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Abstract

When multiple linear regression is used to develop a prediction model, sample size must be large
enough to ensure stable coefficients. If the derivation sample size is inadequate, the model may not
predict well for future subjects. The precision efficacy analysis for regression (PEAR) method uses a
cross-validity approach to select sample sizes such that models will predict as well as possible in future
samples.

Previous studies have shown the sample sizes suggested by the PEAR method to be superior to
other methods in limiting cross-validity shrinkage to acceptable a priori levels. The purpose of this
paper is (a) to verini further the PEAR method for the selection of regression sample sizes and (b) to
extend the analysis to include an investigation of the effects of multicollinearity on coefficient estimates
obtained through multiple linear regression analysis.

Precision Efficacy Analysis for Regression

For both statistical and practical reasons, researchers should choose for their sample size "the

smallest number of cases that has a decent chance of revealing a significant relationship if, indeed, one is

there" (Tabachnick & Fidell, 1989, p. 129). When generalizability is the primary concern, this concept

translates as the smallest sample that will provide the reliability of results required across multiple

samples. Especially in multiple linear regression, which is used for many purposes, necessary sample

size depends heavily on the goals and design of the analysis. "At one extreme, the null hypothesis

p = 0 can often be tested powerfully with only a few dozen cases. At the other extreme, hundreds or

thousands of cases might be needed to accurately estimate the sizes of higher-order collinear

interactions" (Darlington, 1990, p. 380).

Several methods currently exist to help researchers narrow the choice of sample size a little more

than either dozens or thousands, including conventional rules, statistical power methods, and cross-

validation methods. Unfortunately, because of difficulties and contradictions among these various

methods, sample size selection in multiple linear regression has been problematic (Wampold & Freund,

1987). For example, how does one reconcile the difference between Cohen's (1988) statistical power

method that recommends 48 subjects, Park and Dudycha's (1974) method that advises 93 subjects, and

Stevens' (1996) 15:1 subject-to-predictor ratio that suggests 60? See Table 1 for several such

discrepancies. Consequently, the selection of adequate and appropriate sample sizes is not always an

easy matter in multiple linear regression.
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Table 1
Sample Sizes at Two Levels of Expected Sample (R 2)

and Four Predictors
Assumed Population Squared Correlation

Method
Rp2 = .25 RE2 10 aCohen (1988) [1 p = .90, a = .05] 48 144Darlington (1990) Precision Analysis° 166 230Gatsonis & Sampson (1989 ) [1 -16 = .90, a = .05] 55 165Milton (1986) [t = 2, Ari = .02, a = .05] 155 185Park & Dudycha (1974) Ly 2= .90[e 93 173PEAR method [E = .22.RE]

2 141 414Predictive Power Method [E = .2ORE ] 124 36415:1 (Stevens, 1996) 60 6030:1 (Pedhazur & Schmelkin, 1991) 120 12050 +8p (Green, 1991) 82 82Sawyer (1982) [K = 1.05] 55 55
2a for Cphen and Gatsonis & Sampson, a5ually RE = .30. b for Rz = .25, lower confidence limit (LCL) is .16;for RE = .10, LCL = .04. CforRE = .25, E = .05; for RE = .10, E = .03.

Statement of the Problem

For whatever reasons, empirical study into power, generalizability, and sample size for multiple

linear regression has been lacking. Subject-to-predictor conventions have existed for decades with little

empirical or mathematical support. Previous work has found sample size conventions overly simplistic

and very limited in their value (Brooks & Barcikowski, 1994, 1995; Drasgow & Dorans, 1982).

Additionally, sample size methods offered by Park and Dudycha (1974), Cohen (1988), Gatsonis and

Sampson (1989), and Sawyer (1982) were each found inadequate by Brooks and Barcikowski (1994,

1995) in some way, especially in regard to generalizability.

The general purpose of this study is to verify further a method by which the relative

generalizability of sample multiple linear regression results may be analyzed. This method for assessing

generalizability, called Precision Efficacy Analysis for Regression (PEAR), serves as the foundation for a

method of determining appropriate sample sizes in multiple linear regression (i.e., the PEAR method).

The evolution of the PEAR method extends from earlier work done by Brooks and Barcikowski (1994,

1995, 1996).

The PEAR method uses a cross-validity approach to the selection of multiple linear regression

sample sizes so that regression models will predict as well as possible for future subjects. The method,
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which is based on an algebraic manipulation of a cross-validation shrinkage formula, enables researchers

to limit the expected shrinkage of R 2. Essentially, the method uses an effect size to determine the

subject-to-variable ratio appropriate for the squared multiple correlation expected in a given study. For

example, using one set of criteria at an expected p2 of .40, the PEAR method suggests a subject-to-

variable ratio of approximately 15:1; but at an expected p2 of .20, the PEAR method recommends a ratio

of 38:1 (see Table 2). Table 2 also shows that the PEAR method simplifies to the same subject-to-

variable ratio for all numbers of variables; whereas a different ratio is required when only the number of

predictors is considered (as is the case with subject-to-predictor ratios).

Table 2
Sample Sizes from the PEAR Method for Several Effect Sizes and Several Predictor Set Sizes

2
Expected Sample Squared Multiple Correlation (RE)

Predictors .10 .20 .30 .40 .50 .60
Subjects per Predictor

Subjects per Variable a

2 124.23 56.05 33.32 21.95 15.14 10.59
6 96.62 43.59 25.91 17.08 11.77 8.24
10 91.10 41.10 24.43 16.10 11.10 7.77
14 88.73 40.03 23.80 15.68 10.81 7.56
18 87.42 39.44 23.45 15.45 10.65 7.45

ALL 82.82 37.36 22.21 14.64 10.09 7.06

2
Note. The PEAR method is explained in detail later (here, E = .22RE ).
a number of variables is p+1, where p is the number of predictors.

Previous studies by Brooks and Barcikowski (1994, 1995) have compared the sample sizes

suggested by the PEAR method to statistical power methods (Cohen, 1988; Gatsonis & Sampson, 1989),

conventions (Green, 1991; Pedhazur & Schmelkin, 1991; Stevens, 1996), and cross-validity methods

(Park & Dudycha, 1974; Sawyer, 1982). The PEAR method has been found to be superior to these

existing methods in reliably limiting cross-validity shrinkage to specific acceptable a priori levels. The

first problem to be studied here will be the efficiency of the PEAR method at several levels of accuracy.

Investigation of this problem will help to validate the PEAR method for more extensive use with standard

multiple linear regression. Further, examination of this problem may help to provide some indication as

to whether certain criteria used in the PEAR method are better able to recommend adequate sample sizes
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than others.

Second, the study will investigate whether the larger samples recommended by the PEAR

method provide more reliable regression coefficients even under multicollinearity conditions. Although

multicollinearity is known to impact the results of multiple linear regression analyses, very little is

known about the effect an adequate sample size will have on multicollinear data. That is,

multicollinearity has been shown consistently to be a problem when sample sizes are small, especially

relative to the number of predictors. Indeed, one solution to the problem of multicollinearity is to collect

additional data. Investigation of this problem will help to determine whether the use of adequate sample

sizes chosen at the beginning of a study, as determined by the PEAR method, will alleviate much of the

variance inflation problem associated with multicollinearity in multiple linear regression studies.

Delimitations and Limitations of the Study

The study must be viewed from certain perspectives, which imply specific delimitations and

limitations for the study. This study applies to standard regression analysis, where all predictors are

entered simultaneously. More specifically, the current research proceeds based on the general linear

model and multiple linear regression based upon the ordinary least squares criterion, used for prediction

from a random model perspective.

Multiple linear regression is used primarily for two purposes, explanation and prediction, which

as general categories include many other functions (e.g., see Afifi & Clark, 1990; Chatterjee & Price,

1991; Hocking, 1976; Montgomery & Peck, 1992; Myers, 1990). Regression can be used to explain by

(a) identifying regressor variables that best explain, through their individual relative effects, the amount

of a dependent variable, or (b) building models that clarify or describe the nature of the relationships

among the variables. Or regression can be used to predict a score on the dependent variable for a given

individual with as little error as possible. Practical application is the main emphasis of regression

analysis used in prediction studies. A researcher desires to develop an efficient regression equation that

optimally combines predictor scores in order to predict accurately a subject's score on a particular

criterion variable (Afifi & Clark, 1990). The choice of predictors is determined primarily by their

potential effectiveness in enhancing the prediction of the dependent variable. The most common, and
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among the most important, use of regression equations in the social and behavioral sciences is probably

prediction (Huberty, 1989; Weisberg, 1985).

The study also assumes that data follow a joint multivariate normal distribution from a random

model approach. There are two models that can be used in regression analyses (Brogden, 1972;

Sampson, 1974). The distinction between the two regression models is essentially between planned

(fixed) and observed (random) regressor scores (Darlington, 1990). The fixed model assumes that the

researcher is able to select or control the values of the independent variables before measuring subjects

on the random dependent variable. From a random model perspective, both the predictors and the

criterion are sampled together from what is usually assumed to be a joint multivariate normal

distribution. When the predictors are random variables, they can change from one study to another

(Snyder & Lawson, 1993). Because the unplanned possible scores lead to more variation than if the

predictor scores are fixed, the standard errors of the regression coefficients are higher when scores are

random, which causes such results as cross-validity estimates that are expected to be lower (Darlington,

1990).

The random model is usually more appropriate for social scientists because they typically

measure random subjects on predictors and a criterion simultaneously and therefore are not able to fix the

values for the independent variables (Berry, 1993; Brogden, 1972; Cattin, 1980b; Claudy, 1972;

Darlington, 1990; Drasgow, Dorans, & Tucker, 1979; Herzberg, 1969; Park & Dudycha, 1974; Stevens,

1986, 1996). For more complete discussion of the two models, the reader is referred to Afifi and Clark

(1990), Brogden (1972), Brooks (1998), Claudy (1978), Dunn and Clark (1974), Johnson and Leone

(1977), and Sampson (1974).

Fundamentals of Precision Efficacy Analysis for Regression

The primary goal of precision efficacy analysis is to reduce the upward bias of R 2, thereby

better estimating both p2 and pc2 so that results are less likely to be sample specific. The PEAR method

provides researchers with a means to determine the optimum minimum sample size for prediction studies.

Provided that the researcher can make a reasonable estimate of the population p2, the PEAR method has

been shown to provide very consistent precision efficacy rates.
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Precision Efficacy

The term precision efficacy (PE) is proposed to indicate how well a regression model is expected

to perform when applied to future subjects relative to its effectiveness in the derivation sample. It should

be noted that Brooks and Barcikowski (1994, 1995, 1996) have used the terms "predictive power" and

"precision power" for this expectation. However, it is believed that the use of the word "power" may

mislead researchers into thinking that precision power is directly related to statistical power. Therefore,

for the present study, the term precision efficacy will be used, recognizing that efficacy is the "the power

to produce an effect" (Woolf, 1975, p.362).

Precision efficacy provides a measure of the relative efficiency of a regression equation, but does

not indicate the value of a model in any absolute sense for either prediction or explanation. The formal

definition of precision efficacy is

R.
PE =

R 2

where R 2 is the sample coefficient of determination and Rc2 is the sample cross-validity estimate. For

(1)

2
example, if 48% cross-validity shrinkage from sample R 2 = .50 to Rc = .26 occurs, the precision

efficacy is PE = .26/.50 = .52 . Larger precision efficacy values imply that a regression model is

expected to generalize better in future samples.

Cross-validity estimates describe how well a multiple linear regression equation will generalize

to other samples. Several authors have described the difference between the sample R 2 and the cross-

2
validity estimate Rc as a loss in predictive power (e.g., Cattin, 1980a; Stevens, 1996). Although useful

2in some contexts, the absolute loss in predictive power, (R 2 -R), does not provide any sense of the

magnitude of loss as compared to the original sample R 2 value. For example, a loss in predictive power

of .20 suggests drastically different results and implications for generalizability if R 2 = .50

(Rc2 = .30) than if R 2 = .25 (4 = .05). Because they desire a regression model that predicts well

in subsequent samples, researchers hope to limit shrinkage as much as possible relative to the sample R 2

value they attained.

The relationship of precision efficacy to sample size selection can be inferred and adapted from
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an example used by Stevens (1996, p. 100). With a larger sample, precision efficacy would be larger

because less shrinkage occurs with larger samples, all else remaining constant. Using Stevens' example,

2
a 62% shrinkage from R 2 = .50 to Rc = .191 occurs with a sample size of 50; when the sample is

increased to 150, there is only a 16% shrinkage from R 2 = .50 to Rc2 = .421 . The precision efficacy

in the first case would be .191/.50 = .382 and precision efficacy in the second case is .842.

Proportional Shrinkage. The precision efficacy formula can be manipulated algebraically into

the formula PE = 1 (R 2 -Rc2)/R 2. The fraction in this equation, or proportional shrinkage, is the

2
amount of shrinkage that occurs in R 2 after a cross-validity estimate, R ic, s calculated from the data

relative to the R 2. Proportional shrinkage (PS) is therefore calculated by:

R 2 -R2cPS .

R 2

The precision efficacy of the regression equation, and therefore an estimate of the model's

generalizability, also can be computed as PE = 1-PS. For example, if sample R 2 = .50 and

Rc2 = .26, the precision efficacy for that regression model can also be described as

PE = 1 (.50 .26)1.50 = .52. Proportional shrinkage of .48, and therefore precision efficacy of

.52, suggests rather limited generalizability for the regression model because the R 2 value shrank by

almost half Lower proportional shrinkage and higher precision efficacy values imply that a regression

equation is expected to generalize better in future samples relative to the model's ability to predict in the

derivation sample.

Effect Size

Stevens (1996), based on analysis of Park and Dudycha's (1974) tables, has emphasized that the

magnitude of the population squared multiple correlation, p2, "strongly affects how many subjects will be

needed for a reliable regression equation" (Stevens, 1996, p. 125). Similarly, Huberty (1994) noted that

based on analysis of shrinkage results that "it is perhaps clear that the magnitude of R 2 should be

considered in addition to N/p ratios when assessing the percent of shrinkage of R 2 that would result in

the estimation process. That is, a general rule of thumb for a desirable N/p ratio (say, 10/1) may not be

applicable across many areas of study" (p. 356). Indeed, all methods that account for effect size agree:

(2)

9
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as effect size decreases, sample size must increase proportionately (e.g., Cohen, 1988; Darlington, 1990;

Milton, 1986; Park & Dudycha, 1974; Gatsonis & Sampson, 1989).

Effect size enables a researcher to decide a priori not only what size relationship will be

necessary for statistical significance, but also what relationship should be considered for practical

significance (Hinkle & Oliver, 1983; Light, Singer, & Willett, 1990). Therefore, the first task in any

sample size analysis generally is regarded to be the identification of the expected magnitude of the

multiple correlation in the population. However, as Schafer (1993) wrote: "if one knew the answer to

that question one would not need to do the study, but a value is needed anyway" (p. 387). Light, Singer,

and Willett (1990) offered as a starting point that this effect size should be "the minimum effect size you

consider worthy of your time" (p. 194). For example, because under 10% explained variance may not

provide any new knowledge in the field, a researcher may choose a minimum practical effect size may be

20%. In multiple linear regression, however, the researcher must remember the effects of shrinkage.

That is, if a researcher chooses 20% explained variance (i.e., R 2 = .20) as a minimum practical effect

2 2
worthy of study, that researcher does not want a corrected sample estimate (e.g., RA or Rc) to be .05.

There are three basic strategies for choosing an appropriate effect size: (a) use effect sizes found

in previous studies, (b) decide on some minimum effect that will be practically significant, or (c) use

conventional small, medium, and large effects. No matter how it is chosen, effect size must be chosen a

priori. In many cases, the researcher may have some basis for deciding the smallest correlation that

would be interesting to find (practical significance), based perhaps on prior research or experience

(Schafer, 1993; Shaver, 1993).

Although it is not recommended generally (e.g., Kirk, 1996; Shaver, 1993), researchers who find

it difficult to hypothesize a specific effect size often rely on conventional values recommended by

applied statisticians. For example, Cohen (1988) has defined conventional effect sizes for fixed model

multiple linear regression such that a small effect is R 2 = .02, a medium effect is R 2 = .13 , and a

large effect is R 2 = .26 . Thompson (1993) noted that empirical meta-analytic research has led to

conclusions similar to Cohen's (1988) regarding typical effect sizes in multiple linear regression research.

Schafer (1993) suggested that any effect less that p2 = .10 may be too small to be of other than

1 0
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theoretical interest. Stevens (1986) has suggested that p2 = .50 is a reasonable guess for social science

research; Rozeboom (1981), however, wrote that he believed p2 = .50 to be an upper limit. Indeed,

because an effect of p2 = .25 seems unreasonably large to Schafer (1993), he recommended that it

serve as an upper limit only as a last resort, when no other rationale is available. Light, Singer, and

Willett (1990) echoed Schafer: "meta-analyses often reveal a sobering fact: effect sizes are not nearly as

large as we all might hope" (p. 195).

Shrinkage Tolerance

Darlington (1990) defined validity shrinkage as the difference between a regression's apparent

2validity, for example R2, and its actual predictive validity in the population, which is estimated by R.

Stevens (1996) called this a "loss in predictive power" and it was called a "loss in R2 for prediction" by

Montgomery and Peck (1992). Simply put, validity shrinkage is the size of the decrease in the sample

R2 when an appropriate cross-validity formula is applied. The development of the PEAR method for

calculating sample sizes uses this concept of validity shrinkage as a measure of a priori acceptable

shrinkage tolerance, E. Thus, shrinkage tolerance can be defined mathematically as

E = R2 -Rc2 (3)

which is the numerator of the proportional shrinkage fraction described in Equation 2. Shrinkage

tolerance can be considered either absolute or relative. In an absolute sense, E can be set to a specific

value regardless of the effect size expected in a given study. That is, no matter what R2 is to be used,

the researcher may wish that the expected shrinkage be within .10 of the sample R2 value. For example,

if R2 is expected to be near .50 and the researcher has chosen E = .10, Rc2 is expected to be near .40;

but if R2 is expected to be near .35, the researcher is willing to accept .25 for the expected shrunken Rc2

value when E is set to .10.

The formula for calculating precision efficacy can also be written as PE = 1EIR 2. For

example, setting the predetermined acceptable shrinkage level at E = .20 provides precision efficacy of

.80. To carry the example out fully, precision efficacy of .80 indicates that the sample was large enough

to allow the sample R2 to shrink by only 20%. To provide a numerical example, if the population p2 is

thought to be .50 and E is set at .2R 2, the sample R2 is expected to shrink only by 20% to Rc2 = .40

1 1
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2and hence precision efficacy of .80; whereas, if expected R2 is near .35, Rc would be expected near

.28again PE = .80 . Or if E is set at .3R 2, a sample R2 of .50 will be expected to shrink 30% to

Rc2 = .35, a PE of .70.

Solving PE = 1- E I R2 for E, and replacing R2 with an expected, a priori 4, results in the

formula:

E = RE2 (PEx RE2)
2

where R iE s an expected sample R2 effect size value, chosen by the researcher perhaps based on

(4)

previous research. Using this formula, a specific level of precision efficacy can be set a priori to

determine the acceptable shrinkage tolerance to use in selecting an adequate sample size. For example, if

the researcher wishes to obtain a cross-validity estimate expected to be not less than 80% of the sample

R2, a priori precision efficacy would be .80. If the expected sample R2, 4, is thought to be .50, then

the shrinkage tolerance can be found by substituting the appropriate values into Equation 4. That is,

shrinkage tolerance E would be found a priori for this example by calculating

E = .50 (.80 x .50) = .50-.40 = .10.

Brooks and Barcikowski (1997) determined that a slight modification to Equation 4 may provide

better results when an estimated population p2 is used with the PEAR method. The PEAR method was

derived based on the use of an expected R2 value rather than an estimated population p2 value.

Consequently, slightly larger than desired sample sizes are recommended when an estimated p2 is used in

the PEAR method formula and in Equation 4 (as was the case in Brooks & Barcikowski, 1994, 1995).

That is, because the sample R2 usually is a positively biased estimate of p2, when the lower estimated p2

is used in Equation 4, the E value obtained is usually smaller than what would be obtained with the larger

expected R2. Because the PEAR method requires division by E, a smaller E results in a larger sample

size recommendation.

Hoping to compensate for this effect when p2 is used, Brooks and Barcikowski (1997) found that

a slight increase in the shrinkage tolerance E did indeed provide better results for the full model, standard

regression case. This adjusted E is calculated by

12
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(5)

where PS = 1-PE and p2E is the estimated population p2 value (e.g., an RA2 found by the researcher in

previous research or through meta-analysis). Using the same example from above results in the

following: E = .50 ([80 .1(.20)] x .50) = .50 -[.78 x (.50)] = .11.
2In another example, Brooks (1998) showed that when RE = .25, using Equation 4 for E

2
resulted in a recommendation of 155 subjects. However, when pE = .25 in Equation 5, a sample size of

141 subjects was suggested. Note that when pE2 = .25 , however, the expected R 2 is really 4 = .269

(based on a formula in Herzberg, 1969); if .269 is used for R 2 in Equation 4, it results in the same

(rounded) sample size of 141. The use of Equation 5 will be important to the current Monte Carlo study

because, for the data to be generated, the population p2 will be known but an expected R 2 value will not

be available. A more detailed explanation can be found in Brooks (1998).

PEAR Method. Brooks and Barcikowski (1995) developed a sample size formula they called the

precision power method, but within the current study will be called the PEAR method. The PEAR

Method sample size formula was developed based on a cross-validity formula by Lord (as cited in Uhl &

Eisenberg, 1970): 4 = 1 (N +p +1)(1 -R 2)I(N-p -1), where N is sample size,p is the number

of predictors, and R 2 is the actual sample value. Uhl and Eisenberg (1970, p. 489) found this "relatively

unknown formula" (their interpretation of Lord, 1950, differs from others) to give accurate estimates of

cross-sample shrinkage, regardless of sample size and number of predictors. Algebraic manipulation of

the Lord formula to solve for sample size yields the Precision Efficacy Analysis for Regression sample

size formula for multiple linear regression (see Appendix A for the algebraic derivation):

N = (p +1)x
(2 2RE2 + )

2
where p is the number of predictors, R iE s the expected sample R 2, and E is an acceptable a priori

(6)

2
amount of expected shrinkage. The RE serves as an effect size and E allows researchers to decide how

closely to estimate pc2, either as an absolute amount of acceptable shrinkage (e.g., E = .05) or a

2
proportional decrease (e.g., E = .2RE , which represents validity shrinkage of 20% from R2 E to

Rc2 = .8RE2).

13
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2 2
When using an estimated p2, however, pE should be used in place of R iE n Formula 6 and

Equation 5 should be used to calculate the shrinkage tolerance value E (see Brooks, 1998). The resulting

formula is:

N = (p +1)x
(2 2p2E + E) (7)

For example, using Equation 5 provides E = pE2 [.80 .1(.2)] pE2 = .22pE2 at PE = .80 . Based on

this shrinkage tolerance level, E = .22 pE2 , the PEAR method (Formula 7) for PE = .80 when p2E is

used simplifies to:

2
2 1.78p (8)E

N X(p+l)
.22p2E

The theory underlying the PEAR method for sample size selection is that the researcher, knowing

that the application of an appropriate cross-validity formula is likely to cause shrinkage in R2, can set a

limit as to the amount of shrinkage expected to occur. Similarly, Stevens (1996), while analyzing Park

and Dudycha's tables, used the example that if .40 is substituted for R 2 in the Stein cross-validity

formula, it can be determined that "more than 15 subjects per predictor will be needed to keep the

shrinkage fairly small" (p. 125), while fewer than that will be needed in R 2 = .70 . The effect size, p2E

or 4., and the shrinkage tolerance, E, serve as means by which the researcher can manipulate the

formula in order to, in Stevens' terms, "keep the shrinkage fairly small."

Examples of the PEAR Method. By making adjustments in the shrinkage tolerance, E, the PEAR

method may be simplified in several ways. The shrinkage tolerance, which in function is similar to the

error tolerance level used in the Park and Dudycha (1974) method, must be calculated for the given

specifications and the appropriate expected R2 value must be determined. For example, if a researcher

2 2
wanted an Rc estimate to be at least 87% of the expected sample RE of .53 with four predictors, the

researcher would set PE to .87 and calculate E from Equation 4 to be E = .53 (.87 x .53) = .069 .

These values would then be substituted into the PEAR method formula (Equation 6) to calculate the

necessary sample size as N = 5 x [2 2(.53) + .0691/.069 = 73.12. Therefore, at least 74 subjects

2
should provide a large enough sample so that R ic s expected to be greater than .46, which is 87% of the

14
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assumed p2 of .53. More examples of the method can be found in Brooks and Barcikowski (1996) and

Brooks (1998).

Review of Relevant Literature

Because the Precision Efficacy Analysis for Regression (PEAR) method for choosing sample

sizes was developed primarily from a cross-validity perspective, the literature review will contain a

review of shrinkage and cross-validation literature. Another section will address problems associated

with the various existing methods of selecting sample sizes for multiple linear regression. Finally, the

evolution of the PEAR method for sample size selection in multiple regression will be traced briefly.

This study will investigate, among other things, the impact of multicollinearity on multiple linear

regression results. In particular, the question as to whether a proper sample size set a priori can help

minimize the effects of multicollinearity. Therefore, a review of the relevant literature in the area of

multicollinearity will be made, with special emphasis on issues related to sample size and the

methodology that will be employed in the study.

Generalizability and Statistical Significance

Unfortunately, many researchers apparently hold erroneous beliefs that smaller calculated

probability values mean that "increasingly greater confidence can be vested in a conclusion that sample

results are replicable" (Thompson, 1996, p. 27; see also Carver, 1993; Kirk, 1996; Shaver, 1993; Snyder

& Lawson, 1993). Statistical significance indicates neither the magnitude nor the importance of a result

(Shaver, 1993). Indeed, with a large enough sample size, a significant result may be obtained even

though there is very little relationship between the criterion and the predictor variables (Asher, 1993;

Snyder & Lawson, 1993).

In particular, multiple linear regression can result in a model being statistically significant, but

which model provides unrealistic estimates for the relationships under investigation. The process of

maximizing the correlation between the observed and predicted criterion scores requires mathematical

capitalization on chance sampling error variation. When the regression equation is used with a second

sample from the same population, it is most likely that the model will not perform as well as it did in the

original sample; consequently, the estimate of the population multiple correlation will decrease in the
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second sample (Barcikowski, 1980). For example, Stevens (1996, P. 120) provided an example

regression analysis that resulted in statistical significance for the R 2 value of .61 (p = .036). However,

when the sample R 2 is corrected for bias with an adjusted R 2 formula by the statistical computer

2program, the R 2 was decreased to RA = .46 . Further, if a cross-validity estimate is applied to those

2
results, the Rc value is only .16! Clearly, the sample size (N = 15) used in the analysis was not

adequate to produce generalizable results, but did produce statistical significance.

Sample sizes for multiple linear regression, particularly when used to develop prediction models,

must be chosen so as to provide adequate power both for statistical significance and also for

generalizability of the model (Barcikowski, 1980). In particular, when multiple linear regression is used

to develop a prediction model, sample size must be large enough to ensure stable coefficients that will

generalize from one sample to another. It is well-documented and unfortunate that many researchers do

not heed this guideline. Possibly more tragic are the cases where researchers have used a groundless

convention to choose their sample sizes, have ignored effect size completely, or have neglected to report

an appropriate shrunken R 2 ; these studies probably provide inaccurate conclusions regarding the topics

under investigation.

From a statistical power perspective, a study with an insufficient sample size stands a large

chance of committing a Type II error. From a generalizability viewpoint, an insufficient sample leads to

results that may apply only to the current sample and will not be useful or practical for application to

other samples; that is, the correlation statistics obtained are guaranteed to be a maximum only for the

particular sample from which it was calculated. In either case, time, effort, and money would have been

spent arriving at results "that are inconclusive at best and which may delay further investigation of a

potentially fruitful field at worst" (Streiner, 1990, p. 618).

While Darlington's (1990) simple rule that more is better certainly is true for the sake of

generalizability, for the sake of practicality, there should be a caveat regarding the cost of obtaining the

"more." For example, Olejnik (1984) suggested that researchers "use as many subjects as you can get

and you can afford" [italics added] (p. 40). Streiner (1990) suggested that it is equally wasteful to study

more subjects than are needed as it is not to study enough. Light, Singer, and Willett (1990) added that
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"you need to know not just that 'more is better'; you need to know 'how many is enough" (p. 186). The

ability of the PEAR method to set an a priori precision efficacy level assists researchers with both

concerns, from a perspective of generalizability.

Shrinkage

The importance of sample size in regression is not immediately obviousafter all, researchers

have shrinkage and cross-validity formulas available to correct for inadequate sample sizes. However, a

prediction model produced using a larger sample size will estimate better both the population squared

2
multiple correlation, p2, (using RA) and the population squared cross-validity coefficient, pc2, (using

Rc2). For example, the true pc' value for the Stevens (1996) example cited above is probably larger than

.16; indeed, the true p2 may be larger than .46the small sample size limited the accuracy of these

estimates.

Because R2 is a positively biased estimator of both p2 and pc', such that E(R 2) > p2 > p2c,

2 2
researchers must report an appropriate shrunken R2 (that is, RA or Rc) for their intended purposes

(Cattin, 1980b; Claudy, 1978; Darlington, 1990; Herzberg, 1969; Hocking, 1976; Huberty & Mourad,

1980; Montgomery & Peck, 1992; Thompson, 1993). For example, "although we may determine from a

sample R 2 that the population R 2 is not likely to be zero, it is nevertheless not true that the sample R2

is a good estimate of the population R2" (Cohen & Cohen, 1983, p. 105). The population coefficient of

determination, p2, is the unknowable squared multiple correlation that would be obtained between the

criterion variable and the regression function if both are measured in the population (Herzberg, 1969;

Stevens, 1996). Because this parameter is useful in describing the strength of the relationship between a

criterion and a set of regressors, it is of particular interest in explanatory research (Kromrey & Hines,

1995). The most common formula used to correct R2 to estimate the squared population multiple

correlation is attributed most frequently to Wherry (e.g., Norusis & SPSS Inc., 1993; Dixon, 1990; Ray,

1982). The Wherry formula for adjusted R2, denoted RA2, is RA2 = 1 (N-1)(1 -R2)I(N-p-1). For

example, a researcher who calculates a sample R 2 = .3322 with 121 subjects and 3 predictors might

use an adjusted R2 formula to conclude that, in the population, the multiple correlation between the

2criterion and the predictors is approximately p = .56, since RA = .3151 .
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Most questions concerning explanation, description, and causal analysis require an estimate of

p2, while most questions of prediction concern pc'. But as Herzberg (1969) noted, "in applications, the

population regression function can never be known and one is more interested in how effective the

sample regression function is in other samples" (p. 4). Mosteller and Tukey (1968) wrote:

Users have often been disappointed by procedures, such as multiple regression equations, that

"forecast" quite well for the data on which they were built. When tried on fresh data, the

predictive power of these procedures fell dismally. . . . No one knows how to appraise a

procedure safely except by using different bodies of data from those that determined it. In other

words, appraisal requires some form of cross-validation. (p. 110)

Or as Cohen (1990) stated, "the investigator is not interested in making predictions for that samplehe

or she knows the criterion values for those cases. The idea is to combine the predictors for maximal

prediction for future samples" (p. 1306). Therefore, researchers must use and report strategies that

actually do evaluate the replicability of their results. Replication is essential to confidence in the

reliability or reproducibility of a result, as well as to conclusions about generalizability (Asher, 1993;

Shaver, 1993). The best way to gauge this generalizability is through an estimate of pc'

Cross-validity correction formulas, which are based on estimates of the mean squared error of

prediction (Darlington, 1968, 1990; Herzberg, 1969), provide more accurate estimates than does R 2 of

the squared population cross-validity coefficient, pc2. The cross-validity coefficient indicates how well a

regression model may predict in subsequent samples because it is considered to be the multiple

correlation between the actual population criterion values and the scores predicted by the sample

regression equation when applied either to the population or to another sample (Cattin, 1980b; Huberty &

Mourad, 1980; Kennedy, 1988; Schmitt, Coyle, & Rauschenberger, 1977).

Formula methods of cross-validity are often preferred to empirical cross-validation (e.g., data-

splitting) so that the entire sample may be used for model-building. Indeed, several common formula

estimates have been shown superior, or at least equivalent, to empirical cross-validation techniques

(Cattin, 1980a, 1980b; Drasgow, Dorans, & Tucker, 1978; Kennedy, 1988; Morris, 1981; Rozeboom,

1978; Schmitt, Coyle, & Rauschenberger, 1977). Many such cross-validity formulas have been proposed
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(Browne, 1975; Darlington, 1968; Herzberg, 1969; Lord, 1950; Nicholson, 1960; Rozeboom, 1978;

Stein, 1960). When shrinkage is calculated through the use of a cross-validity formula, any finite sample

2
size will result in a cross-validity estimate, Rc, that is smaller than the sample squared multiple

correlation, R2. Similar conceptually to Cronbach's reliability coefficient alpha, cross-validity formulas

attempt to estimate the average of all possible empirical cross-validations (Wherry, 1975).

For example, using the random model cross-validity estimate developed independently by Stein

(1960) and Darlington (1968),

2Rc = 1 N-1 N-2 N+1
N -p -1 N -p -2 N

where N is the sample size,p is the number of predictors, and R2 is the sample coefficient of

2
determination, a researcher who calculates a sample Rc = .3322 with 121 subjects and 3 predictors

2might calculate the sample squared cross-validity as Rc = .2916 . This cross-validity coefficient

(9)

implies that the researcher would explain 29%, not 33%, of the variance of the criterion when applying

the sample regression function to future samples. The cross-validity estimates result in more shrinkage

because these cross-validity corrections, unlike adjusted R2 estimates, must correct for the sampling

error present in both the given present study and some future study (Snyder & Lawson, 1993).

As a final note, often, researchers are interested in prediction, but also desire to know

approximately what the population p2 is. In such a case, the investigator should report not only -a cross-

2 2
validity estimate Rc, but also an estimate of RA for descriptive purposes (Thompson, 1996).

Researchers must remember that the different formulas (i.e., adjusted or cross-validity) estimate different

parameters and therefore are not interchangeable. For example, in large normally distributed samples,

the mean, median, and mode converge; but few would argue that these are equivalent measures of central

tendencythey each describe a particular facet of the distribution. The Wherry adjustment provides

better estimates of the population p2 than does any cross-validity estimate (e.g., Carter, 1979); but as

Stevens (1996) indicated, "use of the Wherry formula would give a misleadingly positive impression of

the cross validity predictive power of the equation" (p. 99).
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Problems in Selecting Sample Sizes in Multiple Linear Regression

There are three primary types of sample size methods available for multiple linear regression:

conventional rules, statistical power approaches, and cross-validation approaches. Additionally,

Darlington (1990) has proposed a method based on the precision of the estimates provided by a sample.

These various methods provide diverse sample size recommendations (see Table 1). The following

sections describe each briefly, with emphasis on problems associated with each.

Conventions. Because cross-validity estimates are primarily functions of sample size and the

number of predictors, conventions typically are based on the premise that with a large enough ratio of

subjects to predictors the sample regression coefficients will be reliable and will estimate closely the true

population values (Miller & Kunce, 1973; Pedhazur & Schmelkin, 1991; Tabachnick & Fidell, 1989).

Conventional rules typically take the form of a subject-to-predictor ratio, usually denoted N:p or N/p

(e.g., Halinski & Feldt, 1970; Stevens, 1986).

A well-known convention is that the sample size in a regression should equal at least 10 times the

number of regressors, a ratio of subjects to predictors of 10:1 (Knapp & Campbell-Heider, 1989).

Stevens (1986) recommended a 15:1 subject-to-variable ratio, which he based primarily on an analysis of

Park and Dudycha's (1974) tables. Harris (1985) noted, however, that ratio conventions clearly break

down for small numbers of predictors and recommended scholars investigate the utility of a difference

rule, say Np > 50 . Knapp and Campbell-Heider (1989) recommended a combination rule of

N > 30 + 10p . And Sawyer (1982) has developed a formula based on limiting the inflation of an

alternative to mean squared error. If the inflation factor is set to a constant as Sawyer suggested, the

method simplifies to a series of conventional rules. For example, if a researcher wishes for only 5%

inflation, the sample size required can be approximated by N > 10.8p +11.8; whereas if the researcher

is willing to allow an inflation of 10%, the necessary sample size is approximately N > 5.8p+ 6.8.

Unfortunately, perhaps the most widely used sample size convention is simply to use as many subjects as

you can access (Olejnik, 1984).

The most profound problem with many conventional rules advanced by regression scholars is

that they lack any measure of effect size. It is generally recognized that an estimated effect size must
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precede the determination of appropriate sample size. Further, Milton (1986) has indicated that
determination of sample size also requires a level of precision or confidence. Finally, conventional rules
are subject to change and interpretation by their users, which has resulted in the chaos ofmany different
rules (Milton, 1986; Knapp & Campbell-Heider, 1989). For example, Stevens (1986, 1996) is explicit
how he derived his recommendation of 15:1, but Tabachnick and Fidel] (1989) are not so clear how they
decided upon 20:1. Over time, the evolution of these rules causes their origins and rationales to become
fuzzy. For example, someone who recommended a 10:1 rule may have analyzed many datasets that
coincidentally all had an R 2 around .50.

Statistical Power Methods. Statistical power is the probability of rejecting the null hypothesis
when the null hypothesis is indeed false. Several scholars have proposed regression sample size methods
based on statistical power (e.g., Cohen, 1988; Cohen & Cohen, 1983; Gatsonis & Sampson, 1989;
Kraemer & Thiemann, 1987; Milton, 1986; Neter, Wasserman, & Kutner, 1990). From a statistical
power perspective, multiple linear regression provides several alternative statistical significance tests that
can be the basis for sample size selection. Two statistical tests are most common in practice. The first
such test is the test of the whole model, or the overall or omnibus test. The second common statistical
test concerns the individual regression coefficients in the model. Cohen's sample size methods are
among the most familiar, due to his several texts and articles on the matter.

For prediction studies, the fundamental problem with Cohen's (1988) method, or other methods
based on a statistical power approach, is that it is designed for use from a fixed model, statistical power
approach. And although Gatsonis and Sampson (1989) and Darlington (1990) have recommended
methods from a random model approach, their methods are also based on a statistical power approach to
sample size determination. Unfortunately, statistical power to reject a null hypothesis of zero multiple
correlation does not inform us how well a model will predict in other samples. That is, adequate sample
sizes for statistical power tell us nothing about the number of subjects needed to obtain precise estimates
of stable, meaningful regression weights (Cascio, Valenzi, & Silbey, 1978; Darlington, 1990). Tests of
the individual predictors may be useful in selecting predictors to include in a final model or in a
regression analysis performed to analyze variance. However, these tests are not useful for those social
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scientists who wish to predict scores on some criterion or simply to describe an overall relationship.

Cross-Validity Methods. The random model of regression recognizes and accounts for extra

variability because, in another replication, different values for the independent variables will be obtained

(Gatsonis & Sampson, 1989). That is, it is not known which specific values for the independent

variables will be sampled on successive replications. Park and Dudycha (1974) noted that such a cross-

validation approach is applicable to both the random and the fixed models of multiple linear regression;

however, because the fixed model poses no practical problems, they emphasized the random model.

Park and Dudycha (1974) approached their calculation of sample sizes strictly with cross-

validation in mind. That is, their primary concern was the estimation of pc'. Although Park and

Dudycha's (1974) methods are recommended by Stevens (1996), there are difficulties for their practical

application. Unfortunately, their tables are limited to only a few possible combinations of sample size,

squared correlation, probability, and error tolerance. Fortunately, the p2 are among the conventional

values suggested by most other scholars. The error tolerance and probability levels also represent levels

that may be most practical for application by researchers. Unfortunately, however, their math is complex

enough that many researchers may feel unable to derive the information they would need for the cases

not tabulated. Additionally, there is no clear rationale for how to determine the best choice of either E or

the probability to use when consulting the tables (although Stevens, 1996, implied through example that

.05 and .90, respectively, are acceptable values). Finally, despite the focus on the cross-validation of

regression models, Park and Dudycha's underlying theory seems to depend upon statistical power.

Darlington (1990) has provided a different approach to the determination of sample sizes, but his

goal is the same: to provide estimates of population parameters that hold up under cross-validation.

Darlington recommended a Fisher z method that can be used (a) to find both the power of tests and the

precision of estimates (through confidence intervals), (b) with any value of alpha, and (c) with tests of

null hypotheses other than nonassociation. It should be noted, however, that the primary purpose of

Darlington's Fisher z method is to determine the sample size necessary for the second, validation sample;

Darlington's method does not recommend a size for the initial, derivation sample.

Darlington (1990) has presented another method for the determination of multiple linear
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regression sample sizes based on the ability to determine "just how accurately T R [p] or TPR [true partial

correlation] can be estimated with a given sample size" (Darlington, 1990, p. 390). However,

Darlington's precision analysis method is derived for estimates of p2 and not pc'. The table provided by

Darlington (p. 391), though, is structured loosely along lines analogous to precision efficacy. For

example, if the researcher assumes that p and adjusted R will be .5, Darlington provides sample sizes for

an acceptable lower confidence limit of .4 (80% of the sample adjusted R value), .3 (60%), .2 (40%), and

.1 (20%).

Evolution of the Precision Efficacy Analysis for Regression Method

Because the methods described above provide contradictory sample size recommendations and

(a) oversimplify the issue, (b) are too mathematically complex for many researchers to use, (c) are not

based on the random model, or (d) are concerned only with statistical power and not generalizability,

Brooks and Barcikowski (1994) developed a regression sample size selection method based on

Rozeboom's (1978) cross-validity formula called the predictive power method. Unfortunately, although

the predictive power method had higher and more accurate precision efficacy rates than the methods with

which it was compared, it suffered some of the same inconsistencies across numbers of predictors and

effect sizes as did the other methods. In particular, although the relative rankings of the methods

remained fairly consistent across predictors, their absolute precision efficacy rates did not (see Figure 1).

Also, the precision efficacy rates of all but Cohen's method and the predictive power method generally

2
increased as the estimated p2 effect size increased when RE approximated p2 (see Figure 1).

The primary concern of the second Brooks and Barcikowski (1995) study was to determine if the

PEAR method based on the Lord cross-validity formula (as cited in Uhl & Eisenberg, 1970), or any other

method, provided consistently accurate precision efficacy rates as compared to a priori values. That is,

did any sample size selection method for multiple linear regression successfully limit the expected

validity shrinkage regardless of the number of predictors and the assumed population p2 value?

Using an accuracy interval of .75 s PE .85 , Brooks and Barcikowski (1995) determined

that the PEAR method was the most consistently accurate of the methods tested. That is, in all 20

2conditions where RE = p2, the PEAR method provided precision efficacy rates within the
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interval .75 s PE .85 . The predictive power method (Brooks & Barcikowski, 1994) provided PE

rates within the accuracy range in 13 of the 20 conditions. The accuracy of the remaining methods was

low relative to these two methods: the Park and Dudycha (1974) method was accurate for 4 conditions,

Sawyer (1982) for 5 cases, the 30 : 1 rule (Pedhazur & Schmelkin, 1991) for 3, the 50 + 8p rule

(Green, 1991) for 2, the 15 : 1 rule (Stevens, 1986, 1996) for 5 cases, and neither the Gatsonis and

Sampson (1989) method nor Cohen's method (1988) was accurate for any of the 20 conditions.

Appendix C contains stem-and-leaf plots for the distributions of the average precision efficacy rates for

these 20 conditions, with the accurate results underscored. Furthermore, the methods varied considerably

in precision efficacy across both the number of predictors and expected R 2 values (as displayed in

Figure 1).

Multicollinearity

Multicollinearity, also called collinearity (e.g., Darlington, 1990; Weisberg, 1985), has been

defined by Montgomery and Peck (1992) as a near linear dependence among two or more of the

predictors in a regression model. More specifically, multicollinearity is the presence of substantial

correlation or near linear relationship among a set of predictor variables in a regression model, such that

one predictor variable may be predicted well by the other predictors (e.g., Afifi & Clark, 1984; Cohen &

Cohen, 1983; Silvey, 1969). Because data are rarely orthogonal in nonexperimental research,

multicollinearity is a problem of degree: multicollinearity will exist in most data to some extent (Berry,

1993; Farrar and Glauber, 1967; Montgomery & Peck, 1992; Rockwell, 1975; Willan & Watts, 1978).

Indeed, Darlington (1990) indicated that partial redundancy among the predictors is the most common

configuration of variables, describing it as the standard configuration. In some situations, however, the

predictors may be so strongly related that the regression results are ambiguous, misleading, or erroneous

(Chatterjee & Price, 1991; Montgomery & Peck, 1992).

Montgomery and Peck (1992) have warned that "regression models fit to data by the method of

least squares when strong multicollinearity is present are notoriously poor prediction equations" (p. 192).

Darlington (1990), more optimistically, suggested that "this is an unalterable fact of life; the only

solutions [to multicollinearity] lie not in cleverer analytic methods, but in such straightforward devices as
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Figure 1

Precision Efficacy for nine methods at p2 = .25 across number of predictors.
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larger sample sizes or experimental manipulation of the variables" (p. 131). Similarly, Kramer and

Thiemann (1987) wrote that inclusion of several closely related predictors will decrease power and

"necessitate greatly increased sample size" (p. 65). Multicollinearity is certainly a factor to be

considered in multiple linear regression analyses, perhaps even in consideration of appropriate sample

sizes.

The literature reveals three primary sources of multicollinearity: (a) deficient sample data, (b)

model specification or overspecification, and (c) properties and characteristics of the population or the
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process under investigation (e.g., see Berry, 1993; Chatterjee & Price, 1991; Mason, Gunst, & Webster,

1975; Montgomery & Peck, 1992. Because only singularity violates the assumptions of multiple linear

regression, the ordinary least squares parameter estimates of the regression coefficients remain best,

linear, unbiased estimators even in the presence of multicollinearity (Berry, 1993). However, researchers

generally recognize three specific problems that result from multicollinearity: (a) interpretation of the

partial coefficients because predictors duplicate each others' functions in the model, (b) sampling

instability of the partial regression coefficients due to the larger size of the standard errors, and (c) model

misspecification due to improper corrections to the model (Cohen & Cohen, 1983; Farrar & Glauber,

1967; Rockwell, 1975; Webster, Gunst, & Mason, 1974; Willan & Watts, 1978).

Fox (1991) has shown that, for each predictor, variance can be written as

2

Var (Pi)
(N-1)si (1-10 (10)

where s' is an estimate of MSE and sj2 is the estimate of the variance for the predictor coefficient, and the

variance inflation factor ( VIFJ) is 1 /(1 -R j2) , where R2 ij s the coefficient of determination obtained

when predictor j is regressed on the remaining p 1 predictors (Fox, 1991; Marquardt, 1970;

Montgomery & Peck, 1992). The variance inflation factor is among the most widely recommended

diagnostic techniques for detecting multicollinearity. Montgomery and Peck "believe that the VIFs and

the procedures based on the eigenvalues of XIX are the best currently available multicollinearity

diagnostics" (p. 325).

2
From this equation it becomes apparent that (1 -Rj), also called tolerance, can have a

significant impact on the variance of the jth regression coefficienthence the name variance inflation

factor. Note that Equation 10 shows that other important factors also affect the variance of the regression

coefficients: sample size, estimated model error variance, and variance of the predictors themselves

(Fox, 1991; Rockwell, 1975). Fox (1991) has noted that his experience suggests that "imprecise

estimates in social research are more frequently the product of large error variance and relatively small

samples than of serious multicollinearity" (p. 11).
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Methods

Ideally, a theoretical mathematical analysis would be offered that would describe the efficiency

of the Precision Efficacy Analysis for Regression method for choosing sample sizes (Halperin, 1976;

Harwell, 1990). Indeed, the efficiency of the PEAR method can be assessed analytically to some extent.

Once a sample size has been chosen via the PEAR method for a given number of predictors and a given

p2, cross-validity can be estimated. For example, once the number of predictors is set at four and p2 is

assumed to be .25, the sample required by the PEAR method at PE = .80 is 141. Using these values in

2 2
the Stein-Darlington Rc formula gives an expected Rc of .199, or 80% of the original p2 value.

Comparisons have been made in this way for several sample size methods in Table 3. This examination

provides direct analytical evidence for the expected level of precision efficacy and therefore evidence for

the adequacy of the theory underlying the PEAR method.

Table 3
Stein-Darlington Cross-Validity Estimates based on Sample Sizes from Several Methods at Two Levels of
Expected Sample Squared Multiple Correlation and Four Predictors

Method
RE

2 y .25
N Rr PE a N

R. y .10
Rr PE °

Cohen (1988) 48 .083 .33 144 .041 .41

Darlington (1990) b 166 .207 .83 230 .064 .64
Darlington (1990)C 42 .055 .22 134 .036 .36
Gatsonis & Sampson (1989) 55 .108 .43 165 .049 .49
Milton (1986) 155 .204 .82 185 .054 .54
Park & Dudycha (1974) 2 93 .171 .68 173 .051 .51

PEAR method [E = .22pd 141 .199 .80 414 .080 .80
Predictive Power [E = 2PE] 124 .192 .77 364 .077 .77
15:1 (Stevens, 1996) 60 .121 .49 60 -.054 .00
30:1 (Pedhazur & Schmelkin, 1991) 120 .190 .76 120 .028 .28
50+8p (Green, 1991) 82 .159 .64 82 -.009 .00
Sawyer (1982) [K = 1.05] 55 .108 .43 55 -.070 .00

a PE here is calculated as 4/p2. b Precision Analysis. C Specific Conclusions.

However, several elements of the current study do not lend themselves to such analysis. For

example, Mooney (1997) indicated that mathematical analysis is not possible when (a) statistical

assumptions do not hold, (b) conditions required for mathematical theory are not met (e.g., the null

hypothesis is known not to be true), or (c) the mathematics of the sampling distribution have not yet been

worked out for a statistic. Monte Carlo methods must be used for more detailed analysis because the
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2sampling distribution of Rc is very complicated and difficult to implement when p2 O. Under the

true null hypothesis, p2 = 0, R 2 and Rc2 obey the theoretically known distributions F and t,

respectively (Herzberg, 1969). However, in the non-null case, R21(1R 2) has the noncentral F

distribution, "which cannot be readily used for applications" (Nijsse, 1990, p. 1108; see also Fowler,

1986). Fortunately, meaningful investigation of precision efficacy rates under these conditions can be

accomplished through a Monte Carlo study. As noted by Mooney (1997), Monte Carlo simulation

"offers an alternative to analytical mathematics for understanding a statistic's sampling distribution and

evaluating its behavior in random samples" (p. 2). That is, a Monte Carlo study can help solve problems

that are mathematically intractable.

Research Design

A Monte Carlo analysis of the precision efficacy rates of several regression sample size methods

will be performed. Specifically, four methods will be compared. Three levels of precision efficacy for

the PEAR method (i.e., PE = .80, PE = .70, PE = .60) will each be considered an individual

method for the analysis. That is, given the conditions described above, Equation 7 was used to calculate

sample size for the three PEAR method PE levels. Also for each of the conditions, the 15:1 ratio will be

used to calculate sample sizes for the sake of comparison. Because a variety of factors may influence

precision efficacy, three factors will be manipulated to comprise the testing situations for the present

study.

First, three effect sizes that represent simultaneously the estimated population squared multiple

. 2correlation (Le., pE) and the true population (32 will be set at: .10, .25, and .40. The numbers of

predictors used to define the models in this study will be 3 predictors (i.e., 4 variables including the

criterion), 7, 11, and 15 predictors. Finally, two multicollinearity conditions will be explored in the

study, moderate and extensive. Extensive multicollinearity will be defined as over one-half of the

predictors with VIF > 5.0 ; moderate multicollinearity will be defined as one-quarter of the predictors

involved in such a multicollinear relationship. Two conditions where no multicollinearity exists will also

be studied. Specifically, the correlation matrix for the orthogonal condition will contain zero

correlations among the predictors. The second condition in which no multicollinearity exists will be
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defined by small intercorrelations among all the predictors; numerically, for all predictors in this non-

multicollinear condition, VIP; < 3.0 . Correlation matrices will be created for these conditions and

treated as population correlation matrices from which multivariate normal data will be generated for each

sample in the study.

A Turbo Pascal 6.0 (Borland International, Inc., 1990a) program has been written to simulate

10,000 samples for each of these 48 conditions. The program will be run as a MS-DOS application under

Windows 95 on a computer equipped with an Intel Pentium-MMX 133MHz processor, which has a

built-in numeric processor. Double precision floating point variables were used, providing a maximum

possible range of values between 5.0 x 10-324 to 1.7 x 10308, stored with 15 to 16 significant digits.

During program execution, several statistics will be computed and recorded, as recommended by

Harwell (1990). For each sample, the program performs a standard multiple linear regression analysis

based on algorithms provided in Barcikowski (1980). The program calculates the following information

from the standard, full-model regression for each sample. The statistics collected for each sample are:

precision efficacy (PE = Rc2 1 R 2), coefficient of determination (R 2), Wherry adjusted R 2 (R/24),

Stein-Darlington cross-validity R 2 (Rc2), population R 2 (Herzberg, 1969), population Rc2, pc2 (Browne,

1975), standardized regression coefficients ( [3,), regression coefficients (bi), standard errors of the

2 2
regression coefficients (SEb ), and the standard error of prediction. Both RA and Rc are set equal to

zero when they are negative, as recommended by Cohen and Cohen (1983) and Darlington (1990).

Counts are made for several statistics regarding their significance or accuracy: statistical significance for

the full regression model at a = .05 , statistical significance for the regression coefficients at a = .05

2 . .

accuracy of PE within .05 and within 10% of a priori (1 PE), accuracy of RA within ( .1 x p2), and

2 2accuracy of Rc within ( .1 x pc).

In addition to these raw statistics, the appropriate calculations are made and data are collected as

required for calculation of bias, RMSE, Relative Efficiency, statistical power, and the standard deviations

of several key estimates. Statistical bias is defined as the difference between the population value p2 and

the expected value of its estimate: Bias = E(0)- 0, where 0 is the population parameter and E(0) is

the expected value of the sample statistic or an average of the statistic over infinite samples (Drasgow,
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Dorans, & Tucker, 1979; Kromrey & Hines, 1995; Mooney, 1997).

The Root Mean Squared Error (RMSE) provides an indication of the statistic's variability. Mean

squared error is the average of the squared differences between the population parameter and its estimate

for each sample. RMSE, then, is the square root of the mean squared error for the given statistic:

RMSE(0) = 02/n, where 0 is the known population parameter (as set in the computer

algorithm), 0, is the estimate of that parameter obtained in sample i of the Monte Carlo simulation, and n

is the total number of samples taken in the Monte Carlo study (Darlington, 1996; Drasgow, Dorans, &

Tucker, 1979; Kennedy, 1988; Mooney, 1997). Mooney (1997) defined Relative Efficiency as the ratio

of two RMSE values, multiplied by 100 to convert it to a percentage:

Relative Efficiency = 100 x RMSE (6 A)I RMSE (0 B), where OA and OB are two different estimates

the same parameter (Mooney, 1997). Values under 100 would indicate the superiority of estimator OA

(i.e., OA with smaller RMSE).

Identification of the Pseudo-Population

In a Monte Carlo study, data are simulated which reflect a specified relationship among the

variables (Harwell, 1990). Because this research focuses on the random model of regression, data will be

generated to follow a joint multivariate normal distribution. The first step is to create population

correlation matrices that meet the criteria required by this study, namely, appropriate numbers of

variables, appropriate p2 effect size values, and appropriate levels of multicollinearity. Consequently, 48

matrices will be created using these techniques.

Creation of Population Correlation Matrices. The algorithm used to create the matrices is as

follows. First, for the orthogonal case, uniform random numbers between 0.0 and 1.0 are generated using

a subtractive method algorithm suggested by Knuth (1981) and coded in standard Pascal by Press,

Flannery, Teukolsky, and Vetterling (1989). These uniform random numbers, which are infrequently and

randomly made negative, serve as possible simple correlations between the criterion and the predictors.

After the first correlation is chosen, uniform random numbers are generated and chosen for the next

predictors in succession based on the fact that in the orthogonal case, R 2 = E (r )2 (Darlington,
Yx,

1968). Once this vector of simple correlations is chosen, the remaining correlations in the matrix are set
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to zero. Also, recognizing that these matrices are correlation matrices, diagonal elements are set to one.

The vector of simple correlations created in the orthogonal case is used for the remaining three

multicollinearity conditions so that the simple relationships between the criterion and the predictors do

not change. For the remaining cases, uniform random numbers are generated as candidate

intercorrelations among the predictors. After the matrix is filled with candidates, the matrix is tested to

determine whether the p2 obtained from it meets the appropriate condition required for the Monte Carlo

study, that is, within p2 ± .005 , where p2 is successively .40, .25, and .10.

Next, if the p2 value falls within the required range, the matrix is then tested to determine

whether it is positive definite, as is required for correlation matrices (Nash, 1990; Spath, 1992). Press,

Teukolsky, Vetterling, and Flannery (1992) have suggested that the Cholesky decomposition is an

efficient method for performing this testif the decomposition fails, the matrix is not positive definite.

The algorithm for the Cholesky decomposition used in this procedure was adapted from the standard

Pascal code by Nash (1990). Finally, the variance inflation factors for the predictors are examined to

determine if the appropriate multicollinearity condition is met. The procedure is repeated for each

condition until an appropriate matrix is created for each of the 48 conditions. A Turbo Pascal 6.0

(Borland International, Inc., 1990a) program was written to generate these matrices. Appendix C

contains the matrices created for three predictors across multicollinearity conditions.

Sampling Plan

After the population matrices have been created as described in the previous section, they will be

used to generate sample data. More specifically, uniformly distributed pseudorandom numbers will be

created to be used as input to the procedure that will convert them into multivariate normally distributed

data. These procedures will be repeated as necessary for each sample created.

The L'Ecuyer (1988) generator has been chosen for present purposes. Specifically, the

FORTRAN code of Press, Teukolsky, Vetterling, and Flannery (1992), has been translated into Turbo

Pascal 6.0 (Borland International, Inc., 1990a) for this study. The L'Ecuyer generator was chosen

because of its large period and because combined generators are recommended for use with the Box-

Muller method for generating random normal deviates, as will be the case in this study (Park & Miller,
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1988). The computer algorithm for the Box-Muller method to be used in this study has been adapted for
Turbo Pascal 6.0, Borland International, Inc., 1990a, from the standard Pascal code provided by Press,
Flannery, Teukolsky, and Vetter ling, 1989.

The correlation matrices that will be created as described in a previous section will be used to
generate multivariate normal data following a Cholesky decomposition procedure (also known as the
square root method) recommended by several scholars (Brat ley, Fox, & Schrage, 1987; Chambers, 1977;
International Mathematical and Statistical Library, 1985; Karian & Dudewicz, 1991; Kennedy & Gentle,
1980; Knuth, 1981; Mooney, 1997; Morgan, 1984; Ripley, 1987; Rubinstein, 1981). Mooney (1997) has
recommended that it is good practice to standardize generated variables with respect to mean and
variance. Indeed, because the matrices used as input into the Cholesky procedure are correlation
matrices and the means will be set to zero, the independent pseudorandom normal vectors, Xi, will have
means of zero and unity variances. These vectors will be generated using the implementation of the Box-
Muller transformation described above.

Monte Carlo Simulations. The number of iterations for the study is based on the procedures
provided by Robey and Barcikowski (1992). Significance levels for both tests on which Robey and
Barcikowski's method is based were set at a = .05 with (1 13) = .90 as the power level; the
magnitude of departure was chosen to be a ± .2a, which falls between their intermediate and stringentcriteria for accuracy. The magnitude of departure is justified by the fact that at ±.2a, the accuracy rangefor a = .05 is .04 s a .06 . Based on the calculations for these parameters (this set of values wasnot tabled), 5422 iterations would be required to "confidently detect departures from robustness in Monte

Carlo results" (Robey & Barcikowski, 1992, P. 283). However, Robey and Barcikowski's method was
designed to provide the number of iterations required for robustness against Type I errors; therefore, a
larger number of iterations (i.e., 10,000) was chosen for the present generalizability study.
Verification of the Data Collection Procedures

According to Bratley, Fox, and Schrage (1987), verification of the algorithms should include (a)
manual verification of the logic by comparing results of the computer analysis with results calculated byhand, (b) modular testing to ensure that each subroutine produces sensible output for all possible inputs,
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(c) checking the results against known solutions, (d) sensitivity testing to ensure that the behavior of the

computer model is sensible when parameters are varied, and (e) stress testing to ensure that strange

values do not cause unexpected problems. Each of these steps was performed in preliminary analyses to

verify program integrity. As changes in the program occurred as it developed, testing was repeated.

Also, Type I errors were examined to test the integrity of the results from the regression algorithms used.

See Brooks (1998) for a more complete description of these verification procedures.

Data Analysis Procedures

The primary concerns of this study were (a) how appropriate are the sample sizes recommended

by the PEAR method and (b) how well the PEAR method sample sizes compensate for multicollinearity.

In order to answer these questions empirically, a Monte Carlo study was performed based on the design

described in previous sections. The following section describes the means by which the data collected in

the Monte Carlo study were analyzed.

Problem 1: Does the PEAR method recommend appropriate sample sizes for multiple linear regression

studies when cross-validity or generalizability of a prediction model is the primary purpose?

Results of the three levels of precision efficacy, that is PE = .80 , PE = .70 , and PE = .60

will be analyzed using an adaptation of the stringent accuracy criterion from Bradley (1978) and Robey

and Barcikowski (1992). Specifically, bias will be calculated as the difference between actual levels of

precision efficacy observed in the Monte Carlo simulation and the respective a priori PE level set in the

program. Based on a criterion of PE ± .1PS, where PS = 1 PE, bias of less than .1PS will be

considered accurate. For example, for a priori PE = .70, the result will be considered accurate if the

average of observed PE values over the many samples is in the range .67 s PE < .73 ; this criterion is

equivalent to the bias criterion of IE (PE) FEI s .03 .

Examination of the bias of precision efficacy for each method (i.e., the three PEAR methods and

the 15:1 ratio) will provide an estimate of how well a method performs compared to how it is expected to

perform. However, in an effort to determine how the methods compare to each other, the Relative

Efficiency of the methods will be compared for PE, R2, RA2, and R. Comparisons of the RMSE for the

methods will help determine if one of the methods is preferable. Additionally, the bias of these statistics
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can be compared to provide a fuller picture of the performance of the methods.

Problem 2: Does the PEAR method recommend appropriate sample sizes when multicollinearity is

suspected to exist among the predictor variables included in a multiple linear regression model?

As explained in a previous section, multicollinearity is not expected to affect the values of R 2,

RA2, or R. Therefore, in order to determine the effect of multicollinearity on the results obtained from a

multiple linear regression analysis, the regression coefficients must be examined. The impact of

multicollinearity will be examined in two ways. First, the Relative Efficiency of the methods in handling

the various levels of multicollinearity will be explored. For example, the PEAR PE = .80 method will

be compared to the PEAR PE = .60 method using the Relative Efficiency criterion. Specifically, the

two multicollinear conditions will be compared individually with the two non-multicollinear conditions.

Again, the focus will be on those predictors that are actually involved in the multicollinearity of the given

predictor set.

Second, the Relative Efficiency of the regression coefficients will be isolated for each method

and examined across multicollinearity conditions. For example, the comparative effect of no

multicollinearity will be compared to extensive multicollinearity by analyzing the Relative Efficiency of

the appropriate values for the PEAR PE = .80 method. It should be noted that not every regression

coefficient will be involved in the multicollinearity at each level; therefore, these comparisons will focus

primarily on the predictors known to be involved in multicollinear relationships.

Results

Problem 1

The average PE rates obtained for each of the PEAR method PE levels (i.e., .60, .70, .80) in the

study are given in Table 4. Examination of Table 4 confirms that the PEAR method recommended

sample sizes that provided accurate levels of precision efficacy. For all conditions tested, the PEAR

method at PE = .80 and PE = .70 provided PE levels within the required bias criterion. For 6 of the

48 conditions, the PE = .60 PEAR method provided values outside of the accuracy range. Review of

Table 4 also shows that the PE rates were more stable for higher PE levels (i.e., standard errors were

smaller). For example, in Table 4, for p2 = .40 , p = 11 , and the orthogonal multicollinearity
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condition, the standard errors for precision efficacy at PE = .80 were 0.047, but for PE = .70 were

0.081, and for PE = .60 were 0.120. Table 4 also suggests that the three levels of precision efficacy

each provided consistent results across numbers of predictors as well as multicollinearity conditions.

Unlike the distributions for precision efficacy, which were negatively skewed, the distributions

of Rc2 were relatively normal (e.g., Appendix D shows these distributions for p2 = .25 and seven

predictors in the orthogonal condition). However, the distributions clearly display the greater stability

(i.e., less variability) for the PE = .80 level of the PEAR method as compared to the other methods.

Additional bias statistics to help distinguish the PE levels used with the PEAR method are

provided in Table 5 for the orthogonal case. RMSE statistics have been provided as Table 6, also for the

2 2
orthogonal multicollinearity condition. Because the correlation statistics (e.g., R

2
, RA, Rc) do not

differ due to multicollinearity in standard full model regression, only the orthogonal cases have been

tabulated.

Bias for the correlation statistics shown in Table 5 increased as the PE level decreased, due to

the fact that smaller samples were recommended from the lower PE levels. For example, Table 5 shows

that for p2 = .40 and p = 3 , the Rc2 bias for PE = .80 was 0.029 but was 0.067 for PE = .60 .

However, because sample sizes increased, bias decreased as the effect size p2 decreased and number of

predictors increased. That is, for p = 3 at p2 = .40, Rc2 bias for PE = .70 was .050, but Rc2 bias

for PE = .70 with p = 15 at p2 = .40 was .019. Similarly, Table 5 shows that bias for p = 7 at

p2 = .40, bias for the PE = .70 level was 0.029, but for p = 7 at p2 = .10 , bias only 0.006 for

2
PE = .70 . The smaller bias at lower effect sizes translates into Rc statistics that are much closer in

absolute value. For example, with p = 7 at p2 = .40 in the orthogonal multicollinearity condition,

PE = .80 resulted in average Rc2 of .350 while PE = .60 resulted in Rc2 = .294 ; with p = 7 at

p2 = .10 in the orthogonal condition, however, PE = .80 resulted in an average Rc2 of .088, while

PE = .60 resulted in a value of .077. This narrowing of the gap between the PE levels (i.e., .056 versus

.011, respectively) also can be viewed graphically by examination of Figure 2, with reference to the

decrease in space between the respective lines for the PE = .80 and the PE = .60 levels.
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Table 4
Average Precision Efficacy (PE) for the Several Multicollin
p2 Method p N Orthogonal

earity Conditions
Non Moderate Extensive

.40 PE = .80 3 59 .802 (.097) .803 (.093) .802 (.094) .797 (.098)
7 117 .803 (.061) .806 (.058) .804 (.059) .804 (.060)

11 176 .806 (.047) .809 (.046) .807 (.046) .804 (.046)
15 234 .805 (.040) .802 (.040) .807 (.039) .809 (.039)

PE = .70 3 40 .690 (.177) .694 (.172) .691 (.173) .685 (.176)
7 81 .714 (.105) .717 (.105) .713 (.107) .713 (.106)

11 121 .718 (.081) .721 (.080) .719 (.081) .717 (.083)
15 161 .719 (.068) .715 (.069) .719 (.069) .723 (.067)

PE = .60 3 31 .597 (.225) .599 (.226) .601 (.223) .587 (.232)
7 63 .629 (.152) .628 (.153) .629 (.152) .630 (.150)

11 94 .636 (.120) .644 (.115) .641 (.116) .637 (.117)
15 125 .640 (.100) .636 (.099) .643 (.099) .645 (.096)

.25 PE = .80 3 113 .800 (.087) .805 (.083) .799 (.089) .808 (.081)
7 226 .802 (.054) .798 (.055) .802 (.054) .803 (.054)

11 339 .805 (.042) .803 (.042) .801 (.043) .808 (.042)
15 452 .803 (.036) .803 (.037) .802 (.037) .808 (.036)

PE = .70 3 77 .698 (.155) .702 (.153) .697 (.155) .707 (.151)
7 153 .708 (.100) .702 (.101) .710 (.096) .710 (.096)

11 230 .715 (.074) .716 (.072) .710 (.076) .721 (.072)
15 307 .718 (.062) .717 (.062) .715 (.063) .723 (.060)

PE = .60 3 59 .605 (.209) .609 (.207) .602 (.210) .616 (.203)
7 117 .621 (.142) .615 (.145) .624 (.140) .624 (.139)

11 176 .634 (.108) .632 (.106) .627 (.109) .640 (.104)
15 234 .637 (.090) .635 (.092) .633 (.092) .643 (.088)

.10 PE = .80 3 331 .801 (.078) .794 (.081) .800 (.079) .793 (.082)
7 663 .803 (.049) .800 (.051) .796 (.052) .794 (.052)

11 994 .803 (.038) .808 (.037) .803 (.039) .809 (.037)
15 1325 .803 (.033) .800 (.033) .801 (.034) .809 (.032)

PE = .70 3 222 .697 (.145) .687 (.152) .694 (.147) .686 (.151)
7 444 .711 (.089) .706 (.090) .700 (.094) .696 (.095)

11 667 .714 (.068) .721 (.065) .714 (.068) .725 (.063)
15 889 .715 (.058) .711 (.059) .712 (.059) .723 (.056)

PE = .60 3 168 .600 (.200) .588 (.209) .598 (.201) .585 (.205)
7 335 .622 (.131) .617 (.132) .608 (.138) .603 (.139)

11 503 .628 (.102) .638 (.097) .633 (.098) .643 (.095)
15 671 .634 (.083) .629 (.084) .630 (.085) .646 (.079)

Note. Standard deviations in parentheses. Average precision efficacy values that are not within the accuracy
interval have been underscored to highlight them.

Although bias provides a sense of how the methods compared on average, the RMSE values

given in Table 6 provide a better sense of how the different PE levels for the PEAR method performed

for each sample. Specifically, the RMSE represents the average variation for each PE level for each

condition. That is, whereas the bias shows the relative difference among the methods based on long run

expectations (i.e., expected averages over many samples), the RMSE indicates how deviant on average

the methods were for each sample.

For example, in Table 5 with p = 3 at p2 = .40, the difference in Rc2 bias between
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Table 5
Bias for Orthogonal Condition

02 Method p N PE' Rc2 R,21 R 2

.40 PE = .80 3 59 .002 .029 .006 .005
7 117 .003 .019 .005 .005

11 176 .006 .013 .002 .002
15 234 .005 .011 .002 .002

PE = .70 3 40 -.010 .050 .012 .011
7 81 .014 .029 .005 .005

11 121 .018 .022 .003 .003
15 161 .019 .019 .003 .003

PE = .60 3 31 -.003 .067 .016 .015
7 63 .029 .041 .007 .007

11 94 .036 .033 .005 .004
15 125 .040 .029 .004 .003

.25 PE = .80 3 113 .000 .018 .003 .003
7 226 .002 .011 .002 .002

11 339 .005 .007 .002 .000
15 452 .003 .007 .001 .001

PE = .70 3 77 -.002 .027 .004 .004
7 153 .008 .018 .003 .003

11 230 .015 .013 .002 .001
15 307 .018 .011 .001 .001

PE = .60 3 59 .005 .036 .005 .005
7 117 .021 .024 .004 .003

11 176 .034 .019 .002 .002
15 234 .037 .017 .001 .001

.10 PE = .80 3 331 .001 .007 .001 .031
7 663 .003 .003 .000 .023

11 994 .003 .003 .000 .018
15 1325 .003 .002 .000 .016

PE = .70 3 222 -.003 .010 .001 .038
7 444 .011 .006 .000 .028

11 667 .014 .004 .000 .023
15 889 .015 .004 .000 .020

PE = .60 3 168 .000 .013 .001 .045
7 335 .022 .009 .001 .032

11 503 .028 .007 .000 .026
15 671 .034 .006 .000 .022

PE = .80 and PE = .60 was 0.038 (i.e., 0.067 -0.029); but Table 6 shows that with p = 3 at

p2 = .40, the difference in Rc2 RMSE between PE = .80 and PE = .60 was 0.059 (i.e.,

.173 .114). Similarly, the difference in Rc2 RMSE between the two PE levels at p2 = .10 with

p = 3 was only 0.016 (i.e., .048 .032). The RMSE statistics for precision efficacy also confirm that

the PE = .80 level provided more stable results than the lower PE levels. For example, Table 6

indicates that PE RMSE with p = 7 at p2 = .25 was 0.054 for PE = .80, but was 0.100 for

PE = .70 and 0.144 for PE = .60 .
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Table 6
Average RMSE for Orthogonal Condition

Method p N PE° 1?A2 R 2

.40 PE = .80 3 59 .097 .114 .103 .097
7 117 .061 .081 .074 .069

11 176 .047 .065 .059 .055
15 234 .040 .057 .052 .049

PE = .70 3 40 .177 .149 .128 .118
7 81 .106 .103 .090 .082

11 121 .083 .084 .073 .067
15 161 .071 .073 .064 .058

PE = .60 3 31 .225 .173 .145 .130
7 63 .155 .125 .104 .092

11 94 .125 .103 .085 .075
15 125 .108 .089 .074 .065

.25 PE = .80 3 113 .087 .077 .072 .070
7 226 .054 .054 .051 .049

11 339 .042 .044 .042 .041
15 452 .036 .039 .037 .035

PE = .70 3 77 .155 .096 .088 .085
7 153 .100 .070 .064 .061

11 230 .075 .056 .052 .049
15 307 .065 .049 .045 .043

PE = .60 3 59 .209 .113 .103 .097
7 117 .144 .083 .074 .069

11 176 .113 .067 .060 .057
15 234 .097 .058 .052 .048

.10 PE = .80 3 331 .078 .032 .031 .031
7 663 .050 .023 .023 .023

11 994 .039 .019 .018 .018
15 1325 .033 .016 .016 .016

PE = .70 3 222 .145 .041 .039 .038
7 444 .090 .029 .028 .028

11 667 .070 .024 .023 .023
15 889 .059 .021 .020 .020

PE = .60 3 168 .200 .048 .046 .045
7 335 .133 .034 .032 .032

11 503 .106 .029 .027 .026
15 671 .090 .024 .023 .022

Table 7 provides a quantitative measure, Relative Efficiency (RE), by which the PE levels can be

compared for the several statistics tabulated. For example, regardless of the number of predictors, level

of multicollinearity, and the p2 value, the Relative Efficiency statistics for all three correlation statistics

show that the RMSE of the PE = .80 level was about 80% of the RMSE for the PE = .70 level (the

RE values were primarily in a range from about 77% to about 83%). Similarly, Relative Efficiency

shows that RMSE of PE = .70 for the correlation statistics was about 86% that of the PE = .60 level.

These Relative Efficiency statistics suggest that the PE = .80 level of the PEAR method was about
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Figure 2

2
Average cross-validity statistics (i.e., Rc) for the three PE levels and the 15:1 subject-to-predictor ratio across
number of predictors when:
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20% more efficient than the PE = .70 level, which in turn was about 14% more efficient than the

PE = .60 level. Figure 3 shows these relationships graphically by comparing each sample size method

to the PE = .80 level of the PEAR method for one set of conditions. The Relative Efficiency of the

15:1 ratio can be seen to vary considerably depending upon the level of p2.

Problem 2

The PEAR method has been shown to provide accurate results for the expected level of cross-

2 2
validity, R. Indeed, results showed that not only were the estimates of Rc stable across

multicollinearity conditions, but so also were the standard errors of those estimates. For example, for

p = 7 at p2 = .40 and PE = .80 , the average Rc2 values were very tightly around .353 (.351 in the

orthogonal condition, .355 in the non-multicollinear condition, .353 in the moderate multicollinearity

condition, and .352 in the extensive multicollinearity condition); additionally, the standard deviations for

those averages ranged tightly around .079 (.079, .078, .079, and .079, respectively).

2
However, the ability to produce a desired Rc value does not necessarily imply that the

regression weights derived for a certain model will be stable across samples. In order to determine the

stability of the regression coefficients, they must be inspected individually. That is, the standard errors

of the regression coefficients must be examined in order to determine the effect of varying sample sizes

on the stability of the coefficients.

For the conditions with three predictors, Table 8 and Table 9 provide the standard errors of the

coefficients for the four sample size methods. These tables show that the higher precision efficacy levels

that recommended larger samples consistently resulted in smaller standard errors of the coefficients,

regardless of the number of predictors, effect size, or multicollinearity. Although they have not been

tabulated, the results showed similar patterns for the 7, 11, and 15 predictor cases as well.

Table 10 provides the Relative Efficiency of the methods compared for all numbers of predictors,

all multicollinearity levels, and all effect sizes. For this table, the standard errors for the individual

predictors were used for comparison because, for unbiased estimates such as the regression coefficients,

RMSE approximates the standard error. To create Table 10, the Relative Efficiency of each predictor

was calculated and then those Relative Efficiency values were averaged for the predictor set. It would
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Table 7
Relative Efficiency for Orthogonal Condition

p2 Method Comparison PE a
2Rr 2

R R 2
.40 3 RMSE(.80) / RMSE(.70) 54.8 76.5 80.5 82.2

RMSE(.80) / RMSE(.60) 43.1 65.9 71.0 74.6
RMSE(.70) / RMSE(.60) 78.7 86.1 88.3 90.8

7 RMSE(.80) / RMSE(.70) 57.5 79.6 82.2 84.1
RMSE(.80) / RMSE(.60) 39.4 65.6 71.2 75.0
RMSE(.70) / RMSE(.60) 68.4 82.4 86.5 89.1

11 RMSE(.80) / RMSE(.70) 56.6 77.4 79.7 83.6
RMSE(.80) / RMSE(.60) 37.6 63.1 69.4 74.7
RMSE(.70) / RMSE(.60) 66.4 81.6 87.1 89.3

15 RMSE(.80) / RMSE(.70) 56.3 78.1 81.3 84.5
RMSE(.80) / RMSE(.60) 37.0 64.0 70.3 75.4
RMSE(.70) / RMSE(.60) 65.7 82.0 86.5 89.2

.25 3 RMSE(.80) / RMSE(.70) 56.1 79.4 81.8 82.4
RMSE(.80) / RMSE(.60) 41.6 68.1 70.6 72.2
RMSE(.70) / RMSE(.60) 74.2 85.8 86.3 87.6

7 RMSE(.80) / RMSE(.70) 54.0 77.1 79.7 80.3
RMSE(.80) / RMSE(.60) 37.5 65.1 68.9 71.0
RMSE(.70) / RMSE(.60) 69.4 84.3 86.5 88.4

11 RMSE(.80) / RMSE(.70) 56.0 78.6 80.8 83.7
RMSE(.80) / RMSE(.60) 37.2 64.7 70.0 71.9
RMSE(.70) / RMSE(.60) 66.4 82.4 86.7 86.0

15 RMSE(.80) / RMSE(.70) 55.4 79.6 82.2 83.7
RMSE(.80)/ RMSE(.60) 37.1 67.2 71.2 75.0
RMSE(.70) / RMSE(.60) 67.0 84.5 86.5 89.6

.10 3 RMSE(.80) / RMSE(.70) 53.4 80.5 79.5 79.5
RMSE(.80) / RMSE(.60) 39.0 68.8 67.4 68.9
RMSE(.70) / RMSE(.60) 73.0 85.4 84.8 86.7

7 RMSE(.80) / RMSE(.70) 55.6 82.8 82.1 82.1
RMSE(.80) / RMSE(.60) 37.6 70.6 71.9 71.9
RMSE(.70) / RMSE(.60) 67.7 85.3 87.5 87.5

11 RMSE(.80) / RMSE(.70) 55.7 79.2 78.3 78.3
RMSE(.80) / RMSE(.60) 36.8 65.5 66.7 66.7
RMSE(.70) / RMSE(.60) 66.0 82.8 85.2 85.2

15 RMSE(.80) / RMSE(.70) 55.9 76.2 80.0 80.0
RMSE(.80) / RMSE(.60) 36.7 66.7 69.6 69.6
RMSE(.70) / RMSE(.60) 65.6 87.5 87.0 87.0

Note. Comparisons to the 15:1 ratio were not tabulated because they are only incidental to the study.

not have been appropriate to average the results for Table 10 across predictors if the results had not been

so consistent. For example, in Table 10 for p = 3 at p2 = .40 in the orthogonal condition, the

Relative Efficiency of the PE = .80 level as compared to PE = .70, represented as

RMSE(.80)/RMSE(.70), is shown to be 80.8%. Using the values from Table 8, it can be determined

that for p = 3 at p2 = .40 in the orthogonal condition, the Relative Efficiency for coefficients 1 was

80.9% (.102/.126); similarly, Relative Efficiency for coefficient 2 can be calculated to be 81.7% and

for coefficient 3 at 79.6%.
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Figure 3

RMSE for the PEAR method at PE = .70 and PE = .60 and the 15:1 ratio compared to the PE = .80
PEAR method across effect sizes, averaged for number of predictors.
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There is a striking similarity between the Relative Efficiency statistics in Table 10 and those

found in Table 7 for the correlation statistics. Specifically, the Relative Efficiency statistics show that,

on average, the magnitude of the standard errors of the coefficients from the PE = .80 level were about

20% smaller than those from the PE = .70 level. Similarly, the comparisons of the PE = .70 and

PE = .60 levels provided RE statistics that ranged tightly around the 86% level.

Multicollinearity is known to affect the standard errors of the regression coefficients derived for

a model. Indeed, comparisons of Table 8 and Table 9 confirm that the standard errors increased not only

for the predictors specifically identified as multicollinear, but also the predictors whose relationships

were neither orthogonal nor multicollinear. For example, from Table 8, for p2 = .25 for all sample size

methods, the standard errors for the coefficients in the non-multicollinear condition were larger than

those from the orthogonal condition for two of the three predictors. That is, the standard errors for these

coefficients increased by over 70% from the orthogonal condition despite that the relationships among

the predictors were known not to be multicollinear according to their variance inflation factors.
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Table 8
Average Standard Errors of the Standardized Coefficients (SR) for Three Predictors for Non-Multicollinear
Conditions

p2 Method SEb
1

Orthogonal
SEb

3

Non-Multicollinear
SE SEb SEb

1 2 3

.40 PE = .80 59 .102 .103 .094 .108 .108 .096
PE = .70 40 .126 .126 .118 .134 .135 .120
PE = .60 31 .147 .147 .136 .155 .155 .139
15:1 ratio 45 .119 .118 .109 .127 .126 .111

.25 PE = .80 113 .080 .080 .079 .139 .082 .136
PE = .70 77 .098 .099 .097 .170 .100 .166
PE = .60 59 .114 .113 .111 .195 .115 .193
15:1 ratio 45 .131 .132 .128 .228 .132 .223

.10 PE = .80 331 .052 .052 .050 .071 .066 .055
PE = .70 222 .064 .064 .062 .089 .083 .068
PE = .60 168 .074 .073 .071 .101 .095 .079
15:1 ratio 45 .146 .147 .143 .204 .189 .155

Note. SE,, approximates RMSE when estimate is unbiased as is p .
''i I

Table 9
Average Standard Errors of the Standardized Coefficients for 3 Predictors for Multicollinear Conditions

02 Method N SEb
1

Moderate
SEb

2
SEb

3
SEb

1

Extensive
SEb

2
SEb

3

.40 PE = .80 59 .202 .254 a .140 .183 .264 a .308 a

PE = .70 40 .254 .312 a .173 .228 .327 a .382 a

PE = .60 31 .295 .365 a .201 .264 .387 a .453 a

15:1 ratio 45 .236 .293 a .160 .212 .308 a .357 a

.25 PE = .80 113 .154 .213 a .146 .129 .381' .407 a

PE = .70 77 .189 .260 a .177 .158 .466 a .499 a

PE = .60 59 .218 .302 a .210 .179 .537 a .5738
15:1 ratio 45 .252 .349 a .239 .209 .631 a .672 a

.10 PE = .80 331 .114 .1518 .090 .128 a .124 a .065
PE = .70 222 .140 .1878 .113 .156 a .152 a .080
PE = .60 168 .160 .213' .128 .1808 .176 a .093
15:1 ratio 45 .327 .436 a .260 .363 a .352 a .185

Note. SEb approximates RMSE when estimate is unbiased as is p a indicates predictor with VIF> 5.0 (i.e.,
involved in tnulticollinearity).

Figure 4 shows graphically the average standard error for sets of seven predictors at p2 = .40,

p2 = .25, and p2 = .10 . The graphs show that as multicollinearity increased, the standard errors of the

coefficients increased, as an average for the sets of predictors. All of the sample size methods (i.e., three

PE levels and the 15:1 ratio) were affected by this increase in standard error, but the effect was

4 3
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Table 10
Average Relative Efficiency of the Standardized Coefficients Across Predictors

p2 Method Comparison Orthogonal Non Moderate Extensive

.40 3 RMSE(.80) / RMSE(.70) 80.8 80.2 80.6 80.5
RMSE(.80) / RMSE(.60) 69.5 69.5 69.2 68.5
RMSE(.70) / RMSE(.60) 86.1 86.6 85.9 85.1

7 RMSE(.80) / RMSE(.70) 81.7 81.6 81.3 82.9
RMSE(.80) / RMSE(.60) 70.5 70.6 71.2 71.1
RMSE(.70) / RMSE(.60) 86.3 86.6 87.6 85.8

11 RMSE(.80) / RMSE(.70) 81.4 81.8 81.6 80.5
RMSE(.80) / RMSE(.60) 70.7 70.4 70.8 70.5
RMSE(.70) / RMSE(.60) 86.8 86.1 86.7 87.6

15 RMSE(.80) / RMSE(.70) 81.7 81.5 80.4 81.9
RMSE(.80) / RMSE(.60) 70.7 70.6 69.8 70.7
RMSE(.70) / RMSE(.60) 86.5 86.7 86.9 86.3

.25 3 RMSE(.80) / RMSE(.70) 81.3 81.9 82.0 81.7
RMSE(.80) / RMSE(.60) 70.7 71.0 70.2 71.3
RMSE(.70) / RMSE(.60) 87.0 86.7 85.7 87.4

7 RMSE(.80) / RMSE(.70) 81.2 81.5 81.2 81.6
RMSE(.80) / RMSE(.60) 70.0 71.0 69.9 70.7
RMSE(.70) / RMSE(.60) 86.2 87.1 86.1 86.6

11 RMSE(.80) / RMSE(.70) 81.4 81.6 81.6 81.4
RMSE(.80) / RMSE(.60) 70.5 70.8 70.6 71.1
RMSE(.70) / RMSE(.60) 86.6 86.8 86.5 87.3

15 RMSE(.80) / RMSE(.70) 81.8 81.2 81.0 81.4
RMSE(.80) / RMSE(.60) 71.2 70.6 70.2 70.5
RMSE(.70) / RMSE(.60) 87.0 86.9 86.8 86.5

.10 3 RMSE(.80) / RMSE(.70) 81.0 80.1 80.6 81.6
RMSE(.80) / RMSE(.60) 70.6 69.8 70.8 70.5
RMSE(.70) / RMSE(.60) 87.2 87.2 87.9 86.4

7 RMSE(.80) / RMSE(.70) 81.9 81.6 82.1 82.4
RMSE(.80) / RMSE(.60) 70.4 70.5 70.6 72.0
RMSE(.70) / RMSE(.60) 86.0 86.4 86.0 87.4

11 RMSE(.80) / RMSE(.70) 81.1 81.9 81.8 81.7
RMSE(.80) / RMSE(.60) 70.4 70.9 71.2 70.6
RMSE(.70) / RMSE(.60) 86.8 86.6 87.1 86.5

15 RMSE(.80) / RMSE(.70) 81.0 80.9 81.7 81.1
RMSE(.80) / RMSE(.60) 70.2 70.4 70.7 70.7
RMSE(.70) / RMSE(.60) 86.6 87.1 86.5 87.2

Note. SE approximates RMSE when estimate is unbiased as is

consistent when the methods were compared. Examination of Table 10 shows that the Relative

Efficiency of the methods remained consistent despite the presence of multicollinearity. For example,

across all effect sizes and numbers of predictors, regardless of the magnitude of standard error caused by

multicollinearity, the PE = .80 level used with the PEAR method remained approximately 20% more

efficient than the PE = .70 level, just as the PE = .70 level remained about 14% more efficient than

the PE = .60 level.

4 4
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Figure 4

Average standard errors for the regression coefficients for three PE levels and the 15:1 subject-to-
predictor ratio in the seven predictor conditions when true p2 = .40 .
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Again, if these results had not been so consistent, it would not have been appropriate to group

them in Figure 4. It can be seen in Table 8 and Table 9 that the standard errors for the coefficients do

vary individually. However, results used to derive Table 10 confirm that, despite the differing

magnitudes of the coefficient standard errors, the Relative Efficiency relationship holds true when the

methods are compared. It was determined, because these Relative Efficiency held across comparisons,

that averaging the standard errors for the predictor sets would not present false characterizations of the

relationships among the PE levels as represented graphically in Figure 4.

Additionally, all sample size methods produced similar results when each was compared against

itself across multicollinearity conditions. The Relative Efficiency statistics for each method compared to

its orthogonal condition were similar. For example, in the moderate multicollinearity condition for

Coefficient 2, which was involved in a multicollinear relationship, all sample size methods resulted in

similar Relative Efficiency values near 38%. That is, for each method, the standard error from the

orthogonal condition was 38% as large as the standard error for the moderate multicollinearity situation.

Although Relative Efficiency was equivalent for all the PE levels, a review of Table 8 and Table 9

reminds the reader that standard errors were generally smaller for higher PE levels.

Discussion

The results of the first research problem confirmed what Brooks and Barcikowski (1995, 1997)

have found previously. That is, the PEAR method seems to provide accurate precision efficacy rates

across several effect sizes and numbers of predictors. The PEAR method as defined for this study was

2 2
based on an estimated population pE value rather than an expected sample RE value. The results

suggest that the adaptation (i.e., Equation 5) of the original shrinkage tolerance formula (i.e., Equation 4)

performs very well when an estimate of the population parameter is the more readily available effect size.

It should be noted, however, that from a practical perspective, the reasonable estimation of either

2 2 .
an expected RE or an estimated pE Is more important than which shrinkage tolerance formula is chosen.

The differences from the two equations (Equation 4 and Equation 5) are minimal when compared to the

differences caused by incorrect estimation of effect size. For example, Brooks and Barcikowski (1995)

found that when 4 = .25 but p2 = .10, precision efficacy rates were in the .47 to .50 range for

4 6
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PE = .80 . Given accurate estimation of effect sizes, however, the difference in PE rates for Equation 4

and Equation 5 should be very small (e.g., about .02 for PE = .80). Consequently, whereas the more

complex Equation 5 was required for the highly specific Monte Carlo simulation that used an estimated

2pE, the use of the simpler Equation 4 often may be acceptable from a practical perspective with an

2
expected RE .

Bias. There seems to be a slight accuracy advantage to higher levels of precision efficacy used a

priori with the PEAR method. In particular, the PE = .80 and the PE = .70 values for the PEAR

method were within the acceptable bias interval for every condition, whereas the PE = .60 level was

not accurate in six conditions. Brooks and Barcikowski's (1997) data showed that using Equation 5, the

PE = .80 level was accurate in 94% of the cases and PE = .70 was accurate in 97%; the PE = .60

level was slightly less accurate, at 93%. When each of these a priori precision efficacy levels was not

accurate in that 1997 study, the large preponderance of results were higher than expected, thereby

recommending more subjects than necessary rather than less.

Indeed, although accurate for each case in the present study, most of the PE rates for PE = .80

and PE = .70 were in the upper half of the accuracy range (i.e., above the a priori rate); the PE = .60

level was also above the a priori rate for most conditions, including the six cases where it was not

accurate. However, because the PE rates fell within the accuracy range especially at higher PE levels,

this result provides more confidence that the expected PE values will be, on average, at least as large as

the a priori PE level.

The benefit of an accurate method is that neither too few nor too many subjects will be

recommended for a study. Although, more data is generally better, the value of obtaining additional data

usually must be weighed against the opportunity cost of the extra time, effort, and expense associated

with its collection. Sample size methods such as the PEAR method endeavor to recommend the

minimum size for research samples. As Brewer and Sindelar (1987) wrote, "there is no such thing as a

maximum sample size" (p. 75); but a recommended minimum sample size will help the researcher to

determine what is necessary to achieve desired generalizability, in the case of multiple linear regression

used for prediction.
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Relative Efficiency. The Relative Efficiency of the different PEAR levels were investigated in

hopes of detecting a best a priori level of precision efficacy. However, no clear choice was found. The

PE = .80 level seemed to perform about 20% better than the PE = .70 level in the full model case,

for orthogonal as well as multicollinear predictors. Similarly, the PE = .70 level performed about 14%

better than the PE = .60 level across all conditions.

From these Relative Efficiency statistics it would seem that the PE = .80 level used with the

PEAR method would be most desirable. However, more information must be considered. For example,

at lower population p2 effect sizes, the statistics based on the methods become rather close in absolute

2
value. An example cited earlier showed that at p2 = .10 with three predictors, Rc was .088 for the

PE = .80 level but only .077 for PE = .60. The PE = .80 level required 331 subjects to obtain its

2slightly larger Rc, whereas the PE = .60 level only required 168 subjects to obtain a value that many

researchers might find acceptable. Other researchers may determine, however, that the additional

subjects recommended by the PE = .80 level are well worth the added precision efficacy.

2
These dramatic differences in sample sizes must be balanced against the expected gain in Rc,

particularly at lower effect sizes. The sample size differences are not quite so striking at higher effect

sizes, but still must be considered. For example, at p2 = .40 and three predictors, the extra 28 subjects

recommended by the PE = .80 (N 59) level as compared to the PE = .60 level (N 31)

2
resulted in the more noticeable difference in average Rc of .350 versus .294, respectively. Fortunately,

thoughtful adjustments to the a priori precision efficacy level or the shrinkage tolerance enable

researchers to use the PEAR method to make such choices.

Recommendations. Because the PE = .80 and the PE = .70 levels of precision efficacy were

slightly more accurate than the PE = .60 level, it is recommended that practitioners use an a priori

2
precision efficacy value of at least PE = .70 . In particular, the average Rc results indicate that for

moderate p2 effect sizes (e.g., p2 = .40 and p2 = .25), the best choice may be PE = .80 . That is, the

PE = .80 level of precision efficacy keeps shrinkage to generally more acceptable absolute level. As

effect size decreases, the researcher must pay closer attention to the trade-offs between relative and

absolute shrinkage, as well as the opportunity costs of gathering samples of the required sizes. Finally, it
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is noteworthy that although the only non-PEAR method included in the current study was the 15: I

subject-to-predictor ratio, the PEAR method once again showed its comparative value (cf. Brooks &

Barcikowski, 1994, 1995).

Multicollinearitv

One of the most difficult aspects in the interpretation of multiple linear regression results is the

analysis of predictors that are related. In particular, situations arise in which predictors are highly

correlated and multicollinearity becomes a significant problem. Many scholars have suggested that

multicollinearity causes problems with the interpretation of regression results and even may affect the

ability of a regression model to predict. For correlation statistics in the full model situation,

multicollinearity is not an issue; that is, correlation statistics (e.g., R2, R,24 , Rc2) are not affected by

multicollinearity in the data. However, the standard errors of the regression coefficients sometimes are

affected substantially by the presence of multicollinear relationships among a subset of predictors.

The results showed, however, that the Relative Efficiency of the PE levels chosen for the study

remains surprisingly consistent across coefficients for all conditions. That is, neither the number of

predictors, the effect size, nor the level of multicollinearity seemed to affect the relative performance of

the standard errors of the coefficients for the different PE levels. Specifically, just as for the full model

correlation statistics and the orthogonal coefficient standard errors, Relative Efficiency of the

multicollinear coefficient standard errors was about 80% for PE = .80 as compared to PE = .70; for

PE = .70 versus PE = .60, Relative Efficiency was approximately 86%. Generally speaking, the PE

levels that recommended larger sample sizes produced smaller standard errors for the coefficients.

Consequently, increasing sample size may not cure multicollinearity, but does stabilize the standard

errors of the coefficients relatively.

In fact, the results that pertain specifically to the multicollinearity question suggest that when

multicollinearity is suspected among a set of predictors, the PE = .80 level, or perhaps higher, may be

the best choice. That the PE = .80 level of precision efficacy results in 20% more efficient coefficients

than PE = .70 in terms of their standard errors recommends the PE = .80 level for use with the

PEAR method. Because the standard errors become inflated, a 20% more efficient solution often might
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be advantageous. For pure prediction problems, the size of the standard errors caused by

multicollinearity is less worrisome; that is, even less stable coefficients (e.g., from PE = .70) seem to

2result in Rc estimates that are just as stable as orthogonal coefficients. However, if the researcher hopes

to interpret the coefficients, their standard errors will have a more significant impact.

Conclusions

The primary goal of Precision Efficacy Analysis for Regression is to provide a means by which

the researcher can assess the generalizability of a prediction model relative to its performance in the

derivation sample. Precision Efficacy Analysis for Regression has been shown through several studies

(Brooks & Barcikowski, 1994, 1995, 1997) to be a viable method for this generalizability analysis.

There are four primary reasons that argue for the importance of Precision Efficacy Analysis for

Regression and the PEAR method of choosing sample sizes used to develop prediction models. First,

precision efficacy is a means by which researchers can assess the prediction potential of a regression

model relative to its performance in the derivation sample. Second, the PEAR method provides a means

by which researchers can choose samples by setting a priori effect sizes, shrinkage tolerance, and

precision efficacy levels. Third, results from both the present study and previous research (e.g., Brooks

& Barcikowski, 1995) show that prediction models produced using appropriately large sample sizes will

better estimate pc' Fourth, the most important reason is that a model based on a proper sample size, as

suggested by the PEAR method, will provide more reliable regression weights. Therefore, these models

will predict better for future subjects because, ultimately, the efficiency of a prediction model depends

2 2
not on correlation statistics such as RA and Rc, but on the stability of the regression coefficients.

Analysis of the results from the present study also provide evidence that the PEAR method

recommends sample sizes that accurately meet the a priori expectations for precision efficacy (i.e., limit

shrinkage to the levels expected). The method, which is flexible and can be adjusted based on specific

research needs, provides consistent results at the three levels of a priori precision efficacy studied here.

Analysis of the results has also shown that although multicollinearity tends to affect the stability of

regression coefficients and regression models, the PEAR method can be adjusted in several ways to

account for these differences.
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The PEAR method appears to fill an important gap in the multiple linear regression literature in

that it recommends sample sizes for prediction based not only on the number of predictors in a study, but

also on the size of the effect expected. Indeed, most sample size methods in other areas of statistics,

including fixed model regression, consider effect size to be an essential part of the calculation. Some

may argue that effect sizes are too difficult to determine, but blind adherence to conventional subject-to-

predictor ratios certainly cannot be better research practice. Sometimes, it is indeed difficult to

determine an expected effect sizeperhaps due to inadequate or unsatisfactory previous research,

misinterpretation of results by other researchers, or lack of research in the topic area. When prior

research is not available, pilot studies become a very important step in the research process, for pilot

studies can provide an expectation of effect size. Also, careful interpretation of previous results and

meta-analysis of multiple studies can help to provide at least a meaningful effect size that constitutes

practical significance. When no prior knowledge is available and a pilot study is impossible, only as a

last resort should conventional effect sizes be chosen.

The PEAR method can be viewed from one perspective as simply cross-validation in reverse.

That is, instead of determining by how much the sample R 2 will shrink due to the sample size; the

PEAR method determines how large a sample to use to keep R 2 from shrinking too much. Although at

first glance the method may seem much more complex than the conventional subject-to-predictor ratios

often espoused in the literature, it is not. In particular, conventional rules typically take the form

N Cxp, where C is a constant based on someone's experience and p is the number of predictors in

the full regression model. The PEAR method, in contrast, takes the form N Cx (p + 1) , where C is

variable depending on the effect size, precision efficacy, and shrinkage tolerance set by the researcher

and (p + 1) is the total number of variables in the model (i.e., including the criterion variable). Previous

research by Brooks and Barcikowski (1995) has shown that a similar method based on p (the predictive

power method, Brooks & Barcikowski, 1994) does not perform as well as (p + 1) .

Finally, the Monte Carlo study from Brooks and Barcikowski (1994) also showed that when

generalizability is the priority, one needs not worry much about statistical power. That is, when sample

sizes are chosen with precision efficacy as the primary criterion, statistical power is well above the

51



PEAR 51

standard .80 that is typically recommended. Indeed, for sample sizes chosen via the predictive power

2
method, statistical power rates for cases where the RE approximates p2 were over .90. Like precision

2
efficacy, however, statistical power rates fell dramatically to unacceptable levels when RE overestimated

p2.

Caveats for Samples of Anv Size

The use of mathematical cross-validity formulas does not supersede the need for the validation of

regression models in other samples. The cross-validity formulas suggest how well a model should

perform, assuming that the sample from which it was derived was reasonably representative of the

population; however, any given sample can deviate from what would be expected or representative.

Further, no matter what the precision efficacy, a model that does not predict well in a derivation sample

also probably will not predict well in any other samples.

Developing a model with good precision efficacy should be considered only a first step in this

validation process. The statistical correction cross-validity formulas attempt to predict the mean of all

cross-validation attempts. Empirical cross-validation, in contrast, may result in a correlation that by

chance might be lower or higher than the average of several such cross-validations (Wherry, 1975).

However, the actual performance of a prediction model in a new sample (as opposed to data-splitting)

provides intangible evidence not available with the use of cross-validity formulas. Further, cross-

validation does not depend upon the assumptions required for use of the cross-validity equations, thus

providing a possible substitute when the assumptions are not met (Darlington, 1990; Wherry, 1975).

However, the PEAR method can be used to determine sample sizes even if an actual cross-validation is to

be performed later; the results of such a cross-validation should be less likely to vary dramatically when

based on an appropriate sample.

Also, these results are based on long-run expectations of the performance of the PEAR method.

Berry (1993) noted that "unbiasedness of OLS [ordinary least squares] estimators in no way ensures that

an individual estimate of a regression parameter based on a single sample will equal its population value"

(p. 18). Similarly, although the expected value of precision efficacy has shown to be accurate in the

long-run, any given sample size based on the PEAR method may not produce a precision efficacy value
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within the stringent accuracy range used in this study. However, results based on larger samples are less

likely to differ, because larger samples generally result in smaller standard errors.

Darlington (1990) and Montgomery and Peck (1992) also have expressed the importance not

only of model validation (e.g., cross-validation), but also of model adequacy. According to Montgomery

and Peck (1992), checking for robustness or model adequacy requires residual analyses for violations of

assumptions, searching for high leverage or overly influential observations, and other analyses that test

the fit of the regression model to the available data. Darlington (1990) has described robustness in this

way:

Robustness is the ability to draw valid conclusions even in the absence of standard assumptions

such as normality and homoscedasticity. . . . When the assumptions of normality and

homoscedasticity are not met, a study may lack robustness even when its sample size far exceeds

the recommendations [for sample size]." (p. 379)

Darlington (1990) added that robustness to violations of assumptions continues to increase as sample size

increases.

Further, Darlington (1990) reminded researchers that when statistical significance is found

despite a small sample size, those results cannot be criticized from a statistical perspective. However,

research performed in the evolution of the PEAR method has reminded researchers that such is not

necessarily the case when the generalizability of results is the primary concern. That is, small samples

rarely provide the generalizable prediction models that researchers might expect given the statistical

significance achieved.

Recommendations for Future Research

There are a number of issues that the present study was unable to elucidate. Therefore, the

following recommendations are made for research to further investigate sample sizes for prediction

models developed using multiple linear regression. First, there are aspects of multicollinearity that have

not been addressed in this study. For example, results from this study were not able to describe the

resulting magnitude of standard errors of the coefficients. That is, sample size alone was not enough to

explain the larger or smaller standard errors of multicollinear predictor coefficients. Future research
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should investigate multicollinearity as a more continuous variable. Further, future studies should

examine whether larger variance inflation factors cause more dramatic inflation problems. Future

research can explore questions of sample specific multicollinearity, that which changes to some degree

for each sample. Also, perhaps some statistical methods for managing multicollinearity could be

examined, such as stepwise regression, all-subsets regression, or ridge regression.

Second, the data in the present study were generated through computer simulation. Often, real

data do not behave in the same manner as simulated data (Micceri, 1989). It may be possible to develop

future studies that incorporate the use of large datasets comprised of data from real research. Having

such data will allow the calculation of the true population cross-validity. Also, future studies are

required to determine the efficacy of the PEAR method when the data are not distributed normally.

There is reason to believe that the PEAR method, with its larger sample sizes (relative to many

conventional rules) will be useful even with non-normal data. Berry (1993) noted that "as ones sample

size increases, one can show decreasing concern whether the normality assumption is met" (p. 82). Other

data issues include the possibility of using fixed model data (e.g., dummy variables) or the impact of

heteroscedasticity on prediction may be studied.

Epilogue

It is hoped that the method of generalizability analysis presented in this study (Precision Efficacy

Analysis for Regression) and its associated sample size method will provide researchers better tools for

the adequate development and design of their regression studies. The PEAR method shows much

promise in providing sample sizes that keep cross-validity shrinkage to a minimumthat is, to an

acceptable shrinkage tolerance level set a priori by the researcher. It is further hoped that both the

evidence presented and the simplicity of the PEAR method will encourage researchers to consider more

carefully the issues of sample size, effect size, and generalizability for multiple linear regression

research. The results presented in this study show that the PEAR method may be useful, especially for

standard full model regression, despite the presence of multicollinear predictors.

The goal of this study is to help the researcher to determine the minimum sample size required

for a given prediction study, not to add another citation to the repertoire of the skeptical expert. That is,
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the PEAR method can be adjusted in many ways, resulting in "just the right" number of subjects for

almost any circumstance. For example, the precision efficacy level may be adjusted, or the shrinkage

tolerance value may be changed, or the effect size may be altered in order to justify a given sample size

after the fact.

As with any research technique, the PEAR method requires honest and a priori use to be

effective: thoughtful choices are required for both effect size and precision efficacy before a sample size

is calculated. Not choosing an appropriate sample size may jeopardize interpretations and conclusions

from a study or may provide spurious results. "As harsh as it sounds, when researchers cannot provide

an adequate sample, they should seriously consider the option of not conducting the research until an

adequate amount of data is available" (Brewer & Sindelar, 1987, p. 77).

Because generalizability may be an even more important issue than statistical power in much

regression research, an assessment technique such as Precision Efficacy Analysis for Regression appears

beneficial to a more complete understanding of regression results. Additionally, researchers must be

aware of the potential hazards of choosing an inappropriate effect size or ignoring effect size completely

when selecting sample sizes. Finally, researchers must remember that no statistical analysis or

adjustment (such as a cross-validity estimate) can repair problems caused by a small, nonrandom, or

unrepresentative sample (Cooley & Lohnes, 1971; Miller & Kunce, 1973).
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Appendix A

Derivation of the PEAR Method for Sample Size Selection

Start with the Lord formula, as presented by Uhl & Eisenberg (1970):

2R, = 1-N+p +1 (1-R2)
N-p-1

Multiplying both sides by (N-p-1) yields:

(N-p-1)(R,2) = (N-p-1)-(N+p+1)(1-R 2)

Expanding the quantities gives:

NRc2 -pRc.2 -12c2 = N -p -1 -N-p -1 +NR 2 +pR 2 +R2

and grouping and subtracting gives:

NRc2 -NR 2 1-p -1 +pR2 +R2

By factoring the terms:

N(Rc2 -R 2)

And therefore

N (4. R2) = (p + 1)(4 2 + R2)

Multiplying both sides by (-1) and then dividing both sides by (R2 -Rc2) gives:

(2 -R 2 -Rc2)
N = (p+1)

Let E = R2 -Rc2 and therefore Rc2 = R2 -E:

Finally,

(R2 -Rc2)

N=
E

N = (p+1) (2 -2R2+)
E
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Appendix B
Correlation Matrices for Three and Seven Predictors

Table D.1
Correlation Matrices for Three Predictors
Matrix Condition p2

Y Xi X2

Orthogonal .40 Xi .292
X2 .270 .000
X3 .492 .000 .000

.25 Xi .257
X2 .257 .000
X3 .343 .000 .000

.10 Xi .088
X2 .137 .000
X3 .271 .000 .000

Non-Multicollinear .40 Xi .292
X2 .270 .265
X3 .492 .080 -.192

.25 Xi .257
X2 .257 -.206
X3 .343 .800 -.277

.10 Xi .088
X2 .137 .610
X3 .271 .376 .098

Moderately Multicollinear .40 Xi
y

2
*-

.292

.270 .809
X3 .492 .256 .614

.25 Xi .257
X2* .257 .709
X3 .343 .131 .683

.10 Xi
y *-2

.088

.137 .812
X3 .271 .316 .704

Extensively Multicollinear .40 Xl .292
y

2
*- .270 .240

y
3

*- .492 .621 .846
.25 Xi

y2 *-
.257
.257 .680

X3* .343 .741 .976
.10 Xi*

y *-2
.088
.137 .907

X3 .271 .624 .595

* indicates predictor with VIF > 5.0 (i.e., involved in multicollinearity)
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Appendix C
Stem-and-Leaf Plots of the Precision Efficacy Accuracy

of Several Sample Size Methods
These plots were adapted from Brooks and Barcikowski (1995). The accuracy criterion used in

that study for these results was .75 PE s .85 . Those leaves which represent accurate results have
been boldfaced and underlined. For every plot, the stem width is 0.1000. Each leaf represents one case.

PEAR Method
by Brooks &

Frequency

(Precision Power
Barcikowski, 1995)

Stem & Leaf

Sawyer (1982)

Frequency Stem & Leaf
.00 0 .00 0

.00 1 .00 1

.00 2 .00 2

.00 3 1.00 3 9

.00 4 6.00 4 022368

.00 5 3.00 5 011

.00 6 5.00 6 23455
1.00 7 9 1.00 7 9

19.00 8 0011111111112222222 4.00 8 0112
.00 9 .00 9

Predictive Power Method
(Brooks & Barcikowski, 1994)

Frequency Stem & Leaf

30:1 subject-to-predictor ratio
(Pedhazur & Schmelkin, 1991)

Frequency Stem & Leaf
.00 0 .00 0

.00 1 .00 1

.00 2 .00 2

.00 3 3.00 3 . 166

.00 4 2.00 4 37

.00 5 .00 5 .

2.00 6 . 69 1.00 6 . 9

13.00 7 . 0113455667999 3.00 7 . 469
5.00 8 . 00001 1.00 8 . 0

.00 9 . 10.00 9 . 0122277777

Park and Dudycha (1974)

Frequency Stem & Leaf

50 + 8p conventional rule (Green, 1991)

Frequency Stem & Leaf
.00 0 .00 0

.00 1 2.00 1 06

.00 2 2.00 2 39

.00 3 1.00 3 4

1.00 4 4 .00 4

5.00 5 . 11349 2.00 5 18
2.00 6 . 69 2.00 6 58
3.00 7 . 019 1.00 7 2

6.00 8 . 455679 4.00 8 1489
3.00 9 . 000 6.00 9 134667

BEST COPY AVAILABLE
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15:1 N:p ratio

Frequency

(Stevens, 1996)

Stem & Leaf

Gatsonis and Sampson

Frequency Stem &

PEAR 63

(1989)

Leaf
.00 0 .00 0

5.00 1 56777 .00 1

.00 2 3.00 2 125

.00 3 3.00 3 667

2.00 4 39 3.00 4 299
2.00 5 39 5.00 5 34668
1.00 6 1 4.00 6 1156
1.00 7 9 2.00 7 04

4.00 8 1355 .00 8

5.00 9 34445 .00 9

Cohen (1988)

Frequency Stem & Leaf
1.00 0 7

3.00 1 169
2.00 2 01
5.00 3 02468
6.00 4 034588
3.00 5 025
.00 6

.00 7

.00 8

.00 9

Comparison boxplots of the levels of precision efficacy for the methods for the 20 conditions
tested by Brooks and Barcikowski (1995). Method 1.00 is the PEAR Method; 2.00 is the
Predictive Power method; 3.00 is the Park and Dudycha (1974) method; 4.00 is the Sawyer
(1982) method; 5.00 is the 30: I ratio; 6.00 is the 50 + 8p method; 7.00 is the 15: 1 ratio; 8.00 is
Cohen's (1988) method; and 9.00 is Gatsonis and Sampson's (1989) method.

BEST COPY AVAILABLE

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

Sample Size Method
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Appendix D
Histograms of Cross-Validity R 2

for Seven Predictors at Effect Size p2 = .25

These figures were created from data collected for each of the 10,000 samples at effect size
p2 = .25 with seven predictors in the orthogonal multicollinearity condition. A curve that represents
the normal distribution is superimposed on the cross-validity R 2 distribution for each of the following
graphs.

a priori PE = .80, 7 predictors a priori PE = .70, 7 predictors

10001r-

800 I

6001

2001

1000 lo

6001

LL 4001

2001

1000

BOO

Std. Dev = .05

Mean = .220

N = 10000.00

Std. Dev = .07

Mean = .205

N = 10000.00

Cb 46' '40 Vc9 .q76' 6' 6' 6' 6

Ouss-Vd idty R Orss-NM icily R

a priori PE = .60, 7 predictors 15:1 subject-to-predictor ratio, 7 predictors

1000

Std Dev = .08
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N = 10000.00

% 4).9 4.5, `6.5, % %

2001

Std. Dev = .08
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