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Abstract

In this paper, a version of sequential mastery testing is studied where response behavior
is modeled by an item response theory (IRT) model. Firstly, a general theoretical framework
will be sketched that is based on a combination of Bayesian sequential decision theory and item
response theory. Then it will be pointed out how IRT based sequential mastery testing can be
generalized to adaptive item and testlet selection rules, that is, to a situation where the choice
of the next item or testlet to be administered is optimized using the information from previous
responses. The performance of IRT based sequential and adaptive sequential mastery testing
will be studied in a number of simulations using the Rasch model. Finally, the possibilities and
difficulties of application of the approach in the framework of the 2-PL and the 3-PL model will
be discussed.

Key words: adaptive testing, Bayesian sequential decision theory, mastery testing,

item response theory, testlets.
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Adaptive Sequential Mastery Testing - 2

Introduction

In mastery testing the problem is to decide on either mastery or non-mastery, given
an examinee’s observed response pattern. Well-known examples of mastery testing include
pass/fail decisions, licensure, and certification. The mastery test can have both a fixed-length
and variable-length format. In the fixed-length mastery test, the performance on a fixed number
of items is used for deciding on either mastery or non-mastery. Over the last few decades,
the fixed-length mastery problem has been studied extensively by many researchers (e.g., De
Gruijter & Hambleton, 1984; van der Linden, 1990). Most of these authors derived, analytically
or numerically, optimal rules by applying (empirical) Bayesian decision theory (e.g. DeGroot,
1970; Lehmann, 1986) to this problem.

In the variable-length format, in addition to the actions declaring mastery or non-
mastery, also the action continuing and administering another item is available (e.g., Kingsbhry
& Weiss, 1983; Lewis & Sheehan, 1990; Sheehan & Lewis, 1992; Spray & Reckase, 1996). The
main advantage of variable-length mastery tests as compared to fixed-length mastery tests is that
they offer the possibility to provide shorter tests for those examinees who have clearly attained a
certain level of mastery (or clearly non-mastery) and longer tests for whom the mastery decision
is not as clear-cut (Lewis & Sheehan, 1990). For instance, Lewis and Sheehan (1990) showed
in a simulation study that average test lengths could be reduced by a half without sacrificing
classification accuracy.

Two main types of variable-length or multistage mastery tests can be distinguished.
First, the next item to be administered can be selected random. In this case, the stopping rule
(i.e., termination criterion) is adaptive but the item selection procedure is not adaptive. This
type of variable-length mastery problem is also known as a sequential mastery problem, and,
in the sequel, it will be referred to as SMT. Examinees with a low and high level of ability are
classified as non-master and master, respectively, whereas those with an intermediate level of
ability are presented another item to be randomly selected. In case the termination criterion is
determined using Bayesian sequential decision theory (e.g., DeGroot, 1970; Lehmann, 1986),
and a computer is used for selecting and scoring the next random item, Lewis and Sheehan
(1990) denote this type of sequential mastery testing as computerized mastery testing. Costs of
administering one random item can explicitly be taken into account within the framework of
Bayesian sequential decision theory.

In the second main type of variable-length mastery testing not only the stopping rule,

but also the item selection mechanism is adaptive . The examinee’s ability level is estimated

.
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Adaptive Sequential Mastery Testing - 3
after each response, and the item to be administered next to each examinee is neither too easy nor
too difficult for that examinee. In other words, able examinees can avoid doing too many easy
items and less able examinees can avoid being exposed to too many difficult items. Kingsbury
and Weiss (1983) denote this type of variable-length mastery testing as adaptive mastery testing
and in the sequel, this will bé referred to as ASMT (adaptive sequential hastery testing). In
ASMT it is assumed that items have unequal difficulty implying that the probability to answer
an item correctly is not equal for all items in the pool. It should be noted that, although items are
also allowed to have unequal difficulty in sequential mastery testing, the next item is randomly

selected in this problem.

Sequential Mastery Testing

In this section, a general theoretical framework for SMT will be presented that is based
on a combination of Bayesian sequential decision theory and item response theory (IRT). This
framework is an extension of the approach by Lewis and Sheehan (1990). Consider a situation
where one must decide whether or not a person has such an ability level that he or she can
be considered a master. So let 8. be some cut-off point on a latent continuum, persons with
ability # below this cut-off point are non-masters, persons with ability 9 above this cut-off point
are masters. To make the decision, a number of testlets consisting of one or more items are
administered. Suppose that the procedure consists of S stages labeled s = 1, ..., S and at each

stage one of the testlets can be given. Then, at stage s, s < S, three decisions can be made:

m  the respondent is judged a master, sampling stops,
d= ¢ n therespondentis judged a non-master, sampling stops, (n
¢ sampling is continued.

So in the first two cases administering testlets is terminated, while in the third case, a new testlet
is given. The loss associated with the first two decisions is
L(m,8) = maz{sC,sC + A(6 — 6.)} (2)

with A < 0 and

1]

L(n,0) = maz{sC,sC + B(6 - 6.)}. 3)

6




Adaptive Sequential Mastery Testing - 4

with B > 0; C'is the cost of delivering one testlet, sC is the cost of delivering s testlets.

The decision will be based on the response pattern of the respondent. Let x, be
the response to the s-th testlet. Further, define the response patterns y; = (xy, ..., X;), for
s=1,.. S . At stage s, the decision d, that is, the decision whether the respondent is a master
or a non-master, or whether another testlet will be administered, will be based on the expected
losses of the three possible decisions given the observed response pattern y;. The expected

losses of the first two decisions given a response pattern y, are computed as

0 ’
B(L(m,6) | y) =sC+ A [ (0~ 0)p(6 | y.)d8 @
and
E(L(n,0) | ys) = sC + B/0°°(9 —6.)p(0 | ys)do, 5)

where p(@ | y;) is the posterior density of 8 given y,. The expected loss of the third possible
decision is computed as the expected risk of decisions taken in the follow-up testlets. Let {X,41}
be the set of all possible response patterns on testlet s+1. Then, fors = 1, ..., S—1, the expected

risk of continuing testing is defined as

E(R(xs+1>ys) | ys) = Z p(xs+1 | ys)R(xs+lyys) (6)

{xs+1}

with the so-called posterior predictive distribution p(xs4; | ys) given by

P |9 = [ plxers 60000 y.)a9 | ™
and risk defined as
R(%541,¥s) = min{ E(L(m, 0) | ys+1), E(L(n,6) | ¥s41), E(R(Xs41,¥s) | ¥5)}. (8)
The risk associated with the last testlet is defined as
R(xs,ys-1) = min{E(L(m,0) | ys), E(L(n,0) | ys)}- )
Notice that the definitions (6) through (9) imply a recursive definition of the expected risk of

7



Adéptive Sequential Mastery Testing - 5

continuation. Since evaluation of E(R(x,41,ys) | ¥s) entails a summation over the set of all
possible response patterns {x,1}, exact computation of this expected risk genérally presents
a major problem. One of the approaches to this problem is approximating (6) using Monte
Carlo simulation techniques, that is, simulating a large number of draws from p(Xs4; | y,) to
compute the mean of R(x,41,y;s) over these draws. This approach is beyond the scope of the
present paper and will be treated later. However, in the case that the IRT model for x,,;, say
p(Xs41 | 0), defines an exponential family, the problem of the large number of possible response
patterns is solved by the existence of minimal sufficient statistics. An example will be given in

the next section.

The Rasch model

In the Rasch model the probability of a response pattern x on a test of K items is given

by

=ﬁw

p(x16,8) 1+ exp(6 — B;)

i=1

exp(t0) exp(—x'B) Po(8), (10)

where B8 = (B, ..., Bx) is a vector of item parameters, t = Y, z; is the sum score and

K

Py(6) = [J(1 +exp(6 - 8.))". an

i=1

Notice that ¢ is the minimal sufficient statistic for 8. Further, it is easily verified that Py(6) is the
probability, given 6, of a response pattern with all item responses equal to zero. The probability

of observing t given @ is given by

p(t|96)

3" exp(t6 ~ X B)Ry(0)
{xlt}

= 7, (B)exp(t0) Fo(6)
with v, an elementary symmetric function defined by vy, = > (xjey €XP(—x'B) where {x | t}

ERIC g
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Adaptive Sequential Mastery Testing - 6
stands for the set of all possible response patterns resulting in a sum score t. An important
feature is that the posterior distributions of § given x and ¢ are the same, that is

\

exp(td — x'B) Po(0)g(6)do

)
POIX) = ot = xB)Fo(8)9(6)d0

exp(t8) Po(8)g(6)db
[ exp(t0) Po(6)g(8)df

Y. (B) exp(t9)Po(9)g(9)
[ v (B) exp(t6) Ps(8)g(0)df

=p(f 1)

At this point, an assumption will be introduced that may not be completely realistic. It will be
assumed that local independence simultaneously holds within and over testlets, than is, all item
responses are independent given 8. So at this point, no special requirements are made to model
a possible dependence structure of testlet responses, this point will be returned to later. Then
analogously to the sequential testing procedure described above, the posterior distribution of 4
given a response pattern y,, p(8 | ys), is equivalent to the posterior of # given a score pattern
ts,ts = (1, ..., ts), in fact, it is equivalent to the posterior of  given a score 75, 75 = Z;=1 Ly
Let p(6 | r5) stand for the latter density. As a result, the expected losses (4), (5) and the expected
risk (6) can be written as E(L(m,0) | rs41), E(L(n,0) | rs41) and E(R(ts41,7s) | 75). More
specifically, the last loss is given by )
Kop1 ‘
E(R(te1,7) | 7s) = Y Plters | 7o) Rltes1,7s) (12)

ts41=0

and (7) specializes to

Pt | 72) = / Pltess | 6)p(0 | 72)d8

= /’Y:,H (Bs41) exp(ts16) Pogs+1)(8) p(0 | 75)db, (13)

where 3, is a vector of the item parameters of testlet s + 1 and Py(s41)(6) is equal to (11)
evaluated using 3,,,, that is, Pys11)(f) is equal to the probability of a zero response pattern
on testlet s + 1, given . Since elementary functions can be very quickly computed up to any

degree of precision (Verhelst, Glas and van der Sluis, 1984), the risk functions can be explicitly

9



Adaptive Séquential Mastery Testing - 7

computed.

Adaptive Sequential Mastery Testing

One of the topics addressed in this study is how the sequential testing procedure can
be optimized in case a large testlet bank is available. So the question is which testlets must be
administered next upon observing y,. Three approaches will be considered. The first two are
directly taken from the framework of non-Bayesian adaptive mastery testing (see, for instance,
Kingsbury and Weiss, 1983, Weiss and Kingsbury, 1984). Both are based on the maximum
information criterium; the first approach entails choosing items or testlets with maximum
information at 8., the second one with maximum information at 93, which is an estimate of
6 at stage s. The third approach relates to a distinct difference bétween the non-Bayesian and
Bayesian approach. In the former approach, one is interested in a point estimate of 8 or in the
question whether § is below or above some cut-off point. In the latter approach, however,
one is primarily interested in minimizing possible losses due to missclassifications and the
costs of testing. This can be directly translated into a selection criterium for the next testlet.
In a Bayesian framework for traditional computer adaptive testing, one might be interested

" in the posterior expectation of §. One of the selection criteria suited for optimizing testlet
administration is choosing the testlet with the minimal expected posterior variance. So if y,
is the observed response pattern, and {x,, } is the set of all possible response patterns on the

next testlet, one may select the testlet where

Z var(0 | ys, Xs+1)P(Xe41 | ¥s)

{xa+l}

is minimal (see, for instance, van der Linden, 1998). In a sequential mastery testing framework,
however, one is interested in minimizing possible losses, so a natural criterium for selection of

the next testlet is

> var(L(m,0) = L(n,8) | Y5, Xes1)P(Xet1 | ¥5), (14)

{xs+l}

that is, a testlet is chosen such that the expected reduction in the variance of the difference
between the losses of the mastery and non-mastery decision is maximal. In other words, this
criterium focuses on the posterior variance of § given a response pattern (y;, Xs+1), and the

criterium entails that the sum over all possible follow-up response patterns x,, of this posterior

ERICy cOPY AVAILABLE 10
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variance weighted by its posterior predictive probability p(X,41 | ¥s) is minimal. In the case of
the Rasch model, (14) is relatively eaéy to compute, because the response patterns X, and y;
can be interchanged with the scores t,.; and r,. For the 2- and 3-PL, a simulation procedure
similar to the procedure of the previous section can be adopted, but this is beyond the scope of

the present paper.

Classification Precision and Adaptive Item Selection

Above, SMT was characterized by an adaptive stopping rule and ASMT by an adaptive
stopping rule and an adaptive item selection method.

Before proceeding with presenting the results of a number of simulation studies of
the performance of SMT and ASMT using the Bayesian decision theoretic-approach described
above, a small study of adaptive mastery testing without an adaptive stopping rule but with
an adaptive item selection method will be presented. One of the essential differences between
this and the above framework will be the absence of a loss function involving the distance of a
person’s ability to the cut-off point and the cost of testing. The reason for this digression is to
present some benchmark of how much adaptive item selection might improve decision accuracy
in a context without an adaptive stopping rule, that is, in a context that is more like thé usual
practice of computer adaptive testing (CAT).

Consider a computer adaptive testing situation where items are selected using the
maximum information criterium. In the Rasch model, item information is maximal if the item
parameter equals the person parameter, that is, if the probability of a correct response given §
and (3 is equal to 0.50. In the sequel this probability will be called a local p-value. Suppose both
a person’s ability parameter and. all item parameters are known. Suppose further that the item
bank can support giving the optimal item time and again, so that an optimal test with all response
probabilities equal to 0.50 could be given. In the second column of Table 1, the standard errors
of 8 for such a test are given for test lengths ranging from 10 to 100 items. These standard errors
are computed as the square root of the inverse test information. In the third and fourth column,
standard errors of 8 are given for sub-optimal tests with all items response probabilities equal

to 0.25 and 0.10, respectively.

Insert Table 1 about here

. In Table 1 it can be seen that the difference between the standard error of an optimal test and
(S .

| 11
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a sub-optimal test decreases with test length: for a test of 10 items the gain in precision from
a test with items with local p-values of 0.25 to a test with local p-values of 0.50 is equal to
the difference between 0.7303 and 0.6325, which is 0.0978. In the case of 100 items, this gain
decreascs to 0.0309. This, of course, is only an artificial example, in practice, adaptive testing
is based on estimates of item and person parameters, and if the sub-optimal test is a paper-and-
pencil test, there will be variation in the respondents’ ability values and, as a consequence, in
the local and overall p-values of the items. Still, the example shows that the expected gain in
precision from adaptive testing must not be overestimated.

In Tables 2 to 4, a comparison is made of the gain in correct non-mastery classifications
as a function of the cut-off point 6. Consider Table 2, where, for a test of 10 items, a comparison
is made of the gain in proportion of correct decisions when moving from a sub-optimal test with

a local p-value at § = 0 equal to 0.25 to an optimal test with local p-value at § = 0 of 0.50.

Insert Table 2 to 4 about here

In the first column, values of the cut-off point 8, ranging from 0.00 to 1.90 are given. In the
second and third column, the proportions of persons with an estimated ability above the cut-off
point are given, for a test with local p-values of 0.50 and 0.25, respéctively. So the entries
in these two columns are the proportion of persons with true ability equal to zero that are
incorrectly judged as masters. These proportions are computed using the standard errors of
the first row of T'able 1, and the assumption that 8 has a normal distribution. In the last column
the gain in the proportion of correct responses is computed as the difference of the entries in the
third and second column. Notice that the gain is single peaked, it is equal to zero if 6, = 0 and
it goes to zero if 8, goes to infinity. At §. = 0.7 an optimum gain of 0.0347 is attained. Tables
3 and 4 contain analogous information for test lengths of K = 20 and K = 40. Notice that
the magnitude of the optimum does not change much, only the position of the optimum moves
closer to zero. As in the previous example, it must be stressed that this is a highly artificial
example, but it cannot be expected that the gain will be much higher in a real life situation with

estimates of item and person parameters and sub-optimal item banks.

Insert Table S about here

Finally, to obtain some flavor of the influence of the estimates of ability on the

. nroportion of correct decisions the following simulation studies, reported in Table 5, were
Q ;

1
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carried out. The table consists of two panels, the first one pertains to studies every simulee
had the same ability 8 = 0.50, the second panel pertains to studies where, for'every simulee,
a value § was drawn from a standard normal distribution. The cut-off point in all studies was
6. = 1.00. The studies focussed on three variables: test length, ability estimation method
and item selection method. Test lengths were chosen equal to 10, 20 and 40. In Table 5, the
columns pertaining to these conditions are labeled "K=10", "K=20" and "K=40". Ability
was either estimated with weighted maximum likelihood (Warm, 1989) or expected a-posteriori
ability (Bock and Mislevy, 1982). The EAP estimate is computed using a standard normal
prior. The columns pertaining to these conditions are labeled "WML” and EAP”, respectively.
Four item selection methods were studied. In the first one, for every simulee item parameters
were randomly drawn from the standard normal distribution. In the second method, all item
parameters were equal to 6. In the third method, all item parameters were equal to the true
ability parameter of the testee. Finally, for the fourth method, the item parameter was equal
to the current ability estimate @s. For all studies, the cut-off score 8. was equal to 1.00. The
rows of Table 5 pertaining to these four selection methods are labeled"‘random“, "6 =86,
"8 =6",and "3 =4,", respectively. Of course, the three last conditions are highly artificial,
because it is assumed that the most informative item at &, the true theta 8, and the running
estimate 8 is always available. Further, the true ability 8 is unknown. Still, the simulations can
be interesting reference material for the evaluation of the results on SMT and ASMT that will
be given below. Table 5 contains the proportions correct decisions in 5000 replications for each
combination of test length, ability estimation method and item selection method. The complete
study was replicated several times, the standard errors of the proportions in the table are about
0.01. Ttcan be seen that, for the studies with fixed 6, both item selection at the true # and at
6. produced the largest proportion of correct decisions. Selection at the running estimate of ¢
did not systematically produce results better than random item selection. In the second panel
of Table 5, it can be seen that randomly drawing # generally produced less favorable results.
Further, the positive association between test length K and proportion of correct classifications
vanished. This is due to the fact that random drawing of 6 results in a lot of values far away
from 6., where the proper classification is obvious after selection -of only a few items and
adding more items contributes little to classification precision. This leads to the expectation
that in these cases, item and testlet administration will be quickly terminated in a sequential
Bayesian mastery testing framework. In the following sectionl, it will be investigated whether

these expectations are justified.

RIC 13
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Adaptive Sequential Mastery Testing - 11

Performance of Sequential and Adaptive Sequential Mastery Testing

Design of the study

In this section, the relation between various selection methods on one hand and the
proportion of correct decisions, the proportions of testlets given and the mean loss on the other
hand will be studied with a number of simulation studies. The main research questions will
be whether, and under which circumstances, sequential testing improves upon a fixed test, and
whether, and under which circumstances, adaptive sequential testing improves upon sequential
testing. The design of the studies will be explained using the results of the first study, reported
in Table 6.

Insert Tables 6 and 7 about here

The study concerns ten items and the cut-off point 4. is equal to one. The nine bottom lines of
the table represent nine simulation studies of 1000 replications each. Forevery replication a true
¢ was drawn from a standard normal distribution. In the first simulation study, every simulee
was presented a fixed test of 10 items. For every simulee the item parameters were drawn from
a standard normal distribution. Also the prior distribution of ability was standard normal. The
next two sets of four conditions were two sequential mastery testing procedures, one with two
testlets of five items and one with 10 testlets of one item. For these sequential mastery testing
procedures, the paraméters of the loss functions (2) and (3) wereequal to A = —1.00, B = 1.00
and C = 0.01k,, where k; stands for the number of items in a testlet. The motivation for this
choice of C is keeping the total cost of administering 10 items constant. The numbers of testlets
and the numbers of items within testlets are summarized in the first two columns of Table 6. In
the next row, the selection method is specified further The two rows labeled "sequential” stand
for a SMT condition were the item parameters of the first testlet were all equal to zero and the
item parameters of all other testlets were randomly drawn from a standard normal distribution.

The conditions labeled "max info”, min variance” and "cutting point” entail ASMT
procedures. Also in these conditions the first testlet has all item parameters equal to zero.
The reason for starting both the SMT and ASMT procedures with testlets with similar item
parameters was to create comparable conditions in the inifial phase of the procedures. The
following testlets were chosen from a bank of 50 testlets that was generated as follows. First
50k; item parameteré were drawn from the standard normal distribution. Then, these 50k,

ERIC
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Adaptive Sequential Mastery Testing - 12

item parameters were ordered in magnitude from low to high. The first k, items comprised
-the first testlet in the bank, the second k; items comprised the second testlet, etcetera. In this
way, 50 testlets were created that were homogeneous in difficulty and attained their maximum
information at distinct points of the latent ability scale. In the “max info” condition, at stage
s,s=1,...,5 ~ 1, an expected a posteriori estimate of ability was computed and the expected
risk of a "continue sampling” decision was computed using the S — s testlets with highest
information at this estimate. If a “continue sampling” decision was made, the next testlet
administered was the. most informative testlet of the S — s testlets initially selected. The
procedure in the "min variance” condition was roughly similar, only here the minimum variance
criterium defined by (14) was used. Finally, in the "cutting point” condition, testlets were
selected from the testlet bank described above that were most informative at the cutting point
8. The last three columns of Table 6 give the proportion of correct decisions, the proportion of
testlets given and the mean loss over 1000 replications for each of the nine conditions, where
the loss in every replication was computed u_sing (2) or (3) evaluated at the true value of 4, with

s as the number of testlets actually given.

Results

The study described in the previous section was carried out for three total test lengths,
K =10, K = 20 and K = 40, two possible cutting points, §, = 1.00 and 6, = 0.10, and
several choices of the true ability, that is, in some studies, for each replication a value of § was
drawn from a standard normal distribution, and in other studies, # remained fixed at§ = —0.50,
6 = 0.00, or § = 0.50.

Consider the results of Table 6. In the simulation studies giving rise to this table, the
cutting score was 6, = 1.00. Notice that, in terms of mean loss, sequential testing did slightly
improve upon a fixed test. In the studies to be discussed, it will become apparent that this effect
increased as a function of the total number of items K; it will become apparent that for K = 40,
this effect became quite large. Further, in Table 6 it can be seen that adaptive sequential testing
does indeed improve upon sequential testing in terms of mean loss, but this effect was generally
small, and it was not consistent over all three adaptive selection methods. Below, it will become
apparent that the decrease of mean loss depended on the position of the cut-off score. Further,
it can be seen that the decrease of mean loss was mainly due to a dramatic reduction in the
proportion of testlets given. The number of correct classifications remained stable. Below, it
will become apparent that the proportion of testlets given decreased further with increasing K.

1Finally, it can be seen that the mean loss was smallest in the cases that K testlets of one item
<
ERIC 15
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each were given. This result will be further corroborated in the sequel.

Table 7 contains results for a combination of a cutting score §. = 0.10, an expected
true & = 0 and a total number of items X = 10. This combination of a cutting score very close
to the mean true ability and a small number of items produced the worst overall results. This
will be further corroborated in a simulation with 6 fixed. Still, a combination of K testlets and

item selection at the cutting point produced the best results.

Insert Tables 8 to 11 about here

The Tables 8 to 11 contain the results for all combinations of K = 20 or K = 40 and
6. = 0.10 or 6, = "1.00. The negative relation between the number of testlets and mean loss
remained apparent, and, overall, the mean loss for ASMT was slightly better. Notice that, in
Table 10, the decrease of loss for the combination of 40 testlets and 6, = 1.00, displayed in
the four bottom rows with respect to the loss of a fixed test, displayed in the first row, is quite

dramatic, mainly due to the fact that the proportion on items given decreases to 0.10.

Insert Tables 12 to 19 about here

The Tables 12 to 19 are an overview of simulation studies of how SMT and ASMT
perform for some fixed points on the ability scale. Four conditions were studied: a combination
of &, = 0.10 with § = —-0.50,0 = 0.00, and 8 = 0.50, respectively, and a combination
of . = 1.00 and § = 0.50. Notice that distance between the true ability in the first and the
latter are roughly the same; however, the reason for adding these conditions they are differently
located with respect to the standard normal prior ability distribution. First c'onsider the Tables 12
to 15, where the results for K = 20 are given. As above, in all tables, there is a substantial main
effect on average loss of augmenting the number of testlets and a small main effect on average
loss of adaptive testlet selection. Comparing the four bottom lines of the Tables 12, 13 and
14, it can be seen that a small distance between the true 6 and 6, does not necessarily produce
the largest losses; however, the proportions of testlets that must be administered to attain this
result are slightly larger than the proportions of testlets that must be administered in the two
other cases, reported in Tables 12 and 14. Comparing Tables 12, 13 and 14 with Table 15, it
can be seen that the position of # and 6, with respect to the prior ability distribution can have
important consequences: overall, the losses dramatically decrease, and the gain from adaptive

testlet selection becomes more pronounced.
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The picture of the Tables 12 to 15 becomes less clear when the total number of
items K is augmented to 40. In Tables 16, 17 and 18, administering 40 testlets of 1 item no
longer uniformly produces the smallest loss; only Table 19 still presents the clear-cut picture
of a substantial main effect for number of testlets and a small main effect for adaptive testlet

selection.

Discussion

In this paper, a general theoretical framework for sequential mastery testing based
on a combination of Bayesian sequential decision theory and item response theory was
presented. Further, it was shown that the implication of IRT supports adaptive item and testlet
selection. Then the impact of sequential testing and adaptive item selection on average loss
was investigated in a number of simulation.studies. It was found that sequential mastery testing
does indeed lead to a considerable decrease of loss, mainly due to a significant decrease of
testlets administered. The number of correct decisions remains relatively stable. The decrease
of loss is positively related to the number of items in a testlet: the larger the number of testlets
and the smaller the number of items in a testlet, the less the loss. The reduction of loss due to
adaptive testlet selection is less pronounced. Across studies, the minimal variance criterium (14)
and selection of testlets with maximum information near the cut-off point 6. produce the best
results, but the difference with the maximum information criterium is very small. Summing
' up, the conclusion is that the combination of Bayesian sequential decision theory and IRT
framework provides a sound framework for sequential mastery testing where both the cost of
test administration and the distance between the testees ability and cut-off point have to be taken
into account. Finally, the merits of adaptive testing must not be exaggerated.

The general approach sketched here can be applied to several other IRT models; the
main bottleneck is the computation of the expected risk defined by (6). This will present the

following problems.

o For the 2-PL model, expected risk can, in principle, still be exactly computed (see, Glas and
Béguin, 1996). However, this entails computation of elementary symmetric functions for
every quadrature point of the grid used for evaluation of the integrals over #. The numerical
precision of this procedure is an important point of further study. Another approach might be
to approximate the 2-PL model by the so-called OPLM (V\erhelst and Glas, 1995). An algo-
rithm for this approximation has been developed by Verstralen (1996). Since the OPLM is an

exponential family model, expected risk can be exactly computed using elementary symmet-

17
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ric functions. The third method is computation of expected risk via a Monte Carlo simulation,
where response patterns are drawn from the posterior predictive distribution defined by (7).
The number of simulated response patterns needed to obtain a reasonable approximation can
be determined by comparing the results with the results of the exact method as a base line.

o For the 3-PL model, the two exact approaches for the 2-PL model are no longer feasible, and
Monte Carlo simulation might be the only method for the computation of expected risk.

e Another application is the adoption of multidimensional IRT models (see, for instance, Mc-
Donald, 1997, or Reckase, 1997). Exact computation will again be confined to special cases
of multidimensional models that define exponential families. Otherwise, Monte Carlo meth-

ods will be necessary.

* Another point of further study is the fact that the dependence structure that might be expected
when using testlets is not properly modeled yet. Above, it was assumed that local independence
simultaneously holds within and over testlets, that is, all item responses are independent given .
However, item responses within a testlet are more alike than item responses of different testlets,
and it may take an hierarchical IRT model to properly describe this dependence structure. It is
expected that the performance of sequential testing might suffer from these additional sources

of variation, but not conclusive assertions can be made until further research is done.
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Table 1
Standard Errors for 8
number p-value

of 0.50 025 0.10
items SE SE SE
10 .6325 7303 1.0541
20 4472 5164 7454
30 3651 4216 .6086
40 3162 3651 .5270
50 2828 .3266 4714
60 2582 2981 .4303
70 2390 .2760 .3984
80 2236 2582 .3727
90 2108 .2434 3514
100 2000 .2309 .3333
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Table 2
Gain in Proportion of Correct Decisions
K=10
Proportion Incorrect
0. p=0.50 p=0.25 Gain
.0 .5000 .5000 .0000
.1 4372 4455 .0084
2 3759 3921 0162
3 3176 .3406 0230
4 2635 2919 0284
5 2146 2468 .0322
6 1714 .2057 .0343
7 1342 .1689 .0347
.8 11030 1367 .0337
9 0774 .1089 0315
1.0 .0569 0855 0285
L.1  .0410 0660 0250
1.2 .0289 .0502 - .0213
1.3 .0199 .0375 .0176
14 0134 .0276 .0142
L5 .0089 .0200 0111
1.6 .0057 0142 0085
1.7 .0036 0100 .0064
1.8 0022 .0069 .0046
1.9 0013 .0046 .0033
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Table 3
Gain in Proportion of Correct Decisions
K=20
Proportion Incorrect
8. p=0.50 p=0.25 Gain
.0 .5000 .5000 .0000
.1 4115 4232 .0117
2 3274 .3493 0219
3 2512 .2806 .0295
4 1855 2193 0337
S5 1318 1665 0347
.6 .0899 1226 0328
7 .0588 .0876 .0289
.8 .0368 .0607 0238
9 .0221 .0407 . 0186
1.0 .0127 0264 0137
1.1 .0070 0166 .0096
1.2 .0036 0101 .0064
1.3 .0018 .0059 0041
1.4 .0009 .0034 .0025
1.5 .0004 .0018 0014
1.6 .0002 .0010 ~.0008
1.7 .0001 .0005 .0004
1.8 .0000 .0002 .0002
1.9 .0000 .0001 .0001
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Table 4
Gain in Proportion of Correct Decisions
K=40
Proportion Incorrect
0. p=0.50  p=0.25 Gain
.0000  .5000 .5000 .0000

.1000 3759 3921 0162
2000 2635 2919 .0284
3000 1714 2057 .0343
4000  .1030 .1367 .0337

.5000  .0569 .0855 .0285
.6000  .0289 0502 .0213
.7000 .0134 .0276 .0142
.8000  .0057 .0142 .0085
.9000  .0022 0069 .0046

1.0000 .0008 .0031 .0023
1.1000 .0003 .0013 .0010
1.2000 .0001 .0005 .0004
1.3000 .0000 .0002 .0002
1.4000 .0000 .0001 .0001

1.5000 .0000 .0000 .0000
1.6000 .0000 .0000 .0000
1.7000 .0000 .0000 .0000
1.8000 .0000 .0000 .0000
1.9000 .0000 .0000 .0000
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Table 5
Correct Decisions and Item Selection Method
6. = 1.00, 5000 replications

sclection K=10 K=20 K=40
ability method WML EAP WML EAP WML EAP
f = 0.50 random a7 90 .84 93 92 .95

B=6, .86 .96 91 .96 96 .98

B=0 .83 95 .87 .94 .96 .96

_ B=6, 8 79 8 83 94 91

f ~ N(0,1) random .81 .89 .82 .87 .82 .84

B=0, .85 91 .85 .88 .84 .86
p=6 .81 .88 .82 .86 .83 .84
B =8, .81 81 8 81 8 .83

>
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Table 6
Relation Between Selection Method and Loss
K=10, § ~ N(0,1), 8. = 1.00, 1000 replications

number items proportion  proportion
of per selection correct testlets ~ mean
‘ testlets  testlet method decisions  given loss

1 10 fixed test .90 1.00 1546
2 5 sequential 90 .76 .1417
2 5 max info 90 76 1242
2 5 min variance 91 74 1217
2 5 cutting point .89 75 1297
10 1 sequential .89 46 .1091
10 1 max info .87 42 1219
10 1 min variance 91 41 0920
10 1 cutting point .87 43 1137
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Table 7 ‘
Relation between Selection Method and Loss
K=10,6 ~ N(0,1), 6. = 0.10, 1000 replications

number items proportion  proportion

of per selection correct testlets mean

testlets  testlet method decisions  given loss
1 10 fixed test .84 1.00 .1819
2 5 sequential .81 91 .1855
2 5 max info .83 91 .1837
2 5 min variance .79 91 2109
2 5 cutting point .82 .89 .1795
10 1 sequential .80 .86 .2037
10 1 max info .81 .83 1900
10 1 min variance .81 .81 1910
10 1 cutting point .83 .85 .1657
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Table 8
Relation between Selection Method and Loss
K=20, 8 ~ N(0,1), 8. = 1.00, 1000 replications

number items proportion  proportion
of per selection correct - testlets mean
testlets  testlet method decisions  given loss
1 20  fixed test .90 1.00 .2440
2 10 sequential 91 .63 .1645
2 10 max info 91 .64 .1683
2 10  min variance .92 .63 .1589
2 10 cutting point 93 .64 1554
4 5 sequential .89 42 1373
4 5 max info 91 41 .1209
4 5 min variance 91 42 .1255
4 5 cutting point 91 41 1245
20 1 sequential .89 .26 1119
20 1 max info 91 25 0979
20 1 min variance .92 27 .0957
20 1 cutting point .90 27 .0968
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Table 9
Relation between Selection Method and Loss
K=20,0 ~ N(0,1), 6, = 0.10, 1000 replications

number jtems proportion  proportion
of per selection correct testlets mean
testlets  testlet method decisions given loss
1 20 fixed test . .88 1.00 .2506
2 10 sequential .86 .70 .2030
2 10 max info .87 71 .1958
2 10 min variance .85 .70 .2050
2 10 cutting point .84 .70 .2060
4 5 sequential .84 .55 .1824
4 5 max info .86 .60 1816
4 5 min variance .86 58 1735
4 5 cutting point .85 .55 1769
20 1 sequential .85 .54 1700
20 1 max info .83 49 .1668
20 1 min variance .87 49 .1492
1

20 cutting point .85 46 .1625
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Table 10
Relation between Selection Method and Loss
K=40, 4 ~ N(0,1),0, = 1.00, 1000 replications

number jtems proportion proportion
of per selection correct testlets mean
testlets  testlet method - decisions given loss
1 40  fixed test .92 1.00 4316
4 10 sequentia .90 .30 1577
4 10 max info 91 .28 1515
4 10 min variance .92 .29 .1493
4 10 cutting point - g .28 1661
10 4 Sequential .90 19 -1148
10 4 maxinfo .90 18 1107
10 4 min variance .92 .17 .1002
10 4 - cutting point 91 .19 1169
40 1 Sequential .90 .10 1012
40 1 max info .89 1 .0949
40 1 91 10
1

min variance . . .0883
40 cutting point .89 .10 -1023
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Table 11
Relation between Selection Method and Loss
K=40,0 ~ N(0,1), 8. = 0.10, 1000 replications

number items . proportion proportion
of per selection correct testlets mean
testlets testlet method decisions  given loss
1 40  fixed test 91 1.00 .4263
4 10  sequential .84 .30 1972
4 10  max info .87 35 .1846
4 10  min variance .88 337 .1836
4 10 - cutting point 87 35 .1884
10 4 sequential .82 20 .1678
10 4 max info .82 .20 .1708
10 4 min variance - .85 .19 .1470
10 4 cutting point .82 21 1742
40 1 sequential .85 20 .1540
40 1 max info .85 .19 .1454
40 1 min variance .84 19 .1603
40 1 cutting point .86 .20 .1420
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Table 12
Relation between Selection Method and Loss
K=20, 8 = —0.50, . = 0.10, 1000 replications

number items proportion  proportion
of per selection correct testlets mean
testlets  testlet method decisions  given loss
1 20  sequential 91 1.00 .2846
2 10 sequential 91 77 .2389
2 10 max info .89 a7 2531
2 10 min variance .90 5 .2396
2 10 cutting point .90 75 .2442
4 5 sequential .87 .60 .2370
4 5 max info .90 .61 2118
4 5 min variance 91 .59 2019
4 5 cutting point .89 61 2212
20 1 sequential .88 .56 2187
20 1 max info .90 .55 .2035
20 1 min variance .89 .54 .2093
20 1

cutting point 91 .50 .1822
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Table 13
Relation between Selection Method and Loss
K=20, § = 0.00, 6, = 0.10, 1000 replications

number items proportion  proportion
of per selection correct testlets ~ mean
testlets  testlet method decisions  given loss
1 20  sequential .59 1.00 .2610
2 10 sequential .58 .82 2279
2 10 max info .57 X .2289
2 10 min variance .56 .83 2324
2 10 cutting point .59 .84 .2286
4 5 sequential .56 71 2077
4 5 max info .60 78 2153
4 5 min variance .63 72 .2004
4 5 cutting point .60 71 .2026
20 1 sequential .62 .68 ¢ .1931
20 1 max info .57 65 1960
20 1 min variance .59 .67 .1950
20 1 cutting point .60 .63 .1849
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Table 14
Relation between Selection Method and Loss
K=20, 8§ = 0.50, 6. = 0.10, 1000 replications

number items i proportion  proportion

of per selection correct testlets mean

testlets testlet method decisions  given loss
1 20  sequential .82 1.00 .3092
2 10 sequential .81 75 .2607
2 10  max info .80 76 .2708
2 10  min variance = .84 .76 .2500
2 10 cutting point .82 a7 .2604
4 5 sequential 78 .68 .2693
4 5 max info 75 .73 .2936
4 5 min variance .76 .73 .2888
4 5 cutting point .80 .70 .2624
20 1 sequential 5 .64 .2762
20 1 max info .78 .62 2544
20 1 min variance 79 .62 .2482
20 1

cutting point a7 .59 2574
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Table 15
Relation between Selection Method and Loss
K=20, § = 0.50, 8. = 1.00, 1000 replications

number items ' proportion proportion

of per selection correct testlets mean

testlets testlet method decisions  given loss
1 20  fixed test 92 1.00 2577
2 10 sequential .94 71 1905
2 10 max info .96 72 1784
2 10 min variance 95 1 1764
2 10 cutting point 92 73 2091
4 5 sequential 93 49 .1493
4 S max info .96 46 .1248
4 5 min variance 95 47 .1309
4 -5 cutting point 93 48 1525
20 1 sequential 92 .36 1297
20 1 max info 95 32 - .1010
20 1 min variance .96 34 0973
20 1 cutting point 94 .36 1161
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Table 16
Relation between Selection Method and Loss
K=40, § = —0.50, 8, = 0.10, 1000 replications

number items proportion  proportion

of per selection correct testlets mean

testlets  testlet method decisions  given loss
1 40  sequential 98 - 1.00 4216
4 10 sequential 85 32 .2661
4 10 max info 93 35 .2028
4 10 min variance 92 35 2153
4 10 cutting point .93 36 2070
10 4 sequential .90 .20 .1685
10 4 max info 91 20 1636
10 4 min variance .89 19 1798
10 4 cutting point .90 20 .1687
40 1 sequential .89 22 1835
40 1 max info .88 20 1873
40 1 min variance .88 20 .1873
40 1 cutting point .88 21 .1913
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Table 17
Relation between Selection Method and Loss
K=40,0 = 0.00, 6, = 0.10, 1000 replications

number itemg Proportion  proportion

of per selection correct testlets mean

testlets  testlet method decisions given loss
1 40 sequentia] .67 1.00 4495
4 10 sequential .53 35 .2092
4 10 max info .61 42 .2259
4 10 min variance .62 44 2319
4 10 - cutting point .61 44 .2351
10 4 sequential .63 27 1630
10 4 max info .63 24 JAs1
10 4 min variance .61 .26 .1606
10 4 cutting point .63 27 1637
40 1 sequential . .60 .28 .1708
40 1 max info .60 24 1578
40 - 1 min variance .60 .24 1578

1

40 cutting point .60 27 .1685
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Table 18
Relation between Selection Method and Loss
K=40, § = 0.50, 6, = 0.10, 1000 replications

number items proportion  proportion
of per selection correct testlets mean
testlets testlet method decisions  given loss
1 40  sequential .85 1.00 4876
4 10 sequential .80 33 2522
4 10 max info 79 40 .2868
4 10  min variance 78 40 2879
4 10 cutting point 82 42 2719
10 4 sequential 72 .26 2751
10 4 max info 72 .24 .2640
10 4 min variance .69 .23 2817
10 4 cutting point  , .71 .26 2790
40 1 sequential a1 25 2416
40 1 max info 75 23 2433
40 1 min variance 5 23 .2433
40 1.  cutting point 74 26 2594
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Table 19
Relation between Selection Method and Loss
K=40, 9 = 0.50, 6. = 1.00, 1000 replications

number items Proportion  proportion
of per selection correct testlets mean
testlets  testlet method decisions given loss
1 40 fixed test .97 1.00 4225
4 10 sequentia] 92 31 1846
4 10 max info .93 31 1773
4 10 min variance .92 29 1732
4 10 cutting point .91 31 1892
10 4 sequentia] 93 22 .1409
10 4 max info .96 .19 1071
10 4 min variance .96 .19 1113
10 4 cutting point .94 .23 1370
40 1 sequential .94 A3 .0962
40 1 max info .96 12 .0778
40 1 min variance .95 13 0868
1

40 cutting point .96 11 0737
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