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Abstract

In this paper, a version of sequential mastery testing is studied where response behavior

is modeled by an item response theory (IRT) model. Firstly, a general theoretical framework

will be sketched that is based on a combination of Bayesian sequential decision theory and item

response theory. Then it will be pointed out how IRT based sequential mastery testing can be

generalized to adaptive item and testlet selection rules, that is, to a situation where the choice

of the next item or testlet to be administered is optimized using the information from previous

responses. The performanCe of IRT based sequential and adaptive sequential mastery testing

will be studied in a number of simulations using the Rasch model. Finally, the possibilities and

difficulties of application of the approach in the framework of the 2-PL and the 3-PL model will

be discussed.

Key words: adaptive testing, Bayesian sequential decision theory, mastery testing,

item response theory, testlets.
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Introduction

In mastery testing the problem is to decide on either mastery or non-mastery, given

an examinee's observed response pattern. Well-known examples of mastery testing include

pass/fail decisions, licensure, and certification. The mastery test can have both a fixed-length

and variable-length format. In the fixed-length mastery test, the performance on a fixed number

of items is used for deciding on either mastery or non-mastery. Over the last few decades,

the fixed-length mastery problem has been studied extensively by many researchers (e.g., De

Gruijter & Hambleton, 1984; van der Linden, 1990). Most of these authors derived, analytically

or numerically, optimal rules by applying (empirical) Bayesian decision theory (e.g. DeGroot,

1970; Lehmann, 1986) to this problem.

In the variable-length format, in addition to the actions declaring mastery or non-

mastery, also the action continuing and administering another item is available (e.g., KingsbUry

& Weiss, 1983; Lewis & Sheehan, 1990; Sheehan & Lewis, 1992; Spray & Reckase, 1996). The

main advantage of variable-length mastery tests as compared to fixed-length mastery tests is that

they offer the possibility to provide shorter tests for those examinees who have clearly attained a

certain level of mastery (or clearly non-mastery) and longer tests for whom the mastery decision

is not as clear-cut (Lewis & Sheehan, 1990). For instance, Lewis and Sheehan (1990) showed

in a simulation study that average test lengths could be reduced by a half without sacrificing

classification accuracy.

Two main types of variable-length or multistage mastery tests can be distinguished.

First, the next item to be administered can be selected random. In this case, the stopping rule

(i.e., termination criterion) is adaptive but the item selection procedure is not adaptive. This

type of variable-length mastery problem is also known as a sequential mastery problem, and,

in the sequel, it will be referred to as SMT Examinees with a low and high level of ability are

classified as non-master and master, respectively, whereas those with an intermediate level of

ability are presented another item to be randomly selected. In case the termination criterion is

determined using Bayesian sequential decision theory (e.g., DeGroot, 1970; Lehmann, 1986),

and a computer is used for selecting and scoring the next random item, Lewis and Sheehan

(1990) denote this type of sequential mastery testing as computerized mastery testing. Costs of

administering one random item can explicitly be taken into account within the framework of

Bayesian sequential decision theory.

In the second main type of variable-length mastery testing not only the stopping rule,

but also the item selection mechanism is adaptive . The examinee's ability level is estimated
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after each response, and the item to be administered next to each examinee is neither too easy nor

too difficult for that examinee. In other words, able examinees can avoid doing too many easy

items and less able examinees can avoid being exposed to too many difficult items. Kingsbury

and Weiss (1983) denote this type of variable-length mastery testing as adaptive mastery testing

and in the sequel, thi will be referred to as ASMT (adaptive sequential mastery testing). In

ASMT it is assumed that items have unequal difficulty implying that the probability to answer

an item correctly is not equal for all items in the pool. It should be noted that, although items are

also allowed to have unequal difficulty in sequential mastery testing, the next item is randomly

selected in this problem.

Sequential Mastery Testing

In this section, a general theoretical framework for SMT will be presented that is based

on a combination of Bayesian sequential decision theory and item response theory (IRT). This

framework is an extension of the approach by Lewis and Sheehan (1990). Consider a situation

where one must decide whether or not a person has such an ability level that he or she can

be considered a master. So let 0, be some cut-off point on a latent continuum, persons with

ability 0 below this cut-off point are non-masters, persons with ability 0 above this cut-off point

are masters. To make the decision, a number of testlets consisting of one or more items are

administered. Suppose that the procedure consists of S stages labeled s = 1, S and at each

stage one of the testlets can be given. Then, at stage s, s < S, three decisions can be made:

{
m the respondent is judged a master, sampling stops,

d = n the respondent is judged a non-master, sampling stops,
c sampling is continued.

(1)

So in the first two cases administering testlets is terminated, while in the third case, a new testlet

is given. The loss associated with the first two decisions is

with A < 0 and

L(m, 0) = max{sC, sC + A(0 0,)} (2)

L(n, 0) = max{sC, sC + B(0 0,)}

6

(3)
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with B > 0; C is the cost of delivering one testlet, sC is the cost of delivering s testlets.

The decision will be based on the response pattern of the respondent. Let xs be

the response to the s-th testlet. Further, define the response patterns ys = (xi, ..., xs), for

s = 1, ..., S. At stage s, the decision d, that is, the decision whether the respondent is a master

or a non-master, or whether another testlet will be administered, will be based on the expected

losses of the three possible decisions given the observed response pattern ys The expected

losses of the first two decisions given a response pattern ys are computed as

and

0,

E(L(m, 0) y s) = sC + Af (0 04(0 I y s)d0 (4)

E(L(n, 0) I y s) = sC + B
o

(0 0,)p(0 I y5)d0,
c

(5)

where p(0 I ys) is the posterior density of 9 given ys. The expected loss of the third possible

decision is computed as the expected risk of decisions taken in the follow-up testlets. Let { xs+1

be the set of all possible response patterns on testlet 8+1. Then, for s = 1, S 1, the expected

risk of continuing testing is defined as

E(R(x5+1,y5) I Ys) = E pcx5+1 yoR(xs+,,ys)

with the so-called posterior predictive distribution p(x51 ys) given by

p(xs-Fl I Ys) = f p(xs-4-1 I 9)1)(O I ys)dO

(6)

(7)

and risk defined as

R(xs+i, ys) = rninfE(L(m, 0) I ys+i), E(L(n, 0) I Y s+i), E(R(xs-Fi, Y s) I 315)} . (8)

The risk associated with the last testlet is defined as

R(xs , .5-1) = millfE(L(M, 0) I 31 E(L(n, 0) s)} (9)

Notice that the definitions (6) through (9) imply a recursive definition of the expected risk of

7
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continuation. Since evaluation of E(R(x3+1,y,t) I y,$) entails a summation over the set of all

possible response patterns {x8+1}, exact computation of this expected risk generally presents

a major problem. One of the approaches to this problem is approximating (6) using Monte

Carlo simulation techniques, that is, simulating a large number of draws from p(xs+l I ys) to

compute the mean of R(xs+1,y5) over these draws. This approach is beyond the scope of the

present paper and will be treated later. However, in the case that the IRT model for xs+1 , say

p(x.s-f-i I 0), defines an exponential family, the problem of the large number of possible response

patterns is solved by the existence of minimal sufficient statistics. An example will be given in

the next section.

by

The Rasch model

In the Rasch model the probability of a response pattern x on a test of K items is given

exp(x,(8 Oz))gx 0, 0) = 1 + exp(0 fit)2=1

= exp(tO) exp(x'0)P0(19), (10)

where 0 = (01, ..., OK) is a vector of item parameters, t = Ei xi is the sum score and

NO) = 11(1 exp(0
t=1

Notice that t is the minimal sufficient statistic for 8. Further, it is easily verified that P0(0) is the

probability, given 0 , of a response pattern with all item responses equal to zero. The probability

of observing t given 0 is given by

At 0) = E exp(tO 0)/1(0)
{xit}

= (i3) exp(tO)Po(0)

with -yt an elementary symmetric function defined by -yt = E{tlt} exp(x'0) where {x I t}

8
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stands for the set of all possible response patterns resulting in a sum score t. An important

feature is that the posterior distributions of 0 given x and t are the Same, that is

exp(tO x'13)P0(0)g(0)d0
p(0 x) =

f exp(tO x'0)P0(0)g(8)d8

exp(t8)./30(0)g(0)(10

f exp(t0)P0(0)g(0)d0

7t (0) exp(tO)P0(0)g(0)d0
= f (0) exp(t0)130(0)g(0)(10

p(0 t).

At this point, an assumption will be introduced that may not be completely realistic. It will be

assumed that local independence simultaneously holds within and over testlets, than is, all item

responses are independent given O. So at this point, no special requirements are made to model

a possible dependence structure of testlet responses, this point will be returned to later. Then

analogously to the sequential testing procedure described above, the posterior distribution of

given a response pattern y s, p(0 I y s), is equivalent to the posterior of 8 given a score pattern

t8, ts = (ti, t,), in fact, it is equivalent to the posterior of 8 given a score r5, r5 = Esp=i tp.

Let p(0 rs) stand for the latter density. As a result, the expected losses (4), (5) and the expected

risk (6) can be written as E(L(m,0) I rs+1), E(L(n,0) r s+i) and E(R(ts+hrs) rs). More

specifically, the last loss is given by

E(R(t5+1,r .0 rs) = E p(t5+1 7-5)R(t8+i, rs) (12)

and (7) specializes to

P(ts+1 I rs) = f p(ts+i I 0)p(0 I r s)c10

sl)(0) p(0 r 8)c10 ,f 7t, (Os-Ft) exp(t5+10)P0( (13)

where 13 s+1 is a vector of the item parameters of testlet s + 1 and Pa(,1) (0) is equal to (11)

evaluated using 133+1, that is, Po(5+1)(0) is equal to the probability of a zero response pattern

on testlet s + 1, given O. Since elementary functions can be very quickly computed up to any

degree of precision (Ntrhelst, Glas and van der Sluis, 1984), the risk functions can be explicitly

9
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Adaptive Sequential Mastery 'testing

One of the topics addressed in this study is how the sequential testing procedure can

be optimized in case a large testlet bank is available. So the question is which testlets must be

administered next upon observing ys. Three approaches will be considered. The first two are

directly taken from the framework of non-Bayesian adaptive mastery testing (see, for instance,

Kingsbury and Weiss, 1983, Weiss and Kingsbury, 1984). Both are based on the maximum

information criterium; the first approach entails choosing items or testlets with maximum

information at 0,, the second one with maximum information at 'es, which is an estimate of

o at stage s. The third approach relates to a distinct difference between the non-Bayesian and

Bayesian approach. In the former approach, one is interested in a point estimate of 9 or in the

question whether 0 is below or above some cut-off point. In the latter approach, however,

one is primarily interested in minimizing possible losses due to missclassifications and the

costs of testing. This can be directly translated into a selection criterium for the next testlet.

In a Bayesian framework for traditional computer adaptive testing, one might be interested

in the posterior expectation of O. One of the selection criteria suited for optimizing testlet

administration is choosing the testlet with the minimal expected posterior variance. So if ys

is the observed response pattern, and fx8.+.11 is the set of all possible response patterns on the

next testlet, one may select the testlet where

Evar(0 Ys,Xs+i)P(Xs+ I Ys)
{..+0

is minimal (see, for instance, van der Linden, 1998). In a sequential mastery testing framework,

however, one is interested in minimizing possible losses, so a natural criterium for selection of

the next testlet is

Evar(L(m,0) L(71,0)
I 3's, Xs+1)13(Xs+1 I 3's),

lx,+Il
(14)

that is, a testlet is chosen such that the expected reduction in the variance of the difference

between the losses of the mastery and non-mastery decision is maximal. In other words, this

criterium focuses on the posterior variance of 8 given a response pattern (ys, xsi), and the

criterium entails that the sum over all possible follow-up response patterns xs.+.1 of this posterior

BEST COPY NW LE 1 0
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variance weighted by its posterior predictive probability p(xs+1 I ys) is minimal. In the case of

the Rasch model, (14) is relatively easy to compute, because the response patterns xs+i and ys

can be interchanged with the scores ts+i and rs. For the 2- and 3-PL, a simulation procedure

similar to the procedure of the previous section can be adopted, but this is beyond the scope of

the present paper.

Classification Precision and Adaptive Item Selection

Above, SMT was characterized by an adaptive stopping rule and ASMT by an adaptive

stopping rule and an adaptive item selection method.

Before proceeding with presenting the results of a number of simulation studies of

the performance of SMT and ASMT using the Bayesian decision theoretic-approach described

above, a small study of adaptive mastery testing without an adaptive stopping rule but with

an adaptive item selection method will be presented. One of the essential differences between

this and the above framework will be the absence of a loss function involving the distance of a

person's ability to the cut-off point and the cost of testing. The reason for this digression is to

present some benchmark of how much adaptive item selection might improve decision accuracy

in a context without an adaptive stopping rule, that is, in a context that is more like the usual

practice of computer adaptive testing (CAT).

Consider a computer adaptive testing situation where items are selected using the

maximum information criterium. In the Rasch model, item information is maximal if the item

parameter equals the person parameter, that is, if the probability of a correct response given 0

and /3 is equal to 0.50. In the sequel this probability will be called a local p-value. Suppose both

a person's ability parameter and. all item parameters are known. Suppose further that the item

bank can support giving the optimal item time and again, so that an optimal test with all response

probabilities equal to 0.50 could be given. In the second column of Table 1, the standard errors

of 0 for such a test are given for test lengths ranging from 10 to 100 items. These standard errors

are computed as the square root of the inverse test information. In the third and fourth column,

standard errors of 0 are given for sub-optimal tests with all items response probabilities equal

to 0.25 and 0.10, respectively.

Insert Table 1 about here

In Table 1 it can be seen that the difference between the standard error of an optimal test and

1 1



Adaptive Sequential Mastery Testing 9

a sub-optimal test decreases with test length: for a test of 10 items the gain in precision from

a test with items with local p-values of 0.25 to a test with local p-values of 0.50 is equal to

the difference between 0.7303 and 0.6325, which is 0.0978. In the case of 100 items, this gain

decreases to 0.0309. This, of course, is only an artificial example, in practice, adaptive testing

is based on estimates of item and person parameters, and if the sub-optimal test is a paper-and-

pencil test, there will be variation in the respondents' ability values and, as a consequence, in

the local and overall p-values of the items. Still, the example shows that the expected gain in

precision from adaptive testing must not be overestimated.

In Tables 2 to 4, a comparison is made of the gain in correct non-mastery classifications

as a function of the cut-off point G. Consider Table 2, where, for a test of 10 items, a comparison

is made of the gain in proportion of correct decisions when moving from a sub-optimal test with

a local p-value at 0 = 0 equal to 0.25 to an optimal test with local p-value at 8 = 0 of 0.50.

Insert Table 2 to 4 about here

In the first column, values of the cut-off point 0, ranging from 0.00 to 1.90 are given. In the

second and third column, the proportions of persons with an estimated ability above the cut-off

point are given, for a test with local p-values of 0.50 and 0.25, respectively. So the entries

in these two columns are the proportion of persons with true ability equal to zero that are

incorrectly judged as masters. These proportions are computed using the standard errors of

the first row of Table 1, and the assumption that 9 has a normal distribution. In the last column

the gain in the proportion of correct responses is computed as the difference of the entries in the

third and second column. Notice that the gain is single peaked, it is equal to zero if 0, = 0 and

it goes to zero if 0, goes to infinity. At 0, = 0.7 an optimum gain of 0.0347 is attained. Tables

3 and 4 contain analogous information for test lengths of K = 20 and K = 40. Notice that

the magnitude of the optimum does not change much, only the position of the optimum moves

closer to zero. As in the previous example, it must be stressed that this is a highly artificial

example, but it cannot be expected that the gain will be much higher in a real life situation with

estimates of item and person parameters and sub-optimal item banks.

Insert Table 5 about here

Finally, to obtain some flavor of the influence of the estimates of ability on the

proportion of correct decisions the following simulation studies, reported in Table 5, were

1- 2
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carried out. The table consists of two panels, the first one pertains to studies every simulee

had the same ability 9 = 0.50, the second panel pertains to studies where, for every simulee,

a value 9 was drawn from a standard normal distribution. The cut-off point in all studies was

0, = 1.00. The studies focussed on three variables: test length, ability estimation method

and item selection method. Test lengths were chosen equal to 10, 20 and 40. In Table 5, the

columns pertaining to these conditions are labeled "K=10", "K=20" and "K=40". Ability

was either estimated with weighted maximum likelihood (Warm, 1989) or expected a-posteriori

ability (Bock and Mislevy, 1982). The EAP estimate is computed using a standard normal

prior. The columns pertaining to these conditions are labeled "WMI2' and EAP", respectively.

Four item selection methods were studied. In the first one, for every simulee item parameters

were randomly drawn from the standard .normal distribution. In the second method, all item

parameters were equal to 0,. In the third method, all item parameters were equal to the true

ability parameter of the testee. Finally, for the fourth method, the item parameter was equal

to the current ability estimate O. For all studies, the cut-off score 0, was equal to 1.00. The

rows of Table 5 pertaining to these four selection methods are labeled "random", "0

= 0", and "0 = , respectively. Of course, the three last conditions are highly artificial,

because it is assumed that the most informative item at 0,, the true theta 0, and the running

estimate 6, is always available. Further, the true ability 0 is unknown. Still, the simulations can

be interesting reference material for the evaluation of the results on SMT and ASMT that will

be given below. Table 5 contains the proportions correct decisions in 5000 replications for each

combination of test length, ability estimation method and item selection method. The complete

study was replicated several times, the standard errors of the proportions in the table are about

0.01. It can be seen that, for the studies with fixed 0, both item selection at the true 0 and at

0, produced the largest proportion of correct decisions. Selection at the running estimate of 0

did not systematically produce results better than random item selection. In the second panel

of Table 5, it can be seen that randomly drawing 0 generally produced less favorable results.

Further, the positive association between test length K and proportion of correct classifications

vanished. This is due to the fact that random drawing of 0 results in a lot of values far away

from 0,, where the proper classification is obvious after selection .of only a few items and

adding more items contributes little to classification precision. This leads to the expectation

that in these cases, item and testlet administration will be quickly terminated in a sequential

Bayesian mastery testing framework. In the following section, it will be investigated whether

these expectations are justified.

13
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Performance of Sequential and Adaptive Sequential Mastery Testing

Design of the study

In this section, the relation between various selection methods on one hand and the

proportion of correct decisions, the proportions of testlets given and the mean loss on the other

hand will be studied with a number of simulation studies. The main research questions will

be whether, and under which circumstances, sequential testing improves upon a fixed test, and

whether, and under which circumstances, adaptive sequential testing improves upon sequential

testing. The design of the studies will be explained using the results of the first study, reported

in Table 6.

Insert Tables 6 and 7 about here

The study concerns ten items and the cut-off point 9. is equal to one. The nine bottom lines of

the table represent nine simulation studies of 1000 replications each. For every replication a true

was drawn from a standard normal distribution. In the first simulation study, every simulee

was presented a fixed test of 10 items. For every simulee the item parameters were drawn from

a standard normal distribution. Also the prior distribution of ability was standard normal. The

next two sets of four conditions were two sequential mastery testing procedures, one with two

testlets of five items and one with 10 testlets of one item. For these sequential mastery testing

procedures, the parameters of the loss functions (2) and (3) were equal to A = 1.00, B = 1.00

and C = 0.01kt, where kt stands for the number of items in a testlet. The motivation for this

choice of C is keeping the total cost of administering 10 items constant. The numbers of testlets

and the numbers of items within testlets are summarized in the first two columns of Table 6. In

the next row, the selection method is specified further. The two rows labeled "sequential" stand

for a SMT condition were the item parameters of the first testlet were all equal to zero and the

item parameters of all other testlets were randomly drawn from a standard normal distribution.

The conditions labeled "max info", min variance" and "cutting point" entail ASMT

procedures. Also in these conditions the first testlet has all item parameters equal to zero.

The reason for starting both the SMT and ASMT procedures with testlets with similar item

parameters was to create comparable conditions in the initial phase of the procedures. The

following testlets were chosen from a bank of 50 testlets that was generated as follows. First

50kt item parameters were drawn from the standard normal distribution. Then, these 50kt

14
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item parameters were ordered in magnitude from low to high. The first kt items comprised

the first testlet in the bank, the second kt items comprised the second testlet, etcetera. In this

way, 50 testlets were created that were homogeneous in difficulty and attained their maximum

information at distinct points of the latent ability scale. In the "max info" condition, at stage

s, s = 1, S 1, an expected a posteriori estimate of ability was computed and the expected

risk of a "continue sampling" decision was computed using the S s testlets with highest

information at this estimate. If a "continue sainpling" decision was made, the next testlet

administered was the most informative testlet of the S s testlets initially selected. The

procedure in the "min variance" condition was roughly similar, only here the minimum variance

criterium defined by (14) was used. Finally, in the "cutting point" condition, testlets were

selected from the testlet bank described above that were most informative at the cutting point

0,. The last three columns of Table 6 give the proportion of correct decisions, the proportion of

testlets given and the mean loss over 1000 replications for each of the nine conditions, where

the loss in every replication was computed using (2) or (3) evaluated at the true value of 0, with

s as the number of testlets actually given.

Results

The study described in the previous section was carried out for three total test lengths,

K = 10, K = 20 and K = 40, two possible cutting points, 0, = 1.00 and 0, = 0.10, and

several choices of the true ability, that is, in some studies, for each replication a value of 9 was

drawn from a standard normal distribution, and in other studies, 9 remained fixed at 0 = 0.50,

0 = 0.00, or 9 = 0.50.

Consider the results of Table 6. In the simulation studies giving rise to this table, the

cutting score was 0, = 1.00. Notice that, in terms of mean loss, sequential testing did slightly

improve upon a fixed test. In the studies to be discussed, it will become apparent that this effect

increased as a function of the total number of items K; it will become apparent that for K = 40,

this effect became quite large. Further, in Table 6 it can be seen that adaptive sequential testing

does indeed improve upon sequential testing in terms of mean loss, but this effect was generally

small, and it was not consistent over all three adaptive selection methods. Below, it will become

apparent that the decrease of mean loss depended on the position of the cut-off score. Further,

it can be seen that the decrease of mean loss was mainly due to a dramatic reduction in the

proportion of testlets given. The number of correct classifications remained stable. Below, it

will become apparent that the proportion of testlets given decreased further with increasing K.

Finally, it can be seen that the mean loss was smallest in the cases that K testlets of one item

15
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each were given. This result will be further corroborated in the sequel.

Table 7 contains results for a combination of a cutting score 0, = 0.10, an expected

true 8 = 0 and a total number of items K = 10. This combination of a cutting score very close

to the mean true ability and a small number of items produced the worst overall results. This

will be further corroborated in a simulation with 8 fixed. Still, a combination of K testlets and

item selection at the cutting point produced the best results.

Insert Tables 8 to 11 about here

The Tables 8 to 11 contain the results for all combinations of K = 20 or K = 40 and

0, = 0.10 or 0, = 1.00. The negative relation between the number of testlets and mean loss

remained apparent, and, overall, the mean loss for ASMT was slightly better. Notice that, in

Table 10, the decrease of loss for the combination of 40 testlets and 0, = 1.00, displayed in

the four bottom rows with respect to the loss of a fixed test, displayed in the first row, is quite

dramatic, mainly due to the fact that the proportion on items given decreases to 0.10.

Insert Tables 12 to 19 about here

The Tables 12 to 19 are an overview of simulation studies of how SMT and ASMT

perform for some fixed points on the ability scale. Four conditions were studied: a combination

of 0, = 0.10 with 9 = 0.50, 0 = 0.00, and 9 = 0.50, respectively, and a combination

of 0, = 1.00 and 9 = 0.50. Notice that distance between the true ability in the first and the

latter are roughly the same; however, the reason for adding these conditions they are differently

located with respect to'the standard normal prior ability distribution. First consider the Tables 12

to 15, where the results for K = 20 are given. As above, in all tables, there is a substantial main

effect on average loss of augmenting the number of testlets and a small main effect on average

loss of adaptive testlet selection. Comparing the four bottom lines of the Tables 12, 13 and

14, it can be seen that a small distance between the true 9 and 0, does not necessarily produce

the largest losses; however, the proportions of testlets that must be administered to attain this

result are slightly larger than the proportions of testlets that must be administered in the two

other cases, reported in Tables 12 and 14. Comparing Tables 12, 13 and 14 with Table 15, it

can be seen that the position of 0 and 0, with respect to the prior ability distribution can have

important consequences: overall, the losses dramatically decrease, and the gain from adaptive

testlet selection becomes more pronounced.
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The picture of the Tables 12 to 15 becomes less clear when the total number of

items K is augmented to 40. In Tables 16, 17 and 18, administering 40 testlets of 1 item no

longer uniformly produces the smallest loss; only Table 19 still presents the clear-cut picture

of a substantial main effect for number of testlets and a small main effect for adaptive testlet

selection.

Discussion

In this paper, a general theoretical framework for sequential mastery testing based

on a combination of Bayesian sequential decision theory and item response theory was

presented. Further, it was shown that the implication of IRT supports adaptive item and testlet

selection. Then the impact of sequential testing and adaptive item selection on average loss

was investigated in a number of simulation studies. It was found that sequential mastery testing

does indeed lead to a considerable decrease of loss, mainly due to a significant decrease of

testlets administered. The number of correct decisions remains relatively stable. The decrease

of loss is positively related to the number of items in a testlet: the larger the number of testlets

and the smaller the number of items in a testlet, the less the loss. The reduction of loss due to

adaptive testlet selection is less pronounced. Across studies, the minimal variance criterium (14)

and selection of testlets with maximum information near the cut-off point 0, produce the best

results, but the difference with the maximum information criterium is very small. Summing

up, the conclusion is that the combination of Bayesian sequential decision theory and IRT

framework provides a sound framework for sequential mastery testing where both the cost of

test administration and the distance between the testees ability and cut-off point have to be taken

into account. Finally, the merits of adaptive testing must not be exaggerated.

The general approach sketched here can be applied to several other IRT models; the

main bottleneck is the computation of the expected risk defined by (6). This will present the

following problems.

For the 2-PL model, expected risk can, in principle, still be exactly computed (see, Glas and

Béguin, 1996). However, this entails computation of elementary symmetric functions for

every quadrature point of the grid used for evaluation of the integrals over O. The numerical

precision of this procedure is an important point of further study. Another approach might be

to approximate the 2-PL model by the so-called OPLM (Nèrhe lst and Glas, 1995). An algo-

rithm for this approximation has been developed by erstralen (1996). Since the OPLM is an

exponential family model, expected risk can be exactly computed using elementary syrnmet-
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tic functions. The third method is computation of expected risk via a Monte Carlo simulation,

where response patterns are drawn from the posterior predictive distribution defined by (7).

The number of simulated response patterns needed to obtain a reasonable approximation can

be determined by comparing the results with the results of the exact method as a base line.

For the 3-PL model, the two exact approaches for the 2-PL model are no longer feasible, and

Monte Carlo simulation might be the only method for the computation of expected risk.

Another application is the adoption of multidimensional IRT models (see, for instance, Mc-

Donald, 1997, or Reckase, 1997). Exact computation will again be confined to special cases

of multidimensional models that define exponential families. Otherwise, Monte Carlo meth-

ods will be necessary.

Another point of further study is the fact that the dependence structure that might be expected

when using testlets is not properly modeled yet. Above, it was assumed that local independence

simultaneously holds within and over testlets, that is, all item responses are independent given O.

However, item responses within a testlet are more alike than item responses of different testlets,

and it may take an hierarchical IRT model to properly describe this dependence structure. It is

expected that the performance of sequential testing might suffer from these additional sources

of variation, but not conclusive assertions can be made until further research is done.

1 8
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Table 1
Standard Errors for
number p-value
of 0.50 0.25 0.10
items SE SE SE
10 .6325 .7303 1.0541
20 .4472 .5164 .7454
30 .3651 .4216 .6086
40 .3162 .3651 .5270
50 .2828 .3266 .4714
60 .2582 .2981 .4303
70 .2390 .2760 .3984
80 .2236 .2582 .3727
90 .2108 .2434 .3514
100 .2000 .2309 .3333
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Table 2
Gain in Proportion of Correct Decisions

K=10
Proportion Incorrect

19, p=0.50 p=0.25 Gain
.0 .5000 .5000 .0000
.1 .4372 .4455 .0084
.2 .3759 .3921 .0162
.3 .3176 .3406 .0230
.4 .2635 .2919 .0284
.5 .2146 .2468 .0322
.6 .1714 .2057 .0343
.7 .1342 .1689 .0347
.8 .1030 .1367 .0337
.9 .0774 .1089 :0315
1.0 .0569 .0855 .0285
1.1 .0410 .0660 .0250
1.2 .0289 .0502 .0213
1.3 .0199 .0375 .0176
1.4 .0134 .0276 .0142
1.5 .0089 .0200 .0111
1.6 .0057 .0142 .0085
1.7 .0036 .0100 .0064
1.8 ..0022 .0069 .0046
1.9 .0013 .0046 .0033
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Table 3
Gain in Proportion of Correct Decisions

K=20

Proportion Incorrect
0, p=0.50 p=0.25 Gain
.0 .5000 .5000 .0000
.1 .4115 .4232 .0117
.2 .3274 .3493 .0219
.3 .2512 .2806 .0295
.4 .1855 .2193 .0337
.5 .1318 .1665 .0347
.6 .0899 .1226 .0328
.7 .0588 .0876 .0289
.8 .0368 .0607 .0238
.9 .0221 .0407 .0186
1.0 .0127 .0264 .0137
1.1 .0070 .0166 .0096
1.2 .0036 .0101 .0064
1.3 .0018 .0059 .0041
1.4 .0009 .0034 .0025
1.5 .0004 .0018 .0014
1.6 .0002 .0010 .0008
1.7 .0001 .0005 .0004
1.8 .0000 .0002 .0002
1.9 .0000 .0001 .0001

Adaptive Sequential Mastery Testing - 20
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Table 4
Gain in Proportion of Correct Decisions

K=40

Proportion Incorrect
0, p=0.50 p=0.25 Gain

.0000 .5000 .5000 .0000
.1000 .3759 .3921 .0162
.2000 .2635 .2919 .0284
.3000 .1714 .2057 .0343
.4000 .1030 .1367 .0337
.5000 .0569 .0855 .0285
.6000 .0289 .0502 .0213
.7000 .0134 .0276 .0142
.8000 .0057 .0142 .0085
.9000 .0022 .0069 .0046
1.0000 .0008 .0031 .0023
1.1000 .0003 .0013 .0010
1.2000 .0001 .0005 .0004
1.3000 .0000 .0002 .0002
1.4000 .0000 .0001 .0001
1.5000 .0000 .0000 .0000
1.6000 .0000 .0000 .0000
1.7000 .0000 .0000 .0000
1.8000 .0000 .0000 .0000
1.9000 .0000 .0000 .0000

Adaptive Sequential Mastery Testing - 21
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Table 5
Correct Decisions and Item Selection Method

9, = 1.00, 5000 replications

ability
selection
method

K=10
WML EAP

K=20
WML EAP

K=40
WML EAP

0 = 0.50 random .77 .90 .84 .93 .92 .95
= 0, .86 .96 .91 .96 .96 .98
= 8 .83 .95 .87 .94 .96 .96
= bs .80 .79 .86 .83 .94 .91

0 - N(0, 1) random .81 .89 .81 .87 .82 .84
= 0, .85 .91 .85 .88 .84 .86

13 = 8 .81 .88 .82 .86 .83 .84
= "es .81 .81 .82 .81 .83 .83

2 5
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Table 6
Relation Between Selection Method and Loss

K=10, 0 N(0, 1), 0, = 1.00, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 10 fixed test .90 1.00 .1546
2 5 sequential .90 .76 .1417
2 5 max info .90 .76 .1242
2 5 min variance .91 .74 .1217
2 5 cutting point .89 .75 .1297
10 1 sequential .89 .46 .1091
10 1 max info .87 .42 .1219
10 1 min variance .91 .41 .0920
10 1 cutting point .87 .43 .1137
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Table 7

Relation between Selection Method and Loss
K=10, 0 N(0, 1), 0, = 0.10, 1000 replications

number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 10 fixed test .84 1.00 .18192 5 sequential .81 .91 .18552 5 max info .83 .91 .18372 5 min variance .79 .91 .21092 5 cutting point .89 .89 .179510 1 sequential .80 .86 .203710 1 max info .81 .83 .190010 1 min variance .81 .81 .191010 1 cutting point .83 .85 .1657
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Table 8
Relation between Selection Method and Loss

K=20, 0 - N(0, 1), 0, = 1.00, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 20 fixed test .90 1.00 .2440
2 10 sequential .91 .63 .1645
/ 10 max info .91 .64 .1683
2 10 min variance .92 .63 .1589
2 10 cutting point .93 .64 .1554
4 5 sequential .89 .42 .1373
4 5 max info .91 .41 .1209
4 5 min variance .91 .42 .1255
4 5 cutting point .91 .41 .1245
20 1 sequential .89 .26 .1119
20 1 max info .91 .25 .0979
20 1 min variance .92 .27 .0957
20 1 cutting point .90 .27 .0968
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Table 9

Relation between Selection Method and LossKr---20, N(0, 1), 0, = 0.10, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss1 20 fixed test .88 1.00 .25062 10 sequential .86 .70 .20302 10 max info .87 .71 .19582 10 min variance .85 .70 .20502 10 cutting point .84 .70 .20604 5 sequential .84 .55 .18244 5 max info .86 .60 .18164 5 min variance .86 .58 .17354 5 cutting point .85 .55 .176920 1 sequential .85 .54 .170020 1 max info .83 .49 .166820 1 min variance .87 .49 .149220 1 cutting point .85 .46 .1625
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Relation between Selection Method and LossK=40, 0 - N(0, 1), Oc = 1.00, 1000 replicationsnumber

of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss1 40 fixed test .92 1.00 .43164 10 sequential .90 .30 .15774 10 max info .91 .28 .15154 10 min variance .92 .29 .14934 10 cutting point .91 .28 .166110 4 sequential .90 .19 .114810 4 max info .90 .18 .110710 4 min variance .92 .17 .100210 4 cutting point .91 .19 .116940 1 sequential .90 .10 .101240 1 max info .89 .11 .094940 1 min variance .91 .10 .088340 1 cutting point .89 .10 .1023
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Table 11
Relation between Selection Method and Loss

K=40, 0 N(0, 1), 0, = 0.10, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 40 fixed test .91 1.00 .4263
4 10 sequential .84 .30 .1972
4 10 max info .87 .35 .1846
4 10 min variance .88 .33 .1836
4 10 cutting point .87 .35 .1884
10 4 sequential .82 .20 .1678
10 4 max info .82 .20 .1708
10 4 min variance .85 .19 .1470
10 4 cutting point .82 .21 .1742
40 1 sequential .85 .20 .1540
40 1 max info .85 .19 .1454
40 1 min variance .84 .19 .1603
40 1 cutting point .86 .20 .1420
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Table 12
Relation between Selection Method and Loss

K=20, 0 = -0.50, 0c = 0.10, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 20 sequential .91 1.00 .2846
2 10 sequential .91 .77 .2389
2 10 max info .89 .77 .2531
2 10 min variance .90 .75 .2396
2 10 cutting point .90 .75 .2442
4 5 sequential .87 .60 .2370
4 5 max info .90 .61 .2118
4 5 min variance .91 .59 .2019
4 5 cutting point .89 .61 .2212
20 1 sequential .88 .56 .2187
20 1 max info .90 .55 .2035
20 1 min variance .89 .54 .2093
20 1 cutting point .91 .50 .1822
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Table 13
Relation between Selection Method and Loss
K=20, 9 = 0.00, 0, = 0.10, 1000 replications

number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 20 sequential .59 1.00 .2610
2 10 sequential .58 .82 .2279
2 10 max info .57 .83 .2289
2 10 min variance .56 .83 .2324
2 10 cutting point .59 .84 .2286
4 5 sequential .56 .71 '.2077
4 5 max info .60 .78 .2153
4 5 min variance .63 .72 .2004
4 5 cutting point .60 .71 .2026
20 1 sequential .62 .68 e .1931
20 1 max info .57 .65 .1960
20 1 min variance .59 .67 .1950
20 1 cutting point .60 .63 .1849
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Table 14
Relation between Selection Method and Loss
K=20, 0 = 0.50, Oe = 0.10, 1000 replications

number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 10 sequential .82 1.00 .3092
2 10 sequential .81 .75 .2607
2 10 max info .80 .76 .2708
2 10 min variance .84 .76 .2500
2 10 cutting point .82 .77 .2604
4 5 sequential .78 .68 .2693
4 5 max info .75 .73 .2936
4 5 min variance .76 .73 .2888
4 5 cutting point .80 .70 .2624
20 1 sequential .75 .64 .2762
20 1 max info .78 .62 .2544
20 1 min variance .79 .62 .2482
20 1 cutting point .77 .59 .2574
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Table 15
Relation between Selection Method and Loss
K=20, 8 = 0.50, 0, = 1.00, 1000 replications

number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 20 fixed test .92 1.00 .2577
2 10 sequential .94 .71 .1905
2 10 max info .72 .1784
2 10 min variance

..96
.95 .71 .1764

2 10 cutting point .91 .73 .2091
4 5 sequential .93 .49 .1493
4 5 max info .96 .46 .1248
4 5 min variance .95 .47 .1309
4 5 cutting point .93 .48 .1525
20 1 sequential .92 .36 .1297
20 1 max info .95 .32 .1010
20 1 mM variance .96 .34 .0973
20 1 cutting point .94 .36 .1161
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Table 16
Relation between Selection Method and Loss

K=40, 0 = -0.50, 0, = 0.10, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 40 sequential .98 1.00 .4216
4 10 sequential .85 .32 .2661
4 10 max info .93 .35 .2028
4 10 min variance .92 .35 .2153
4 10 cutting point .93 .36 .2070
10 4 sequential .90 .20 .1685
10 4 max info .91 .20 .1636
10 4 min variance .89 .19 .1798
10 4 cutting point .90 .20 .1687
40 1 sequential .89 .22 .1835
40 1 max info .88 .20 .1873
40 1 min variance .88 .20 .1873
40 1 cutting point .88 .21 .1913
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Table 17

Relation between Selection Method and LossK=40, 9 = 0.00, 0. = 0.10, 1000 replications
number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss1 40 sequential .67 1.00 .44954 10 sequential .53 .35 .20924 10 max info .61 .42 .22594 10 min variance .62 .44 .23194 10 cutting point .61 .44 .235110 4 sequential .63 .27 .163010 4 max info .63 .24 .151110 4 min variance .61 .26 .160610 4 cutting point .63 .27 .163740 1 sequential .60 .28 .170840 1 max info .60 .24 .157840 1 min variance .60 .24 .157840 1 cutting point .60 .27 .1685
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Table 18
Relation between Selection Method and Loss
K=40, 9 = 0.50, 0, = 0.10, 1000 replications

number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss

1 40 sequential .85 1.00 .4876
4 10 sequential .80 .33 .2522
4 10 max info .79 .40 .2868
4 10 min variance .78 .40 .2879
4 10 cutting point .82 .42 .2719
10 4 sequential .72 .26 .2751
10 4 max info .72 .24 .2640
10 4 min variance .69 .23 .2817
10 4 cutting point , .71 .26 .2790
40 1 sequential .77 .15 .2416
40 1 max info .75 .23 .2433
40 1 min variance .75 .23 .2433
40 1 cutting point .74 .26 .2594
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Relation between Selection Method and LossK=40, 0 = 0.50, 0, = 1.00, 1000 replications

number
of
testlets

items
per
testlet

selection
method

proportion
correct
decisions

proportion
testlets
given

mean
loss1 40 fixed test .97 1.00 .42254 10 sequential .92 .31 .18464 10 max info .93 .31 .17734 10 min variance .92 .29 .17324 10 cutting point .91 .31 .189210 4 sequential .93 .22 .140910 4 max info .96 .19 .107110 4 min variance .96 .19 .111310 4 cutting point .94 .23 .137040 1 sequential .94 .13 .096240 1 max info .96 .12 .077840 1. min variance .95 .13 .086840 1 cutting point .96 .11 .0737
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