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Abstract

The paper illustrates how canonical correlation analysis can

loe,-employed:to implement all the parametric tests that

canonical methods stibStiMe asspecial cases. The point is

heuristic: all analyses are correlational, all apply weights

to measured variables to create synthetic variables, and all

yield effect sizes analogous to r2.
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An Illustration that There is a Multivariate Parametric

General Linear Model: Canonical Correlation Analysis

In one of his innumerable seminal contributions, the

late Jacob "Jack" Cohen (1968) demonstrated that multiple

regression subsumes all the univariate parametric methods as

special cases, and thus provides a univariate general linear

model (GLM) that can be employed in all univariate analyses.

At about the same time, researchers increasingly also came

to realize that ANOVA was being overused, and in many cases

used when other methods would have been more useful. One

source of ANOVA overuse was that too many researchers

erroneously associated ANOVA as an analysis with the ability

to make causal statements when using experimental research

designs; however, it is the design, and not the analysis

that leads to the ability to make definitive causal

statements!

As Humphreys (1978, p. 873, emphasis added) explained

this phenomonon:

The basic fact is that a measure of individual

differences is not an independent variable [in an

experimental design], and it does not become one by

categorizing the scores and treating the categories as

4
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if they defined a variable under experimental control

in a factorially designed analysis of variance.

Similarly, Humphreys and Fleishman (1974, P. 468) noted that

categorizing variables in a nonexperimental design using an

ANOVA analysis "not infrequently produces in both the

investigator and his audience the illusion that he has

experimental control over the independent variable. Nothing

could be more wrong."

Furthermore, as Cliff (1987, p. 130, emphasis added)

noted, the practice. of discarding variance on intervally-

scaled predictor variables in order to perform OVA analyses

creates problems-in almost all cases:

Such divisions are not infallible; think of the persons

near the borders. Some who should be highs are

actually classified as lows, and vice versa. In

addition, the "barely highs" are classified the same as

the "very highs," even though they are different.

Therefore, reducing a reliable variable to a dichotomy

makes the variable more unreliable, not less.

These various realizations have led to less frequent use of

OVA methods, and to more frequent use of general linear

model approaches such as regression ( f. Edgington, 1974;_
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Elmore & Woehlke, 1988; Goodwin & Goodwin, 1985; Willson,

1980).

Since all analyses are correlational, and it is the

design and not the analysis that yields the capacity to make

causal inferences, the practice of converting intervally-

scaled predictor variables to nominal scale so that ANOVA

and other OVAs (i.e., ANCOVA, MANOVA, MANCOVA) can be

conducted is inexcusable in many cases.

However, canonical correlation analysis, and not

regression analysis, is the most general case of the general

linear model (Baggaley, 1981, p. 129; Fornell, 1978, p. 168;

Thompson, 1991, 1998) . [Structural equation modeling (SEM)

represents an even broader general linear model, but SEM is

somewhat different in that this analysis usually also

incorporates measurement error estimation as part of the

analysis (cf. Bagozzi, Fornell, & Larcker, 1981; Fan, 1996,

1997).] In an important article, Knapp (1978, p. 410)

demonstrated this in some detail and concluded that

"virtually all of the commonly encountered tests of

significance can be treated as special cases of canonical

correlation analysis."

The present paper will illustrate how canonical

correlation analysis can be employed to implement all the

6
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parametric tests that canonical methods subsume as special

cases. The point is not that all research ought to be

conducted with canonical analyses, rather the point is

heuristic: all analyses are correlational, all analyses

apply weights to measured variables to create synthetic

variables that become the analytic focus, and all yield

effect sizes analogous to r2 that are important to interpret.

Understanding general linear model principles aids in

realizing that parametric analyses are all fundamentally

related. Individual methods, such as ANOVA or t-tests, can

then be viewed from a global perspective which will,

hopefully, facilitate thoughtful researcher judgment in

selecting analyses as opposed to employing "lock-step"

decision strategies that limit the utility of analyses.

The Basics of Canonical Correlation Analysis

The theory of canonical correlation analysis (CCA) has

been with us for considerable time (Hotelling, 1935), but

did not come into practical use until the onset of

computerization (Krus, Reynolds, & Krus, 1976) . This

utility lies in being able to simultaneously examine all the

relationships among all the variables.

In canonical analysis, the variables are considered to

be members of two or more (in practice, almost always two)

7
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variable sets (e.g., pretest and posttest scores, aptitude

and achievement scores) otherwise we would analyze the

data with factor analysis so as to consider simultaneously

all the relationships, but without considering the existence

of variable sets. Each set will include more than one

variable, otherwise we generally would use a Pearson r or

regression analysis. As will be shown later, these analyses

are essentially the same thing anyway! While a

comprehensive discussion of CCA is beyond a scope of the

present paper, the reader is referred to Thompson (1991) for

an accessible and user-friendly treatment of CCA.

A CCA will yield many useful statistics, the most

recognized of which is the canonical correlation (Rc). The

canonical correlation describes the relationship between two

synthetic variables that have been modeled from their

respective variable sets by applying weights to the measured

variables. A canonical correlation will be produced for

each function (i.e., for each set of standardized canonical

function coefficients and respective measured variables).

The number of functions, each of which will be perfectly

uncorrelated with the others, equals the number of variables

in the smaller of the variable sets. The canonical

correlation can be squared to yield a variance-accounted-for

8
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effect size (Rc2), or the percentage of variance explainable

in the criterion variable set predictable with knowledge of

the variance in the predictor set.

One advantage of CCA, and other multivariate methods,

lies in its simultaneous examination of the variables of

interest, thus reducing risk of experimentwise Type I error

(Fish, 1988; Henson, in press; Thompson, in press) . A

second, and perhaps often overlooked, advantage is the

flexibility of the analysis in looking at various research

problems. One example of this versatility can be found in a

measurement study involving multivariate criterion-related

score validity (Sexton, McLean, Boyd, Thompson, & McCormick,

1988). Thus, CCA can be used in either substantive or

measurement inquiries.

Canonical Correlation Analysis as the General Linear Model

An heuristic data set for 12 elementary, middle, and

high school students will be used to illustrate that CCA can

conduct the other parametric methods that it subsumes, both

univariate and multivariate alike. CCA will be used to

perform a t-test, Pearson correlation, multiple regression,

ANOVA, MANOVA, and descriptive discriminant analysis. Table

1 lictc hpnristir HAtA nn fniir intervallv sraleri variahles

related to motivational and personality issues: attributions
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of effort (EFFORT), attributions of ability (ABILIT), locus

of control (LOCUS), and degree of extroversion (EXTROV).

Also included are grouping data indicating some experimental

treatment (TREAT) and whether students are in elementary,

middle, or high school (GRADE). The reader will also notice

five planned contrast variables which will be described

later.

Analyses will be run using the SPSS (v6.1.4) statistics

package. The command syntax for these analyses is included

in Appendix A. Note that CCA is conducted using the MANOVA

command (again, suggesting that these analyses must be

related) . Using Table 1 variable names, the SPSS commands

for CCA are:

MANOVA

LOCUS EXTROV WITH EFFORT ABILIT

/PRINT=SIGNIF (MULTIV EIGEN DIMENR)

/DISCRIM=(STAN ESTIM COR ALPHA(.99)).

The SAS statistical software has a more direct command for

CCA: PROC CANCORR. An example of SAS syntax used to perform

a similar heuristic illustration can be found in Campbell

anci Tavinr (19961_

10
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INSERT TABLE 1 ABOUT HERE

Conducting t-test with Canonical

One of the most basic of statistical analyses is the t-

test which is used to compare means between groups. Here a

t-test was used to evaluate if the treatment and control

groups (TREAT) differed on the EFFORT variable. Results

reported in Table 2 indicate that the means of the groups

were not statistically significantly different, t = .310, p

= .760. A canonical analysis on the same variables yielded

F(1, 10) = .100, 2 = .760. Table 2 also reports the CCA

results, including the canonical correlation (Re), squared

canonical correlation (R2), and Wilks lambda (X). Wilks

lambda, like Rc2 is a variance-accounted-for type statistic.

However, Wilks lambda indicates the variance not accounted

for in the canonical correlation, modeled by (1 Re2). It

is used for testing the statistical significance of R. As

the magnitude of X decreases (ranging from 0 to 1), the

effect size (R2) increases as does the likelihood of

obtaining statistical significance.

Note that the p calculated values are identical between

anaIyaes. -The-test-statiatics (t and F+-are-different only

in metric. In fact, the F distribution consists of squared

11
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values of the t distribution. Squaring t = .310 produces

.096 which does match the F value. The slight difference in

the values is arbitrary and solely due to rounding error by

the statistics program.

INSERT TABLE 2 ABOUT HERE

Conducting Pearson Correlation with Canonical

When examining relationships between two variables, a

Pearson correlation (r) is often invoked. The reader should

immediately note conceptual similarities between a Pearson r

and canonical analysis, even before examining the results

from the SPSS analysis. Both investigate relationships

between variables, only in the canonical case the measured

variables of interest occur within multivariate sets.

A Pearson r was computed for EFFORT and ABILIT. Table

3 reports the obtained results, r = -.6150, p < .05. The

CCA computed a squared canonical correlation coefficient of

.378. A simple transformation of Rc2 = .378 gives us Rc =

.6148. The values are identical, save for rounding error

and the fact that a canonical correlation cannot be

negative. This is because the weights that are used in CCA

scale the variables in the same direction, as such Rc will

always range from 0 to 1. Note that the p values vary only
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because SPSS reports them differently; precise calculated 2

values will be identical.

Herein lies the most fundamental of general linear

model principles: all analyses are correlational. The

canonical correlation is nothing more than a bivariate r

between the synthetic variables created in CCA after the

application of weights. As Thompson (1991, p. 81) noted,

"This conceptualization is appealing, because most

researchers feel very comfortable thinking in terms of the

familiar bivariate correlation coefficient."

Since the present heuristic CCA only had one variable

in each set, the synthetic variables reflected the same

relationship as did a Pearson r between the variables

without the application of weights. This result should not

be surprising, given the fact that multiplicative constants

do not affect the value of r. The only effect the weights

had in this case was to scale the variables in the same

direction, thus yielding a positive value for R.

INSERT TABLE 3 ABOUT HERE

Conducting Multiple Regression with Canonical

As Cohen (1968) indicated, multiple regression subsumes

all other univariate parametric analyses as special cases.

13
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Therefore, there is a directly analogous relationship

between Pearson r and multiple regression. Since CCA

subsumes Pearson r, it should be apparent that it will do

the same for multiple regression.

A multiple regression analysis was conducted with

EFFORT being predicted by LOCUS and EXTROV. SPSS results of

the regression and canonical analyses are found in Table 4.

Again, all parallel statistics match within rounding error,

with the exception of the weights. As with the t and F

distribution above, the difference here is arbitrary. Beta

(B) weights and standardized function coefficients are

easily converted into each other using the following

formulas:

B / Rc = Function Coefficient_ _

Function Coefficient * R = B_ _

For example, LOCUS had a B weight of -.171156. Using Rc =

.828 from the CCA, we find that the standardized function

coefficient matches, within rounding error, that reported in

Table 4 (-.171156 / .828 = -.2067) . Since we know that the

regression multiple R equals the canonical R, we can use the

formulas above to find canonical function coefficients using

only a regression analysis and B weights using only CCA!

14
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INSERT TABLE 4 ABOUT HERE

Conducting Factorial ANOVA with Canonical

The SPSS syntax file (Appendix A) includes commands to

compute the five orthogonal contrast variables reported in

the Table 1 data. Planned contrasts can be used with OVA

methods to test specific, theory-driven hypotheses as

against omnibus hypotheses (Thompson, 1994) . One advantage

of using planned contrasts is the ease of pinpointing

statistically significant effects without having to conduct

post-hoc tests which include Bonferroni-type corrections for

experimentwise error. It is important to note that the

contrasts will yield the same overall effect [i.e., Sum of

Squares (SOS) explained] as the omnibus test. They are

necessary here to show that CCA can conduct ANOVA.

In the present analysis, a 3 X 2 factorial ANOVA was

conducted with TREAf and GRADE as independent variables and

EFFORT as the dependent variable. For the CCA, the contrast

variables from Table I were used. The total number of

contrasts that can be created equals the degrees of freedom

for each main effect. The GRADE main effect has two degrees

of freedom and is represented by CGRI and CGR2. The TREAf

main effect is represented by CTREAT with one degree of

15
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freedom. CTRGR1 and CTRGR2 are simply cross products of the

other main effects and test the GRADE X TREAT interaction

effects. Table 5 presents results for the ANOVA: GRADE, F =

19.367; TREAT, F = .510; GRADE X TREAT, F = 3.449. Note

that the effect size (r2) for the error term was .1323.

Obtaining comparable results with CCA requires us to

conduct canonical analyses in four separate designs, using

EFFORT as the dependent measure and the contrasts as

independent variables. Design 1 included all planned

contrasts, CGR1, CGR2, CTREAT, CTRGR1, and CTRGR2, to test

the total effect (SOS explained) . Design 2 used CTREAT,

CTRGR1, and CTRGR2 to jointly test the TREAT and interaction

effects. Design 3 used CGR1, CGR2, CTRGR1, and CTRGR2 to

jointly test the GRADE and interaction effects. The final

CCA, Design 4, used CGR1, CGR2, and CTREAT to jointly test

the GRADE and TREAT effects. Table 6 displays the Wilks

lambda values for each design. Remember that X is something

of a "reverse" effect size and will equal the effect for the

error term. A quick comparison of X for the total effect

(Table 6) with the error effect size (Table 5) confirms this

relationship between the statistics.

16
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INSERT TABLE 6 ABOUT HERE

After canonical lambdas have been attained, we must use

them to determine the omnibus ANOVA lambdas. This was done

by dividing the Design 1 total effect (lambda) by the

lambdas of the other designs. For example, to find the

omnibus lambda for the GRADE main effect.the total lambda

(.11507) was divided by the Design 2 lambda (.85793), which

reflects the joint effect of the contrast variables for the

TREAT main effect and the GRADE X TREAT interaction effect.

This process "removes" the effects of the other hypotheses,

leaving the omnibus lambda for the GRADE main effect to be

.13412516 (.11507 / .85793 = .13412516 = X). The same

process was used to find the other ANOVA lambdas with

results reported in Table 7.

INSERT TABLE 7 ABOUT HERE

One final step remained. ANOVA lambdas were converted

into ANOVA F statistics using the following formula:

[(1 Lambda) / Lambda] * (df error / df effect) = F

To illustrate, the F value for the GRADE main effect was

modeled- by p(1 -.13412516) / .13_41251.6] * (6 / 2) =

19.3671681. Table 8 reports transformations for both main

17
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effects and the interaction. Note that the F statistics

obtained by the canonical process match those obtained by

the factorial ANOVA (see Table 5), within rounding error of

course.

INSERT TABLE 8 ABOUT HERE

Conducting Factorial MANOVA with Canonical

Since SPSS actually uses the MANOVA command to perform

CCA, the two are obviously related. To illustrate the

relationship, a 3 X 2 factorial MANOVA was computed with

EFFORT and ABILIT as dependent variables and GRADE and TREAT

as independent measures. Results from this analysis are

found in Table 9. Since MANOVA is a multivariate method,

Wilks lambdas are reported by SPSS and are used to test

statistical significance.

The comparable canonical analysis was performed using

the same process as with the ANOVA above. Four CCA designs

using the contrast variables were run with canonical lambdas

reported in Table 10. The subsequent conversion of these

values to MANOVA lambdas is found in Table 11. The reader

will note the equivalence of the MANOVA Xs in Table 9 with

those-obtadned through_the _canonical analysis in Table 11.

The final conversion to F values wass not necessary here

18
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since the MANOVA uses the X value to calculate F statistics,

as against the SOS value in ANOVA.

INSERT TABLES 9 11 ABOUT HERE

Conducting Discriminant Analysis with Canonical

Discriminant analysis is a multivariate method that can

either be used predictively to classify persons into groups

or descriptively where variables identify latent structures

among groups (Huberty, 1994). The descriptive discriminant

analysis (DDA) case is especially useful as the preferred

substitute for a one-way MANOVA or as a post hoc analysis to

multi-way MANOVA analyses.

To demonstrate the DDA and CCA relationship, a

descriptive discriminant analysis was conducted with TREAT

as the nominally scaled predictor variable and EFFORT and

ABILIT as criterion variables. Table 12 reports a non-

statistically significant result x2(2, 9) = .648, p = .723.

The canonical analysis was conducted using the planned

contrast variable CTREAT as the predictor. Results of the

CCA are also reported in Table 12. The reader will note

that the analyses yield identical results. One arbitrary

diffërnceisin the reporting of a x statistic tor_the_

19
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discriminant analysis as opposed to the CCA F value. As

with the t and F distributions described above, the

difference is arbitrary since the x2 and F statistics

represent the same value expressed in a different metric.

INSERT TABLE 12 ABOUT HERE

Conclusion

The purpose of the present paper has been to illustrate

that canonical correlation analysis represents the

multivariate parametric general linear model. As such, CCA

can be used to conduct the univariate and multivariate

analyses that CCA subsumes. The point is heuristic and not

intended to suggest that all analyses should be conducted

with CCA. In fact, it is quite clear in the ANOVA and

MANOVA examples that CCA, at least as reported by SPSS, is

the long way to the same results. However, CCA would be

superior to ANOVA and MANOVA when the independent variables

are intervally scaled, thus eliminating the need to discard

variance.

Knowing that there is a general linear model and

understanding that all parametric analyses are intricately

related_can_be af great educational value to both students

and teachers of quantitative methods. Knowing these
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relationships facilitates understanding of commonalities and

differences among all the parametric methods.
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Table 2

Conducting t-test with Canonical (EFFORT by TREAT).

t-test Analysis Canonical Analysis

t(10) .31 F(1,10) .10

2 .076 2 .076

M (TREAT 1) 12.500

SD 4.848 Ec .100

M (TREAT 2) 11.6667 Rc2_ .010

SD 4.320 lambda .990

Table 3

Conducting Pearson Correlation with Canonical (EFFORT by

ABILITY).

Pearson r Analysis Canonical Analysis

-.6150 Rc .6148

Rc2 .378

lambda .622

p < .05 P .033

Note. Rc cannot be negative. Calculated p values vary only

due to reporting style of statistical program.
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Table 4

Conducting Multiple Regression with Canonical (EFFORT by

LOCUS and ABILIT).

Multiple Regression Analysis Canonical Analysis

.8278 Rc .828

R2 .68525 Rc2 .685

lambda .31475

F(2, 9) 9.79712 F(2, 9) 9.79712

2 .0055 2 .006

Beta Weights Function Coefficients

LOCUS -.171156 LOCUS -.207

EXTROV .766543 EXTROV .926

Table 5

3 X 2 Factorial ANOVA (EFFORT by GRADE and TREAT).

Source SOS df MS 2

GRADE 158.167 2 79.083 19.367 .002 74.29%

TREAT 2.083 1 2.083 .510 .502 .98%

G X T 28.167 2 14.083 3.449 .101 13.23%

Error 24.500 6 4.083

Total 212.917 11

3 0
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Table 6

Canonical Analyses on Four Designs (EFFORT by Contrasts).

Design Independent Variables lambda

1 CGR1, CGR2, CTREAT, CTRGR1, CTRGR2 .11507

2 CTREAT, CTRGR1, CTRGR2 .85793

3 CGR1, CGR2, CTRGR1, CTRGR2 .12485

4 CGR1, CGR2, CTREAT .24736

Table 7

Conversion of Canonical Lambdas to Omnibus ANOVA Lambdas.

ANOVA Effect Designs Transformation ANOVA lambda

GRADE 1 / 2 .115071.85793 .13412516

TREAT 1 / 3 .11507/.12485 .92166600

GRADE X TREAT 1 / 4 .11507/.24736 .46519243
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Table 9

3 X 2 Factorial MANOVA (EFFORT and ABILIT by GRADE and

TREAT).

Source lambda df F 2

GRADE .05061 4, 10 8.61299 .003

TREAT .61798 2, 5 1.54541 .300

GRADE X TREAT .44653 4, 10 1.24122 .354

Table 10

Canonical Analyses on Four Designs (EFFORT and ABILIT by

Contrasts).

Design Independent Variables lambda

1 CGR1, CGR2, CTREAT, CTRGR1, CTRGR2 .03184

2 CTREAT, CTRGR1, CTRGR2 .62924

3 CGR1, CGR2, CTRGR1, CTRGR2 .05153

4 CGR1, CGR2, CTREAT .07132

3 4



Canonical Correlation 32

Table 11

Conversion of Canonical Lambdas to Omnibus MANOVA Lambdas.

MANOVA Effect Designs Transformation MANOVA lambda

GRADE 1 / 2 .03184/.62924 .05060072

TREAT 1 / 3 .03184/.05153 .61789249

GRADE X TREAf 1 / 4 .03184/.07132 .44643859

Table 12

Conducting Discriminant Analysis with Canonical (EFFORT and

ABILIT by TREAf).

Discriminant Analysis Canonical Analysis

Rc .2636 Rc .264

Rc2 .0695 Rc2 .069

lambda .930518 lambda .93052

x2 .648 F_ .33602

df 2, 9 df 2, 9

2 .7232 P .723

35
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Appendix A

TITLE ' Illustrating that there is a parametric general '.
TITLE ' linear model: Canonical correlation analysis '.
TITLE ' Robin K. Henson - SERA1999
commENT ***************************************************

COMMENT Heuristic data for 12 cases
COMMENT EFFORT attributions of effort
COMMENT ABILIT attributions of ability
COMMENT LOCUS - external vs internal locus of control
COMMENT EXTROV - degree of extroversion scale
COMMENT GRADE elementary(1), middle(2), high(3) school
COMMENT TREAT treat(1), control(2) groups.
SET BLANKS=SYSMIS UNDEFINED=WARN PRINTBACK LISTING.
DATA LIST

FILE='c:\presentations\ccaasglm_data_sera99.txt' FIXED RECORDS=1
/ID 1-2 EFFORT 4-5 ABILIT 7-8 LOCUS 10-11 EXTROV 13-14 GRADE 16
TREAT 18.

EXECUTE.
COMMENT Show that cca can do t-test.
T-TEST

GROUPS=TREAT(1 2)
/MISSING=ANALYSIS
/VARIABLES=EFFORT
/CRITERIA=CIN(.95) .

MANOVA
TREAT WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

COMMENT Show that cca can do Pearson r.
CORRELATIONS
/VARIABLES=EFFORT ABILIT
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE .

MANOVA
EFFORT WITH ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

COMMENT Show that cca can do multiple regression.
REGRESSION

/MISSING LISTWISE
/STATISTICS COEFF OUTS R ANOVA
/CRITERIA=PIN(.05) POUT(.10)
/NOORIGIN
/DEPENDENT EFFORT
/METHOD=ENTER LOCUS EXTROV .

MANOVA
LOCUS EXTROV WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

COMMENT Show that cca can do factorial ANOVA.
COMMENT Compute contrast varables to do cca.
IF (GRADE = 1) CGR1 = -1.
IF (GRADE = 2) CGR1 = O.
IF (GRADE = 3) CGR1 = 1.
COMMENT Tests equality of the means of elementary(4) vs high school(4) students.
EXECUTE.

3 6
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IF (CGR1 = -1) CGR2 = -1.
IF (CGR1 = 0) CGR2 = 2.
IF (CGR1 = 1) CGR2 = -1.
EXECUTE.
COMMENT Tests equality of means of middle(4) vs elementary high school(8)
students.
IF (TREAT = 1) CTREAT = -1.
IF (TREAT = 2) CTREAT = 1.
EXECUTE.
COMMENT Tests equality of means of treatment (6) vs control groups (6).
COMPUTE CTRGR1 = CGR1 * CTREAT.
COMPUTE CTRGR2 = CGR2 * CTREAT.
EXECUTE.
COMMENT Tests treatment by grade interaction effects.
COMMENT Show contrast variables are orthogonal.
CORRELATIONS
/VARIABLES=CGR1 CGR2 CTREAT CTRGR1 CTRGR2
/PRINT=TWOTAIL SIG
/MISSING=RAIRWISE .

COMMENT Step one: run factorial ANOVA and cca on constrast variables.
ANOVA
VARIABLES=EFFORT
BY GRADE(1 3) TREAT(1 2)
/MAXORDERS ALL
/METHOD UNIQUE
/FORMAT LABELS .

MANOVA
CGR1 CGR2 CTREAT CTRGR1 CTRGR2 WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

MANOVA
CTREAT CTRGR1 CTRGR2 WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

MANOVA
CGR1 CGR2 CTRGR1 CTRGR2 WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

MANOVA
CGR1 CGR2 CTREAT WITH EFFORT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

COMMENT Show cca can do MANOVA.
MANOVA

EFFORT ABILIT BY GRADE(1 3) TREAT(1 2)
/PRINT SIGNIF(MULT UNIV )
/NOPRINT PARAM(ESTIM)
/METHOD=UNIQUE
/ERROR WITHIN+RESIDUAL
/DESIGN .

MANOVA
CGR1 CGR2 CTREAT CTRGR1 CTRGR2 WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)

--/DISCRIM=(STAN ESTIM COR).
MANOVA

CTREAT CTRGR1 CTRGR2 WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)

37
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/DISCRIM=(STAN ESTIM COR).
MANOVA

CGR1 CGR2 CTRGR1 CTRGR2 WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

MANOVA
CGR1 CGR2 CTREAT WITH EFFORT ABILIT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

COMMENT Show cca can do discriminant analysis.
DISCRIMINANT

/GROUPS=TREAT(1 2)
/VARIABLES=EFFORT ABILIT
/ANALYSIS ALL
/PRIORS EQUAL
/CLASSIFY=NONMISSING POOLED .

MANOVA
EFFORT ABILIT WITH CTREAT
/PRINT=SIGNIF (MULTIV EIGEN DIMENR)
/DISCRIM=(STAN ESTIM COR).

38



U4DEPARTMENTOFEDUCIMON
Office of Educational Research and Improvement (OEM

Educational Resources information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

TM029481

ERIC

Title:
AN ILLUSTRATION THAT THERE IS A MULTIVARIATE PARAMETRIC
GENERAL LINEAR MODEL: CANONICAL CORRELATION ANALYSIS

Aaron) ROBIN K. HENSON
Corporate Source:

U. REPRODUCTION RELEASE:

Pubucation Date:

1/99

In order to dissemrnate as widely as possible timew and significant materials ot interest to me eaucatiOnal community. aocuments
announcea in tne monthly aostract lournal ot the ERIC system. Resources in Education IRIE). are usually mace available to users
in microticne. repitiouceo paper copy, ano electronic/optical mema, and sold tnrougn me ERIC Document Reproaucuon Service
IEDRSI or otner ERIC vendors. Credit is given to the source of eacn clocument. and, if reproouction release es grantee. one of
the following notices is affixed to me oocumeni.

II penntssion is grantee to reproauce tne identified document. please CHECK ONE ot the following options and sign the release

below.

0 Sammie sticker to be affixed to document Sample sticker to be affixed to document III 0
..

Checkhen,
Permitting
microtlene
(4"it 6" film),
paper copy.
Mecum=
and optical media
reproauction

-PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

ROBIN K. HENSON

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER oucr.

-PERMISSION TO REPRODUCE THIS
mATER1AL iN OTHER THAN PAPER

_COPY HAS BEEN GRANTED BY

or hens

Permitting
reorpouction
in otner tnan
Palm caw

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERICI:*

Laval 1 Laval 2

Sign Here, Please
Docurnnts Yee be aracesSea as lembeled OTOVIOe0 reproduction quality permIts. It pernussoon to reproduce is granted, but

nervier Pox is mecum, documents win be processed al Levet 1.

"i nereoy grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce this Comintern as
intecateo aDove. Remota:Dm from me ERIC microfiche or electronic/ovum meals Cy persons otner tnan ERIC empioyees and its
system contractors requires permission trom me copyright nOtOef. Exception is made tor non-orotit reOtoaucueln IN mama and =et
service agencies to satisly intormation neeos ot eaucators in response to discrete manes."

*mem
TAM./ DEPT EDUC PSYC
COLLEGE STATION, TX 77843-4225

RES ASSOCIATE
Ovmmum

TEXAS A&M UNIVE
Teleonone Frumpor:

(409 ) 845-1831

Data:
1/13/99


