

Bilog-MG

) Gibbs sampler
Item ax sd b sd ak sd by sd
1 816 068 -.165 .045 944 045 -218 .016
2 911 .078 978 .063 1.015 .048 .882 .017
3 856 .070 -.003 .045 969 046 -.101 0
4 818 .067 .042 045 1032 .048 -.054 .017
5 838 071 -098 .045 1006 .047 -179 017
6 942 085 1311 .079 901 0 1.026 .021
7 767 063 208 045 892 042 175 015
g 758 .063 316 .046 876 041 253 0I5
9 837 072 -297 047 044 043 -337 016
10 824 070 -.166 .045 892 043 -300 0I5
11 755 062 -239 .044 938 042 -279 .016
12 878 073 428 048 972 042 337 017
13 876 071 231 .046 088 .043 .12 017
14 919 .076 -405 .049 1.021 .045 -483 .018
15 869 076 833 059 o081 .044 833 017
16 886 075 688 056 1045 .046 630 017
17 813 069 119 045 963 042 051 016
18 823 069 -.111. .045 965 .042 -200 .017
19 792 072 -.666 053 914 .040 -762 016
20 771 .063 -.085 044 944 041 -.154 016
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Table 2. Parameter estimates of the multilevel model, with the Gibbs sampler and HLM for

BEST COPY AVAILABLE

Windows.

HLM Gibbs sampler

Fixed Effect r sd r sd
Yoo 237 092 114 013
Yor d91 22 208 010
Y10 352 069 352 013
1 1109 144 1.015 048

Random Effect ~79,71,0 70,71,0 _ sd
Upj .085 103 .004
u; 131 140 001
€5 198 203 .002

O
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Table 3. Parameter recovery of the multilevel model with latent scores and observed scores
as dependent variables.

HLM HLM (sum-scores)
Fixed Effect I sd I sd
’ Y10 387 071 .505 .060
11 1240 .144 .793 127
Random Effect 7¢,71,0 70,71,0

Ug; 107 117
Uuyj 144 .108
€ij 220 470

BEST COPY AVAILABLE

26
ERIC

Aruitoxt provided by Eic:



Multi-level IRT 25

L1 10 12 14 ox 1

12
alpha(2) alpha(5)

14

o8 10 12 06 o8

10 12
alpha(7) alpha(8)

Figure '1. Posterior densities of a, for items 2, 5, 7 and 9. Dotted line is an estimate of
density after 1,000 values, and solid line is an estimate after 50,000 values.
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