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A Semiotic Model for Analysing the Relationships Between Thought,
Language and Context in Mathematics Education ~
Juan D. Godino, University of Granada (Spain)
Angel M. Recio, University of Cérdoba (Spain)
Abstract: _ .
In this research report, we propose a semiotic and epistemological model for
studying the processes of interpretation and communication in mathematics
education. This model is based on the notion of semiotic function defined on
three types of primitive mathematical entities: extensional, notational and
intensional entities. We also identify various types of meanings depending on
the nature of the semiotic function contents. An example of this model, as well
as the multiplicity of codes in mathematical work, is shown by analysing the
semiotic processes which take place when solving an elementary geometry
task.

1. The relationships between semiotics and epistemology in mathematics
education -

. Growing interest has recently been noted in the use of semiotic notions for
studying teaching and leaming processes within the mathematics education research
community. Examples of this interest are some of the projects presented at the PME
Conferences (Ernest, 1993; Vile and Lerman, 1996), and those carried out by
Bauersfeld and colleagues (Cobb and Bauersfeld, 1995) from the perspective of
symbolic interactionism, which considers the notions of meaning and negotiation of
meanings to be central to mathematics education. We also highlight the published
research concerning the influence of mathematical language in mathematics
teaching and learning (Ellerton and Clarkson, 1996), and the investigations about
understanding mathematics (Sierpinska, 1994; Godino, 1996), which cannot avoid
the issues of meaning.

We consider, however, that more investigations from the perspective of the
mathematics education are needed on the notion of meaning and on the relationships
between the semiotic and epistemological components involved in mathematical
activity, that is, on the nature and type of objects whose meanings are involved
therein. We consider it necessary to carry out a more extensive and in-depth stady of
the dialectical relationships between thought (mathematical ideas), mathematical
language (sign systems) and problem-situations for the solution of which such
resources are invented. In fact we would have to progress by developing a specific
semiotics to study the interpretation processes of mathematical sign systems
involved at the heart of didactic systems. In mathematical work, symbols
(signifiants) convey or substitute conceptual entities (meanings). Even when this is
also important, the crucial point in mathematics instruction processes is not just
mastering the syntax of the mathematical symbolic language, but mastering its
semantics. That is to say, understanding the nature of mathematical concepts and
propositions and their relationship to contexts and problem situations which emerge <
from their solutions. Furthermore, it is necessary to elaborate theoretical models to
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link the semiotic dimension in mathematics education (their syntactic, semantic and
pragmatic aspects), to the epistemological, psychological and sociocultural
dimensions. These models require taking, amongst others, the following elements
and assumptions into account:

- Diversity of objects involved in mathematical activity, both on the plane of
expression, and in that of content (conceptual, notational, and situation problems).

- Diversity of acts and processes of semiosis between the different types of objects
and ways of producing signs.

- Diversity of contexts and spatial, temporal and psychosocial clrcumstances that
determine and relativise semiotic processes.

In Godino and Batanero (1994) and (1997), we developed a theory regarding the
meaning of mathematical objects, from pragmatic and anthropologic assumptions,
and considering such objects as signifiants of the "system of practices carried out by
people when faced with a certain class of situation-problems”. We attributed a
diachronic and evolutionary character to this meaning, depending on institutional
contexts and personal circumstances. This notion of meaning could be useful for
describing certain interpretative processes, particularly in the stages for designing,
developing and evaluating teaching and learning plans for mathematical contents.
Beyond the interpretation of conceptual entities required in the communicative
processes carried out in mathematics education, the expressive means and

problematic situations themselves give rise to interpretations by the message

receivers at a given.time and under certain circumstances. There, meaning has a
synchronous and local character: It is the content that the speaker of an expression
refers to, or the content that the receiver interprets. In other words, what one means,
or what the other understands.

In this research work, we analyse this local use of the term “meaning”, starting
from a personal interpretation of the epistemological triangles (Stembrmg, 1997;
Ogden and Richard, 1923) and applying the notion of semiotic function developed
by Eco (1979). This will allow us to identify three basic types of elementary
meanings taking into account the different natures of semiotic correlation content,
which we shall call notational, extensional and intensional meaning, depending on
whether the correspondence final object is an external representation (an ostensive
representation), a problem situation, or a mathematical abstraction.

2. An interpretation of the epistemological triangle

The relationships between the signs used to codify knowledge and the contexts
that are needed to establish their meaning has been modelled by several authors
using triangular schemes. Amongst these schemes, we highlight those proposed by
Frege, Peirce, Ogden and Richards, as well as their interpretation by Steinbring,
which he calls the epistemological triangle. The elements included by Steinbring in
this triangle are concept, sign/symbol and object/reference context.

Taking into account this triad, as well as the conceptual triplet by Vergnaud '
(1982), we shall draw a theoretical model including the following basic entities:
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Phenomenologies, that is, problem-situations, applications, tasks; in general,
extensional entities inducing mathematical activities.

Notations, that is, every material and ostensive representation used in mathematical
activity (terms, expressions, symbols, graphics, tables, graphs, etc., in general,
notational entities)

Generalisations, mathematical ideas, abstractions (concepts, propositions,
procedures, theories, i. €., intensional entities)

In mathematical work, generalisations and problem situations are given by
notations that describe their characteristic properties. Both entities are inseparable
from the ostensives, in which they are embodied but with which the are not
identifiable, that is, we consider that mathematics may not be reduced to the
language with which it is expressed. "The stated fact must be distinguished from its
statement” (Searle, 1997; p. 21).

The categories of entities proposed are related to the theory of conceptual
fields by Vergnaud (1982), who considers a concept as a triplet formed by the "set of
situations that make the concept meaningful, the set of invariants that constitute the
concept and the set of symbolic representations used to represent the concept, its
properties and the situations it refers to "(p. 36)

We conceive mathematical generalisations and phenomenologies in the terms
used by Freudenthal (1982) the noumena and phainomena. Mathematical objects are
noumena for this author, that is, objects of thought (ideas), such as numbers.
Mathematical concepts, in general mathematical structures serve to organise
phenomena of concrete and mathematical worlds. We consider that the mathematical
study of such phenomena confronts the person with problem situations, from which
we establish the connection between both notions.

The notion of mathematical generalisation described by Dorfler (1991) is
another starting point for us to interpret mathematical generalisations (noumena) as
products of processes for generalising the subject’s actions when involved in certain
classes of problem situations. They are, therefore, not mere empirical generalisations
of features common to objects or situations, but generalisations of schemes or action
system invariants, as well as performance conditions and results from such actions,
supported by sign systems.

Notational entities can be letter or number chains, graphs, diagrams, or even
physical objects.  These notational systems frequently play the role of
"representation systems", which means, they replace something else or some aspect
of another entity. However, in our model, this representation role is not exclusive to
this class of objects (mathematical ideas and situations can also be signs of other
entities). Notational systems do not only have a semiotic value but they are also
ostensive instruments for mathematical activity.

In addition, the semiotic and epistemological model outlined requires another
primitive element to describe and explain interpretation and communication
processes in mathematics education. This is the notion of pragmatic context that we
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conceive in a very general way as the set of extra and intra-linguistic factors
sustaining and determining mathematical activity, and, therefore, the form,
suitability and meaning of objects involved therein. It includes the various
conditioning aspects of mathematical activity described in a social constructivist
account of mathematics (Ernest, 1993).

3. Semiotic functions

In mathematical work we usually take some objects to represent others,
especially abstract objects, and a correspondence, frequently implicit, exists between
the representative and the objects represented. "There are words, symbols or other
ostensive objects that mean or express something, represent or symbolise something
else besides- them, and make it publicly understandable" (Searle, 1997, p. 76).

According to Eco "there is a semiotic function when an expression and a
content are in correlation, and both elements are turned into FUNCTIVES of the
correlation" (Eco, 1979, p. 83). Such a correlation is conventionally established,
though this does not imply arbitrariness, but it is coextensive to a cultural link. There
may be functives of any nature or size. The original object in the correspondence is
the signifiant (plane of expression), the image object is the meaning (plane of
content), that is, what is represented, what is meant, and what is referred to by the
speaker.

Types of semiotic functions

The three types of primary entities considered (extensional, intensional and
notational entities) can play both the role of expression or content in semiotic
functions. Hence, nine different types of such functions are applicable. Though
some of these functions can be clearly interpreted as specific cognitive processes
(generalisation, symbolisation, etc.), in this work we will classify and characterise
these functions regarding the plane of content (meaning); therefore these nine types
are reduced to the three described below.

(1) Notational meaning: Let us call a semiotic function notational when the final
object (its content), is a notation, that is, an ostensive instrument. This type of
function is the characteristic use of signs to name world objects and states, to
indicate real things, to say that there is something and that thing is built in a given
manner. The following examples show this type of meaning:

- When a particular collection of five things are represented by the numeral 5.
- The symbol Pn (or n!) represents the product n (n-1) (n-2) ... 1

- In the phrase, "In the histogram of figure x, which is the absolute frequency of the
modal interval?" The word /histogram/ refers to another ostensive object that is
shown in the figure. Also the expressions /absolute frequency/ and /modal interval/
refer to ostensive observable objects in the figure (a number labelled on the ordinates
axis, an identifiable interval on the abscissas axis.

(2) Extensional meaning: A semiotic function is extensional when the final object is
a situation - problem or a phenomenology, as in the following examples:

-ﬂ--j]. | 3-4
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- As a rule, the verbal, graphical or mixed description of a situation - problem. Such
a description is a different object of the situation itself.

- The simulation of phenomena (i.e., it is possible to represent a variety of
probabilistic problems with urn models)

- Using rule and compass constructions (or computer environments, like Cabri) to
represent elementary geometry problems.

(3) Intensional meaning: A semiotic function is intensional when its content is a
generalisation, as in the following examples:

- In the definitions of a concept, for example, "an angle is a pair of rays with the

same origin" , the word /angle/ refers to an abstract object.

- In expressions such as, "Let p be the mathematical expectation of a random

variable £", or "Let f (x) be a continuous function ". :

The notations p, &, f(x), or the expressions /mathematical expectation/, /random

variable/ and /continuous function/, refer to mathematical generalisations.

- "The histogram is used to represent a frequency distribution of a statistical variable

grouped into intervals of class ". Here the word /histogram/ refers to a generality.
Every intensional and extensional semiotic function can be interpreted,

furthermore, as a notational correspondence and vice-versa, since abstractions and
the situations - problems are textually fixed.

4. Applying the theoretical model to the analysis of a geometry task

In this section we apply the theoretical model described for analysing a
geometry proposition statement and the process followed by a student to solve it.
This task was included in a written test to assess university students’ generalisation
and reasoning capacities (Recio and Godino, 1996). Below we reproduce the task:

"Prove that the bisectrices of two adjacent angles form a right angle. (Remember
that two adjacent angles have a common vertex and side, and they add up to 180°. A
right angle measures 90°. The bisectrix of an angle is the ray that splits it into two
equal parts)".

The response given by a student was the following:
If a and b are the two adjacent angles, then a+b = 180°. Consequently, the

angle that forms the bisectrices is: :
b /
a

a+b 180" _ /

=——=90°
2 2

a b
— + —_——=
2 2
Objects involved
The statement of the task denotes a general property of adjacent angles (a
generalisation) and also describes a problem situation for the subjects: building an
argument to support the universal and intemporal need for the truth expressed in the

(%) ‘:nt. = i
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From a pragmatic viewpoint, the context in which the task is proposed by the
researcher (transmitter) also produces interpretative processes on the part of the
students (receivers of the same). In this work we shall focus, however, on identifying
the objects and interpretations required by the different terms and expressions used
in the statement and the solution. The words and expressions raising interpretative
processes are the following:

Prove, angle, vertex of an angle, sides of an angle, ray, bisectrix of an angle, angle
equality, right angle, straight angle, angle sum, adjacent angles, division of an angle
into parts, measure of an angle, the degree as a unit of angle measure, 180° -90°

These terms and expressions denote conceptual entities or mathematical
operations controlled by definitions that the subject competent in mathematics
should recall (implicitly in general) and so apply them in the task and circumstances
requested.

Interpretative processes:

From a didactic-mathematics point of view we can identify the interpretative
processes described below. This relation of semiosis acts constitutes a pattern for
assessing the processes that students can or cannot carry out in each particular case.
Their observation would require performing clinical interviews with the subjects.

I1: To prove means to establish the universal and intemporal truth of the theorem
(the angle that forms the bisectrices is right for any two adjacent angles)

I2:  The segments of the figure represent two adjacent angles (It is implicitly
assumed that the segments represent the sides (rays) of the angles).

I3: The letters a, b designate variables, and since they are written near the angles in
the Figure, they represent any pair of adjacent angles.

" I4: °represents an angle of a particular size taken as a unit of measurement.

I5: 180°is the result of adding 180 angles with an amplitude of one degree.

(It is the measure of the angle known as straight angle taking the degree as a unit).
16: atb represent the sum of the two adjacent angles.

I7: atb=180°; translate the expression, "the sum of any two adjacent angles".

I8: The symbols a/2 and b/2 represent any of the two angle regions in which the
bisectrices of the adjacent angles divide into a and b, respectively.

I9: a/2+b/2 represent the sum of the two angles.

110: (a/2)+(b/2) = (at+b)/2; adding two halves of two angles produces the same
angle as finding half the angle formed by adding the two angles given,

This is one possible interpretation of the equality. But it can also be interpreted that
the equality is due to the distributive property of the product of numerical scalars
with respect to the sum of the angles (Structure of semimodule of the angle size
magnitude). '

I11: (a+b)/2 = 180°/2; notational transformation (deictic), taking into account the
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interpretation I6.

112: 180°2=90° it means finding half of the angle for which the measurement in
degrees is 180. An angle for which the measurement is half of 180, or rather 90 is
obtained.

113: 90° is the measure of the right angle; it is the result of adding 90 single degrees
together; this result is the right angle (half of the straight angle).

In this process we have changed to the numerical-algebraic register by
introducing the angle measurements. This change serves to associate rational
numbers to angle quantities (180 to straight angles, 90 to right angles, a/2 and b/2 to
the measures of the adjacent angles) and hence to operate in this register. Finally,
the number obtained, 90, must be interpreted as the measurement of the right angle,
and this, as being half the straight angle.

In each act of semiosis we can recognise the dialectic between ideas, language
and phenomenological context. For example, in I3, the idea of variable is
“incapsulated" in the notation 'a', 'b', and "exemplified" by a pair of adjacent angles,
which constitute in this act their phenomenology. In I1, the idea of proof (to
establish the universal and timeless truth of a proposition) is incapsulated in the
expression 'to prove' and exemplified with the bisectrices of the adjacent angles
always forming a right angle, which constitutes a phenomenology associated with
the idea of proof.

5. Conclusions

The semiotic-epistemological model described in this research report - from
the didactic of mathematics perspective - is based on the notion of semiotic function
as suggested by Eco and by a personal interpretation of the epistemological triangles
described in the bibliography. It has allowed us to outline a theory of the meanings
of objects involved in mathematical activity. Its application to the analysis of a
didactic episode has shown the ontological and semiotic complexity of mathematical
activity, even in the elementary task chosen. We think that this kind of analysis, by
showing the multiplicity of codes involved, can help to overcome a certain "illusion
of transparency” regarding abstraction and reasoning processes in mathematics
teaching and learning. This will let us identify critical points and conditioning
factors of semiotic acts and confront them using suitable didactic actions.

Acknowledgement: This research has been funded by DGES (MEC, Madrid),
Project PS96-1411

References

Cobb, P. & Bauersfeld, H. (Eds.) (1995). The emergence of mathematical meaning:
Interaction in classroom cultures. Hillsdale,N.Y.: Lawrence Erlbaum A. P.

Dorfler, W. (1991). Forms and means of generalization in mathematics. In A. J.
Bishop et al. (Eds.), Mathematical Knowledge: Its Growth Through Teaching (pp.
63-85). Dordrecht: Kluwer, A. P.

Feo TT,(1979). Tratado de semidtica general. Barcelona: Lumen.

ERIC e gy

IToxt Provided by ERI



Emest, P. (1993). Mathematical activity and rhetoric: A social constructivist account.
In I. Hirabasash, N. Nohda, K. Shigematsu and F. Lin (Eds.), Proceedings of
Seventeenth International Conference for the Psychology of Mathematics
Education (pp. 11-238-245). University of Tsukuba. Japan.

Freudenthal, H. (1982). Didactical phenomenology of mathematical structures.
Dordrecht: Kluwer A. P.

Godino, J. D. (1996). Mathematical concepts, their meaning, and understanding. In
L. Puig y A. Gutierrez (Eds.), Proceedings of the 20" Conference of the
International Group for the Psychology of Mathematics Education (pp. 2-417-
424), Universidad de Valencia.

Godino, J. D. & Batanero, C. (1994). ‘Significado institucional y personal de los
objetos matematicos’. Recherches en Didactique des Mathématiques,14 (3): 325-
355.

Godino, J. D. & Batanero, C. (1997). ‘Clarifying the meaning of mathematical
objects as a priority area of research in mathematics education’. In A. Sierpinska
& J. Kilpatrick (Eds.), Mathematics Education as a research domain: The search
of an identity (pp. 177-195). Dordrecht: Kluwer, A. P.

Ogden, C. K.&Richard, R. A. (1923). The meaning of meaning. London: Routledge
and Kegan.

Ellerton, N. F. & Clarkson, P. C. (1996). Language factors in mathematics teaching
and leamin. In A. J. Bishop et al. (Eds.), International Handbook of Mathematics
Education (pp. 987-1034). Dordrecht: Kluwer A. P.

Recio, A. M. & Godino, J. D. (1996). Assessment of university students’
mathematical generalization and symbolization capacities (Poster). In L. Puig y
A. Gutierrez (Eds.), Proceedings of the 20" Conference of the International
Group for the Psychology of Mathematics Education (pp. 1-213), Universitat de
Valencia.

Searle, J. R. (1997). La construccion de la realidad social. Barcelona: Paidos
Sierpinska, A. (1994). Understanding in mathematics. London: The Falmer Press.

Steinbring, H. (1997). Epistemological investigation of classroom interaction in
elementary mathematics teaching. Educational Studies in Mathematics, 32: 49-
92.

Vergnaud, G. (1982). Cognitive and development psychology and research in
mathematics education: some theoretical and methodological issues. For the
Learning of Mathematics 3,2: 31-41.

Vile, A. & Lerman, S. (1996). Semiotics as a descriptive framework in mathematics
domain. In L. Puig y A. Gutierrez (Eds.), Proceedings of the 20™ Conference of
the International Group for the Psychology of Mathematics Education (pp. 4-395-
402), Universitat de Valencia.

15 . o



Conceptions as articulated in different microworlds exploring functions
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Abstract

This paper compares the ways Students interact with three microworlds
exploring real functions of real variables, which were designed around two software
programs which explore the dynamic potential available through computer
environments. It reports results of case studies of the development of pairs of students
while interacting with these microworlds. The way the students’ conceptions are
articulated when situated in the different microworlds showed to be influenced by
pedagogical and technical aspects of the microworlds. The role of articulating these
situated conceptions is, also, examined by the gains Sfor students’ development while
connecting these conceptions with their previous knowledge.

Introduction

Microworlds, technically described as a computer environment which embodies a
domain of knowledge, have been explored in mathematics education to provide access
to ideas and phenomena that are not easily find in other media by students. A
microworld represents mathematical concepts in a peculiar way that can be close or far
away from the school mathematics. Hoyles & Noss (1993) had observed that “students
frequently construct and articulate mathematical relationships which are general within
the microworld yet are interpretable and meaningful only by reference to the specific
(computational) setting” (pp-84). Thus, it is important to discuss the role of allowing
students to explore a microworld if the understanding built within it lacks universality.

This paper will discuss results of case studies (Gomes Ferreira, 1997)! which compare
different “ways in which learners structure their own learning, as well as on the ways
in which the setting structures it” (Noss & Hoyles, 1996: 108) while exploring
different microworlds on the concept of real function with real variable. It also focuses
on how connections were forged.

Brief description of the research

This case studies research investigated how students articulated knowledge of
mathematical function while interacting with microworlds, created from a set of
activities developed to encourage exploration of the dynamic features of two software
programs and discussion within pairs of students. Instead of the concept, a selection of
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properties of function (range, periodicity, variation, turning point and symmetry) was
distinguished.

Two software programs which exploit the possibilities of computers to explore

_representations of functions by continuous movement were selected: DynaGraph (DG)

(Goldenberg et al, 1992) and Function Probe (FP) (Confrey et al, 1991). Function
Probe is a multiple representational software, developed by the Mathematics
Education Research Group at Cornell University, which allows continuous and direct
transformations of graphs. DynaGraph is a visual representation of function software,
developed by the ‘Educational Development Center’, which allows students to vary
the variable of a function and observe the variation of its output.

Four pairs of Brazilian students, who had already studied functions at school,
followed a sequence of activities during 13 meeting with 2 hours each: A pre-test,
focusing on the chosen properties; familiarization with the research environment; the
microworld activities in two different sequences (two pairs did the activities in both:
DG Parallel and DG Cartesian followed by the activities in FP, and the other two pairs
followed the activities in the opposite order); a final interview to investigate how
students made links during the activities as well as to motivate new links if possible.
The set of activities will be detailed after the description of the programs.

Starting with an examination of the curriculum followed by the students as a means to
describe the origins of their conceptions, a longitudinal investigation was undertaken in
order to identify the main features of each of the microworlds that appeared to
contribute to the students' progress. The students' conceptions were analysed by
drawing attention to their origins, their usefulness and their potential limitations (from
a mathematical point of view). A methodology for this longitudinal study was devised
which incorporated visual presentations to capture the main characteristics of students'
conceptions (see Gomes Ferreira & Hoyles, 1997).

On discussing the role played by a computer environment in student’s learning, Noss
& Hoyles (1996) have been working on the web and situated abstration framework - a
framework to understand how meanings are constructed by actions on virtual objects
and relationships while students explore computer environments. One develops an
overview of the Web of mathematical ideas by ‘navigating’ on a computer
environment and forging familiar local connections, thus, developing an individual
understanding. Cy

This framework recognises the contingency of ‘the domain. Students “construct
mathematical ideas by drawing on:the webbing of a particular setting which, in turn,
shapes the way the ideas are expressed” (Ibid.: 122). On attempting to describe these
constructions Hoyles & Noss (1987) coined the term situated abstraction. Situated
abstraction refers to the object as well as the process articulated by a student in a
domain. So, the question discussed here is how students structure their understanding
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‘while Working within DG Parallel, DG Cartesian and FP microworlds as well as how
these microworlds structure students’ learning,

DG Parallel and DG Cartesian programs

As the parallel version of DynaGraph, DG Parallel represents a function point-by-point
by two sprites. One of them corresponds to the input of the function (in general
denoted by x) and the second sprite represents the image of the function (f{x) or y).

Figure 1 — Screen of DG Parallel with the striker of f(x)=-x displayed
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Differently from DynaGraph, DG Parallel explores twelve functions hidden in
behaviour of strikers which are presented by different icons. Using the mouse, the
student moves (varies) x horizontally, obtaining as feedback the corresponding
movement (variarion) of y according to the chosen function which is represented by
the active striker. Thus, the software can facilitate students to develop a co-variational
view of functions. By clicking the mouse on the iconic menu, users can change the
active striker (active function). By displaying the icon of the active striker, DG Parallel
enables students to remember which ‘function’ is on. More than one striker can be
" choose to compare the behaviour of different strikers. ’

DG Cartesian is similar to DG Parallel. The same functions are hidden in the same
strikers. It mainly differs from DG Parallel in that: the axes appear as in the Cartesian
system and a dot representing (x,y) is added..In both DG Parallel and DG Cartesian,
students have no access to any other representatlon of them, in particular any algebraic
representation. .

Function Probe

Function Probe is a multiple representational software tool to enable students to
explore real functions. It combines three representations (algebraic, graphic and tables)
in three windows (Graph, Table and Calculator). This study focused on the Graph
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window of FP particularly in the transformations students do in graphs while looking
for properties of functions. For a complete description of FP see Confrey et al (1991)

The Graph window presents a iconic menu of commands, which allows actions within
graphs. Among these actions, there are the dynamic transformations within graphs:
vertical and horizontal stretches; vertical and horizontal translations; and vertical,
diagonal and horizontal reflections. Figure 2 tries to reproduce, in a static way, a
dynamic vertical stretch from the graph of y=x to the graph of y=-0.2x.

Figure 2 - Vertical stretch from the graph of y=x to the graph of y=-0.2x
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The Activities and the Final Interview

The design of each microworld was a result of conceptual, technical, cognitive, and
pedagogical considerations. In each microworld, the activities had similar structure
divided in three phases. The first phase was a session to familiarise the students with
the software commands. In the second phase, the activities used were descriptions to
lead students to explore the properties of twelve functions chosen into four families
(constant; linear; quadratic and sine functions) according to their representations: as
graph in FP and as behaviour of strikers in both DG microworlds. The description
activity was made in a describing/guessing form, in which one student was expected to
guess what was the function chosen and described by his/her partner. In the last phase,
the students were required to group the functions as represented in each of the
microworlds according to the properties they had observed.

The choice of the sample of functions to be used also played an essential role in the

construction of the microworlds. The students had already studied each of the chosen

. families of functions. In order to choose the functions two criteria were considered: the
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properties had to be emphasised by the sample; the dynamic potential of FP, DG
Parallel and DG Cartesian could be used when exploring the functions in the activities.

In the final interview, the students were asked to: match the strikers with the graphs;
identify conceptions built within DG microworlds in the graphs; predict the behaviour
of a new striker which corresponded to a graph transformed from another using FP,
having the behaviour of the striker corresponding to the graph. All the activities are
derived from suggestions presented by Kaput (1992) as ways to motivate connections.

Conceptions Articulated in DG Microworlds

Common conceptions among the pairs of students made clear the ‘special status’
attributed to some properties by ‘the motions of x and y’ in DG Parallel indicating an
acquisition of a co-variational conception of function (Goldenberg et al, 1992),
although this depended on the sub-concept in question. For example, line symmetry
and periodicity were rarely identifying in DG Parallel. A summary of the conceptions
developed by the majority of the pairs in DG Parallel shows the special status of the
motions of x and y in DG Microworlds: turning points started to be identified as ‘point
where y changes orientation’; horizontal straight lines were justified by ‘y is
independent of X’ and ‘y is motionless’; monotonicity as ‘direction of straight lines’
was interpreted by ‘comparing orientations of the motions of x and y’, what facilitated
its generalisation to non-linear functions; slope of linear graphs was discriminated by
‘comparing the ratio between the variations (or values) of x and y’, linking it to
inclination; curved and straight graphs were characterised and justified by constant and
variable ‘ratio ...”; Range changed from a polarised approach (positive and negative
range) to an approach involving ‘bounded or boundless range’.

Bernard & Charles conceptions of monotonicity will be discussed, here, to illustrate
the ways the students articulate knowledge in DG Microworlds.

Bernard & Charles: monotonicity

Bernard & Charles’ development in monotonicity were quite close with the other pairs.
While exploring all the microworlds and in the pre-test, Bernard & Charles restricted
the use of the terms ‘increasing’ and ‘decreasing’ for linear functions.

However, Bernard & Charles also identified monotonicity in a co-variational way in
their pre-test and in DG Parallel, which remained isolated from the others till the final
interview. These conceptions seem to have been triggered by their previous
understanding of the term ‘increasing’. In DG Parallel, Bernard & Charles
discriminated monotonicity by comparing the ‘orientations of the motions of y and X’
(v follows x and y doesn’t follow x). The fact of trying to control the orientation of the
motions of y while moving x led the students to distinguish these ideas as an invariant
to characterise the strikers (functions), even before knowing that each striker hides a
function.




From a mathematical viewpoint this co-variational view had the advantage to be
generalised among other families of function such as parabolas. The comparison of
these orientations of motions was used by the students to distinguish strikers of linear
functions from quadratic and sine functions.

Bernard & Charles’ great discovery happened in the final interview. They brought the
generalisation developed in DG Parallel to the Cartesian system, but it was not
straightforward. Firstly, they linked the term increasing with ‘direction of the graph’
to ‘y follows x’ for increasing and ‘y does not follow x’ for decreasing limited to linear
functions. As they had this conception (‘y follows x* or ‘y does not follow x’) for
strikers given by parabolas, they brought back to graphs the link, using the terms
‘increasing’ and ‘decreasing’. This allowed Bemard & Charles to overcome the
obstacles created by using the terms ‘increasing’ ‘and ‘decreasing’.

DG Parallel, a new representation

Given that few attempts were made to build connections to ‘old” knowledge during
interactions with DG Parallel, this microworld could be explored as a ‘new’
representation where students appeared more free of previous conceptions. This
allowed them to revise conceptions and to generalise some conceptions to a wider set
of functions within DG microworlds. In the case when later connections with previous
knowledge were built, such as the case of Bemard & Charles investigating
monotonicity, the developed conceptions proved to be robust enough to allow students
to contrast them with those derived from school knowledge. Thus, a key to the use of
qualitatively different multiple representations is synthesis but also articulation of
situated abstrations.

Conceptions articulated within FP

The interaction with transformations of graphs in FP led the students to a different way
of articulating their conceptions of the properties. In contrast to DG microworlds, the
point of exploring the transformations of graphs in FP was to give the students tools to
explore, not to shape conceptions. One example will be detailed here.

Bernard & Charles: monotonicity

Bernard & Charles started their explorations of FP classifying ‘directions of a straight
line’ - into two types: increasing direction and decreasing direction (without
distinguishing the different slopes). This division can be considered as a
compartmentalisation in their understanding when the slope was not considered.

Interactions with dynamic transformations of graphs in FP prompted Bernard &
Charles to realise the connection between monotonicity and derivative. While
investigating the idea of increasing, a horizontal stretch in the graph of y=x (as shown
in figure 2) encouraged the students to connect ‘direction of straight lines’ and
‘slopes’. For instance, Charles argued that the change from increasing to decreasing

21



_ depends on where you have the graph (ie., where you choose to finish the
 transformation). He explained that anyway the command changes the direction of the
graph but it can pass from one type to the other type.

FP: Tools to explore own conceptions

In FP, the students' conceptions of the properties could not really be categorised in
relation to each command explored. The fact that the students were discussing while
transforming graphs more often determined the changes in their conceptions, than the
,command per se. What was revealed in this research were patterns emerging from the
ways the students used the commands to modify their own conceptions.

The students used the transformations as tools: to generate and check their own
hypotheses by generating examples and counter-examples; to recognise and revise
differences in conceptions previously associated, to discover new aspects of a
property; to realise limitations of their own conceptions; to generalise their
conceptions among different functions; to develop ‘comparative measures’ for
properties they previously perceived pictorially; and to realise relationships between
different properties which had previously been compartmentalised. Note that the
possibility of generating new examples in FP make its explorations qualitatively
" different than the exploration of DG microworlds.

Patterns in ways of Synthesising

The research came up with some patterns in the ways which led the students to
synthesise. In the case of DG Cartesian, the students made the connections by
matching the strikers with the family of functions and bringing terms explored at
school in these families to the discussion. This last was also exhibited in FP. The fact
of working with the same sample of functions in different microworlds also
encouraged the students to make connections.

In the case of FP, the students were more open to making connections in response to:
the analysis of variants and invariants and the observations of algebraic and Cartesian
representation while transforming graphs, which then showed the great importance of
the dynamic transformations of graphs for the students in building the connections; the
attempts to make sense of results obtained from transformations which were counter-
examples of their own assumptions, which then demonstrated that students were
stimulated into making connections when their expectations were contradicted; the
comparison of two or more functions, which then highlighted the importance of the
activities of describing and classifying functions in leading them to connect
conceptions.

The two activities of the final interview provoked the students to make their own
connections by: linking conceptions which before had been isolated within different
microworlds, generalising conceptions previously restricted to one family of functions
and revising naive links. The activity of predicting a striker corresponding to a
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transformed graph also led the students into a new search for conceptions in DG
Parallel which they brought to the research environment by Cartesian representation.

Conclusion

The results of students” development depended not only on the computer features but
also on the students' interactions during the activities. One illustration of this can be
given by the fact that the development of ways to measure, such as the ‘ratio between
the variations of x and y’. The students had to be precise in comparing two or more
functions in order to allow their partners to guess the function described.

The results showed that DG Parallel, a ‘new’ representation, prompted the
development of conceptions free of previous limitations and sufficiently robust to
allow revision. However, properties previously perceived pictorially were rarely
identified in DG Parallel. Together with DG Cartesian, interactions with this
microworld provoked the students to develop a co-variational view of some of the
function properties. By way of contrast, using the tools in FP to transform graphs
seemed not to shape conceptions, but to assist in the exploration of the function
properties.
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THE NATURE AND ROLE OF DISCUSSION IN MATHEMATICS:
THREE ELEMENTARY TEACHERS’ BELIEFS AND PRACTICE

Susie Groves : Brian Doig
Deakin University — Burwood Australian Council for Educational Research

There have been many calls for the improvement of discussion or
dialogue in mathematics classes. However there has been difficulty in
transferring practices developed in research to the wider educational
community. This paper reports a small study that assumes that knowledge
of current practice is a necessary first step in producing such transfer.
Three teachers were video-taped while conducting mathematics lessons
and subsequently interviewed in an attempt to establish their current
beliefs and practices with respect to the nature and role of discussion. The
analysis reveals a concurrence of teachers’ intentions and goals, together
with a diversity of strategies for achieving them.

Introduction

Greeno (1992) argues that the task of school learning in mathematics and science
should be to enhance children’s thinking and- that, in order to achieve this,
classroom activities should be organised as mathematical or scientific discourses.
According to Bereiter (1994), classroom discourse can be progressive in the same
sense as science, with the generation of new understandings requiring a commitment
from the participants to working towards a common understanding which is based
on a growing collection of propositions which can or have been tested.

In a similar vein, Cobb, Wood and Yackel (1991) contrast traditional discussion in
mathematics classrooms, where the teacher decides what is sense and what is
nonsense, with genuine dialogue, where participants assume that what the other says
-~ makes sense, but expect results. to be supported by explanation and justification.

There have been a number of research and development projects which have
attempted to engage students in such dialogue (see, for example,-Ball, 1993; Brown
& Renshaw, 1995; Cobb, Wood & Yackel, 1991; Lampert, 1990). However, when
teachers in the wider education community attempt to implement these ideas in their
classrooms, they often only adopt superficial features (see, for example, Stigler,
1996; Knuth, 1994).

In our own work in the Practical Mechanics in Primary Mathematics project (see,
for example, Doig, 1997; Groves, 1997), we found that many teachers, regardless
of their stated theoretical frameworks for learning and teaching, were
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uncomfortable with whole class discussions based on the notion of scientific
dialogue. They appeared to identify any form of whole class interaction with a
traditional, expository model of classroom practice, which they claimed to have
rejected in favour of small group work with discussion occurring almost exclusively
within these small groups.

Heeding the words of Cooney & Shealy (1997, p. 106) that “consideration of what
teachers believe and how their beliefs are structured provides us a means of
conceptualising teacher education in ways that promote change in something other
than a random manner” a large-scale investigation has been proposed, with one of
its foci on these beliefs and structures. As a preliminary to this investigation, of the
extent to which generalist elementary teachers can develop and implement
conceptually coherent personal models of mathematics classroom practice based on
the notion of a community of inquiry, we carried out a small-scale study. This study
sought to establish what are teachers’ beliefs and practice about the nature and role
of current classroom discourse in mathematics, science and language.

This paper presents the results of this study through an analysis of teachers’ beliefs
and practice with respect to the nature and role of discussion as observed in three
mathematics lessons and as reported by the teachers in a subsequent interview.

Background and methodology

In order to establish what is current practice in elementary classrooms in Australia,
and to what extent this represents an operationalisation of teachers’ beliefs, video-
data and observations were compared to teachers’ responses to face-to-face
interviews. The three teachers who took part in this small scale study, were chosen
in an attempt to maximise the likelihood of observing practice with features: in
common with a community of inquiry approach to encouraging dialogue.

The school, at which the three teachers work, is located in a middle-class suburb of
Melbourne, and has an excellent reputation for academic results in the local
community based on the high quality of its teachers. Two of the teachers, referred
to here as Barbara and Anita, were known to one of the researchers for a number
of years, and both of these teachers had strongly claimed the use of an open-ended
teaching approach, together with the use of sharing and discussion. Barbara had a

~combined Kindergarten and grade 1 class, while Anita’s class was a grade 4 class.

The third teacher, referred to here as Helen, had previously agreed to be observed
and interviewed by one of the researcher’s post-graduate students and was also
known to that researcher through other professional activities. Helen was teaching a
grade 5 class. :

Each of the teachers had been teaching for 20 to 25 years and were generalist
teachers who had taught at most grade levels, although Barbara and Helen had
mostly taught at the infant and grade 5 - 6 levels respectively.
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One lesson of approximately one hour’s duration, in each of the areas of
mathematics, science and language was video-taped, and extensive field notes taken
-during each of the nine lessons. The teachers provided an outline of the aims for
each lesson, as well as copies of any worksheets used by the children..

Each teacher took part in a semi-structured interview of between 45 and 60 minutes
to determine their beliefs about the learning and teaching of each of these areas,
their perceptions of their practice, and their beliefs of the role and  nature of
discussion. Interviews were audio-taped and later transcribed.

For the purpose of this paper, the data will be taken to consist of the video material
and field notes relating to the mathematics lessons, interview data which refer to
mathematics, to learning and teaching in general, or which contrasts another
learning area with mathematics.

Each video tape was viewed a number of times and partially transcribed during this

process. Interspersed with the viewing of the video tape, the interview transcripts
were summarised in three stages. Although this is a much smaller study than that
reported by Cobb (1995), the analysis of this data also “involved a continual
movement between particular episodes and potentially general conjectures” (p. 35),
albeit in this case the conjectures usually referred to the connections between beliefs
and practice for the three teachers involved. We, too, recognised Lampert’s (1990)
characterisation of the “zig-zag” path of mathematical activity from conjectures to
proofs through the use of counter-examples (Cobb, 1995, p. 35) as applying to our

data, when early conjectures about the nature of discussion were refuted by later

data.
Data and Results

Results from the analysis are presented here in the form of necessarily brief case

studies for each of the teachers. In order to present the results meaningfully the data

from all sources for each teacher have been combined to glve an overview of each
- teacher’s beliefs and practice.

Helen — grade 5

Helen describes her mathematics teaching as “reasonably traditional”, although it

has “freed up a lot over the last few years”. She sees herself -as having a “huge

responsibility” in maintaining children’s self-esteem and wants “to keep them

interested, to get them excited about the topic, to give them the basic nuts and bolts
- stuff”. :

A typical lesson starts with “something that is a fun thing” followed after 10 or 15
minutes by “some sort of demonstration on the board”. After this, children typically
‘work in groups while Helen works with a small group on the floor. Sometimes
. there is some “peer tutoring”. Helen still wants the grade 5’s to use materials and
likes “the children to get together and discuss answers”. She rounds the lesson off
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“with us all marking together and discussing that”. She believes that children learn
maths best by “sharing ideas, doing examples, [and] applying it to another level”.

The lesson observed begins with an 11 minute mental computation competition
involving pairs of children answering questions such as “three quarters of 32 and
six”. Children are occasionally asked to explain their reasoning. For example:

Teacher: Point seven of 90 take away six?

Stephen: 57 .

Teacher: ... are you instantly seeing the connections between the numbers? What is the

. connection?

Stephen: Seven tenths of 90 ... I’d say, um, ten tenths is one. It’s just nine because all the

. tenths add up to nine. Then I do 7 times 9 is 63 and I took the six away.

Teacher: You're seeing 7 nines are 637

Stephen: 1 just take off the zero.

Teacher: (to whole class) Is point seven less than, equal to or greater than a whole number?

Chorus: Less. ' .

Teacher: So ... in that part of the sum it’s always going to be less than you started with,

less than 90 ... '

This interaction involves both univocal (transmission) aspects and dialogic (thought-
generating) aspects (see Wertsch & Toma, 1995, p. 167). However, the vast
majority of the interactions observed in this lesson were of a univocal nature,
usually in the “Initiation-Reply-Evaluation” (IRE) form (Mehan, 1979). This was
particularly true in the 18 minute “demonstration” segment of the lesson which
followed the quiz, with questions such as “If one person is 12° [on the pie chart],
how many degrees would five people be?” asked frequently.

-Throughout, Helen assumes responsibility for the children’s learning. This is

particularly evident in the 22 minute segment where children work on the task of
producing a pie chart and where most of her time is spent answering children’s
questions when they have difficulties with the task. She often answers children’s

-questions with questions of her own, but these almost invariably form a carefully

selected sequence of IRE interactions. IRE was also the typical interaction pattern in
the six minute “sharing time” at the end of the lesson where children displaying
their work to the class, were asked closed questions like “What is the biggest section
of your pie chart?”, “How many hours?”, “How many degrees?” , rather than being
asked to describe or explain their pie charts in a more conceptual manner.

Helen herself sees the purpose of discussion as “at the beginning ... to set the
parameters, set the goals, set the guidelines”, while “discussion at the end is very
important because it ties it all together ... who got it, who thinks that they are on
the right track, who thinks they need some more time on this...”. However sharing
time is primarily about “maintaining self esteem”. She also sees herself, across all
curriculum areas, as a “facilitator ... encouraging the children to share ideas among
themselves ... without dominating”, although “a lot of the English discussion comes
out of their interests, whereas something like maths or science ... you tend to try
and keep it on course”. '

7.,



Anita — grade 4

" Anita shares ‘the class with another teacher and is responsible for teaching the
mieasurement, chance and data, and space topics only. She says that previously she
has “worked a lot with groups”, where she would work intensively with one group
while the others worked independently. With the current class, because of the

~“enormous range of ability levels”, she has “done quite a bit more class work,

- where it is an individual challenge. So the kids start off at a fairly low level and
some of them will zoom ahead”. Anita often has two activities, one of which she
identifies as the “focus activity”, with half the class doing each so that she can have
“just 15 children that I could get around to”. She likes the children to use materials
and work on open-ended tasks that somenmes are altered by the children as they
work.

The lesson observed begins with an 8 minute introduction to the two tasks, during
which Anita says: “Don’t forget to keep talking to each other and build on each
other’s ideas”. Children in each half of the class loosely work in groups; for
example, the focus activity asks children to make towers with a given number of
plastic bricks in two colours and find a way to label each tower to show how many
bricks are in their “special” colour. Children in any one group use the same
“special” colour and the same number of bricks in each tower. Anita expects that
some children will rename and recognise equivalent fractions, while others will
increase their understanding of what fractions like 3/10 mean. She tells children that
“I am going to be really interested in talking to you as you are working”.

Although there is a great deal of talk during the main part of the lesson whilst
children are working, there is little evidence that the children work together. In this

“part of the lesson, Anita circulates and speaks with individual children,” frequently
asking them how they are going to label their towers and telling them to think about
it. The fact that the focus group is involved in such a self-sustaining activity allows
her to do this.

On several occasions, Anita stops the class to discuss the task. For example:

Teacher: 1 want you to look at the labels you’ve got and see whether or not there might be
another way of labelling some of your towers. Ingrid has two labels for one of her
towers. What do they say? ... Hold up your tower ... How much is green?

Ingrid:  One half. :

Teacher: What's the other label you have for that tower?

Ingrid: Um ..

Teacher: You've got it written down lhere

Ingrid:  Eight over sixteen.

Teacher: Eight sixteenths. Well done. That’s to give you a bit. of a clue. Can you make
some different labels that will still be true about your towers? Stop makmg towers.

. Just concentrate on your labels. .

Sixteen minutes after this she asks the whole class to listen to a discussion where
children with 3 or 4 labels for the same tower discuss their labels. Michael has 1/2,
6/ 12 2/3 and 2/4 for the same tower. Anita tells the class that Michael is not sure
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of one of them and that he is going to check it, which he does some time later. In
essence, there is considerable discussion which tries to build on student ideas in this
part of the lesson, however it is not clear at times which children are intended to
participate.

In the sharing time Anita tries to build up children’s self-esteem “by asking
something that I know they can contribute” although she acknowledges that
“sometimes kids get left behind [in discussion] because they are not following what
the others are talking about ...”. She expects, too, that the children doing the other
activity also will learn from the sharing time ‘because the second group learns from
what the first group has done”. '

Barbara — Kindergarten & grade 1

Barbara believes that children learn best by doing, having success, using materials
and playing or experimenting. She describes a typical mathematics lesson as starting
with some oral activities, within which “I might alter the questions I ask children
according to their ability”. She would then “set the scene” for groups to either work
on different activities at their own level, or the whole class on an open-ended task.
This is followed by a “sharing time”. Both the lesson observed and the one
described in answer to the question about a typical activity are strongly linked to
content throughout the lessons. '

Barbara sees different possible purposes for sharing time. One purpose is exposing
children to different ways of finding a solutions (to which she refers frequently in
the interview) allowing children to hear others describe tasks they have not yet tried
themselves, and a second purpose is that of building self-esteem.

Even though the children are very young (5- to 7-year-olds) Barbara “would be

.going around saying to them ‘how did you find that out, what did you do?’ ...

putting it back onto them to try to explain to me what they have done, getting them
to try and help each other”. She wants them to feel “that they can say what they
think, hopefully with something to back it up, and if they haven't got anything to
back it up with, well, maybe they’re not right, but it's still fine to give your
opinion, and then go back and check”. She believes that discussion is important “in
helping them form their opinions and be able to justify their opinions” in all
curriculum areas. '

'In the lesson observed, it is clear that both the teacher and the children share these

expectations. For example, near the beginning of the lesson, Barbara asks a group
of seven children to stand in a line. She then asks Yvonne to find the middle of the
line. Yvonne points to Robert, who is in the middle. '

Teacher: I that the middle? How can you prove that? How do you know that’s the middle?

Yvonne: Because there's three on that side and three on that side.

Teacher: Does there always have to be three on that side and three on that side?

Yvonne: No. -

Teacher: Well how do you know then? What's another way of explaining it? Can you

-~ explain it a different way? ' :

e9.
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Although several children have their hands up at this stage to explain it in a
. different way, it is not until the discussion has continued for a several minutes, with
" many different children involved and extra children have been progressively added

to each.side of the line that Barbara asks the question again:

Teacher: 'Who can explain that?
Kathy:  They’re equal.
Teacher: What’s equal?
Kathy:  The five on each side.

There are many similar occurrences throughout all stages of the observed lesson,
while in the sharing time. at the end there is an example of chlldren building on one
another’s solution strategies. .

In this classroom, not only are there well-established social norms relating to
discussion, but the teacher and children have, in Yackel and Cobb’s (1995) sense, '
socio-mathematical norms for what counts as acceptable explanations and
justifications.

Conclusion

Superficially, all three teachers in this study showed remarkable consistency
between their beliefs and practice. However, when you view the teachers together, it
becomes clear that there may be ways in which they could redefine their practice to
be more conducive to achieving their ultimate goals and that some of their current
practice might in fact be antithetical to these goals.

For example, while all three teachers saw enhancing children’s self-esteem as an

" important goal, they used substantially different strategles to achieve it. Helen saw
sharing of ideas as important for self-esteem, but in fact had few strategies for
enabling children to genuinely contribute their own ideas or findings to the
discussion. Anifa also hoped that children would build on one another’s ideas
through the sharing time, and allowed 10 minutes for 30 children to individually
participate. She lamented that this did not leave her time to follow up children’s
thoughts and ideas. Barbara, on the other hand, accepts the fact that discussion may
expose children “to things that they are not ready for but they can hear a little bit
about”, but alters her questions to allow everyone to contribute.

It is clear from the diversity of practice of this sample of three teachers, that
Cooney & Shealy (1997) are correct in claiming that knowledge of current practice
and belief structures is a necessary first step towards effective teacher development.
Further, if Yackel’s claim (1994, p. 386), that a first priority is to make
problematic aspects of teachers’ current practice, is correct then knowing this
current practice is also essential. We propose to investigate more widely the current
beliefs and practice concerning the nature and role of discussion and then, armed
with this knowledge, to investigate whether teacher practice can be made
problematic through teachers working as a community of inquiry to examine their
own and one another’s practice. :

[mc
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. PROOF IN GEOMETRY
- AS AN EXPLANATORY AND CONVINCING TOOL
Nurit Hadas & Rina Hershkowitz
The Weizmann Institute, Rehovot, Israel

The goal of this paper is to show some mutual relationships between design
of activities aimed to put students in geometrical situations where they feel
the need for proof, and cognitive research on students' actions in such
activities. We exhibit an example of the development process of such an
activity in several cycles of design, experimentation and analysis, by
describing the work of two pairs of students in two different cycles of the
development. We also analyze the task as well as the work of the students.
Finally, we discuss principles of activity design for leading students to feel
the need for and to produce proofs by deductive reasoning.

Introduction
For generations proofs were considered as tools for verifying mathematical statements
and showing their universality. Hanna (1990) mentioned Leibniz who believed that "a
mathematical proof is a universal symbolic script which allow one to distinguish
clearly between fact and fiction, truth and falsity"(p.6). According to this approach
the two classical roles of teaching proofs were to teach deductive reasoning as part of
the human culture to be learned by human beings, and deductive reasoning as a vehicle
for verifying and showing the universality of geometrical statements whereas
experimenting, visualizing, measuring, inductive reasoning, and checking examples,
were not counted for this purpose. )
Recently there has been a change in this approach,; it seems that there is a consensus
-that deductive reasoning -- proving -- still has a central role in geometry learning.
However, the classical approach is now enriched by new facets and roles. The most
important contribution is due to the development of dynamic geometry software such
as the Geometry Inventor (Logal, 1994). A main pedagogical feature of many
dynamic geometry based learning environments is that students are partners in the
discovery of geometrical facts and in the reinvention of geometrical relationships, by
means of exploration and inductive reasoning (Goldenberg & Cuoco, in press).
As a consequence of changes in mathematics and mathematics education, which where
amplified by the existence of these tools, two roles of proof will be discussed here:
Convincing - deductive reasoning as a vehicle for convincing oneself and others that
a geometrical statement which was rediscovered or conjectured is true, and
explaining why the rediscovered conjecture is true (Dreyfus & Hadas, 1996).
Receintly, it has been argued that when Dynamic Geometry software is used in
E l ‘g geometry, conviction can be obtained quickylyi"z‘ind relatively easily (by
om0 and experimentation), and therefore proof gilébecome less important. For
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example, de Villiers (1997) argues that in learning with or without dynamic tools,
convincing someone of the truth of a conjecture should take precedence over the
process of proving, and the only important role of proof in a dynamic environment is
as a tool for explaining.

We claim that, by careful design, based on experimentation and cognitive analysis of
students' actions, situations can be constructed where students will had a need for
proof, both for conviction and explanation: (i) Conviction by explanation in
situations where the findings themselves, even while working in a dynamic geometry
environment, are not convincing. (ii) The need for explanation in cases where the
findings are convincing but surprising, and the surprise causes the need to understand
why.

In this paper, we will exhibit an example of the development process of such an
activity which has several cycles of design, experimentation and analysis. We will
describe the work of two pairs of students in two different cycles of the development,
and analyze the task as well as the work of the students. Finally, we discuss principles
of activity design for leading students to feel the need for and to produce proofs by
deductive reasoning. '

The activity _
About 6 months into a geometry course with the use of the Inventor, two pairs of 9th
graders, worked on the following activity:

Task 1. Which values can the base angle of an isosceles triangle have? explain!

Task 2a. Follow the median and the. angle-bisector from the same vertex, in a
"dynamic triangle". What can you say about the triangle when both
segments coincide? ’

Task 2b. Draw the median and the angle-bisector from the other two vertices. Try to
find a situation where two pairs coincide and the third pair does not. Explain!

Task 3. Divide the side AC of a dynamic triangle into 3 equal segments. Connect the
division points to the vertex B (Fig. 1).
B

33 L Figure 1
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Investigate the relationships between the sizes of the 3 varying angles (<ABD, <DBE,
and <EBC). Explain!

Interviews with two pairs of students working on this activity were videotaped and
analyzed. Here we will discuss mostly the third task, for which the first two form part
of the "pedagogical history". It is worth noting that in a previous lesson the students
were engaged in another activity in which they concluded that if two triangles are
equal in two sides and the angle opposite one of the two sides, then either the triangles
are congruent, or the sum of the two angles opposite the second side equals 1809,

The interviews

 First pair of students
In task 1, Tammy and Shiri, two girls, concluded that the size of the basis angle in an
isosceles triangle varies between 0° and 90°. In task 2a. they concluded that when the
median and the angle bisector from a vertex coincide, then the triangle is isosceles.
After drawing Figure 1, they soon guessed that the three angles have to be equal.
Using the measuring tools on the 3 angles, they were surprised for the first time. The
following are some excerpts from the interview (I= interviewer):

I: Try, if you can, to find situations where the 3 angles are equal and characterize

these situations. '

The girls changed the triangle by dragging and watched the change of the angles

visually as well as numerically.

Shiri:  There is a situation where all of them are equal.

Tammy: When A and C (the vertices) are moving apart the middle angle takes all the

angles (she means degrees) from others two.

I: What will happen if you will drag only A?

Tammy: Then the outside angle (<ABD) will become very small and will not be equal
to the other two. May be when <B will be very small the angles will be
equal (she dragged B until the triangle shrunk to a segment). Oh, but it is
not a triangle anymore.

Tammy who relates consistently to the process of the visual change she creates

accompanies all her claims by hand movements.

Shiri, who was observing Tammy's actions quietly, interferes: The three triangles

can't be congruent.

I: Why?

Shiri: Let's take an example where the two angles are equal (points on <ABD and

<DBE) than AD is the angle bisector and median as well, and AABE is isosceles.
If the other two angles are equal as well than ADBC is isosceles as well, and then
Q@ e three triangles are congruent. In this situation we will have 6 equal angles

]: KC he marked angles in Fig. 2).......... bu% we saw before (Task 1) that the base
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angles in isosceles triangle are always less than 90°, and here the two are _
adjacent angles and this is impossible situation. '
The two girls are discussing together, Shiri explains again her claims to Tammy, and
writes down her explanation.

Figure 2

We point out two main issues here: The students' need to be convinced by an
explanation and the resources they make use of in their explanation. The students'
need to be convinced arose from their surprise when obtaining unequal angles and,
even more $o, by their failure to find even one situation where the angles are equal.
The fact that it is impossible to check all cases made the students feel the need for
general considerations whether there is a situation with three equal angles, and if not,
why not. Tammy, who was more active at the beginning, tried use the dynamic tool
to visualize extreme cases. When both girls saw that they cannot get to a final
conclusion by working with the software only, Shiri, the silent but very involved
partner, took over and began to propose deductive arguments. The resources for her
deductive explanation were the history of what they did in the previous two tasks (and
in earlier activities). Another very crucial point in this situation is that the students
were fully convinced only by the deductive explanation--proof -- even if it is not
written formally, and if not all details are specified.

Second pair of students.

In task 1. Tommer and Lior, two boys, saw immediately (without using the software)
that the size of the base angle in isosceles triangle is changing between 0° and 90°. In
task 2a. they used the software to explain that one gets an isosceles triangle when the
median and the angle bisector from the same vertex coincide: They did it by reflecting
the triangle.

The interviewer presented task 3 by drawing a sketch of figure 1. Lior thought that
the three angles were equal, and Tommer responded: "Why? It does not have to be
like that because if triangle ABE is not isosceles, than BD the median does not have to
be an angle bisector."

The boys then used the software to find situations where the three angles are equal.
They conjectured that this will happen when the triangle is equilateral and they
checked their conjecture with the software . When they found that the angles are very
close (19.10, 21.80 19.1<§j3 but not equal, they returned to the general triangle to look
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for cases in which the angles are equal. The interviewer suggested to use the graph
option and asked: Suppose we will draw three graphs, describing the change of each
angle when AC/3 (the opposite segment) is changing , in the same coordinate system.
What on the graph will show situations where the three angles are equal?

Note: In the graph option, the graph of the changing variables is drawn in real time,
while dragging the geometrical shape.

Tommer replied: This will happen when the three graphs will have a common point.
Guided by the interviewer the boys built a triangle were AB=4 and <A=30°. While
drawing the graphs they guessed and discussed the characteristics of the graphs. After
drawing the first two graphs, (See Fig. 3), Tommer claimed: There is no need to draw
the third graph ,because it will pass through the common point of the first two. So, we
have the situation we look for.

Figure 3
The boys did not looked at the figure itself, nor at the measurements they had, to
confirm or refute the above. However, Lior continued with drawing the third graph
(Fig. 4), which "surprisingly” did not passed through the common point of the other
two.
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Figure 4

They concluded that they will never have three equal angles, and started to look for
explanations, in spite of the fact that the Interviewer remarked that they had
investigated a special case of triangles only. Lior dragged the triangle to match the
intersection points of the graphs, and started to speak about congruence triangles, but
was stopped by Tommer who exclaimed: I know, I know! and explained: If DB is
both median and angle bisector in AABE, than the triangle is isosceles and BD is a
height as well, and the same for BE in ADBC, and we cannot have two perpendiculars
to AC from vertex B.

It seems that Tommer realized that each intersection point expressed a situation of an
isosceles triangle.

Lior, like the two girls above, was expecting the 3 angles to be always equal, while
Tommer realized from the beginning this is not necessarily the case. But Tommer was
also convinced that there are situations where they are equal. The fact that the three
angles in the equilateral triangle are very closed (19.10, 21.80. 19.1°), supported their

- intuition that they can find a case of equality, and therefore Tommer even suggested
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not to draw the third graph.

The real surprise, in this interview, arose only when the boys realized that the three
graphs do not have a common point. In spite of the fact that they were already
convinced that the three angles will never be equal, they felt the need to understand
why and to explain it deductively. Tommer's resources of explanations resulted from
the action of matching between the different representations of the intersection points,
and like Shiri's, from previous tasks, in particular task 2.
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Conclusions

The goal of this paper is to show some relationships between the design of an activity
with certain pedagogical purposes, and cognitive research on students' actions in this
activity.

We started from a pilot version of the activity designed, according to our beliefs and
experience, to fit the learning of proofs as a tool for explanation and conviction. This
pilot version formed the basis for the first interview. The analysis of the interview
lead us to a second version of the activity, according to which the second interview
was planned and carried out, (as well as analyzed in view of a third version of the
activity). We will now summarize the first two cycles, the final version (at least for
now), and some global principles for the design of activities for meaningful learning
of proofs in geometry with a dynamic tool.

As expected, the activity in its first design resulted in a surprise for the students. This -
surprise caused the need for an explanation in order to understand the surprising
findings, and to be convinced of their truth. Clearly, the two girls in the first
interview were not satisfied by visual considerations, while dragging the vertices and
changing the triangle, and therefore moved quite smoothly to deductive explanations.
We decided to enlarge the investigated problem situation by inserting an additional
tool -- the graphical representation of the varying angles. In this we had a twofold
goal: (i) To create an additional potential source for explaining and/or convincing.

(ii) To expand the students' conceptions of the variables, the way they are varying,
and the relationships between the geometrical, the numerical, and the graphical
representations of this variation. .

The graph option in the second version, was tried in the second interview. Although it
had a great power of conviction for these students, the need for explanation arose
even more explicitly. It is worth to note that the matching between the intersection
points and the corresponding geometrical situations was an additional source for
constructing students' explanation, which in the end was built deductively.

We decided to add another item in which we will try to persuade students to check the
graphs for additional cases of the givens, for example, to attempt to make the three
intersection points close by choosing a larger value for <A. After checking the 3
graphs for few similar situations, we expect students to realize that such checking can
not solve their uncertainty, and that only the understanding why the three angles will
never be equal has the power of convincing. Goldenberg, Cuoco, and Mark (in press)
said that "a proof, especially for beginners, might need to be motivated by the
uncertainties that remain without the proof, or by a need for an explanation of why a
phenomenon occurs. Proof of the too obvious would likely feel ritualistic and empty'".
There is no doubts that a situation like in the above activity, where one can not find
any example for her/his conjecture, has the potential to create uncertainty of this kind.

El{lC 3.-31 .
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In conclusion we would like to sum up global features of "activities that induce the
need for explaining and convincing" which were demonstrated by the development of
the above activity.

The need for explanation was raised by:

* a surprise caused by the contradiction between the conjectures and what students
got (or could not get) while working with the dynamic tool.

* asituation where one can not find any example for a conjecture he or she made.

» the multiple representations of the situation (geometrical, numerical and
graphical).

The resources for explanation and conviction. were constituted by:

Conclusions based on previous tasks. The activity is planned as a sequence of
interrelated from a contextual point of view, as well as by their potential to serve
as resources for explanations .

* The possibility to have analogies in the  three representations: in our activity the
numerical and geometrical meanings of the intersection points of the graphs.
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The case of Rita: ""Maybe I started to like math more"

Markku Hannula
University of Helsinki
Abstract

This article is a case study of the dynamics of attitudes of one seventh-grader. First

I present her negative attitude towards mathematics ("stupid”, "You don't need

math in life"), then how a negative emotion develops in a problem solving situation.

From insecure beginning it changes through frustration to rejection. She works in a

group and this emotional process is connected with a social process. I suggest that "1

don't need this" is her defence strategy, and that similar emotional expertences area

reason for her negative attitude. Within half a year her attitide towards

mathematics changed drastically ("mathematics is quite nice”). The reason she gives -
for this change, is that she has "been understanding it a bit more".

Previous research and theoretical background

Mathematics is a school subject that many pupils have quite emotional relation with.
Satisfaction and joy often accompany a successful solution of a problem (McLeod,
1988). On the other hand many hate mathematics, even panic about it (Buxton
1981).

On classroom level the general attitude of the class towards mathematics is clearly
related to teacher quality (as perceived by the pupils). During the junior high
school the social-psychological climate of the class is also becoming an important
determinant of class attitude. (Haladyna et al., 1983)

The dynamics of attitudes are not well understood. Attitudes tend to become more
negative as pupils move from elementary school to secondary school. Efforts to
promote desired affects of students have usually induced only slight changes and
sometimes even contrary to expectations. (McLeod, 1994) '

Some success has been achieved. Mathematics anxiety has been reduced through a
psychological treatment called systematic desensitisation (Hembree, 1990). Nation-
wide policy in Australia to promote girls' participation in mathematics has been
successful (Blackmore et al. 1996).

McLeod (1988) sketched a theory of affective issues in a problem solving situation.
He suggested the following aspects to be studied: the magnitude, direction, duration,
level of awareness and level of control of the emotion. Qualitative approach has
given us new insight in this field. Hart and Allexsaht-Snider (1996; in McLeod,
1994) brought up the notions of "belongingness" and "resistance” as central aspects
to study of motivation. Goldin (1988, in DeBellis and Goldin, 1997) presented
"affective pathways" as a structure for the dynamics of affective domain in
mathematics. These pathways are established sequences of states of feelings that
interact with cognition and suggest strategies during a problem solving process.
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DeBellis and Goldin (1997) presented a model, where four components interact on
individual level: emotional states, attitudes, beliefs, and values/morals/ethics.
Interaction with environment is also included in the model.

Research project and the focus of this report

This research explores how pupils' beliefs about and attitudes towards mathematics
are changing through their lower secondary years (grades 7 to 9). A type of action
research is fitted to the project, in which the author acts as a teacher researcher:
one class will be taught mathematics for these three years (August 1996-May 1999)
with an attempt to implement girl-friendly pedagogy. Pupils will be observed in
school, and pupils, their parents, and their other teachers will be interviewed.

This report focuses on the dynamics of attitudes of one particular pupil. This case is
especially interesting, because Rita's attitude has changed to desired direction.

Methodology and data

I work with enactivist methodology, where the two key features are "the importance
of working from and with multiple perspectives, and the creation of models and
theories which are good enough for, not definitively of " (Reid, 1996, p. 207).
Qualitative approach was chosen to understand the dynamics on individual level.

——t - - L

Large variety of data on Rita was available for me as her teacher and form master.
I have tried to reach the multiplicity of perspectives through discussions with Rita's
other teachers and fellow researchers. I have reviewed the material several times
and selected some parts that I felt to be relevant. Theories from women's studies
and beliefs research have helped to understand the case.

This paper relies mainly on two interviews (December 1996, May 1997). Some
episodes that were recorded in my diary and a few lines from a third interview
(December 1997) will be used too.

The code-key for the transcription:

x.y); ) pauses: x.y seconds; less than 0.5 seconds
(); (--); (text)  unclear speech: one word; several words; possible words
wo(h)rd word has been spoken laughing

[text1]; [text2] texts 1 and 2 spoken simultaneously
= talking continues immediately after the other speaker
{text}; {...} editorial comments: about context or tone of voice; text omitted

"You don't need math there in life"

At the time of the first interview I had been teaching the class for four months. Rita
didn't do homework regularly and she was occasionally disturbing the class. I
evaluated her success satisfactory. In this interview there were also two other girls
from the same class. Rita's comments were not too flattering for me as her teacher.

[13] Rita: Mmmm. It {mathematics} was nicer in elementary school than in
secondary school.
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[25] ©: Describe me a lesson that you remember from elementary school.

[31] Rita: Help. () errr (.) I don't remember anything but at least we had so, that
when we had then the multiplication table {...} And alike. I don't remember
anything, it was so stupid. .

(38] 1: What has been most boring?

[39] Rita: The, thethethethe story problems.

[40] Maria: I think that story problems are [sort of...]

[41] Rita: [I don't understand] them [ever].

Maria continues telling how she prefers story problems over routine tasks. Rita
changes the subject.

[49] Rita: You don't need math in life. I think. Because I do know enough math to
manage when I go to buy a shirt or need to know the time or such.

The other two girls insist on mathematics being useful in different professions and
in shops. Rita assures that she can do all that. The discussion goes on.

[89] Rita: I can't explain, but in a way like (1.0) now when we have really strange
things in math. All that we have had at elementary school, all fractions and
such, and these you do need, but not these (1.1) these other things. (1.6)

"These, I can't explain, the things that come for example on ninth and at high
school. You don't much need those there in life.

In Rita's last sentence the word 'there' reveals how she sees school life alienated
from real life. In the real life out there, she doesn't need the mathematics that is
taught in school. She already masters what she needs.

"You don't need this' is a defence strategy

In the first interview I gave the group of girls three tasks to solve together. I gave
the written tasks one at a time and recorded their solving process. Here I shall
summarise the process and concentrate on Rita's contribution.

Task 1. Salla is working on an abstract painting. She has divided an area with
straight lines into parts. She wants to paint the picture with as few colours as
possible. Parts that are side by side, may not be of same colour, but those touching
only in corners may. How many colours will Salla need. (Below the text was a
picture that could be coloured with three colours.)

Maria and Lisa start solving the task together, trying to find out one possible
colouring. Rita's comments are few, and she gets no response. From the discussion
I extracted here all Rita's statements and some discussion where Rita is interacting.
The running time is shown on the right side.

[277]1{Beginning the task} ' {0.00}
[293] Rita?: [(-yellow)] {0.43}
[308] Rita: I don't like this t(h)ask at all. {1.15}
[325] Rita: Yhm. Yes {2.00}
[327] Rita: Is this then yellow, ‘cos that (-). {2.03}
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[332] Rita: How come it's blue then? {2.18}
[333] Lisa {to Maria}: Yes, probably it would go with three colours.
[334]) Maria (to Lisa}: Three colours.

[335] Rita: Hey! Because that one is yellow. (3.0) Mm? {2.20}
[336] Maria {puzzled}: What did you say?
[337] Rita: Why you put that blue? {2.30}

Rita gets an explanation and thereafter continues together with the other two.

Rita seemed to have difficulties in the beginning. I had to tell the girls to move
closer to another so that Rita could read the task. At the beginning of the solving
process she got very close to frustration. After two minutes there was the first sign
of understanding. When she tried to break in, the other two seemed to ignore her
first, but she was persistent and was taken in.

The second task was an estimation of letters in a given book. Rita understood the
task at once and was an active contributor in the solving process.

Task 3. Addition, subtraction, multiplication and division are operations. Let's
define a new operation # in a following way:
When a and b are numbers, then a#b = (a+b)*(a-b).
An example: 2#3 = 2+3)*(2-3)= 5%(-1)=-5
a) Do the following calculations:
24 (-3) =
(-2)#3 =
(-2)#(-3) =
b) In addition you may change the order. For example 2+3=3+2.
May you change the order in the defined operation #?

This was a difficult task and there was 16 seconds of silence after they had read the
task. The beginning was similar to the task 1, where Rita was left as an outsider as
the other two did the solution. In this case however her persistence didn't last long
enough.

[486] {Rita's last effort to contribute } {0.00}
[500] Rita {tired voice}: (That is) a nice (task). {0.50}
[508] Rita {half yawning)}: What would have been the right answer? {1.15}
[513] Rita {offers chewing gum}: You want some? {1.24)

[515] Rita {checks if she has more}: Let me see.
[518] Rita: I don't understand a piffle of what they are even trying to do

the(h)re. {1.42})
[528] Rita {parodising Lisa and Maria}: Minusminus five minus minus six hundred.

(1.7) Look, you don't need this for example in your life. {2.40}
[530] I: Yhm.

[531] Rita: These are exactly the kind (I mean).

Here Rita claims that this kind of mathematics is not needed in life. However, that
does not seem to be the reason for her giving up work. First she tells, that she
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doesn't understand. Next she taunts the task. Finally she tells, that this kind of
mathematics is not needed.

Rita's process fits with what Goldin (1988, in DeBellis and Goldin, 1997) calls 'a
negative pathway'. There frustration turns into anxiety, and despair and these
emotions evoke defence mechanisms, avoidance, and denial. You can also see how
emotions (frustrated) awaken a belief in mathematics ("you don't need this for
example in your life"). There is a link to values: this mathematics has no value.

We may also understand Rita's actions using the terms "belongingness" and
"resistance” (Hart and Allexsaht-Snider, 1996; in McLeod, 1994). Rita is willing to
work with her peers. The other two don't seem to notice that Rita can't always
follow. With the first task she was persistent and was able to break into the
discussion. In the third task she remained outside and finally took a resistance-
position.

Could it be, that telling that some kind of mathematics is not needed actually is a
defence strategy of the self? Being left outside is not easy for Rita. As she found out
" that she couldn't follow, she tried other approaches. She started to make ironical
comments on the task. As the others ignored that too and even seemed to enjoy the
~ task, she probably felt more and more rejected. So she made a counter-attack to
reject the task.

Rita's position of resistance can be seen also at her comments when I asked the girls
how they liked the tasks. Rita thought the two first ones were OK, but the third
task... ' '

[558] Rita: That was really stupid. You don't need such in life.
[559] Maria: I liked to dq that one especially.
[560] Rita: You will certainly become some philosopher (-) when you grow up.

Another episode from the next fall (Diary, 24.9.1997) reveals how this defence °
strategy is linked with understanding. A friend argues that she doesn't need powers
and Rita replies - not claiming the need - but the easiness.

Pia: What we need these powers for? {...} I don't need these.
Rita: These powers are really easy.

"I think that now mathematics is quite nice sort of"

Rita did well in the next mathematics test and was very happy about it. She
commented it several times, telling that this number was the best she had ever had
in a mathematics test. In April she asked "What we need this geometry for?".
Altogether she was more active during the spring than she had been during the fall.
Her success in geometry test was poor, however.

In May, at the end of school year my class filled in a questionnaire. One of the
_ items was about the way they think about mathematics now compared to last year

(Table 1). Most pupils' views of mathematics had changed during their first year at
“ary school. Rita was one of the two who stated the most drastic change.
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Response -3 (totally disagree) [ -2 [ -1 [ 0 | 1 | 2 [ 3 (totally agree)
N 2 414131110 0

Table 1. Pupils' responses to the statement: "I think of mathematics the same way I
did last year"

I bad individual interviews with pupils after the questionnaire. I asked Rita to
explain her answer to this question.

[153] I: Well here you had a strong opinion that you think differently about
mathematics compared to last year.

[155] Rita: Yes. Sort of now sometimes mathematics has been a bit more fun,
because been understanding it a bit more. I have always had a six {the second
lowest to pass} or something in math, so I've been a bit more along now.

[158] I: Why so?

[159] Rita: I don't know, maybe I have started to like it more. I think that now
mathematics is quite nice sort of. In elementary school I didn't like it at all.

(161] I: {...} why math is more fun on secondary than on elementary level?

[163] Rita: I don't really know. Maybe if I have learned more sort of tho... things
sort of, so it is easier to do it. I don't know. (3.0) Hm.

Rita is clearly aware that she thinks differently about mathematics. Yet she doesn't
know why this change had happened. The reasons she gives seem to be in circles:
It's more fun because she has been understanding more, because mathematics is
quite nice because she has learned more.

What she said in the second interview about elementary school seems to contradict
her statements in the first interview ("It was nicer in elementary school"). At that
time neither of us remembered that, but I pointed these contradictory statements to
her later (23.9.1997). Rita was astonished: "Oh, really? It must be because now I
have begun to understand better". So she does not only understand now better than
in elementary school, but also better than at the time of the first interview.

Earlier in this second interview she had told about growing as a person.

[27] Rita: I think a bit more what I do. And why I do.
28] I: Could one say that you have become more (.) considering?
[29] Rita: Mmm. And I have sort of taken more responsibility on my own actions.

She also had told that she wants to have a good profession and that next year she
needs to spend less time with friends and study instead. Her career aspirations,
however, are the same (not at all mathematical) as in December. I tried to connect
her grown responsibility to mathematics learning. She doesn't accept this
interpretation, but holds on to her own.

[168] I: So has it come just because you have done a bit more work. I mean worked
more conscientiously=

[170] Rita: =[Yes, or]

[171] I: =[And so] you have learned more, or is there something else involved?
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[173] Rita: Yes, or maybe I have been in a way more been a bit sort of interested.
Or have been more in a way I don't really know (.) In.a way.

I take her by the word and ask her what she has liked in mathematics. This seems to
be a difficult question for her to answer. She had to think for some time before she
was able to squeeze out an answer.

[181] Rita: (3.0) Hm (1.5) I don't know, sort of in a way (1.2} sort of (2. O) that
you need to sort of (.) sortofmmh (1.9) I don’t know, mh, oh no, so that one
needs to little () think over sort of () such problemstasks. {...} Although it
doesn't go right, it is still sort of (.) nice to think and even if it goes wrong,
so it is nice to know how was it right so that next time could do it right.

She told to like problems that require thinking. This statement was, however, far
from spontaneous. Maybe she felt that she had to give some explanation. Because
she couldn't specify any task she had liked, I didn't regard this statement reliable.
Later in the interview, however, she suggested group projects for next year, where
"drawing and considering, drawing and considering" would be needed.

The next fall, after summer holidays Rita has been active in mathematics class and
eager to learn. :

Diary (2.9.1997)
_{Rita was very active today.}
" Tina: Rita, you haven't been active in the class before.
Rita: Yes, I have, haven't I?
I: You have been participating, but 1 don't recall you being this active last
year.
Rita: Good. Then I will get a nine {the second best grade}.

In Rita's mind, liking seems to almost equal understanding. This can be seen in her
comments from fall 1997.

Rita: Thar {powers) is easy! That mu(h)st be the nicest thing exactly that one
understands the topic. {third interview, December 1997}

Diary (23.10.1997)
{Introducing irrational numbers. Rita is having difficulties.}
Rita: Now math is becoming stupid again.

Diary (27.10.1997)
Rita: We don't need these {irrational numbers} anywhere, do we?

Old habits die hard. As Rita is having difficulties with this topic she seems willing
to fall back to her old defence strategy of rejection. But she does not. On the
contrary. Although several weeks had passed since we needed irrational numbers,
she told in third interview that she wants to understand this topic, too.
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Discussion

This report illustrates how emotions in a problem solving situation shape beliefs
and values of Rita. Frustration and despair led her to label a task useless. How far
can we generalise this? On more general level she disvalued mathematics. I am
tempted to believe the reason is repeated lack of understanding? If we accept this
one case, why can't this happen with some other pupils too, at least sometimes.
Often pupils in the class ask "what we need this for?" The teacher should take it as a
warning sign. Maybe they do not understand what has been taught?

The second half of this story gives us hope. A drastic change, almost falling in love
with mathematics was a simple process. It took only half a year and no special
treatment was needed. But it is not simple. She has classmates whose attitudes have
followed the more common line towards disliking mathematics. I haven't been able
to distinguish any critical factor. Understanding was the key concept for Rita. Why
did she understand, while some others didn't? Was it the test she did well or her
more serious attitude towards school? What was the role of pondering problems? I
believe the right cocktail of this all was necessary.

This story was a pupil's story for her teacher. I tried to present it as authentic as
possible, but the question of bias can not be ignored. Your task is to judge the
relevance of this story. In Masons (1994, p. 184) words: "The test of validity is
whether it generates convincing stories about the past, and whether it informs
actions in the future".
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ON TEACHING EARLY NUMBER THROUGH LANGUAGE

DAVE HEWITT EMMA BROWN
SCHOOL OF EDUCATION CASTLE VALE SCHOOL
UNIVERSITY OF BIRMINGHAM, UK BIRMINGHAM, UK

In an inner-city secondary school in Birmingham, 14 students aged between 11 and
14 years of age were identified as having considerable problems with mathematics,
partly due to a lack of confidence with number. These students were exhibiting many
errors in their writing and reading of numbers which are common amongst children
half their age. This paper looks at some developments in our own understanding of
the issues involved as we devised and implemented a number recovery programme
using a language based approach to early number work.

Gray and Tall (1994) have talked of a proceptual divide between those children who
rely upon procedures, such as count-on, and others who use meaningful number
facts, such as 7+2=9 so 70+20=90, as well as procedures (proceptual thinkers). Two
of our students, Tim and Debbie,: illustrate this difference. Tim would consistently
use a counting-on and counting-back procedure no matter which numbers were
involved in a problem. For example, he took 2 minutes 52 seconds to answer 67 - 41
incorrectly by mentally counting-back on his fingers. Debbie, on the other hand,
could use flexible methods involving complements to 5 and 10. For example, when
correctly solving 6+7 she said: add the two fives and then add the two and the one
and then added them. Such differences in approaches are classified within various
models used by Cooper, Heirdsfield and Irons (1996); Foster (1994); Wright (1994).

Despite Gray et al’s (1997) warning: we conjecture that positive efforts to make the
relationships implicit in proceptual thinking explicit to those that do not have the
associated flexibility run the danger of being seen by some as a new set of
procedural rules (p 121), we wanted to consider ways in which we could help
students develop more flexible approaches. Gray et al (ibid) also conjectured that one
cause of the proceptual divide is the qualitatively different focus of attention which,
on the one hand places the emphasis upon concrete objects and actions upon these
objects, and on the other on abstraction and the flexibility intrinsic within the
encapsulated object (p121). We decided not to work with concrete objects but to stay
with the language of number words and thus work metonymically, with the symbols
(both written and spoken) rather than any meaning in terms of cardinality. Indeed we
decided to reject such metaphorical tools as Dienes’ blocks for place value, instead
staying with the metonymic structure inherent within the numerical symbols and
their relationship with each other. Cobb and Yang (1995) observed that ‘place value’
was not taught as a separate topic in Taiwan, and the metonymic approach we are
taking can also make this an unnecessary topic (Tahta, 1991).
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In this paper, we describe some of the teaching strategies used, and the reasons
behind the decisions taken, within a short four week recovery programme with one
50-minute and three 10-minute sessions per week. The focus for the programme was
to help students build confidence in being able to say and write whole numbers, and
develop mental strategies for adding and subtracting whole numbers which
encourage alternative approaches to those of count-on and count-back. We identify
some of the factors and incidents which have led us to develop our own awareness of
issues involved in helping students who, despite 6-8 years of schooling, have failed
to gain a confidence with number. Thus, this paper is concerned with tracking our
own awareness rather than reporting on the progress of the students involved, and as
such we are working under the Discipline of Noticing outlined by Mason (1994).

WORKING WITH WHAT IS AVAILABLE WITHIN THE LANGUAGE

Regularising the language

The difficulties inherent within the irregularities of English and European number
names as opposed to the regularity of Chinese and Japanese are well documented
(see, for example, Miura & Okamoto, 1989; Fuson & Kwon, 1991). An issue for us
was how we would deal with such irregularities when we were going to work so
closely with the spoken language of number names along with the written symbolism
of number. Wigley (1997) points out that significantly, the greatest irregularity {in
English] is in the second decade, so that learning numbers in the natural counting
sequence does not help understanding of place value at that crucial point where it is
first used! (pl14). The multiples of ten are also irregular and Fuson and Kwon
(1991) discuss the possibility of creating a ‘Chinese’ version of English where the
word ‘ten’ is used (12 would be read one ten two). We decided to work with an
alternative, regular, spoken language using one-ty (10), one-ty one (11), one-ty two
(12), one-ty three (13), etc., and two-ty (20), three-ty (30), four-ty (40), etc. for the
decades. This is suggested by Gattegno (1974) and has the benefit of fitting in with
the regularity of the higher decade words: six-ty, seven-ty, etc.

Students were introduced to the regularised language through whole-class counting
tasks, such as counting up and down in ones, fives and tens, now referred to as "tys".
We also used this language in conjunction with the tens chart (Gattegno, 1974, 1988)
(see Figure 1), pointing at individual numbers on the chart and asking students to say
them. The changes made in our spoken language of number names became
increasingly apparent in the language spontaneously used by students and they
became comfortable with the idea that one number can be said in two ways:

EB: What number is that ? (points to 19 written on board)
Jo: Nineteen



EB: . . How else can we say it?
Students: One-ty nine -

1000 2000 [3000] 4000 5000 6000 7000 8000 9000
100 .200 300 400 500 600 700 800 900
10 20 30 50 60 70 80 90

1 2 3 4 5 6 7 9

Figure 1: Part of the tens chart, with the component parts of 3048 highlighted

Reflection on ‘Regularising the language’

In commonly used spoken language, the awareness of twelve as one ten and two is
not available in the language, whereas this awareness is available if 12 is spoken as
one-ty two (once the learner is familiar with -ty as ten). Thus, what is available to the
learner solely from within the language changes as a consequence of the
regularisation of the language. The structure of the tens chart reflects what is
available in the regularised language. The digit words are represented horizontally
(one, two,...), with the value words represented vertically (zy, hundred, thousand).
Thus each component of a number can be thought of as a digit and a value.

In the question, “how many hundreds are there in five hundred?”, the answer is
clear from within the language. This is also the case with “how many tys are in five-
ty?” as opposed to “how many tens are there in fifiy?”. The regularised language
helped us phrase questions to students in a similar way whether we were discussing
hundreds, thousands or ‘tys’. It was also helpful for the students to hear the value of
the tens digit within what they and their teacher was saying. However, there is a
potential cost for the student in learning and using a new collection of number names
which are specific to the social discourse of the classroom. Qur experience so far is
that students have adopted the new names quite readily but we are unsure at present
whether any awareness gained from using the regular names will also transfer to the
use of the normal irregular names.
A lot from a little ’
A guiding principle for us was to help students maximise what they could do from
the skills they already possessed. We used stressing and ignoring as a teaching
strategy to draw students’ attention to what is available within the language. For
example, having established with the group orally that four plus three is seven, we
would ask what four-ty plus three-ty, four hundred plus three hundred, four-ty
thousand plus three-ty thousand would be. In a similar way we stressed parts of the
spoken language to solve sums involving, for example, 3 + 4 = 7, such as 153 + 4,
463 + 4, 7863 + 4. We extended these methods using language and the tens chart to
work on a wider range of sums. The students were generally able to add a single digit
to anotlller single digit (whether by counting on or through more flexible
©
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approaches). Thus, sums such as 425 + 300 could be done by doing single digi
additions within the hundreds row of the tens chart. Likewise, 425 + 50 and 425 + |
each involves addition in only a single row of the chart. Then these were combinec

to do all three together, 425 + 300 + 50 + 1, and written as 425 + 351. Despite the

fact that most students were still at the stage where 4 + 3 = 7 was not available tc
them as a known fact, all bar one of seven students attending the final fifty minute
number recovery lesson (the exception being someone who had attended less thar
half the sessions) attained an average success rate was 84% doing such calculations
as 804 + 4124 mentally. Many of these students had previously been put off from
even attempting such calculations because the numbers appeared too big to them.

Reflection on ‘A lot from a little’

A key issue for us within our own development is to identify which skills can, anc
which cannot, be developed from existing skills. For example, the above additions
were carefully chosen to build on existing skills so did not to involve the new skill of
‘going over the top’ where a ‘carry’ is involved. At present we are considering ways
in which we would involve the tens chart to help work on what happens when the
addition involving digits of a certain value affect the digits of another value (e.g.
3127 + 192: the addition of the ‘tys’ will affect the addition of the hundreds). While
the students still needed to develop their knowledge in areas that cannot be worked
on through the language, such as number bonds and partitioning, our work suggests
that a lack of such number skills does not have to be a barrier to developing flexible
skills for mental addition of larger numbers.

MAKING EXPLICIT WHAT IS HIDDEN

All of the students, at various times, demonstrated errors when reading and writing
numbers with zeros in. Responses to writing down the number six thousand two
hundred and fifty-one included 600251; 620051; 600020051; and 60251. There are
clearly issues here for students about when and where to write zeros. The zeros are
hidden both within the symbolic number notation and within the language. When
writing four thousand three hundred and seventy six, the three zeros in four thousand
(4000) are hidden in the final number 4376. A zero appears if the number changes to
four thousand and seventy six, 4076, yet the zero itself is not spoken.

From static to dynamic images of numbers

The tens chart represents numbers in terms of their components, e.g. 4376 will be
represented by highlighting 4000; 300; 70 and 6. The computer programme
Numbers' allows students to see written numbers as the result of a dynamic process:
the components of the number highlighted on the chart-drop down the screen to
become written as 4376. 4000 drops first, then the 300 fits over the top of the 4000,
giving 4300, the seventy then drops down to create 4370 and finally the 6 falls into
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the units column leaving 4376. Our students practised writing numbers by asking the
computer to highlight the components of a random number on the tens chart, writing
down what they thought the number would look like written down and then checking
by ‘sending down’ the components on the computer screen.

Within Numbers, once a number is written as a single, static representation, any digit
in the number can be highlighted and it will rise up above the number showing its
component value. For example, if 3 is highlighted within 4376, it will rise up as
300°, showing the zeros that are hidden in the static representation:

300 :
T ‘ \!
4376 4076 4376
Mouse clicks on the digit | Digit ‘3’ rises up revealing | Digit ‘3’ returns to original
‘3 hidden zeros and computer | number
“voice says three hundred

Reflection on ‘From static to dynamic images of numbers’
Teachers have often used cards which have component parts of a number written on
them (see Figure 2). These can be put together to form a multi-digit number.

ool s o\ [sI\

Figure 2: Cards of the component parts of the number 386

The computer program has an added element to such cards, as the component parts
of a number can be seen as part of the tens chart, which represents the structure of
the whole written number notation. The ‘risers’ mean that any digit within a number
can be examined and the component part which it represents can be viewed. We
differentiate here between a digit of a number, such as 8 in 386, and the component
part which that digit represents, 80 in this case. The program also says the verbal
number name for this component part at the same time as it ‘rises’: eighty or eight-ty
- there are options as to whether the conventional names are said, or the regularised
‘-ty’ names are given. The movement in the computer program helps students to see
the components within the whole number and how they relate. Several students
showed evidence of their own internal dynamic processes. For example, when given
6441, shown in its components on the tens chart, Kay wrote 6440, then wrote a 1 on
top of the 0. Andrew, when given the question 50042 + 3024 on his worksheet, wrote
ina 3 on top of the first zero in 50042. The dynamic relationship between parts and
wholes is one which we find very attractive as a pedagogic tool and helped students
to see the value of a digit within the whole number.

O
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Stressing that which is usually ignored

In Catalan Sign Language there is a specific sign or movement for zero in the middle
of a number. This creates greater transparency between the written and spoken
languages (Fuentes, M. and Tolchinsky, L., 1996). With the tens chart, the absence
of a digit in a particular row can also be seen as the presence of an empty row in the
chart. We decided to use a teaching strategy which drew students' attention to the
empty rows on the tens chart as a way to helping them develop greater expertise in
reading and writing numbers: '

(The components of 4083 appeared on the computer tens chart)

Brian:  Oh God, 1 forgot to put... (Brian had written 483 but now put in a nought
to make 4083).

DH: (About half a minute later) You know when you forgot to put the nought?
OK. It's no what? What have you got none of?

Brian:  Hundreds.

DH: And have you shown that, where you put the nought? So what is it? It's
no... We haven't got any what? Which row have we got nothing of?

Several: Hundreds.

It is possible to stress the presence of a zero in a number by saying it: 1076 can be
said one thousand no hundreds and seventy six. Students showed evidence that they
were making explicit the presence of zeros in a variety of situations, sometimes as
suggested by the teacher and sometimes spontaneously:

e On board: 2052 + 500 + 20 = 2572
DH:  (Indicating the first number in the addition) I've got two thousand...
Brian: Two thousand no hundreds and five-ty two.

° Andrew wrote 526 when the component parts of 5026 were highlighted on
the tens chart. When the computer sent down the components to make 5026,
Andrew saw his mistake he said / forgot the hundreds. Here Andrew shows
an understanding that the zero represents something, i.e. no hundreds.

* When Kay was working on the task of writing numbers as the sum of their
components, she seemed to represent the presence of the zeros as well as
other digits:
2003=2000+0+0+3
2104=2000+100+0+4

Reflection on ‘Stressing that which is usually ignored’

We feel that stressing an empty row in the tens chart has been useful in helping
students become aware of the role the zero plays within written number notation.

o3
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Kay’s use of zero, to explicitly represent no hundreds and no tys, interested us and
made us consider how we would write the numerical equivalent of no hundreds:
0007 And no tys: 00? Yet these both have a numerical value of 0. This raised for us
an issue about the relationship between the verbal and written language.

Not only is it possible to stress what is available in the language to assist the learner,
it is also possible for both teacher and learner to stress aspects which are usually
ignored within the language in order to create greater transparency and overcome
some of the difficulties with zeros. Hughes (1990) found that young children are as
adept at representing ‘nothing’ as they are at representing small quantities such as
one, two and three... It seems that this aspect of zero - representing the absence of a
quantity - is not particularly difficult to grasp. Much more difficult is the use of zero
in a place-value system (p89). One reason we suggest this is problematic is because
the zero is not spoken, and so is usually hidden, within the number name. Yet at the
same time, the presence of a zero in the written notation is crucial. So, although we
have attempted to regularise the number names, there is still not a direct correlation
between the written and spoken language.

SUMMARY

We consider that language can play of fundamental role in students learning about,
and working with, number. Not only can the composition of numbers and the value
of digits within numbers be worked on, but also addition and subtraction strategies
can developed to offer greater flexibility for students. We have found that students
can be encouraged to use larger units than ones (Steffe et al, 1983) in their counting
strategies and so develop proceptual methods which are not just based on new rote
learnt procedures, but are known through stressing the language inherent within
number names. Through examining our own teaching strategies we are finding ways
to help students exploit the language to help build their confidence and skills with
number. In particular, we are developing our use of stressing and ignoring in
different guises and in different contextual situations. We consider this to be an on-
going process as we plan an extension to the number recovery programme.,

! The computer program Numbers is being developed by the Small Software Working Group of the
Association of Teachers of Mathematics. Details can be obtained from Dave Hewitt who is
convenor of the group.
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RELATING CULTURE AND MATHEMATICAL ACTIVITY:
AN ANALYSIS OF SOCIOMATHEMATICAL NORMS

Lynn Liao Hodge and Michelle Stephan

This paper presents an analysis which relates students’ and teachers’ cultural
backgrounds to their mathematical activity. We have used the elaborated interpretive
Jframework of Cobb and Yackel (1996) to examine the negotiation of sociomathematical
norms in two classrooms. We view individuals’ participation in this negotiation as being

" reflexively related to how they participate in the practices of other communities, such as
the school and community cultures. This analysis indicates a direction for future studies
which attempt to examine the relationship between individuals’ cultural backgrounds and
mathematical learning.

An extensive body of literature exists describing how students’ and teachers’ cultural
backgrounds relate to participation in the classroom (Au, 1982; Delpit, 1988; Phillips,
1972). Though these studies are helpful in emphasizing the importance of understanding
the cultural backgrounds of students and teachers when examining events in the classroom,
they are limiting in that they are content-free. - They explore norms of participation which
exist in all classrooms, but they do not describe how the cultural backgrounds of
individuals relate to leaming in particular content areas. The intent of this paper is to
build on the work of these authors by relating students’ and teachers’ cultural backgrounds
to mathematics leaming. Specifically, the purpose of this paper is to show how the
analysis of the negotiation of sociomathematical norms may be used to relate the cultural
backgrounds of individuals to their mathematical activity. To this end, we will clarify
what we mean by sociomathematical norms and how they relate to social norms. Then, we
will discuss two classrooms which we would label "math-inquiry” in that the two teachers
made it a point to negotiate social and sociomathematical norms with their classes. The
analysis of the two classrooms offers an example of an analysis which relates the cultural
backgrounds of students and teachers to mathematics leamning,.

Theoretical Framework

We use the interpretive framework of Cobb and Yackel (1996) as a means of
conceptualizing the negotiation of social norms and sociomathematical norms within the
classroom. The first level of their framework features classroom social norms. These
norms include explaining and justifying solutions, making sense of the contributions of
others, and indicating agreement as well as disagreement. The second level of Cobb and
Yackel's framework deals with sociomathematical norms, which relate specifically with
mathematical problem solutions. These norms include understanding of what counts as a
different solution, a sophisticated solution, and an efficient solution. Also involved in the
analysis of sociomathematical norms is how the teacher and students constitute what is
considered an acceptable solution. The negotiation of social norms is important in that it
contributes to the development of sociomathematical norms and the classroom
microculture.. If the social norm of explaining one's answers is not negotiated in the
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classroom, the sociomathematical norms of what constitutes an acceptable explanation or
what counts as a different solution would clearly be difficult to negotiate. In addition,
sociomathematical norms are different from social norms in that social norms can be
found in any subject area. For instance, we would want students to explain their answer
to questions in a history or English class. For this reason, we confine the analysis to the
negotiation of sociomathematical norms since they are specific to mathematics. Howeve
we do recognize that the negotiation of social norms is a critical aspect of the classroom
microculture

Clearly, the events of the classroom are not isolated, but occur within a broader
context. As Apple (1992) emphasizes, it is important to consider the classroom ‘as situats
in a larger context in light of issues regarding diversity. He warns that we must carefull
examine the policies which structure inequity in the school context as well as the wider
society. For these reasons, it is important to conceptualize the classroom within the larg
context of school and society. We consider Cobb and Yackel's (1996) elaborated
framework shown in figure 1.

_ [Insert figure 1 about here]
In this figure, the outer two boxes describe the norms and practices at the school and
societal levels. In addition, the figure includes the practices of institutions and places -
individuals' activity within a context. In this way, the events of the classroom are affecte
by and in turn affect the practices of the school and society. In other words, the
relationships among the classroom, school, and society may be viewed as reflexively
related.

Figure 1 is also helpful in clarifying the relationship between the negotiation of
sociomathematical norms and the students' and teacher's cultures. It is important to clari
that we use the term culture in this paper to refer to how individuals participate in these
different communities. From this perspective, individuals are viewed as participating in
the practices of society, the school and community, and in turn, the classroom .
microculture. How individuals participate in the negotiation of sociomathematical norms
at the classroom is reflexively related to how they participate in the practices of the schox
and the practices of society. Cast in these terms, individuals are seen as bringing their
ways of participating in these different communities into the emerging classroom
microculture. In this way, individuals' cultures are related to their mathematical activity
through the negotiation of sociomathematical norms.

Data Corpus

The focus of the analysis is to describe how an investigation involving the
negotiation of sociomathematical norms may relate individuals' culture to mathematical
learning. For this reason, the analysis which follows presents an example analysis of the
negotiation of sociomathematical norms for two classrooms. Furthermore, it indicates a
direction for more extensive studies examining individuals' culture annd mathematical
activity. The first classroom was an upper middle class first grade class whose teacher w
Caucasian, while the second class was an inner city, predominantly African-American
second grade class. The teacher was an African American. Both teachers were
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collaborating with a research team during the time of study and both were trying to
promote a math-inquiry style of teaching. ‘
' Classroom Analysis
In this section, we present episodes of the negotiation of sociomathematical norms
unique to two classrooms. These classroom episodes are used in order to illustrate
contrasting situations. We then follow with a discussion comparing the events occurring in
cach classroom.

Mr. Bill's class

- The negotiation of the sociomathematical norm of understanding what counts as a
different solution helps students to develop more mathematically sophisticated solution
strategies. Mr. Bill guided the negotiation of what constitutes a mathematical difference.
His negotiation of this sociomathematical norm relates to how he participates in the
practices of the school culture and the wider society. He was attempting to develop a
-lassroom which promotes understanding. Similarly, the students also had their ways of
articipating in the school culture and the negotiation. It is in this sense that this
sociomathematical norm was negotiated between the teacher and students because a student
nay have offered his different solution not knowing whether the teacher, or other
lassmates, would see it as different. Hence, both the teacher and students negotiated what
t means for a solution to be mathematically different. In the following episode the teacher
vrote the horizontal number sentence 22+38+9 on the board. He called on several students
vho offered different ways to solve the problem.

. Let's see. how many of you agree with 69? [Students raise their hands]. How many
agree with 42?7 How did you get 69? .
[racy: [comes to the board] I said the 20 plus the 30. That'd be 50. and 50 plus that 2
would be 52. Plus that 8 would be 60 plus that 9 would be 69.
[: Did someone add it a different way? Cathy?
“athy: I'said the 20 plus the 30 equals 50. Plus the 20, I meant 2, equals 52, plus the 8
equals to 60 plus the 9 equals 69.
. 1said different! I did not say what she said. OK. Let's try Jeff.
eff: That 8 and that 2 is gonna be 10 and I add it to the 20 (inaudible but probably added
. the 30 he has with the 30 on the board). and then you have the 9 left.
. Different? Very Different? Tony?
‘ony: Yes.
'+ OK :
‘ony: Isaid this 2, not this 2. This 2 plus this 8. That was 10. And I said plus this 9.
That was 19. and I said this 30 plus 20. That was 50. And I said 19 plus 50 would
equal 69.
" Alright, that's different. different. OK.




Ms. Smith's Class :
The ways in which Ms. Smith and her class negotiated what counted as a different

solution were very different from the negotiations that occurred in Mr. Bill's class. The
ten frame in figure 2 was quickly flashed on the overhead projector and the children wer
asked to recall how many chips they had seen.

T: Jenny, what did you see?

Jenny: 6

T: How did you see that?

Jenny: I saw three and three.

T: Jenny saw two groups of three. Did anyone else see it the same way Jenny saw it, twc

groups of threes.

Linda: I think I change my mind to six.

T: OK, How do you see the six, Linda?

Linda Four and two. :

T: OK, Linda said that she changed her mind. She sees six but she doesn't see six the
same way that Jenny saw six. Jenny said that she saw six as three plus three. So
those are two different ways...two different ways to group, to group the pumpkins
together and think about six. You can group four together and see four two or you cz
group the three together and see three plus three...Kayla?

Kayla: Isaw it a different way.

T: You have a different way? How did you see it?

Kayla: I saw it as five and one.

T: You did? Kayla said that she saw five and one. [They discuss how many more they

would need in order to fill up the ten frame.]
Jenny: Isaw...Isaw three plus two plus one.
T: OK, that's another way to see six. [Goes on with another problem]

These two classroom episodes provide an example of how the cultural backgrounds
of the students and the teachers relate to how sociomathematical norms were negotiated.
Both teachers initiated and guided the negotiation according to their pedagogical agendas
and their prior experiences in the school culture and society. For example, Mr. Bill
indicated to the students that Cathy's and Jeff's explanations were not different from
Tracy's. He made a point of emphasizing what counts as a different explanation.
Similarly, Ms. Smith did not regard Jenny's second contribution of "3+2+1" as different ¢
more sophisticated than her first explanation of two groups of three. As a result, Ms.
Smith did not highlight Jenny's second contribution. It is important to note that the
teachers' negotiations are related to their conscious efforts to develop classrooms which
promote understanding. Therefore, it was pertinent from the teachers' perspectives to
carefully initiate the negotiation of what constitutes a mathematical difference, and in the
case of Ms. Smith's class, what is considered a different solution that is more efficient as
compared to other strategies. :
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Since the ways in which the two teachers guide the negotiation of sociomathematical
norms is related to their participation in different communities, we would expect that the
teachers would negotiate norms in different ways. The classroom episodes are evidence of
this. Mr. Bill emphatically and explicitly indicated that an answer was not different. In
response to Cathy, the teacher said, "I said different! I did not say what she said"! This
explicitness may be explained by the fact that the teacher regarded this sociomathematical
norm as being important. Mr. Bill's explicitness may also be explained by his
communication style, which is also related to his prior experiences in the school
community and society. Delpit (1988) describes differences in communication styles of
African American mothers and white, middle-class teachers. In her description, the
communication styles of African American mothers are characterized as explicit as
compared to that of middle-class teachers. She describes the communication styles of
middle class teachers as being implicit and vague to African American students. It is
interesting to note that the negotiation of the sociomathematical norms involves different
aspects of individuals' perceptions and communication styles, aspects of their culture.

It is apparent that the negotiations occurring in the two classrooms involved
different individual beliefs and perceptions, and for this reason, the negotiation of
sociomathematical norms is unique to each classroom microculture. The analysis shows
that negotiation of sociomathematical norms may occur very differently in different
classrooms. For Mr. Bill's class, negotiation of the sociomathematical norm of what
constitutes a different answer was very explicit while for Ms. Smith's class, it was implicit
in comparison. Though these negotiations and the involved interactions were different,
both classrooms were mathematically productive in that many of the students were able to
develop grouping methods and an appreciation for more efficient strategies. Clearly, the
different participation of individuals and the different negotiations contributed to an
emerging microculture that was unique to each classroom.

The negotiation of social norms also appeared different in the two classes. Further
analysis including the negotiation of social norms would be helpful in understanding the
classroom microculture and how individuals come to participate in it. Individuals'
participation in the negotiation of social norms may also be viewed as being reflexively
related to their participation in the practices of the local community and society. In
addition, the negotiation of social norms contributes and is strongly related to the
negotiation of the sociomathematical norms. Both analyses would provide a more
complete picture of the events of the mathematics classroom in regards to individuals'
ways of participating in different communities.

Conclusion _

I have suggested several key points in regards to examining the negotiation of
sociomathematical norms and understanding issues of diversity. Here, I offer a summary
of the key points. '

1. In viewing sociomathematical norms and the beliefs of individuals as being
eflexively-related, the construct of sociomathematical norms is one method of relating the
ultural backgrounds of the students and the teacher to mathematical learning. Most of the
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literature relating students' and teachers' cultural backgrounds deals with participation a
is basically content-free.

2 Clearly, each classroom includes individuals contributing to an emerging
microculture unique to that particular classroom. In the analysis, though both emerging
classroom microcultures were different and unique, both classrooms were mathematicall
productive. They were mathematically productive in the sense that students in both
classrooms developed ways of grouping numbers and developed understanding of more
sophisticated methods. This is a very encouraging finding since each classroom is a uniq
microculture with children of various backgrounds. In addition, this finding has
implications for reform, since it suggests that there is not one characteristic classroom th
promotes inquiry math. Classrooms can take on different forms and include different
beliefs; however, productive mathematics can still occur.

3 The classroom is situated within the larger context of the school and society.
When viewed from this perspective, the events of the classroom are both affected by and
affect the school culture and the practices of the wider society. In addition from this
perspective, the negotiation of sociomathematical norms may be regarded as events whicl
are related to the school culture and that of the community and society. They are not
merely isolated events which are confined to the classroom.

The analysis of the negotiation of sociomathematical norms may indicate a directio
for future studies exploring the relationship between students’ and teachers' cultures and
mathematical activity.
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Sociocultural Perspective

Societal norms that regulate schooling and associated normative beliefs
about learning and teaching (e.g., institutionalized beliefs about normal or
natural development in mathematics)

School norms and associated institutionalized beliefs
about teachers’ and students’ roles in school (e.g.,
normative conceptions of the child in school)

Interactionist Perspective

Classroom microculture
communal activity

Psychological
Perspective

Individual Activity

Figure 1 The Elaborated Interpretive Framework

Figure 2 Single ten frame
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"AUTOMATISM" IN FINDING A "SOLUTION"
AMONG JUNIOR HIGH SCHOOL STUDENTS

Bat-Sheva Ilany and Nurit Shmueli
Beit Berl Teacher Training College, Israel

ABSTRACT

This study focused on how junior high school students and teachers find the solution for a
given equation, which contains the information, needed to solve it. The aim was to examine
Whether the participants find the solution through a routine algorithmic process, or whether
they employ varied ways of solving the equation. Resulls indicate that students employ varied
strategies, the most common of which is extracting and substituting the variable, while
teachers employ two principal strategies: extracting and substituting the variable and direct
calculation. Furthermore, the older the participants, the less frequent is their use of the
extracting and substituting the variable strategy.

THEORETICAL BACKGROUND

Several researchers who studied the ways of how students arrive at solutions, found that
students employ "technical” methods to solve equations. A study conducted in the U.S. on
beginning algebra students, showed that students tend to solve algebra problems through a
routine algorithmic process (Jensen and Wagner, 1981).

In a clinical interview of 8 students, the following problem was given:

Find the value of 2a2+1 =" when 5(2a+1)=10 is the given.

The students employed the following patterns of solution:
Methed 1: Finding first the value of the unknown

5(2a+1)=10
10a+5=10
10a=5
a=1/2

Method 2: Direct calculation (making use of the fact that 2a+1=2)
5(2a+1)=10
2a+1=2
2a+1 2

2 2

Study results indicated that 6 students (75%) used Method 1, one student used Method 2, and
one student answered incorrectly. Jensen and Wagner argued that the solution by Method 1
indicates fixation on the routine algorithmic process for solving this type of problems.

Tlany (1991) repeated the experiment in Israel, examining 96 students: 55 at the end of 7th
grade and 41 at the end of 8th grade. The results obtained in the study were similar to those
obtained in the U.S. However, in addition to the methods that emerged in the Jensen and
Wagner study, another solution method emerged.

¢
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Method 3: Extracting the expression 2a
5(2a+1)=10
2a+1=2

2a=1

2a+1 _1+1

2

el |

2

Kuchemann (1981) presented a question constructed on the same principle:

If g+f=8 then etftg=

Kuchemann's objective was to examine how students perceive the meaning of letters in
mathematics. Namely, do students perceive in this question the given e+f=8 as global
expression and substitute in the expression e++g =, ie, etf+g=8+g, or do they view the
letters in a different manner. He found that students ignore the e and f, and solve etft+g= by
relating to g as to something unknown, assigning each time a different meaning to g.

Jensen and Wagner (1981) explained the students' behavior in solving such problems from
three theoretical standpoints:

1.

ERIC
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Information processing
Johnson and Wagner explained the phenomenon where children perceive only a single

letter as the unknown (the single letter fixation) and are unable to view an expression
composed of several members as an unknown, by the fact that students use only the
standard procedures which they have learned to solve problems, and are unable to
deviate from the familiar. For example, when a student wishes to find the value

Za+l =, he knows from what he has learned that the letter a should be substituted in

. 1 . . .
the expression = (Method 1), in order to obtain the value of the expression.

Here the routine process begins, leading him gradually toward the solution. This method
was named by Davis, et al. (Davis, Jockush, McKnight, 1978 in Jensen and Wagner
1981) the "Visually Moderated Sequence".

Meaningful Learning
The single letter fixation can be explained by that the student fails to distinguish that it is

possible to relate to the expression 2a+1 just as to x or y, namely an unknown in itself.
The student's prior experience restricts him to using a single unknown without expanding
his conceptual world to include the "opportunities” of working with more complex
numerical expressions.

Cognitive Development

A possible reason for the failure to grasp the concept of variable from the standpoint of
the child's cognitive development is the understanding the equal sign. Children tend to
perceive the equal sign as an instruction to perform the operation listed to the left of the
equal sign and to write the result to the right of the equal sign. They are as yet incapable
of understanding that both sides of the equation are equal (Kieran, 1981). Therefore, so
explain Jensen and Wagner, when a student is given the equation 5(2a+1)=10, the equal
sign "tells" him that he is to do something with the left side. Thus, the student
automatically proceeds with the solution, not noticing the similarity of the structure of
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the expression 2a+1 in the equation, and the expression =, which is to be

calculated.

Following the studies mentioned, we wanted to examine whether similar strategies exist in
different age groups and in problems of a different type. The current study focused on the way
junior high school students (grades 7, 8, 9) and junior high school teachers find the solution
when given an equation which contains the information essential for its solving. The aim of
the study was to examine whether the participants find the solution by means of a routine
algorithmic process, or use a variety of ways.

THE METHOD

The study focused on 7th grade students (30), 8th grade students (30) and Sth grade students
(32), as well as junior high school teachers of grades 7, 8 and 9 (12 teachers). The participants
were asked to complete an open questionnaire constructed for the purposes of this study.

The Questionnaire:

1. If 3+a=8 then 3+a+5=

2 If 3d=6 then 18d+9=
3. If e+f=8 then e+f+g=
4

2a+1 _

If 5(2a+1)=10 then

5. If x+y=z then x+y+z=

In each question of the questionnaire the participants were asked to record each stage of the
solution and explain.

Question 3 was taken from Kuchemann. (1983), Question 4 was taken from Jensen and
Wagner (1981) and Questions 1, 2 and 5 were constructed for the study.

The answers to Questions 1, 2, 4 are numerical, while the answers to Questions 3, 5 are
numerical expressions, requiring direct calculation and a global structural perspective.

STUDY RESULTS

Examination of the participants' work produced a variety of different answers. qThe
participants' answers were sorted by strategies that were employed, as follows:

Direct calculation - global structural perspective

The strategy is so named because the participants viewed the given and the expression in a
global manner. In Question 1, for example, they took the given 3+a=8 as is and substituted it
directly in the expression 3+a+5, obtaining:

3+a+s=

8+5=13

Substitution in the "reverse direction'' - global structural perspective,

as in Question 5, for example:
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If x+y=z then xty+z=
The solution:
X+y+z=

X+y+xty=
2x+2y

Interim method - partial structural perspective (substituting part of the expression), as
in Question 4, for example:

If 5Qa+1)=10 then 21

The solution by the interim method:
If 5(2a+1)=10 then 2a=1 then substitute and obtain
2a+1

Extraction of the variable and its substitution - routine algorithmic perspective,

as in Question 1, for example:

If 3+a=8 then 3+at+5=

Solution: a=5, substitute 5+5+3=13 thus the solution is 13.

Namely, the students extracted the a from the given and substituted it in the expression.

Extraction of the variable only - without substitution - partial algorithmic perspective,

such as in Question 1, where a was extracted from the given a+3=8 obtaining a=5 w1thout
continuing the process further.

Substitution of any numbers, such as in Question 3, for example:

If etf=8 then et+ftg=

The participants substituted any number, substituting, for example, g=2, f=5, e=3 and
obtained: 3+5+2=10

Both expressions have the same solution, such as in Question 1:
If a+3=8 is given, then the second expression will also receive the value 8, namely, 3+a+5=8,

and therefore the letter a obtained a different value in each of the equations: In the equation
at+3=8 = a=5
and in the equation 3+a+5=8 = a=0

In order to compare the strategies employed by the students with the strategies employed by

the teachers, we prepared Table No. 1, listing for comparison purposes the teachers' answers
in percentage terms, notwithstanding their small number (12).
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Table No. 1: Solution Methods - Students Compared with Teachers

Total Total
Students Teachers
Number of Participants 92 12
Extracting and substituting the 45.5% 15%
variable
Direct calculation - 29% 85%
structural perspective )
Interim method - 1% 0%
substituting part of expression
Substituting any numbers 14% 0%
Extracting variable only - 1% 0%
no substitution
"Reverse" substitution 0.5% 0%
Same solution for both 0.5% 0%
expressions
No answer 8% 0%

Table 1 shows that the teachers employed only two strategies: extracting and substituting the
variable and direct calculation. The students, on the other hand, employed other strategies as
well.

The most common strategy used by students of grades 7, 8 and 9 was extracting and
substituting the variable (45.5%), while teachers most commonly used direct calculation

(85%).
Table No. 2:  Results Obtained - By Grades
Grade 7 | Grade 8 | Grade 9 | Teachers

Number of Participants 30 30 32 12
Extracting and substituting the variable 43% 45% 46% 15%
Direct calculation - 15% 31% 41% 85%

structural perspective
Interim method - 0% 1% 3% 0%
substituting part of expression
Substituting any numbers 28% 12% 4% 0%
Extracting variable only - 2% 1% 1% 0%
no substitution

"Reverse" substitution 0% 2% 0% 0%
Same solution for both expressions 1% 2% 0% 0%
No answer 11% 6% 5% 0%

In Table 2 we can discern the use of three principal methods: extracting and substituting the
variable, direct calculation (methods used by both students and teachers) and substitution of

any numbers (used by students only).
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In the extraction of the variable strategy, no difference in use was discerned between grades 7,
8 and 9. On the other hand, in the direct calculation strategy, there was a discernible
difference between the grades: the higher the age, the more frequent the use of this strategy (in
grade 7 - 15%, in grade 8 - 31%, in grade 9 - 41% and teachers - 85%). Moreover, use of the
strategy of substituting any numbers, an incorrect strategy, decreases with increasing age (in
grade 7 - 28%, in grade 8 - 12%, in grade 9 - 12% and teachers - 0%).

DISCUSSION AND CONCLUSIONS

The variable extraction and substitution strategy, commonly used by students, is used less
frequently with increasing age. This can be explained by the perception of using a letter for a
specific number only. Many students believe that variables are letters representing numbers
only (Usiskin, 1988, Ilany, 1996).

Such use of the variable extraction and substitution strategy was also found in the studies .
of Jensen and Wagner (Jensen and Wagner, 1981), who explained it from three standpoints:
Information processing, meaningful learning and cognitive development (as detailed in the
theoretical background).

In relation to information processing, we found, just as Jensen and Wagner, that:

1. Some students solve problems by means of a familiar standard procedure which they
learned and from which they are unable to deviate. For example: in Question 2 where
the given is 3d=6, students first find the value of d and substitute in the expression

18d+9. ]
2. Some students are not proficient in other solution methods save that of finding the
unknown and its substitution, and therefore solve the problem by the method familiar
to them.
3. When a student wishes to find the value he knows from what he has learned,

that a is to be substituted in the expression , in order to obtain the expression’s

value. Here begins a routine process which gradually leads the student to the solution.

In relation to meaningful learning, it is possible to explain the single letter fixation by that the
student does not realize that expression 3+a can be treated just as x or y, i.e., an unknown in
itself. From here it may be inferred that the student has not as yet fully formed and internalized
the concept of variable. This finding testifies to the student’s limitation in understanding the
concept of variable. The experience to which the student has been exposed, restricts him to
using a single variable and does not expand his conceptual world to perceive the possibility of
working with more complex numerical expressions.

From the standpoint of cognitive development, the use of a letter as a specific number can
apparently be explained by the variable being perceived, at the beginning of algebra, as a
number only.

The teachers’ most frequent use (85%) of direct calculation, can be explained by the concept
of algebra as study of structures. In other’ words, learning algebra at the tertiary level,
according to Usiskin (1988), is usually:characterized by dealing with structures, a perception in
which the variable is viewed as a random object within an expression, related to other variables
in the expression by certain properties. This approach is characteristic of abstract algebra, and
we thus see in this study that teachers possess the ability to deal with variables without
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requiring a numerical frame of reference. Moreover, teachers have been exposed to a broader
variety of uses of variables, and have expanded and deepened their understanding of the
concept of variable. Our study shows that with higher chronological age, more participants
shift to direct calculation. Namely, with increasing age, the concept of variable expands,
learning becomes more meaningful, and more participants view 2a+1 or 3+a as an unknown in

itself.

The use of the substitution of any numbers strategy (28/% of 7th graders, 12% of 8th
graders, 4% of Sth graders), can be explained in several ways:

1.

The child perceives the meaning of the variable from the numerical aspect.

Only numbers can be substituted for letters and they therefore substitute any numbers
for letters.

The “incomplete nature” of several expressions - research findings show that students
tend to “simplify” expressions such as 2a+5 to 7a or to 7. This tendency can be
characterized by the need to provide a “final” numerical answer (Tirosh, Even and
Robinson, 1994).

The “process is also the result” -

One of the difficulties encountered by students in the transition to algebra, is connected
with the need to relate to an expression as representing concurrently both a process
and a result (Davis, 1975, Booth, 1988). The source of this difficulty stems from the
habit of separating the two in arithmetic. For example, in 8+5=13, 8+5 is the process
and 13 is the result.

It was interesting to find in our study the interim method - substituting part of the
expression, as in Question 4, for example:

2a+1 _

If 5(2a+1)=10 then

The solution by the interim method:

.1+
If 5(2a+1)=10 then 2a=1 then substitute to obtain: - =1

This method was also found in solving Questions 3 and 5, as in Question 5, for example:

If x+y=z then xty+z=

The solution by the interim method:

If x+y=z then x=z-y, substitute for x in the expression x+y+z=
and obtain z-yty+z=2z.

In Question 3: If e+f=8 then etftg=

The solution by the interim method:
If e+f=8 then e=8-f, substitute for e in the expression

et+f+g= and obtain
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8-IH+g=8+g.

The interim method - snbstitnting part of the expression strategy was also found in Tlany
(1991).

We were thus surprised to find in our study, that although the teachers themselves employ
direct calculation, many students do not use this method. Perhaps some improvement could be
obtained by. exposing junior high school students to the various uses of the variable and varied
solution strategies, leading the students to the desired structural - global perception.

To summarize, a long road is traveled by the student in the process of learning algebra: at the
outset, the letters are perceived as representing numbers only, and further on, a more global
structural perception is attained.
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THE ROLE OF CONTEXT IN COLLABORATION IN MATHEMATICS

Kathryn C. Irwin
University of Auckland, New Zealand

This study explored the role of context in students’ construction of mathematical
concepts. The discourse of 8 pairs of students, aged Il and 12, was recorded while
they solved mathematical problems together. In each pair a more able peer worked
with a less able partner on either contextualised problems or purely numerical
problems. Those students who made the most progress were those who worked on
contextualised problems. Analysis of the discourse demonstrates that it was the
context that provided clear goals and drew on the experience of both partners, so
that the more able were able to learn from the less able as well as vice versa.

Analysis of the discourse in mathematics education is a fertile source of information
on what is enabling learning. One example was the examination of discourse in
reform classrooms, showing the emergence of a collective voice in a classroom
(Graves & Zach, 1997). Less attention has been paid to what the students are
talking about, and the effect of context on learning from this discourse. In peer
collaboration, we need to evaluate this discourse and who benefits from it.

Added depth is given to this analysis through looking at it in relation to the different
views of Vygotsky and Piaget on learning from peers. Vygotsky (1978) believed
that more capable peers, or adults, were needed for learning because they
understood the goal of the activity and knew what it was that the learner needed to
know next to gain that goal. Piaget (1932/1965) postulated that children were more
likely to reflect on and change their own concepts as a result of discussion with a
similar peer than with an adult. He gave the conditions necessary for learning from
a peer as having common language and intellectual values, being able to conserve
one’s own ideas while working for consensus, and being able to consider each
other’s propositions in a reciprocal manner. This paper argues that context can be a

_crucial variable in producing the characteristics described by both of these theorists.

Other theories of learning acknowledge that context is essential in learning.
Apprenticeship theory, for example, places emphasis on the entire context in which
a set of practical or cognitive concepts are learned. In apprenticeship learning the
goal of learning is clear and the steps along the way to meeting this goal can usually
be articulated ina manner that enables the more able partners to help the less able
partners meet these goals. Learners know that a solution that meets obvious criteria
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is to be found. It has been proposed that the clearer such goals are to the learners
the more likely they are to meet them (Resnick & Resnick, 1993).

In New Zealand the primary context for learning mathematics is the schoolroom
itself. It is the context for patterns of discourse, scripts, goals, and patterns of
respect (see Leinhardt & Putnam, 1987). This is such a major feature of context for
students that they often forget everyday contexts in which they have learned certain
things. Some students are skilled in learning mathematics in a school context. They
understand and follow teachers’ instructions, grasping many facts about the
manipulation of numbers. In the upper elementary school they understand that the
goal of mathematics is to deal with numbers in a formalised manner, with numbers
being treated as entities without further context. They often value this formatlisation
to the extent that they ignore contexts that give these numbers different meanings.
Other students are less skilled in learning in classrooms. The school context,
although familiar to them, is less meaningful. They follow the classroom scripts
and activities but may not understand the mathematics in these activities. They may
come to think of themselves as less capable in school mathematics and having less to
offer. their peers in collaborative sessions. Out of school, on the other hand, they -
are confident in many spheres in which numbers are used. Walkerdine demonstrated
that the relationship between out-of-school experiences and classroom mathematics
is complex, especially for poorer students such as those in this study (Walkerdine
1997).

This study was carried out in a school, albeit in a withdrawal room. One
expectation of working on problems in such a setting might be that both partners
would utilise the beliefs and activities that are valued in classrooms. The less
competent peers might defer to the greater formal knowledge of their more®
competent peers as they usually do in classrooms. There were many cases in which
this did not happen. When problems were presented in a familiar context, the less
competent peers used their out-of-school knowledge rather than their formal
knowledge, and challenged the formal knowledge of their more competent partners.
Because both partners were familiar with this everyday knowledge, the more
competent peers listened to the challenges presented by their partners from this
everyday knowledge. Between them they recognised the conflicts and worked to

" combine their expectations from these context with their formal knowledge to reach
a conclusion that met an understood goal.
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The Study. This study was the third of a series designed to examine the effect of
context on learning about decimal fractions. It followed two studies that explored
the contexts in which 84 similar students used decimal fractions out of school, and
the errors that they commonly made (see Irwin 1995).

Sixteen students, from a lower economic, ethnically mixed class took part in this
study. The students were ranked by their teacher on their overall mathematical
ability, and were then placed in pairs with a constant difference in ranking between
them (1 & 9,2 & 10, etc.). Thus they were paired to meet Vygotsky’s criteria, yet
the behaviour of some of the pairs matched Piaget’s criteria.

Mathematical problems were developed that were based both on contexts that the
prior studies had shown were familiar, and on errors that were commonly made by
the students interviewed. A similar set of problems were also written which used
formalised word problems without everyday contexts. Half of the pairs worked on
contextualised problems and half worked on similar problems in a purely numerical
form. Examples of these two types of problems were:

Contextualised
How much do you think you will have left if you have a 1.5 litre bottle of drink
and you pour out enough to fill a 225 ml glass? (bottle and glass on display)

Numbers only
If you subtract 0.225 from 1.5 what will you get?

All students were given a pretest of ordering decimals and operating with them in a
formalised manner. They then worked together on four problems per day for the
next three days. These problems covered magnitude, addition and subtraction, and
multiplication and division of numbers that included decimal fractions. Questions
were designed to draw attention to common confusions. Students were given a
posttest, very similar to the pretest. four days after their last problem-solving
session and again one month later. The discussion between the partners was tape
recorded and analysed at a later date.

Analyses. Students who worked on contextualised problems made significantly
greater gains between pretests and posttest than did those who worked on purely
numerical problems (F(1,12)=5.70, p =.03). These students were also significantly
more accurate in solving the problems done jointly (F(1,12)=6.21, p=.02).
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Working on contextualized problems helped both the higher ranked and lower-
ranked members in the pair to increase their posttest scores.

The analysis of the discourse explored what might support this improvement. The
statements made by each partner were categorised by the contribution that they
made to the conversation. Categories were based on the argument operations used -
by Azmitia (1988) and Pontecorvo and Giradet (1993). The categories used were:

Answer (right or wrong) Question

Explanation (right or wrong) Consideration of other’s view
Agreement -Request for agreement
Disagreement Comment

Challenge Incomplete statement

The hypothesis behind this analysis was that some types of argument were more
likely to advance understanding than others. Students who listened to one another
learned more than did those who worked in parallel (see Forman, 1981; Ellis,
1995). The balance of the partners’ statements would indicate if both offered
answers and explanations and challenged one another, or if one of the partners made
most of the statements that led to solution of the problem.

There were marked differences in reciprocity when students were working on
contextualised or purely numerical problems. Two excerpts are given below to
demonstrate these differences. The first is from a pair working on purely
numerical problems who used the scripts appropriate for formalisms used in a
school context, but which they did not fully understand. The next is from a pair
who worked on contextualised problems. For them the context provided the
chance for the less able student to provide a lead to the partner who was more
skilled in formal mathematics. '

Pair 3 who worked on purely numerical problems was made up of two girls, aged
11. Neither partner made significant gains. Their relationship was friendly but the
lower-ranked partner made few substantive contributions, preferring to defer to her
more capable partner. There was a marked imbalance in the types of statements
made by each of the girls. On this problem the more capable partner, H, gave 37
partial or full explanatory statements and the less capable partner, A, gave 6
explanatory statements. H agreed 4 times and A agreed 20 times. Both partners
asked each other questions but there was little genuine conversation. This pair
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lacked the common intellectual values and reciprocity that Piaget notes as essential
for collaboration. A did not appear to work for the conservation of her ideas in the
face of H’s statements. The written question is given in italics and has two parts.

, )]
(1Bc)Teri said that 93 7 was written as 93.04 in decimals. Why did she say that?

Do you agree?

A Yes - Oh\ WRONG ANSWER

H Yeah, 93 is a whole number and one quarter is just, it should be zero zero four -
1 think. AGREEMENT, DIFFERENT WRONG ANSWER

A No. Try that again. 9 3 point \ CHALLENGE

H Oh remember, remember, cus decimals leave, you know how this goes ones, tens
hundreds, this goes hundreds, tens, ones. (points to place-value columns for
hundreds, tens, ones, oneths, tenths, hundredths) EXPLANATION

A Oh yeah, and then \ AGREEMENT, INCOMPLETE

H But you see that can - umm. Do we agree? Cus the four should be, there should
be another zero between the zero and the four. REQUEST FOR AGREEMENT,
WRONG ANSWER

A Yeah. AGREEMENT

Peta said that 93$ was written as 93 .25 in decimals. Why did she say that? Do

you agree? What do you think is right? ’
H (23 second pause) Hold on. (pause) Yeah, it could be right . CONSIDERS
OTHER VIEW, TENTATIVE AGREEMENT
(starts to say something, interrupted) INCOMPLETE
See most, that is one quarter, 25 is one quarter \ EXPLANATION
Yeah. AGREEMENT
In decimals. EXPLANATION
Yeah, so\ AGREEMENT
Do we agree? REQUEST FOR AGREEMENT
Yes. AGREEMENT
“Yup we agree. AGREEMENT
... (35 lines later)
A This one (93.04) could be right though. (9 second pause) CHALLENGE,
BACK TO WRONG ANSWER
... (27 lines later)
H It could be both. Could it be both? Or just one of them? (pause) TENTATIVE
ANSWER : ;
... (problem eventually solved by H)

IT>TIT>IT>I>

In contrast, Pair 1, who worked on contextualised problems, shared the task
relatively equally, and both gained in knowledge. The more advanced student, M,



was a girl, aged 12 and the less advanced, N, was a boy aged 11. They listened to
each other and finished each other's sentences. Both partners contributed, and both
corrected each other. Both partners were wrong on occasion and challenged by the
other, and both appeared to benefit from this challenge. In their discussion about
problem 2Ac, part of which is given below, their dialogue was balanced. Each
partner gave 7 answers; M gave 10 explanations and N gave 8; Each disagreed or
challenged their partner 5 times; and-M considered her partner’s view 2 times while
N did so 3 times. The more advanced partner initially treated the problem in a
formalised manner, lining up the decimal points and adding. The less advanced
student used his everyday knowledge to challenge her. She quickly acknowledged
the correctness of his response and rethought her answer. It will be seen later that
she challenged his answer of 6.05.9 because it did not fit the rules of formalisation,
despite the fact that it did make sense in an everyday context.

2Ac If you go on a trip and you buy 1 litre of petrol at 90.9c and a meal at

McDonald's at $4.95, how much will it cost? -

M Ninety five dollars about, something cents... four cents. WRONG ANSWER

N Or five dollars.. cus its the whole thing. DIFFERENT ANSWER

M Yeah | know, ninety five dollars and something cents Probably about ninety five
dollars and four cents. AGREEMENT (not listening to partner)

M Where’s the petrol? CHALLENGE

M That’s how it costs all together isn’t it? QUESTION

N Ninety five dollars?... for a McDonald's and petrol? CHALLENGE

M Yeah (laugh) oh. CONSIDERATION OF OTHER’S VIEW, AGREEMENT

N Five dollars, six dollars... six dollars point eight, no point, no six dollars five.. uh
six dollars five cents point nine. ANSWER

M Six dollars five cents point nine? CHALLENGE

N Yeah.

M Point nine? (Pause) six dollars and five cents point nine. CHALLENGE

N Yeah.

M That means six point five point nine. EXPLANATION

N Oh man nah... CONSIDERATION OF OTHER’S VIEW, AGREEMENT

These students solved the problem by changing 90.9 ¢ to 99¢ (M’s solution) because
they knew how to operate with that. They then added the numbers without the
decimal point, translating $4.95 to 495 cents (N’s solution). This enabled them to
get an answer that was in line with their goal which was a sensible estimate based on
context.

BEST COPY AvAILABLE
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Discussion.  All of the dialogues showed some of the characteristics of a
discussion in which school contexts and formalisms were uppermost in the peer
collaboration. However, it was the use of context, as in the second example, that
enabled the partners to learn.

The first dialogue presented depended entirely on formal use of numbers.
Explanations related to recalled classroom scripts, including the place whose value
is “oneths”. Extra zeros are added without an understanding of what this does to the
value of the numeral. The dialogue was unbalanced with the less knowledgeable
saying less and deferring to the authority of her more capable partner, whether Sr
not the mathematics made sense to her. Their goals were different. From the full
transcript it was clear that H’s goal was to recall or deduce the relevant knowledge
and A’s goal was to agree to an answer so that they could move to the next problem.
The second dialogue was marked by greater equality of contribution, with the lower
ranked peer offering the everyday knowledge ignored by the higher-ranked peer
who attempted to use the formalised knowledge valued in the classroom. The
higher-ranked peer accepted the value of the everyday knowledge of the lower-
ranked because those contexts also made sense to them. This everyday knowledge
acted as a shared goal. Their appropriate estimates of what the answer would be
helped them see the steps to that goal.

All of the discussions took place between a more capable and a less capable partner,
yet the dialogue of the first pair does not meet either Vygotsky’s or Piaget’s criteria
for learning from peers. The second pair would meet Piaget’s description of equals
with different perspectives who respected one another’s propositions and sought
consensus, while also meeting Vygotsky’s description of a more and less able peer
working toward known goals.

Problems carefully constructed from familiar contexts did enable students from a
poorer area to bring their knowledge into school to aid their learning of
mathematics. The problems did enable them to see that they had knowledge to offer
that was more valuable than the formalisms that they usually valued in school.
However, these contexts had to be selected with care. One of the most useful in this
study turned out to be students’ knowledge of a 1.5 litre bottle of soft drink and the
fact that it was roughly equivalent to six glasses. This group were also familiar
with exchange rates as many of the students from Pacific Countries had either
travelled or seen relatives send money overseas. These contexts might not be
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appropriate for other groups. The problems also needed to be developed to
challenge students” misconceptions. It was the everyday contexts that provided the
goals for students and encouraged them to check their answers, letting them see that,
even in decimals, answers can make sense.
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Design and Evaluation on Teaching Unit :
Focusing on the Process of Generalization

Hideki Iwasaki Takeshi Yamaguchi Kaori Tagashira
Hiroshima University Fukuoka Univ. of Education Hiroshima City Koi
Japan Japan Junior High School, Japan
Abstract

"Mathematization" is a terminology to extend the educational philosophy of
mathematical teaching and learning as an active and creative process. It is
Wittmann’s Teaching Units that has brought the idea of design science into the
didactical practice of mathematization. His Teaching Units, however, does not have a
diachronic design of how the lesson in classroom should be developed over time
although it contains the fundamental design such as objective, material, problem, and
background. On the other hand, the mathematization can be regarded as a typical
symbolization process in the sense of Peirce which is called semiosis, and in this
context the Dorfler’s generalization model, which starts from the activity and constructs
the generalization process, is quite thought— provoking.

Therefore, it is possible to design, practise and evaluate the Teaching Units of
Wittmann in the teaching—learning context based on the generalization model by
Dirfler.  This is the objective of this research and at the same time the result which
we could get. The methodology is to have employed a teaching experiment Star
Patterns’ based on the above theoretical framework and to prove its effectiveness
through the analysis of results in terms of Dirfler’s model.

1. Objective and Methodology
(1) Objective

Freudenthal, as a mathematics researcher, has a didactical belief as follows:"There is no
mathematics without mathematizing. --This means teaching or even learning mathematics as
mathematization. - This is what follows from the interpretation of mathematics as
activity."(1973,p.134)

He theoretically prepared a didactical foundation of mathematization as an Educational Task
and Phenomenology, but he has not presented a concrete example systematically together with a
clear framework and ideas on the didactical practice of mathematization. In that sense,
Wittmann has brought about an idea of design science into it, given the framework of Teaching
Units(hereafter cited as TU), and realized many examples of TU for mathematization(Muller,G.
and Wittmann,E. 1977).

The objective of this research in the following two points. The first point is to clarify the
theory and methodology of TU by Wittmann and to point out some problems involved in this
theory. The second one is to solve these problems, to put this TU into the classroom practices,
and to evaluate this practice through introducing the generalization model of Dérfler. Briefly



speaking the characteristics of this research is to complement TU by Wittmann with Dorfler’s
theory.

(2) Methodology

‘ We have analysed the classroom lesson mentioned below in section 3 as we always examine
whether the record can be a teaching experiment. But we are quite encouraged by the
enthusiastic discussion between two researchers in Working Group 25 "Didactics of Mathematics
as a Scientific Discipline” of ICME-8 in Seville Spain 1996. Hans-Georg Steiner stressed that
the theoretical framework should be given priority over the ’fact’. On the other hand, Michele
Pellerry who is a Italian psychologist emphasized his stance that the framework by itself cannot
come first and mathematics education should be a scientific discipline built on facts, experimerits
and inductivism.

Which standpoint and viewpoint are right could not be determined by experiment like as the
case of the theory. We, therefore, would like to withhold ourselves from decision whether our
record on classroom lessons is a teaching experiment. But we must say that we planed them
deliberately, and recorded them by video carefully, and investigated them by video together with
the concerned teacher and other researchers many times because the classroom lesson cannot be
done again.

Steiner asserted that the situation could not become the phenomenon without the theoretical
framework. In other words, the ’fact’ of Pellerry can be defined clearly only under the
theoretical perspective. Even the case study done by constructivists has the same tone as that of
Steiner in our understanding. We proudly think that we could change the situation into the
didactical phenomenon of mathematics through our framework.

We are always wondering whether the well controlled teaching experiment is consistent
with being educational in didactical practice. The strict conditions on science remind of the
European proverb. Don’t we throw away the baby with bathwater. Our conclusion in this case
study can be summed up into a viewpoint on the design of classroom lesson and a theoretical
framework for the diachronic assessment on it. But we believe that teachers can reach to the
similar considerations on our teaching practice if they understand and are interested in the
viewpoint and the framework presented here.

2. Teaching Units
(1) Wittmann’s Didactical Philosophy before Introduction of TU and its Critical Consideration
Wittmann conveyed his views towards mathematics and school mathematics to support his
mathematics education in the process of identifying a core research in mathematics education.
"Mathematics teaching is doing mathematics with students in order to cultivate their
understanding of reality."(1984,p.29)
"Mathematics educators must be aware that school mathematics cannot be derived from
specialized mathematics by a "transposition didactique du savior savant au savior enseigné”
(cf, Freudenthal 1986). Instead, they must see school mathematics as an extension of
pre-mathematical human capabilities which develop within the broader societal context
provided by MATHEMATICS."(1995, p.359)
These quotations reflect his view of the internal mathematics which comes from human
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autonomic activities. It doesn’t seem to him that mathematics is an external system of objective
knowledge for transmission. At the same time, it is pointed out that internal mathematics
emerges through the heteronomic framework of social interaction. Thus the important didactical
issue for Wittmann is how to balance autonomic and heteronomic based on what criterion.

It is nonsense to seek a solution within the existing system of knowledge for the problem of
creation, cognition and transmission of knowledge. The solution, therefore, should be sought in
MATHEMATICS as a situation with its implication. His basic idea is that the role of didactics
of mathematics is how to translate appropriately MATHEMATICS as a situation into classroom
teaching, and we believe that his proposal is TU itself.

However, as mentioned in (2), the design of TU has objective , material, problem and
background, but doesn’t contain the design for the classroom practice as a diachronic process of
development. This is why the didactical significance has not been described enough for the
teaching-learning process of TU. In other words, TU, in nature, doesn’t have an analytical
system for how the internal mathematics of children resonates with MATHEMATICS as a
situation in the social context and how they are shared among them as a knowledge.

We regard language and sign as a symbol of knowledge creation and also as a necessary
device for thought and transmission of ideas. That is to say both autonomic cognitive process
and the heteronomic social interaction in mathematics teaching and learning are regarded as a
process of symbolization. In our opinion, the mechanism of cognitive development in
mathematics can be clarified in terms of Dérfler’s "symbols as objects”. Therefore, our
conclusion is that the diachronic development of any TU into classroom can be to some extent
designed and evaluated according to Dérfler’s generalization model.

(2) The Reinforcement of Wittmann’s TU by Dérfler’s Generalization Model

Many TUs are always designed in terms of four elements(Wittmann,1984, pp.30-32; 1995,
pp.365-366): Objectives of TU, Materials of TU, mathematical Problems arising from the context
of TU, and mathematical Background of TU. They could compose a TU as if they were four
pillars for the building of TU. Both the beginning and end of TU could be clarified by taking
them into consideration, but they cannot compose a continuous teaching process as the
diachronic phenomenon. In other words, these are not to describe and evaluate in detail the
teaching practice based upon TU. Therefore, it is hard to think that the theoretical framework for
placement of TU into the process of teaching has been prepared beforehand.

As mentioned in (1), the conceptualization of knowledge via symbolization is the essence of
the teaching-learning process in mathematics education. Of course, this conceptualization should
involve the active participation by children: Therefore, it is difficult to analyze diachronically
mathematics learning unless we assume the symbolization process of internal relations embedded
in the activity and the cognitive process which supports this symbolization.

It is Dorfler’s generalization model(1991) as shown in Fig. 1, which regards generalization
as the essence of mathematical conceptualization and describes the generalization process
starting from activity from the perspective of symbolization. The pre-stage of “symbols as
objects" is called "constructive abstraction", the objective and method of activity are reflected
upon first and the properties of elements of activities and the relation of elements are extracted
as a result. Furthermore, the applicability of these properties and relation is considered,
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viewpoint. This means the analytical device by means of students’ discourse and description can
be found here for the cognitive process which propels generalization in "symbols as objects" as a
milestone. ‘However the cognitive system to analyze it should be prepared in advance and
*expanded meta-cognition’ (Iwasaki and Yamaguchi, 1997) is available for this purpose. Hence
the Dorfler’s generalization model supplemented by ’expanded meta-cognition’ reinforces the
idea of TU, i.e. it enables us to design, practise, and evaluate the teaching process of TU based
on the above four elements.

3. Design and Practice of TU "Star Patterns: What can you get by connecting points? "
(1) Design of this TU

The objective of TU "Star Patterns"(Bennett,1978; Hirsch,1980) is to find a rule and
generalize it between the figures formed by connecting points equally spaced along the
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circumference, especially some stars, and the way those points are connected. The basic design
of this TU is as shown below, and the main purpose of this teaching experiment is to practise
and evaluate this TU based upon the Dérfler’s generalization model.

The Design of TU " Star Patterns"
‘Objective: to extract some properties of stars and to generalize the properties through
symbolization

Material : Star patterns

Problem: @ What figure is formed by connecting two, three or four equally spaced points
along the circumference in one stroke? The figure formed in one stroke means to
be composed of only one closed line.

® Connect five equally spaced points along the circumference in one stroke and name
the formed figures.

OO

@ Take the star figure among formed figures in the above into consideration. What
is the way of connection when this figure is formed?
@ Draw other star figures by connecting six, seven or more points equally spaced
along the circumference in one stroke.
61 62 63 64

slolls
66 & &

(The rule is to connect points by line and in one stroke. Start with the marked point
and connect points every d points. Demde how to name the figure to avoid
confusion.)
® When can the star figure be formed or not formed? And what is the reason for
this? .
Background: When connecting n equally spaced points on a circle every d points in one
stroke, the following relation holds:

The regular star polygon of type n-d is defined for n equally spaced points on a
circle if and only if the formed figure satisfies the following three conditions; @) to
connect all n points, @ to connect them every d points, and @ to connect them in
one stroke. Therefore, following this definition, the regular star polygon includes
not only n-sided nonsimple polygons like 7-2, 7-3 and 7-4 but also regular convex
n-gon like as 6:1,6'5 and 7-1 in the regular star polygons.

If n and d are relatively prime, it is possible to draw a regular star polygon by -
connecting all points along circumference in one stroke.
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If n is a multiple of d, then the formed figure is the regular convex n/d-gon.

If G.C.D. of n and d is g, which is not equal to one , then the formed figure is the
same as star polygon formed by connecting n/g equally spaced points every d/g
points.

The correspondence between the teaching experiment with this TU and Dorfler’s
generalization model is as follows. In the problems @ and @ the students are supposed to
connect in one stroke some equally spaced points along the circumference. In the problem ®,
focusing on the case of star figure among the figures formed by connecting five equally
distanced points, the students are supposed to describe determinant activity, ’connecting every
two points’. In the next problem @, the students are required to examine whether the property
found in ® holds with other star figures. This is "extensional generalization" in the first stage.
In the problem ®, the establishment of a mathematical relation as the objective of this TU is
attained and it is sought to share that relation among the students in the classroom.

For example, in problem @, the students may symbolize the figure formed by connecting
six equally spaced points every two points as 62, but it becomes practically as an object of
thought afterwards. Further, it is important to change it to variable by means of such
representation of letters as 'n equally spaced’ and ’every d points’. In short, this is "symbols as
objects” in the Fig.1. Therefore in the problems @ and ®, the critical point for evaluation of
“symbols as objects" is the transient stage from number to letter in the usage of symbol. This is
why it becomes possible to grasp from the student’s discourse and their used symbol the
progressive situation in the generalization stage.

(2) Classroom Teaching and its Evaluation

We conducted a teaching experiment of three lessons according to the teaching desngn with
grade 8 students in Koi Junior High School, Hiroshima. The class was divided into six groups
of 6 to 7 members so that they felt it easy to make a discussion.

The students, after understanding the problem context and the method of connecting points
according to the rule, are enthusiastically engaged in this activity. Especially they had fun with
connecting the points equally spaced along the circumference and made steady progress in that .
activity through confirmation of figures among the members of group. Continuing with this
activity, they have some identical figures formed and are induced naturally to explore the relation
among them.

The relation found by the students starts with simply ’the same as’ at the beginning and
they proceed to the analysis of properties for symbols, that is a set of numbers in which the
figures are identical. The relations to find are such as "A segment is formed when n is just twice
d.", "A regular convex n-gon is formed when n is divisible by d.", "The figure formed is the
same as the figure for the set of numbers which are n divided by G.C.D. and d by G.CD. if
GC.D. of n and d is not 1.", and "A regular star polygon is formed when n and d are
irreducible." The predicates of their statements and discourse gradually get precise and correct
mathematically. We can observe clearly that the discovery by an individual student stimulates
the discussion from simple figure to more complicated one and from reducible numbers to
irreducible ones.

O
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The relations which students have written on work sheets are classified from the viewpoint
of symbols as follows:
a) The same figure can be obtained for 6-2, 64, and 9-3.
b) The same figure can be obtained for 62 and 9-3. In both cases the quotient is 3 and
the equilateral triangle is formed.
c) An equilateral triangle is formed when the quotient is 3 such as 6:2 and 9-3.
d) A regular convex n-gon is formed with [J vertexes for [J 1.
¢) A regular star polygon is formed when x is not divisible by y in xy.

The description a) is about the congruent figures. The symbols, 62, 64, and 9-3, are names
given to cach figure. The descriptions from b) to e) are relations to be found when figures and
numbers are interlinked and pairs of numbers such as 6:2 and 93 are an object of consideration
here. However, while in b) only the specific figure drawn on paper is dealt with, in c) 6-2 and
9-3 are mere examples and it is shown that this relation holds with other pairs of numbers. This
is characterized in the expression, ’such as’. The expression about the relation expands its
denotation through acquisition of generality but "symbols as objects" is not attained yet. The
description d) may be a transient stage from the specific number to the letter as a variable. In )
the total number of equally spaced points along the circumference and the distance of connected
points are made variables in terms of x and y. This shows "symbols as objects" can be
achieved.

The description and discourse by students in a) to ¢) can be regarded as external expression
of internal thought. The expressidns a) to €) can be analyzed from the perspective of cognitive
theory as follows. The expression a) can be obtained by focusing on the visual similarities
between figures and, on the other hand, the expressions from b) to €) can be obtained by
abstraction of the relation between drawn figures and their numbers. And unless due attention is
paid to such a view, the transition from the stage a) to the other stage cannot be fulfilled.
Meanwhile, the gap between b) and c) depends upon whether the consideration can be directed
towards extensive generalization which is implied by the word "such as" and the sentence form
“if ~, then". The consideration in the case c) can be called meta-cognitive because it reflects the
applicability of the hypothetical schema concerning drawn star polygons, and it determines the
difference between the descriptions b) and ¢) whether the invariants are considered. In any case,
the considerations of b) and c) are confined to the inductive inference based upon the specific
figures in the problems, and the relation obtained from observation of those figures is
hypothetically formulated as personal schema.

Henceforth the descriptions in b) and c) are not necessary to explain or persuade the others,
because of its visual self-evidence, but they are quite defenseless to the question "Why?’ out of
other students or teacher. The deductive inference is necessary to surmount the limitation of
perceptive explanation and it can be achieved together with symbolization and variablization of
the relation.  As being considered in the above, the descriptions in d) and e) can be regarded the
transient stage towards symbolization of relation or the stage in which that symbolization is
attained, but the objective of the consideration behind them of course differs from the one of the

. previous stage. This is to say the objective of consideration here is to verify deductively the

personal schema, i.e. a hypothetical description of various relations underlying star polygons. The
the descriptions in d) and e) could not be reached if it were not for meta-cognition which
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regarded hypothetical schema as an object of considerations and conceptualize it. And the source
for such meta-cognitive consideration can be sought in the social interaction in the classroom. It
is TU based on MATHEMATICS that provides the appropriate situation for the social
interaction.

While evaluating the activity by student, the value of this TU as a teaching material should
be evaluated simultaneously. In fact star polygons have more mathematical properties than
listed here. It is possible for example to extend the definition of regular convex n-gon in terms
of regular star polygon with n/d vertexes, and furthermore to deduce a group theory from the
point of symmetry. In this sense this is a teaching material for TU, which has a lot of
potentiality and appropriate material for experiencing the process of mathematization.

4. Summary and Future Issues

Wittmann declares that the important results of research in mathematics education are sets
of carefully designed and empirically studied TU that are based on fundamental theoretical
principles.(1995,p.365) This declaration induced our research to investigate his thought and
design-principles on TU and to clarify the point at issue on the practice of TU in the classroom.
We proposed the new design-principles where Dérfler’s generalization model was added in. The
teaching material "Star Pattern" was designed, practiced, and evaluated in terms of the new
principles. We showed its effectiveness in this report.

The accumulation of research on a large number of special groups could make the progress
of group theory itself, said Wittmann. He indicates the research of TU may have the same story
as_the group theory in his paper of "Mathematics Education as a *Design Science’ :"In a similar
way, the detailed empirical study of a large number of substantial TU could prove equally
helpful for mathematics education."(1995,p.365) The new principles reinforced by Darfler’s
generalization model could be effective not only to the description but also as the normative
model of the teaching process in TU. In other word, TU are the fruitful target for

" meta-cognitive research. On the contrary, TU can gain educational significance through such
researches.
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THE TEACHING-RESEARCH DIALECTIC
IN A MATHEMATICS COURSE IN PAKISTAN

Barbara Jaworski and Elena Nardi

University of Oxford
Abstract

This study is about teachers learning mathematics in a six week course in Pakistan. The
course was research based and used a unified approach to pedagogy and content. The paper
Jocuses on the learning of quadratic functions through a multi-representational approach
linking algebraic and graphical forms. It draws on significant episodes in the learning
process, using as evidence classroom observations, interviews with teachers, and teachers'
and researchers' reflections. It points to the development of metacognitive awareness of the
teachers in both mathematics and pedagogy. An aim of the research was to feed experience
Jrom the course into the design of materials for teachers at a distance.

The programme

Teachers in a Masters’ programme (MEd) in Karachi, Pakistan, were asked to
choose a subject discipline in which to enhance their ‘content’ knowledge. Six
of them chose to study mathematics. They came with a range of experiences.
The two with most mathematics were lower-secondary teachers; two taught
some mathematics at primary level; the other two did not teach mathematics. In
their own schooling, all had followed the standard mathematics curriculum
which was text-book based. Teachers generally follow the text book closely
and students are expected to follow the examples precisely as given. The
teachers acknowledged that they had experienced largely rote learning, and that
their own teaching had encouraged this too. However, in their MEd
programme, which had overall objectives of cooperative learning and (what
they call) ‘friendly argumentation’, they had participated in a module in
mathematics education which had emphasised mathematical processes in
problem-solving and investigational work with a strong metacognitive element.
Because they had enjoyed and been inspired by this module they chose to study
mathematics further.

This study involved a six-week course in mathematics which was tailored to fit
the students’ needs. The course was designed to address common elements in
the mornings, and to encourage students’ individually chosen study, with tutor
support, in the afternoons. As well as the 6 MEd students, 5 other teachers, all
more experienced mathematicians, chose to join the course on the understanding
that it would be focused principally for the MEd students. They wanted the
opportunity to study mathematics for a concentrated period with experienced
tutors.

The course tutors came from Oxford, which has a partnership agreement with
the Aga Khan University in Karachi and contributes to selected programmes in
a collaborative arrangement. This would be the first time that this course had
been offered. It presented an exciting opportunity for an innovative programme

87 3-80



based on the enhancement of the teachers’ conceptual understanding of
mathematics in chosen areas. It was designed to weave pedagogy and
mathematics, so that students could reflect on their mathematical learning and
consider implications for their own teaching. Students were required to keep a
log of their mathematical thinking and write a journal of their reflections
generally.

The research
The tutors decided to conduct research alongside the teaching for a number of
purposes:

1. To study the teachers’ responses to the programme and gain insights into
the value of the course - in essence a course evaluation alongside its
teaching;

2. To gain insights into the students’ learning and to increase our wider
understanding of teaching in certain areas of mathematics;

3. To gain insights into the learning of mathematics in Pakistan which
would feed into the design of materials to be used in developing the
mathematical knowledge of teachers at a distance in Pakistan and beyond.

The research was conducted over the six weeks, but two of those weeks were
given a concentrated attention. During this time, two tutor-researchers worked
with the 11 participants in the group. Mainly, one was ‘the teacher’ and the
other was both a participant observer and interviewer. The teacher managed the
sessions and worked with the students on mathematics, either as a whole group
or as small groups and individuals. The observer recorded events during whole
group sessions, and interviewed participants during self-study sessions.

The methodology was, largely, to identify incidents significant in the
mathematical learning of the students and to gain as much information as
possible regarding these incidents. Incidents were identified in a number of
ways: for example, by consensus within the group; by one or both researchers
in discussion about what had occurred; or by one or more participants in
interview or conversation. Data consisted of hand-written notes, audio
recordings which were then transcribed, excerpts from students’ journals which
they shared voluntarily with researchers, students’ more formal writings — either
as required for assessment purposes, or written for other reasons — and
researchers’ reflections. Analysis, which is still taking place, involves a close
scrutiny of the data with organisation and categorisation of emerging insights,
and triangulation where possible between different sources of data.

The mathematical foci during the two weeks of concentrated study were
Junctions and geometry. This paper focuses only on functions.

Theoretical perspectives »

The course planners were aware that the teachers involved had a very
mechanistic experience of algebra which was replicated in their teaching. The
course was designed to enable teachers to address algebraic roots through a
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consideration of functions, aiming for relational understandings based on multi-
representational approaches. The ultimate aim was that this would lead to
teachers using more conceptual approaches to children’s learning of algebra in
their own classrooms.

Dreyfus and Vinner (1989), in their application of the concept-image — concept
-definition schema on the learning of functions, suggest that concept images are
not simply formed by definitions but by experiences. This explains the diversity
of concept images associated with the concept of function: a correspondence
between two variables; a rule of correspondence; a manipulation or operation; a
formula/algebraic term/equation/graph. Additional diversity and refinement of
these images is suggested by the students’ images when given graphs of
functions (see also Barnes, 1988; Markovits et al 1986; Vinner, 1983).

A major source of learners’ difficulties with functions is their lack of flexibility
in switching representations or working on the relationships between them.
Dreyfus and Eisenberg (1983) demonstrated evidence of such difficulties. In
sum, students tend to view algebraic representations and graphical
representations as being independent. Their major difficulty seems to be to shift
between different representations of functions and to establish connections
between static (object) and dynamic (process) aspects of its nature (Sfard,
1991).

Remarkably similar tendencies are evident in the behaviour of prospective
mathematics teachers (Even, 1993): in her study, the function is seen as always
defined by a formula or a continuous, and ‘reasonable’ graph but scant reference
is made to links between the two. And, as Even claims, mathematics teachers
with fragmentary and disconnected concept images of functions are not likely to
engage in flexible multi-representational teaching.

The following evidence is emerging from the project, some of which will be
exemplified below:

1. the teachers' learning of functions as a gradual journey towards the ability
to switch between different modes of representation: equation, formula
and graph. Their transition from a mechanistic manipulation of formulae
to an understanding of the algebraic and graphical meanings of these
manipulations;

2. a unified approach in terms of pedagogy and content, which took an
elemental learner-inclusive focus to mathematical concepts, reaped rich
rewards in terms of teachers’ responses as in (1) and subsequent
approaches to their own learning in other areas of mathematics;

3. ametacognitive awareness, deriving to some extent from the research-
related nature of the course, contributed to teachers’ growth of confidence
in their ability to make mathematical sense, conduct their own
mathematical study, and work in more conceptual ways with their own
students.
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We offer a flavour of the above evidence with reference to a particular
significant event. Its significance was of group consensus, being recognised at
the time it occurred and later in individual interviews and journal records.

An exemplary case: significance in multiplying a quadratic equation by -1

We had worked together on finding where graphs of quadratic functions ‘cut’
the axes. It had been established that this occurs when either x, or the function
is zero. This gave a purpose to addressing solutions of quadratic equations, and
provided a context for linking algebraic and graphical representations. Several
of the teachers were very fluent in applying solution methods of factorisation,
completing the square and quadratic formula. They acknowledged that these
were based on memorisation, and they could say little about how the methods
worked or about their origin. At a particular point in the whole group
discussion, the task was to solve the equation -2x2+ 3% + 9 = 0 by the most
efficient method possible. We continue with the words of one of the less
experienced teachers, Sherwin, as written in his journal.

“I intervened and requested a volunteer (o solve the function using the quadratic
formula as the negative coefficient of x2 was leaving me somewhat sceptical as (o its
solution. The tutor acceded to my request and a volunteer endeavoured to solve the
equation during which process, one of the steps he did was to multiply the same by -1.
At the end of the solution of -2X%+ 3x + 9 = 0, a member of our Math group
{Sikunder) asked, “Will multiplying the equation by -1 change its function?”,
following which a discussion ensued as no satisfactory answer was then available.
Finally the tutor intervened and using the blackboard as a teaching resource, drew
parabolas of the original equation and the amended one. For me that was the precise
moment when I grasped what was being said.”

The teacher continues with a “reflective analysis” on the event he had described.
This analysis includes the following excerpts:

"] just took it for granted that this operation would have no effect on the outcome (i.e.
behaviour of the graph) and consequently the function would remain the same.

The reason for my thinking in this manner was that a mathematical process
involuntarily triggered off in my mind with reference to balancing an equation.

The moment when [the tutor] pictorially depicted the functions of the two equations
on the same graph, I realised “Goodness, it’s the exact opposite image of the original
parabola.”

I conceptualised what in mathematical language is described as a reflection of the
original function f(x) = 2x%2+3x+9 in the x-axis."

He ends with consideration of “factors that led to my understanding” These
include: “[The tutor’s] flexibility in that she granted my request and
compromised on the time, but not on an individual learner’s understanding; a
group member’s question, “will multiplying by -1 ... ?”, thus ensuring thinking
aloud and subsequent discussion between the Math group and the tutors; the
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tutor’s questions “what do you notice about these two graphs?”; the sketches of
these two functions made by [the tutor] on the board and ultimately my actually
doing the same thing on my calculator.”

Later in the same session, we had started to consider another function. We use
the words from one of the researchers in describing what occurred:

“A highly significant moment (for both researchers and teachers, it emerged) arose
later in the session. Discussion had moved on to the nature of the roots of an equation
and its relationship to the graph of the function. The cquation X% -2x +2=0was
shown to have no real roots. The graph was drawn of the function f(x) = X2-2x+2,
showing an upright parabola not crossing the x-axis, i.e. with its minimum value
above the axis. The tutor asked for an example of a function with 2 maximum value
below the axis. As quick as a flash, one of the less experienced teachers, Sherwin,
suggested just altering the signs of f(x), i.e. giving -xZ +2x = 2. The tutor, and
several other teachers gasped at this response. It seemed physically to portray this
teachers’ meaningful perception of the theory behind the -1 event.

Later, [ interviewed Sherwin and two other teachers about the significant instances for
them of the class session, and its focus. All spoke of the -1 event and Shenwin’s later
response. Sikunder, who teaches mathematics at A’level, indicated that although he
‘knew’ in theory the relationship between roots and coefficients of an equation and
their graphical representation, he had nevertheless for the first time realised the
significance of the function and its inverse crossing the x-axis at the same two points.
He felt that Sherwin had made a conceptual leap in translating this position to one .
where the graph did not cross the x-axis, seeing the generality of the inversion of the
function through multiplication by -1.”

As part of her reflection on this event, the researcher wrote:

“My initial impression was that Sherwin’s suggestion was triggered by his realising
how the cocfficients g, b and c of the quadratic ax2+ bx +c relate to its graphical
representation (in this case a>0 implies that the parabola is ‘upward’ and a<0 implies
itis ‘downwards’). This impression was grounded on the evidence of the class
discussion of the roles of a, b and ¢ while solving equations [relating to three other
functions discussed carlier in the session).

“My impression was altered during the interviews. Sikunder highlighted his
perception of Sherwin’s thinking as follows: Sherwin may have known the role that
the coefficient a plays in the graphical representation of a quadratic function.
However, in this casc the discussion on multiplying by -1 to obtain a quadratic with
the same roots but a reflection of the original one led him to think of a way of
obtaining a quadratic with no roots and a maximum from a quadratic with no roots
and a minimum. In other words the picture below on the left led him to think of the
picture in the right

O
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“Sherwin in his interview confirmed Sikunder’s account. Significantly in the
interviews a number of the tcachers mention this incident as a poignant lcarning
moment that had occurred during that moming’s session.”

Discussion

We have presented this episode in the above format to emphasise the
methodology of interweaving and encouraging teachers’ metacognitive
involvement in mathematics and pedagogy, and the reflections of all concerned
in providing evidence to support significance in the research. We shall discuss
issues arising from the episode and relate them to those emerging more broadly
as analysis continues.

Firstly, Sherwin’s intervention and Sikunder’s question indicate the interactive
nature of whole group sessions. All participants were encouraged to contribute,
ask questions and suggest ways forward. The “volunteer” who multiplied by -1
to solve the equation -2xZ + 3x + 9 = 0 was one of the less experienced
mathematicians in the group. It became accepted that feeling uncertain should
not be a barrier to contribution; and that mistakes were a valuable stage in
conceptual development. There are many examples in the data which show that
this was the case.

Given the above approach, tutor input was just one part of the wider discussion.
However, the greater knowledge and experience of the tutor brought with it a
responsibility. Being aware of the nature of rote learning in most schools, and
the Pakistani respect for and deference to those in positions of authority, the
tutor had to exercise with caution a temptation to launch into explanations.
Discussions between the researchers after sessions dwelt frequently on ways in
which tutor input seemed to encourage or inhibit mathematical development in
the group. In this case, for Sherwin and others, the input seemed to be felicitous
in promoting useful images. However, there were other cases where it was
judged less favourably.

Mathematically, there was at least one important insight from this episode.
Sherwin expected that multiplication by -1 would not change the function,
relating this to what he knew about “balancing an equation”. The language used
was occasionally problematic. For example, in the first line quoted from
Sherwin, he says “ ... volunteer to solve the function using the quadratic
formula ... ”. Did he mean here “the function”, or was this a language slip? If
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he meant it, did this imply that he thought it possible to ‘solve a function’? If
so, what did this mean, for him? Was he confused by the difference between an
equation and a function? Is this a source of wider confusion for students? Later
he seems to see the difference, when he comments on the “reflection’ of the
original function in the x-axis, and moreover when he makes the conceptual leap
to a different function. Has the conceptual development here allowed him to
become clearer about the relationship between functions and equations, as well
as between the algebraic representation and the graphical one?

For more experienced mathematicians this episode also had mathematical
significance. Sikunder, an A’level teacher, acknowledged his own developing
concept. Others indicated similar experiences. Participants of widely varying
experience worked together for mutual benefit, the more experienced
recognising new images and perspectives emerging from their work. Again, we
have considerable evidence from observations, interviews and participants’
writing.

Sherwin’s “reflective analysis” and “factors that led to my understanding”
exemplify the metacognitive element of teachers’ thinking. This metacognition
was a result not only of this course per se, but also of the ethos of the MEd
course as a whole, where students were overtly required to reflect and to write
their reflections. Whatever the basis, however, the quality of this reflection is
evident in Sherwin’s analysis. Such quality extended to all participants. We
were overwhelmingly impressed by the quality of insights both mathematical
and pedagogical which emerged during the research.

The research was an important element in the developments which took place.
After early reservations were overcome, participants welcomed individual
interviews as opportunities to talk to the tutors about their developing thinking.
These interviews, as other researchers have observed (e.g. Steffe, 1983), were a
formative element in the teaching of the course. Teachers gained confidence
from their participation in a research project. They offered, willingly, their
written reflections for the tutors to read and provide comments. They also

exchanged reflections and wrote comments for each other, a normal routine in
the MEd course.

One final remark at this stage: an objective of the research was to gain insights
into the learning of mathematics in Pakistan which would feed into the design of
materials to be used in developing the mathematical knowledge of teachers at a
distance. Such insights are many and varied. However, an issue which arises
concerns a tension between the open, participatory nature of this course, and the
need to provide some measure of closure in materials for distance learning. For
example, given the importance of conceptual understanding arising from the -1
episode, materials could valuably include some work around this concept. But,
how should it be introduced? What should students be asked to do? How mi ght
comments be provided? Can such a ‘AHA’ moment be anticipated/replicated?
When AHA moments occur, at a distance, where is the experienced tutor to
offer just the level of input which can be fruitful? How is a metacognitive

S
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element developed at a distance? We are grappling with these issues currently
as we start to produce materials alongside the other participants.
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CHARACTERISING MATHEMATICS TEACHING
USING THE TEACHING TRIAD

Barbara Jaworski Despina Potari

University of Oxford, U.K. University of Patras, GR.

This paper reports ongoing research which attempts to make sense of
the complexity of mathematics teaching at secondary school level. The
research was conducted in partnership between two teachers and two
researchers over one school term in two U.K. schools. A theoretical
construct, the Teaching Triad, was used both as an analytical device (by
the.researchers) and as a reflective agent for teaching development (by
the teachers). The focus here is on the methodology of the project,
exemplified through substantive issues which emerged.

Background

Our starting points in exploring classroom mathematics teaching are:

1. that the complexity of teaching-learning situations is such that any attempt to
provide holistic descriptions is rapidly shown to be hollow (Bauersfeld, 1988);

2. that the essence of teaching/learning processes lies in classroom interactions,
the analysis of which provides the key to understanding the complexity
acknowledged in (1);

3. that teachers work from a position of sincerity and professionalism in seeking
for students' mathematical development.

The research mainly fits Wagner's (1997) second category of researcher-
practitioner cooperation, "clinical partnership”, in which the researchers are the
main agents of enquiry and the practitioners those whose work is under scrutiny.
However, in this research teachers are also consultants in the analytical process, and
their perceptions are central to research analyses. The basis of our methodology is
the close scrutiny of classroom lessons and teachers' thinking motivating those
lessons. This involves a microanalysis of classroom interactions, and a related
“macroanalysis drawing on the thinking and reflections of participants including
students, teachers and researchers. The research takes place as part of an evolving
tradition which recognises the classroom as a social setting and analyses teacher-
student interactions as central to the constitution of this setting (e.g. Cobb, Wood &
Yackel, 1992; Steinbring, 1993; Jaworski, 1991; Simon, 1995; Voigt 1996).

The Teaching Triad

The Teaching Triad emerged from an ethnographic study of investigative
mathematics teaching by one of the authors (Jaworski, 1991). It describes or
characterises the feaching in a classroom, attempting to provide a framework to
capture the essential elements of the complexity involved. It encompasses three
domains: the management of learning (ML); sensitivity to students (SS) and
mathematical challenge (MC).
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of Learning

Sensitivity ,  Mathematical
to Students’ 7 Challenge

Briefly, ML describes the teacher's role in the constitution of the classroom
learning environment by the teacher and students. Thus it includes the classroom
groupings; planning of tasks and activity; setting of norms and so on. SS describes
the teacher's knowledge of students and attention to their needs; the ways in which
the teacher interacts with individuals and guides group interactions. MC describes
the challenges offered to students to engender mathematical thinking and activity.
This includes tasks set, questions posed and emphasis on metacognitive processing.
These domains are closely interlinked and interdependent, although their
dependence can be seen in a variety of ways, which is one object of study in the
current research.

The current research

During an earlier research project, the two teachers had expressed, independently,
an interest in the teaching triad as a useful device in helping them to reflect on and
improve their mathematics teaching (See, for example, Jaworski & Edwards,
1997). Although it had emerged from the context of investigative teaching, the
teaching triad was now to be tested against teaching which might or might not be
described as investigative. Thus it was hoped both to use the triad to gain insights
into the observed teaching, and also to test out its applicability to teaching more
broadly.

The two teachers designed and taught lessons to a number of classes of students and
reflected on practices and outcomes. The chosen classes encompassed a range of
ages and abilities in Years 7 to 12 (ages 11 to 17). Lessons were observed by one
or both researchers who recorded interactions in classroom notes and audio or
video recordings. Teachers and researchers talked at length, about the lessons and
issues arising from them, both in school and as a foursome out of school.
Objectives of the participants were complementary, but not the same. For the
teachers, a major objective was to gain insights into their own practices in order to
develop or improve teaching. Researchers sought the nature of the practices
observed, issues arising and theoretical conceptualisations of the teaching.
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It is important to recognise, in this research, that lessons do not follow a set format
and there are no standard forms of interaction. While there are some patterns in
approaches used and interactions observed, there are nevertheless many different
styles of lessons depending on the particular objectives on which a lesson is based.
Thus, any episodes quoted as examples should not be seen as generic of the teaching
as a whole. Rather they will be used to provide insights into practices, issues and
research analyses. However, we take seriously the words of Cooney, who writes

Butif we are 1o move beyond collecting interesting stories, theoretical perspectives need to be
developed that allow us 1o see how those stories begin 1o tell a larger story. That is we should be
interested in how local theories about teachers can contribute 1o a more general theory about
teacher education. (Cooney, 1994, p. 627)

Ultimately we are interested in how our approach, using the teaching triad, can
provide a means for contributing to a more general theory of describing and
interpreting teaching practice, and ultimately to indications for teacher education.
In this spirit we offer, below, analysis of a lesson which will exemplify our
approach, and indicate how this approach leads to theory generation. First,
however, we address, briefly, areas of research to which this study is related.

A number of researchers have investigated mathematics teaching by considering its
effect on students' cognitive development. Moreover, they have examined the
development of the teaching when the emphasis is on students' learning (See for
example, Wood, Cobb, Yackel & Dillon, 1993; Steffe & Wiegel, 1992). Steinbring
(1997) investigated teaching by considering the development of mathematical
meaning through an interplay between social constraints of the communicative
process and the epistemological structure of the mathematical knowledge. The
studies of Cobb, Yackel & Wood ( 1989) and a number of studies reported by
McLeod (1994) (the work of Williams and his colleagues e. g.. Williams & Baxter,
1993) analyse the relationships among discourse, learning, and affect in
mathematics classrooms. Other studies consider the role of the wider social context
on introducing innovations in mathematics teaching (see for example Dillon, 1993).
These examples highlight different focuses in related research on mathematics
teaching. Hoyles (1988) emphasises the need to develop tools of analysis of the
teaching/learning situation so that to cope with the complexity without "focusing
solely on cognitive aspects, on attitude of the teacher, on classroom practices, and
so forth". By using the theoretical construct of the teaching triad, we aim to address
this complexity.

Exemplifying the analytical process: Lesson: Packing Cubes
Episode 1 - Lesson's opening

Teacher A's class was divided into groups of 4, 5 or 6 students. She gave each
group sheets of squared paper, some card, and a sheet describing a problem.
Multilink cubes were also available for use. The problem was to-design a box to
contain 48 cubes, each of side 2 cm, using a minimum amount of card. Each group
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had to work on this task and provide a group solution. The lesson opened with an
interactive whole class session in which the task was clarified. She invited someone
to come to the board and draw a 2cm cube. Michael accepted the invitation and
drew a 2cm square. Some students said that it was a square (i.e. not a cube). The
teacher acknowledged it as "a cube facing the front”. Another student came
forward and drew a cube. The teacher asked him "Can you write your dimensions
as Michael has done?"

The teacher then clarified the problem: "You need to make a box to fit 48 of those
cubes. The squared paper is to try out some designs. Itis a group project.
Everyone needs to be busy." She paused, waiting for silence in the room. "The
company will give a prize to the one who has used the least card. We want to find
the best shape and size of box".

In our analysis, it was not difficult to fit the triad to this opening. In the category
of ML, we recognised the teacher's organisation of the class into groups (a regular
feature of her lessons); her planning and organisation of the task; her management
of the whole class situation in which she introduced the task; and her responses to
the students who participated. All of these are part of the teacher's organisation of
the learning environment, her developing of social skills within the classroom
setting, and her creation of opportunity to engage in mathematics.

In the category of SS, we placed her mode of introduction of the task, and her
particular responses to students. She wanted all students to be able to make a start
on the task, hence she offered a practical context, resources, and clarification of the
problem. She engaged students in her introduction and was careful to value, and
encourage others to value, their contributions.

As well as valuing Michael's contribution, her words "a cube facing the front"
acknowledged another perspective of what students saw as a square. Thus she
opened up mathematical challenge (MC), initially manifested in the problem itself,
and enhanced through her contextual emphasis on optimisation in the box.

Episode 2 - Interacting with a group of students

We focus on a subsequent interaction between the teacher and two boys, Tom and
Stewart. The boys had two different organisations of the 48 cubes: Tom with 48
cubes in a line; Stewart with a 2x4x6 (4x8x12cm3) cuboid. They had each drawn
nets of their solids to enable them to calculate surface area (respectively 776cm?
and 352cm?), and had worked out the volume (384cm3). The teacher looked at
these two cases with the boys, and it was acknowledged that, although their volume
was the same, Tom’s surface area was greater than Stewart’s. Tom’s contribution
to the discussion, seemed to indicate his understanding of the situation. At this
point, Stewart’s understanding was less clear.

The dialogue below followed immediately. One remark followed quickly on
another and often the participants were all talking at the same time. (T: Teacher;
TS Tom; S: Stewart):
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1T

2 S.

[To Tom] Brilliant, Good. That’s right. OK. But, by putting them like this, -
which you knew was going to be bigger because (contributing voices drown
her words) so, your net's going to be 776 cm?2 and Stewart's net's going to be
only 352cm?. Now I want you to think why Stewart’s is less.

Cause mine's higher and wider and

3 To It's easier to fit in the trolley. [He refers to a supermarket trolley]

3T
4 S.
5T.
6 S.
7T.
8 S.
9 T.

10

It is easier to fit in the trolley, yes.

Because mine's got more height and width than Tom’s.

Right, so it will be (many voices) consequently its been made

Shorter

Shorter, (many voices)

More compact

Right. Compact. Good. Right now, is Stewart’s model the most compact
model you can come up with, or is there anything better? Well. I don’t
know. Let’s look at James and John’s to see if they've done better.

[Some interruption here from other students to whom the teacher responds]

11 T. Stewart, you have done really well so far, OK?
12 S. Yes.
13 T. But you need to make sure you are listening in to the other’s designs as well.

A triadic microanalysis shows considerable complexity here.

1.

2-8

10
11-12
13

Praise for Tom: teacher values his thinking and contribution (SS). The
teacher offers a refined challenge (MC) based on students’ immediate thinking
(SS).

Teacher’s questions lead to Stewart’s articulation of his perspective. Despite
seeming ambiguity of words chosen, the teacher seems satisfied that Stewart
understands the position. His use of the word ‘compact’ seems particularly
important in capturing the concept which the teacher seeks. A complexity
here of ML and SS, as the teacher manages the situation with questions which
impose limits on the dialogue, and allow Stewart to express what he sees.

Teacher’s emphasis of key word, ‘'compact’, values Stewart’s articulation (SS).
Teacher uses Stewart’s language to pose a further challenge: (MC). She
emphasises the value of group sharing and negotiation: (ML).

Attention to other students and classroom norms (ML)
Praise for Stewart (SS) which Stewart acknowledges.

Reminding Stewart of the importance of collaboration (ML).

Within the category of management of learning we see

1. the created environment: including classroom groupings, the set task, and
expectations of a) collaborative working, b) expression of mathematical
thinking, ) students’ autonomy in their activity;
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2. her interactions with individuals and groups in which her questions focus
students’ attention conceptually and encourage their own articulations,
balancing teacher input with student autonomy;

3. her reminders of classroom norms and requirements of the set task.

Sensitivity to students is manifested in her attention to individuals or groups:
finding out what they have done, gaining access to their thinking, praising their
achievements, judging responses to them relative to her conceptually-based
objectives.

Mathematical challenge appears evident in the task itself, in expectations that
individuals will direct their own activity (e.g. in choosing their own organisations
of the cubes to explore), and in focused questions to enable concepts to be tackled.

The interdependence of these categories can be seen in terms of sensitivity needing
to fit with challenge and vice versa — challenges without appropriate sensitivity
might fall on stony ground - and in the construction of the learning environment
which provides opportunities and supports participation.

At the macro level, the teacher has a clear agenda about what she wants students to
achieve. Through a freedom to select their own organisations of the 48 cubes, and
a comparison of different organisations within a group, she wants them to recognise
same volume, but different areas, and subsequently to seek the minimum area.
Providing freedom requires that her further challenges are designed to fit students’
thinking. She encourages articulation of their current conceptualisation which
allows them to inform her of their thinking and potentially to clarify the thinking.

In planning this particular lesson, the teacher drew a diagram with the three
elements of the TT and tried to fit her planning to this diagram. First, she started to
consider the kind of mathematical challenge that she could offer to the students.
Then she moved to the management of learning where she considered the resources
she needed to offer, the classroom organisation, the encouragement of
communication in the group. The sensitivity to students was seen as a way of
providing students the chance to explore, discuss, argue but also to encourage
building of confidence on their own ideas. Sensitivity was also seen by the teacher
as the base for further mathematical challenges meaningful to students.

The episode, both in the opening of the lesson and in the teacher's interaction with
the two boys, shows close harmony between sensitivity and challenge in the
cognitive domain within a management of learning which values students’ activity
and thinking, and emphasises collaborative work in supporting concept
construction. A conjecture is that teaching is most effective when these three
categories seem at their most harmonious.

Sensitivity and Challenge: The Cognitive and the Affective

While mathematical challenge can be seen to operate largely in the cognitive
domain, sensitivity seems to work in both the cognitive and the affective domains
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for the mathematical learner. A clear characteristic of Teacher A's teaching is her
concern for affective elements in her classroom. This concern goes alongside the
cognitive dimension of her teaching as may be seen in the lesson opening. She was
concerned as much for Michael's self-esteem, as for his cognitive development of
the concept of ‘cube’. She is overtly concerned about students’ ‘self-esteem’ in her
lessons, which was the subject of her own previous research into her teaching
(Jaworski & Edwards, 1997). This might be seen as a factor principally of an
affective nature. It concerns students’ personal belief in, and valuing of, their
ability to do mathematics and think mathematically. It concerns students' wellbeing
within the classroom setting, and this does not necessarily include a cognitive
dimension. Sometimes, for Teacher A, it was important to question the direction of
affective considerations and tie them to cognition in order to judge classroom
episodes as effective in learning terms. The balance between affect and cognition
was one of the improvements she wanted to make in her teaching in this particular
class. She chose to study her teaching in this class because she felt that she probably
didn't offer to the students the cognitive challenge they needed although they were
happy and had developed good relationship with her. She wanted to "push them
further".

An analysis which attends to cognitive and affective elements and their relation to
sensitivity and challenge in the teaching triad has potential to be informative to
teaching development. This relation started to emerge from observing and
analysing teacher A's teaching and from the discussions with her. At a subsequent
level, it provided the teacher the opportunity to analyse further how she conceived
her sensitivity to the students both in planning her lesson and in reflecting on it.
Further analysis of her lessons is needed to see whether this awareness actually led
to a development of her teaching.

We have been unable in the space of this paper to address the teaching of Teacher
B. The two taken together offer important similarities and counterpoints which
enable us to subject the research to a more critical scrutiny and provide a wider
perspective on the teaching triad. For example, episodes from both teachers in
which the degree of harmony between sensitivity and challenge is considerably less
that in the example quoted in this paper allow relationships within the triad to
emerge more clearly. Ways in which the teaching of the two teachers is
characterised differently through the triad provide, again, valuable evidence for its

“analytical and descriptive power.

In conclusion

Microanalysis reveals the finer points of interactions which highlight the issues for
a teacher in creating challenges and responding to students’ needs. Challenge and
sensitivity need to be in harmony, but what are the elements of this harmony?
Analysis is starting to show certain patterns in interactions which will lead to
general propositions which can be tested further by these teachers and others.
Already indications of ways in which the triad interfaces with cognitive and
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affective dimensions of teaching are proving fruitful in gaining insights into
effective interactions. Teachers’ reflections on episodes offer counterpoints to
researchers’ analyses which remain to be developed further. Ultimately, the theory
emerging from this research will be in the form of indicators which can be tested in
other classrooms.
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The Mediation of Learning within 2 Dynamic Geometry Environment
Keith Jones
The University of Southampton, United Kingdom

Computer-based learning environments promise much in ferms of
enhancing mathematics learning. Ye! much remains unclear about the
relationship between the computer environment, the activities it might
support, and the knowledge that might emerge from such activities. The
analysis presented in this paper is offered as a contribution to
understanding the relationship between the specific tool being used, in this
case the dynamic geometry environment Cabri-Géométre, and the kind of
thinking that may develop as a result of interactions with the tool. Through this
analysis 1 suggest a number of effects of the mediational role of this
particular computer environment.

Introduction

Computer-based learning environments continue to be a seductive notion in
mathematics education. As Balacheff and Kaput (1996 p469) explain, it is possible for
such environments to have an intrinsic cognitive character which is unique when
compared to other learning materials. This means that such environments may be able
to offer “a channel of access to the world of formal [mathematical] systems” (Noss
1997 p30). The promise is that through using particular software in carefully designed
ways, it is possible simultaneously to use and come to understand important aspects of
mathematics, something that in other circumstances can be particularly elusive.

One type of promising environment identified by Balacheff and Kaput (1996 p492)
features what is commonly referred to as the “direct manipulation” of mathematical
objects and relations. Prime examples of this type of software development are
dynainic geometry environments (DGEs), such as Cabri-Géométre. Yet, as diSessa et
al (1995 p2) point out, significant issues with important practical ramifications remain
under-researched. A vital question, and the theme of this paper, concerns the
relationship between the specific tool being used and the kind of thinking that may develop
as a result of interactions with the tool.

This paper explores some early findings from a longitudinal study aimed at
investigating how using the dynamic geometry package Cabri-Géométre mediates the
learning of certain geometrical concepts, specifically the geometrical properties of the
‘family’ of quadrilaterals. In what follows I suggest some aspects of the mediational
role of the DGE Cabri-Géométre. 1 begin by outlining the theoretical basis of this view of
tool mediation.
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Theoretical Framework

From a sociocultural viewpoint, the development of mathematical reasoning is viewed
as culturally mediated, through language and through the use of artifacts, both of which
are referred to as tools. For example, Rogoff (1990 p13) argues that “children’s
cognitive development must be understood not only as taking place with social support
in interaction with others, but also as involving the development of skill with socio-
historically developed tools that mediate intellectual activity”. Such a perspective
builds on the work of Vygotsky who stressed that “the central fact about our
psychology is the fact of mediation” (Vygotsky 1982 p166). Wertsch too extends
Vygotskian ideas by incorporating elements from the work of Bakhtin (Wertsch 1991,
Wertsch ef al 1995) demonstrating how language is a mediating influence which “lies
on the borderline between oneself and the other .... [so that] expropriating it, forcing it
to submit to one’s own intentions and actions, is a difficult and complicated process™
(Bakhtin 1981 pp 293-294). As Cobb (1997 p170) confirms “tool use is central to the
process by which students mathematize their activity”, and further that “anticipating
how students might act with particular tools and what they might learn as they do so is
central to our attempts to support their mathematical development”

Such theoretical work suggest some elements of tool mediation which can be
summarised as follows:

1. Tools are instruments of access to the knowledge, activities and practices of a
community.

2. The types of tools existent within a practice are interrelated in intricate ways with
the understandings that participants in the practice can construct.

3. Tools do not serve simply to facilitate mental processes that would otherwise exist,
rather they fundamentally shape and transform them.

4. Tools mediate the user’s action - they exist between the user and the world and
transform the user’s activity upon the world.

5. Action can not be reduced or mechanistically determined by such tools, rather such
action always involves an inherent tension between the mediational means and the
individual or individuals using them in unique, concrete instances.

Examples of mathematics education research which make use of the notion of tool
mediation include Cobb’s study of the 100 board (Cobb 1993), Siljo’s work on the
rule of 3 for calculating ratios (Silj6 1991), and Meira’s examination of using gears to
instantiate ratios (Meira 1995).

Applying such notions to learning geometry within a DGE suggests that leaming
geometrical ideas using a DGE may not involve a fully ‘direct’ action on the
geometrical theorems as inferred by the notion of ‘direct manipulation’, but an indirect
action mediated by aspects of the computer environment. This is because the DGE has
itself been shaped both by prior human practice and by aspects of computer
architecture. This means that the learning taking place using the tool, while benefiting
from the mental work that produced the particular form of software, is shaped by the
tool in particular ways.

LRIC o h0g

IToxt Provided by ERI



Seme aspects of the mediational impact of Cabri-géométre

Applying this theoretical perspective to the implementation of Cabri 1 for the PC,
together with a reading of previous research (for example: Goldenberg and Cuoco
1998, Holzl 1996, Jones 1996, 1997), leads to the following being identified as
possible mediating influences on learners using this particular tool:

1. The layout of the interface with the separatton of the creation and construction
menus.

2. The default cursor operation, which is drag rather than, say, the creation of a point.

3. The existence of a number of different forms of point in Cabri I basic point, point
on object, (point of) intersection - not to mention midpoint, symmetrical point, and
locus of points , plus centre of a circle; also rad pt (radius point) and circle point.

4. The existence of a number of several forms of line: basic line, line segment, line by
two pts (points) - not to mention parallel line, perpendicular line, plus
perpendicular bisector, and (angle) bisector.

5. The existence of two different forms of circle: basic circle, circle by centre & rad
pt.

6. The implementation of the drag-mode within the software which entails decisions
being made about the behaviour of the geometrical objects when they are dragged.
For example basic circle and circle by centre & rad pt behave differently under the
drag-mode.

7. The fact that some points can be dragged while others cannot. For example,
constructed points such as a (point of) intersection or a midpoint cannot be
dragged, while others, such as a point on object can be dragged but only in a
particular way.

8. The behaviour of a point placed arbitrarily on a line segment when an end-point of ‘
the segment is dragged.

9. The sequential organisation of actions in producing a geometrical figure. This
implies the introduction of explicit order where, for most of the users, order is not
normally expected or does not even matter. For example, Cabri-géométre induces
an orientation on the objects: a segment AB can seem orientated because A is
created before B. This influences which points can be dragged and effectively
produces a hierarchy of dependencies in a complex figure.

None of the above is necessarily a criticism of Cabri. In the implementation of such
software, decisions have to be made. The point is that the decisions that are made
mediale the learning. The remainder of this paper documents some examples of this
shaping of learning within this particular DGE in an attempt to reveal possible tensions
between the tool and the actions of the learners.

Empirical study

The empirical work on which the observations below are based is a longitudinal study
exanning how using the dynamic geometry package Cabri-géométre mediates the
learning of geometrical concepts. The focus for the study is how “instructional artifacts
and representational systems are actually used and transformed by students in activity”
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(Meira 1995 p103, emphasis in original) rather than simply asking whether the
students learn particular aspects of geometry “better” by using a tool such as Cabri.

The data is in the form of case studies of five pairs of 12 years old pupils working
through a sequence of specially designed tasks requiring the construction of various
quadrilaterals using Cabri-géométre in their regular classroom over a nine month period.
The version of Cabri in use was Cabri I for the PC. Sessions were video and audio
recorded and then transcribed. In all, over 40 lesson transcripts are being analysed in two
phases. The first phases identified examples of tool mediation, a number of which are
illustrated below. The second phase, currently in progress, is intended to track the genesis
of such tool mediation of learning.

Examples of tool mediation
Below are four examples of extracts from classroom transcripts which reveal aspects
of the tool mediation of learning within the dynamic geometry environment.

Example 1
Pair Ru and Ha are checking, part way through a construction, that the figure is
invariant when any basic point is dragged

Ru Just see if they all stay together first.

Ha OK.

Ru Pick up by one of the edge points. [H drags a pointj
Ha& Ru  Yeah, it stays together!
(together)

Note the pupils’ use of the phrase “all stay together” to refer to invariance and the
term “edge point” rather than either radius point (or rad pt as the drop-down menu
calls it) or circle point (as the help file calls that form of point).

Example 2

Pair Ho and Cl are in the process of constructing a thombus. As they go about

constructing a number of points of intersection, one of the students comments:
Ho: A bit like glue really. It’s just glued them together.

This spontaneous use of the term “glue” has been observed by other researchers
(Ainley and Pratt 1995) and is all the more striking given the fact that earlier on in the
lesson the pupils had confidently referred to points of intersection as just that.

Example 3 A

Pair Ru and Ha are constructing a square using a diagram presented on paper as a
starting point. After a short discussion the pair begin by constructing two interlocking
circles:

Ha If.1..em..
I reckon we should do that circle first.
Ru Do the line first.
Ha No, the circle. Then we can put a line from that centre point of the circle.
Ru Yeabh, all right then.
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Ha You can see one .. circle there, another there and another small one in the middle.

The inference from this extract is that previous successful construction with the
software package influences the way learners construct new figures.

Example 4

Pupils Ru and Ha have constructed a square and are in the process of trying to
formulate an argument as to why the figure is a square. I intervene by asking them
what they can say about the diagonals of the shape (in the transcript I refers to me).

Ru They are all diagonals.

I No, in geometry, diagonals are the lines that go from a vertex, from a corner, to
another vertex.

Ru Yeah, but so’s that, from there to there.

I That’s a side.

Ru Yeah, but if we were to pick it up like that ....... like that. Then they’re diagonals

Pupil Ru is confounding diagonal with oblique, not an uncommon incident in lower
secondary school mathematics. Here the software cannot provide any assistance to the
student, indeed the drag facility allows any straight line to be moved to appear to the
learner to have an oblique orientation. Furthermore, in terms of the specialised
language of mathematics, such software can not hope to provide the range of terms
required nor could it be expected to do so. Such exchanges call for sensitive judgement
by the teacher.

Some observations on the examples

The examples given above are representative of occurrences within a number of the
case studies. A number of comments can be made on these extracts which illustrate
how learning within the computer environment is shaped by the nature of the mediating
tool. :

First, it appears that learners find the need to invent terms. In example 1 above, the
pupil pair employ the phrase “all stay together” to refer to invariance and coin the term
“edge point” to refer to a point on the circumference of a circle. To some extent this
parallels the need of the software designers to provide descriptors for the various
different forms of point they are forced to use. Yet research on pupil learning with
Logo suggests that learners use a hybrid of Logo and natural language when talking
through problem solving strategies (for example, Hoyles 1996). This, I would argue, is
one effect of tool mediation by the software environment.

A second instance of the mediation of learning is when children appear to understand a
particular aspect of the computer environment, in example 2 above it is the notion of
points of intersection, but in fact they have entirely their own perspective. In this
example, one student thinks of points of intersection as ‘glue” which will bind together
geometrical objects such as lines and circles. This, I would suggest, is an example of
Wertsch’s (1991) “ventriloquating’, a term developed from the ideas of Bakhtin, where
children employ a term such as intersection but, in the process, inhabit them with their
own ideas.
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A third illustration of the mediation of learning is how earlier experiences of
successfully constructing figures can tend to structure later constructions. In example 3
above, the pair had successfully used intersecting circles to construct figures that are
invariant under drag and would keep returning to this approach despite there being a
number of different, though equally valid, alternatives.

Following from this last point, a further mediation effect can be that the DGE might
encourage a procedural effect with children focusing on the sequence of construction
rather than on analysing the geometrical structure of the problem. Thus pair Ru and
Ha, rather than focusing on geometry might be focusing rather more on the procedure
of construction. This may also be a consequence of the sequential organisation of
actions implicit in a construction in Cabri-Géométre.

A fifth illustration of the mediation of learning within the DGE 1s that even if the drag
mode allows a focus on invariance, pupils may not necessarily appreciate the
significance of this. Thus hoping points of intersection will ‘glue’ a figure together, or
that constructing a figure in a particular order will ensure it is invariant under drag,
does not necessarily imply a particularly sophisticated notion of invariance.

From the examples given above, a sixth illustration of the mediation of learning is
provided by an analysis of the interactions with the teacher (in this case the
researcher). The challenge for the teacher/researcher is to provide input that serves the
learners’ communicative needs. As Jones (1997 p127) remarks “the explanation of
why the shape is a square is not simply and freely available within the computer
environment”. It needs to be sought out and, as such, it is mediated by aspects of the
computer environment and by the approach adopted by the teacher.

Concluding remarks

In this paper I have suggested some outcomes of the mediational role of the DGE
Cabri-Géometre. While such outcomes refer to only one form of computer-based
mathematics learning environment, these outcomes are similar to those emerging from
research into pupils’ learning with Logo (See Hoyles 1996 p103-107):

1. Children working with computers become centrated on the screen product at the
expense of reflection upon its construction

2. Students do not mobilise geometric understandings in the computer context

3. Students modify the figure “to make it look right” rather than debug the
construction process :

4. Students do not appreciate how the computer tools they use constrain their
behaviour

5. After making inductive generalisations, students frequently fail to apply them to a
new situation

6. Students have difficulty distinguishing their own conceptual problems from’
problems arising from the way the software happens to work

7. Manipulation of drawings on the screen does not necessarily mean that the -
a?nceptllal properties of the geometrical figure are appreciated
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As Hoyles remarks, such indications are intended to capture some of the general in the
specific and thereby generate issues for further research. The finding from this study of the
dynamic geometry package Cabri-Géométre may well prove useful both to teachers using,
or thinking about using, this form of software and to designers of such learning
environments, as well as contribute to the further development of theoretical explanations
of mathematics leaming.
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USING INFORMATION SYSTEMS FOR MATHEMATICAL PROBLEM
SOLVING: A NEW PHILOSOPHICAL PERSPECTIVE
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ABSTRACT

This paper represents an ongoing exploratory formulation of an innovative
theoretical framework designed to use information systems (1S) for mathematical problem
solving. Based on theories set forth by Aristotle and Habermas, and buttressed by
previous teaching experience, it is hypothesized that, in addition to the existing customary
activities of data collecting and information building, the introduction of the concepts of
"practical wisdom" and "emancipatory interests” in the undergraduate classroom, will
greatly enhance the use of IS in mathematical problem solving, and add to the existing
knowledge-base.

INTRODUCTION

It is well recognized that our society is undergoing a significant transformation from
an industrial to an information society, and that this transition is strongly connected with the
widespread development and use of computer technology combined with the intellectual
advances in such fields of mathematical inquiry as systems science, information systems,
decision analysis, and artificial intelligence. This paper represents an exploratory
formulation of an innovative framework designed to organize the use of information
systems (IS) in mathematical problem solving. For the sake of clarity of discourse,
"information" is defined as "an abstract concept which, when received by an individual,
gives new form to that individual's perception" (Merali and Frearson, 1995). Systems
dealing with information are IS,

Classroom experience indicates that most students have great difficulty
distinguishing among data, information, knowledge, intelligence, and wisdom. Part of this
difficulty stems from the fact that these five concepts are not only interdependent but also
involve higher and higher levels of cognitive organizations, with each succeeding level
incorporating the preceding level in a complex hierarchy. Almost without exception,
students fail to use IS comrectly because they are literally drowning in an overabundance of
data and information, yet with little understanding and "practical wisdom" (Mitroff &
Linstone, 1993). Machado (1980) says that every person is born with a "live computer of
limitless possibilities" that can tackle the most complex problem; but unfortunately very few
have the metaphorical "instructions manual” to utilize this gift. He adds that the most
important job of educators today is to draw up that "manual”. There is no question that in a
world of rapid change and increasing diversity, the formulation of an "instructions manual”
is a critical part of mathematics teaching and learning.

This ongoing research study aims to give a theoretical and philosophical account of
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what has been achieved and where it is heading. This is done by: introducing the concepts
and components of IS; connecting the Habermasian and Aristotalean theories of
communication and "practical wisdom” respectively, to IS; describing the classroom
teaching experiments; and finally, detailing the ongoing research. In a broad sense, this
research attempts to provide the theoretical framework of a metaphorical "instructions
manual”.

MEANS-ENDS CONFIGURATION

A large majority of students believe that scientific knowledge alone can be used for
"solving" any real-world problem. This is partially true if the means (strategies) and ends
(goals) connected with the problem are known with certainty, in which case mere
mathematical computation is all that is needed to solve the problem, as shown by cell A in
Figure 1. However, in almost all real-world situations, if our ends and/or means (strategies)
are uncertain, mathematical computation by itself will not work. In such cases, in addition
to computation, some degree of judgement, compromise, or intuition/ "inspiration” will be
needed to deal with these complex, open-ended, value-laden problems, indicated by cells
B, C, and D, respectively (Thomson & Tuden, 1959; Khisty, 1993). ,

Goals & Objectives
Ends

Means .

Certain Uncertain
. A) . (C)
Certain Computation Compromise
. ®) D)

Uncertain Judgement “Inspiration” or Chaos

Figufe 1. Means-Ends Configuration
CONCEPTS OF RATIONALITY

If by rationality we mean a self-conscious process of using reasoned arguments to
make and defend claims, there are indeed many choices available. The principal types of
rationalities used with IS are connected with the means-ends framework. For example,
instrumental (or technical) rationality has been used extensively, and is geared to
controlling nature in an efficient and scientific way. But, as a result of reductionism,
technical rationality has unfortunately been applied to human activity systems, with
disastrous results. On the other hand, communicative rationality, guides communicative
action, meeting the validity claims of comprehensibility, truth, rightness, and sincerity, so
necessary for mutual understanding and agreement. Communicative rationality is beginning
to be used in IS, when dealing with complex and messy open-ended problems, where the
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means and/or ends are uncertain. Indeed a combination of both instrumental rationality an
communicative action, directed by emancipatory interests is needed for the decision-
making to be an enlightened social process. Emancipatory interests are important in that
they reflect a concem with managing coercion and the analysis of power in organizational
settings, and more will be said about this in due course (Carr & Kemmis, 1986). ’

THE PATH FROM DATA GATHERING TO INTELLIGENCE AND BEYOND

Now that the basic ideas of the means-ends configuration and the concepts of
rationality have been set forth, the components of IS are mapped out, as shown in Figure 2.
Naturally, any explanation as subtle as the ones described should not really start from the
words themselves. Rather, on Popper's (1972) advice, "one should never quarrel about
words, and never get involved with questions of terminology....What we are interested in
are our real problems.."

*Data Facts Facts of the real-world
*Focussed Selected Facts Needed for Cognitive settings
Data
*Information Meaningful Facts Needed for Problem-Solving
*Knowledge Understanding based Needed for Decision-making
on information and at the Technical Rationality
experience level
*Intelligence Ability to deal Needed for Decision-making
with novel & new at the Technical & Communicative
situations Rationality level, for discourse

Figure 2. Evolving Components of Information Systems

While most of the terms mentioned in Figure 2 are self explanatory, the meaning of
intelligence needs further explanation. Intelligence is a human activity of adjusting to
situations by using combinations of such functions as perception, memory, conceptualizing,
abstracting, planning, extrapolating, predicting, controlling, contrasted with instinct, habit,
rote, custom, and tradition. In addition, intelligence is the process of coping with problems
by means of abstract thinking, containing elements such as symbolization and
communication, critical analysis, applied to practical and theoretical situations (Angles,
1981). But the use of IS entails far more than just knowledge and intelligence, and this is
taken up in the next section.

Aristotle's Theory of Practical Wisdom

It has been reported time and again that the Central Intelligence Agency (CIA) of the
United States has performed poorly because of it's bent for high technology and computer
models at the expense of old-fashioned, first-hand observation and common sense. One
famous case reported in the 1980s states that the CIA used highly sophisticated computer
models using Soviet statistics, which were known to be flawed and fabricated. The results
were naturally a disaster. This example epitomizes the need for understanding and practical
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wisdom, and reinforces Bierce's (1967) definition of education: "That which discloses to
the wise and disguises from the foolish their lack of understanding”.

More than two thousand years ago Aristotle discussed his theory of practical
wisdom by which the social construct system may potentially be reconstructed. In the sixth
book of the Nichomachian Ethic, Aristotle distinguishes among "episteme"”, "techne”, and
"phronesis”, as the three modes of the "intellectual virtues" which constitute "practlcal
wisdom". Gadamer (1976) interprets Aristotle's ideas by saying that episteme is the
intellectual virtue through which we construct our scientific knowledge, through technical
or instrumental rationality. It justifies mechanistic problem-solving requiring true, efficient
and unquestionable data and evidence (Flyvbjerg, 1992). However, episteme presents an
incomplete picture of human and social cognition because it obscures the recognition of
two other complementary cognitive virtues through which people construct their individual
and social insights: their experiential knowledge (techne) and their conceptual reflective
thinking (phronesis). Techne in this context should be understood in its broadest sense as
"know-how". Phronesis, on the other hand, represents the cognitive virtue of reflective
thinking and prudence. It is unfortunate that in the past two or three centuries phronesis,
which embodies value rationality, has been totally neglected and replaced by instrumental
rationality (Weber, 1958).

The practical wisdom of learning activates society's potential for coping with, and
gaining from, its own diversity, as well as coping with fundamental changes in its
environment by enriching and reconstructing its system of social constructs. Collective
practical wisdom is the synergetic wisdom of society through recursive exchange. Gadamer
contends that modem technological cultures have lost their practical wisdom partly because
of the way our students are educated and our educational institutions are organized,
creating barriers of rank, tasks, and cognition between people. He says that the epistemic
logic of decision-making resting on objective, impersonal IS are highly data dependent, but
have little meaning for social discourse (Bemstein, 1983; Lanir 1993).

COMMUNICATION THEORY OF SOCIETY

Habermas (1979, 1987) is recognized the world over as one of the most important
figures in modem sociology, particularly for his major contributions to the theory of
communication. Some aspects of his theory are most relevant to IS. In the next section we
introduce Habermas's communicative theory, by prefacing it with a more focussed
explanation of instrumental, communicative, and emancipatory rationality.

Instrumental rationality is linked to principles of control and certainty. It uses the
natural sciences as its model and rests on a number of assumptions that underlie its view of
knowledge, human values and social enquiry. The scientific method believes in its supreme
power to answer all significant questions, including the social. First, instrumental rationality
operates on propositions which are empirically testable, such as mastery of the physical
world. Second, knowledge, like scientific inquiry, is considered value free. Third, "hard"
data is considered the focus of explanation and discovery. And fourth, not only is
knowledge objectified, it is reduced to the mastery of technical decisions for ends already
decided upon (Giroux, 1983). Instrumental rationality treats education as the means to a

ERIC o LA

wll Toxt Provided by ERIC




given end, and views teaching as a skilled craft akin to "techne" based on technical
expertise. This leads to the idea that education can be improved by gaining a morc
complete mapping of the cause and effect relation in education, very similar to input-output
systems, where the emphasis is on control and conformity through behavior modification
and competency (Ewert, 1991).

On the other hand, communicative rationality has a deep-seated interest in
understanding social interaction. Human beings are never seen as passive recipients of
information. They are considered sensitive to the notion that through the use of language
human beings constantly produce meanings as interpretations of the world in which they
find themselves. In short, human beings (rather than nature) are seen as the ultimate authors
of knowledge and reality (Giroux, 1983). Communicative rationality considers the aims of
education as the criteria for the process of education as a social activity with social
consequences, engaged in social reproduction. What control is possible is through the wise
decision making of practitioners: justifying actions -with reference to norms; acting
prudently in situations of normative conflicts; and aiming towards consensus in case of
differences (Ewert, 1991).

Lastly, emancipatory rationality attempts to locate meaning and action in a societal
context, basing its principles on criticizing that which is restrictive and oppressive, while at
the same time supporting action in the service of individual freedom and well-being,
Emancipatory rationality augments interest in self-reflection, designed to create conditions
in which non-alienating and non-exploitative relationships exist. Emancipatory interests are
reflected in education in the drive to transcend, to grow, and to develop. The key element is
the capacity of the student to be reflective and articulate (Ewert, 1991).

Rationality Knowledge Medium Methodology
Technical Instrumental Work Empirical

. . Interpretive
Practical Communicative | Language (Hermeneutic)
Emancipatory | Reflection Power Critique

Figure 3. The Three Rationalities

The characteristics and attributes of the three rationalities described above are shown
in Figure 3. Habermas calls them knowledge-constitutive interests because they gmde and
shape the way knowledge is constituted in human activities.

HABERMAS' COMMUNICATIVE THEORY & VALIDITY CLAIMS

The "communicative theory of society" developed by Habermas has a direct
application to IS. According to Habermas, four different kinds of speech acts are related to
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four corresponding validity claims which are thematically stressed in discourse:

Truth: All participants contributing to the discourse must have equal opportunity to use

truthfully grounded information and arguments, so that explanations and interpretations are

properly aired and no particular view expressed is exempted from consideration and/or

criticism.

Rightness: All participants should have an equal chance to command and oppose, permit
- and forbid information and arguments. This requirement ensures that participants raise fully

appropriate arguments with respect to issues. To speak legitimately, in context, is the

essence of this speech act.

Sincerity:- The opportunity to express attitudes, feelings, and intentions regarding

information must be available to all participants. Freedom from internal constraints must be

maintained, by requiring all participants to be honest and sincere to themselves and their

colleagues.

Comprehensnlnllty This reqmrement demands that all participants use communicative
_speech that is understandable to everybody. Confusion and chaos would be the net result, if

nobody understood what a speaker was saying. Consequently, participants must take steps

to ensure the speaker’s meaning. These validity claims guarantees that a rationally

grounded consensus can emerge from practical (or communicative) discourse.

TEACHING EXPERIMENTS
The various components of the IS described in this paper, from data gathering right
through the knowledge and intelligence stage, were used in six undergraduate courses that
included a heavy mathematical problem solving content. A limited attempt was made to
introduce the use of knowledge-based expert systems and in applying artificial intelligence
in team-based exercises. Class evaluations at the end of each semester revealed that about
80% of the students grasped the application of the mean/ends configuration, the concepts of
rationality, and Habermas' communication theory and validity claims. Whilst only a couple
of hours in each class were spent in introducing Anistotle's theory of "practical wisdom",
their individual interests in this area were not recorded. Almost 95% of the students were
good "number-crunchers" when confronted with back-of-the-chapter type problems.
However, they were found to be average to poor performers at tackling "wicked" real-
world problems. Very few students ever questioned the validity of the data or its sources,
which came as a surprise. Students were generally very interested in the classification of
information, such as suggestive, conceptual, deontic, predictive, decisive, systemic, etc.
They were equally interested in different kinds of input-output models fueled by this

information classification.

~ The general comments of students were: I now have greater understanding of, and
confidence with, using IS for mathematical problem solving; the hierarchy of IS is
. important to me; I feel I understand the why, how, what, and when, of IS; T wonder why
the components if IS were not explained to me before, in other courses; I enjoyed the
exercises in artificial intelligence and knowledge-based expert system design; and the list
goes on. There were very few negative comments, mostly reflecting the physical facilities
and conveniences provided for the students. Overall, my colleagues and I were satisfied
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with the results we achieved in our classes, although we wanted to forge ahead with the
plan developed in the theoretical framework.

REFLECTIONS AND ONGOING RESEARCH

We are cognizant that current reforms in mathematics education suggest that the
learning of mathematics be very closely connected and blended with its applications
(NCTM, 1989). More and more mathematics curricula provide opportunities for students at
all levels to collect their own data sets, analyze them, and make judgements about their
appropriateness before the analysis phase. In some cases, this activity is connected to
students investigating their own neighborhoods for gathering and selecting socio-economic
data for myriads of real-world neighborhood problems, e.g., crime, accidents, mortality
rates etc., (Khisty, 1996). It is our premise that if mathematics is to be truly connected to
resolving socio-economic problems, then students need to be more than just number-
crunchers. Critical to the understanding and practice of mathematics is the ability to
develop practical wisdom, putting communicative action into operation, and appreciating
the efficacy of emancipatory interests.

The theoretical framework described in this report has now been partially put into
classroom practice and the results are encouraging to both teachers and students. There is
no question that further work needs to be done, and the tasks we want to take up next are
briefly described below:

- How should students be taught the hierarchy of IS so that they begin to appreciate the
authenticity of data sets through objective and subjective testing?

- What would be the most effective methods of introducing the ideas of practical wisdom
while working with real-world problems?

- What are the mechanisms of individual and collective cognition through which students
acquire a level of theoretical and practical competence in handling real-life problems where
mathematical and socio-economic variables are being considered?

- In addition to deductive and inductive reasoning, how can students be introduced to
abductive inferencing for solving "wicked" problems (Khisty & Khisty, 1992) they
encounter on a daily basis?

- How should instructors go about preparing at least a preliminary prospectus for an
"instructors manual" as suggested by Machado?

- How can this research be extended to high school and freshmen undergraduate students?
- How should we prepare teachers to teach mathematics courses using IS so that they
embody the socio-economic complexities of the world.
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COLLABORATIVE VERSUS INDIVIDUAL PROBLEM SOLVING:
ENTERING ANOTHER'S UNIVERSE OF THOUGHT
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Université du Québec a Montréal Center for Technological Education
Montreal, Canada Holon, Israel
kieran.carolyn@uqam.ca nttommy @weizmann.weizmann.ac.il

Abstract. This paper presents findings pertinent lo the growing literature on the role of collaborative
problem solving in the learning of school mathematics. The mathematical discourse of two, high-
ability, 13-year-old boys working together on a sequence of problems that were novel to them is.
examined, with a view 1o observing the difficulties involved in entering another's universe of thought.
Five different types of interaction are identified in the analysis of the conditions under which their
pariner-directed talk was/was not beneficial. The individual problem-solving work, which occurred
Just after their joint work, is compared with what they were able to produce collaboratively. Findings
suggest that the brief moments during which one of the interlocutors was able to enter the universe of
thought of the other played a fundamental role.

Much current research in mathematics learning is focusing on the facilitating role
played by collaborative settings. For example, Leikin and Zaslavsky (1997) have
shown how small group cooperative settings lead to higher engagement levels,
improved attitudes, and increased mathematical communication among low-achieving
ninth grade students. Hershkowitz and Schwarz (1997) have demonstrated how four

‘ninth grade students interacted to produce and check hypotheses, and how they

learned to be critical and reflect on their own and others' problem solution
processes. And Teasley (1992), who compared the quality of work of fourth
graders in four different experimental settings involving a Logo problem-solving
task, has found that talking is of significant benefit to the learning process, and that
these benefits are more pronounced when that talk is directed to a partner. But the
research on learning from interaction raises many questions. Is all partner-directed
talk beneficial? Is it beneficial to the speaker, to the listener, or to both? Under
what conditions is it beneficial; what makes it so? And what, precisely, do we mean
by beneficial?

Pirie (1996) has drawn out some of the complexities involved for teachers when they
really listen to the oral communication of students. Certainly, similar difficulties
arise when students attempt to listen to each other as they are doing mathematical
work in small group settings. Trognon (1993) has pointed out that interlocutors can
be listening to each other, but it may be the case that they do not understand each
other. The moments when one truly enters the "universe of thought" (p. 341) of the
other may be quite brief, but they play a fundamental role. '

This paper examines the mathematical discourse of two, high ability, 13-year-old
boys working together on a sequence of problems that were novel to them. In
observing the difficulties involved in entering another's universe of thought and in
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analyzing those moments when it did seem to occur, we identify five different types
of interaction engaged in by the boys. The paper follows with a brief description of
the boys' individual problem-solving work, which took place the day after the joint
activity, and discusses how it relates to what they were able to produce
collaboratively and how it reflects the learning that occurred/did not occur during
the joint work.

BACKGROUND

History: The two boys featured in this paper are in their first year of high school.
They have just completed a seven-week introduction to algebra based on an object-
oriented, functional approach, which is aimed at giving meaning to the symbols and
transformations of algebra by means of graphical representations and operations
with these representations (see Kieran, 1994). Much of the seven-week sequence had
involved pairwise work with activity sheets, interspersed with classroom instruction
by the teacher and whole-class discussions. The content that was emphasized in these
activity sheets was primarily situations involving linear functions, although some
experience with quadratic and cubic functions was included. Several days of class
work were spent at the computer, where students in groups of two were able to
explore the role of the parameters in graphical and symbolic representations, and
their relation to the problem situations. Thus, collaborative interaction was not new
to these two boys, who often worked together as a pair in their math class.

Research Program: The analysis presented in this paper is part of a larger study
in a research program focusing on alternate approaches to the introduction of
algebra in environments that include a computer component. The larger study had
three aims: a) to see whether the object-oriented introduction to algebra equips the
students with the thinking tools needed to explore the graphical, algebra-symbolic,
and verbal representations of functions that are unlike those they have studied in
class; b) to explore the role played by pairwise interactions in problem-solving
situations; and c) to investigate the extent to which students freely choose to use the
computer as a problem-solving tool. The part that is presented in this paper is
related primarily to aim (b), which focused on the discourse and problem solving of
pairs of students. Thus, evidence was collected that would permit us to answer
questions regarding the nature of their collaborations and the relation between their
collaborative and individual work.

Methodology: One pair of students was observed at a time, but this observation
was from a distance. After a couple of warm-up questions, the pair was given one
set of shared activity sheets containing eight questions--some with sub-questions; they
were asked to work together in the solving of the given problems, taking as much
time as they needed (the tasks were designed so as to take about 45 minutes to an
hour to complete). There was to be no adult intervention and all their interactions
were to be videotaped. A computer was beside their work table available for their
use, should they so decide. The next day, each member of the pair returned to do
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individual problem solving on tasks that were analogous to those worked on jointly
the day before. This part of the methodology was meant to help us capture what
they may have learned as individuals during their collaboration. This individual
work was also videotaped.

THE JOINT PROBLEM SOLVING AND TYPES OF INTERACTION

We now present excerpts from the verbatim transcripts of the videotapes of one pair
of boys, Nick and Zak, that illustrate the ways in which they worked together. The -
set of tasks was called HEADWINDS AND TAILWINDS! The first situation was

the following: Méaldwlnds ond TIIIwIndi
Glen and Matt own and fly experimental ] yt70al v
small airplanes. With no wind, Glen's
plane can fly at 50 kilometers per hour (kph) :
and Matt's plane at 60 kilometers per hour. No. T
Glen and Matt are planning a trip to an ::urs P
airport 150 kilometers away from their to il
home. The time for the trip will depend on reach
the wind speed. ‘A headwind will make the ot =t
trip longer; a tailwind will make the trip R
shorter. The graphs in Figure 1 show the : N

[CARLH

relationship between wind speed and time
Jor the trip for each flier and for different g
headwind or tailwind conditions. Speed of the Wind in kph

FIGURE )
Zak generated his interpretation of the headwind and tailwind graphs immediately
upon seeing the graphs. He visualized the graphs globally, seeing the upper graphs
as headwinds pushing against the plane and the lower graphs as tailwinds going with
the plane. Later comments tended to confirm this interpretation. Nick, on the other
hand, had a far more analytical, pointwise, numeric approach, trying to draw
conclusions from the particular values the functions were taking at specific points.

Prag;natic Interaction: After a few introductory questions (la - 1h) whose
purpose was to ensure they understood basically how to read the given graphs, they
started working on the following question:

2. "Try to match each of the graphs in Figure 1 with one of the following situations: Glen and
Tailwind, Glen and Headwind, Matt and Tailwind, Matt and Headwind."

The following excerpt reflects what happened after they decided that "Glen and
Tailwind" was Graph C: ' .

170 Z: Glen and headwind is figure A.

171 N: Wait. You sure? Wait.

172Z: Yeah, cause you got AB C or D.

173 N: Just a sec. Glen's is 50, so if you have (hesitates). No no no no, Glen's at B cause it goes
174 Z: Well Glenis |

175 N: I say Matt's C, but I'm not sure, cause look

176 Z: Oh yeah. No no no no, Matt's B (points at Graph B). I thought we were doing that, okay.
177 N: Matt's D.

178 Z: Glen and headwind is A (pointing at Graph A).

179 N: What?
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180 Z: This is Glen's graph (tracing with his finger Graph A from right to left, and then

Graph C from left to right, in one continuous motion). C and A is Glen's graph.
181 N: Yeah yeah yeah, you're right, sorry.
182 Z: Matt at tailwind is D.
183 N: (not understandable)
184Z: Yeah, and Matt at headwind is B.
185 N: I still think, it doesn't matter.
This excerpt illustrates that two students may work together on a task, make
reasonable progress toward a solution while talking to each other, probably even
listening to each other, but without any proper interaction to speak of: Their
interaction does not reflect their thinking. Each one appears to be contemplating the
problem for himself, in his own way, within his own universe; when trying to
convince the other, however, they do not use reasoning but simple statements,
forcefully brought forward. We propose to call this pragmatic interaction. It
may appear that Zak, using his physical universe of thought, dominates here while
Nick is lost. However, as is shown later by Nick's individual work, he is perfectly
able to produce convincing arguments of the kind that are needed to answer Question
2; only, his arguments are of a different type, grounded in a different universe of
thought. We submit that the superficiality of their interaction in this excerpt is due to
the fact that their universes of thought are incompatible. And Nick decides, in
pragmatic fashion, not to pursue the issue.

Homogeneous Tnteraction: When two people think alike, in overlapping parts of
their respective universes, they can often work together quite well. We have elected
to call homogeneous interaction the type of interaction that occurs in such a
situation. This type of interaction did transpire between Nick and Zak but, for lack
of space, we cannot illustrate it here. ’

Pseudo-Interaction: Sometimes, the degree of interaction between Nick and Zak
was even lower than that seen in the pragmatic interaction episode; Question 7a asked
them to try to come up with the expression that would produce Graph B. The
following excerpt presents part of their talk during that episode:

407 Z: Try to come up with the expression that will produce Graph B.

408 N: Okay.

409 Z: What's Graph B? Oh this one (referring back to Figure 1).

410 N: Hmm hmm.

4117Z: So you got to do

412 N: It's 2.5 (pointing to (0 2.5) of Figure 1), so you have to something

413 Z: It's 2.5? No, wait, no no no, okay, the headwind is is, I mean, it's rising (following Graph B
with his pen).

414 N: 10 divided by, no, 10 divided by, no, 10 divided by, no.

4157Z: In an hour, in one hour, where's an hour, it goes up (here he traces a portion of Graph B,
between y=3 and y=4).

416 N: 5 divided by 2 minus x.

417Z: 10to25.

418 N: 5 divided by 2 minus x.

419Z: 23. What? (was not listening to what N was saying).

El{llc 3-115 'ﬁ:‘?‘

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

During this episode, the two boys worked on the same problem, finding an
expression that would represent Graph B, each using his own approach. A
superficial look at the protocol appears to show that they took turns talking to each
other, but a closer examination reveals that they were hardly listening to each other;
rather, each was working by himself on a separate line of thought, within his own
universe and talking more to himself than to the other: Nick considered the
numerical question of how to make up an expression that would yield the value 2.5 at
x=0, whereas Zak thought about the modeling question of how a headwind could be
taken into account in an expression. We propose to call this a pseudo-interaction:
There was no interaction going on at all--it only seemed as if they were talking to
each other.

Inhomogeneous Interaction: Not always were Nick and Zak so far apart,
cognitively. The question immediately following 7a was the analogous question of
finding an expression representing Graph D, a question for which they did interact,
and in a very deep sense. The following excerpt starts with Nick asking about the
origin of some of the data they had used earlier, namely the numbers 150 and 50
which appear in the expression for Graph A. The reason Nick now wants to
understand the origin of these numbers is that he hopes to solve the task at hand,
building an expression for D, by analogy.

438 N: But where did they get their 150 and 507

4397Z: They get the 150 by the time it takes, it's 150 km away from the airport.

440 N: Oh yeah?

441Z: Yes.

442 N: Okay, so then this will be

443 Z: 150 divided by

444 N: 150 divided by (said at the same time as line 443) (the two boys then hesitate).

445 N: What gives a 2.5 answer?

467Z: 2.5is Sdivided by 2 plus x.

447 N: What?

448 Z: 5 divided, no you don't even need the S divided by, you have 2.5, 2.5 plus x (writes 2.5+X).

449 N: No no no, you have to (do different?) I think, cause you have to put the whole
thing (pointing to the expression _150 _ in question 6a).

50-x
450 N: (after a short pause) It's, hmm it's okay, this is the expression.
451 Z: Oh yeah. :
452 N: 150 over 60 plus tw..., no plus x. Okay? I say this is my expression there (writes _150 ).

60 +x
453Z: 60 + X, is this, no, Graph B is
454 N: Wait (a second?).
455Z: Okay it sounds
456 N: The 150 is away from the hmm
4577Z: 1s how far
458 N: Airport?
459 Z: The speed of the wind.
460 N: Okay, that's good for me.
461 Z: How far is for km, it's 150 km now (said at the same time as line 460).
462 N: But which one is that, is that B?
463 Z: It's 150 km away.
464 N: Yeah okay.
465Z: 150 km divided by 60 + x, yes (emphatic), that's it!
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During this episode, the -boys efficiently collaborate to find a solution, each
providing what he is best.at: Nick the numerical details of the model and Zak the
general structure and its interpretation. Each makes an honest (though not always
successful) attempt at understanding the other's contribution. Such a strong
interaction, where each participant presents his own thinking in spite of being
conscious that the other finds it difficult to follow, requires a considerable mental

. effort and willingness to learn rather than just get done with the task. Here Nick and
Zak proved that they can, and sometimes will, make such an effort. We propose to
call this inhomogeneous interaction, considering the fact that the basis for the
interaction is constituted by differences in the students' universes.

Anti-Interaction: It also happened that the boys refused to interact, such as when
Zak threw a "Be quiet" at Nick, clearly pointing to his need to be left alone, to be
given some time to quietly think things through for himself, within his universe of
thought without any intervention from outside, without any collaboration, group
work etc. We propose to call this anti-interaction and we submit that most people
(not only children), when learning mathematics, need some extended periods of quiet
concentrated thought by themselves.

THE INDIVIDUAL PROBLEM SOLVING

From the few excerpts above, it would seem that Zak's explanations as to why
150/(50-x) should be the expression for Graph A "took" with Nick. Zak had been
able to state how this expression made explicit the mathematical givens of the
problem and the relation between those givens. And the set of operations in the
expression did, after all, represent exactly the point-wise calculations that Nick
carried out when asked later for the sketch of a graph. But an examination of Nick's
individual work suggests that the expression that made sense in Zak's universe of
thought was not appropriated by Nick, even though the details of the expression fit
with aspects of Nick's universe.

The set of tasks on which Nick and Zak worked individually was called RIVER
CURRENTS. It consisted of four questions that were for the most part analogous to
the kinds of questions they had worked on jointly. The initial situation was:

Susan is training this spring for the long-distance marathon swim competition that will take place at
the end of the summer. Her training consists of a daily swim up the Richelieu River, going against
the current, for a distance of 20 kilometers. When there is no current, Susan swims at a speed of 4
kilometers per hour (kph). The speed of the current can vary from one day to the next. The time
that Susan takes to do her swim of 20 kilometers depends on the speed of the current.
When asked Question 1b, "Which one of the graphs accurately depicts the number of
hours Susan could take when she is swimming against the current?", Nick chose the
correct graph. But for the next two questions, which asked the reason for choosing
that particular graph, and the expression that goes with that graph, he responded
according to a linear interpretation, with the expression: 5 + 2.5x. By taking one
point off the y-axis, along with the y-intercept, he constructed a "slope-y intercept”
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expression for the curve. The interactive work that had led to correct expressions
for the Headwinds and Tailwinds graphs, and which might have suggested that both
boys had "got it," had not been sufficient for Nick to enter Zak's universe of thought
and thereby restructure his own. This contrasts with Zak's individual work. For
Question 1b, Zak produced the expression 20 / (4 - x), which reflects the responses
that the two boys produced in their joint work on analogous Headwinds and
Tailwinds questions. Thus, it appears that Nick never really understood the
appropriateness of the expressions they had produced jointly and relied instead in his
individual work on the linear form that he had learned in class.

DISCUSSION AND CONCLUSIONS

Returning now to the questions that were posed earlier regarding the benefits of
partner-directed talk, we need first to address the issue of what we mean by
beneficial. What we mean concerns whether or not that which the boys were able to
do at an interpersonal level becomes interiorized for each of them. The fact that a
key discursive moment for Zak had taken place was reflected in line 465. It was at
that moment that Zak, in response to the many times that Nick had asked, "Where
does the 150 come from; where does the 50 come from?", appropriated
intrasubjectively (see Trognon, 1993) elements from Nick's discourse, that is,
elements related to a less global, more detailed universe of thought. The irony is
that the explanation Zak offered was not internalized by Nick, even though Nick's
questioning had provoked it.

Thus, we have a case here where the partner-directed talk was more beneficial for
the speaker Zak than for the listener Nick. But the sequence that led to this result
was not immediate; it was spread over a five-minute interaction: From line 369 in
the transcript, when both boys decided by elimination that 150/(50-x) was the best
choice for Graph A of Figure 1, followed by Nick's request in line 370 that Zak
"now explain it," to Zak's statement in line 385 "But I can't explain it though," to
Nick's continued request in line 398 "Why is this 50-x since you understand it so
good?" Line 403 has Zak offering that "if you're minusing x, it's the headwind,"
and that "50 minus let's say 10 is 40, and 150 by 40" (line 405); but again in line
432, Nick commented, "I don't know, I don't know where the 150 and the 50 come
from." In the interaction documented above that includes lines 438-465, we note
that, with respect to Nick's questioning, Zak specifically mentioned that the 150 was
due to "it's 150 km away from the airport," but more importantly that Zak seemed
to be trying to work something out for himself, that he was talking to himself, as
much or even more than he was talking to his partner. In fact, when the partner was
prepared to move on to the next question (line 460), Zak insisted on staying with the
problem at hand. We submit that it was this period of internal talk, which had
occurred within the context of the partner-directed talk, that was crucial for Zak.
The period of internal ‘talk permitted Zak, having briefly entered Nick's universe of
thought to explain the details of the expressions, to relate those details back to his
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own universe of thought.. This empirically-supported theoretical perspective,
inspired by Trognon (1993), can be used to explain why Webb (1991) and others
have been able to claim that giving help is often of more benefit to the help-giver
than to the help-receiver.

We have identified five possible types of (lack of) interaction during the work of a
pair of students, and related these types of interaction to differences in the students'
universes of thought: Anti-interaction, Pseudo-interaction, Pragmatic interaction,
Homogeneous interaction, Inhomogeneous interaction. We do not want to suggest
that students should not interact, that work in pairs (or groups) is inefficient in
mathematics learning. We do, however, want to point out that work in pairs (and
groups) is not unproblematic, and that students should be given ample time to work
and to think on their own. It was during the period of inhomogeneous
interaction that Zak was able to reach a peak with respect to structuring his
cognition, but this movement was due in large measure to what we have called,
internal talk, which appeared to be occurring at the same time. For Nick to have
made a similar kind of progress, we can only conjecture that interaction of a
different nature might have been necessary--a type of interaction that did not occur
between these two boys--an interaction that would have provoked him to engage in
internal talk relating the two universes of thought. For even when Nick was given
the time to work things out on his own, as in the individual work, this individual
work did not reflect the understandings that had been suggested by their joint work.
~ We can only conclude that Nick remained throughout in his own universe of thought.
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INCREASING TEACHERS’ AWARENESS OF STUDENTS’
CONCEPTIONS OF OPERATIONS WITH RATIONAL NUMBERS!

Ronith Klein, Ruthi Bé{fkai, Dina Tirosh & Pessia Tsamir
Seminar Hakibbutzim - College of Education, Tel Aviv
School of Education, Dept. of Science Teaching, Tel-Aviv University

ABSTRACT: This paper describes prospective and inservice teachers’ knowledge of children’s
common difficulties in calculating multiplication and division expressions involving rational
numbers and their possible sources. Our data show that prospective teachers who specialized in
mathematics knew more about students’ common incorrect responses than those who specialized
in teaching other topics. Inservice teachers that experienced teaching rational numbers were
more knowledgeable about students’ common mistakes than those who had practice in teaching
other mathematical topics. A major finding is that participation in a course on students’
conceptions of rational numbers dramatically increased both prospective and inservice teachers’
awareness of students’ incorrect responses and their possible sources.

Educators generally agree that learning occurs by challenging (or building upon)
existing conceptions. Consequently, calls for reform in mathematics education
emphasize that knowledge of students' common conceptions and misconceptions
about the subject matter is essential for teaching (e.g., Australian Education Council,
1991; National Council of Teachers of Mathematics, 1989; 1991). Recent studies
have, however, reported that prospective teachers' ability to analyze the reasoning
behind students' responses was poor (e.g., Even & Tirosh, 1995). Thus it seems that a
major goal of teacher education programs should be to promote prospective and
inservice teachers' knowledge of children's ways of thinking about the mathematic
topics they are to teach.

. In most countries, a substantial part of the curricula of elementary schools is
devoted to rational numbers. There is a considerable body of research reporting that
students experience difficulties with the operations of multiplication and division with
rational numbers (e.g., Barash & Klein, 1996; Carpenter, Lindquist, Brow, Kouba,
Silver, & Swafford, 1988; Hart, 1981; Fendel, 1987). Three main sources of these
difficulties are often proffered: algorithmically-based mistakes (various “bugs” in

computing the expressions, e.g., 9-%=l_90'_3§), intuitively-based  mistakes

(overgeneralizing properties of operations with natural numbers to fractions, such as
the divisor must be smaller than the dividend) and formally-based mistakes (incorrect
performance due to limited conceptions of the notion of fraction and the properties of
operations with fraction, e.g., assuming that division is commutative and therefore

1 The authors would like to thank the Binational Israel-United States Science Foundation(#92-00276) whose
support made this work possible. The ideas presented here are those of the authors and no endorsement of
BSF should be inferred.
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This paper is a result of a project whose main aims were: (1) to describe
prospective and inservice elementary school teachers' Subject-Matter Knowledge
(SMK) and Pedagogical Content Knowledge (PCK) of rational numbers; and (2) to
develop teaching strategies for enhancing teachers' SMK and PCK of rational
numbers and evaluate their impact. In a previous paper, we described prospective
and inservice teachers’ PCK of multiplication and division word problems (Klein &
Tirosh, 1997). In this paper we describe prospective and inservice teachers PCK of
common children’s difficulties in calculating multiplication and division expressions
involving rational numbers and of their possible sources. We also briefly describe a
course aimed at enhancing teachers’ SMK and PCK of rational numbers, and report
on the impact of this course on prospective and inservice teachers’ PCK of this topic.
Our main research questions are:

(1) Are prospective and inservice teachers aware of common difficulties that children
experience in calculating multiplication and division expressions involving rational
numbers? To what do they attribute them?

(2) What are the effects of teaching experience on teachers’ awareness of students’
difficulties in calculating multiplication and division expressions with rational
numbers and their possible sources?

(3) What is the impact of participation in a course that focuses on students’ ways of
thinking about rational numbers on prospective and inservice teachers’ PCK of this
topic?

Methodology

Subjects. Ninety seven Prospective Teachers (PT) and 118 Inservice Teachers (IT)
participated in this study. Thirty-seven of the prospective teachers were in their first
year, 30 were in their second year and 30 were in their third year in a four-years
elementary teacher education program at an Israeli State Teachers' College.
Prospective teachers in this college choose a domain of specialization. Only those
who had participated in a relatively extended mathematical program in high-school
could choose mathematics as their domain of specialization, and their program
included substantially more mathematics and mathematics method courses than the
program of those who specialized in other domains. The second year prospective
teachers who participated in this study specialized in mathematics.

The participating inservice teachers took a special two-year program aimed at
creating a community of leading elementary school mathematics teachers in Israel.
This Expert Teachers Program (ETP) included mathematical courses, pedagogical
courses, and work-field. Sixty four of these inservice teachers were in their first year
of the program and 54 were in their second year. Most of the participating inservice
teachers had experience in teaching rational numbers (41 students in the first year and
41 in the 2nd year). The others were teachers who taught mathematics in classes
where rational numbers were not included as a main topic in the curriculum.

We shall report on the similarities and differences between SMK and PCK of
non mathematics majoring prospective teachers, mathematics majoring prospective
teachers, and inservice teachers.
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Instruments. Two main instruments were used in this study: 1. A_Diagnostic
Questionnaire (DQ) 2. a course on Students’ ways of Thinking About Rational
numbers (STAR).

1. The DQ included the following problem: Following are nine expressions: (a} calculate
each of these expressions, (b) list common mistakes students in seventh grade may make, after
finishing their studies of fractions, and (c) describe possible sources for each of these mistakes.

3 31 1 1 13 5:15 R 15:5 l
s ——— — —4 — . 4— . 320:
’ 10 42 320 3 4 4’5 4 3

Research in mathematics education reports on common difficulties that
students experience with eight of these nine expressions (see Table 1 columns 1& 2).
One of the expressions (15:5) is usually computed correctly by students. Including
this item enabled us to examine the participants’ ability to differentiate between
expressions that are often incorrectly calculated and those that are usually correctly
solved. The inclusion of two pairs of expressions (15:5 and 5:15, %;4 and 4%) yields a

more comprehensive picture of teachers’ PCK.

2. The course (STAR). This 30 hours (one semester, two weekly hours) course was
aimed at developing teachers' understanding of mathematical concepts and structures
related to rational numbers. Another major aim was to enhance the participants’
knowledge of children's ways of thinking about rational numbers. Use was made of
relevant research findings on children's, prospective and inservice teachers'
conceptions of rational numbers. The participants’ ways of thinking about and with
rational numbers were used as a springboard to discuss various issues (i.e., the
mathematical reasons behind the relatively complicated definition of addition of
fractions, alternative definitions of division, etc.)

Procedure: The DQ was administered to all subjects in two sessions of 90 minutes
each, during a mathematics lesson. The second year prospective teachers and the
inservice teachers in their second year of study in the ETP program participated in the
course on students’ ways of thinking about rational numbers. The DQ questionnaire
was administered to the second year prospective teachers before the course and again
about a month after it. The inservice teachers enrolled in the second year of the ETP
program answered the DQ about a month after participating in the course. It is
noteworthy that while prospective teachers who responded to the DQ before and
after instruction were the same students, the inservice teachers before and after
instruction were different groups (inservice teachers in the first and second years of
the program, respectively). Yet, these two groups of inservice teachers were very
similar in terms of their mathematical background and teaching experience, and
therefore it was possible to assess the effects of participation in the course by
comparing the responses of these two groups to the DQ questionnaire.

Results

Prospective and Inservice Teachers' SMK: The analysis of teachers’ PCK should
take account of teachers’ own solutions, Therefore, we first analyze the subjects’
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responses to the multiplication and division examples. Our data show that the vast
majority of the prospective and inservice teachers correctly calculated all nine
multiplication and division expressions. The percentages of correct answers to each
item did not fall below 85%. Still, several responded incorrectly to some of these
items. For instance, 16 subjects (7%) gave an incorrect response to %;4 usually getting

a quotient of 1 instead of L6 (they wrote %;4=%4=1 ). It is noteworthy that some
1

participating teachers who incorrectly calculated the expressions considered the
correct answer to be incorrect. Moreover, for the expression %%, 9% of the teachers

who answered correctly, considered the correct expression 13 to be incorrect.
45

Prospective and Inservice Teachers' PCK Parts (b) and (c) of the problem probed
teachers’ knowledge of children's ways of thinking about multiplication and division
expressions involving rational numbers. The analysis of PCK to each item relates
only to the subjects who correctly answered the item, as they were the vast majority
of the participants.

Teachers’ Knowledge of Common_ Students’ Incorrect Responses: Table 1
describes the common incorrect responses that teachers who did not (or did not yet)
participate in STAR listed to eight of the nine expressions included in the DQ.

Table 1- Distribution (in %) of teachers’ knowledge of common students’ incorrect
responses to computation expressions

Expressions common mistakes : PT: IT:
year Ist  3rd 2nd Ist
multiplication not majoring majoring  not teaching teaching
9.3 3.3 .1 47 63 86 38 | 59
10 9.10°9:10°910 .
%% %%, common denominator 43 46 41 10 32
320.1 3201 1 33 42 65 38 44
3 3203°3203
division ‘
%:4 1;%.4;4;%;4.4;4.%; impossible 52 56 70 67 92
13 134345, ; 45 37 45 38 71
a’s 2 FT5 1y mpossible
5:15 15:5 ; impossible 23 28 50 43 55
4L ];1,1, o1 34 41 59 50 65
4 44 4
120.1 320:3;_1_ 1_’320'1 15 27 64 43 58 -
3 320 3 3
Average 36 43 60 40 59

As mentioned before, students usually correctly respond to the item 15:5. The
majority of the participating teachers mentioned no mistakes to this expression.
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Table 1 shows that prospective teachers majoring in mathematics mentioned
more common difficulties that students tend to experience than those who did not
major in mathematics (60% compared to 40%). Inservice teachers who practice
teaching rational numbers were more aware of students’ common difficulties than
inservice teachers who did not practice such teaching (59% compared to 40%). Table
1 also shows that the averages of common incorrect responses mentioned by
prospective teachers who were not majoring in mathematics and by inservice
teachers who did not teach this topic were very similar (around 40%) The averages
of prospective teachers majoring in mathematics and those of i mservxce teachers who
teach rational numbers were also similar (around 60%).

Table 2 shows that teachers who participated in STAR had more profound
knowledge about common incorrect responses to multiplication and division
expressions than those who did not. The data show that all three groups of teachers
(prospective teachers, inservice teachers with no experience in teaching rational
numbers and inservice teachers who practice teaching rational numbers) gained from
participation in STAR. Interestingly, no substantial differences in ability to list
students’ common mistakes were observed between these three groups of teachers -
after participation in the course.

Table 2- Distribution (in %) of teachers’ knowledge of common students’ incorrect
responses 1o computation expressions before and after participation in STAR

Expression PT: IT: not teaching teaching

year 2nd 1st 2nd I1st  2nd

participation in STAR - + - + - +

multiplication

9.3 86 90 38 64 59 49
10 -

31 41 45 10 27 32 35

ra 2

3201 65 70 38 45 4 37

division .

1, 70 97 67 100 92 83

4

13 45 51 38 45 71 59

45

5:15 50 79 43 82 55 88

4.l 59 79 50 80 65 79
4

320:1 64 77 43 80 58 79

Average 60 72 40 65 59 63

Teachers’ Knowledge of Possible Sources of Students’ Incorrect Responses: In.

part (c) the subjects were asked to describe possible sources for each of the mistakes
they listed in response to part (b). As could be expected, most of the sources
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mentioned by the teachers to all these computational expressions were
algorithmically-based (e.g., “not writing the integer in fraction form”, “inverting both
the dividend and the divisor”). Very few participants (mainly the prospective teachers
who specialized in mathematics, and the inservice teachers that practice teaching
rational numbers) related to both algorithmic and intuitive sources of incorrect
responses (e.g., “students will think that it is impossible to divide a small number by
a larger one”).

Table 3 shows that before participation in STAR, most prospective and
inservice teachers were unable to mention possible sources of students’ incorrect
responses (many participants repeated the mistake itself, or didn’t respond to this
item). The lowest percentage of sources of students’ mistakes (17%), was given by
non mathematics majoring prospective teachers (first and third years). Somewhat
higher percentages were observed among non teaching inservice teachers (33%).
The highest percentages were given by prospective teachers majoring in mathematics
and inservice teachers who have experience teaching rational numbers, but even these
percentages were rather low (48% and 41% respectively).

Table 3- Distribution (in %) of teachers’ responses to sources of students’ incorrect
responses to computation expressions

PT IT
Expressions not majoring __majoring not teaching  teaching
year 1st 3rd  2nd 1st
multiplication
0.3 9 18 73 29 38
10
31 35 8 30 13 22
42
320% 10 19 49 24 44
division
1, 28 32 57 28 74
4
13 21 11 37 38 34
4’s
5:15 13 28 40 43 52
4l 11 10 52 40 35
4
320% 6 12 46 48 32
Average 17 17 48 33 41

Table 4 shows that participation in STAR contributes to teachers’ awareness of
possible sources of students’ common mistakes to multiplication and division
expressions. Participants in the course typically mentioned several possible sources
of incorrect responses (e.g., algorithmically, intuitively and formally-based sources).
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Table 4- Distribution (in %) of teachers’ responses to sources of students’ incorrect
responses to computation expressions before and after STAR

Expression PT:  IT: not teaching teaching
_year 2nd Ist 2nd 1st 2nd

participation in STAR - + - + - +

multiplication

9.3 73 82 29 55 38 43
10

31 30 48 13 40 22 4

4 2 .

3201 49 83 24 27 44 29

division

1 57 93 28 91 74 72

3

13 37 54 38 72 34 59

4’5

5:15 40 94 43 55 52 82

4L 52 62 40 80 35 53
3

320.1 46 79 48 100 32 47

Average 48 74 33 64 41 53

Conclusions

In this paper, we describe our findings regarding prospective and inservice teachers'
PCK of children's ways of thinking about multiplication and division expressions
involving rational numbers. Our data show that when exploring this aspect of PCK, it
is crucial to distinguish between prospective teachers specializing in mathematics and
those who major in other topics. The substantial differences in the PCK of the
prospective teachers in these two groups of teachers are of special importance as all of
them are intended to teach mathematics in elementary schools. The sources of these
substantial differences and their implications on teacher education programs should
further be explored.

We were expecting that inservice teachers’ PCK of students’ conceptions of
multiplication and division expressions will be more elaborated than that of the
prospective teachers. The data, however, provides a far more complicated picture.
Teachers who teach this topic in schools indeed exhibited some knowledge about
students’ ways of thinking about multiplication and division expressions (similar to
that of the prospective teachers who major in mathematics). But, the PCK of teachers
who do not directly teach this topic is not elaborated, and remarkably similar to that of
the prospective teachers who do not specialize in mathematics. Thus, our findings
clearly indicate that teaching mathematics, by itself, does not necessarily enhance
teachers’ knowledge of students common ways of thinking. Furthermore, it seems
that teachers do not develop by themselves general categorization of possible sources
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of students’ difficulties, and. they tend to resort mainly to one such source
(algorithmic, in this case). We suggest that a general, theoretical framework related to
cognitive processes and sources of misconceptions could support teachers in their
attempts to foresee, interpret, explain and make sense of students' ways of thinking.
Such models should be used only as a first, theoretically-based approximation that
can assist teachers (and researchers) in their attempts to analyze the specific thinking
processes that the child uses when approaching a specific task.

Our data reveal that participation in a special course on students’ conceptions
of rational numbers could enhance both prospective and inservice teachers‘ PCK of
students’ conceptions of multiplication and division expressions. Participation in the
STAR course increased teachers’ knowledge of common incorrect responses and
provided them with a wider perspective regarding possible sources of such reactions.
Yet, the impact of such knowledge on the actual teaching of rational numbers has still
to be examined.
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INFLEXIBILITY IN TEACHERS’ RATIO
CONCEPTIONS

Anat Klemer and Irit Peled
University of Haifa

Elementary school teachers, participating in a sequence of
workshops on ratio and proportion, exhibited inflexibility in
their conceptions. The teachers were able to perform
conventional ratio and proportion tasks, but showed lack of
flexible understanding of the concepts. Specifically, they could
figure out ratios and perform ratio-division tasks, but failed to
see the different appearances of the intensive ratio. The
teachers also failed to realize that a modified additive strategy
could be used to create equivalent ratios. This might be an
over-generalization of the knowledge that an additive strategy is
a wrong method in comparing ratios.

In a class of 28 students, the ratio between the number of girls and
the number of boys is 4:3. How many girls are there?

This type of problem is cited by researchers and by the Third International
Math and Science Study (TIMSS, 1997), an international research on math
achievement, as an example of a difficult problem. The problem is often used
in checking children’s knowledge of ratio in tests that involve ratio and
proportion concepts, and its low success rate serves to make a point that these
concepts are difficult. Numerous articles have dealt with the identification

and explanation of ratio and proportion difficulties. Some of them are:
Noelting (1980a, 1980b), Tournaire & Pulos (1985), Hart (1981), Vergnaud
(1988), Lesh, Post, Behr (1988), Confrey and Scarano (1995), to mention just
a few of the contributors. '

This study describes teachers’ conceptions of some of the aspects of the ratio
concept. The research is a part of an in-service teacher education project
(“Tomorrow 98” in Upper Galilee), aimed at improving elementary school
mathematics education in the spirit of the CGI project (1996). In this part we
analyze the work of a group of 13 teachers, who are at least three years in the
project, and have participated in a sequence of workshops (seven two-hour
meetings) on ratio and proportion.
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The Workshops: goals and structure

The goals of the workshops are to make teachers aware of children’s
difficulties in developing ratio and proportion concepts, improve teachers’
own understanding of these concepts, and discuss and develop ideas about
teaching them.

The teachers are introduced to children’s understanding of ratio and
proportion through Noelting’s tasks. Noelting (1980a) describes steps in
children’s development of the concept of ratio and proportion, and suggests a
mixture (of water and orange-juice glasses) task to diagnose the child’s
developmental level with regard to these concepts.

The teachers are given examples of children’s answers at the different levels
described by Noelting, and each teacher is asked to perform Noelting’s test in
a sixth grade class. In following meetings children’s answers are discussed,
additional issues are brought up and analyzed by engaging the teachers in
solving problems.

In the following part we will describe two related issues that were found to be
problematic in the discussions and analysis of ratio and proportion with the
teachers. We have chosen to highlight them because research on ratio and
proportion difficulties usually concentrates on other aspects.

Unawareness of the Different Intensive Ratios

A group of size N consists of two groups of sizes N; and N; such the ratio
between N and N is a:b (where a and b are natural numbers that do not have
a common divisor). If N > a+b then it is possible to divide N into smaller and
equal groups, such that the subgroups’ elements conserve the a:b ratio. One
possible alternative is to divide N into equal subgroups of size a+b.

For example: In a group of forty children consisting of N;=30 girls and N=10
boys, the ratio between the total number of girls and the total number of boys
is 3:1. The children can be divided into ten subgroups of four children, three
girls and one boy in each group. The ratio between the number of girls and
the number of boys in each of these subgroups is 3:1. It should be noted that
the children could also be divided into five subgroups of eight children, six
girls and two boys in each group. The ratio in each subgroup of eight is also.
3:1.

The ratio a:b is an intensive ratio in Schwartz's terms (1988). This (same)
intensive ratio exists between the original subgroups and also in the new

b=
o
!
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subgroups. In order to describe teachers' conceptions we will use two
different terms to talk about the (same) intensive ratio in different groups.

We will refer to the ratio between the sizes of the two groups, N, and N», as
the ‘global intensive ratio’, and to the ratio between a and b within the
subgroups of size a+b as the ‘subgroup intensive ratio’. In the example, the
ratio 3:1 is the ‘global intensive ratio’ between 30 and 10 and also the
‘subgroup intensive ratio’ in the small groups, between 3 and 1 in one
division or between 6 and 2 in the second division. We show in this work that
our teachers were not aware of the subgroup intensive ratio. A differentiation
between intensive quantities is made by Kaput and West (1994), who
distinguish between particular and rate conceptions of ratio intensive
quantities. We have chosen to emphasize the different groups in which the
intensive ratio appears, yet view the meanings of the ratios to be similar.

As mentioned earlier, the problem of dividing an amount by a given ratio is a
common task for children in this subject. Keret (1997) lists several ways to
solve it, including a trial and error method and some more systematic division
methods. We have posed such a problem to our teachers, looked at their
solution methods, and then analyzed different methods with them. The
problem presented to the teachers:

A prize consisting of 840 1S is equally divided between children in a group.
The ratio between the number of boys and the number of girls is 3:4. How
much money will the boys get? How much money will the girls get?

All the teachers, except one, divided the total amount into 7 parts, calculated
the total amount of 3 parts (the boys’ share) and 4 parts (the girls’ share).
Their explanations were quite similar to each other. For example:

Simon: 840 is my whole. The boys have 3 parts of the whole, and the girls
have 4 parts.

Michal: Each part is 1/7. The boys get 3x{(1/7)x840], the girls get
4x[(117 )x840).

Alice: One part is 120, the boys get 4x120, the girls 3x120 [should have been
the other way round].

Only Anna used a different strategy: Each time [I distribute] I have 7. How
many times do I have 7 in 840? [Then I calculate] how much altogether will
the boys get? How much will the girls get?

The first strategy, used by most of the teachers, can be regarded as a
Partitioning Strategy. The number 7 stands for the total number of shares .
(parts), out of which the boys get 3 and the girls get 4. The second strategy
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can be regarded as a Quotitioning Strategy. The number 7 stands for the
amount of money given in each round of the distribution, 3 IS to the boys
and 4 IS to the girls. The use of this strategy involves the conception of the
‘intensive ratio in the subgroups. All except one of the teachers were not
aware of the subgroup intensive ratio in this problem.

Following a discussion on possible strategies, the teachers became aware of
using their strategy in a technical way. They claimed that although they had
used a Partitioning Strategy, they find the Quotitioning Strategy much more
meaningful. It also occurred to the teachers that during the regular course of
instruction they are working with children mainly on a quatitioning strategy.
However, when given ratio-division problems, children are expected to use a
technical partitioning strategy, which is not related to the way they developed
their understanding of such tasks.

A more straightforward opportunity to exhibit awareness of the subgroup
intensive ratio was given to the teachers in a discussion of the following
problem:

A group of children consists of 32 girls and 52 boys. a) What is the ratio -
between the number of girls and the number of boys? b) Can the group be
divided into smaller equal groups in a way that the ratio will be the same in
all these groups?

The teachers had no trouble finding the ratio, and all teachers arrived at the
answer 8:13 (although there are other correct answers). However, they all
answered “no” on the second part. A reluctance to perceive the subgroup
intensive ratio reappeared in a similar problem a week later in spite of an
extensive analysis of the above problem and some additional examples
presented to the teachers.

Over-generalization in Avoiding Additive Conceptions

According to what is known on the development of ratio and proportion
concepts (Noelting, 1980a, 1980b) a common conception prior to the expert
stage is the additive relation. Children, using an additive strategy, compare
ratios by looking at the differences between the numbers within each ratio or
between the two ratios. These children would judge two mixtures in’
Noelting’s test to have the same orange flavor if they note an additive
relation. They might notice the differences between mixture ratios and say
that 2:7 is like 12:17 because 12=2+10 and 17=7+10, or they might notice
the differences within each mixture and say that 2:7 is like 12:17 because 7-
2=5 and 17-12=5. ' '
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Hart (1981) identifies the additive conception in a large number of students
taking the ratio test in the Concepts in Secondary Mathematics and Science
research.

An interesting difficulty, related to the additive conception, has emerged
during our work with the teachers. We call it: ‘Over-generalization in
avoiding additive conceptions’. As it turns out, the (correct) knowledge that
one should not compare ratios by using an additive strategy made our
teachers so determined to avoid addition to the point that they claimed it is
wrong to add even when it was a legitimate action. The following example
demonstrates the teachers’ difficulty:

This problem was presented in the workshop:

I went on a shopping spree in Kolbo making purchases in two department.
The cost of the different items that I bought amounted to 900 IS. The ratio
between my spending in these two departments was 2:7. I would like to pay
my bill in three payments that do not have to be equal. Each payment
consists of two sums of money for the two departments that keep the 2:7
ratio, and are paid in IS (in whole numbers).

List some payment plans that I can use.

The teachers suggested a variety of methods. Following a discussion on their
methods, the teachers were asked: Take one of the plans that you suggested.
Now if you move 2 IS and & 7 IS from the two sums in one payment
(choosing one that is big enough) and add it respectively to the two sums in
another payment, will you get a plan that satisfies the problem?

The group unanimously voted ‘no’ as an answer. Some examples of their
reactions:

Ronit: It does not keep the same ratio.

Smadar: But this is addition (1) It doesn’t keep the same ratio.

Michal: I am sure it’s not the same ratio.

Alice (checking in her calculator): I took 2 off the first amount to department
A. That’s 48. From 175 [payment to department B] I took 7 off and got 162
[an error, it should be 168). I checked if the ratio is conserved and stays 2:7
and I found that it does not.

In spite of this opposition and against her own intuition, one of the teachers
makes the following statement:

Dorit: After checking it with my calculator, [I have found that] it conserves
the ratio, [this means that] there are many solutions. Because we are
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breaking up the payments that are built up of many 2 and 7-s. I know it is
very difficult to get this. We [usually] think of ratio in the context of division
and multiplication and not in addition and subtraction, that's why it is so
difficult to think this way.

DISCUSSION

The examples presented in this paper demonstrate teachers’ inflexibility in
understanding the ratio concept. This characteristic was exhibited on several
occasions when, following a correct performance of conventional ratio tasks,
the teachers were asked to look at things differently or try to modify their
solution in order to get another answer.

In a ratio division problem most of the teachers solved the problem correctly
using a technical partitioning method. Their method and the discussion they
held following the task indicated a global conception of the ratio, i.e. a
conception of the ratio as representing the relation between the two final parts
into which the whole is divided. The teachers found it difficult to see the
ratio as representing an intensive relation in smaller groups, and did not see
the whole divided into smaller equal parts that conserve the same ratio.

This phenomenon repeated itself in several cases where the issue of finding
smaller groups was the focus of an investigation. Although the investigation
eventually led to more flexible conceptions, it took several examples to
convince the teachers to 'see' the intensive ratio in different places.

Another demonstration of inflexibility appeared in the teachers’ inability to
move parts between subgroups. Their difficulty here might be a combination
of their problem in perceiving the intensive ratio together with their reluctance
to use an additive strategy. In their avoidance of addition they seem to be
over-generalizing their knowledge that addition is incorrectly used when one
is adding the same amount to the two parts of a ratio (or to the numerator and
denominator of a fraction) in trying to get an equivalent ratio (or fraction).

In our effort to teach children the concepts of ratio and proportion we would
like them to master these concepts with understanding. This research shows
that first we might need to take care of some aspects of teachers’ knowledge
and help them increase their own flexibility in perceiving these concepts.
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PRESERVICE TEACHERS’ CONCEPTIONS OF
PROBABILITY IN RELATION TO ITS HISTORY

Hari Prasad Koirala
Eastern Connecticut State University

Mathematicians, statisticians, and philosophers have had different conceptions -
of probability throughout its history, namely classical, frequentist, and subjective.
Similar to this history, the findings of this study indicated that a group of 16
preservice teachers also held these three different conceptions of probability.
However, whether their conceptions were classical, frequentist, or subjective mostly
depended on the kinds of problems posed and their personal experiences.

Moreover, their conceptions were often a mixture of classical, frequentist, and
subjective. It is suggested that the teaching of probability should provide an
opportunity for students to reflect on these diverse conceptions.

Diverse Conceptions of Probability: A Historical Account

Philosophers and mathematicians have held different conceptions of probability
throughout history (Daston, 1988). At present, there are three distinct conceptions
of probability that are derived from its historical tradition: classical, frequentist, and
subjective (Borovcnik, Bentz, & Kapadia, 1991; Hawkins & Kapadia, 1984;
McNeill & Freiberger, 1994; Steinbring, 1991).

Classical probability was first defined by Pierri Laplace (1749—1 827) as "the
ratio of favourable cases to the total number of equally possible cases” (Hacking,
1975, p. 122). Classical probability is obtained by making an assumption of equally
likely cases and is sometimes referred to as a priori, Laplacian, or theoretical
probability. Although, the credit for defining classical probability is given to
Laplace; his definition was criticized because of the use of the word "possible,"
which has a dubious meaning. Contemporary mathematicians have refined this
definition. For example, Kline (1967) expresses this as "if, of n equally likely
outcomes, m are favorable to the happening of a certain event, the probability of the
event happening is m/n...." (p. 524, emphasis in original).

Frequentist conception of probability was "connected with the tendency,
displayed by some chance devices, to produce stable relative frequencies” (Hacking,
1975, p. 1). Some people refer to this as a posteriori, experimental, or empirical
probability. It is defined as the ratio of the observed frequency to the total number
of trials in a random experiment over the long run. Mathematically, it involves 'the
theory of limits and convergence.

Subjective conception refers to probability as “evaluations of situations which
are inherent in the subject's mind" (Borovenik et al., 1991, p. 41). Daston (1988)
defines it "as the intensity of beliefs" (p. 188). It assumes that human beings are
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capable of estimating the probability of certain events and making adjustments when
additional data are obtained. It is also known as personal probability.
Mathematicians and statisticians call it Bayesian probability, named after Thomas
Bayes (1701-1761). Mathematically, it is associated with Bayes' theorem.

The different conceptions of probability that emerged have had significant
influence on the teaching and learning of probability (Borovcnik et al., 1991;
Hawkins & Kapadia, 1984; McNeill & Freiberger, 1994; Steinbring, 1991).
Mathematicians, logicians, and philosophers have debated which of the views of
probability is superior. For example, philosophers or mathematicians who believed
that knowledge can be derived deductively in a formal fashion, argued for the
classical view of probability. Those who believed in inductive reasoning supported
the frequentist approach and those who believed in personal judgment supported the
subjective approach to probability.

Preservice Teachers’ Conceptions

Similar to the history discussed above, mathematicians, statisticians, and
educators today have different views about the teaching and learning of probability
in schools and universities. These differing views, especially the views held by
preservice and inservice teachers, will have an important role on how teachers
deliver their teaching in schools (Thompson, 1992). Studies, that focus on the
different conceptions of probability (classical, frequentist, and subjective) are
scarce. The purpose of this paper is to report about a study which investigated

“whether or not preservice teachers of secondary school mathematics held different

views of probability, namely classical, frequentist, and subjective.

Methodology of the study

A total of 16 preservice teachers enrolled in secondary mathematics methods and
problem solving courses at a Canadian University participated in this study. The
participants were selected based on their mathematics and probability backgrounds
as well as their interest in the study. Each preservice teacher had taken at least 10
mathematics courses and one probability course in his or her undergraduate degree.

Several items used by previous researchers to examine students’ understanding
of probability (for example, Konold, 1991) were reviewed. The items thus reviewed
were modified for the purpose of the study. In addition, some new problems were
also constructed using the investigator’s personal experience of teaching probability.
The study used the following two problems because of their potential to explore
participants’ diverse conceptions of probability.

1. Lottery and car accident Problem
Which one is more likely?

(a) You will win a jackpot in Lottery 6/49.
(b) You will be killed in a car accident.
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2. Thumbtack problem
Each preservice teacher was shown a thumbtack and shown two positions of its
landing on a wooden table, with the point down or with the point up as shown in the

diagram below.
A B

When the preservice teachers observed the thumbtack the following question was
asked: Which one (landing with the point down or point up) is more likely? Why?

(Adapted from Konold, 1991)

In the first problem, the participants could use a combination formula to calculate
the probability of winning the jackpot in the lottery 6/49. However, no formula
could be used to calculate the probability of being killed in a car accident. They
could not use such a formula in the second problem as well.

Both problems were posed in an interview setting. The participants were probed
to determine their conceptions of probability (classical, frequentist, and subjective).
For example, if the participants made certain assumptions and used the classical
view of probability they were asked whether or not they believed in conducting a
random experiment to determine probability and the vice versa.

The participants’ responses to all these problems were audiotaped, transcribed,
and then analyzed in terms of classical, frequentist, and subjective probability. If
the participants made certain assumptions to determine the probability of an event, it
was categorized as classical. For example, in the lottery and car accident problem,
if they assumed that the probability of any six numbers being selected in the lottery
is equal, and calculated the probability based on the combination formula

n! 49/
Cinr)= = )
(n—r)!xrl (49-6)'x6!
called frequentist if the participants wanted to know how many people in the past
have won the jackpot in 6/49 lottery in order to determine probability by taking a
ratio of the winners to the total number of people who played the lottery. Responses
were called subjective if the participants stated that the probability of being killed in
a car accident is higher than winning the jackpot in the lottery because the number
of people killed in car accidents is higher than the number of people winning the
lottery.

Results

Although philosophers, logicians, and mathematicians favored one conception or
the other during the evolution of probability, the preservice teachers seemed to hold
different conceptions of probability simultaneously. Nevertheless, the preservice
teachers' beliefs to classical, frequentist, and subjective conceptions differed based
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on the kinds of problems on the one hand and their personal experiences and
intuitions on the other.

In the lottery and car-accident problem, 14 out of 16 participants used a classical
conception when they tried to determine the probability of winning the lottery 6/49
by using the combinatoric formula. They used the formula and calculated that the
probability of winning the jackpot in the lottery was about 1 in 14 million. In the
same problem, they used a mixture of classical, frequentist, or subjective conception
to determine the probability of getting killed in a car accident. Nine out of 16
preservice teachers wanted to use data provided by the investigator related to death
in car accidents in the Canadian province of British Columbia. They calculated the
probability by dividing the number of total deaths in car accidents by the total
number of people living in the province. Based on these calculations, they
concluded that the probability of being killed in a car accident was higher than
winning the jackpot in the lottery 6/49. This response can be classified as a mixture
of classical and frequentist because they were calculating a ratio based on data
available to them making an assumption that every resident of the province had an
equal chance to become a fatality. ’

The remaining seven said that they did not need data for this problem because the
probability of getting killed in a car accident was much higher than winning a
jackpot in the lottery 6/49. When asked to provide their reasoning they stated that
they had read or watched news about killings in car accidents almost everyday but
there was hardly any news about winning a jackpot in the 6/49 lottery. Hence, these
seven preservice teachers were using their subjective conceptions of probability.

Different conceptions of probability held by preservice teachers were also
observed in the thumbtack problem. Four preservice teachers wanted to run the
experiment with the tack before making any decision. They threw the thumbtack
and recorded the frequency of landing “point up” and “point down”. They believed
in a frequentist conception and obtained the probability of point up or point down by
dividing their total frequencies by the total throws. Interestingly, three of these four
preservice teachers had used the combination formula to calculate the probability of
winning the jackpot in the previous problem. Hence their choice of conception was -
based on the kinds of problems posed. When probed, they stated that they did not
know any formula to apply in the thumbtack problem.

Twelve preservice teachers used the structure of the thumbtack to decide whether
the tack would land “point up” or “point down.” They basically began with a
subjective conception and stated that “point up is more likely because the flat side of
the tack is heavier and more stable than the pointed part.” Nine out of these 12 :
participants wanted to use a classical conception of probability, but were unable to
determine the odds of point up to point down based on some assumptions. They -
then stated that they would run the experiment with the tack after some thoughts
about its landing. They initially based their view on a classical conception.

R 145

3-138



However, they stated that they would change their initial view of likelihood based
on subsequent trials and experiments. For these preservice teachers, classical and
frequentist conceptions of probability go hand in hand helping to modify their
thinking processes. That means they viewed both deductive and inductive thinking
as being helpful in making decisions regarding probability.

. About half of these 16 participants, however, were not sure about using a
frequentist conception of probability because they could not decide how large a
sample is large enough. For example in determining whether the tack would land
point up or point down, the concept of large numbers varied from person to person.
Four participants stated they should try dropping the thumbtack about 100 times to
get a rough estimation of the landing of the thumbtack. Three other argued that they
should drop the thumbtack 1000 times. For two other participants, even 1000 trials
would not have been enough. These two participants stated that they would not trust
even a thousand trials. According to them, they would conduct a computer
simulation and run this experiment a million times. Basically these preservice
teachers did not prefer a frequentist approach. A computer simulation is developed
based on a classical conception because of certain assumptions used in the model.

Despite the preservice teachers’ various beliefs about how much would be
considered a large number of trials, all the preservice teachers believed that the
larger the number of trials, the better the estimates. For example in the thumbtack
problem, one participant stated the logic as follows:

The fewer trials you do the more error you're going to have in your
assumption.... You dont want to sit there for an hour and drop it. But we do
it 10 times [drops the tack ten times] See, that says 90%. But you know if
you do it another 10 [drops the tack ten times again]. That was 70% for this
one. Sol take the average of the two. Based on 20 trials these are the odds.
But the more trials you do the closer you're going to get the actual
probabilities.

Another participant stated that he would start with 1000 trials to come to an
estimate. He would then increase the number of trials and adjust his estimate. But
in general, the number of trials depended on how they viewed the likelihood of the
problem before actually trying the experiment. For example, one participant stated
that she would do the experiment to verify her theory that the thumbtack is more
likely to land point up. But she would not change her belief if the thumbtack lands
with point down 60 times in a throw of 100 times. She would not discard her theory
even with 1000 trials. But, some other participants would constantly change their
estimation based on the experiment. Whether or not the preservice teachers would
constantly change their beliefs based on an experiment depended very much on
whether they believed in a classical, frequentist, or a.subjective view of probability.
The classicists did not believe in changing their theory unless the experiment is
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conducted a large number of trials like 10,000. The frequentists and subjectivists
constantly changed their theory based on experimental results, even with 10 trials.

Conclusion

Although the preservice teachers had their preferences as to whether they would
trust more a classical, frequentist, or subjective conception of probability, they did
not blindly follow one particular conception or the other. As indicated above, their
conceptions largely depended on the nature of the problem and their prior
experiences related to the problem. For example, the participants demonstrated a
classical conception in the lottery problem because they were familiar with the
combination formula. However, many of the same participants demonstrated a
frequentist or subjective conception in the car accident problem even though the
lottery and car accident problem was provided as one task. By the same token, the
participants used mostly a frequentist or a subjective approach to the Thumbtack
problem because no immediate mathematical formula was available to them.

While the preservice teachers’ conceptions were mostly based on kinds of
problems asked, they had a preference whether they believed more in a classical,
frequentist, or subjective conception of probability. The majority of the participants
always attempted to solve the problems using a classical approach. They switched
to a frequentist or a subjective approach only when they could not use a probability
formula making some assumptions. The other participants preferred to conduct an
experiment and update their thinking to determine probability. Their conceptions
could be summarized with Figure 1.

-~ @n =80 0 0"
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Figure 1. Preservice teachers’ differing conceptions of probability '

The three sides of the triangle are represented by classical, frequentist, and
subjective conceptions of probability. The point where the three arrowheaded lines
intersect represents a preservice teacher's conception. The point is not always at the
same place for each preservice teacher. Rather, the point moves from person to
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person and within a person. For some of the preservice teachers, the point moves
towards a classical conception of probability. But that does not mean that they do
not hold any frequentist or subjective conceptions of probability. Similarly a
preservice teacher may have more faith in a frequentist conception, but he or she
may still hold a classical or subjective conception of probability.

Once again the preservice teachers’ conceptions of probability were not purely
classical, frequentist, or subjective at all times, but their conceptions were classical
on one problem, frequentist on another, and subjective on other problems. Further,
some of the preservice teachers’ conceptions were a mixture of classical, frequentist,
and subjective and at times it was difficult to separate one from the other.

Teaching Implications

The debate about different kinds of probabilities: classical, frequentist, and
subjective has influenced the research and teaching of probability. Presently,
mathematics and statistics educators have contrasting views as to whether a
classical, frequentist, or subjective view of probability should be taught (Borovenik
et al., 1991; Hawkins & Kapadia, 1984; Konold, 1989, 1991; Shaughnessy, 1992,
Steinbring, 1991). This is basically an epistemological debate, but teachers face
difficulties in determining appropriate pedagogical approaches for teaching
probability when these epistemological issues are unresolved.

The results of this study indicate that preservice teachers hold various
conceptions of probability simultaneously. These differing conceptions held by
preservice teachers are not necessarily incorrect. Rather, the conceptions are
valuable based on problems posed. A classical approach can be more valuable in
one kind of problem whereas a frequentist or subjective conception can be valuable
for other kinds of problems. The classical approach to teaching probability is
powerful in solving problems in which assumptions can be made more easily. The
subjective and frequentist approaches to teaching probability are particularly useful
when assumptions about a problem cannot be determined easily. Moreover, these
approaches provide students with the opportunity to update the probability of a
certain event according to new information.

In some cases, all different conceptions of probability can be used to solve the
same problem. For example, students can solve the lottery and car accident problem
using all three approaches and determine their effectiveness. Students are more
likely to develop a conceptual understanding of mathematics if they are provided
with the opportunity to use varieties of approaches. The teaching of probability only
through one approach is harmful for students’ conceptual understanding and so a
multiplicity of approaches depending upon the situations at hand should be utilized.

Another implication of this study is that teachers of probability should provide
students, with varieties of problems that can be solved by using different
approaches. Students’ differing conceptions that emerge in class should be
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discussed in terms of their strengths and weakness in solving future probability
problems. Such discussion can prepare students in solving varieties of problems in
future.
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Team Teaching and Preservice Teachers’ Classroom Practice with
Innovative Methods of Instruction —The Case of Computers
Bilha Kutscher The David Yellin Teachers College, Israel.

Abstract

This paper reports on the effects of team-teaching on preservice teachers’
classroom practice when implementing an innovative computer-based
program. Novice student teachers, working in pairs, taught a
mathematics class using computers. They were generally afraid of
computers and had not expected to teach with them. However, after this
leaching experience, all the preservice teachers had high expectations of
computer use in their classes. They reported that team-teaching reduced
anxiety, gave them confidence and helped solve discipline problems.

Research has indicated that student teachers generally adhere to the
classroom practices and strategies they themselves experienced as school
pupils (Kagan, 1992). Thus, for innovative methods of instruction to be
adopted and implemented by these future teachers, their perceptions of
teaching and learning have to undergo some change. Computers are
clearly an important medium for teaching mathematics. Working with
computers requires a change in the teacher’s role in a computer—
classroom; however this causes anxiety for practicing teachers (Ainley,
1996). Despite increased availability and support for computers, levels of
computer use among teachers are not very high. With regard to preservice
teachers, their expectations of computer use are high, however these
expectations drop after their first year of teaching (Marcinkiewicz, 1996).
Effecting changes in teaching practice is difficult (Levenberg & Sfard,
1996) but possible (Bednarz, Gattuso, & Mary, 1996), where a necessary
condition for change in teaching patterns is reflective thinking on the part
of the teacher (Sch&n, 1983). Teachers play an important role in
introducing innovative programs since they are the filters between the
program developers and the students. (e.g. Moreira, & Noss, 1995). Team
teaching facilitates professional development and effecting school change
(Griffin, 1991). Other benefits that have been cited through team teaching
are a reduction in teacher isolation (Chazan, Ben-Chaim & Gormas,
1996), improved instruction, a decrease of disciplinary problemis in the
classroom and greater teacher motivation (Spies, 1995).

This paper reports on a case study of a class of 15 novice preservice
teachers who taught in pairs (one novice teacher was concurrently a
member of two teams) and implemented an innovative mathematics
program that relied heavily on the use of computers in junior high school.

Background
The school requested that the preservice teachers teach the topic of
statistics to seventh grade students. Most of the students did not feel at
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home with a computer. Some students barely knew how to use the
computer for word processing - the most commonly used feature of
computers in the college - let alone the electronic spreadsheet. So when the
students were informed that they were to use an innovative program which
taught statistics through the medium of the electronic spreadsheet, the
students were understandably alarmed. They were required to teach
mathematics for the first time in a classroom situation, with all the
accompanying anxieties, and with a computer to boot — a tall order! In this
college, a ‘didactic’ instructor accompanies a group of students in their
practice teaching. The instructor meets with his or her group in a joint
weekly session where discussions are held on the current topic that the
student teachers are teaching in their classrooms. The instructor examines
the students’ lesson plans and then regularly observes the students in their
classroom practice for at least part of their lessons. Notwithstanding this
quite intensive attention and follow up, the first year of practice teaching
always holds problems for the student teachers — discipline problems,
instruction problems and the like. As mentioned above, student teachers
tend to perpetuate the practices and strategies that they experienced as
school students and do not voluntarily integrate technology into their
classroom practice (Marcinkiewicz, 1996). Since teachers’ colleges
obviously want to train their future teachers to be as up to date as possible,
the instructor felt that it was important for student teachers to learn and
experience new classroom teaching strategies in a computer environment
while they were in preservice situations. The novice teachers might then
enter the teachers’ work force with experience and confidence in more
innovative teaching strategies and have positive expectations for using
technology in their classrooms. However, too many new challenges and
changes might be counterproductive and thus jeopardize the novice
preservice teachers’ chance for succeeding. The conjecture was that team
teaching would offer the novice student teachers support in this innovative
computer-teaching experience and allow them a measure of success and
confidence that they might then take with them into their future classroom
practice.
Study Design

It was decided that these student teachers would team teach in pairs. Both
teachers would always be present in the classroom but would take turns in
being the “active” teacher. While one teacher would expound on a topic to
the whole class, the other would listen, observe his colleague’s didactical
capabilitics and note any difficulties that might later need be attended.
However, during the time when students would work on assignments both
teachers would have the same role in the classroom: assisting the students,
resolving any problems encountered and the like.
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The data collected in this study were transcripts of semi-structured
interviews carried out with all preservice teachers towards the end of the
school year. There was also a follow up interview with one of the
preservice teachers at the beginning of his second year of preservice
teaching. This preservice teacher, Uzi, figures prominently in this paper as
his case was particularly interesting since he had originally expressed
considerable anxiety. at the idea of computer-medium teaching. The data
was analyzed in order to assess the effect of team teaching on various
aspects of the preservice teachers’ instructional experience in their first
year.

Results
Reduction in teacher isolation: The first benefit from team teaching noted
by many of the student teachers was the confidence they gained in being
able to share their new, daunting experience with another teacher.
Uzi: When 1 first heard that 1 was going to work with computers my
hands and feet shook....But when I was told that I was going o share my
work with another person it calmed me, it really calmed me down. And
why did it calm me, because if I don’t know (something) there is some one
who can help me now..There is a certain collaboration and not
everything falls on me.
Lior: Team-teaching — first and foremost this gives confidence.
Orna: ..When I heard computers I was a bit frightened...1 didn’t come
with a background in computers. And when 1 heard that there is
teamwork, I calmed down.
Discipline: Apparently novice preservice teachers may find difficulty in
focusing concurrently on both teaching the subject matter and taking care
of discipline problems. All the preservice teachers in this study found the
necessary support in their team teacher. For example:
Dina: It’s difficult to keep the quiet (in the class) and also to teach the
material.... There is less pressure on one teacher, both 1o take care of the
discipline and to teach the material.
Orna: When there is someone, someone else with you, they (the other
team teacher) know exactly when to approach the specific student who's
causing a disturbance and to quiet him down, ... or when one has actually
Lo stop the lesson because none of the class is really with us.

Later in the year, Boaz and Basil were having some discipline
problems so they decided that each teacher would teach half their class on
his own. Finding that working apart was less efficient, they rejoined. Boaz
summarized the differences:

Boaz: When I worked with him (Basil) we would be in contact with each
other all the time. Basil, what should we do here, how shall we start, how
shall we end? There was always someone who could give you
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answers ... And when we were working on our own it was like, that’s it,
now you're on your own. Start coping by vourself... And it (the usual
communication) was lacking, very lacking. But on the other hand it gave
me the advantage of entering a class alone and beginning to cope.

This was a theme that came up constantly: the preservice teachers
were aware that future teaching would most likely take place in a single
teaching situation and they felt that team teaching was a non-realistic
utopia. However, as illustrated above, they clearly felt relieved when they
learned that they would not be so isolated, that they were to share their
new experience with another teacher - someone who might offer them
support and solutions in times of need. The team-teachers spoke of the
“fun” it was, working together — motivating them to invest time and effort
in lesson planning. Apparently this sense of sharing was so positive that
the teachers of one of the teams, who each were also meant to teach their
own physics class in this school, of their own volition adopted
team-teaching in their physics classes.

Researcher: Would you have liked, let’s say, to have started to teach also
your physics class as a pair?

Uzi: Yes, and it happened! We (team-) taught without the didactic
instructor knowing... When she wasn’t here (at school) we used to go in as
a couple. Right at the beginning (of the school year) and no one knew
about it... Lior and I would go in and teach the lesson together, until it
came to be that if it was Lior’s lesson then Lior would teach and I would
observe, until we, like, got accustomed. The tension eased, we felt a little
more confident, and that was it. Each one spread his wings...

This physics team-teaching revelation was indeed a surprise. One
may wonder why they had not discussed team-teaching with their physics
didactic instructor. Since this team-teaching occurred at the beginning of
the year, one can only surmise they still felt that team-teaching was a
somewhat irregular teaching method. On the other hand it seems they felt
team-teaching to be so effective and supportive that they did not want to
jeopardize their chance for using it by receiving a possible negative
response from their instructor.

Expected teaching methods in classroom practice: Almost all the
preservice teachers had expected to apply the same teaching methods to
their classes as those their teachers had .used with them when they were
school pupils. When asked whether they had expected to use computers in
their mathematics class, 14 preservice teachers responded with an
unqualified “No!” :

Uzi: First of all 1 thought that | would teach as I was taught... chalk, me
and the blackboard and the students, work sheets.... I wished on myself -
that I would never need the computer for teaching... I always thought of
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how I was taught and it (the teaching method) was easy... because this
method was indeed successful and I see myself as one who
matriculated... without a computer.

Yifat: When you came and told us that we were going to teach statistics

via computers 1 was most surprised. Because I was never taught like
that....I like the computer very much (but) at the beginning I was
apprehensive of teaching with compulers.
Shirley: I didn’t learn (in school) with a computer and I saw that it
worked out and I didn’i feel that anything was lacking. And I have a
computer at home that has been sitting there for years, and I never used
it. Maybe we played games on it, nothing more. And when 1 didn’t think
of teaching with a computer... At first, when you spoke about (teaching
with) a computer I thought, oh no — computer — I really dislike
computers. I have no patience (for it). But today ... for example I see it as
something positive, because first of all it gives the children some variety
in the lesson. Simply, until I would have experienced it myself (teaching
with a computer) and realized I wouldn't have iried (teaching with
computers).

The above quotes support research indicating that student teachers
would adhere to teaching strategies that they themselves experienced as
pupils. It would seem, then, that in this vein these student teachers would
not expect to implement innovative teaching practices — in this case, use of
computers in their classrooms. And indeed all but one of the 15 student
teachers had unequivocally not expected to teach with computers, thus
reducing support for claims that preservice teachers’ expectations of
computer use are high.

Synergy and Reflective-team-teaching: In order for the novice teachers to
implement computer use in their classes, it would seem that certain models
of what they conceived as teaching might have to be modified. Could
reflective thinking, in particular “team-reflective-thinking” as opposed to
self-reflective-thinking, facilitate this process of change, and if so how?
The following is an excerpt of what Lior thought, when expounding on the
contribution of team-teaching:

Lior: Every student has his own ideas, and there are always differences
from student to student. The minute there is a meeting of two {(people)
then one makes a meeling between two different ideas thai maybe the
students did not think about... And then I adopt it for myself, ideas,
perhaps work methods that one can take from another student. It (team-
teaching) gave me a tremendous amount... (For instance) every student
(teacher) has a case when something happens to him (in class), and.you
know how you commented “Lior, when you get upset, when you're

y

hot-tempered...”, and I got this sort of look (from my team-teaching
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partner) and no one in the class recognizes this look. And then Lior
calmed down, kept quiet, and it (this event) stopped..So the partner
serves as a sort of online criticism... And there's another thing. I believe
that when you have a partner, reflective thinking happens willy-nilly. That
is, you go back (together) by bus, by car, you‘re compelled to speak about
what has happened. Not because you're required 1o think reflectively, but
you speak about how it was, what was, what we should have done. That
we understood them, they enjoyed, did not enjoy, what we should do next
time.. If I was teaching on my own I would have to sit and think about
what had happened in the lesson. The minute we (the team-couple) speak
about it,...we remember it well.”

Lior depicted an ongoing situation, prevalent in all the teams,

wherein team teaching offered exchanges of ideas, continuous feedback
both in class and out, resultant modification of strategies and consequent
improved instruction. His description of their rich, very effective
reflective-team-thinking as finding its immediate expression in speech
seems to echo Vygotsky (1986, p 251)) who wrote “...thought does not
express itself in words, but rather realizes itself in them.” This realization
of reflective-thinking seemed to afford the teachers a very effective
instrument for change. The novice preservice teachers were faced with
continual teaching challenges that might evoke in them inappropriate
reactions. Their team-partners were there as safety nets, perhaps rescuing
them from some situations that might have produced feelings of
incompetence or inadequacy in them. The immediate reflective-team-
thinking that followed the lessons allowed the teachers to analyze their
lessons, to discuss their actions and reactions and when necessary to
design different strategies for similar, recurring circumstances. This would
seem to have been especially crucial when working with computers. The
student teachers had to create new teaching pattemns since they had no
teaching models that they had experienced as school pupils on which they
could fall back. The synergy in the teamwork seemed to offer the student
teachers an opportunity for creating successful teaching patterns.
Computer use _in future classroom practice: Prior to this teaching
experience the novice student teachers had generally not expected to use a
computer in their classroom practice. However, at the end of school year
their expectations were quite different:
Orna: The children themselves were very enthusiastic (when learning
statistics with the computer)... / would be very interested in integrating it
(the computer) together with the (“conventional”) learning, like we did
now. There were also lessons when we sat in class and learned, and
parallelly there were also lessons when we learned with the computer. 1
think that this combination between the two was excellent.
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This is the same Oma who had expressed anxiety at the idea of
teaching with computers. It seems that successful experiences might assist
teachers to form new normative patterns of teaching. Uzi allows a very
close look at a teacher, who came in with much trepidation to teaching
with computers and who now had no qualms about future computer use.
The following school year Uzi was student teaching without computers.
He approached this researcher saying that he missed last years’ teaching
very much; consequently a follow up interview was performed:
Researcher: Which teaching (do you miss)?

Uzi: That I taught with a computer... I know that computers are taking an
important part in the teaching process... and I said to myself this
* (conventional teaching) is going to change at some stage.. We're
required to do our seminar papers (in the teachers college) with
computers, and all the statistical analyses ...
Researcher: If you yourself wouldn’t have experienced (computer
- teaching), I'm asking you once again, do you think that despite the
importance that you are being shown,..even though you see its
importance, would you have postponed (teaching with computers)?
Uzi: I would have postponed... because I'm afraid of computers. I was
afraid. It is something deterring... Nevertheless, last year I went in (to
computer teaching), but there were many things that I didn’t know how to
operate, even though the pupils didn’t know, it bothered me... It is like,
Jor instance in mathematics, to teach 5 units (the highest level)
mathematics, Never in my life would I be afraid of standing before a
twelfth grade class and teach them, because I know everything. There is
nothing they know that I don’t know because I went through it, I
experienced it...(Nevertheless) I want and am willing to go lo teach with
computers, ... because of the experience.

Ev1dently Uzi still did not feel entirely comfortable with teaching
with computers. This, despite him having been exposed a considerable
amount to the computer at the college. Uzi felt inadequate teaching with
computers since he did not master the computer from every possible angle.
However, it seems that having had a successful teaching experience,
perhaps having also seen how pupils responded positively to learning with
computers, was enough to swing the balance from being a teacher quite
vehemently opposed to teaching with computers to being quite positive
about teaching with computers.

Conclusion
This study sought to explore the effects of team-teaching on preservice
teachers. Team-teaching proved to be a suppottive framework for the new
teaching experiences that the student teachers encountered — developing
their teaching strategies and reducing computer-teaching related anxiety
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and discipline difficulties. Reflective-team-teaching seemed instrumentat
in allowing the novice student teachers to modify familiar teaching
patterns and thereby successfully implement an innovative, computer-
medium statistics program. Following this team-teaching experience, the
preservice teachers’ expectations of computer use in class changed from
low to high. They had become future teachers who looked forward to
integrating computer technology into their classrooms. It may be thus
concluded that team-teaching might be an effective instrument for
successfully instituting innovative methods into preservice teachers’
classroom that they will take with them in their future teaching. Further
research is required to examine to what extent these teachers will indeed
implement these innovative instructional methods in future practice.
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PROFESSIONAL INFLUENCES ON TEACHERS PERCEPTIONS OF
TEACHING AND ASSESSMENT IN MATHEMATICS

LEONIDAS KYRIAKIDES
PEDAGOGICAL INSTITUTE OF CYPRUS

ABSTRACT

This paper reports and analyses findings from an investigation into the effect of
INSET upon teachers' perceptions of teaching and assessment in Mathematics.
Questionnaires were distributed to Cypriot teachers before and afier the
attendance of an INSET course on policy for curriculum reform in Mathematics.
The main research findings are the following. After the attendance of the INSET
course, teachers considered the purpose related to mathematical communication
as particularly important. Moreover, dfter the attendance of the INSET course,
teachers considered pupils’ abilities to apply their knowledge in unfamiliar
situations and pupils’ attitudes to Mathematics as important objectives for
teachers' assessment. They finally considered oral techniques of assessment as
more appropriate than written techniques. However, their perceptions about
classroom organisation and the development of school policy did not change.
Implications for the development of policy on teachers training are discussed.

I) INTRODUCTION

Changes in the teaching of Mathematics have always been in the heart of
curriculum reforms. Until recently most of the efforts in trying to accomplish
desired changes centred on the development of improved curricula. However, the
failure of much curriculum innovation in Mathematics can be attributed to the
neglect by innovators of teachers' perceptions. A long trend in the literature
(Fullan 1991) supports the view that teachers' perceptions are one of the most
critical factors for the effectiveness of the various models of curriculum change.
The importance of teachers' perceptions is also supported by research on teachers'
thinking (Calderhead 1987, Clark 1988). Although such research does not
provide us with a comprehensive and theoretical framework for thinking about
teaching, it does provide us with an insight into the process of curriculum change.
Calderhead (1987) points out that research into teachers' thinking shows:

"how unrealistic it is to conceive of innovation as a set of pre-
formulated ideas or principles to be implemented by teachers.
Innovative ideas are interpreted and reinterpreted by teachers over a
period of time and translated into practice in a process that involves
teachers drawing upon several different knowledge bases and
interpreting and manipulating various interests" (p. 17).

Teachers possess a body of specialised knowledge acquired through training and
erience related to teaching methods, subject. matter. and child behaviour
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together with other information resulting from their experience of Working with
children in numerous contexts. Understanding the factors influencing teachers is
necessary for any attempt to evaluate curriculum reform in Mathematics.

Investigation of mathematics teachers’ perceptions has become a significant
endeavour in recent years (Pajares 1992, Malone 1996). However, Grows &
Schlutz (1996) point out the lack of research on mathematics teacher
development. Little information is available relating to the effects of professional
training upon -teachers' perceptions. Nevertheless, studies of teacher-training
programmes reveal that teachers are generally offered little opportunity to change
the views they formed of mathematics and how it is taught and learnt during their
years of pre-university schooling (Bednarz et al 1996). Grouws & Schultz (1996)
argue also that there was little information available about the overall design
features of in-service education programmes which produce changes in teachers
beliefs and classroom practices. This raises the question of how to bring about the
necessary changes in the way teachers view mathematics teaching which will be
fundamental in their future practice. In this context, the purpose of my research
was to investigate the extent to which the attendance of an INSET course could
influence Cypriot teachers’ perceptions of curriculum policy in Mathematics.

II) METHODS OF DATA COLLECTION AND SAMPLING

In Cyprus, in 1994, a reform programme in Mathematics was introduced which
was mainly concemned content, pedagogy and assessment. A centre-periphery
model of change was used. The central government, through inter-departmental
committees, drew up syllabuses, curricula, and planning guides, which were
distributed to schools. However, policy makers did not take into account the need
for a strong link between curriculum reform and teacher development which is
reflected in theories of curriculum change (Fullan and Hargreaves 1992). Thus, a
teacher training programme was developed around the main policy initiatives on
teaching and assessment in Mathematics. One of the objectives of this course was
to expose teachers to an approach to Mathematics that is different from the one
they have experienced previously, and to introduce them in a problem solving
context to another teaching culture by instituting a process of explanation,
discussion and negotiation within the classroom. The activities offered in this
course did not only enable teachers to understand the policy initiatives on
teaching and assessment in Mathematics but also provided them the opportunity
to "reflect in and on action" (Schon 1983). The extent to which the attendance of
the course helped them to change their views of teaching and assessment in
Mathematics is therefore an issue which has to be explored.

Teachers who attended the course on teaching and assessment in Mathematics
were asked to complete a questionnaire both before and after they had attended
the course. The content of the questionnaire was derived from analysis of policy
for curriculum reform in Mathematics in Cyprus. There were five broad areas of
teachers' perceptions:
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a) The purposes of teaching Mathematics,

b) The purposes which assessment should serve,

¢) The relative importance attached to different teaching methods,
d) Techniques of assessment,

e) Ways of improving assessment

Of the 287 teachers approached 282 responded to the questionnaire given to them
when they begun to attend the course and 279 responded to the questionnaire
after they had attended the course. Although it was not possible to identify those
teachers who answered the questionnaire twice since the questionnaires were
answered anonymously, the fact that the response in both cases were particularly
high (98% and 97% respectively) and the questionnaires were administered to the
whole population, implies that figures derived from each sample can be used for
generalisation to its population. Thus, this comparison may measure changes in
perceptions of teachers who attended the course on Mathematics.

I1T) FINDINGS FROM THE QUESTIONNAIRE

Purposes of teaching Mathematics

Graph 1 shows the mean rank of the perceived importance of each of four
purposes of teaching Mathematics. Kendall Coefficient of Concordance was
calculated to show the degree of consensus about curriculum purposes in this
ranking. A significant level of agreement amongst teachers before (W,=0.31,

p<.001), and after the attendance of the course (W,=0.35, p<.001) was revealed.

Graph 1: Perceptions of puroses of Mathematics B Before
35 B After
Mean '
Rankz’5 7 2’ 22

A B C D

A: Gain knowledge, B: Positive attitudes, C: Talk about Maths D: Solve problems

The following observations arise from Graph 1. Before the attendance of the
course, teachers gave high priority to purposes concerned with gaining
Mathematical knowledge and solving investigative tasks. The purpose which was
focused on pupils’ ability to talk about Mathematics was seen as the least
important. After the attendance of the course, they considered equally important
Q e purposes of Mathematics. Thus, the Wilcoxon test revealed that after the

EMCdance of the course teachers considered less important the purpose
f\;@ i .
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concerned with gaining mathematical knowledge (Z= 2.8 p<.01) and more
important the purpose focused .on pupils’ ability to talk about Mathematics
(Z=3.2 p<.001). This finding can be linked with the fact that one objective of the
course was to enable teachers to see Mathematics as a language.

Purposes of Assessment

Graph 2 deals with perceptions of purposes of assessment. Kendall coefficients of
concordance for teachers' perceptions about purposes of assessment revealed a
significant level of agreement amongst teachers in their ranking of the relative
importance of the purposes of assessmeént both before (W3=0.51, p<.001), and
after the attendance of the course (W4=0.64, p<.001).

Graph 2: Perceptions of purposes of assessment & Before
2,8 H After

A B . C D

A: Summative B: Teacher’s self-assessment C: Formative D: Evaluative

. The following observations arise from Graph 2. Before the attendance of the

course, teachers considered formative assessment as the most important purpose
and teachers' self-evaluation as the second most important purpose. It is also of
interest to emphasise the low rating given to summative purposes of assessment
and to the national monitoring. Thus, summative purposes and national
monitoring were considered as the least important purposes of assessment.
Although purposes of assessment were ranked similarly by teachers before and
after the attendance of the course, the Wilcoxon test reveals that -after the
attendance of the course teachers considered formative assessment as more
important purpose (Z=2.7 p<.01) and summative assessment as less important
(Z=2.8 p<.01). These statistically significant differences can be attributed to the
fact that after the attendance of the course almost all teachers (85%) considered
formative assessment as the most important purpose and summative assessment
as the least important purpose.

Methods of teaching and assessment in Mathematics

The figures in Table 1 are based on the information derived from teachers'
responses to items of the questionnaire concerned with the implementation of
policy on Mathematics pedagogy and assessment. It illustrates all the statistically
significant differences between teachers’ perceptions before and after the
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attendance of the course. The following observations arise from Table 1. After
the attendance of the course, teachers supported as a group those methods of
teaching and assessment in Mathematics which before the attendance of the
course were not considered as appropriate. Thus, before the attendance of the
course 48% of teachers did not agree that practical activities are appropriate for
older and high attainer pupils. But after the attendance of the course, only 25% of
teachers did not agree with these two methods. Moreover, before the attendance
of the course, 28% of teachers did not support that pupils should talk about
Mathematics and present the results of their activities to their classmates.
However, after the attendance of the course, almost all of them (88%) agreed
with this method. The last two items of Table 1 are concerned with issues of
assessment policy in Mathematics. After the attendance of the course, the great
majority of teachers (85%) considered pupils’ ability to apply Mathematics in
unfamiliar situation and pupils’ attitudes to Mathematics as important objectives
for teachers” assessment whereas before the attendance of the course more than
25% of teachers did not agree with these two items.

Table 1: Means, standard deviations and t-values derived from comparisons
of teachers’ perceptions before and after the attendance of the course

ea ‘D
Practical activities as appropriate for | 2.88* 0.93
younger as for older pupils. :
Practical activities as appropriate for 28 083 [341 1.02 372 272 .001
high attaining pupils as for low
Needs for talk in each activity 342 093 [4.01 0.76 331 274 .01
Assessment of pupils’ attitudes to 318 093 (395 086 267 268 .01
Mathematics
Assessment of child’s ability to apply | 3.02 1.13 [ 3.88 0.96 266 271 .01

Mathematics in unfamiliar situations
*1: Absolutely disagree, 2: Disagree, 3: I do not know, 4: Agree, and 5: Absolutely agree

0.76 272 275 .01

It is also important to note that no statistically significant difference was
identified between teachers’ responses to items concerned with the need for
developing a school policy on teaching Mathematics before and after the
attendance of the course. A great variation among teachers views of the
development of school policy in Mathematics was identified both before and after
the attendance of the course. Moreover, most teachers, both before (89%) and
after (87%) the attendance of the course, revealed that they organised their
mathematics lessons in. such a way that children spend most of their teaching time
m working as a whole class. Cluster analysis was used to identify relatively
homogeneous groups of teachers according to the proportion of time in
Mathematics lessons that their pupils spend in working on individual tasks, on
collaborative group tasks and as a whole class. No group of teachers organised
:1""" mathematical lessons in order to distribute their time equally between the
E lC ways of classroom organisation.
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Techniques of Assessment (Appropriateness and Ease)

Teachers were asked to rank twice eight techniques of assessment in
Mathematics according to their appropriateness and their ease. Kendall
coefficients of concordance revealed that both before and after the attendance of
the course teachers agreed among themselves in their ranking of the relative
appropriateness of each technique (Before: W;=0.18, p<.001; After: W.,=0.21,
p<.001) and also agreed among themselves in their ranking of the relative ease of
each technique (Before: W¢=0.27, p<.001; After: W,=0.23, p<.001). However,
the mean ranks tend to cluster close to each+other, with small differences between
them. Nevertheless, the Wilcoxon test shows that after the attendance of the
course, teachers considered multiple choice and matching question as less
appropriate technique than before the attendance of the course (Z=2.7, p<.01).
The eight techniques of assessment in Mathematics were also classified into two
categories, namely oral and written techniques. The category of written
techniques represents an average of the methods which have to do with a written
test and the oral category represents the rest of the techniques. The Wilcoxon text
revealed that after the attendance of the course, teachers considered written
techniques as less appropriate techniques than before the attendance of the course
(Z=2.6, p<.02). It is also important to note that both before and after the
attendance of the course three of the oral methods were considered as the three
most appropriate techniques whereas unstructured observation was considered as
the least appropriate technique. This raises a question about whether the oral
category is a coherent one on teachers' perceptions. It can be also argued that the
three oral techniques which were considered as the most appropriate (Structured
observation, interview, oral question-and-answer) are those which are more
formally structured.

The Wilcoxon test revealed the following statistically significant difference
according to teachers’ perceptions of ease of application of these techniques.
Before the attendance of the course, oral question-and-answer was considered as
the most easy technique. However, after the attendance of the course it was
considered as neither the most nor the least easy technique. Thus, Wilcoxon test
revealed a relevant statistically significant difference (Z=3.4, p<.001). The
Wilcoxon test revealed also that after the attendance of the course teachers did
not consider extended written question as so difficult technique as before the
attendance of the course (Z=2.9, p<.01). Finally, after the attendance of the
course, teachers considered the category of oral techniques as less easy (Z=2.61,
p<.01) and the category of written techniques as more easy (Z=2.8 p<.01). The
last, and probably the most important finding, has to do with the well known
dilemma that what is easily measured is of dubious educational value. Both
before and after the attendance of the course interview and structured observation
were considered as the most appropriate but the least easy techniques. Likewise,
the direct written question and the unstructured observation were regarded as one
of the most easy but lejft Gpgropriate techniques. It can be argued that, both
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before and after the attendance of the course, there is a negative correlation
between the appropriateness and ease of techniques of assessment.

Perceptions about ways of improving assessment

Kendall's Coefficients of Concordance revealed that teachers agreed among
themselves in their ranking of the relative importance of the six ways of
improving assessment both before (Wy=0.48, p<.001), and after the attendance
of the course (Wp=0.51, p<.001). Both before and after the attendance of the
course teachers considered further training in techniques of assessment and
smaller class size as the most important ways of improving assessment, whereas
the least important was the existence of another adult in the classroom. Thus, the
Wilcoxon test did not reveal any statistically significant difference by comparing
teachers’ perceptions of improving assessment before and after the attendance of
the course. -

IV) DISCUSSION

The findings derived from this study can be seen as providing information on the
extent to which the professional training may influence perceptions of teachers
who work in a highly centralised system. This study can be therefore seen as a
case study of a closed system and hence the extent to which it is generalisable to
other systems is questionable. However, some more general issues for theory of
curriculum change in Mathematics may be also raised.

Howson (1989, p.18) believes that "clear objectives are needed but to be
effective they must be objectives accepted by teachers”, a view that is the basic
focus of my research. It is clear from the questionnaire responses that after the
attendance of the course teachers’ perceptions of the purposes of Mathematics
generally conform to the purposes emphasised in the current curriculum reform in
Cyprus. Teachers did not only support the purposes relating to investigative tasks
and promoting mathematical knowledge and thinking but also the purpose
concerned with the development of pupils ability to talk about Mathematics. After
the attendance of the course teachers had a coherent view about active pedagogy,
emphasising the value of practical activities, investigative tasks and discussion.
Moreover, teachers perceived formative purpose of assessment as more important
than the summative. They also considered assessment as a natural part of
teaching. Thus, they agreed that pupils’ attitudes to Mathematics and pupils’
ability to apply their knowledge in unfamiliar situation are important objectives
for teachers’ assessment. But despite the fact that teachers agreed with policy on
curriculum reform in Mathematics, further research is needed to explore the
extent to which this policy may influence curriculum practice. Although teachers
hold strong ideas favouring active pedagogy and formative assessment, teachers’
responses to items on classroom organisation reveal that they did not promote
flexible classroom strategies either before or after the attendance of the course.
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Since curriculum change is a multidimensional phenomenon, a distinction
between changes which affect the deep structures of the curriculum and changes
which affect the surface of the curriculum is needed to explore the effect of
professional training upon teachers’ perceptions. The data about the effect of this
course upon teachers' perceptions revealed that after the attendance of the course
teachers changed their perceptions of curriculum policy but they did not change
their beliefs about their role. For example, their reactions to a school which is in a
position to develop its own policy on teaching Mathematics revealed that their

perceptions are primarily effected by the system within which their training is .

operating. Thus, the extent of central control on the curriculum may be a stronger
source of influence upon teachers’ perceptions of their role in the process of
change than training. Nevertheless, the role of training should be seen in terms of
Fullan's (1991) argument that change at the individual level is a process whereby
individuals alter their ways of thinking and doing. This is not an easy task since
people's beliefs are part of a deeply rooted belief system based on perceptions of
their role and which extends to social and political concerns. Educational policy
in Cyprus has not dramatically used INSET to bring about change and has not
been directed at the implementation of the current curriculum reform at school
level. Thus, a reform of teacher in-service education is needed so that a link
between professional development and curriculum reform will be established.
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Student Motivation and Attitudes in-
Learnmg College Mathematics Through Interdisciplinary Courses

Diana V. Lambdin
Indiana University

Rajee Amarasinghe
Indiana University

An NSF-sponsored project at Indiana University is developing interdisciplinary,
courses in which students learn mathematics in the context of other fields of study
(e.g., history, art, criminal justice, economics, speech and hearing, business). Since
fall 1996, nine new interdisciplinary courses have been developed and field tested
with students and six more are being planned. This paper reports on research on
students’ motivation to study mathematics and their perceptions of the utility and
importance of mathematics when enrolled in these new interdisciplinary courses. .

Traditional mathematics courses, designed and taught exclusively by mathematics
faculty, are seldom perceived by students other than mathematics majors as an
integral part of their college education. Nor do most students view their study of
mathematics as important in preparing them for the challenge of our increasingly
technological society. Instead, required college mathematics classes have often been
viewed primarily as a set of hurdles to jump over prior to graduation. Much of this
is due, no doubt, to the fact that traditional mathematics courses typically do little to
help students appreciate the integral role that mathematics plays in the society in
general, and, more particularly, in college majors such as arts, humanities, social
sciences, or biological and health sciences. As a result, students studying these
disciplines often have little motivation to learn mathematics; many see the study of
mathematics as little more than the memorization of rules, computational
techniques, and equations unrelated to their own personal lives.

In an effort to remedy this unfortunate situation, faculty at Indiana University,
USA, under sponsorship of the National Science Foundation for their “Mathematics
Throughout the Curriculum Project” (MTCP), have been working to create a new
framework for collaboration between mathematics faculty and the faculties of other
disciplines, as well as a new culture among undergraduates. The ultimate goal of
the project is to revitalize the learning of mathematics among non-mathematics
majors. The project seeks (1) to create interdisciplinary courses, developed through
collaborative efforts of faculty from mathematics and other disciplines (but
eventually to be taught by individual instructors), in which students use previously
learned mathematical ideas, learn new mathematics, and acquire new tools through
contextualized problem solving, and (2) to change students’ attitudes toward
mathematics by developing an infrastructure where they are encouraged to see the
value of understanding underlying mathematical concepts and to see the relationship
of mathematics to other subjects, the real world, and their own ambitions and goals.
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As evaluators of the MTCP, our research—since fall semester 1996—has
involved collecting data from students, faculty, and administrators about the impact
of these new interdisciplinary courses. Our focus in this paper is on our efforts to
document progress toward the second of the two primary project objectives—that
is, a change in students’ motivation and attitude toward mathematics.

Background

Among the many reasons for a reexamination and major overhaul of the current
US mathematics instructional system is the significant dropout rate from
mathematics study as students proceed through secondary school and college study.
For example, of the 3.6 million ninth graders taking mathematics in 1972, fewer
than 300,000 survived to take a college freshman mathematics class in 1976, and
only 11,000 earned bachelor’s degrees in mathematics in 1980 (National Research
Council, 1989, 1990). It is clear that many college students do not perceive
mathematics as important for their professional development.

Harel and Trgalova (1996) provide a comprehensive review of significant and
interesting research investigations and teaching experiences in college level
mathematics instruction worldwide. Although their discussion focuses primarily on
recent changes in the teaching of calculus and linear algebra, their findings also have
significance for the more basic mathematics studied by students in our Indiana
University reform effort. In their review, Harel and Trgalova cite Artigue (1995)
as suggesting that numerous curricular renovation initiatives have been initiated due
to the finding that it is easy to teach college students to compute mechanically,
although difficult to teach them underlying concepts. Indeed, this is exactly the
point of much of the current US reform at all grade levels. For example, the
Curriculum and Evaluation Standards for School Mathematics, published by the
(US) National Council of Teachers of Mathematics (1989), calls for a “shift in
emphasis from a curriculum dominated by memorization of isolated facts and
procedures and by proficiency with paper-and-pencil skills to one that emphasizes
conceptual understandings, multiple representations and connections, mathematical
modeling, and mathematical problem solving” (p. 125). Though the NCTM
Standards were written as recommendations for school mathematics, they seem to
apply equally well to the situation we face with college mathematics.

Some recent reform efforts at the college level in the US have emphasized
encouraging students to work in small groups to construct mathematical ideas
through projects and applications. An example is the Calculus in Context Project
(O’Shea & Senechal, 1992). In general, however, there has relatively little attention
given to reform of precalculus mathematics instruction (which is the focus of the
current Indiana project). Much recent curriculum reform at the college level has
been technology driven. Students using Mathematica, Derive, or Maple have been
reported to exhibit greater willingness to solve problems (Davis, 1992). It is also
reported that weaker students often are better able to succeed with the help of

165 3-10



- technology, and thereby come to recognize that mathematics is not just for the1r
more able classmates (Wimbish, 1992).

Overview of Selected MTCP Courses

To provide readers with some sense of the types of courses being developed by
the MTCP, we offer the following brief course descriptions.

“Techniques of Data Analysis,” a course required of all criminal justice majors,
was developed and team-taught by a mathematician and a criminal justice professor.
The course was conducted in a computer lab and enrolled 22 students, ranging from
sophomores to seniors, in fall 1997. Prerequisite mathematics was a course in
either precalculus or finite mathematics. This new course required students to apply
mathematical concepts and statistical procedures to specific criminology-related data
sets. The course goals included learning about the mathematics underlying statistical
analysis of social sciences data and developing skills in using a computerized
statistical software package. Sophisticated statistical concepts were explained during
lectures. The course included group projects and hands-on computer work. An
example of a course project was the use of contingency tables in analyzing a large
data base drawn from a citizer survey.

“Mathematics in Action: Social and Industrial Problems,” collaboratively
developed and taught by a mathematics professor and a business administration
professor, enrolled 24 students from a wide range of majors, who ranged from
freshmen to juniors. The only prerequisite was precalculus mathematics. The
course aimed to teach students the content of the traditional (required) finite
mathematics class through contextualized problem solving in the realm of business.
The major highlight of the course was the use of real-world industrial projects
proposed by local businesses and industries. In addition to the industry project, the
instructors also used simplified versions of actual real world problems taken from
professional journals and books as well as a diverse set of applications of
mathematical concepts. Graphing calculators and computers were used as
technological tools in the course. Two sample projects were (1) developing a
transportation-shipping schedule (given supply and delivery points for shipping, the
transportation model needed to look for that set of origin/destination points that
would minimize transportation costs), and (2) developing a products-defect model
by using statistical analysis to calculate the probability and the expected time during
a warranty period until a given product part would become defective (in this
project, the actual problem was to help a school district decide how long they should
keep their school buses and other vehicles before buying new ones).

“Mathematics and Art,” taught by a mathematics professor who is also an artist
enrolled 15 students (from sophomores to seniors). Precalculus was the only as @
prerequisite. The class was designed to explore connections between mathematics
and art through history, as well as through recent developments in art, mathematics,
and computer graphics, and its goals were to create an intrinsic motivation to learn
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mathematics through art as well as to emphasize the connection between
mathematics and art.. Students examined art concepts such as symmetry,
perspective, and landscapes as well as mathematical topics such as Euclidean
geometry, analytic geometry, and iterative techniques. Although the class met in a
regular classroom, students also used a variety of graphics software in a computer

.lab. Examples of course projects were use of fractals to reproduce both a branch of

a tree and the texture of an old vase.

“Mathematical Foundations of Speech and Hearing Sciences,” enrolled 18
students (sophomores to graduate students) in fall 1997. It was designed for
students majoring in Speech and Hearing Sciences and related fields such as music,
psychology, and cognitive science, but was open to all students. Prerequisites were
either one semester of calculus or finite mathematics. The course aimed to develop
a solid foundation in mathematical concepts underlying the speech and hearing
sciences and to develop the ability to apply these concepts to practical and clinical
problems. Anticipating that students would solidify some previously learned
mathematics and also learn new content, the instructors focused on the major
mathematics topics encountered in upper level speech courses: trigonometry,
Fourier analysis, finite mathematics random processes, and statistical decision
theory. Two days each week the focus was on mathematical concepts and related
speech and hearing problems. One day each week students did hands-on lab work
related to real projects, using graphing calculators and computer spreadsheets.

“A Statistical Study of History,” taught by a historian and a mathematician,
enrolled 21 freshmen in fall 1997 and required only high school algebra as
prerequisite. Goals of this course included helping students develop the art of
understanding history and their contemporary world through a reasoned
quantitative approach, and helping them to employ this approach to validate or
refute standard interpretations of nineteenth century Indiana history. Using
appropriate statistical methods, hand-held calculators, spreadsheets, and statistical
software, students analyzed data from the 1860 Indiana Federal Census database. In
doing so, they learned about statistical topics varying from descriptive statistics to
probability models and statistical inferences. An example of a student project was
comparison and analysis of statistics describing minority households with a single
parent during various time periods from 1920 to the present.

Methodology

As evaluators for the MTCP we have used a variety of measures and techniques
for evaluating progress toward major project objectives. To document progress
toward objective #1—creating interdisciplinary courses—we have:

* examined course syllabi, samples of assignments, tests and other assessments,
samples of student work, and other documents to determine if the courses meet
project goals of: (a) requiring minimal mathematical prerequisites, (b) being
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problem/project driven, (c) involving student activity and group work, (d)
emphasizing communication.

* determined the extent to which student learning outcomes in mathematics are (a)
specified in the syllabi, (b) taught in the course, and (c) appropriately evaluated.

e observed in classrooms, with attention to mathematics content, teaching methods,
and assessment methods, to triangulate other measures of course success.

-+ o examined uses made of technology (calculators, computers, videos, Internet, etc.)

To document progress toward objective #2—changing student attitudes—we have:

¢ administered surveys to students at the beginning and end of each semester to
. obtain measures of student expectations, attitudes, beliefs, and satisfaction.

o interviewed selected subsets of students and interviewed all of the course
instructors.

 observed in classrooms, with particular attention to behaviors that might provide
evidence about anxieties, motivation, beliefs, and attitudes toward mathematics.

Progress Toward Project Goals

In general, our data collection has documented significant progress toward
project goals. Nine new interdisciplinary courses have been developed and field
tested (the five described above, plus a biology course, a physics course, and two
courses in economics), and both student and instructor reaction has generally been

‘quite positive. Our interviews, classroom observations, and document analysis
efforts have yielded promising evidence of success. Unfortunately, our paper-and-
pencil attitude survey was, at least initially, less informative

At the time of writing this paper, we have student questionnaire data from each
of the courses field tested during spring semester 1997, though we also expect to
have questionnaire data from fall 1997 and spring 1998 by the time of the PME22
meeting in summer 1998. Unfortunately, the questionnaire used to gather data on
changes in student attitudes during spring 1997 did not measure any significant
differences from the beginning to the end of the semester. We believe this is
probably due more to the insensitivity of the questionnaire than to an absence of
change, particularly because interviews with students and classroom observations
provided a very different look at students’ attitude changes. In summer 1997, the
student questionnaire was completely revised, so we expect more reliable results

from data collected in fall 1997 and spring 1998.

Data sources other than the paper and pencil attitude survey seem to offer clear
evidence that many students’ views of mathematics have been changed by taking one
of the new interdisciplinary courses. These data sources include individual student
interviews, written answers to open ended questions included on end-of-semester
evaluation forms, and interviews with course instructors and others involved with
the courses. In the paragraphs that follow, we focus, due to space constraints, on
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findings related to just one course: the business administration course. (More
extensive information and analysis about this and other courses will be available at
the PME22 meeting.)

“Mathematics in Action: Social and Industrial Problems” was a project-driven
finite mathematics class that promoted student learning of mathematics through
problem solving. It was a special section of a course typically offered in multiple
sections and required for many majors. This section covered the same content as
the usual course, including descriptive statistics, probability, counting, systems of
linear equations, and linear programming. Students from a variety of different
disciplines enrolled. They learned the mathematics, used it in problems related to
applications, and discussed those problems during class. The course included
student activities and group work and also emphasized communication.

Students applied the mathematical concepts they were learning by using them as
tools in team projects drawn from local industry. During one of our class
observations, we saw the students spend more than half the class period debating and
discussing such applications. The students asked questions of each other and of the
instructors, who helped students connect the underlying mathematics to the
applications at hand. Both the mathematician and the business administration
professor were actively involved in these exchanges. While one was keen about the
mathematics, the other was more conversant with the applied problems.

Many of these students expressed a desire to take more mathematics classes,
particularly if those classes could be like this one. One student claimed that she
would miss coming to this class when it was over. Several students said that even
though the class met very early in the morning ( 8:00 a.m.) they were reluctant to -
be absent. This was evident during the class observations. About 10 minutes before
the class started, there were typically students in the classroom, already discussing
problems with other students or with the instructors.

During interviews, students claimed that now they understood the utility of
mathematics and its power. They were surprised to see how much mathematics they
actually use in their real life. The course exposed them to the statistical analysis
programs build into spreadsheets such as Excel and Lotus and the use of calculators.
They expressed surprise at how much those programs could do. Also, the real life
problems they encountered in their industrial projects seemed to be eye-openers for
many students. Some mentioned that they cannot now look at a newspaper without
seeing (and understanding) many uses of the mathematics they learned in the class.
Some students who had already taken other college mathematics, such as calculus,
said they now see much more clearly the uses of that mathematics and the reasons
behind using it. A senior student was assigned to assist students in this class. She
worked primarily in the computer lab helping students to learn Excel and giving
assistance with course projects. Additionally, she worked in the tutoring lab at the
university, where she helped students with mathematics from various classes.
According to her, students in this class had much better understanding of the
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concepts learned in this class than their peers who were going through the parallel,
regular finite mathematics class.

From looking at students’ attendance, participation, and assignments, it seems
clear that students were very enthusiastic about this class. At the beginning there
were some students who came to the first class and then dropped out due to the
anticipated heavy workload. Of those who persisted in the class, most said that the
class involved a lot of work, but that they enjoyed it nonetheless. Many of the
students in this class participated in workshops and labs that were not required and
that were held outside the class period. They also met with their project groups
outside of school. One student interviewed said that her group had to meet 7:00
a.m. in a nearby small town because that was the only time and place all group
members could get together. From class observations as well as student interviews,
it was evident that these students came to enjoy mathematics during this class. They
did not fear mathematics and they saw the usefulness of it. .

There was a diverse group of students in this class (business and economics
majors, liberal arts and science majors, and preservice elementary teachers).
Therefore, when they were asked to select an industrial project from among a
selection of projects, the topics that they chose were quite diverse (and often related
to their own personal areas of interest or experience). Students particularly noted
that they learned a lot from each other in doing these projects, because their fellow
students had expertise in a diversity of areas. They all acknowledged the projects as
a very constructive and enjoyable experience.

Developing this new course was labor intensive for the instructors. Both
instructors were present everyday in the classroom, and both were involved in all
class discussions. Students mentioned during interviews how positive it was that the
instructors offered such diverse perspectives because they came from different
academic disciplines. Other labor intensive aspects of the course were the extra
workshops and labs that the instructors arranged and monitored, and the time and
effort they expended in contacting local industries to organize the industrial
projects. They also visited all the industrial project sites and attended initial project
meetings of the student investigators. During interviews, the instructors admitted
that developing and teaching this course involved a lot more work than usual.
However they also expressed a sincere sense of satisfaction in teaching the class.
One instructor mentioned that he felt closer to the students in this class than in any
other class he had taught before.

Looking Back and Looking Ahead

We are convinced that learning through applications helps students develop an
appreciation for mathematics and a motivation to learn that is often lacking in
traditional mathematics courses. Similarly, we have noted that the instructors in
these innovative courses report being more engaged and more positive about both
their subject matter and their interactions with students than during their typical
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teaching. At this early stage in the MTCP’s life, however, we have no way of
knowing how long this enthusiasm on the part of students and faculty can be
sustained. What will happen when faculty are no longer team-teaching? Once these
courses are institutionalized, how successfully will a single instructor be able to
offer the diversity of background and expertise presently provided by the MTCP

Jinterdisciplinary teams? Teaching applications-oriented, project-based courses

requires considerable extra effort and commitment. How long can faculty interest
and energy be sustained? Finally, successfully disseminating the courses developed
by this project to other campuses, colleges, and universities remains the project’s
biggest hurdle. How effective will the courses be when they are taught by
instructors who had no involvement with their interdisciplinary development?
Changing the motivation and attitude of the students enrolled in these experimental
courses has not been terribly difficult; offering similar opportunities to a whole new
generation of students is the ultimate challenge.
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Algebra: Meaning through Modelling

Susan J. Lamon
Marquette University

A modified version of classical mathematical modelling was
used to introduce middle school students to algebraic symbols
and to enhance their perception of the usefulness of algebra in
solving practical problems. After the first year of a three-
course algebra sequence, grade 7 students, ages 11-12,
surpassed students two years beyond them in the curriculum in
quantitative reasoning and elementary modelling.

Background

In the United States, there has been considerable debate over algebra and pre-
. algebra courses. Many students experience difficulty when algebra is taught as a
series of isolated skills (simplify, evaluate, factor, etc.) and the traditional
curriculum is criticized for its failure to address the content that best reflects
societal uses and students’ future vocational needs (Steén, 1992; NCTM, 1992;
Chambers, 1994). Although the Standards (NCTM, 1989) proposed a different
conception of algebra, they provided only broad guidelines for creating change.
Without the benefit of a solid research base that addresses essential content and
effective pedagogy, many school districts have responded to mandates that all
students study algebra (Mathematics Education Trust, 1990; The College Board,
1990), by providing access to algebra courses, but not necessarily access to critical
algebraic ideas (Silver, 1997).

At the heart of the controversy over algebra lies the question about what algebra is
and should be. Generalizing and formalizing patterns and the syntactic
manipulation of symbols are viewed as kernels of the subject (Kaput, 1995), but
mathematical content such as structures, variables and functions, relations and joint
variation, and technological innovations, also help to define the nature of algebra.
Rather than presenting algebra as an isolated topic of study, there is a growing
consensus that it should be located within a larger, longitudinally coherent
mathematics curriculum that focuses on understanding quantitative relationships and
the mathematization of authentic experiences (Kaput, 1993; NCTM, 1992).

Model formulation, the first stage of the modelling process, involves discerning
important variables and parameters that affect a given problematic situation,
making assumptions to clarify and simplify the situation, making a conjecture about
the relationships among important quantities, and translating the relationships into a
mathematical statement. The teaching experiment reported in this paper was based
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on the assumption that model formulation provides a powerful forum for helping
students to think about quantities and their relationships. Focusing on the reasoning
that precedes the.production of a symbolic equation provides students the
opportunity to see algebra as an activity; to appreciate its utility; to see familiar
situations as a source of meaning for formal mathematical symbols; to develop a
systematic approach to analyzing and communicating the underlying structure in a
situation; and to build a firm foundation for more abstract reasoning.

The Teaching Experiment

Responding to the need for change, a small, mid-western school district in the
United States revised its algebra program. After many years of tracking students in
the middle school, the more capable students were being pushed farther and farther
into the high school mathematics curriculum. Students were covering algebra two
to three years before they would normally encounter the subject in the first year of
high school, but learning only the rote manipulation of symbols. They had little
understanding of how, when, or why the symbols might be used. As a result, the
middle and high school algebra teachers cooperatively devised a three-course pre-
algebra and algebra sequence for students in grades 7 through 9, which allowed
students ample time to deeply investigate quantitative relationships and to
mathematize everyday situations. Student progress was documented during the first
year of the first course, for the purpose of demonstrating that modelling could help
the students to find meaning and utility in algebraic symbolism.

Subjects

One class (N= 16; 9 males, 7 females) of seventh grade middle school students who
were identified as mathematically talented students, participated in pre-algebra 1,
the first course of the algebra sequence. Teachers identified these students based
upon their performance in whole number, decimal, and fraction computation at the
end of sixth grade.

Pedagogy

To help students develop a systematic way to analyze the relationships among
quantities in a problem, the model formulation stage of the mathematical modeling
process was elaborated in the following five-step process.

Identify Make ) Describe Represent Classif
i > |- ! y the
Quantities Assumptions Relationships Relationships Situation

A

For the first six weeks of the course, students used the diagram to guide their
analysis of simple statements such as the following:

If 1 boy can mow the lawn in 1.8 hours, 3 boys could probably mow the
lawn in 6 hours. :
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Identifying quantities meant naming the quantities that were related, using both a
number and a unit of measurement. That is, rather than merely listing “boys™ and
“time” as the significant quantities in this situation, students labeled the quantities
“number of boys” and “time in hours.”

"Defining the situation meant making explicit the assumptions needed to keep a
situation sensible and tractable. For this situation, it was assumed that both boys
were willing and able to do about the same amount of work in one hour. Students
came to appreciate that in mathematics, one always sets out the conditions under
which a discussion or proof evolves and that any conjectures or results are subject
to those conditions.

Describing meant making a verbal statement about how the quantities were related.

~ For example, “If you have more people domg a JOb it should take less time to get it
finished than if only one person is doing it.” or “As the number of people goes up,
the time to do the job goes down.” :

Representing meant using arrow notation to describe the relationship between the
significant quantities in the situation, and later, representing the relationships in
quantity diagrams. If B represents the number of boys and T represents the time it
takes to mow the lawn in hours, the quantities change in the following way: B} T|.
As students realized that not all situations within the 11 or || or { | categories
were the same, further analysis was needed. They learned to create quantity
diagrams, such as the following:

B H
# boys # hours
scale fact ! 1.8 scale fact
cale actor ' )x_;_‘ e factor
' 3 .6

rule relating the two quantities—p- BH = 18

Classifying meant associating the situation under consideration with others whose
relationships are similar, and refining categories when necessary. For example,
‘after comparing the lawn mowing problem to the dying cell problem below,
students were able to see that all | | statements were not the same and that it was
necessary to subdivide the category.

After the first 1.5 hours, the cell count was down to 40. Thereafter, every

three hours, half of the remamn‘o cells died.

As categories were refined, moré conventional algebraic language was used to
describe the relationships (e.g., proportional, inversely proportional, exponential).
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Students kept files of the problems they had analyzed. Problems having the same
structure were filed together; new categories were added or existing categories
were refined when necessary. In time, students identified structurally similar
relationships, used the language of algebra to describe their chief characteristics,

and associated them with situations they had analyzed. Classroom activities ranged

from the quantitative analysis of simple statements in the beginning of the year, to
structured modelling in the middle of the year, to more open modeling at the end of
the year. Students analyzed and represented quantitative relationships in verbal,
pictorial, graphical and tabular form.

Results

Although all of the students were mathematically talented, they were accustomed to
listening and practicing in their mathematics classes, and their adaptation to
reasoning and writing about mathematics was accomplished with varying degrees of
difficulty. To indicate the range of students' performance in the course, periodic
work samples from Nicki (female), the strongest student in the class, and Dan
(male), who made the least progress throughout the year, are given below.

November: Mowing the Lawn.

If one boy can mow a lawn by himself in 3 hours, then how long should it téke i
when his friend helps him? What happens if more friends decide to help?

khaa T thme er ha,ue a new rdajionshlf: /-/ere, 'S ma‘ clitzjrm_
then T will show how I got it

#-oF boys how /‘)"’_7 each one works
in hours
® . (T

And there s a rule Bx1=3

Other pecple Fhiin it works e this @V"f}z fime. gou

add %fher Person 1he . .
ere s e right sy o g TR G
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April: Spreading the AIDS Virus.

Using the dominoes you have been given, show three different models that might be
used to describe the growth of the AIDS virus.
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June: Supermarket Check-Out

Create a model for deciding which check-out line to join in a supermarket.

| 2 . Y
P, = RI. R I,
Tork ot sach oside amd asze whichs srmcboc
Ao - . ) \
p= # of ptopk " 'Hm& line
n= # of ikems »n ther cart o
t= time to 3mn | thing = 3 seands
X= bime to pay = 20 seconds
hime +o heex out i -3n+x® seonds
for p people, i will tuka ,o-(an *’{")%rxds
do that for each line and picc the one the# tars
the Smdlesf- amovnt df ‘f7m¢

Niexy

Final Assessment

The final examination included such tasks as finding the n term of a given
sequence, figuring out which of two ski slopes Was steeper, figuring out how much
carpeting was needed for a staircase of any number of steps when rise and run were
given, and dividing $ M between two people so that one gets x times the other.
Although it was not the intention of this study to compare the content, pedagogy, or
results with any other class, one high school algebra teacher gave his algebra I
students seventh grade examination. Numerical scores were assigned to each of 13
problems using a 4-point rubric, subjéct to the consensus of all of the middle and
high school algebra teachers. The performances of both classes are shown below.

During the year, students participated in weekly interviews to document the
development their growth in thinking. Case studies (to be reported elsewhere)
show that the seventh grade students had gone well beyond surface-level
investigations to seek out deeper structure. Students demonstrated that they
understood the difference between variables and parameters (e.g., see Nicki's June
work sample) and were able to move beyond particular solutions to find generalized
solutions. They were able to distinguish different uses for a variable: as an
unknown, as an argument, and as a pattern generalizer. They understood rates of
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change. The interviews also documented students' developing knowledge about
relations and functions, the use of relative thinking, and proportional reasoning.

. Pre- Algebra 1 Final Assessment
Score Frequencies .

grade 7 (n=16}

B grade 9 (n=24)

Number
O = N W & v v O WO

Scores (out of 52 Dolnts)

Discussion

Had these seventh grade students taken the examination given to the ninth grade
algebra I students, they probably would not have known the quadratic formula, how
to factor, or how to solve all of the equations and inequalities. Nevertheless, by the
end of their first year, the algebraic language, concepts, meanings, and reasoning
that they had acquired, were well-connected, practical, and grounded in familiar
situations. They still had two years to perfect the tools of algebra and to learn
symbol manipulation. On the other hand, the ninth grade students who could not
reason quantitatively nor solve simple modelling problems had finished their formal
study of algebra with lots of tools and no sense of when to use them.

This was a pioneering attempt to by a single school district to operationalize
algebraic reasoning and to demonstrate one way in which the ideas of algebra might
be incorporated into a longitudinal curriculum. Other such attempts are badly
needed to help build a vision of how useful algebra can be learned with
understanding.
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AN ALTERNATIVE ASSESSMENT: THE GUTIERREZ, JAIME AND
FORTUNY TECHNIQUE

Christine Lawrie

University of New England, Armidale, Australia

In the early 80s Mayberry (1981) developed a diagnostic instrument to be used to
assess the van Hiele levels of pre-service teachers. A replication of Mayberry’s
work was undertaken at the University of New England. As part of the analysis,
the students’ responses were re-assessed using the technique developed by
Gutiérrez, Jaime and Fortuny. This paper presents an evaluation of this assessment
method.

The ability to instruct students at their level of understanding is dependent, in part,
on the teacher being able to assess students’ levels of understanding. In order to
make this assessment, there needs to be available a reliable diagnostic instrument.
In the early 80s Mayberry (1981) in her work with pre-service primary teachers,
developed such a diagnostic instrument that could be used in an interview situation.
Mayberry’s test items and method of evaluation are based on the key assumption
that the van Hiele levels are discontinuous (Mayberry 1981, p.22). This led
Mayberry to design each item to test for understanding of a specific van Hiele level,
the response being assessed on whether it reflects that level of thinking. There is no
grading of the degree of difficulty of the Mayberry items within a level, nor of the
depth of understanding of the Jevel displayed in a response.

An alternative paradigm for the evaluation of the acquisition of van Hiele levels by
students has been presented by Gutiérrez, Jaime and Fortuny (1991). In contrast to
Mayberry, they have based their research on the idea that the van Hiele levels are
not discrete, rather that they are of a more dynamic nature, that they are continuous
rather than static (Pegg, 1992, p.25). Their theory (Gutiérrez, Jaime and Fortuny
1991, p.237) is based on observations that, when answering questions, although
most students show a dominant level of thinking, a response frequently displays
some reflection typical of another level. This paper presents an evaluation of their
coding system in determining van Hiele levels displayed by the students in their
responses to the Mayberry items. Before presenting the evaluation of the
assessment method of Gutiérrez et ul, a brief background to the important ideas
underpinning their work is presented.

Background
The van Hiele Theory '

In the 1950s, Pierre van Hiele and Dina van Hiele-Geldof completed companion
[KC vhich evolved from the difficulties they had expe,nenced as teachers of
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Geometry in secondary schools. Whereas Dina van Hiele-Geldof explored the
teaching phases necessary in order to assist students to move from one level of
understanding to the next, Pierre van Hiele's work developed the theory involving
five levels of insight. A brief description of the first four van Hiele levels, those
commonly displayed by secondary students and most relevant to this study, is given:

Level 1 Perception is visual only. A figure is seen as a total entity and as a specific
shape. Properties play no explicit part in the recognition of the shape.

Level 2 The figure is now identified by its geometric properties rather than by its
overall shape. However, the properties are seen in isolation.

Level 3 The significance of the properties is seen. Properties are ordered logically
and relationships between the properties are recognised.

Level 4 Logical reasoning is developed. Geometric proofs are constructed with
meaning. Necessary and sufficient conditions are used with understanding.

The van Hieles saw their levels as forming a hierarchy of growth. A student can
only achieve understanding at a level if he/she has mastered the previous level.
They also saw the levels as discontinuous, i.e., students do not move through the
levels smoothly (van Hiele, 1986). .

The research of Gutiérrez, Jaime and Fortuny

The method of evaluation developed by Gutiérrez, Jaime and Fortuny, based on the
premise that the levels are continuous, results in a qualitative assessment of a
student’s degree of reasoning in each of the four levels. Gutiérrez, Jaime and
Fortuny (1991, pp.238-239) maintain that initially students are not aware of the
new, higher level of thinking. They have no acquisition of that level. As they
become aware of the new level, an attempt to work at the level is made and a low
degree of acquisition is acquired. Continual growth in awareness is shown in an
increasing degree of thinking by the students at this level, through an intermediate
degree of acquisition, a high degree, until they have a complete acquisition of the
thinking at that level.

Several steps are necessary in evaluating a student’s van Hiele level(s) using the
method of Gutiérrez ef al. First, in considering a response, the highest level of
reflection displayed in the response needs to be determined in order to give the -
student full credit for the understanding displayed. In making this decision, it can
be necessary to consider the response in conjunction with the student’s other
answers (p.239). For example, a response which appears to be close to the
necessary and sufficient conditions sought in Mayberry Item 24 (next page) can be
an attempt at expressing minimum conditions (Level 4), or it can be a statement of
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the few properties known by the student for that topic (Level 2). Consideration of
the student’s other responses is necessary to determine which is the correct level.

Itern 24
Circle the smallest combination of the following which guarantees a figure to be a square.

a. Itisa parallelogram. d. Opposite sides are parallel.
b. Itis arectangie. e.  Adjacent sides are equal in length.
c. It has right angles. f.  Opposite sides are equal in length.

E

Aruitoxt provided by Eic:

It is not always necessary to consider other statements or responses. Many students
in their responses consistently show a dominant level of thinking. With such
students, their statements constantly re-confirm their most common level of
reasoning. However, the assessor needs to be aware of students who are beginning
to explore a higher level for some aspect of a concept and may give a better than
expected response if the question is focusing on that aspect or characteristic.
Conversely, students who have been attempting to work at a new level of reasoning
sometimes, in a response, revert to a lower level which is more familiar to them.

Having decided on a level, the response is now assigned one of eight types of
answer. This categorisation depends on the degree of mathematical accuracy, and
on how complete the solution to the question is. Gutiérrez et al (pp.239-240)
explained “To determine which type an answer belongs to, it is necessary to
consider it from the point of view of the van Hiele level it reflects, since an answer
can be adequate according to the criteria of a given thinking level but not valid
according to the criteria of a higher level.”

These two steps result in an answer being assigned a vector (, £), which shows the
highest level (I) the answer reflects, together with the type (£) of answer according
to its completeness and correctness. The responses are then quantified according to
each vector, and the student’s degree of acquisition of each van Hiele level
determined by calculating the arithmetic mean of the values of the student’s answers
to those items that could have been answered at that level. If a response has been
given at Level (n) when the question could have been answered at Level (n+1), a
zero score is given for Level (n+1). However, if a response has been given at
Level (n) and the question could also have been answered at Level (n-1), a score of
100 is allocated to Level (n-1), since a respoﬁse at Level (n) implies complete
acquisition of Level (n-1) (p.246). Finally, the student is assigned a qualitative
degree of acquisition when the arithmetic mean is converted to a subjective
interpretation of No acquisition (0-15%), Low (15-40%), Intermediate (40-60%),
High (60-85%) or Complete (85-100%) acquisition.
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In formulating their alternative paradigm for the evaluation of the acquisition of
van Hiele levels by students, Gutiérrez er al (p.239) started with some assumptions.
These are: '

* that it is more important to observe the students’ type of reasoning than
their ability to solve certain problems correctly in a set time,

* that a partially correct (or even a totally incorrect) answer may also
afford information, and

° that an incorrect answer, when considered in conjunction with other
answers, may give more than a negligible amount of information.

Design

In order to consider Mayberry's work in an Australian context, a detailed study of
the geometric understanding of 60 first-year primary-teacher trainees was carried
out at the University of New England (Lawrie, in press). The study aimed, in part,
to provide a written test based on the Mayberry interview schedule. Follow-up
interviews were conducted with students to validate the levels of thinking as
determined in the written test. Mayberry’s items covered seven geometric
concepts, namely, square, right triangle, isosceles triangle, circle, parallel line,
congruency, and similarity. Level 5 items were omitted, hence the written test
assessed van Hiele Levels 1 to 4. Conversion of the Mayberry items to a written
test involved some modification of the wording to ensure that the intention of each
qilestion was clear. A preliminary study validated the reliability of the written
questions. In her study, Mayberry assessed the response to every question part
equally, whether the question required simple yes/no answer, or whether it
required a complex explanation. A criterion was set for each concept and level
(ranging from 50% to 100%). If a student has given sufficient correct answers to
reach Mayberry’s criterion, the student is credited with having mastered that van
Hiele level.

The students’ responses were re-assessed using the method developed by Gutiérrez
et al (1991). To allow for the unequal expectations for some of the Mayberry
question’ parts, e.g., the difference between the expectations of a yes/no type of
question compared to a question requiring a complex explanation, groups of
question parts within one item in the Mayberry test were assessed as one complete
item. In addition, the initial data were further analysed to substantiate many'of the
general observations, using the QUEST program (Adams & Khoo 1993) which is
based on the Rasch measurement theory.
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Results

Table 1 shows the number of students demonstrating reasoning for each van Hiele
level and for each of the seven concepts, when assessed by the method developed by
Gutiérrez et al.

v Table 1
The Degree of Acquisition Attained by Students for each van Hiele Level

Degree of Acquisition
Concept van Hiele No
Level acquisition Low Intermediate High Complete

Square 1 0 0 0 0 61
n=61 2 0 2 7 24 28

3 37 9 13 2 0

4 59 2 0 0 0
Right 1 0 1 0 1 29
triangle 2 0 2 2 13 14
n=31 3 14 10 2 4 1

‘ 4 30 1 0 0 0
Isosceles 1 0 0 2 0 28
triangle .2 0 2 1 8 19
n=30 3 15 6 5 4 0

4 29 1 0 0 0

Circle 1 0 0 0 0 31
n=31 2 0 4 0 11 16

3 17 8 3 2 1

4 29 2 0 0 0
Parallel 1 0 0 1 1 28
lines 2 0 2 3 7 18
n=30 3 23 6 1 0 0

4 30 0 0 0 0
Congruency 1 0 0 0 7 24
n=31 2 2 2 5 10 12

3 16 7 5 3 0

4 27 4 0 0 0
Similarity 1 0 0 1 0 29
n=30 2 0 5 4 3 18

3 18 7 5 0 0

4 26 3 0. 0 0

*Similarity Level 4, n =29
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The results agree with the hierarchical structure of the van Hiele levels, and show
that the higher the level, the lower the degree of acquisition. Overall, the results
confirm the findings of the Mayberry assessment, that the majority of students have
mastery of Levels 1 and 2, but little or no understanding of the higher levels, i.e.,
most students were comfortable recognising concepts, and listing the associated
properties, but did not understand the relationships between the properties.

A comparison of the results with those resulting from the Mayberry assessment
shows that a high or complete degree of acquisition in the Gutiérrez et al results
corresponds with mastery of a level in the Mayberry evaluation, while a low or no
acquisition corresponds with failure to reach Mayberry’s criterion. Results
showing an intermediate degree of acquisition (40 to 60) tend to correspond with
scores close to the Mayberry criteria, some failing to reach the criterion, others
achieving mastery of the level. For example, of the eight students assessed as
having mastery of Level 3 for the square when assessed by the Mayberry method,
two were shown to have a high degree of mastery, and six an intermediate degree
of mastery of the level in the assessment using the method of Gutiérrez et al. The
remaining seven students assessed as having intermediate mastery all failed to
achieve Mayberry’s criterion for the concept and level. Hence, the Gutiérrez et al
method of assessment, in taking into account all responses, whether complete and/or
correct, makes a more realistic evaluation, giving a more accurate measure of a
student’s degree of understanding of geometry. The Rasch analysis supported the
theoretical background, and also the results determined using the Gutiérrez, Jaime
and Fortuny method of assessment. An increase in the mean difficulty thresholds
for the questions set by Mayberry for each van Hiele level agreed with the
hierarchical nature of the van Hiele levels, whilst an overlap of the difficulty
thresholds for questions testing for consecutive levels supported the notion that the
levels are not discrete. The analysis showed also a greater degree of difference
between the difficulty thresholds of questions for Levels 2 and 3 than between the
thresholds of other levels, indicating that the larger proportion of students were
able to demonstrate Level 2 knowledge of properties, but unable to reason with the
properties relationally (Level 3).

In conclusion, the alternative paradigm described by Gutiérrez et al, because it
measures a student’s capacity to use each one of the van Hiele levels in every
statement made, results in a more flexible interpretation of the reasoning of the
student. In particular:

1. a student can be shown to be developing in two consecutive levels of reasoning
at the same time, '

2. the incorrect assignation of a level to a question is of minimal significance,
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the effect of unequal distribution of questions across levels in minimised,

4. incorrect assessment resulting from ‘lucky’ guesses such as in true/false
questions, from weak, and from misinterpreted questions is minimised, and

5. inequalities associated with success criteria as in the Mayberry assessment
method, are eliminated.

Unusual Behaviour Patterns

An inspection of the quantitative results obtained in the re-evaluation of the
students’ responses, using the method of Gutiérrez et al, reveals that not all results
agreed with the hierarchical structure of the van Hiele levels. In twenty-six (2.7%)
of the nine hundred and seventy-six assessments, the degree of acquisition of Level
(n) is not less than the degree of acquisition of Level (n-1). In every case, the non-
hierarchical behaviour occurred between Levels 1 and 2, the degree of acquisition
of Level 1 measuring below that for Level 2. However, many of the pattern errors
in these quantitative results are considered to be trivial, the value of Level 1 being
less than 10 points below the value of Level 2. The results of two students (S47 and
S52) illustrate cases in which neither the qualitative nor the quantitative assessment
fit the hierarchical pattern. S47 was assessed as showing a high degree of
acquisition of Level 1, complete acquisition of Level 2 and no acquisition of Levels
3 and 4, whilst S52 was assessed as showing an intermediate degree of acquisition of
Level 1, a high acquisition of Level 2 and no acquisition of Levels 3 and 4. The
two patterns of unusual behaviour are graphed below.

Graphs of Unusual Behaviour Patterns

e S oo
85| 85
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The occurrence of these patterns in which the degree of acquisition'of Level 1 is
lower than it should be, is suggestive of two factors; (a) that the Mayberry -
questions designed to measure Level 1 are not always clear in their intention,
and/or (b) that the criteria adopted to measure the acquisition of levels using the
alternative paradigm of Gutiérrez et al may be more suited to responses
de - @ 'ting reasoning as with Levels 2, 3 and 4 rather than to responses
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dependant on visual identification (Level 1). The items showing least degree of fit
in the Rasch analysis were mostly Level 1 items, indicating that the better students
may have had difficulty in interpreting the thrust of the Level 1 questions.

Conclusion

The assessment method developed by Gutiérrez et al, in evaluating the degree to
which understanding of each level is expressed in every response, provides a
realistic mechanism for measuring a student’s understanding of geometry. It also
provides insight into the quality of a question. However, the alternative paradigm,
as developed by Gutiérrez et al, also needs further investigation and refinement.

1.  Questions at van Hiele Level 1 are not always assessed accurately. Is there a
limitation in the ability of the coding system of Gutiérrez et al. to evaluate
visual recognition?

2. The automatic allocation of a credit of 100 for Level (n-1) for an attempt at
Level n does not always seem justified and possibly presents a contradiction to
other aspects of their coding system.

3. The coding system is very time-consuming. Whereas it gives a much more
detailed and accurate picture of a student’s ability to work in each van Hiele
level, making it an excellent research tool, it 1s not suitable for use in the
regular classroom in its present format.

This analysis not only gives us a clearer perspective about the evaluation method

developed by Gutiérrez, Jaime and Fortuny, it also allows further insight into the

van Hiele Theory. In particular, it provides further empirical evidence about the

robust nature of the levels and about what it means to understand at a certain level.
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WHO PERSISTS WITH MATHEMATICS AT THE TERTIARY LEVEL: A
NEW REALITY?!

Gilah C. Leder, Helen J. Forgasz, & Christine Brew
La Trobe University, Australia
Abstract

Mathematics is widely regarded as a critical filter éo educational and
career opportunities. While in many countries niore students now
proceed to tertiary education, relatively few apparently elect to study
advanced mathematics. In this paper we suggest that inaccurate
participation and attrition data may inappropriately deter students from
continuing with mathematics at the highest levels. By quantifying the
drifi away from mathematics more precisely we illustrate that mature
age students and selected females are more likely to persist with
mathematics. We include interview data to illustrate students’ attitudes
and their motivations for selecting mathematics.

Introduction

The study of mathematics is widely considered to be important and to serve as a
critical filter to many educational and career opportunities, if not to the prosperity of
the nation. “Mathematics and science have a fundamental contribution to make both to
understanding the world and to changing the world, particularly in the context of
change and economic adjustment” (Speedy, 1989, p. 14). Despite this it appears that
interest in studying advanced mathematics and science has steadily declined.

There are strong indications of increasing ... enrollment problems
concerning mathematics and physics education as a rather international
phenomenon. During the last years, reports of a significant decline in
recruitment to higher education involving mathematics or physics have
appeared in many parts of the world, including many countries in
Europe, the USA, Australia, and Japan. (Jorgensen, 1997, p. 11)

The scope of this decline and the reasons for it are worth exploring.
Enrolments: new targets

In Australia, as in many other countries, various policies have been put in place to
encourage young people to proceed to tertiary education. These changes seem to have
been of particular benefit to two groups: females and older students. Females now
substantially outnumber males at university (Australian Bureau of Statistics, 1996 and
earlier years). Greater flexibility shown by tertiary institutions in their entry
requirements has also been an advantage for mature age students, that is, students who

' We gratefully acknowledge the help of the participating universities and their students as well as the financial
assistance of the Australian Research Council Large Grant Schenie
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have not necessarily completed the formal academic pre-requisites required generally,
or for specific courses, and who are 21 or over on March 1 of the year in which entry
is sought. Increases in enrolments have not been uniform across different subjects or
courses, however.

Mathematics enrolments

Gender issues. Gender differences in performance on mathematical tasks and participation
in optional mathematics courses and related activities have attracted much attention over
the past two decades. A careful reading of the literature reveals that there is considerable
overlap in the performance of males and females (see Leder, Forgasz & Solar, 1996 for a
comprehensive review). More consistent gender differences continue to be reported,
however, in participation patterns. Mathematics and related occupations have been
identified as a male domain in many countries. Statistics in the USA and elsewhere
reveal that women and minorities are under represented in the most advanced
mathematics courses and in related professions.

Explanatory models. Various explanatory models have been proposed to account for
the gender differences observed. They share many common features:

the emphasis on the social environment, the influence of other significant

people in that environment, students’ reactions to the cultural and more
immediate context in which leamning takes place, the cultural and
personal values placed on that leaming and the inclusion of learner- )
related affective, as well as cognitive, variables. (Leder, 1992, p. 609) o

Eccles et al. (1985) argued forcefully that an individual’s choice of educational and
career pathways selected is influenced not simply by reality but also by perceptions
and interpretations of that reality. Thus students capable of continuing with
mathematics, for example, but who believe that studying this subject is not appropriate
for them are more likely to turn to areas they believe others consider more appropriate
for them. Further credence to this hypothesis is given by descriptions of the subtle
ways in which thoughts and behaviors interact:

Attitudes involve what people think about, feel about, and how they
would like 1o behave toward an attitude object. Behavior is not only
determined by what people would like to do but also by what they think
they should do, that is social norms, by what they have usually done,
that is, habits, and the expected consequences of behavior. (Triandis,
1971, p. 14)

Intensive explorations of factors contributing to the reportedly high attrition rates
among undergraduates in mathematics and the physical sciences are rare. Seymour and
Hewitt’s (1997) comprehensive examination of factors critical in the decisions of
American undergraduates to switch from science, mathematics, and engineering
courses into non-science disciplines is a welcome exception. An ethnographic
approach, they argued, was most suitable for their three-year study since relatively
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little was known about the kinds of factors which might be involved. Nevertheless,
their search of the relevant research literature did identify some critical elements,
including differences between males and females in psychological alienation, self-
esteem, career aspirations, and persistence. Seymour and Hewitt (1997) commented
on the failure of many college and university departments to keep “enrollment,
persistence, and attrition records” (p. 14). As discussed in the next section, obtaining
an accurate long range overview of enrolment trends is problematic. Tracking such
patterns for selected subjects is fraught with further difficulties.

Mathematics enrolments

Questionable data. Enrolment figures are collected annually from Australia’s tertiary
institutions. However, “much of the readily available statistical information aggregates
the whole of science and therefore tends to mask trends in individual discipfines”
(Australian Academy of Science, 1993, p. 4). Problems with more detailed coding
required by government from institutions, for funding purposes for example, have also
been identified:

In general, the level III fields of study for matliematics were of limited
value in considering either participation rates for students overall or
relative rates for men and women. This stemmed from attempting to apply
a vocational classification to a discipline in which most programs in
which majors in mathematics can be completed are of a generalist
nature.... Interpretation of the data was (further) clouded by the sudden
appearance or disappearance of institutions in the fields over the study
period. This in part stemmed from changes to course structures resulting
in redefinition of the level IiI field. (Cobbin, 1995, p. 62)

Such incomplete tracking of participation rates not only affects the portrayal of the
reality on which students base their decisions about appropriate areas of study, but
also affects societal perceptions of reality.

A new approach. To supplement the broad national enrolment data available from
government sources (Department of Employment, Education, Training and Youth
Affairs [DEETYA], 1996), we sought enrolment information for 1996 and 1997
specific to mathematics by writing to the 38 Higher Education institutions across
Australia. In particular we requested enrolment figures by student sex and age (under
21 or not in March of the year of initial enrolment). We also requested details about
the DEETYA codes used to identify students likely to pursue a major in mathematics.
Available codes included: mathematics, science-general, computer science, life
sciences, and information systems. Twenty-three institutions supplied us with
information. Of these, 15 replied with all the information in the requested format.
Reasons for some of the omissions in other returns are clarified below.
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Explanations for the (non) selection of the available DEETYA codes were informative.
For example, one institution responded:

We are unable to complete this section owing to the difficulty of
obtaining details on majors at undergraduate level, until after the student
has graduated.

Another wrote:

All of our students’ courses will be categorised as either “science-
general” or “mathematics” depending on whether they have elected their
major at the time of enrolment. Thus, first year students will usually be
coded as “science-general” while later year students will gradually move
to more specifically coded majors/degrees.

This latter approach was used by a number of our other respondents. In contrast, one
institution coded all its mathematics students to the “life sciences”, three indicated that
they coded all students taking any mathematics subject as “mathematics”, while others
coded all such students as “‘science-general”. These inconsistencies highlight the
difficulties of obtaining accurate longitudinal, or even annual, data and suggest that the
national data base underestimates the actual number of students studying and majoring
in mathematics. When combined with global statements about the lack of appeal of
mathematics to students, the picture presented may sway students’ perceptions of
mathematics as either appropriate or inappropriate for them. It is worth recalling the
assertion by Triandis (1971) that “behavior is not only determined by what people
would like to do but also by what they think they should do, that is social norms” (p.
14).

The data. The mathematics enrolment data, overall and for selected groups, are shown
in Table 1. The data returned were from institutions with a total enrolment of 275,600
students in 1996, representing just over 40% of the 1996 national higher eduction
enrolments. By comparing enrolment figures for 1996 and 1997 for this sample we

were able to calculate continuation rates from first to second year and from second to
third year.

The data in Table 1 indicate that:

¢ despite a greater number of females than males in Australia commencing first year
university studies (DEETYA, 1996), more males than females studied at least one
first year mathematics subject

e a higher proportion of males than females continued with a mathematics subject
from first to second year, but

¢ a higher proportion of females than males continued with a mathematics subject
from second to third year

¢ for both males and females, the attrition rate from first to second year, and from
second to third year, was higher for younger students than for mature age students.
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The continuation data for students from second to third year reveal a rarely reported
high degree of persistence for a select group of females: those who studied university
mathematics for at least two years. Also worth noting is the relatively strong
persistence of mature age students in their mathematics studies. Interview extracts
provide an informative context for these statistics.

Table 1: Selected enrolment and continuation data

Year 1 Total Male Female

All <2lyrs | >21yrs | All <21yrs i221yrs
1996 24725 {14628 {11189 {3439 10097 7941 2156
1997 26422 | 15527 {11896 {3631 10895 8552 2343
% male (1996) 592 [585 615
% male (1997) 58.8 58.2 60.8
Year 2 Total Male Female

All <2lyrs | 221 yrs | All <21 yrs | 221 yrs
1996 9998 16964 |4686 2278 3034 1953 1081
1997 10004 | 6889 |4746 2143 3115 2053 1062
% male (1996) 69.7 1706 67.8
% male (1997) 689 |69.8 |66.9
Year 3 Total Male Female

All <2lyrs {221 yrs | All <21yrs | 221 yrs
1996 3268 11912 11058 854 1356 761 595
1997 3289 | 2041 1180 861 . |[1248 704 544
% male (1996) 58.5 58.2 58.9
% male (1997) 62.1 62.6 61.3
% Continuing: 140.5 [47.1 [424 62.3 30.9 25.8 493
1% to 2™ year
% Continuing: § 32.9 [29.3 {251 37.8 41.1 36.0 50.3
2" to 3" year

Student interviews. We interviewed mature age students as well as students who
proceeded to university directly from school. The (representative) extracts below
highlight the issues on which the differences between these groups were most marked:
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reasons for studying mathematics, more positive attitudes to mathematics and to
working hard, persistence, and a willingness to seek assistance.

"The first set of extracts illustrates a fundamental difference, elicited in a number of
interviews, between mature age students and school leavers for studying tertiary
mathematics and with respect to their attitudes to this subject.

I came back to study because my career choices were limited without it
...I spent most of that time [since leaving school] employed in the clothing
industry and sometimes I worked for people and sometimes (I was) self
employed ...and ended up just absolutely hating it and so had to sit down
and look at my options and thought, well, further education was always
one of my aims as a teenager. I was always going to go to university but I
never had any real picture of what I was going to become which was the
main problem when I was at school.... So basically it took me 10 years to
realise that I just want to do mathematics. (Lara, mature age)

Well with mathematics I have always had a very deep interest and quite
like mathematics and when I finished my final year of school back in
1972 1 had a very difficult year that year for a number of reasons and I
failed the year and I always meant to go back to school and that never
happened until this year and I had to sit quite a few tests before they
would allow me in. The main reason I am doing it is because I have
always had a deep liking for maths and I have always wanted to pursue it.
(Dan, mature age)

I guess that [mathematics] is probably the last option that I had because
my mark [in grade 12] was not so flash and that was the last option there
was for me with which I could get into university. So I guess I had to take
that option. Mathematics is not a big overly difficult subject for me. I
don’t find it too hard. So I thought it would not be too bad to do... It is a
compulsory subject... Even though I am interested in it, I am not too bad
at it, but I don't think I would choose it. (Kip, school leaver)

Honestly [I chose mathematics] because I don’t like any of the other
subjects offered .... And I thought mathematics would be a logical
subject and all I have to know is how to use the formulas and I would be
able to get along with it (Anne, school leaver)

Subtle differences between the more mature and younger students in attitudes
to, and for, getting help are illustrated by the next two extracts

-Here (at university) it feels pretty good. I find probably just about every
day, or may be three or four days a week, I will be knocking on
somebody’s door saying “I have got a problem with this” and I actually
kind of like doing it because I like discussing the subject. Even if it is not
that much of a problem it is good to discuss it. I find I don’t fear it as
much if I can talk about it (inaudible). So... they are usually helpful
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although sometimes you feel like you are bothering them (inaudible) and I
probably am too. ...They are all pretty helpful. (Bill, mature age)

I don’t usually ask for help in that I prefer to get a textbook or something
and get help there. So I don’t usually see lecturers but other students are
different. (Mark, mature age)

At school the teachers are always there pushing you because they feel
they have a responsibility.... whereas at university level there is help if
you want it ... (but) you have to'go and ask for help yourself. There is no
help offered on a one-to-one basis. ...I have needed help in the past, yes,
and it is sometimes difficult to find the relevant people you need to talk to
but once you find them the help is generally available at tertiary level. ...
It is easier to get help [in the school classroom] if you want it because
you can get help then and there. (Sam, school leaver)

I think in school it kind of unique because you have got one teacher and
they have known you for a few years and so they. are always willing to
help and you can talk to them where at university it is more of a
bureaucracy... It is, I find in mathematics that if you don’t think you are
getting enough help it is probably, or sometimes I don’t think I am getting
enough help, it is probably my fault more than theirs because they are
always willing to be there. (John, school leaver)

Final comments

National enrolment data, from which reductions in the numbers of students engaged in
high level mathematics studies are traditionally inferred, are not as precise as generally
assumed and mask information about students who do persevere with mathematics.
Our more painstaking efforts to gather accurate information identified difficulties
associated with large data bases and highlighted selected groups who persist with their
studies in this area. In interviews, these students - mature age students and females
who have remained with mathematics for two years of undergraduate studies - seemed
more convinced of the importance of mathematics to them, had a greater awareness of
the intrinsic value of mathematics, were more task-oriented, willing to work hard and
consistently, sought, and obtained help when needed. ‘Societal and institutional
preoccupation with those opting out of mathematics rather than with those who persist
may subtly reinforce cultural perceptions of mathematics as a suitable area of study for
only a small minority.
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RE-STARTING ALGEBRA IN HIGH SCHOOL:
the role of Systemic Thinking and of Representation Systems Command

E. Lemut and S. Greco
Istituto Matematica Applicata CNR - Via De Marini 6, 16149 Genova - Italy

Abstract

In this paper we focus on restarting algebra in the first years of high school; in
particular, we analyse connections between ability of thinking in systemic terms and
algebraic modelling and discuss about the significant influence of students attitude
and capability to make use of representation registers rich of operative potentialities
on ability of algebraic modelling a situation; we finally suggest some didactic
implications of our analysis on classroom activities.

Introduction

Mastering algebra is an aim of the high school (14-18 y.o. pupils), while a
preliminary introduction to algebra is already made in the middle school (11-14
y.o. pupils), at least in some countries. In middle school, most teachers make a first
introduction to some algebraic activities, mainty to the use of letters in expressions,
but in non-homogeneous ways. This causes a problemsat the beginning of high
school, as students coming from different classes have different backgrounds, and
especially different conceptions, on what algebra is. This algebraic background can
vary from a minimum experience with literal calculus up to using algebraic
formulas to describe some phenomena; nonetheless, more the procedural than the
relational aspects involved are usually emphasised. The math teacher in the first
year of high school has then the problem to restart algebra in such a way that each
student can relocate what he already knows in a meaningful framework that makes
him understand and appreciate the conceptual break with arithmetic.

Research problem

The way restarting algebra is developed at the beginning of high school is very
important and may be the origin of some graduated adults’ (teachers, engineers...)
conceptions of algebra (Hudson et al.,1997), making it difficult to be used in
professional contexts .

Mastering algebra implies both being able to model (Chevallard, 1989) a
situation in algebraic terms, that is finding out and writing formulas representing
the relations among the involved entities, and being able to manipulate expressnonS‘
and relations by means of rules in order to achieve fixed aims.

It is well known that being able to manipulate expressions and relations does
not imply being able to model a situation (Arzarello et al.,1994) and that:some
representations of a problem situation may be correct but not sufficient to result in
a right solution of the problem, not even in arithmetic problem solving (Lemut &
Mariotti, 1995; Dettori & Lemut, 1993).

Out of other authors, Rojano & Sutherland (ROJaIIO & Sutherland, 1997) write
that in algebraic approach to solving a problem it is necessary to be aware of and
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keep in mind the complete set of relationships present in the problem and to
explicitly use a verifier of the attempts undertaken.

It is known that algebraic modelling of a problem situation implies a
conversion! (Duval, 1994) from the text of the problem expressed in common
language to an algebraic representation; but this conversion is not easy and is more
difficult if it is a not-congruent conversion (in other words, if it is not an act of
coding from one register to another (Duval, 1988)).

Finally, it must be taken into account what Yerushalmy (Yerushalmy, 1997)
writes, mentioning Hall (Hall,1989), “I think, like Hall, that a major agenda of
algebra teaching should be equipping learners with tools for mathematizing the -
perception of the situation context;...”; furthermore he underlines that the main
research findings suggest that solvers of word problems in algebra devote a
substantial portion of their work to re-representation of the problem at the situation
level.

In this research context, it could be interesting to deepen what is at the basis of -
the problems re-representation processes activated by the students and which tools
they should be equipped with, in order to highlight when and how activities of
manipulating representations in different registers and of converting from a
language into another lead or not to an algebraic modelling.

Research hypotheses

We shall develop the analysis of students' and teachers' problem solving processes
according to the following hypotheses. We think that algebraic modelling is based
on the convergence of three major components: systemic thinking, mastery of a
wide range of representation systems rich of rules for manipulating
representations, capability of converting representations from one representation
system to another These three components can have, from time to time, different
level of mutual influence and coordination.

The capability of systemic thinking is an educational aim which overcomes
algebraic thinking and operating; it is a transdisciplinary aim. Licon Khisty (Licon
Khisty, 1997), when discussing about how to reform mathematics education,
describes "systemic thinking" as a general philosophy that suggests thinking
globally but acting locally. Economists apply systemic thinking for designing and
analysing economical scenarios.

Systemic thinking, in the context of learning/applying algebra, concerns at
least two different aspects: modelling and manipulations control. As regards
modelling, we think that systemic thinking intervenes in at least two cogpitive
activities: a) to identify the involved entities in a given situation, to decide for each
entity if it is influenced by the others or influences them, to isolate each single
entity in order to analyse how it is mutually linked to the others; b) to verify the -
perception, in a sequence of representations, of being or not in front of a
representation that can be just converted into algebraic language. As regards
manipulations control, we hypothesise, even if we do not discuss about it in this
paper, that systemic thinking is also at the basis of controlling the sequence of

I “Conversion is the transformation of the representation of an object, a situation or a

given information from one register to another... Hence, conversion is an external
transformation in respect of the first representation register.” (Pavlopoulou, 1994),
(translated from French)

1993w



results of successive manipulations in order to decide, from time to time, if the
- reached result is suitable to check the plausibility of a conjecture, to demonstrate a
theorem, to highlight a property (Gallo, 1994).

In general, thinking in systemic terms, hence operating on relatlons in order to
obtain new information, entails that one be equipped with representation "registers”
(Duval, 1995) of different kind, each supporting a rich system of rules which allow
to manipulate the represented relations. On the other side, algebraic competencies
are usually fundamental for analysing in quantitative terms a set of relations.
expressed in some representation register.

In this paper, focusing on restarting algebra in the first years of high school,
we analyse connections between ability of thinking in systemic terms and algebraic
modelling and discuss about the significant influence of students attitude and
capability to make use of representation registers rich of operative potentialities on
ability of algebraic modelling a situation; we finally suggest some didactic
implications of our analysis on the classroom activities. :

Experimental setting

We planned some activities with about 40 forty 14-15 years old pupils of two first
classes of a fine art lyceum in order to investigate on the above mentioned points.
We verified previously that the type of school does not seem to affect students’
attitude to make autonomous use of some representation systems. In none of the two
classes pupils’ algebraic backgrounds have been investigated; anyway, our aim was
to restart algebra by means of problem solving activities, considering this context as
the most adequate to develop modelling capabilities and to stimulate thinking in
systemic terms. The official program of this kind of school and the number (4) of
hours per week are only a bit different from those of other more demanding high
schools.

Moreover, the same problems have been proposed to some math teachers in order
to find out analogies or differences in experts’ and novices’ approaches to problem
modelling.

The examined problem sitﬁations

Among the problem situations submitted to the students, let us show the following
ones, which are significant as concerns connections among thinking in systemic
terms, representing in various representation systems and algebraic modelling.

PROBLEM 1 :“Mark’s father is 38, Mark is 6. In how many years Mark’s father
age will be three times Mark’s age?”

Through this problem we wanted to investigate whether when a problem is
expressed in terms that are not-congruent in respect of possible formalisations in
the representation register in which one is asked to solve it, it is possible to result in
a solution, either algebraic or arithmetic, without thinking in systemic terms or
making flexible use of some intermediate situation’s representations.

The teachers succeeded in modelling the situation by means of the equation
“38+X=3(6+X)"; only some of them needed to produce some graphical
representations (such as little segments) of the initial data and their modification
year after year, and to operate on them by simulation of movements (physical
comparison of segments).

El{lC 3-193

Aruitoxt provided by Eic:

5



Q

ERIC

Aruitoxt provided by Eic:

The teachers, asked for an arithmetic approach to the problem, coped with
some difficulties; furthermore, both pupils and adults were not able to easy
understand the following resolution strategy: “Today the difference between
father’s age and three times son’s age is 20. Year after year, father’s age goes on by
1, three times son’s age goes on by 3, so that they get nearer by 2. Hence, the initial
difference of 20 becomes 0 in 10 years.”. In fact, this arithmetic solution requires a
systemic approach supported by some mental or external representation, that must
be manipulated: globally thinking concerns the identification of a certain number of
involved entities (father’s age, son’s age ,three times son’s age, the difference
today..., father’s age after one year, son’s age after one year, three times son’s age
after one year, the difference after one year...,.and so on); locally operating
concerns deciding to calculate the initial difference, how much this difference
decreases each year in relation to the difference year after year between father’s
age variation (which is 1) and three times son’s age variation (which is 3), and in
how many years the initial difference collapses.

As concerns what we wanted to verify, we feel that also he teachers who
appeared not to resort to any visible representation manipulated in their mind the
verbal text of the problem until they saw in their mind a new representation of the
problem text, perceived as convertible into algebraic language in a congruent way.

PROBLEM 2 : “An architect has to cover a 4 meters per 3 meters opening in a wall
with a rectangular window having a wooden border of the same width on all the
sides. For a reason we don’t know, the window glass should have a 10 metres

perimeter. How wide should be the wooden border?”

Through this problem we wanted to verify whether submitting to students problems
whose text is not easily convertible into algebraic language, but is easily
representable in a well known environment, within which they are used to write
algebraic expressions, can be a good way to make students aware of the importance
of resorting to rich representation systems as mediators towards algebraic
modelling.

Facing this problem, the teachers drew a rectangle of dimensions nearly
proportional to the given ones and, inside it, another rectangle with the same
centre; theén they expressed a problem resolution in words (by mind or by writing),
on the basis of the made representation and not of the text anymore; finally, they
converted the resolution into algebraic terms by means of the equation “2(4-2X) +
2(3-2X)=10".

Most students made the same drawing, adding numeric data on it, but then they
solved the problem by trial and error; by doing so, they were far from thinking
both in relational and in algebraic terms.

The following resolution strategy proposed by a student is interesting to be
examined; it must be taken into account that the teacher told his class that they were
restarting algebra by means of problem solving activities. Besides a drawing similar
to the above described ones, he wrote “2p=(3+3+4+4)M=14M; 2pglass=10M;
10=(4-2x)+(3-2x)*2”. In this case, regardless to the standard error in the final
algebraic expression, jumping to converting the situation into algebraic terms was
been mediated by moving from the representation system of geometrical drawings
to that of formulas aiming to hig-hlgght some properties of the drawings themselves;
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in this moving, the student still made use of terms that were not at all algebraic
terms: in fact, the used letters M and p and the string pglass are neither variables
nor unknowns but only labels.

As concerns what we wanted to verify, we have to take notice that the answer
to our hypothesis may be negative if students resort to representing outside of a
deliberate systemic approach to the problem situation; in this case, for example, we
feel that resorting to geometric representation has been quite automatic. It is also
interesting to underline the importance of flexibly moving from a representation
system to another, being always aware of the fixed goal (that is solving the problem
through algebraic methods); this is one of the systemic thinking aspects.

PROBLEM 3 : “In a house there are three little brothers. One night, one of them
awakes and finds some chocolates on the table; he eats one third of them and comes
back to bed. Later on, another one awakes and does the same thing, that is he eats
one third of the chocolates he finds on the table. Again, the third little brother
awakes too and eats one third of the chocolates he finds on the table. At the end, on
the table there are 8 chocolates left. How many chocolates were there on the table at

the beginning?”

Through this problem we want to investigate on which level of complexity in
systemic thinking one, either student or teacher, is able to handle (at the moment).
(we chose a problem expressed in such a way that a congruent transformation can
be activated into algebraic language just from the beginning)

One mastering fractions and algebra is supposed to immediately convert the
problem into algebraic language by means of the equation

1 1 1 1 1 1 1
“X-=X - =(X-=X) - =(X-=X- =(X--X))=8"".

3 3( 3 ) 3( 3 3( 3 )
Actually, this is not always the case: teachers too developed solution strategies in
which not all the involved entities are put in relation since the beginning. For
instance, after writing “X-% " some of them went on as follows:

“X -%X:%X - number of chocolates left after the first brother;
% *X-% *% *X=§ *X-% *X=% *X - number of choc. left after the second brother;
%*X—% *; *X=§ *X-i *X=% *X - number of choc. left after the third brother;
8 ‘

*X 8 from which X=27".

Most students represented the situation by means of areograms, by congruent
transformations, because of the presence of fractions in the text of the problem.
The used representation suggested them some further manipulations according to
the text of the problem (representation of the initial and successive quantities of
chocolates), hence reinforcing the idea that the followed strategy was fruitful; but
being unable to put in relation what already represented with the given numeric
data 8 stopped the solution process in some cases. Both students succeeding in
finding out the mentioned relation and those making use since the beginning of a
[l{[lcltation including this relation (starting frg::y'? 2t of 8 objects divided into

: 3-195 : ﬁ

e soe

A s . a s



two sets each of 4 objects) solve the problem by means of the following arithmetic
solution strategy:

'8: ; 8:2=4; 4%3=12; 12——- 12:2=6; 6*3=18; 18—— 18:2=9; 9*3=27; 27 is the

‘ initial number of chocolates .

‘As concerns what we wanted to investigate, we have to take notice some teachers

seem to be able to master a level of complexity of systemic thinking comparable
with this of the students who are able to put in relation the given 8 with the
representation of the part left by the last brother, even if they resort to different
representation systems. Teachers who operate step by step show both to think and
to act essentially at local level.

PROBLEM 4: “Let the following table be given, representing the number of]
enrolled students in the five classes of a high school during two consecutive school
years. Write some relations to determine for every class how many students
dropped out school between the two school years.” (for simplicity, we assume there
hasn’t been any students interchange among different schools) - (from the project
MaCoSa, by C.Dapueto)

A B I [ D [ E
1 school year 1988-89 school year 89-90
2 enrolled i repesting | enrolled repeating
3 |orede 1 181 81 154 36
4 |grade 2 146 38 126 35
S |orede 3 245 48 140 37
6 lgrede 4 263 31 197 22
7 |grede S 234 4 232 1
Fig 1 8 [licensed 233 230

Through this problem we wanted to investigate which kind of behaviours could be
activated, expecially after giving a systemic representation of the situation, when in
the text of a problem not all the involved entities are mentioned.

Middle 1988-89
School
' 1989-90 %&&é&% licensed

Fig. 2 drop outs

- All students tried to solve the problem by writing out formulas in- the spreadsheet

O

ERIC

Aruitoxt provided by Eic:

environment which they had previously worked in and whose richness, as concerns
allowed manipulations, they had appreciated (it must be noted that this problem was
submitted after working for two months in a spreadsheet environment, where
students were asked to interpret and write some algebraic formulas). Only one out
of 40 wrote the formula “=D4-E4” in order to express passed students (not-
mentioned entity in the problem text, neither in the verbal part nor in the table
included), but then he was not able to go on.

Once a representation of the problem situation by means of a graph was given
to students (Fig.2), starting from this representation and its rules (the value of any
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node is the sum of the values of all arrows from it or to it) and basing on data
representation in the table, most of them developed a problem solution in algebraic
terms by means of the following relations “D4=P+E4; B3=E3+A+P” (where P:
passed and A: drop outs); this model of the problem situation can be considered
algebraic especially because formulas are not expressed in procedural terms, such
as “P=D4-E4; A=B3-E3-P”. Then students succeeded in algebraic modelling the
problem situation without difficulty; at this point, they were only asked to convert
into algebraic language what was expressed in graphs language in such a way that
was congruent with it.

The teachers preferred not to use the offered graph representation after
deriving from it the importance to consider "passed students”. One of them, after
producing the solution "£81-8; passed 1°-2°; 181-91; 90 36 repeating; 90-36 54",
guided her students to make use of the graph representation in a systemic way.

As concerns what we wanted to investigate, we point out that nobody
approached the problem in a systemic way before having in his hand the graph
representation; then, even if with some initial reluctance, the teachers felt the
importance of teaching to look at a problematic situation by thinking globally and
acting locally; the students used without difficulty the graph as a basis for
converting some parts of it into algebraic language.

Finally we submitted also the following PROBLEM 5: "Five friends have
debts/credits each other. Anton has to give Daniel 403, Daniel has to give Eric 808,
Charles has to give money to both Daniel and Eric but he doesn’t remember how
much he has to give to each of them, Bernard has to give Daniel some money but he
doesn’t remember how much, Charles has a total debt of 308, Daniel knows his
debts are equal to his credits, Eric knows he should receive 100% at all. Which is
the debts/credits situation of the five friends?” for showing the importance of
systemic thinking and representing when the network of the relations is too
complex.

Conclusions

In the previous paragraph, through the analysis of some problem solution
processes, we have highlighted the connections between mastering algebra and
being able to think in systemic terms; we have also shown how these two aims, a
disciplinary and a transdisciplinary one, are strictly connected with making
conscious use of representation systems of different kind, each supporting a rich set
of rules which allow to manipulate the represented relations.

In particular, we want to further underline the following items: a) thinking in
relational terms is not an exclusive feature of algebra, so that it can be developed
before or besides algebra (problems 1 and 3); b) resorting to representation systems
without aiming it to find out the relations among the entities involved in a problem

" situation can be of not use at all towards algebraic modelling (problems 2 and 3); ¢)
moving from a representation system to another, being always aware of the fixed
goal, that is solving the problem through algebraic methods, is crucial (problem 2);
d) when the algebraic model of a situation is too complex, even if the text of the
problem is expressed in such a way that is congruent with algebraic language, also
math teachers tend to represent the situation step by step using a mixed language,
whlr‘h i< halfway algebraic and halfway verbal (problem 3); e¢) when the involved
EKC are not all mentioned in the text of a problem or the network of their
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relations is too complex, algebraic modelling requires the support of some
intermediate representation system (problems 4 and 5); f) being used to different
software environments may develop attitude to think that the represented objects
may be manipulated and anyway must be manipulated according to the rules of the
environment itself (problem 4).

Concluding, we think that restarting algebra in the first years of high school
could be more effective in a problem solving context, paying attention to what kind
of problems are meaningful and focusing first of all on modelling the problem
situation, that is on finding out and making explicit the relations among the
involved entities; this approach doesn’t entail graduating the situations on the basis
of the number of equations or inequalities arising from the modelling process and
of the complexity of manipulations to be made on them. Furthermore, modelling
and manipulating processes are better distinct; students attention can be focused
more on structural than on numerical aspects of problems resolution; learning
manipulation rules can be effectively motivated by being the tools which allow
students to make explicit the solution already implicitly encapsulated in the model
of the problem, beyond finding out new properties of the involved entities or new
meanings of the involved algebraic expressions.
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IN PURSUIT OF PRACTICAL WISDOM IN MATHEMATICS EDUCATION RESEARCH

Frank K. Lester. Jr.
Indiana University
Bloomington, Indiana

ABSTRACT

Currently there is a serious and growing lack of communication among researchers in mathematics
education as well as between researchers and education practitioners. In this paper I draw upon
my experience as editor of the Journal for Research in Mathematics Education to challenge the
mathematics education community to begin to consider how we might establish real lines of
communication among researchers and between researchers and practitioners. Of particular,
interest to me is the development of “practical wisdom” about the contemporary problems
confronting us.

During my term (1992-1996) as editor of the Journal for Research in
Mathematics Education (JRME), there were numerous instances of an apparent
failure of authors to communicate appropriately with their intended readers. Many of
these instances were due in large part to the lack of shared principles among
researchers regarding such fundamental matters as what counts as research, the role
of justification, what counts as evidence, and the place of background assumptions
and beliefs in the research process. An even more serious lack of communication
exists between researchers and teachers, teacher educators, and other educational
practitioners. In this paper I make some suggestions about how to increase the level
of communication. :

Lack of Communication Among Researchers

There is reason to believe that the communication gap that exists within the
research community will continue to widen for some time to come. In my first
editorial, I observed:

Many educational researchers have come to embrace methodologies developed in such
disparate research disciplines as anthropology, psychology, history, philosophy, and sociology,
as well as the various "natural” sciences.

This poses a dilemma for reviewers (as well as for editors) because researchers and
academics within any discipline set standards for scholarly discourse that often are not
functional outside that discipline. Academic disciplines can be distinguished from each other
in some fundamental ways. In particular, they differ with regard to the nature of the questions
asked, the manner in which questions are formulated, the process by which the content of the
discipline is defined, the principles of discovery and vcriﬁpcation allowed for creating new
lépow_vlledge within the discipline, and the criteria used to judge the quality of research within the

iscipline. .

When we decide to borrow from a discipline other than the one in which we were trained we
must take care to give ample attention to the perspectives and assumptions underlying that
particular discipline. Unless researchers who use methods outside their own research tradition
have developed a good sense for these kinds of issues, it is likely that their research (and their
assessment of research reports) will not be well-informed. (Lester, 1993, p. 2)

And, the dilemma is not restricted to reviewers and editors! The scope of
methodologies, epistemological stances, and ideological perspectives found in the
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journal's articles have made it difficult for even the most capable and persistent
readers to understand or fully appreciate all that appears in a given issue. Small
wonder that a communication gap has developed.

Of particular interest to me are the difference positions that exist among
researchers with respect to the role of justification in research—positions that have
become apparent to me as I read reviewers' comments on manuscripts (and authors'
responses to those comments).

Why Is Justification So Important?

Researchers concern themselves at various stages in their work with justification
of at least three kinds: (1) justification of the importance and significance of their
research agenda or specific research problems, (2) justification of the methods and
methodologies they use to study their research problems, and (3) justification of the
claims they make and the conclusions they draw.

Although some might think there is no controversy about the importance of these
three kinds of justification, consider the fact that within the past 10 years or so, most,
if not all, of the virtues researchers have traditionally looked for in educational
research have been called into question. For example, some educational theorists,
notably Lather (1994), argue that even so fundamental a standard as clarity of
discourse might be regarded as problematic.

To further establish a case for the need to discuss justification, consider the
editorial in a recent issue of Educational Researcher (Donmoyer, 1996). In this
article the Features Editor pointed out that peer reviewers' recommendations often
conflict and their advice to the author is sometimes contradictory. He went on to note
that:

Diverse recommendations from reviewers reflect, in part at least, the fact that ours is a field
characterized by paradigm proliferation and, consequently, the sort of field in which there is
little consensus about what research and scholarship are and what research reporting and
scholarly discourse should look like. (p. 19)

The emergence within the past 15 years of "narrative research” illustrates
Donmoyer's point. In her excellent review of this relatively new form of academic
inquiry, Casey (1995) included a wide variety of practices (e.g., analysis of
autobiographies and biographies, life writing, personal accounts, narrative interviews,
ethnohistory, ethnobiographies, and popular memory). To this list, we might add
"fictional narratives" (Eisner, 1993). Although no narrative research reports were
submitted for publication in JRME during my term as editor, I would not be surprised
to learn that current editor, Judy Sowder, has received, or soon will receive, such a
manuscript. How will reviewers of a narrative report judge whether the author has
provided, for example, adequate justification for her or his claims?

Finally, a common shortcoming of manuscripts submitted to JRME is the failure
of authors to demonstrate how their conclusions relate to their conceptual or
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theoretical framework or to some set of underlying assumptions, and to provide an
argument, situated within a set of background assumptions and beliefs, linking the
claims they are making to the evidence they have presented. A considerable number
of authors of relatively traditional research reports seem not to appreciate the
importance of justifying their conclusions. For these researchers it is apparent that
they believe "the data speak for themselves."

The Justification of Claims

A discussion of the justification of claims based on evidence is central to all the
sciences—be they natural, behavioral, or social. Whether or not to believe, or even to
take seriously, a scientific claim depends on the quality and nature of the evidence in
its favor as well as on the nature of the case the researcher makes for the claim. The
choice between conflicting theories—for example, between Newtonian and
Einsteinian physics—cannot be made without examining the evidence put forward
for each. If no evidence can in principle be presented that favors one theory over
another, or if what counts as evidence is completely unclear, then the theory is
considered unscientific. For example, one reason that scientists reject astrology is
that many of its claims are so vague that it is unclear what would count as evidence
that they are true or false.

But in this paper I am not concerned with what counts as evidence. Rather, I am
interested in how scientific researchers go about justifying the claims (conclusions,
hypotheses, implications, etc.) they make once they have identified the evidence.
The relation between observational data and claims is determined by chains of
reasoning situated in the set of background assumptions and beliefs operating in the
context in which the data are being assessed (sifted through, categorized, classified,
analyzed, etc.). Furthermore, however we end up characterizing observational data,
they are what serve as evidence for the claims that result from our research efforts.
Data—ecven as represented in descriptions of observations and experimental results—
do not on their own, however, indicate the claims for which they serve as evidence.
That is, claims are not "indicated" by data at all; conclusions are drawn or reached by
researchers by means of chains of reasoning. Moreover, these chains contain
premises. The empirical data merely constitute one set of premises, but there are
others as well—there are always premises based on background assumptions and
beliefs—that provide a link between the data and the conclusions.

Background assumptions or beliefs, then, are expressed in statements that are
required in order to demonstrate the evidential import of a set of data to a claim. As
such, they both facilitate and constrain reasoning from one category of phenomena to
another. Relativizing evidential import to background assumptions and beliefs thus
involves accepting this relation as involving substantive assumptions. Evidential
relations are not autonomous or eternal truths, but are necessarily constituted in the
context in which data are being assessed. Put another way, observational data do not
in themselves point anywhere; they do not contain labels indicating what they are
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evidence for. Instead, they depend upon the context in which they are being
considered and the connection made between the evidence and the claim.

But what about the rational process of moving from evidence to claims?
Consider the following situation. Suppose a student were to stop by my office to tell
me that she will not be in class today because she has a fever (confirmed by a
thermometer reading of 40°C). I sympathize with her and suggest that she must have
the flu and should go to the Student Health Center on campus. Is the assumed fact
that she has a fever evidence for my claim that she has the flu? It depends!
Specifically, whether this information constitutes evidence depends upon what
explains why I regard it as evidence; that is, the rational process used to link evidence
to claim. Suppose I offer one of the following two explanations:

A. 1 consider the student's fever as evidence of the flu based on my belief that a
fever is a common symptom of the flu.

B. 1 base my claim on the fact that a crystal ball reader told me that a student with
a fever would contact me to let me know she would not be in class and that
this student would indeed have a case of the flu.

In both cases what is taken as evidence is the same: the student has a fever. But,
what explains why it is evidence differs: In explanation A I believe that a fever is a
symptom of the flu, and in explanation B, presuming that crystal ball readers are a
reliable source of information on personal health matters, I believe what the reader
told me. Furthermore, the alleged relation between the evidence and the claim differs
in the two cases: in A I believe there to be a relation between having the flu and
having a fever, and in B I believe there to be a relation between the crystal ball
reader’s predictions and what eventually happens.

The foregoing example serves to point out that rationality is not the infallible road
to truth or away from error that it is often claimed to be. For example, Kuhn (1970)
has suggested that an Aristotelian and a Galilean physicist looking at a swinging
stone (pendulum) notice different things: the Aristotelian sees a body undergoing
constrained fall, whereas the Galilean sees oscillatory motion—that is, a pendulum.
Both the Aristotelian and the Galilean are being rational when they defend their
respective accounts of a swinging stone. What, then, explains how rationality can
serve to establish evidence for different claims? The Aristotelian and Galilean
physicists attend to different aspects of the phenomenon because they hold different
background assumptions and beliefs, which causes the stone's evidential relevance to
be determined differently.

Once it is accepted that the evidential relation is always determined by -
background assumptions and beliefs, then it is not difficult to imagine that there
could be a neutral description of a given set of circumstances, that is, one agreed to
by both parties to a dispute, and no agreement on the claims for which it is taken as
evidence. It is also easy to see that both parties could be perfectly rational. It is
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rational to take some set-of circumstances as evidence for a claim in light of the
background assumptions and beliefs one accepts. It would be irrational to assess
evidential relations in-a manner inconsistent with such background assumptions and
beliefs and non-rational to accept or reject claims with no regard for evidence.

Tying this discussion back to the original concern about the lack of
communication among researchers, let me note that background assumptions become
problematic when, for example, they are based on metaphors and not directly subject
to empirical inquiry. If the difference in assumptions is so slight that it could be
resolved by simply pointing out an overlooked feature, there is no problem. But, if
the difference is at the metaphoric level, there often is a definite failure to
communicate.

In conclusion, I offer the simple suggestion that researchers devote more attention
_ in their research reports to discussing the background assumptions and beliefs that are
driving their choice of evidence and subsequent claims. Furthermore, reviewers (and
readers in general) of these research reports should realize that observational data do
not speak for themselves but are determined by the context in which they are being
considered and the connection made between the evidence and the claims made.

Lack of Communication Between Researchers and Practitioners

The Journal for Research in Mathematics Education, an official journal of the National

Council of Teachers of Mathematics, is devoted to the interests of teachers of mathematics and

{nathimatics education at all levels—preschool through adult. (inside front cover of every

1SSUC

I am distressed to say that teachers and teacher educators do not pay much
attention to the research so carefully and thoughtfully reported in the journal. Indeed,
I would not be surprised to find out that the current level of communication between
researchers and practitioners is as low as at any time in the history of mathematics
education research. Among the many explanations for the failure of our research to
resonate with teachers that have been proposed, one that has not been given adequate
attention by math educators has to do with the fact that researchers and teachers have
accepted different ways to frame their discourse’ about what they know and believe
about mathematics teaching and learning. By and large, teachers communicate their
ideas through, what Schwandt (1995) calls, "the lens of dialogic, communicative
rationalism" (p. 1). By contrast, researchers typically communicate their ideas in
terms of (monologic) scientific rationalism. Let me briefly discuss each approach.

Scientific Rationalism

For Schwandt, a research methodologist and educational evaluation specialist,
scientific rationalism is a style of inquiry shaped by six principles:

1. True knowledge begins in doubt and distrust.
2. Engaging in this process of methodical doubting is a monological activity.
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3. Proper knowledge is found by following rules and method (rules permit the
systematic extension of knowledge and ensure that nothing will be admitted as
knowledge unless it satisfies the requirements of specified rules).

4. Scientifically respectable knowledge depends upon justification, or proof.

5. Knowledge is a possession and an individual knower is in an ownership
relation to that knowledge.

6. In justifying claims to knowledge there can be no appeal other than to reason.
(Schwandt, 1995, pp. 1-2)

Of special concern for scientific rationalists is the nature of the claims that are
made and how these claims should be justified. Furthermore, all the ways deemed
acceptable for justifying a claim are regarded uncertain or unreliable in one way or
another. Schwandt identifies four basic methods of justification: (a) argument by
example to arrive at some sort of generalization, (b) argument by analogy (The
argument goes something like this: because phenomenon A is like phenomenon B in
certain ways, they are also alike in another specific way of interest to the researcher.),
(c) argument from authority (the use of existing literature to support a position or
help make a case); and (d) arguments from statistical inference. (Examples of the use
of each of these methods of justification would be easy to identify in many issues of
the journal.) Finally, any of these methods of justification is readily subject to the
error of reaching a conclusion with insufficient evidence or to the error of
overlooking alternative explanations.

Schwandt suggests that as useful as scientific rationalism might be for research
purposes, it is not the only way to think about the important concerns surrounding
making and justifying (evaluation) claims.

Dialogic Rationalism "

Schwandt (1995) insists that dialogic rationalism opposes scientific rationalism in
three fundamental ways. First, rather than regarding the social world as "simply out
there waiting to be discovered” (p. 6), the dialogic rationalist insists that the world
can only be studied from a position of involvement within it. Second, "knowledge of
[the] world is practical-moral knowledge and does not depend upon justification or
proof for its practical efficacy” (p. 7). Third, "we are not in an 'ownership' relation to
such knowledge, but we embody it as part of who and what we are" (p. 7). Thus,
dialogic rationalism provides a different way to consider what it means to know.
"Instead of simple observational claims about objects, knowing other people is
offered as a paradigm for knowledge” (p. 7). Schwandt suggests that to Ryle's (1949)
two kinds of knowledge—knowing that and knowing how—we should add a third
type: "knowing from." This type is characterized as knowledge "one has from
within a situation, a group, a social institution, or society" (p. 7).

To accept dialogic rationalism involves accepting that reason is communicative:
"It is concerned with the construction and maintenance of conversational reality in
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terms of which people influence each other not just in their ideas but in their being"
(Schwandt, 1995, p. 7). It aims to actually move people to action, in addition to
giving them good ideas. :

Dialogic rationalism, then, has something to say to mathematics educators about
how we make and justify claims in our research. In particular, dialogic rationalism
attempts to avoid treating students and teachers as objects of thought in order to make
claims about them that will guide future deliberative actions. Instead, it aims to
include teachers (and students?) in dialogical conversations in order to generate
practical knowledge in specific situations. Thus, claims are made only after the
various perspectives (or world views, background assumptions and beliefs, etc.) of all
those engaged in the dialogue have been openly considered and negotiated.

Schwandt believes that is this process of open negotiation of claims (and of what is
regarded as evidence) among all participants in the discourse that leads ultimately to
practical wisdom.

In Pursuit of Practical Wisdom

I am not arguing that we should abandon concern for careful argument and
evidence in favor of some sort of fiery, political rhetoric devoid of reason. What I am
promoting is a renewal of a sense of purpose for our research activity that seems to be
disappearing: namely, a concern for making real, positive, lasting changes in what
goes on in classrooms. This is essentially what I mean by the pursuit of practical
wisdom. To do this we might find it helpful to begin to move away from our
preoccupation as researchers with the pursuit of "knowledge" (i.e., collections of bits
and pieces of generally agreed upon information) and toward the goal of actually
moving people (teachers, teacher educators, school administrators, policy makers,
etc.) to action, in addition to giving them good theories.

Philosopher Richard Rorty (1979) offers another, related way to think about the
dialogues that need to take place (a) within the research community, (b) within the
community of practitioners; and (c) between these two groups. Specifically, he
embraces postmodern philosophy as a voice in the ongoing conversation about what
it means to be human. Within this conversation he distinguishes between analytical
philosophy and hermeneutic philosophy. In an analytic endeavor, the participants are
seeking to extend a scientific rationalistic account of some phenomenon and may
indeed conceive of themselves as producing eternal knowledge. In hermeneutic
activity on the other hand, the conversants seek only to extend the conversation in
ways that enable them to better cope with some phenomenon in the present—not to
establish an eternal body of knowledge. This form of discourse is essential to the
development of practical wisdom; that is, ethically informed, reasoned conversation
between researchers and practitioners (and among researchers) about issues that are
fundamental to teaching and learning mathematics in contemporary society.

\ 3—20322 c L




Rorty paves the way for Gallagher's (1992) assertion that true education, or
edification, whether of school children, practitioners, or researchers, is a
hermeneutical act always involving an interchange between at least two
interpretations of some phenomenon. Such an assertion clearly brings us full circle to
the roles our assumptions and beliefs play in the claims we make and in determining
who will be moved by our claims. Returning to whence we began, we can now see
one possible way in which to more fruitfully conceive of our research agenda and its
ultimate aim. Practical wisdom is enhanced when the conversation about its focus is
expanded in a rich and complete manner paying attention to the multiple meanings
and interpretations (including beliefs and assumptions) brought to the discussion by
each participant. That a conversation is the means to enhanced practical wisdom
should not surprise us since ours is a practical wisdom concerning human beings.
After all, why shouldn't getting to know our subject matter be more like getting to
know a person than coming to formulate a premise?
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MORE GAMES FOR INTEGERS
Patricia Rosana Linardi and Roberto Ribeiro Baldino )
Action-Research Group on Mathematics Education (GPA) - UNESP - Rio Claro, SP, Brazil'
: ABSTRACT

This is the final research report of Games for integers: conceptual or semantic
fields [Souza et al. 1995]. In that paper we reported on the first applications of
three games: the butterflies, the gains-and-losses, and the snails games. The
last one turned out to be somewhat awkward for use in the classroom and was
substituted by two others: the macaws game and the game of bets. In
designing the games we have been guided by Vergnaud's theory of Conceptual
Fields and sought a didactic strategy that could lead the student to provide
his/her own explanation for the sign rule. The objective of this paper is to report
on a systematic application of these four games in real classrooms and discuss
their didactical and pedagogical value.

1. Introduction

Negative numbers have scarcely been dealt with in recent literature on mathematics
education. Among fifty-six research reports presented in PME-18, only one explicitly
concerns integers [Lytle, 1994]. In PME-19, there were two out of seventy-seven [Borba,
1995; Souza et al., 1995], one out of 160 in PME-20, [Bruno & Martinon, 1996); and none
in PME-21. Negative numbers have seldom been dealt with as a topic in algebra
[VIENNOT, L. 1980]. In algebraic treatments a single letter represents both, a number and
a predicative sign incorporated in a single proceptual unit, the unknown. Only operative
signs are written down. Looking for such a signed-number as the solution of an equation,
presupposes a certain familiarity with this sort of object. Our efforts in developing this
research are based on the belief that familiarity with negative numbers persist as a
necessary step towards algebra.

In Souza et al [1995], “we thought of anticipating the solution to the sign rule problem
as theorems in action. Our idea was that roles should be exchanged: the teacher should
be the one to ask and the student the one to answer why minus times minus makes plus.
The didactical strategy should lead the student to provide hisfher own explanation to facts
that s/he should consider as evident” [Souza et al. 1995, p. 233]. In order to reach this
objective we designed three games to solve in action four problems P1. How to take the
bigger from the smaller? (3-5=...); P2. How to subtract a negative? (—(-3)=...);
P3. What does "minus ... times something” mean? ((- 3) x ...7), P4. Why does minus times
minus equal plus? (-2)(-3)=... At that occasion we were guided by two pedagogical
beliefs rooted in two questions of Vergnaud [1990]. Belief 1: By engaging the student in
games where the use of theorems in action leads to better playing strategies, we could
make theorems become theorems in action. Belief 2: By introducing adequate worksheet
activities based on the game, after it has been finished, we could make theorems in action
become theorems.

One reported result of the two 1995 pilot experiences was confirmed by research
carried out during 1996 and 1997: the will to win does not lead students to use
composition of additive operators as a theorem in action. They adhere to the first strategy

1 Partial support from CNPq and CAPES
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they find. They need assurance that a more abstract strategy exists, a demand to reach it
and, in some cases, hints. Therefore the first belief is not confirmed.

The pilot experiences reported in Souza et al [1995] referred mostly to the additive
structure of integers. Results obtained from experiences with the multiplication structure
were meager and could not confirm our hope that the games would lead the students to
provide their own explanation of the sing rule in real classroom situations. This paper
reports how this outcome could be obtained. It introduces two new games to substitute for
one of the games suggested by Souza et al [1995). Since the study’s condition were quite
adverse, we expect that such an outcome can be obtained more easily in normal
classroom situations.

2. The multiplication structure of integers.

Historical difficulties with the conception of negative numbers are considered in
Glaeser [1981]. Literature about integers provides models for the additive structure of
integers [Thompson & Dreyfus, 1988] but is rather insufficient when considering the
multiplication structure. Freudentha! proposes to insist on the necessity of permanence of
distributive and commutative laws [Freudenthal 1973, p. 280] and to use the
geometric-algebraical permanence principle [Freudenthal, 1983 p. 444]. After introducing
the additive structure of integers through pairs of natural numbers, Dienes acknowledges
the necessity of considering multiplication. He writes:

"Before we can truly speak of spaces, we should invent at least one new operation:
a mathematician would not call space what we have built up to now, and this because we
have not invented any kind of multiplication; we have only invented multiplications and

subtractions. In other words, if we start with (Y2, ~1), for instance, we should be able to
double it to get (¥4, ~2) or triple it to get (*6, “3)" [Dienes, 1972, p. 103, our
translation).

However, if we look for the decisive point where the multiplication by a negative
appears for the first time, we find:

Implicitly it is easy to see that multiplying by negative numbers would reduce to
double, triple, quadruple, etc. but this for each color separately, triangles and squares
being interchanged [Dienes, 1972, p. 104, our translation, emphasis added].

It seems that this author does not give to the multiplication structure the same
concrete development that he gives to the additive structure of integers. The question why
minus times minus makes plus remains unanswered.

From the whole discussion we got the idea that no positive explanation ultimately
exists and that some degree of arbitrariness is' necessary. But, precisely where? We
contend that arbitrary rule teaching is exactly the route to failure. This attempt leads the
student to ask why does minus times minus equal plus? Then it is already too late; he has
learned the solution without knowing the problem and is “fed up” with rules.

3. Four games for integers

Here is an attempt to solve problems P1 to P4. For a more complete description of
the first two games we refer to Baldino [1996] and Souza et al [1995]

The_butterflies game is an additive state-operator game |ntended to solve P1 (see
figure 1).
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The game of gains and losses is a real estate sales game with blue bills representing
money and “red money” representing debts. It solves P2.

The macaws game is a multiplication state-operator game designed to solve P3 and P4. It
consists of beads, cards and a board (see figure 3). The cards are stamped with an arrow
and numbers from zero to three, preceded by + and — signs (see figures 4 and 5). The
beads are blue (b) and red {r). The players must place the cards on the trajectories
connecting the macaws, matching the card’s arrow with the trajectory’s arrow. The player
who puts a card must also fill the macaws connected by the card with beads according to
the following rule: If the card’s arrow points from macaw M1 to macaw M2, the number of
beads in M1 times the card’s number must be equal to the number of beads in M2; the
color of the beads in M1 must be equal to the color of the beads in M2 if the card has a
plus sign and must be different if the card has a minus sign. Cards that result in fractional
numbers of beads must not be played.

The_game of bets is an auxiliary game for the macaws game, intended to be played before
it. This game is designed to ease the difficulty with addition of multiplication operators,
such as “four times, minus six times, is minus two times" (see figure 5). It consists of a
board (see figure 2), instruction cards and fake money, blue representing gains and red
representing losses, as in the game of gains and losses. The player follows the instruction
of a randomly picked card. Here is a typical instruction: “Put your bet in A. Your first
partner puts 108" (or 10R) in B. Your second partner puts the necessary amount to make
the addition (or subtraction) exact in C. You collect what is put in C, your first partner
collects what is put in § and your second partner collects what is put in A" The other
cards eonrtain similar instructions with the letters permuted, so that actually, in the long
run, nobody wins.

4. The classtoom Study

Duration: The four games were used as a regular teaching device in three regular classes
of a public school, 6‘*’, 6“‘,'ahd 7" grades, of lower-middle class students, aged 10-13
years. The city was Rio Claro, SP, Brazil, where a State University (UNESP) maintains a
graduate program in Mathematics Education. One of us was the teacher in charge of these
clagses. Mathematics classes met three days a week during six 45-minutes periods. We
organized the forty students into groups of four, with a plenary meeting once a week.
Grades for participation were given out every day. A pilot study with the butterflies game
and the game of gains and losses carried out in 1996 had resulted in a teaching failure.
After each game had been tried for a couple of weeks, we introduced worksheet activities.
It turned out that the children had to resort to the cards in order to solve the activities.
Most of them became uninterested. Our evaluation was that we had introduced the
worksheets too soon. Therefore, in 1997 we decided that the games would be played for
their own sake. We would let the vertigo of the rule take the students [Baudrillard. 1979].
We decided to introduce a new game only after the students produced some evidence that
they were tired of the old one. We decided not to worry about the syllabus. Only at the end
of the experience, if we had time, would we introduce worksheets and go on to
mathematical notation.

El{lC YT 5
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The following chart came out:

Study duration (in days)
Duration s
| ctivit total
Game play activities | tota
: . colors: 6 3 9
Butterflies signs: 7 8 . 15
Gains and losses 8 1 9
Game of bets 9 6 15
Macaws game 8 7 15
Total © 38 25 63 days

The poputation: The conditions for the study were extremely adverse. In 1997, a
government measure decreed that students could not be given failing grades. Unless the
student drops out of school, credit was to be automatic. A final high school exam will be
instituted in the near future. This measure only hides the symptoms of a deteriorating
situation that has been going on for quite some time. In the schools of this region, it is
usual to find children who cannot write their names being passed up to the third grade and
adolescents finishing high schoo! without being able to extract any meaning from what
they read. Students are generally uninterested. Some schools are ruled by gangs.
Destruction and stealing of schoo!l material is frequent. It is usual to dismiss classes due to
teachers’ absence. Students gladly go home earlier. Any motive is good enough to dismiss
classes: holidays during the week, parties, parades, teachers' meetings, strikes... As a
result, about 30 out of 60 school days were lost and we had to extend the scheduled
duration of our study from one to two semesters. Traditionally, fulfillment of syllabuses are
only questioned when the student gets a failing grade and the parents file a complaint
against the teacher in the school district. Then the general verdict is the following: “If your
have not covered the whole syllabus, you cannot assign a failing grade to the student”.

As a consequence, the students that we found at the beginning of our study were
completely unmotivated. They were used to copy unproductive tasks from the blackboard
under an authoritarian look from the teacher. The physics teacher of a later grade told us
that she gave up assigning problems to the students because they started up calculations
without reading them and kept asking her: Is this the way to do this one? We could identify
three large groups in the classroom. A few students (group 1) take the school seriously, as
though in a stereotyped way. Other students (group 2) apparently take pleasure in
challenging the teacher's authority, in spite of knowing that she is impotent to punish them.
The majority (group 3) does not engage in either of these two strategies. It seems that the
status obtained from being at school is sufficient for them. They love taking home high
grades at the end of the year, in spite of knowing that they would get them anyhow. It
seems that keeping the game of authority and pass/fail going is the major concern of all.

Worksheets: After the faur games had been played for 38 days, the worksheet activities
followed for another 25 days. Worksheets schematically reproduce parts of the game’s
board, such as in figurés 4 and 5. For the macaws game, the task consists of
reconstructing two of the following representations, given the third one: the diagram, the
calculation according to the cards, and the calculation according to the beads. The
students recognized this last modality as their natural way of playing and used it to check
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the others. Finally written situations that did not have a direct counterpart in the game
were introduced.

5. Results

A research report should not be a bulletin of victory in teaching. Quality of research
should not be confused with quality of teaching. Nonetheless, at least considering the
extremely adverse teaching situation, our report is positive. We faced two challenges: a

Sample of a worksheet -2)

The diagram: (+4) + (6) = 'f)
(-8) + (+12) = (+4)

Calculation from the cards: (-2)x((+4) + (-6)) = (-2)x(-2)=(+4)
Calculation from the beads: (-2)x((+4) + (-6)) = (-2)x(+4)+(-2)x(-6)= (-8)+(+12)=(+4)

pedagogical and a didactical one. The pedagogical challenge was to keep children in
school working on some productive cultural activity. The didactical challenge was to teach
negative numbers so as to arrive at the activities proposed in the textbooks. We think that
both challenges were met.

We initially explained the children how we intended to work and how grades would
be assigned: part from a written final and part from engagement in the games during
classes. This introduction was sufficient to produce a deep change in the classroom:
group 1 took a step back while group 2 took the leadership of the game organization. In a
few days group 3 adhered. Along the study we noticed no deleterious attitudes. The
following episodes reported in the teacher's diary illustrate how the pedagogical cha|lenge
was met.

Episode 1. There had been a party the day before and we were assigned to another room.

The tables and chairs were all piled up against the walls. Well, | said, / don’t think that we
will be able to play today, since the room is in poor condition... Students protested: Of
course we can, teacher! Go with the two guys to get the game materials in the parking lot.

We will fix the room. When | came back they had already arranged the tables and chairs in
the center of the room.

Episode_2. Children have been extremely careful not to lose nor damage the game'
materials. They have been enthusiastic about the games. They asked me if they could
make them to sell around their neighborhoods. Another reported to me that they were
playing at home, with their relatives and friends.

Episode 3. The children introduced an extra rule for the game of bets: the bet ought to be
on the table before the card is drawn. This is because some students can foresee their
best bet from a glance at the card.

Episode_4. When the situation of figure 4 was represented in the worksheets, several
students commented with amazement: “Teacher, look: when the signals are equal it is
plus, when they are different it is minus!” | answered trying to appear very casual: “Of
course”.

. 219

3-212



We designed the game of bets because we found that the macaws game was difficult
for us and for our colleagues with whom we made the first trial runs. However, the children
reported that it was easier than the butterflies game. We suspect that they had already
acquired the necessary degree of abstraction from the butterflies game, so that the
macaws game looked easy.

The interest and class attendance persisted even after the games were finished and
worksheets were introduced. Students solved the worksheet problems really fast and
demanded new ones, almost exceeding our capacity to produce them. No extra
explanations were necessary for activities that had no direct counterpart in the game
diagram. We suspect that the students had already developed a certain ability to read,
since we had insisted that they red the rules of each game before asking us to explain
them. In some cases we even resorted to blackmail: /t is a pity that we can’t go on playing,
since you do not understand the rules...

As for more facility of playing, no difference was detected between grades 5, 6 or 7.
Children played equally well, they needed the same amount of explanations, they took
approximately the same time to engage in the games and they requested help at the same
points. The relevance of this outcome stems from the fact that official syllabuses
recommend to start the study of negative numbers only from the 6" grade on. We had to
work a lot but it paid off,

6. Discussion

The minus sign in the macaws has the property of changing colors. Isn’t this an
arbitrary imposition of the sign rule ? some people ask. Of course not. This is arbitrary but
this is not the sign rule ! Any game has arbitrary rules. But It is not when a negative
multiplier acts on a colored bead that the sign rule comes up. The possibility of playing
with operator qualities represented by signs and state qualities represented by colors
definitely shows that this is not a commutative operation as in the sign rule. Performing “4-
red times minus-three equals 12-blue”, as in figure 4, amounts to the composition of a
multiplication operator “three times” with a change-colors operator. The multiplication of
negatives, as it stands in the sign rule, only becomes a commyjfative operation as the
result of composition of negative multiplication operators, sush as minus-two followed by
minus three (see figure 4). It is the students who conclude that a plus-six card is required
to close the circuit. This is the sign rule. The sign rule involves two operators, not an
operator and a state. Besides, at this point, which of the two colors - red or blue - is going
to play the negative sign is as yet undecided. It requires a lot of mathematical
sophistication to imagine one of the colors as meaning “negative” and to see the phantasm
of the sign rule in the change-color property of negative operators. Children do not have
this sophistication.

It seems that we made the right decision in letting the children play for quite a long
time before starting the activities. Surprisingly for us, they solved the activities quite fast
and were engaged by them. What precisely have they learned with the games that made
such a difference from the pilot experience the year before? We conjecture that the
construction of integers “is an operational synthesis of multiplication and “change” that
make operative and predicative signs merge together. Contrary to analytic processes,
synthesis requires a deviation of attention from the object” [Baldino, 1998]. When the
student comes to the point of asking why does minus times minus equal plus? it is already
too late. S/he is centering attention on the question and the operational synthesis
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becomes difficult, or even impossible. On the other hand, it seems that the games have
facilitated such a necessary decentralization of attention so that the whole set of
operations was carried out in action, before they were made explicit. In particular, our
expectation that the students would explain the sign rule to us was fulfiled, as illustrated
by episode four.

As a final word, we should comment on the freedom we had to authorize ourselves to
work with games regardless of what was prescribed in the syllabuses. Considering the
school's situation, we decided that anything culturally engaging that we could do with
these students would be better than any reverence to official fagades. We do not regret it.

Here is our final question: How will these students do in algebra?
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MOMENTS OF CONFLICT AND MOMENTS OF CONVICTION
IN GENERALISING

{ior} Linchevski, Alwyn Olivier, Marlene Sasman & Rolene Liebenberg
Mathematics Learning and Teaching Initiative (Malati), South Africa

This paper reports on part of a study of students’ ability to handle algebraic
generalisation problems. In this paper we focus and elaborate on moments when
students grapple with deciding about the validity of their generalisations. We
interviewed ten students near the end of grade 7. During the interviews we tried to
create cognitive conflict by challenging the students’ justification for the methods
they used and then documented their attempts to resolve such conflicts. We found
that most students’ justification methods were invalid, because they are not aware
of the role of the database in the process of generalisation and validation.

INTRODUCTION

Number pattems, the relationship between variables, and generalisation are
emphasised as important components of algebra curricula reform in many countries
and also in South Africa. Much research has been done on children’s generalisation
processes documenting children’s strategies in abstracting number patterns and
formulating general relationships between the variables in the situation (e.g. Garcia-
Cruz and Martinon, 1997; Taplin, 1995; Orton and Orton, 1994; MacGregor and
Stacey, 1993). Our own ongoing research confirms many of these findings.

‘However, little research has been done in analysing children’s thinking in the
processes of generalising. For example, do students view their efforts at generalising
as hypotheses? Do they realise the necessity to validate their methods and answers?
How do they become convinced of the validity of generalisations? Garcia-Cruz and
Martinon (1997) for example, report that most children they interviewed checked
their rules. This was done either by counting or drawing or extending the numerical
sequence. It is not clear from their report, however, whether their students
spontaneously checked their answers because they felt the need for validation, or how
they became convinced of the validity of their strategies and answers.

In this paper we focus and elaborate on such moments where students grapple with
deciding about the validity of their generalisations. During interviews with children, we
tried in several ways to create cognitive conflict by challenging their justification for the
methods they used and then documented how they tried to resolve such conflicts.

RESEARCH CONTEXT

The research reported in this paper is part of an ongoing research project aimed at
informing curriculum development. The project enlisted eight schools in the suburbs
of Cape Town as project schools. Seven of the eight schools are in traditional black
townships. All the children interviewed in this research came from one of these seven
schools. As a baseline study for the project’s diagnostic purposes, we have been
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collecting data on children's performance in mathematics using various tools. One of
these tools is a written baseline test.

RESEARCH METHODOLOGY :

As a first stage we wanted to gather data on the most mathematically competent
students. The students were chosen on the basis of performance in the baseline test
and the teacher's evaluation. We interviewed ten students near the end of grade 7.
Each student was interviewed three times in 45-minute sessions by two of the
researchers, twice individually and once in pairs. A fourth session took place in
which the students were given two generalisation problems to do individually. All
interviews were videotaped. In addition to the video protocols, written transcripts of
the subjects’ verbal responses as well as their paper-and-pencil activities were used in
the analysis.

THE PROBLEMS

We presented the students with a series of eight generalisation problems in which we
varied the representation of the problems. Some problems were formulated in terms
of numbers only (in the form of a table of values), some were formulated in terms of
pictures only (in the form of a drawing of the situation) and some problems were
formulated in terms of both pictures and numbers.

The questions were in each case basically the same, namely given the values of
f(1)", f2), f(3), and f(4), we asked students to find the values of f(5), f(20) and f(100)
and to explain and justify their answers and strategies. Six of the functions were
linear functions of the form f(n) = an + b, and two functions were simple quadratic
functions of the form f(n) = n2. Here are two examples, “cans” and “matches":

(B1): Cans are packed to form pyramids. : :
The table shows how many cans are needed for different pyramids. .

Complete the table.
Pyramid number 1 2 3 4
Number of cans 1 4 9 16

(C3): Matches are used to build pictures like this:

D S7 SD DL

Picture 1 Picture 2 Picture 3 Picture 4
The table shows how many matches are used for the different pictures.
Complete the table.
Picture number 1 2 3 4

Numberofmatches . | 3 | § 7 9

! Formal functional notation was not used in the actual problems or in communications with the students. It is merety
used here for reporting on the studeats.
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Whatever responses the children gave, we asked them to explain their answers by
posing questions like: “Can you explain how you got this answer?”, or “Convince me
that your answer is correct”, or “Show me how you got this answer”. If the students’
explanations were based on the information given in the problem (the database), we
accepted it as a satisfactory answer.

SOME RESPONSES

Some general observations

Concerning children’s use of different representations for the problems, it is
interesting that all but one of the children worked exclusively in the number context
and did not use the structure of the pictures at all. In the problems that were
formulated in terms of pictures, children immediately constructed a “table” of values
and then used only the table of values in their solutions and explanations.

Concerning children’s strategies, it is interesting that for the simple quadratic
problems, nearly all the children recognised the functional rule f(n) = n? from the
database and used it to find the values of f(5), f(20) and f(100). For example, Thandi
explains: “I say 2 times 2 is 4, 3 times 3 is 9, 4 times 4 is 16, 5 times 5 is 25”.
‘However, in all the linear problems all students correctly used recursion to find f(5)
as f(4) + d where d is the common difference between successive terms. For example,
Thandi explains how she finds f(5) = 36 in the table for the function f(n) = 8n + 4:
“I say 4 plus 8 is 12,,12 plus § is 20, 20 plus 8 is 28, 28 plus 8 is 36”.

It is also intefesting that when they had to find f(20) and f(100), most children
abandoned their successful recursive strategy because they were trying to find a
“shortcut” to calculate f(20) and f(100). These short methods were mostly not based
on the database and were seriously prone to error. None of our students felt the need
for any kind of validation. Although they offered some kind of explanation for the
method they used in the extended domain, they were not aware of the role of the
database in the process of validation.

Some alternative interpretations
In several cases children's answers were far from what we would expect, yet still
based on the database. For example, in the cans-problem Roy wrote that f{§) = 23,
(20) = 28 and f(100) = 31, because he was using a symmetry structure (3; 5; 7; 7; 5; 3):
f2)=M(1)+3; f3)=1f(2)+5; f4)=£3)+7

s 8 =f(4)+7; f(20)=1(5)+5; f(100)=1(20)+3.
He ignored the shaded columns that we intended as representing several “missing”
columns in the table.

Also in the cans-problem Sipho wrote: f(5) = 20, f{20) = 100 and f(100) = 600.
This seemed to us rather arbitrary, but he was in fact using the rule that f(n) is a
multiple of n, without specifying which multiple:

Interviewer: Can you explain how you got 20? (for f{5)]
Sipho: Itook pyramid .... {pause] .... I saw that each doesn’t have a remainder.
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In the same problem Vusi wrote f(5) = 25. We were, of course, sure that he was using

-the functional rule f(n) = n%. However, then he wrote f(20) = 120 and f(100) = 800,
explaining that “you multiply each number in the upper row by the number of the
column”. Closer quesnomng revealed that he misinterpreted the shaded columns For
Vusi n = 20 was in the 6™ column, so f(20) =20 x 6, n =100 was in the 8™ column
and his rule therefore produced f(100) = 100 x 8 = 800. He 1gnored the first shaded
column and then counted the next 3 columns as the 6"-, the 7™ and the 8" column.

Some mistakes

Students made various mistakes, for example, to concentrate only on the relatlonshlp
between a single pair (n ; f(n)) and then to use it as a general rule. For example, in the
cans-problem Roy saw that f{3) =3 x 3 =9 and then used the rule f(n) = 3n to find
f(5)=3x5=15.

However, the most common, nearly universal mistake children made in their
efforts to find a manageable method to calculate larger values, was to use the
proportionality property that if x,= k x x;, then f(x;) = k x f(x,). For example, in the
matches-problem, Mathole, after finding f(5) = 11, calculates f(20) as 4 x 11 = 44.
This mistake was also found by Taplin (1995) and Garc1a Cruz and Martinon (1997).

CREATING CONFLICT

When we were not convinced that the students’ responses reﬂected awareness of the
role of the database in the justification process, we tried to create a cognitive conflict,
using three different strategies as described below. (Because children were not using
the pictures, we did not use a strategy of drawing pictures to check their answers.)

Strategy 1: The first strategy we used was to confront the answer driven from the
recursive approach with the one obtained by the mistaken approach. This strategy
was used when the child had in front of him/her a table he/she had formed in order to
find some f(n) through recursion. '

For example, Vusi and Thandi, working as a pair, used the recursive method to:
correctly determine f(20). In order to deétermine f(100), they systematically continued
using. the recursive method. However, when-they reached f(50) they changed to the
multiplication method, claiming that f{100) = 2 x f(50). We wanted them to reflect on-
the incorrect multiplication method. For this purpose we challenged them to apply
their multiplication method on the domain between 1 and 50 since they had already
obtained these values by the recursive method. Vusi was asked to find f{20) using
f(5) and the multiplication method.

Vusi: Its 72 [multiplying 18 by 4]. 1 got 63 [the result he obtained by the recursive method).

Vusi is puzzled but still unconvinced that his method i is wrong. He decides to recheck

his multiplication method on the database:

Vusi: Lets try this one [looking at f(2) and f{4) in the database). If 2 goes 2 in 4, so I must
multiply 9 [the value for f{2) in the given database] by 2 is 18, but its 15 [the value
Jor f{4) in the given database)].

Interviewer: So what do you say when I ask you about 100?

Vusi: Isaid 20 times 5 so its 100. So 63 [the value he obtained for f{(5)] times 5.
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Vusi is sure that his answer for f{(20), 63, he obtained by the recursive method is
~correct and the other answer for f{20), 72, obtained by 4 x f(5) is wrong. He is sure
the method to get f(4) by 2 x f(2) is incorrect but at the same time he is not willing to
give up his multiplication method when it comes to f(100).

Strategy 2: The second strategy was to create a conflict by choosing a take-off point

different from the one the child had used when applying the multiplication method.

Choosing different take-off points led to different answers for f(n). For example, Vusi -

spontaneously evaluates f(100) as 2 x f(50) =2 x 147 = 294. The interviewer prompts

him to use &different take-off points. He takes f(10) and f(20) and obtains

f(100) = 10 x f(10) = 330 and f(100) = 5 x f{20) = 315.

Interviewer: Oh, so who is right?

Vusi: Now we have three plans.

InterViewer: Ok, I understand three plans, but I also have three answers, 330, 315 and 294.
Are they all right?

Vusi: Yes, they are all right.

Thandi and Vusi are sure about the values they obtained for f(10), f{20) and f(50)
since these values were obtained by the recursive method. f(100), however, is an
abstract entity for them. The fact that the three different take-off points led to three
different answers for f(100) did not lead them to question the method they used.

Mathole, when confronted with different answers for different take-off points is
also not prepared to abandon the multiplication method, but attempts to give a
justification for the different answers:

Interviewer: And now you said that in shape number 20 we have 144 okay? Because you
took this S ... you divided 20 by 5 and timesed 36 [the value for f{5)] by 4. We are
sure about it. Okay, let’s say that your friend goes to shape number 4 and he now
divides 100 by 4. To divide 100 by 4 gives 5, so he goes and times 28 [the value for
J{4) in the given database] by 5, do you follow me?

Mathole: Yes

Interviewer: So he multiplies 28 by 5, how much is it? [works on calculator] 140. So what

is the correct one, 144 or 1407

Mathole: 144

Interviewer: Why? - |

Mathole: Because ... here by the fourth shape you got 28 matches and fifth shape is 36
matches, so if he goes back to the ... to the ... 28 he’ll have to add 4 and if he goes
back to the third shape he’ll have to add 8, it’s like you tax a person for going back,
you let him pay for going back, so he’ll have to pay 4 for going back, then you’ll
have to add a 4 there, then you’ll get the 144.

Strategy 3: The third strategy was to implement the method the child used in the
extended domain on the domain given in the original table. v

For example, Thandi obtained an answer for f(5) by correctly using the recursive
method f(5) =f(4) + 8 = 36. For f(20), however, she wrote 28, explaining:

Thandi: I count to shape 5, and I count to 20 and then I add this top numbers [refers to the
shape number in the table] by 8. .

¥
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While f(5) was obtained correctly using the recursive rule f(n) = f(n— 1) + 8, she now
changes her rule to find f{20) by using the function rule, f(n) = n + 8. She is then
taken back to f(5) and asked how she obtained 36. She adds 8 to 5 (the shape number)
and gets 13, not 36. She now realises that there is a contradiction. Thandi now no
longer accepts her answer for f(20).

STRUGGLING FOR CONVICTION

It was clear that conviction about the role of the database in the process of validation
develops slowly. Despite our efforts to create conflicts in order for them to reflect on
the proportionality multiplication error and on the process of validation in early
interviews, the same children repeatedly made the same mistake in later interviews.
We follow below Sipho's struggle to come to terms with the proportionality
multiplication error.

In the first problem given, Sipho obtained 36 for f(5) by using recursion correctly.
However, for f(20) he abandoned recursion and used the multiplication method
explaining: “5 goes four times in 20 so I multiply 36 [the value he obtained for f(5)]
by 4 to get the number of matches in shape 20.” The interviewer challenged him to
apply his multiplication method on the domain 1 to 5, to obtain f(4) as 2 x f(2) and
f(5) as 5 x f(1). Sipho was sure that the answer for f(5) he obtained by recursion was
the correct one and not the answer obtained by the multiplication method. However,
when asked again about f(20) and later on f(100) he consistently used the
multiplication method. This happened again in the next problem.

In the second interview Sipho was working with David. Both of them used
recursion to obtain f(5). However, for f(20), David continued systematically with
recursion, finding f(20) = 63, while Sipho used the multiplication method, finding
f20)=4xf(5)=4x 18 =72,

Interviewer: 1 do not follow, shape number 20 is 63 or 72? [strategy I as above]

David: I go my way, adding 3 and 3 and 3

Sipho: [to David] 1 see the method is right, but can you tell me what I have done wrong to
get the wrong answer? ‘

At this point Sipho confronts the two methods which is significant since he realises

that there is a conflict. He is sure the recursion method gives the correct answer and

realises that his multiplication answer gives an incorrect answer. He is interested in

why the multiplication method is wrong. However, in the very next moment Sipho

again succumbs to the multiplication error:

Interviewer: What about shape 100?

Sipho: I times because you know that I get 520’s .... I think I’ll times 63 by 5 to get it.

David: That’s the wrong way.

Sipho: If I didn’t times, I added 3,3,3, .... I would get the same answer.

Interviewer: Where do you see multnphcatnon" [Strategy 3] 1 can understand where the 3
came from. I saw that it’s given here [points at the table and the differences between
the number of matches). Where did you get the multiplication? Can we check?

Sipho: Shape 3. I just go to shape 4.

Interviewer: If you want to get to shape 4 with your method what would you t1mes‘7
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Sipho: I would times the number of matches here [points at shape 2] by 2.
Interviewer: And what number of matches will you get?

Sipho: 18

Interviewer: And what is written here? [points at f{4) in the given data base]
Sipho: 15

Interviewer: So?

Sipho: Yes,eh

At the end of the interview we are left w1th the impression that Sipho is convinced
that his multiplication method is incorréct, because the given database does not
reflect the multiplication method.

In the third interview it appears as if the previous discussions with Sipho had not
taken place. He still uses the incorrect multiplication method to obtain f(20). He is
taken back to the given database to reflect on how he obtained f{(5):

Sipho: Because shape 1 is 3 and shape 2 is 5 and the difference is 2.[referring to C3]

Sipho is now pushed to reflect on the given database and his method for obtaining
£(20). He realises that if he uses the multiplication method on (1) to obtain f(4), it
will not be the same as the value for f(4) in the given database. This conflict leads
him to use recursion to find f(20) 41. Yet he reverts to the multiplication method to
obtain the value for f(100). He is challenged by the interviewer:

Interviewer: It does not work for f{20) but you think it might work if you go from 20 to 100?
Sipho: Yes, because I think the number of matches in shape 20 is now right. ’

This remark sheds some light on Sipho’s,line of thought. He thinks since he now has

the correct value of f(20) he can use it for f(100). For him, the problem was not the

method but the wrong value of the take off point. It seems that Sipho is sure about the

value of f(20) which was obtained by’ recursion. He is convinced that the

multiplication method does not work for (20), but nevertheless, from his perspective,

it still works for f(100), provided that the value of f{20) is correct. He is now

challenged to use the multiplication method on f(5) to obtain f{20). This yields a

value of 44, which he knows is wrong because he obtained f(20) = 41 by recursion.

He is puzzled:

Interviewer: Now, you think 5 times 41, 205, you say it’s right for f(100).

Sipho: I think it’s wrong.

Interviewer: Why

Sipho: Because I did the same thing when I multiplied. I tried to multiply the number of
matches by 5 ... I saw that I was wrong.

Interviewer: So how w111 you then do 100 [shape number 1 00]'7

Sipho: 1 think I have to do it like this [points at the list for f{20)] but it will take a long time.

Sipho: [Long pause]...I'm trying to think if I can do another method to get the answer of
eleven [the answer for f(3) - he is trying to look for a functional rule]. I’m trying to
multiply the number of ... number of matches in shape 5.

Yet, albeit a slow development, there were successes: in the final written test six out
of the ten students avoided making the multiplication error.
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DISCUSSION

Our study shows that our interviewees did not view their answers as hypotheses that
should be validated. They were not aware of the role of the database in the process of
generalisation and of validation.

Although we were aware that students frequently succumb to the proportional
multiplication error, its persistence and obstinance to change surprised us. On the one
hand students easily convinced themselves that when a value for f(n) they obtained
using recursion differed from the value they obtained using their multiplication
method (our validation strategy 1 described above), the result obtained by
multiplication was incorrect. On the other hand, the knowledge that their
multiplication method produced incorrect answers did not prevent them from making
the mistake again (and again). Indeed, when they were asked for the value of f(m) for
m > n in the same problem, all the students again resorted to the multiplication
method and were sure that their answers are correct. Our efforts to create cognitive
conflict by leading students to apply the multiplication method to different take-off
points and getting different values for f(n) (our strategy 2 above), or drawing their
attention to the fact that the multiplication method is not applicable in the domain
given in the table (our strategy 3), did not easily eliminate the error. Most students
continued using the multiplication method throughout the interviews. Six out of the
ten students eventually avoided the error in the fourth session.

One could argue that our choice of numbers triggered the proportional
multiplication error, i.€. that our use of “seductive numbers” like n = 5, 20 and 100
stimulated the error. One could also argue that that if we used non-seductive numbers
like n =17, 27 and 83 children would not use the erroneous multiplication method.
However, we believe that our evidence shows that children, in their quest for a
manageable short method, create “seductive numbers” themselves. For example,
Thandi was busy using a laborious recursive strategy on her way to calculate f(100) —
she continued to f(50) and then suddenly stopped and calculated f(100) as 2 x f(50),
probably because she immediately recognised the multiplicative relationship between 50
and 100. Nevertheless, it remains a question for further research to establish whether an
approach with non-seductive numbers will prevent children from making the
multiplication error, also when they encounter seductive numbers in other problems.
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STUDENTS’ REASONING ON QUALITATIVE CHANGES IN RATIO:
A COMPARISON OF FRACTION AND DIVISION REPRESENTATIONS

Francis Lopez-Real
The University of Hong Kong

Two versions of a test on qualitative changes in ratio were administered 1o 318 Secondary Two
students in Hong Kong. The tests were identical except for the representations of the ratios; x/y in
one test and x+y in the other. After analysis of the written tests 20 students were given detailed
Jollow-up interviews. This paper discusses the findings from the tests and the interviews with a
particular focus on the responses to the indeterminate items.

Introduction

Algebraically the two expressions x/y and x+y are equivalent. Nevertheless, from a
psychological perspective these two expressions ‘feel’ rather different and may well
conjure up different images or connotations in the reader. For example, the first may
simply be associated with a rational number, a fraction, that stands alone and needs no
further comment while the second may suggest an operation that needs to be
performed in order to find its value. Indeed, in learning about fractions, one of the
concepts that children acquire is the fact that one interpretation of x/y is precisely
x+y, depending on the context. Although such expressions may variously be related to
ratios, rates, proportions etc., for the sake of simplicity I shall refer to these
expressions as the Fraction and Division representations of a ratio.

The purpose of this study was twofold. First, to investigate how children attempt to
answer qualitative questions 1n ratio involving the direction of change. That is, given
an expression like x/y, how does its value change when the values of x and/or y
change? The second purpose was to determine whether or not there is any difference
in performance on such questions between Fraction and Division representations.
(Chung (1994) suggests this may be a factor). The possible changes in the value of a
fraction (or division) given changes in x and y are shown in Table 1 below. This is

based on a similar table for rates in Heller at al. (1990). .

Table 1: Changes in the value of x/y (or x+y) as x,y vary.

Numerator; Dividend Denominator; Divisor

Increases Unchanged Decreases
Increases Impossible to say Increases Increases
Unchanged Decreases Unchanged Increases
Decreases Decreases Decreases Impossible to say

Methodology and Results
From table 1 we can construct a set of 9 questions covering these outcomes. However,
the case -of x and y both unchanged is clearly trivial. Thus two sets of 8 multiple

O
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choice questions were produced, the two tests being identical except for the use of the
expressions x/y and x+y. An example of the wording of the questions is given below:

x and y are positive numbers. What happens to the value of x+y if:

increase no change decrease impossible
to say
a) x is increased and y is unchanged 0 0 a 0

The two versions of the test were administered to 318 Secondary Two students in 5
schools in Hong Kong; 160 received the Division version and 158 the Fraction
version. Although all the schools were using English language text-books the tests
were given in a bi-lingual version (English and Chinese) to avoid language difficulties.
The results are shown in Tables 2 and 3, with correct responses in bold. The Increase,
Decrease and Unchanged situations are indicated by the symbols T, { and —.

Table 2. Percentage figures Jor x+y test. (N = 160)

Question Increase | No Change | Decrease | Cannot Say
a) xT y- 86.3 25 6.3 5.0
b) x{;y- 9.4 0.6 85.6 44
o xT:vyi 71.3 9.4 7.5 11.9
d xd:yd 16.3 33.1 18.8 31.9
e x—;yi 73.8 6.2 14.4 5.6
H xT;y7T 15.6 35.6 15.6 33.1
g xd;yT 8.8 5.6 75.6 10.0
h x—:y?T 113 3.1 71.5 8.1

Table 3. Percentage figures for x/y test. (N = 158)

uestion Increase | No Change | Decrease | Cannot Say
a) xT;y- 86.1 3.2 s1 . [s7
b) xd;y- 4.4 44 86.7 44
o xT:vi 77.2 7.0 7.6 8.2
d) x{;yd 8.2 30.3 25.3 36.1
e x—;yd 70.9 6.3 14.6 8.2
) xT;y? 22.8 34.8 6.3 36.1
xd;v7 6.3 4.4 77.8 11.4
h x—;y? 12.0 3.8 76.6 7.6

As can be seen almost at a glance, there are no statistically significant differences in
the facility rates of any of the eight questions. Indeed, one is struck by the remarkably
consistent distributions of the responses for most of the questions. This would suggest
that for this type of qualitative ratio question the symbolic expression used (i.e. x/y or
x+y) has no effect on the students’ performance. However, before jumping to this
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conclusion we should notice that these results telt us nothing about the way in which
the students are arriving at their answers and, in particular, what is the nature of the
difficulty they have with the ‘indeterminate’ questions (i.e. where X, y both increase or
decrease). These two questions produced far 10\\)ver facility rates (just over 30%) than
any of the other items and the results are quite similar to those found by Heller et al.
for 8" grade students in the USA (28.5% for the decreasing/decreasing problem). In
fact, it is precisely for these two questions that we do find a striking difference
between the distributions in the two tables. Although the facility rates and the
responses in the No Change categories are very simil%r, we observe a curious
phenomenon for the responses in the Increase and Decrease categories as highlighted
below.

Test Question Increase Decrease
Ky |d xdiyd 182 | 253 ____]
Xty d x{;yd 16.3 18.8
Xy ____| D xToyt___[228 | 63 _____]
Xty H xT;yT 15.6 15.6

The figures show that for all four of these items, about a third of the students gave
either an Increase or Decrease response. However, in the x/y cases the ratio of the
figures in the two categories is over 3 to 1. whereas in the x+y cases the figures are
roughly equal (in one case, exactly equal). Choosing the Decrease answer in the case
when x and y both decrease (and Increase when x and y both increase) could be
described as an Intuitive response (i.e. simply reacting to the stimulus words).
Similarly, we might then describe choosing the opposite category (e.g. Decrease when
x and y both increase) as a Counter-intuitive response. Using this terminology, what
we need to explain here is why there is a far heavier selection of the counter-intuitive
options for the X*y cases compared to the x/y cases.

In order to answer this question in particular and also to probe more deeply into the
students’ reasoning in general for these types of question, twenty students were
selected for interview (ten from €ach test). The major focus of interest ‘was on their
responses to the two indeterminate questions (d) and (f), and hence the students were
selected on the basis of providing a representative sample of the different types of
responses given to these two questions. However, despite this emphasis on the
indeterminate items, the students were also asked to explain two other items and
nearly all the interviews began with an item that had. been answered correctly
(although this was not shown on their papers). This helped to give a picture of whether
or not a consistent strategy was employed.

The Interviews
A number of consistent features emerged from the interviews, the most striking being
the use of a substitution strategy. Only 2 of the interviewees said that they did not ‘try

G.
¥ ‘ 3-225) 0 i
232 wu



O

ERIC

Aruitoxt provided by Eic:

out numbers’ but simply based their answers on feelings or guesses. A few of the
students said that they used substitution for some of the items but they either guessed
or ‘knew’ with other items. The rest claimed to use substitution for all the questions.
In the written tests 7 students on each of the Division and Fraction tests (i.e. 14 in all)
ticked ‘Impossible to Say” for all the items. One of these students was interviewed
and it seems likely that his explanation would be typical for this subset: “I think I do
not know the numbers at the start. So when they change 1 still cannot know the
numbers. So it is impossible to say”. The significance of this rather special set of
students is that, since they gave correct responses to the indeterminate items for
clearly inappropriate reasons, the facility levels for these questions are in fact slightly
distorted and should be reduced by 4.4%. (Of course it is possible that other students
too gave the right response for the wrong reason). A typical example of using the
substitution strategy is shown below (I = Interviewer):
I: Can you explain how you decide your answer to (c)? [Fraction Test]
WS: First I will try 10 over 5. Then this number increase by 2 to 12, and this one I will minus it
by 2 to 3. This is 4 over 1 [cancelling 12/3]. So it increases.
Turning to the other student who did not use substitution, and using the terminology
suggested earlier, she gave an Intuitive response for each indeterminate question, as
illustrated in the following extract:
1: Here [item (d) of Division Test] you said the answer would decrease. Can you tell me why
you put this?
AY: Because when I do this I .... I’m not really to solve it. I just tick the answer.
I: So how did you decide which answer to tick?
AY: Just looking. I didn’t try numbers [referring to a previous comment in the interview] | think
Tjust read ‘decrease’ so the answer must decrease.
This is a good example of a response based on the stimulus words in the item; the
reason for labelling it “Intuitive’ in the previous section. However, since there were
only two such instances of responding to stimulus words in the interviews, this
suggests that the “Intuitive’ label for that category is not perhaps appropriate after all.
Hence, in the following sections the Intuitive and Counter-Intuitive categories are re-
designated by the more objective labels ‘Same-Direction’ and ‘Opposite-Direction’
responses. Let us now consider some of the student explanations within the different
response categories. (As indicated earlier, these categories refer to the responses for
the indeterminate questions).

a) No Change '
Three of the students interviewed in this section initially chose equal values for x and
y. For example, AM explains his answer to (d) [Division Test]: “I think x is 3 and y is
also equal to 3. Both decrease by 1, so that is 2 divided by 2 and the answer is also 1.
So no change”. Another student, CS, began with unequal values and this is how the
interview progresses:
I: Let’s look at (d). Can you show me how you decided on this?
CS:Um ... Tlet x be 2 and let y be 3. Both decrease. [Writes 2/3 — 1/2] This number is bigger
[pointing to 2/3] and this is smaller [pointing to 1/2] so it is decreased.
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I: In the test you put No Change. Can you tell me why?
CS: 1 don’t remember.
I: T guess you must have had a reason.
CS: 1 think when 1 do this test I do it very fast. And n&z’\ybe I think they both decrease so it is no
change.
Indeed her original answer may well have been decided using such reasoning but,
given her claim (in another part of the interview) to have tried numbers every tiume, this
could be a post rationalisation. As with AM’s explanation, it is possible that she also
chose equal x, y values. Whatever the reason, this is an example of an ‘unstable’
response and similar instances occurred in a number of the interviews. -

b) Same-Direction
A typical example of an exchange in this category is given below:
I: Now let’s look at (d) [Fraction tesf]. x is decreased and y is decreased and you said the
answer decreased. Can you explain this?

WS: 1 also try two numbers [writes 4/12]. Now decrease [writes 2/10]. 1 cancel this [4/12 10 1/3]
and this [2/0 to 1/5] and now the numerator is the same and the denominator is larger
[pointing to 5] so ... the larger is the smaller so the answer decreases.

On further elaboration it is clear that the phrase “the larger is the smaller’ refers to a
larger denominator resulting in a smaller fraction. As with the previous category, it is
important to note here that the answer to a particular trial is dependent on two things:
the original values selected for x and y, and the amount of increase/decrease chosen
This 1s discussed further in the next section. It is also interesting that one of the
students interviewed in this group had answered the Division test but in the interview
worked with fractions throughout and so gave a very similar explanation to that above.

¢) Opposite-Direction

An illustration of this category is demonstrated by IR’s explanation to item ®
[Division test]: “I let x a number and y is a number. Then I add 1 to x and also
increase 1 toy. Like x is 10 and y is 5, x increase to 11 and y is 6. The answer was 2
but now it is less than 2, so the answer decreased”. Here again we see clearly that the
particular values chosen have determined the conclusion reached. Before turning to the
crucial cases of the Correct response category, some further comment on these first 3
categories 1S warranted.

Discussion of Substitution Strategy
In using a substitution strategy, two other features were very evident in the interviews.
The first was a strong tendency, when two changes were involved, to increase or
decrease by the same amount. In very few cases were different increments used
without prompting by the interviewer. The following extracts illustrate the students’
Justification for this:

L: T notice that you' have always added or subtracted the same number, either both 1 or both 2.

Do you think it must be the same number?
S: No, but I think when they are the two same numbers we can calculate easier.
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(J‘;WS: [in response to a similar question] Actually I don’t mind the numbers but [ just chose the
same here to make it easy.

AM: Yes. If you increase the number above you also must decrease the same number below.
I: [later in same interview] When it says x is decreased aid y is decreased it doesn’t say how
much, so if T said X is decreased by I and y by 10 say, do you think that would be OK?
AM: Mm .... Maybe ... but I don’t like it.
Easg of calculation was regularly cited despite the fact that in practice this sometimes
led to difficulties in comparing initial and final values (e.g. when 6/8 was changed to
5/7). This reason was also quoted by the students who chose equal values for x and y
where, of courSe, it did make the calculations easy. The second feature that was
strongly evident relates to the relative magnitudes of x and y. In nearly all the x/y
ef(%mples students chose x <y while conversely, for the x+y examples the students
overwhelmingly chose x > y. (This phenomenon is also reported in Barash & Klein
(1996) where 58% of 7% graders believed that the dividend is always bigger than the
divisor). Some typical comments are quoted below:
[: Was there any reason why you've always chosen x smaller than y?
T: Because it is a fraction so it is easier.
I: Why is it easier? :
T: If this [pointing to x] is bigger than y it will be more difficult. [Here it seems likely that T is
associating improper fractions with ‘difficult’]

I: Was there any reason why you chose x bigger than y?
CH: Yes. Because it is x divided by y.

Both of these tendencies, equal increments and relative magnitudes, combine to give a
clear explanation of the different distributions observed for the x/y and x+y tests on
the indeterminate items. For example, in the Division case, if equal increases are used
when x > y this will always result in a decrease in the value of x+y (and vice-versa for
equal decreases). Lopez-Real (1997) shows the power of a co-ordinate representation
for comparing ratios and we can illustrate the results here in the same way. (Note that
due to the order of x, y given in the original tests, the labelling of the axes is the
opposite of the conventional form). , :

Numerator (X) > Numerator (X) x>y
(Dividend) X>Y (Dividend)
1\ X=Y /1 X=Y

X<Y

N AN
Denominator (Y) 7 Denominator (Y) 4
(Divisor) {Divisor)
1 .
Y Equal Decreasg in X and Y Equal Increase in X and Y
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Correct responses

One of the features that characterised the students in the previous categories was the
belief that a single trial would suffice to decide each case. Many stated that they were
sure of the answer after just one substitution (even in the indeterminate cases). With
respect to this, CS makes a revealing comment: “If there is time I will try some other
numbers. Just to check”. The final phrase suggests that CS is not thinking of different
possible outcomes but rather as a check on her computation. In contrast, although
some found it difficult to articulate their reasons, the common distinguishing feature of
the students with correct responses was their awareness of these different possible
outcomes. For example, AD interpreted all her answers in terms of apples and children
and this is her explanation for (d) [Division test]:

Because if there is 10 apples and 5 children then each get 2. Then if the apples decrease to 8 and

there is 4 children they also get 2 each. But if the apples decrease to 9 and the children becomes

3 then they will get 3 apples each which is more. So .... I can’t tell which will happen”.

The main point of interest with tlie correct-response students is how they decide when
it is necessary to consider more than one substitution and when not. In thé following
extract KW attempts to explain this. She has just successfully explained (c) by a single
substitution.

I: Let’s look at (d) now [x/y fype].-Can you explain this?

KW: Say xis4 and y is S. If x decrease thig:can decrease to 3 or to 2-and if y is 5 it can decrease
to 4 and 3 and 2. If it [y] decreases to 2 then this is bigger ‘than this [comparing 3/2 to
original 4/5] but if this decrease to this [writing 4(5 — 2/4] then the answer is decreased
so I say ‘Impossible to Say’.

I: Did you try more than one set of numbers each time?

KW: Just in the “Impossible to Say’ I try more.

I: So here [indicating successful answer to (c)] why did you only try once?

KW: Because in my memory 1 knew this happen. From my lessons. [she goes on to give a
similar explanation for (h)] .... If the denominator is more, then thé fraction is smaller. We
learn it already.

I: How could you explain to a friend that you need to try more than*one set of numbers in
some cases but not in others?

KW: Well, here [pointing 1o (c)] however x is increased .. by how many... and y is decreased
whatever much ... it doesn’t matter, the answer will always increase. But here [indicates
(d]1 ... um ... Ican’t catch the answer because it can be different.

Her confidence in the questions where she tried just one substitution appears to be
rooted in her previous knowledge (e.g. “in my memory” “we learn it”) and in this
sense it is probably not even necessary for her to substitute at all. (A similar point is
discussed by Mok, 1997). It may well be that giving an example to the interviewer is
simply a way of explaining the answer. However, she still finds it extremely difficult
to articulate why she knows certain items will be indeterminate and her frustration is
beautifully illustrated by the phrase “I can’t catch the answer”,

Final Comments
The interviews clearly illustrate the dominant role of the substitution strategy in
answering such ‘directional” questions. In all of the items, except for (d) and (f), such
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a strategy will be successful with a single substitution, regardless of the values chosen
for x and y or the increments chosen. However, for items (d) and (f) the specific
values chosen are a determining factor in the outcome and this helps to explain the
very different distributions for the x/y and x+y tests for these items. It also means that
a student’s response is likely to be ‘unstable’ and a different response may well be
given on another occasion ( as was the case for some of those interviewed).

The most difficult question to answer is precisely how the awareness that certain
items are indeterminate is achieved. The interviews with the successful students show
that they are able to explain why their choices are correct but they still find difficulty
in articulating how they know beforehand that items (d) and (f) require more testing.
We can speculate on this by focussing for a moment on one of the other items. In fact,
there is a certain circularity involved in a question like ‘what happens to x/y when x is
unchanged and y increases?” If one checks by substitution, say 2/3 changes to 2/5,
then one already needs to know that 2/5 is less than 2/3 in order to give the correct
response. In that sense, the property that the item is testing is already embedded in the
particular substitution used. Now it is clear that most of the students did have this
knowledge and hence were successful with that item. But perhaps the difference
between such students and those who were also successful with the indeterminate
items is that the former use the knowledge in a limited algorithmic sense (i.e. being
able to check that 2/5 is smaller than 2/3) whereas the latter have incorporated it into a
qualitative schema that can deal with variation independent of specific examples.
However, it is clear that further analysis is required so that a more detailed picture of
such mental schemas can be identified.
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Non-elementary Mathematics in a Work Setting

Zlatan Magajna John Monaghan
University of Ljubljana University of Leeds

Slovenia Leeds LS2 9JT, UK

We report on one strand of ongoing research into the use of mathematics
in a computer aided design (CAD) and manufacture (CAM) setting. We
Jfocus on technicians’ calculations of the volume of a mould they produce
Jor glass factories. The 4-parameter model of Saxe (1991) forms a
background for discussing observations, which suggest that the technology
governs the mathematical reasoning they employ.

Introduction

This paper forms a self-contained part of a larger study concerning interrelations
between geometric reasoning in various settings. Here we focus on the mathematical
thinking of a small group of technicians who produce moulds for glass factories.
Before presenting details we outline the wider aims of the research. In the larger
study we consider geometry-related practices in a vocational school for machine
technicians in mathematics classes and in ‘application’ classes (related to CAD) and
professional CAD-practitioners in a work setting. Our basic research interests are
concerned with the role of school geometry, as it is learnt in vocational schools, m
work settings. Do practitioners (technicians) that come across geometry related
problems revert to school geometry, do they feel that their work is related té school
geometry, do they use school-learnt strategies, do they feel a discontinuity between
school-geometry and their working practice? Like Noss & Hoyles (1996) we are
interested in how they construct meanings to their mathematics-related actions and
whether these meanings are learnt at school, on the job or a mixture of both?

Such questions are not new to research about mathematics in the workplace. Most of
this research has shown a strong discontinuity between school and working practice.
According to the situated cognition paradigm, e.g. Lave (1988), this discontinuity is
a consequence of the fact that learning in a school environment and working on a
shop-floor are two different social practices. Further to this, school mathematics is
often ill suited to working practices. In some cases the problems are only apparently
similar to school problems and in reality there is a range of explicit and implicit
additional restrictions which makes school methods unsuitable, and thus other
methods are used (see, for example, Masingila (1996)). In other cases, e.g. Scribner
(1984), the tasks are only apparently mathematically simple and in reality there are
no simple algorithms or methods to solve the problem and school-learnt procedures
are of no use. To advance work in this area we wanted to dlrect our research to
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working practices where school-related knowledge is appropriate and could be
profitably used, and where solutions could not be easily invented. Such cases are
admittedly rare, but one example is the design and manufacture of moulds for bottles
of irregular (non-standard) shapes in the glass industry by technicians with
vocational school training.

Setting and methodology

The research took place at a small factory in Slovenia that produces moulds for glass
factories. Six practitioners, all with vocational school training for machine
technicians, were observed for 3 weeks (about 60 observation hours). Three of them
were constructors' working with a 2D-CAD system (they have only recently
introduced a 3D-solid modeller), the other three were technologlsts working with
machines for producing the moulds. They all used computer programs for the
production of the moulds on numerically controlled machines. The observer was
well acquainted with all the technology involved.

A variety of methods were used to elucidate the mathematical thinking of the
observed practitioners: interviews, observation (135 mathematically relevant
events/notes), scheduled observation, document analysis, interviews and protocol
analysis related to given problems. We interpreted the data using the 4-parameter
model of Saxe (1991), i.e. we interpreted the data in terms of activity structure,
previous knowledge, social relations and artefacts used.

In this paper we restrict discussions to ideas related to volume. In the next four
sections we summarise our observations along the lines of Saxe’s 4-parameters. In
the final section we discuss the relevance of these observations in understanding
differences between school mathematics and (this) work mathematics. We conclude
with an hypothesis about the practitioners’ reasoning in this context.

The concept of volume is ‘dynamic’ and embeodied in the activity cycle.

The practitioners use a variety of methods to establish the volume of a designed
bottle. These methods are sometimes approximate and sometimes not, but for the
practitioners this is not relevant, in practice they are all approximate with respect to
the final product. In the production process the volume is calculated and measured
several times with different (mathematical) methods. There is no point in thinking of
the exact volume of the bottle (more precisely of the volume of the mould for the
bottle) because the mould is subject to various approximate calculations and

! Constructors basically evaluate whether a mould for a conceived bottle can'be
manufactured, define the dimensions of the raw mould (from which the desired shape of the
bottle is cut off), design the bottle and make all the necessary technical drawings.
Technologists generate programs for numerically controlled milling and other machines.
They also define the surfaces to be cut and determine the volume. The practitioners enjoyed
good relationships, mutual understanding of their roles and, respect for each others work.
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. mechanical manipulations. As the picture shows the | .
mould essentially consists of 3 parts: two lateral,
usually symmetric, parts and the bottom socket.

In a typical observed situation the practitioners have
been involved in the construction of the mould for a 2
bottle of a given shape, usually only approximately defined, made from a given
quantity of glass, and having a given volume when filled up to a certain height. A
constructor first designs the bottle and the required mould. The design is then given
to a technologist who, using appropriate software, defines the procedure to work out
the mould (s/he also recalculates the volume). Most of the cutting process is done
automatically on numerically controlled machines, but small details are often
worked out manually (which obviously changes the obtained volume). The volume
of the mould is then measured by filling it with water. The measured volume has to
be a bit smaller than the required one for it is normally enlarged by polishing the
mould, a manual operation which increases the volume. If the measured volume is
too small there are several ways of increasing it. The preferred way is to slightly
redesign the shapes by increasing the overall size of the designed bottle — this
method is preferred because it preserves the shape. Another way is by uniformly
deepening the cuf, i.e. manually deepening part of the shape. In general the
technologist and the constructor consider the shape of the bottle, the allowed volume
error and certain technological aspects and do not find it hard to decide which
method to choose. But every method is costly in terms of time, so they do their best
to obtain the ‘correct’ volume as soon as possible. However, if the measured volume
is too big then the practitioners are in serious trouble. Sometimes the volume can be
reduced by grinding out the central vemcal part of the mould, but in general a costly
mould is wasted.

Note that the volume is calculated or measured several times during the whole
process by different people with different methods. As we shall see the methods are
usually approximate (and the practitioners are aware of this). Also, there are one or
more phases which cannot be brought under complete (mathematical) control by the
practitioners. This aspect of the process is depicted in the diagram on the next page.

In the production process the volume is calculated and measured several times (at
least four) by at least three people with different methods. Since all calculations are
approximate and since some operations are always done manually there is no point
of speaking about the exact ‘volume’. In practice, the calculated volume is
something negotiated among the participants. For example, if a constructor designs
a shape of a nominal value (the calculations are regularly checked by another
constructor) and a technologist calculates a different value (with another software
program) then they have to agree on what to do. If one of the volumes is too big then
they are much more careful for this is something to be avoided at all costs.
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Schematic presentation of the volume-related operations of the observed process of
design and manufacture of the mould for the production of bottles. Shading of the
blocks indicates the calculation or measurement of the volume; the elliptical shape
of the block indicates that the operation is not under ‘mathematical’ control. The
dotted lines represent decisions practitioners try to avoid.

We have not observed a preferred method for calculating the volume. The
constructors and technologists do not discuss the validity or correctness of the
methods used to calculate the volume. Their main concern is how to obtain the final
shape with a given volume (though privately some claim that their calculations are
the most accurate). We observed several methods for the calculation of the volume
of a shape. Please note the central role of technology in their reasonings.

¢ To obtain the volume of a rotational shape, or part of a shape, the constructors
"draw the 2D-profile on a computer system and then use a program which
automatically calculates the volume of the rotated shape. They were very careful
when using this method because they knew that the software sometimes did not
give the correct answer (the software requires that certain conditions hold for the
shape and the way it is positioned and they prefer to check the result by another
method rather than attend to the input conditions). The method has been shown to
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the constructors by the workshop manager and they knew that it used a ‘correct’
formula, i.e. it is not an approximation.

¢ The constructors often represent the shape of the bottle in terms of horizontal
cross-sections at various height levels and draw a sequence of cross-sections using
standard drawing procedures. These horizontal cross-sections are often just
approximate, e.g. they draw a circular arc instead of an elliptic arc. The constructors
are well aware of this. The cross-section is always composed of circular arcs and
line segments, since the software calculates the area on this basis. The volume of
the part.of the bottle between two horizontal sections with respective areas 4 and B
and the height » between the sections is calculated using the formula
vol=h/3(A+\/(AB)+B). For a given bottle several such sections are drawn and the
complete calculation is performed using a spreadsheet (if the volume is not correct,
then aesthetic changes are made to the cross-sections until a desired volume is
obtained). The constructors were not able to say who told them to use this formula -
they claimed that it was ‘a shop-floor tradition’. They are well aware that it is an
approximation, but they did not relate it to the volume of a truncated prism or to
Simpson’s integration formula. A constructor explained that the volume of part of
the bottle between two horizontal sections could be approximated by
vol=hx(4+B)/2, which, he claimed, is essentially the volume of the prism. He said
that the formula they use is just a better approximation.

¢ The constructors have only recently obtained a 3D-solid modeller but during the
observation period they almost never used it and produced all the documentation
(for the technologists) with a 2D-drawing system. We once observed the design of a
bottle with this modeller, in order to calculate its volume, but all the documentation
was produced with a 2D-modeller.

¢The volume of standard geometric shapes are calculated using school-learnt
formulae, e.g. to calculate the volume of a prism the constructor drew its base on a
computer to obtain its area and then used the formula ¥ =h x 4.

¢ The technologists obtained the volume of a shape using a 3D-surface modeller.
They reported that the accuracy of the calculation of the volume increased with the
density of the grid on the shape (the program they use calculates the volume using
polyhedron with the vertices on the mesh points, but the technologists ignored this).

¢Once the mould was made, its volume was measured by weighing the water it
could hold.

There appeared to be no order of precedence amongst these methods, they were used
interchangeably and several different methods were often used for calculating the
volume of different parts of a single bottle.

Understandings

All the practitioners appeared to have completé insight into the whole activity cycle,
and they had a very good understanding of the reasons for and the role of the
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calculations they performed. They were able to explain every detail about the
problems related to the volume but they paid little attention to the underlying
mathematics of the methods used — they simply accepted them and tried to
determine when they work but not why they work. One of the technologists, for
example, was asked, ‘Why not increase the amount of glass when the resulting
volume of the mould is too big?’. He promptly explained the reason in terms of the
machine that used the moulds to make bottles. All our observation suggest that all
parties appreciated the mathematics they were using and could, when appropriate,
relate this to mathematics learnt at school. It is important to stress, however, that
although mathematics did give them a sense of what they were doing, they only
seldomly used school-learnt methods and, when reasoning about volume, they did
not reason in terms of mathematical concepts or methods but, rather, in
technological terms (see below).

A related and regularly observed feature was using technology to ‘correct’
mathematics. Errors in volume calculations, due to inaccuracy of the mathematical
methods or to inaccurate descriptions of the shape of the bottle, were corrected with
technological procedures. If the calculated volume was too small the socket was
made deeper or the whole shape in the mould was made a bit deeper. In defining
complex shapes on a computer mathematical (geometric) errors often occurred.
When this happened no attempt was made to analyse the reason for the error, they
either immediately skipped to another mathematical method or left the problematic
part to be completed manually. Certainly an important reason for such behaviour,
although perhaps not the main reason, was the pressure of time. The main reason is,
we posit, that the objects of their thinking are not mathematical objects but
technological operations and artefacts which allow technological manipulation.

The role of the tools

The tools used, software and machine tools, significantly influence ways of working
and of reasoning. Further to the discussion of the role of technology above we can
illustrate this with two examples. In designing the cross-sections of the bottles (used
for the calculation of the volume) the technologists use only circular arcs and
straight lines. They deliberately avoid using splines®, though they know about them,
because they need the area of the section and the software does not calculate the area
of a region bounded by splines. Thus, although they are aware that a curve is elliptic
or irregular they deliberately draw it as a circular arc. Secondly, the software used
automatically converts ellipses into a sequence of circular arcs. The practitioners are
very confused about this and sometimes treat an elliptic arc as an ellipse and
sometimes as a sequence of circular arcs (avoiding consideration of whether the arcs
are an approximation to the ellipse or an exact construction).

2 Splines may be thought of as the curves used in computer paintbrush programs. Imagine a
flexible strip of plastic passing through nails on a board. The shape taken is a spline. Modern
dictionaries of mathematics or computer science will provide mathematical definitions.
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The role of social relationships

Social relationships in the workshop play an important role in reasoning about
volume. As we have mentioned, calculated volumes have to be agreed between
participants. Also, there are mutual checks of each other’s calculations in, as we
have observed, an atmosphere of mutual respect. We perceived, however, that
pressure from the workshop manager to get the job right first time, or a least with a
small number of corrections, exerted considerable influence on the calculations. The
constructors and technologists clearly respected the manager but, nevertheless, felt
under great pressure from him. They would have preferred to produce a trial object,
or to produce the final object, initially with a smaller calculated volume, which
could then be increased. Although the manager agreed with this in theory, he
dismissed such possibilities in practice.

School mathematics and (this) work mathematics

At one level the observed practices of the constructors and technologists in
designing and producing moulds for irregular shaped bottles used aspects of school
mathematics. Both integrated school mathematics into their working practice and the
mathematics they used was meaningful to them — not in the sense that they
understand all the procedures used but in the sense that the aims and the observed
mathematical results were meaningful to them. On the other hand there was an
evident discontinuity between the school mathematics used and the observed
mathematical practices. This discontinuity was evident at both a subjective and an
objective level. Although this discontinuity can be explained with reference to
_different cultures (classroom and job culture with the whole range of adopted
specific methods, relationships, tools, activity structures) we would like to explore
their use and view of school mathematics and links with technology.

At the objective level it was evident that the practitioners used school mathematics
as a closed body of knowledge, as something that was frozen either in handbooks, in
adopted formulas and procedures, or in software. This knowledge was used ‘as is’,
without questioning it and without discussing or modifying it. In cases where a
method did not work for some reason or an error occurred the practitioners regularly
skipped to another method or found a technological solution to avoid a mathematical
method that did not work. The mathematics they were really doing, their work
mathematics, was inextricably joined with the technology they were using. The
geometry elements always had a technological meaning — in this sense all the
calculations they were doing were meaningful to them.

On the subjective level the discontinuity between school and work mathematics was
agdin evident. The practitioners claimed, a similar observation is reported by
Strasser & Bromme (1992), that there is no mathematics in their jobs. One
practitioner, for example, reported:

Essentially I learn everyday on the job. I have completely forgotten about school.
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But I see that in this theory, for example, this here (points to the splines on the
display), theory and practice - it is very difficult.

If you do something in theory and then you try in practice, it never turns out like the
theory predicts.

Recently, with these computers, they (theory and practice) are getting closer
together. I see more and more now that what I've drawn here (on the computer) is
exactly what comes out there (on machines).

The same practitioner was asked to solve some job-like problems. The protocol of
his solution process shows that he clearly distinguishes the two mathematics. Here
are some excerpts from his solution processes:

..] could measure this distance here ... though here mathematically I lack a datum...
...I could prove how to draw this purely mathematically. On the other hand, I could
also draw this in an exact (i.e. non-mathematical) way...

.0 would lose time finding a mathematical solution... I would not calculate it
mathematically, I would get the position like this (successive approximations)...
...this could be done purely mathematically...

.1 could draw this square mathematically or with some trials...

The observed difference between (this) work mathematics and school mathematics is
thus, we argue, not just a matter of different contexts. An important difference was
that in doing work mathematics the practitioners did use the school mathematics, but
as a closed body of knowledge. Moreover, technology was such an omnipresent
feature in their thoughts that we claim their mathematical reaSOnmg is essentlally
technological reasoning in a mathematlcal | chntext.
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On the difficulties of visualization and representation of 3D objects in middle
school teachers!

Nicolina A. MALARA, Department of Mathematics, University of Modena - Italy

We report some results concerning reactions and difficulties met by middle school
teachers involved in innovative activities of 3D geometry which require the ability to
visualize the effects of some shiftings of solids or to evoke lhe vision of objects from
particular points of view for their representation on isometric paper.

Introduction
It is well known that the teaching of solid geometry is rather neglected in many
countries, and that is often limited to the calculation of the measure of surfaces and
volumes (Howson ¢ Wilson 1986, Howson 1991). Many authors, such as Bishop
(1980, 1983), Gaulin (1985), Cooper (1986), Presmeg (1986), and Parzysz (1991)
have underlined for a long time already the importance of promoting in the teaching
of geometry the development of students' spatial intuition, including their ability to
visualize and to transform visual representations and visual imagery. More recent
studies (Mariotti 1989, Clement & Batista 1992, Presmeg 1994, Kopelman & Vinner
1994) have highlighted some of the difficulties linked to these activities, which even
teachers have; some authors state that the pupils' difficulties mainly depend on a
lacking classroom activity (Presmeg & Bergsten, 1995).
This study was started within a yearly seminar for teachers training devoted to solid
geometry, and it was carried out with the belief that only by giving the teachers an
opportunity to discuss and compare their problems and difficulties is it possible to
make the necessary changes in classroom activity.
During the seminar we carried out an analysis of the contents of such topic in
compulsory school syllabuses of various European countries, and we also examined
some specific teaching projects. We focused out attention onto the English project
NMP Mathematics for Secondary School (Harper 1987), in which much attention is
paid to the study of solids, right from the beginning of first grade, through activities
of various kinds which are suggested through very attracting worksheets, quite
unusual in our teaching tradition and regardless of questions of measure. Such
proposals, beyond the actual construction of objects with various materials, concern:
1) observation and description of the solids; 2) decomposition and recomposition of
solids, representation and classification of their developments; 3) visulisation of
solids from different points of view and their representation; 4) section of solids,
even round-shaped, according to planes (not necessarily vertical or horizontal).
Despite their acknowledged charm, the study of these activities provoked the
_ teachers' uncertainty about the difficulty of foreseeing the insertion of some of them
in their lessons and some doubts on the hypothetical difficulties that pupils could
have in facing such problems, also with reference to the level of schooling for which

1'Report realized in the realm of MURST (40%) and CNR (contract n. 96.00191.CTO1)
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they had been conceived. In order to assess the suitability of such proposals, as well
as to achieve an appropriate awareness of their aims, difficulties and potentialities,
we tried solving them with a group of 8 teachers (women), who actually had
considerable difficulties with them.

In this paper we refer to a part of this experience concerning the results obtained as
to some problems created for 11-year-old pupils (first grade of middle school),
concerning ‘the representation of objects on isometric paper and under given
conditions. These exercises imply the ability of visualising mentally the
configuration of the solid in new positions or from a new point of view, as well as of
correctly drawing such representation. We are going to present the problems
examined by describing the aims and the foreseen difficulties, then we shall consider
the teachers' productions, by analysing the errors and difficulties met. Finally, we
shall draw conclusions on the basis of some considerations arisen during discussion.

The problems tackled.

The problems studied are reported in table 1, arranged into point (a), (b), (c) and (d).
In (a) we show two problems in which it is asked to represent the solids in a different
position from the one assigned, according to their falling towards a given direction.
Such problems require the performer's capability of visualising mentally the object's
configuration during their falling and of fixing such effect in the mind. The five
objects (A, B, C, D, E) to be represented in the first question (which is preliminary to
the second one) contain increasing difficulties; in particular, the representation of
object D is difficult owing to the presence of 'steps’, whereas that of object E is
difficult because of the different width of its basis as to the other-objects. The second
problem, on the other hand, is much harder than the previous one, either for the
complexity of the object to be represented (which can hardly be controlled globally
in one's mind), or for the different falling direction, for which no example is offered.
In point (b) we report two problems concerning the representation of objects
reflected by a vertical mirror. The first problem asks for the representation of a 3D
image of the letter "J" on the basis of a given example; the second one, that we
created ourselves, asks to represent a certain object starting from its mirror image.
The difficulties in carrying out these operations are manifold. Both problems contain
the difficulty of visualising mentally the objects to be represented. In particular, in
the second problem, it is difficult to imagine the back of the object reflected, which
in the requested representation turns out 1o be at the front; then there is the difficulty
of finding out the position of Alice. Other difficulties are mainly due to the need of
defining some principles of representation for the sides that lie on parallel planes,
and and in particular to overcome the difficulty constituted by the realisation of the
images of those points of the representation of the object, each of which indicates
points placed on different planes of the original object. In (¢) we present some
problems in which it is asked to complete the representation of some objects where
parts of the outer surface are missing. The peculiarity of this problem lies in the fact
that the last two figures could give vent to representations of different objects, which
therefore requires the performer's ability of imagining the possible objects having
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such shape in the representation. Finally, in (d) we show a problem requiring the
mental reconstruction, and consequent representation, of the vision of a rather
complex object from a given point of view, which should be carried out on the basis
of its representations from three different points of view. The main difficulty here
‘consists in working out the mental vision of the object from the requested point of

. view according to the suggestions given.
Table 1
(a) Representation of objects in a different position from the one assigned

Midge builds two solids. i ¢
‘Horace sneezes ~ @ .
and knocks

. them down.
A

B c
Draw what they look like after Horace sneezes.

Lenny thinks this is a lorry.

Fiona thinks it'sa corgi..

Lenny kicksitover.

Draw what it looks like lyingon its side.

b) Representation of the image of objects through a vertical mirror.

. This is a mirror. It shows the
reflection of the letter F.

. Draw the reflection of the letter J in this mirror. L

\ .

[ {

This is Alice "in" the mirror, Draw Alice
and the tower autside the mirror

(to be continued)
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(to be continued)

(c) Kdentification of objects and completion of their representation

Can you draw two solids
for each of these?
O

Here are the outer lines of the drawings of gome solids.
Copy the drawings, and draw the missing lines.

Q
o
o
o

(d) Mental reconstruction of the vision of an object and consequent representation

Here are three views of a power station.

.
From the west From the east

Draw what it looks like from the south.

The teachers' productions
To begin with, we would like to underline the fact that despite our request to record
the sequence of attempts through which they get to the solution(s), the production
didn't show - at least at the beginning - the immediate choices but rather the result of
a sometimes very long activity of re-arrangement of failed attempts after initial
block. As a general fact, we noticed that the teachers were reluctant to admit that
they initially stuck and to show their progressive attempt (some of them even refused
to deliver their papers, saying they would do it later on). Only after several working
sessions, during the general discussion on this part of the activity, did the teachers
declare spontaneously the difficulties they had and the long time they had devoted to
the study of some of the problems.
The teachers' writings about the experience highlight the following difficulties with
reference to all problems: A
- to co-ordinate the partial visions of an object which must be represented in a
different position from the one assigned as a whole, which was due to the
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prevalence -in the representation given - of images showing the visible parts of the
objects instead of the hidden parts;

- to visualise the objects globally and fix them in one's mind in the right position or
from the point of view requested for the representation;

- to evoke the vision of an object from one of the four fundamental points of view
(north, south, east, west) from the representations of its visions from the other
three points of view;

- to check the correctness of their productions and conceptualise the principles of
representation (the operating rules are not explicit and should be discovered
during the activity).

The progressive awareness of their own difficulties lead the teachers to the idea that
if they wanted to promote this activity in school, a preliminary stage was needed, in
which the pupils could have the possibility of building up such objects concretely,
observing their real position from different points of view as well as their positions
after falling towards various directions, and also learn to represent objects onto
isometric paper. '

Let's go deeper and analyse the teacher’s answers, productions and reactions to each

problem. )

As to the first problem reported in (a), the teachers worked with good confidence,

except for a few of them who had some difficulties with object D, because some

points in its after-falling representation (the vertexes of the steps) actually represent
two different points lying on different planes and some parallel segments in the

" representation (the edges of the steps) appear on the same straight line. They also had

some difficulties with the representation of E owing to the fact that the basis appears
in a higher position than the rest of the object. The main reasons for these difficulties
are related to their not being much accustomed to using isometric paper (in fact some
of them preferred using white paper). The second problem turned out to be rather
difficult: some teachers stated their inability to visualise the position attained by the
dog after falling, some said they could only see fragments of the representation, some
other just stuck in front of the problem. The general attitude in dealing with the
representation was to go through attempts and errors: and indeed, after starting with
white paper the teachers did resort to isometric paper since they realised it helps in
preserving length and parallelism.

In the following meeting the teachers showed their representations, which in the end
were mostly correct, though bearing evident spurs of corrections. In collective
discussion on the difficulties and on the work carried out, the changing in thickness
turned out to be a recurring error (most of them considered it of one unit first, and
then of three units).

All teachers agreed about the difficulty of visualising globally the image that must be
reproduced, but most of all of keeping (maintaining) such image, which made them
refuse to chase the global mental image for the representation in favour of a "local"
strategy for developing the representation by a simultaneous control of the mental
image of the part examined. Only two teachers looked for a rational strategy focused

o 3-243 D3N},
IC 220

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

onto the properties that bind some elements of the image (parallelism,
perpendicularity, lengths, etc.) in search of a way of translating such relations into
the representation, which in the end altowed them to find the correct solution.

The problems reported in (b), concerning the reproduction of images trough a
vertical mirror, seem to be very difficult, especially the first one - not because of the
shape of the object, but because of its position as to the mirror.

Again, the procedure to follow was to go through attempts and errors, with the
prevalent intention of reconstructing the image globally, without controlling the
actual equidistance of some key-points from the mirror, and which planes these
points belong to. You get to the solution of the problem as soon as you realise that in
the "J" shape to be reproduced there is a unite point that represents two different
points: the first one belonging to the plane of the basis, at the distance of a unit from
the mirror, the second belonging to the upper plane, at the distance of 2 units from
the mirror. The most successful solving strategy was, here too, to start by
representing the image of the points belonging to the plane of the basis, and only
then to represent those belonging to the parallel plane at the distance of a unit higher.
Among these productions, there's a rather remarkable one that shows in the mirror
the image in a very strange position (see picture). The thing is quite surprising, also
because its author was rather sure about the correctness of her work. The reason for
this error becomes clear as soon as we realise that the same image appeared in some .
of the pupil's productions. > :

The reason is that the figure is dealt with as if it were
plane, and its correspondent is drawn according to the
plane axial symmetry where the axis is the intersection
beetween the mirror and the basis plane. On following
this principle, you realise the symmetric of each point of
the "J" highlighted by the isometric paper, and then - by
tracing a line between such points - you actually obtain a
"J" as in the picture. This error moves from a very deep
misconception: the assimilation of a symmetry in the
space as to a vertical plane to a plane axial symmetry.
The second problem in (b) is much easier both because of the experience gained with
the previous problems and because the image to be represented is less complex than
the previous one, despite the complexity of the object and the fact that a hidden part
of it must be represented. The only difficulty, which to tell the truth we had not been
foreseen, was the position of Alice's sticker: a teacher claimed that "Alice is outside
the mirror" and therefore didn't represent her. Other errors concern some other forms
of confusion between object and picture (the ranging between correspondent points
hasn't been followed) and the wrong height of the object. Besides, nobody of the
group ever considered that the object could have different configurations on ist back
which were hidden in the given representation.

Among the problems in (c), the most interesting - as far as the production are
concerned - is the second one. This problem asks to fill in with the missing lines the
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representation of an object of which the outline is given; it is also said explicitly that
in the last two cases more than one object are likely to appear. The difficulty of the
exercise is linked with the ability to imagine one or more objects, even in non-
standard positions; at the only condition that its representation fit in the given
outline. Not all teachers managed to solve this problem; some of them even declared
that they couldn’t see any suitable object for the last shape, whereas other teachers
said they could see only one. The problem contained in (d) has been the most
difficult: many didn't solve it and some even thought it to be definitely unsuitable for
11-year-old pupils; since it makes explicit reference to the cardinal points, that in the
teacher's opinion the pupils can't manage properly in their real meaning, and because
of the further difficulty of co-ordinating the three different representations towards
its solution. 3

Here we cannot report some protocols and written comments by the teachers but
these will be showed in the presentation.

Conclusive considerations

During the seminar the teacher's attitude has been gradually changing. At the
beginning they were rather perplexed about the actual possibilities of introducing
such activities in their programming, but they faced these problems themselves and
made an accurate check-up of the difficulties and potentials they contain, which gave
them new awareness and induced them to test such problems - yet presented in a
naive way - in class, even if they weren't strictly framed in the programming. The
problems were tested with 1st, 2nd and 3rd grade classes. As a matter of fact, we
detected the teachers' difficulties in their performances too. However, let alone the
pupils' performances on each problem, we would like to underline: a) higher
flexibility than teachers on facing the problems, and in particular better answering to
problems implying inquiry. b) remarkable pupils' liking and involvement in such
kind of activity; c)identification and appreciation of the meaning of the activity.

The teachers, on the other hand, expressed theirneed to continue their study on these
problems in order to create a three-year itinerary in which this activity could be
properly framed by paying attention to the peculiarity of our syllabuses and goals in
the teaching. Some interesting suggestions such as those devoted to the study of the
representations of an object on horizontal and vertical plane from the fundamental
viewpoints (north, south, east, west) were actually rejected, because considered more
suitable to the lessons of the subject called “technical education”.

The teachers' different opinions on this point are focused onto the need of clearing up
about the themes and ways that should be at the basis of the teaching of geometry at
middle school level, taking into account the need to conform its teaching in Europe.
Nonetheless, this study reveals how important it is for teachers to get operative
training, which is rarely achieved through the theoretical study, which is the main
component of our university courses and underlines the question of the study
typologies in teacher training (at least in our country).

O
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From drawing to construction: teacher's mediation within the
Cabri environment

M. A. Mariotti* & M.G. Bartolini Bussi**
ipartimento di matematica - Universita di Pisa
**Djpartimento di matematica - Univerista di Modena

Abstract. Referring to a long term experimental project focused on the introduction to mathematical
proof, this paper presents the analysis of a collective discussion taking place in a 9th grade class. The
discussion deals with different strategies for constructing a square in the Cabri environment. The
analysis has two objectives. On the one hand, to show the evolution of the justification process
centred on the shift from checking on the product to checking on the procedure. On the other hand, to
show how the relation to drawing is modified by the mediation of the Cabri environment as it is
accomplished by the teacher.

1. Introduction

A long term experiment concerning geometrical constructions in two environments
("paper and pencil" and "Cabri") was carried out in the last years focused on the
problem of introducing students to mathematical theorems (Mariotti, 1997, Mariotti
et al. 1997). Geometrical constructions are elements of a field of experience. The
term 'field of experience' is used after Boero & al. (1995) to mean 'the system of
three evolutive components (external context; student internal context; teacher
internal context), referred to a sector of human culture which teacher and students
can recognise and consider a$ unitary and homogeneous'. In this report we shall
limit ourselves to analyse a critical case of classroom interaction in order to discuss
some clements of the external context and their relation to the internal context.

The evolution of the field of experience is realised over time through the social
practices of the classroom. In this experiment, classroom verbal interaction is
realiscd by means of 'mathematical discussion, i. e. a polyphony of articulated
voices on a mathematical object, that is one of the objects - motives of the teaching -
learning activity' (Bartolini Bussi, in press). The polyphony of voices in this case
concerns the dialogue between the voice of practice and the voice of theory about
graphical construction. On the one side, the concrete production of a drawing on a
sheet of paper is a practical activity, whose correctness is definitely controlled by
empirical verification. On the other side, geometrical constructions have a
theoretical meaning that overcomes the apparent practical objective. Every
geometrical construction is actually based on a theorem (some theorems) that
guarantees the theoretical control of the procedure by means of which it has been
realised. As history witnesses (Heath, 1956, pp. 124-31), the relationship between a
geometrical construction and the thecorem which validates it, is very complex and
difficult to be grasped by students: the theoretical control is not spontaneously
achieved, but can result from the activities that the pupils perform within the
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chosen field of experience (Mariotti, 1996).The main motive of classroom activities
(Bartolini Bussi, op. cit.) proposed to the students is the idea of geometrical
construction at a theoretical level. Through the dialogue between the voice of the
practice and the voice of the theory, the ability in creating and reading
configurations, that is continuously practised in the production of drawings in both
environments has to be enriched with the theoretical control.

The didactic problem concerns the ways of realising the evolution of the idea. of
construction: The key point of a theoretical approach to construction is that
validation does not concern the product of a procedure (the concrete drawing), but
the procedure itself. According to our experience (Mariotti, 1996) this change of
focus is hard to achieve. The nature of the particular environment may foster this
shift, providing a context within which the request about the procedure becomes
meaningful, nevertheless the context itself is not sufficient and the intervention of
the teacher becomes crucial. The following analysis of a collective discussion aims
at showing the complexity of the process as well as pointing out the main elements
contributing to its development.

2. The External Context

The external context is determined by the concrete objects of the activity (paper and
pencil; the computer with the commands of the Cabri software; signs - e. g.
gestures, figures, texts, dialogues). In this report we shall focus on the functioning
of particular objects offered by the Cabri environment in relation to the internal
context:

- the primitive commands and macros force to make explicit geometrical properties
hidden in free hand drawing;

- the dragging function starts as a control tool to check the correctness of the
construction, then becomes the external sign of the theoretical control.

In the concrete realisation of classroom activity, both elements may be used by the
teacher as instruments of semiotic mediation (Vygotskij, 1978) .

In the Cabri environment (Laborde,1993; Laborde&Capponi,1994) the construction
activity, i. e. drawing figures through the available commands on the menu, is
integrated with the dragging function; as a consequence of dragging, each figure
produced on the screen may or may not maintain its characteristic features,
according to the procedure through which it was obtained. A natural problem
arises:

why do some construction pass the dragging test and not others?

The dragging function can easily be accepted as a validating tool, but the problem
must be shifted from validating by dragging, to explaining the 'proof by dragging'
itself. In other terms, the need of explaining why a drawing is correct and/or
foreseeing that it will be, must lead to consider the procedure through which it was
obtained and check its correctness.
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3. The teacher's role.

The role played by the teacher is fundamental in every mathematical discussion. In
this case, the discussion is developed in a special context, Cabri constructions.
.Consequently in addition to the standard strategies that are used by the teacher to
manage discussions in a whichever context (see Bartolini Bussi in press), we have
strategies that are specific for the Cabri environment (microworld). We are
especially interested in discussing two of these strategies that are related to a typical
facility offered by Cabri, i. e. the "history" in the Miscellaneous Menu. It allows to
reconstruct a figure step by step. The objects are redrawn successively, in a logical
order. When a given construction is focused, the teacher shows the history in the
"master computer" and recurs to two games:

1) the interpretation game, lead by questioning which could have been the intention
or the goal of the author in making such construction; for instance the teacher can
ask: why did the authors choose this operation? what is the use for?

2) the prediction game, lead by questioning which could have been the following
step in this construction; for instance the teacher can ask how would you go on
“from this point? '

Both games are possible because in the computer there a decontextualised,
depersonalised and detemporalised copy of the construction is available. It can be
shown without funnelling students by explicit comments or implicit information
(gestures, and so on) towards the expected answer.

In the following sections we will analyse the critical starting point of activity on
Cabri-figures, to show how the teacher negotiates the meaning of geometrical
construction during mathematical discussions.

4. The scenario of the activity

The episode that we are going to discuss involved one of the experimental classes of
the project (9th grade in a scientific high school (Liceo Scientifico)); 19 out of the
23 pupils in the class participated to this activity. This is the first activity and
constitutes the very start of the long term experimentation.

The first part of the activity took place in the Computer room, where pupils sat in
pairs at the machine. Pupils had a general expertise of the computer, but they never
used Cabri; after a short acquaintance with the Cabri environment - they were let to
freely explore the software for about half an hour - the following task was
presented. '

Construct a segment on the screen. Construct a square which has the segment as one of its sides.

As the teacher explains, pupils are asked to realise a figure on the screen and to
write down a description of both the procedure and their reasoning. At this point,
the term construction is ambiguous, but this is done on -purpose: different
interpretations of the task are expected, providing the basis for the following
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discussion. Actually, the protocols collected contain solutions differently obtained
referring to geometrical properties and/or referring to perceptual control: when
the dragging function will be used these solutions will be differently transformed.
The teacher opens the discussion suggesting to analyse the solution given by Group
! (Giovanni&Fabio). The solution was obtained drawing four consecutive
segments, arranged in a square using perceptual control.

4.1 Is the drawing correct? ,
When the teacher asks pupils to judge this solution, pupils show to share a common
objective. Although some of the solutions. resorted to general interpretations, by
using commands explicitly referring to geometrical properties, when the question
about correctness is put pupils agree that the control must be exerted on the
particular drawing; according to the well known definition of square, pupils
suggest to measure the sides and the angles. The main elements, arising from the
discussion, are the use of measure and the precision related to it.

With the aim of shifting the focus from the particular to the general the teacher
puts the following question.

9 1. : I'd like to know if, in your opinion, this always results (enphasis on)in a square

The teacher aims to direct pupils towards a process of generalisation (always
results), which should make the judgement move from the particular drawing to
the class of figures related to it by the procedure used.

After few utterances, it is possible to observe a shift, of attention and geometrical
properties characterising a square are considered.

21 Paolo: One should see if the angles are equal.
221: Can you see it here?
23 Chorus: No, we cannot, let us measure the angles.

291: Isit sufficient ...

30 Coro: Yes, Yes it is ... All of them, ...

31 Marco: No, two of them are enough.

321: Which ones?

33 Michele & Francesco (others too): The opposite (angles)
34 Marco: No, all of them.

351: Let's find an agreement

63 Paolo: If a square has ali its sides ... equal then it is sufficient to measure only two of the
two opposite angles, if on the contrary the quadrilateral has all its sides different, one should
measure three angles.

68 I: You all are convinced that one angle is sufficient ... also those who said two opposite
(angles)? Giuseppe?
69 Giuseppe: Yes, one is enough.

The intervention of Marco (31) focuses on the possibility of reducing the number
of measurements and the discussion begins, lasting for a good while, about the
number of angles which is necessary to measure in order to check the figure.
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The summary of Paolo (63) and the other interventions show that an agreement is
found, but it still concerns the control of the drawn square.

4.2 Is the procedure correct?

The discussion is interrupted and resumed the day after. One of the pupils
summarises the main points of the previous discussion, then the teacher presents the
figure proposed by Group 1 (Giovanni & Fabio) and drags it.

—

fig. 1 The construction does not stand the dragging test

12 I: What do you think of this figure

13 Chorus: that is a quadirilateral ... with different sides
14 Marco: with four different sides ...

151: Is it a square??

16 Coro No, No no

The solution was obtained using perceptive adaptation, thus after the dragging the
figure is deformed; the teacher asks the pupils' opinion and immediately proposes
another solution (Group 3 Dario& Mario).

E

RIC 23S ..

17 I: O.K. Let's consider another solution ... I'll show you what has been done by Dario e
Mario ...if I'l succeed.

[...]

21 I: Well, I'd like to know your
opinion about the construction of Dario
& Mario

22 Marco: They did a circle then two
perpendicular lines ...

23 I: Do you know from what did they
start? .

24 Michele: We can use the command
"history”.

251: Let's do it . They took a segment,
then they ...

[....the constmuction step by step followsO)
They drew a line perpendicular to the

fig. 2 The first steps of the construction
Group 3 Dario & Mario

segment , then the circle ... in your opinion, what is it for ? What the use of it?

SILENCE . ’

Is there a logic in doing so, or did they do it just because they felt like to draw a perpendicular
line ... a circle ... Alex, tell us ...

26 Alex: the measure of the segment is equal to the measure reported by the circle on the
perpendicular line. '

271: You mean that the circle ts used to assure two equal consecutive segments, the first one
and that-on the perpendicular line ... and the perpendicular ...

28 Chorus: is used ... to obtain ... an angle of 90°

29 I: | know that the square has an angle of 90° and four equal sides or three equal angles ...
then let's see if it is true ... let's go on. Intersection between line and circle. They (Dario e
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Mario) determined the intersection point between the line and the circle ... why did they need
that point?

30 Chiara: the intersection point between the line and the segment ..

31 I: and what should you draw from there ?

32 Chiara: a segment, perpendicular to the line

33 I: what else??

34 Chorus: parallel to the segment...

35 1: let's see what did they do ...

A first reaction comes from Marco, who starts to describe what he supposes that
Dario & Mario did and suggests to use the command "history". Following this
suggestion the teacher puts in execution the command, at the same time describing
what has been done. At a certain point, she interrupts the description and starts the
'interpretation game' (23): she asks the pupils to reflect and try to detect the
'motivations' for those actions. This game aims to provoke the first shift from the
procedure to a justification of the procedure itself

The pupils are confused: in fact, the teacher's question is followed by silence. That
shows the difficulty and the artificiality of the move leading from action to
expliciting the motivation of this action.

But the teacher presses the pupils to find a "logic" in the procedure described (25).

“The following interchange is very interesting, revealing the functioning of the

discussion in respect to the "motive" of shifting the control from the description of
the procedure to the motivation of the procedure.

Alex (26) expresses the relationship between two of the segments according to the
series of commands previously executed. :

The teacher (27) reformulates the statement of Alex in terms of motivations "You
mean that the circle is used for assuring two equal consecutive segments ...". The
Chorus appropriates the terms used by the teacher and continues in terms of
motivation.

The discussion continues developing the analysis started off by the teacher: going
through the construction, the pupils are now asked to foresee the next step,
motivate it and then compare it with the step recorded in the history. That is what
we have called the prediction game.

In so doing, the pupils understand that propertles stated through geometrical
relationships, guarantee that the final product will always result a square; at this
point, it is possible to negotiate the acceptance of a Cabri figure as the correct
solution of a construction task.

53 1: Can I say that the other drawing is a square?

54 Chorus: No

55 I: Before moving it was a square ... but, it does not last ... then, in your opinion, when
asked to construct a square, what is better a square which is always coherent, also when it is
dragged, or a square which can become whatever else?

56 Chorus : A square which always remains a square

571: Well, in your opinion, what is the difference between the two constructions

The discussion continues: different solutions are compared. Mario suggests the idea
of "a link among all the sides” and successively Fabio comes back to the term
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construction, which now assumes the precise meaning of the relationship among the
geometrical elements involved.

When the chorus resume the term construction (120), the teacher, immediately
institutionalises it:

121 1: Do you remember what I asked you at the beginning "what is a construction?" ... in
this case we made a construction .. that means, ...

A final evaluation of the different types of solution is attempted and the term
"construction" appears again: now its meaning has evolved.

181 Daniele: the ‘first' (best) is that (Group 3 Dario & Mario)

182 I: Why is it so? What is the motivation?

183 Chorus: Because it is impossible to mess it up.

1841: Why is it impossible to deform it? How was it constructed? What did they used?
185 Chorus: all in function ...

186 Fabio: They used a geometrical construction.

A construction is a procedure resulting in a figure which will not be deformed by
dragging, the elements are related by characteristic geometrical properties; from
now on the pupils agree on the acceptance of a solution in terms of the dragging
“test, but it is also clear that it is possible to explain why a solution is acceptable.

5. Conclusions

The first observation concerns the amount of interventions of the teacher during
the discussion: she seems reluctant to leave the control to the class. This is certainly
one of the features characterising a first approach to social interaction in a
classroom which must be overcome; actually in this case, for both the teacher and
the class this is the first experience of a collective discussion.

As far as the problem of construction is concerned, the difficulties shown in this
short analysis will not disappear in a while, but there is evidence that the particular
meaning of the construction act - and of its justification - emerged, so that it will be
possible to come back to this meaning as long as it is necessary. '

As expected, although not simple and spontaneous, the shift from drawing as a
product to drawing as a procedure occurred.

According to our basic hypothesis the relation to drawing is modified by the
mediation of the Cabri environment as accomplished by the teacher: our results
confirm that the specificity of the Cabri environment is determinant in order to
make sense of geometrical constructions highlighting specific aspects of them.
Besides the role of the dragging function which mediates the generality of a figure,
the previous analysis reveals the importance of the "history" command as a
mediation tool available to the teacher to trigger the interpretation and the
prediction games. Those games represent a good example of mediation
accomplished by the teacher: keeping the control, she leaves it to the pupils to make
explicit the required operations and their motivations. It is important to remark that
the "history" command provides the basis for the analysis, but it is not sufficient to
accomplish the shift from operations to intentions: the software only shows the
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sequence of the steps, whilst the interpretation game introduces the point of view of
motivation, which is reinforced by the prediction game. Both the games are based
on the facilities offered by the software; the hystory command allows the
reconstruction "step by step" of a figure, i.e. provides the sequence of the
operations (decontestualised and depersonalised) through which the action with the
goal that motivated it is to be reconstructed. Thus the software provides the teacher
with the mediation tool of the history command to introduce the pupils into the
games of motivations.

It is not a surprise that the interpretation and the prediction games are so effective.
Similar games are used by the teacher in the voices and echo games described by
Boero & al. 1997, where students are asked to interpret an historical source and to
predict which solution could have been produced by the same author in a given
situation. In order to start the process what is needed is a 'text' (the source in the
case of the voices and the echoes game; in the case of Cabri constructions the
sequence of operation reproduced by the history command) that can be analysed by
students in a detached way, in order to live the author's part and to guess the
author's intentions. It is the very presence of the software that transforms a
personal construction into a depersonalised logical sequence of instructions that can

" be looked at by the author himself/herself in a detached way.
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“SHE SAYS WE’VE GOT TO THINK BACK”: EFFECTIVE FOLDING BACK FOR GROWTH IN
UNDERSTANDING.

Lyndon Martin Susan Pirie
Kingston University University of British Columbia
Abstract

Folding back is one of the key characteristics of the Pirie-Kieren theory for the
growth of mathematical understanding. This paper illustrates ways in which folding
back can be either an effective or an ineffective action for facilitating the growth of
mathematical understanding.'It highlights what an act of folding back must comprise
if it is to lead to an enriched understanding for the learner.

The notion of ‘folding back’

The research on which this paper draws is based in the Pirie-Kieren model for the
dynamical growth of mathematical understanding. The Pirie-Kieren theory has
itself been fully presented and discussed in a number of previous PME meetings®
and many of its features elaborated on, there and elsewhere.’ The model developed
to represent the growth of understanding contains eight potential layers of informal
and formal mathematical understanding actions for a specific person and of a
specified topic. These layers are named primitive knowing, image making, image
having, property noticing, formalising, observing, structuring and inventising.* A
diagrammatic representation of the model is provided by eight nested circles; each
layer contains all previous layers and is included in all subsequent layers. Growth is
seen to be the result of a continual movement back and forth through the layers of
knowing, as individuals reflect on and reconstruct their current knowledge.

A Key feature of this theory is the idea that a person functioning at an outer level of
understanding, when faced with a problem at any level, that is not immediately
solvable, needs to return to an inner layer of understanding. Such an invocative® shift
is termed ‘'folding back'. The intention is then to extend current inadequate and
incomplete understanding by reflecting on some inner layer activity, reorganising
earlier constructs, or even generating and creating new images, should existing
constructs be insufficient to solve the problem. The inner-level activity is not
identical to that originally performed by the students, however. When folding back,
students possess a degree of self-awareness about their understanding, informed by

'The paper stems from the research of Lyndon Martin which forms part of a DPhil thesis presently being
submitted to the University of Oxford under the supervision of Professor Susan Pirie.

2 For example, Kieren and Pirie, 1992, Kieren, Reid and Pirie, 1994, Martin, Pirie and Kieren, 1996.

3For example, Pirie and Kieren, 1992, Pirie and Kieren, 1994,

* For a more complete description of the model see Pirie & Kieren, 1991.

* Invocative here is used in the context of the model to describe a cognitive shift to an inner level of
understanding. An invocative intervention is one which promotes such a shift.
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their operations at the outer level and so they are effectively building a 'thicker'
understanding at the inner level, to support and extend their understanding at the
outer level to which they subsequently return. It is the purpose of this paper to focus
on the ways in which folding back facilitates the growth of mathematical
understanding. In particular the paper will illustrate the way in which folding back
can be either ‘effective’ or ‘ineffective’ for the learner. Merely engaging in an act of
folding back is not a guarantee of greater understanding.

Effective folding back:

Folding back occurs with a purpose, namely extend one's existing understanding
which has proved to be inadequate for handling a newly encountered problem. It is in
response to an obstacle that the learner re-visits earlier understandings, aiming to
modify, collect, or build anew conceptions which will allow the difficulty to be
overcome through an extended understanding of the topic.® Hence the inner layer
activity is informed by what the learner already knows and by what they need to be
able to do. For a learner who is able to use this extended understanding to overcome
the original obstacle we term such folding back ‘effective’.

It is important to note that this does not imply that the learner now has a complete
solution. Further folding back may be required before a sufficiently extended
understanding exists. The key feature is that the learner is able to return to the outer
layer and apply newly extended understanding to the original problem . Continued
working may yield another new and different obstacle for the learner, necessitating
further back and forth movement, but this is distinctly different from being unable to
make use of the new constructs at the outer layer. In the former case the understanding
of the learner is still growing through a continual back and forth movement whilst in
the latter it has been temporarily halted and is termed ‘ineffective.’

Consider the following extract of two students working. Their problem is to determine
the area of a segment of a circle. Having found the area of the sector they are now
working on finding the area of the enclosed triangle:

Example One

Teacher  Tell me what you think you're doing here to find that shaded bit, what are
you really doing?

Kerry Trying to find out the area of the triangle...

Rosemary Yeah

Teacher Trying to find the area of the triangle.

Kerry That's what we were trying to do but we can't do it.

Teacher  All right, what do you...Pop out that triangle and draw it for me there.
Write on everything you know about that triangle...

*For more detail on the different forms of folding back see Martin, Pirie and Kieren, 1996.
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Kerry (drawing)...it's six. That's six centimetres...It's thirty degree angle is thirty
and that's six...

Teacher Good. So we know quite a bit about the triangle. How can we find the area
of a triangle? What is its formula?

Kerry Base times height...

Teacher Nearly...something times base times height....half base times height.

Rosemary Oh yes..

Teacher Okay?

Rosemary ...or we do just base times height then half it...(Pause as the look to the
teacher for more guidance)

Teacher Now what of those pieces of information do we know? Do we know the
base? (She points to the triangle the students have drawn and are trying to
find the area of). '

Rosemary Yep...

Kerry No...

Rosemary Yes...six

Kerry No, it's not six...

Rosemary Why's it not six?

Kerry Because the radius is six, that's coming across there.

Rosemary But surely if you take it from the middle point to wherever its going to still
be six?

Teacher It depends what you call the base doesn't it? If you want to call this,
(Pointing to the chord) this the base then no you don't know it...

Rosemary No, well I'm calling either of these lines the base...(Pointing to the radii)

Teacher You're calling that the base...

Rosemary In which case it would be six...

Teacher So supposing you do know the base is six.

Rosemary Six.

Although Rosemary and Kerry know that they need to find the area of the triangle
they have not been able to do this, within the present context. The teacher suggests that
they think about it separately from the question. Through her intervention she is
suggesting that the pupils fold back to their primitive knowing and collect from this
inner layer the formula for the area of a triangle. The teacher is confident that the
students know this formula and she does not therefore try to teach them anything about
finding the area of a triangle. Here, it is appropriate for them to re-call or to re-
collect an earlier understanding and image. They are seen, with help from the teacher,
to collect the correct formula, and Rosemary demonstrates her ability to state the rule
in her own words. With the question "Now what of those pieces of information do we
know? Do we know the base?" the teacher prompts the pupils to return to their outer
levels of thinking and to make and use an image for the area of the segment of a circle.
They now need to consider the triangle as related to a part of the circle. Kerry and
Rosemary clearly move as intended, they talk about the 'radius' and ‘'middle point' and
relate their measurements on the triangle to the circle. They are now image making
again, informed by their existing images and understandings prior to folding back,
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together with their knowledge of the triangle collected from their primitive knowing.
Here it was the intervention of the teacher that enabled this successful return.

Kerry and Rosemary engaged in an act of collecting, which was appropriate, since the
mathematics they collected was relevant and correct. They were able to return to the
original problem, and continue image making within the context of the circle. We see
that, by the end of the episode, the folding back activity proved to be effective,
although if we examine the dialogue carefully we notice that, following the return to
the original problem, Kerry did not initially see her collected knowledge as useful; she
did not realise that they knew the necessary dimensions of the triangle.

Ineffective folding back:

In contrast to the above extract consider two further classroom examples. The first is
from a lesson in which two boys, Tim and Donald, are doing an exercise that requires
them to find the missing values in various triangles, the first three of which are right-
angled triangles.

Example Two

B B
6 3
A
C 7 ALD
A 5 C
B
3
45
A 2 C
Tim Tan A is opposite over adjacent, so six over seven,
e
69
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Donald  (using calculator) point eight five seven, root, no, tan is (pause) what?
nought point nought one four etc.? what?

Tim Inverse tan

Donald  Oh, yeah! Inverse, tan, point eight five seven, inverse, tan, is forty point six

Tim Tan B , seven over six

Donald  Seven, divide, six, inverse, tan, forty-nine point three.

Tim And c squared is six squared plus seven squared ...

Donald  Six squared plus seven squared, square root, nine point two one.

Tim Next one. Oh, how do we know which is the right angle? We can’t! (Tim
gets up and goes away to talk to the teacher. He returns)

Tim She says we’ve got to think back a few weeks.

Donald  Oh! You, we need those rules. You know. The ones with sin something and
Cos.

Tim But you still need the right angle, so’s you don’t know which is the
hypotenuse

Donald  No, no there’s another one, erm, it’s, it’s, oh come on, its,

Tim Sin A is opposite over hypotenuse

Donald  No, I've got it. a sin A equals b sin B equals ¢ sin C. That’s it. So thgee sin
sixty equals two sin B, so ...(uses calculator and calculates the value for
angle B, using their incorrect formula)

Coennee several similar examples later)

Tim Boring (yawns and stretches) four sin forty-five equals (pause) what? four
is b, but you don’t know B and three is a but you don’t know A. Is it? Look
Donald, this picture. It’s got to be wrong. Drawing’s wrong. (Puts up his
hand) Mrs. Smith.

Donald  Noit's the cos one.” ab ¢ cos C, so three times four times (pause) we don’t
have c. oh I don’t know! (calling out) Mrs. Smith!

Teacher So what’s the problem?

The teacher, having ascertained the boys’ difficulty, did not then simply offer the

correct formulae, but spent some time taking them back through their earlier work

deriving the Sine and Cosine Rules, saying at one point “you wont remember it if you

don’t understand it”.

We see Tim and Donald trying to work at a formalising level, applying ‘known’
formulae to solve for the dimensions of given triangles. In a fashion similar to Kerry
and Rosemary, they call upon the teacher’s help when they meet an obstacle to
continued working, and with her prompting, fold back to collect the sine rule that they
have previously learned. Unfortunately they re-collect an incorrect version of the rule,
return and apply it, believing that they have successfully completed the original
problem. Later the two boys encounter another obstacle and, probably as a result of
the teacher’s earlier invocative intervention, Donald recalls another formula - again
incorrectly. This time, however, they are unable to make use of their erroneous re-
collected knowledge. Although folding back was an appropriate cognitive act, it did
not enable the students to continue working on the original problem. Rather than just
enable the boys collect the correct formulae, however, the teacher then got the boys to
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fold right back to their earlier learning and spend some time having them work on
their images for the two rules and their applicability in certain situations. To be
effective here, the folding back needed to incorporate an element of working at an
earlier level, before returning to the originating problem.

Example Three

Here we see three students starting to solving a problem together.

Jen (reading the question) “Hare challenges Tortoise to a 1 mile race. Hare’s
average speed is X mph and Tortoise’s is y mph.. After half a mile Hare
stops and plays for 5 hours” oh god! “and runs the last half mile to arrive
just behind Tortoise. What are their relative speeds?” Relative speeds. OK,
This is just one of those train problems. You know, relative speeds

Sally Like when they started at different stations and pass each other.
Mark So is it the one where you add the speeds or take them away?
Jen You add them if it’s like one of them stops and the other goes twice as fast.

Sally If one’s going at 50 mph and the other is doing 60 then they collide at 110.
But if they are just passing each other it’s 50 minus 60. You know 10 miles.
relative speed.

Jen the hare stops so it’s like the tortoise is going much faster, right?
Mark No. Look they’re going the same way so it’s a take away. X minus y.
Jen But the hare doesn’t pass the tortoise.

Jen, Sally and Mark immediately fold back to a set of problems - trains - that they see
as similar to the new problem, The words “relative speeds” have acted as an invocative
intervention for them. they all fold back, although Mark seems to be trying to collect a
formula while Jen and Sally seem to be working with their images for the class of
‘train’ problems in order to understand the Hare and Tortoise question. When they-
return to the new problem, however, the folding back appears to have been
ineffective, as none of them is yet able to solve the problem. Here collecting was an
inappropriate action for Mark, because the problem does not allow solution by simple
application of a learned routine. For Jen and Sally, folding back to work with their
images was appropriate, but the actual image making at this point is insufficiently
focused to be of value

Conclusions

Although a learner may well return to an inner level of activity, this in itself is not
sufficient to guarantee that the learner is able to make sense of the initial ‘incoherent
or incomprehensible’ situation. In some cases, folding back can still leave the learner
unable to make progress and extend their understanding of a concept or situation.
Although Jen, Sally and Mark spontaneously fold back this does not become an
effective act for them.
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In contrast, Rosemary and Kerry fold back to try and collect the formula for the area
of a triangle, this is appropriate as they have met the formula previously. The act of
collection is itself successful; they are able to collect the required formula. They are
then able to use the formula to advantage; the folding back was effective. If, however,
they had collected the wrong formula, perhaps that for the area of a circle then the
folding back would have become ineffective.

For the understanding of a learner to continue to grow it is necessary for the learner
to fold back in an appropriate way to facilitate growth and to be able then to use this
inner layer activity effectively to solve the original problem at the outer layer. There
seem to be three key aspects of folding back which contribute to the resulting
effectiveness of the act. Firstly learners need to be aware of what the limitations of
their present understandings are, in terms of the mathematics, and also aware of what
kind of inner layer activity they must undertake once they have folded back. If, for
example, learners fold back to collect when they actually need to work at an inner
level, extending understanding, then the action is likely to be ineffective. In example
three it is clear that whilst Mark is able to fold back and is aware that his present
understanding is insufficient to allow him to solve the problem, he does not know
precisely enough what it is he does not understand. He believes strongly that he knows
what he needs to know and that if he can re-member and collect this piece of
mathematics he will be able to use it. The reason his folding back is nonetheless
ineffective is that his understanding of the mathematics which he is trying to collect is
insufficient. Here it is the act of folding back to collect which is inappropriate. Instead,
there is a need for him to engage in a different form of folding back, to work with
sally and Jen extending their images, until they are in a usable form.

The second aspect is whether the actual mathematical activity at the inner layer is
appropriate. If, for example, collecting is the appropriate kind of inner layer action,
it is then necessary for the learner to actually collect a useful piece of mathematics.
This can be seen in the case of Tim and Donald, who, although they fold back and
engage in collecting, do not access the piece of mathematics needed to allow the
folding back to be effective. Whilst the act of collecting is appropriate, what they
actually collect is not.

The third key aspect which determines whether folding back is effective for a learner
is his or her ability to relate inner layer actions and new understandings to the original
problem. 1t might be assumed that a learner who is folding back does so with purpose
and that using the extended understanding in the initial problem would be somewhat
automatic. For some-students though, this barrier was not insignificant and being able
to use their extended understanding proved as difficult as actually performing the
inner layer actions. This is apparent in the continuation’ of example three where Sally,
who appears here to be recalling an appropriate area of mathematics, still cannot use it

7 not included here for reasons of length of paper.
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in the context of the original question, even after considerable further work with her
peers on their images. '

For some students further intervention, perhaps from a teacher, is needed to provoke
or direct their application of their inner layer actions to the original problem, as is
seen in example one. Research suggests that the need for an intervention often occurs
where students have folded back and either moved out of the topic to work there or to
collect something from their primitive knowing. In such cases, the learner is
deliberately not thinking in the context of the initial problem, instead they are working
on what is often a very different area of mathematics. For example, Kerry and
Rosemary later work on trigonometry whilst solving a problem dealing with the area
of the segment of a circle. It would seem that in such cases it is vital for the students to
remember the original purpose that is being used to inform the inner layer actions.
Where the learner appears to be moving away from this aim then the teacher has a
role in monitoring the student activity and if needed in facilitating movement back to
the problem through an appropriate provocative® intervention.

This paper has highlighted that to merely engage in the act of folding back is not
necessarily enough to facilitate the growth of mathematical understanding. Whilst
folding back is seen as a mechanism through which understanding can grow, there is
clearly a need to pay close attention to the detail of the act of folding back itself. It is
through folding back in an appropriate way, through engaging in appropriate
associated mathematical actions and through being able to apply the new understanding
to the original problem that students’ growth of mathematical understanding can be
engendered.
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YOUNG CHILDREN'S BELIEFS ABOUT
THE NATURE OF MATHEMATICS

Andrea McDonough
Australian Catholic University

This paper reports part of a doctoral study of children's beliefs about the nature of
mathematics, the nature of learning, and factors within learning environments that
are perceived to impact upon the learning of mathematics. Eight children were
interviewed on ten occasions. This report focuses on young children's beliefs about
the nature of mathematics. Findings discussed draw on interview responses from
two children. It is argued that it is important that teachers are aware of children’s
beliefs about the nature of mathematics, that it is possible to gain insights into these
beliefs, that they can be subtle and complex, and that children may see mathematics
more broadly than has been reported by some researchers.

Investigating children's beliefs about the nature of mathematics

Just as children learn mathematics in different ways and through negotiation of
meaning construct their own understandings (Ernest, 1991), they also construct
beliefs about the nature of mathematics. These may affect many aspects of their
learning; perceptions of what mathematics is may influence approaches to problem
solving in mathematics (Frank, 1988; Schoenfeld, 1987), may influence the nature
of children's participation in meaningful mathematics learning (Franke & Carey,
1997), may impact upon conceptions of specific topics in mathematics, and may
affect attitudes, performance, confidence, perceived usefulness of mathematics, and
choice of courses or careers (Kouba & McDonald, 1987). Learners’ perceptions of
what mathematics is also influences interpretation of what is taught (Lindenskov,
1993), and consequently what is learned.

The investigation of children's beliefs can assist teachers to come to know, and
hence to better cater for, individual learners. By knowing children's perceptions of
the nature of mathematics, and thus having increased awareness of the perspectives
children bring to their learning, teachers are better informed when interacting with
individual children. Teachers can take children’s beliefs into account when
considering maintenance or refinement of elements within the mathematics
classroom such as style of tasks, classroom organisation or the locus of decision-
making. Also, there is the potential for those beliefs which are less central
(Rokeach, 1968) and those held with less conviction (Thompson, 1992), to be open
to change or manipulation by outside influences such as the teacher, and thus for
undesirable beliefs (Garafolo, 1989), to be addressed.

Reports of previous research indicate that for the majority of children, mathematics
is an ?biective and certain body of knowledge. For instance, Garafolo (1989) refers
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to the widespread existence of students seeing mathematics as a collection of rote,
mechanical procedures leading to correct answers, and of the teacher and textbook
as authorities on mathematical truth. The emphasis on mathematics as a rule-
governed activity appears present within students both at the primary and secondary
levels (Cobb, 1985). Mathematics is seen also as "divorced from real life, from
discovery and from problem solving" (Schoenfeld, 1987, p. 197); it is perceived as
static, that is, as already having been created or discovered (Spangler, 1992).

Children tend to focus on the computational or number aspect as the essence of
mathematics (Cotton, 1993; Frank, 1988; Kouba & McDonald, 1987; McDonald &
Kouba, 1986; Spangler, 1992). For example, Kouba and McDonald (1987) and
McDonald and Kouba (1986) found that for primary and junior secondary children
the presence of explicit numbers and operations in a situation was a major factor in
identifying the presence of mathematics. There is little evidence of children
identifying other areas as mathematics. The narrowness of beliefs of primary
school children, with geometry, statistics and probability generally not accepted as
being within the domain of mathematics (McDonald & Kouba, 1986), contrasts with
the range of content of the intended curriculum at the primary level (e.g.,
Australian Education Council, 1991; National Council of Teachers of Mathematics,
1989).

From studies such as those above, it appears that the possibility of complexity or
subtlety of an individual's beliefs, or of beliefs differing between individuals in the
same class, have received little attention in previous research; investigation of
students' images of mathematics appears limited in some respects (Ernest, 1996).
Thus there is potential for further indepth investigation of individual children's
beliefs - a challenge taken up in the present research.

The research framework

The overall study investigated children's beliefs about the nature of mathemancs
the nature of learning, and factors perceived to influence the learning of
mathematics. For reasons discussed elsewhere (McDonough, in progress), the
research did not subscribe to a particular model of developmental learning such as
that of Piaget (Piaget & Inhelder, 1969), or a hierarchy of cognition such as that of
van Hiele (Pegg, 1985), or a taxonomy of learning such as the "SOLO Taxonomy"
(Biggs, 1991), but the framework for the research evolved within the reseéarch. It
was developed according to the assumption that children's beliefs about learning and
about mathematics, underpin, and are intertwined with, their perceptions of
themselves as learners of mathematics. As Pajares (1992) noted "subject specific
beliefs, such as beliefs about . . . mathematics . . . are the key to researchers'
attempting to understand the intricacies of how children learn” (p. 308), suggesting
an interaction between different facets of children's learning of mathematics,
especially noting the importance of subject specific beliefs. The investigation of
children's beliefs about the nature of mathematics began as a prerequisite to the
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investigation of beliefs about factors of influence in learning mathematics, but
evolved as an informative and interesting element of the study in its own right.

Figure 1 presents a model illustrating the hypothesised relationship between the
three areas of interest in the research. Children's beliefs about mathematics and
about learning are represented as underpinning their beliefs about factors in the
learning environment that impact upon their own learning of mathematics. In this
cyclic model, developed within the research, the factors of influence, in turn,
impact upon personal beliefs about the nature of mathematics and learning. ..

children's beliefs about
FACTORS OF INFLUENCE IN THEIR
LEARNING OF MATHEMATICS

T

children's beliefs about

Figure 1. Children's beliefs: The basic model.

The research methods

The eight research participants in the study were aged cight to nine years and came
from two classes in two schools. A high achieving and low achieving male and
female were chosen from each class by the class teacher.

Thirty procedures were developed or chosen for the research and deployed in ten
one to one interviews with the researcher, each of 20 to 30 minutes duration,
conducted over a period of five months. The procedures, suitable for use with
children of eight to nine years, included drawing, describing, sorting words and
pictures, building, and a small amount of writing. In regard to the nature of
mathematics, children were given tasks including choosing, and explaining choice
of, mathematical activities from photographs showing a range of school and non-
school situations, developing a "personal dictionary" definition for mathematics, and
completing the sentence "Maths is like ........... ", followed by discussion. Interviews
were audio-taped, detailed field notes were written, and products were collected.
The type and range of procedures allowed expression of subtleties and complexities
in young children's beliefs that seem not to have been identified by previous
research.

The analysis of data was not structured according to a pre-existing theory, but
themes (van Manen, 1990) were allowed to emerge from the children's data.
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Themes commonly drew on responses to more than one interview task. Samples of
themes that arose in relation to the nature of mathematics are "Mathematics as
content or action”, "Mathematics for an everyday or non-school purpose”,
"Comparisons related to number and measurement”, and "Mathematics as answers",
with themes differing for each child. Thematic analysis facilitated portrayal of
beliefs reflecting children's individual constructions and orientations; this was
compatible with the constructivist perspective that underpinned the research.

While acknowledging differing definitions of beliefs (e.g., Pajares, 1992), the
definition of beliefs as given by Rokeach (1968) as "any simple proposition,
conscious or unconscious, inferred from what a person says or does, capable of
being preceded by the phrase, 'I believe that . . . " (p. 113) provided the baseline
for the approach taken in the present study. Beliefs may be cognitive in nature,
such as in the statement "The sum of the angles in a triangle is 180 degrees”, or may
be affective, such as in the statement "Mathematics is boring”. Beliefs about the
nature of mathematics of the two children discussed in this report emerged mainly
as relating to the content of mathematics, with consideration of what constitutes, and
the purposes and location of, mathematical activity.

.Findings

The full report of this research (McDonough, in progress) gives a detailed account
of the beliefs of the two children discussed here including reference to interview
excerpts from which portrayals of each child's beliefs were developed. To illustrate
the possible complexity and subtlety of beliefs about mathematics held by children
as young as eight to nine years of age, summarised data from the two children, of
the pseudonyms Cara and Emily, are presented here. Schematic diagrams of the
overall findings for each child are included, indicating the individuality of
perceptions of the nature of mathematics, but with a focus for both mainly on the
content of mathematics. The two children were chosen for this paper as they
communicated beliefs that differ from those suggested by previous research. Cara
showed complexity and breadth of belief about the nature of mathematics, with
emphasis on measurement and estimation. Emily emphasised mathematics as
number, suggested by research as a common perspective, but closer analysis
revealed unexpected complexity and subtlety within her beliefs.

Cara :
Cara, a grade three student chosen by her teacher as a low achieving female, began
the interviews as an eight year old and turned nine during the data collection.

There appeared to be nuances and complexities within Cara's beliefs about
mathematics. Although number appeared significant for Cara, at times related to
the getting of answers, she did not, for example, see mathematics as relating mainly
to number, as previous research has found is common for primary school children.
Measuring and estimating in mathematics appeared salient and of personal relevance
to Cara, with estimating related at times to guessing. This suggests Cara saw the
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processes of mathematics more broadly than calculating to gain correct answers.
Cara appeared also to hold some degree of personal affinity with mathematics,
particularly with the ideas of measurement.

Figure 2 is a schematic synopsis of Cara's beliefs about mathematics developed from
her descriptions of mathematics and mathematical activities. This diagram indicates
the complexity of Cara's beliefs, and the interrelatedness she portrayed. It shows
also what appeared as two uncertainties for Cara (indicated by broken lines): firstly,
whether or not to classify as measurement some activities included by the researcher
as possible examples of informal measurement, and, secondly, whether estimation
and guessing are the same. The inclusion of estimating and measuring as
mathematical activities and the affinity with measuring as mathematical activity
suggest a different picture of beliefs about the nature of mathematics from that
portrayed in previous research findings.

take-away dividing by

adding \\ . // halving

multiplication ~— NUMBER—" equal
mass (Formal)
capacity (Formal) length (Formal)
times tables
chance MATHS| — MEASURING
GUESSING | AN
\ counting N\
/ N _— / mass (Informal)
N\
ESTIMATING length (Informal)
length // \
capacity counting

Figure 2. Cara's beliefs about mathematics - a schematic summary.

In regard to number, Cara seemed to be mostly product orientated, with the product
obtained through calculation. She portrayed situations at school or in an
environment where the activity had mainly a schooling purpose.

Measurement situations identified as mathematical included both school and non-
school, with an emphasis on the use of formal measurement in non-school
environments for those situations Cara proffered. While the product appeared an
important element of the situations she described at home, Cara gave at least equal,
if not more, emphasis to the process which often involved physical activity through
measuring and sometimes cognitive activity through estimating. The situations in
which informal measurement was a feature were at times not considered as
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measurement as such by Cara, but were considered mathematical, often because of
their estimation component. These included both school and non-school activities.

Cara portrayed mathematics as multi-dimensional; she included activities in home
and school environments and included both product and process dimensions.

Emily

Emily, a grade three student who attended a different school from Cara, was eight
years of age throughout the data collection period. She was selected by her teacher
as a high-achieving female.

The overall impression from Emily's data is an emiphasis on mathematics as number
and related operations, suggesting a simplicity of belief. However, her beliefs hold
subtlety and complexity which become apparent from the analysis structured
according to themes which emerged from the data. Figure 3 portrays the
interweaving of concepts within Emily's beliefs. Emily’s diagram is different in
structure from that of Cara, due to different links, relationships and emphases in
beliefs. Figure 3 provides one schematic portrayal of Emily's beliefs and makes
clear, for example, her belief that measurement is not always mathematics, and that
numbers are necessary for a situation to be mathematical although they are not
always sufficient. The broken line for the "Informal capacity" entry represents
conflicting responses by Emily to the situation of measuring rice for cooking. On
one occasion, indecision was voiced regarding whether this situation is
mathematical, while on another occasion the same situation was volunteered by
Emily as mathematical. The italicised entries represent the number and
measurement examples discussed but not identified as mathematics.

Counting:
100 cents makes $1

Numbers

Room number 7;
Anna's first dog

Greater than

Numbers
1-10

Multiplication
Division

Formal length
Counting/addition
Informal length I :
Formal mass Informal capacity Subtraction

Figure 3. Emily's beliefs about mathematics - a schematic summary.

Emily in some ways held more narrow views of mathematics than Cara, but perhaps
held more established views, with little uncertainty or contradiction apparent in her
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responses. Emily seemed to relate mathematics more closely to addition and
counting, as well as to comparisons, multiplication, subtraction, division, and
graphing, whereas estimating and measuring seemed to be the most salient aspects of
mathematics for Cara. The paucity of reference to space, chance, and data as
mathematics concepts by Emily and Cara is compatible with earlier findings.

Emily saw mathematics mainly as a school activity with some application for others
in non-school environments. In contrast, Cara volunteered many mathematical
activities from school and non-school environments both for herself and others, and
for school and non-school purposes.

Concluding discussion

This report had three intentions. The first, to argue that children's beliefs about
mathematics are important, was addressed by reference to many facets of
mathematics learning which may be affected by a learner's beliefs about
mathematics. The second, that researchers and teachers can gain insights into the
beliefs of children of age eight to nine years, was supported by reference to findings
from two children whose beliefs were investigated through the use of a range of
interview procedures. The third intention, to demonstrate the possible complexity,
subtlety and breadth of young children's beliefs about mathematics, was approached
by presenting schematic and verbal synopses of beliefs about mathematics of two
interviewees from the broader doctoral study.

The research framework included investigation of children's beliefs about the
nature of mathematics as one element within the larger study. This report claims
that study of children's beliefs about the nature of mathematics was an important
and informative study in its own right. By investigating children's beliefs, the
research adds to the understanding educators have of the possibility of breadth,
complexity, and subtlety of beliefs held by children of only eight or nine years of
age. The identification of different linkages, orientations and emphases in Emily's
and Cara's beliefs about the nature of mathematics concurs with the constructivist
orientation taken in this research.
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RECOGNITION OF ANGULAR SIMILARITIES BETWEEN FAMILIAR
PHYSICAL SITUATIONS
Michael Mitchelmore, Macquarie University, Sydney
Paul White, Australian Catholic University, Sydney

To investigate the relationship between concrete experience and the angle concept, a
sample of 144 students in each of Grades 2, 4 and 6 were questioned about the
similarities they saw between nine familiar angle situations. Dynamic similarities
were only reported between moveable situations, whereas static similarities were
reported between all situations. Static angular similarities were most often reported
between situationé, both fixed and moveable, where both arms of the angle were
visible. The results support a refocussing of initial teaching about angle away from
the turning aspect and towards the identification of the arms of an angle.

There has been an increasing trend in recent years to base elementary mathematics
teaching on students’ everyday experiences (Australian Educational Council, 1990;
National Council of Teachers of Mathematics, 1989). The aim has been partly to make
mathematics more interesting and meaningful to students and partly to strengthen their
understanding (Hiebert & Carpenter, 1992).

In particular, several researchers have argued for, or attempted to use, concrete
experience as a basis for teaching ideas about angles (Clements, Battista, Sarama, &
Swanminathan, 1996; Lehrer, Fennema, Carpenter, & Ansell, 1993; Wright & Adams,
1992). Recent curriculum documents also recommend this approach. For example, the
New South Wales curriculum guide (NSW Department of School Education, 1989)
suggests for the first introduction to angle in Grade 3 or 4 that students make a
concrete angle model consisting of two joined strips. Students are expected to see that
the size of the angle is related to the amount of turning from one strip to the other, in
accordance with the stated definition of angle as “the amount of turning between two
lines about a common point” (p. 79). They then match their angle models to various
“corners” and finally look for “everyday turns” inside and outside their classroom.

Characteristic of an experiential approach to concept development is the expectation
that students will recognise that many situations which superficially appear to be
different are actually similar. For example, the NSW syllabus assumes that students
will recognise that there is a specific similarity between fixed and moveable angle
situations, namely that they can both be represented by the concrete angle model.

Similarity recognition has been seen by some psychologists as the first stage of
concept formation. For example, Skemp (1986) defined abstracting as “an activity by
which we become aware of similarities ... among our experiences” and a concept as
“some kind of lasting change, the result of abstracting, which enables us to recognise
new experiences as having the similarities of an already formed class” (p. 21). The
recognition that superficially different angle situations are similar is therefore
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opening. Static similarities referred to a common geometrical configuration. For
example, students said “they both have two lines” or “you can put the tile in the corner
of the junction”. Responses such as “the scissors can be opened to show the corners of
the tile” were also classified as static because (a) they refer to the resulting position of
the moveable model and not to the movement which produces it, and (b) there is no
implication that the fixed situation has any movement associated with it.

Task2 The interviewer set one situation to show an angle of 45° (by moving a
moveable model or selecting a fixed model). Students were then asked to set
the other situation to “show the same as this”.

This task was scored as correct if the correct fixed model was selected or a moveable
model was turned between 30° and 60°.

Task3 Students were asked to use a bent straw to show how they knew the two
settings were the same.

This task was scored as correct if the straw was laid on both models in such a way as
to clearly indicate both arms and the vertex of the implicit angle. Specific error limits
were defined for each model; for example, a placement of the straw on the scissors
was scored as correct if the arms were placed anywhere along the blades w1th the
vertex in the region where the blades crossed.

Wheel Door Scissors

Fan Signpost

— 7

Junction Tile Wall

Figure 1: Models used to represent selected physical angle situations

g 270 3-272



fundamental to the development of the angle concept. The angle concept itself arises
* by abstracting the similarity so that it becomes a new mental object (Greeno, 1983).

There has been little research into the question: How well can young children
recognise the similarity between different angle situations? There are many superficial
differences between physical angle situations (Mitchelmore & White, 1997), and these
differences may well obscure the underlying similarity (Mitchelmore, 1997, in press).

We recently completed a large-sample investigation of how well young students
recognise angles in nine familiar, widely-varying physical angle situations. The
purpose was partly to find what concrete examples might best be used in the initial
teaching of angle concepts. We report on the part of this study which deals with the
similarities that students recognise between different situations, in particular between
fixed and moveable situations.

METHOD

Sample
The sample was gender-balanced and consisted of 144 children in each of Grades 2, 4,
and 6 chosen from six schools in Sydney.

Situations

Nine physical angle situations were used: wheel, door, scissors, fan, signpost, hill,
road junction, tile and walls. The first four of these are moveable while the last five are
fixed. Each moveable situation was represented by a single model. Each of the fixed
situations was represented by a set of three models representing a “neutral”
configuration (angle 0° or 90°), an angle of 45°, and a “middle” angle (22.5° or 67.5°).
Adjustable models of the fixed situations were deliberately not used, in order to avoid
artificially suggesting movement. Examples of the models used are shown in Figure 1.

Twelve combinations of 3 situations were chosen in such a way that each of the 36
situation pairs occurred exactly once. Each combination was presented to 6 girls and 6
boys at each grade level, with order counterbalanced, in individual interviews
conducted by a trained research assistant.

Tasks

In the interviews, the word “angle” was only used if students introduced it. The
interviewer first showed students the three models, one at a time, and asked how the
angle implicit in each situation could be represented by a bent straw. (The results of
this part of the investigation are reported in White and Mitchelmore (1997).) She then
presented the same models two at a time and gave students three tasks:

Task 1 Students were asked, Is there anything the same about these two situations?
Neutral prompts were given until the student reported no further similarities.

Responses to Task 1 were classified as irrelevant, dynamic or static. Irrelevant
similarities, such as “they are both made of wood”, did not relate to angles. Dynamic
similarities referred to the same movement in both situations, such as turning or
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RESULTS

" Tables 1 to 3 summarise the responses to Tasks 1 to 3 respectively. These tables refer

to averages taken over 6 moveable-moveable situation pairs (N=72 responses at each
grade level), 20 fixed-moveable pairs (N=240) and 10 fixed-fixed pairs (N=120).
Variation between individual pairs of situations will be discussed separately below.

Table 1

Percentage of Task 1 responses indicating dynamic and static similarities
Situation pair Grade 2 Grade 4 Grade 6

Dynamic similarities
Moveable-moveable 64 60 68
Fixed-moveable 2 0 0
Fixed-fixed 0 0 0
Static similarities

Moveable-moveable 4 74 86
Fixed-moveable 32 63 79
Fixed-fixed 50 81 89

As Table 1 shows, students almost never reported a dynamic similarity between a
fixed situation and another situation. The overall dynamic similarity recognition rate
between moveable situations was fairly constant at about two-thirds.

By contrast, static similarities were readily recognised not only between fixed
situations but (especially after Grade 2) also between fixed and moveable situations
and even between moveable situations. Within each category of situation pair, the
static similarity recognition rate increased monotonically from Grade 2 to Grade 6.

Table 2

Percentage of Task 2 responses showing correct angle size matching
Situation pair Grade 2 Grade 4 Grade 6
Moveable-moveable 56 89 90
Fixed-moveable 43 75 89
Fixed-fixed 73 91 97

Tables 2 and 3 show that, in all three categories of situation pair in both Tasks 2 and 3,
the percentage of correct responses increased steadily from Grade 2 to Grade 6. Also,
at each grade level, the order of facility was almost always the same: Fixed-fixed was
the easiest, then moveable-moveable, then fixed-moveable. It is notable that, with the
exception of Grade 2 students responding to moveable-moveable pzurs the same
patterns also occur in the static similarities in Table 1.
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Table 3
Percentage of Task 3 responses indicating correct angle positions

Situation pair Grade 2 Grade 4 Grade 6
Moveable-moveable 36 61 81
Fixed-moveable 28 68 80
Fixed-fixed 51 82 89

A similarity index

The similarities between the patterns in Tables 2 and 3 and the static similarities in
Table 1 suggested that all three tasks might be measuring a common construct. To
investigate this possibility further, three “similarity scores” were calculated for each of
the 36 pairs of tasks at each grade level: the percentage of students reporting a static
similarity in Task 1, and the percentages giving correct responses in Tasks 2 and 3.
The correlations between these three scores in Grade 2 (0.61, 0.68 and 0.72), and the
correlations between the first and the third scores in Grades 4 and 6 (0.82 and 0.83)
supported the hypothesis of a common construct. (The remaining inter-correlations
were somewhat smaller, apparently due to a ceiling effect in Task 2.)

Tasks 1 and 3 clearly involve the recognition of a common configuration, thus showing
that the common construct is static similarity recognition. We infer, therefore, that
Task 2 also measures static similarity recognition. For example, students may match
the angle sizes on a wheel and a fan not by comparing the two movements but by
comparing the resulting configurations.

The identification of a common construct across the three tasks justified averaging the
three similarity scores to obtain a “static similarity index” for each pair of situations at
each grade level. For most pairs, the static similarity index increased monotonically
from Grade 2 to Grade 6; the average indices were 41%, 74% and 86% respectively.

Similarity berween situations
Hierarchical cluster analysis of the static similarity indices indicated one main cluster
of similar situations at each grade level:

. ® InGrade 2, there were three situations in the main cluster (walls, junction and tile)
with scissors nearby.
o In Grade 4, the main cluster consisted of walls, junction, tile and scissors. There
were also two secondary clusters: door and fan, and hill and signpost.
o In Grade 6, there was only one cluster consisting of walls, junction, tile, scissors,
signpost and fan.

Multidimensional analysis confirmed the pattern of a core of similar situations
gradually expanding to include more situations at successive grade levels. The data are
well described using facet theory (Levy, 1985) by the five-partition modulating model
shown in Figure 2.

! The authors are indebted to David Caims for drawing their attention to facet theory.
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Scissors

Walls
Junction

Figure 2: Modulating facet model of static similarity between nine situations

Table 4 shows the static similarity indices for all situation pairs, averaged over the
three grade levels. The situations in Table 4 have been arranged in decreasing order of
average static similarity to other situations—precisely the order in which the various
situations are absorbed as one moves outward in Figure 2.

Table 4
Average similarity indices for each pair of physical angle situations

Walls Junction Tile Scissors Fan Signpost Door Hill Wheel

Walls : 0
Junction 94 : 6
Tile 95 94 0
Scissors 94 74 86 56
Fan 82 80 67 74 50
Signpost 77 76 76 63 0
Door 69 58 59 67 47
Hill 70 70 69 65 : 0
Wheel 57 53 41 62 51 53 38 '

Note. Dynamic similarities are given above the diagonal and static similarities below.
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Table 4 also includes average “dynamic similarity indices”, calculated from Task 1
responses. It can be seen that the scissors, fan and door situations were regarded as
dynamically more similar to each other than to the wheel. Only about a half of the
students thought that the wheel turned like the other moveable situations. In fact,
students often referred to the scissors, fan and door as “opening”, not “turning”.

DISCUSSION

The findings of this study call into question the received wisdom of defining an angle
as an amount of turning. Firstly, many primary age students do not believe that all
moveable angle situations involve the same turning movement. Secondly, students find
it most unnatural to interpret a fixed situation in terms of any sort of movement. In
neither case is there any change with age. One must conclude that “dynamic
similarity” is not a sound basis for developing a general angle concept.

On the other hand, students do recognise a similarity between moveable angle
situations and between moveable and fixed angle situations: they all involve two lines
meeting at a point. This “static similarity” spans both moveable and fixed situations,
and the recognition rate increases considerably between Grade 2 and Grade 6. Indeed,
by Grade 6, students are as likely to recognise the static similarity between two
moveable situations as the dynamic similarity.

A moment’s consideration shows why static similarity should be more general, and
therefore educationally more significant, than dynamic similarity. All physical angle
situations must have two lines forming the arms of the angle, even if in some cases
(e.g., signpost, door, hill, wheel) one or both lines must be imagined. On the other
hand, there is no common attribute relating the two lines in different situations. For
example, the angle between the two lines may represent an amount of turning but it
can also show openness, sharpness, steepness, and so on. The angle concept depends
on recognising that all these attributes are similar, in a special kind of way, and that is
clearly more difficult than simply recognising common configurational elements.

The results of this study confirm our previous finding (White & Mitchelmore, 1997)
that the main feature of a physical angle situation which affects angle recognition is the
number of visible arms. The situation in the outermost partition of the facet model
(Figure 2) has no visible arms; the situations in the next partition have one visible arm;
and the situations in the three innermost partitions have two visible arms. In all the
situations in the central partition, the two arms are readily identified; the arms of the
scissors (in the next partition) are easily identified but move; and the arms of the fan
and signpost (in the third partition) are embedded and not so easily identified.

In teaching about angle, one should probably aim to work from the central partition
outwards. A first idea of angle could be easily established, even as early as Grade 2,
from situations with two clearly visible arms—provided the examples are not restricted
to right angled corners. The next step would be to seek similarities between these
situations and fixed and moveable situations where both arms of the angle are present
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but not so easily identified (the next two partitions of our model). Students could
compare the sizes of such angles without any reference to turning, possibly using a
term such as “amount of opening” to denote the similarity. Each situation in the
outermost two partitions, where one or both arms of the angle have to be imagined,
presents its own problems and should probably be treated separately in later
instruction. In each such situation, the main aim would be to construct the “missing”
lines so that the similarity to other angle situations could be made explicit.
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CULTURE, GAMES AND MATHEMATICS EDUCATION: AN EXPLORATION
BASED ON STRING GAMES

Mogege David Mosimege
Council for Scientific and Industrial Research, South Africa

ABSTRACT

This paper describes the research work in progress which is looking at the relation between
cultural games and the teaching and learning of mathematics. The main aim of the research is
1o look at a number of games which are encountered in certain cultural settings with a view of
exploring the use for these in mathematics classrooms. This paper focuses specifically on “String
Figures”, a game which is played by many people from different cultures in South Africa and
other parts of the world. The paper describes the game and reports on the trial of the game in
the classroom situation and a follow up of the trial. Results show a greater percentage of the
students taking an active part in the game and subsequently in the lesson. However, it also shows
that students do not easily see the relation between games and related mathematical concepls.
The implications of these results are discussed and suggestions for alternative approaches in the
use of the strings figures are made.

INTRODUCTION AND BACKGROUND

Games and mathematics teaching and learning

Games have been used in the teaching and learning of mathematics over the years, and this use
has increased in the recent past (Vithal, 1992:178-179). Some of the uses of games in
mathematics education are to learn the language and vocabulary of mathematics; develop
mathematical skills; develop ability with mental mathematics; devise problem solving strategies;
be the generator of mathematical activity at a variety of different levels; serve as a source of
investigational work in mathematics (Kirkby, 1992; Sobel and Maletsky, 1975; Gardner, 1969).
Many studies which explore the use of games in problem solving situations have been
documented (Ecker, 1988; Gardner, 1978, Horak, 1990; Krulik, 1977; Krulik & Rudnick, 1989;
May, 1993; Williford, 1992; etc), suggesting an important relation between games and problem
solving, one of the central aspects in mathematics learning. The use of games also leads to
discovery of patterns (Branca, 1974; Harlos, 1995; Oldfield, 1991), decision making
(Buckhiester, 1994), and logical reasoning, deduction and skills (Brumfiel, 1974; Chandler,
1974; Ehrlich, 1974; Haggard & Schonberger, 1977). An important question that follows as a
result of the different focuses of these studies is whether the uses of these games are applicable
to the games in general or whether they are dependant on the type of the game. Specifically, the
question that this study attempts to answer is whether games which are cultural or specific to a
certain cultural group leads to the same kinds of outcomes, particularly as most the studies
referred to above all deal with games that are not viewed as cultural specific.

The uses of games mentioned above suggest that games play a more profound role than just being
recreational or pastime activities. As people engage in any game the language, vocabulary,
mathematical skills and a lot of mathematical activities are generated. Although some of these
may be very basic, they however serve as an important component of the development of
mathematical concepts. Students may also discover mathematical concepts as they engage in
games and puzzles (Sullivan, 1995).
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CULTURE AND MATHEMATICS EDUCATION .

The idea about culture as a key theme for mathematics education is coming up in various places
(Mellin-Olsen, 1985). Most of the research on ethnomathematics focusses on these relations,
particularly investigating how culture impacts on mathematical understanding. Masingila and
Jamie King (1997) refer to two areas that researchers in ethnomathematics have tended to
examine how pcople learn and use mathematics, the area of distinct cultures and the area of
everyday situation within cultures. This study is located more in the second area of everyday
situations within cultures, exploring the notion that various cultural activities contribute and
enhance the understanding of mathematical concepts. The study does not look at all the different
activities within a particular culture but rather focuses on the game of strings and the form in
which it is played in certain cultures in South Africa, particularly among the Africans where the
game is mostly played. Irrespective of the focus of the different studies, culture is scen to be
playing an integral component in the understanding of and the development of mathematics.

Bishop (1988:182) argues that there are six fundamental activities which are universal in the
sense that they appear to be carried out by every cultural group ever studied. He says that these
six fundamental activities are necessary and sufficient for the development of mathematical
knowledge. The six activities are (i) Counting; (ii) Locating; (ili) Measuring; (iv) Designing; (v)
Playing and (vi) Explaining. The fifth activity of playing has to do with devising and engaging
in games and pastimes, with more or less formalised rules that all players must abide by. In his
study of the mathematics in the Mende culture, Bockarie (1993) found that the mathematics in
this culture can be described broadly under six topics: (i) Counting and computation (ii) Ratios
and fractions (iii) Forecasting and estimation (iv) Cultural values attached to certain numbers (v)
mathematical games and (vi) mathematical applications. There are a number of common
activities that both authors have identified as carried out by the different cultural groups. One of
these is playing which is a central activity in games.

The definition of culture in this paper is drawn from the one used by Moschkovich (1995)which
is "a set of practices, beliefs, customs, and institutions associated with a group of persons who
are engaged in social activity (ies) together or associated with a social activity’. The social
activity in the context of this study would be string games which is examined in a mathematics
classroom. Cultural games, drawing from the definition of culture by Moschkovich, would
therefore mean those games that are played by a specific group of people who are engaged in a
social activity together. The rules of a cultural game are most likely to be understood better by
people of that culture, and may be understood and interpreted differently by people of a different
culture. For example, Gerdes (1994:351) refers to the “struggle for territory’ game which is very
popular with the Egyptians and may be understood differently by people who are not of Egyptian
origin. The same applies to the "Mu Torere game’ which is played by the Maori people in New
Zealand (Zaslavsky, 1996:187). The argument is not that these games cannot be understood by
other people. On the contrary, they may be even better understood by people of a different culture
who have given themselves time to thoroughly learn the rules of the game. However, this game
would not have the same kind of meaning and understanding, possibly not even the same
interpretation for the two groups of people.

STRING GAMES

String games are popular with children in many parts of South Africa, many African countries
(see Lindblom, 1930) , and many other countries in other parts of the world. Although string
figure games are popular in different parts of the world, the emphasis seems to differ from
country to country, or more specifically from culture to culture. Whereas in a particular culture
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emphasis may be on the making of gates, in another the concentration is on different figures
which may be made using strings. Knowledge of the game among the different children usually
comes from the interaction among themselves, engaging in different cultural activities, one of
which is games. The game described in this paper is usually played by children of school going
age, especially at the primary level of schooling. By the time the children start going to school,
some of them have already come across the game as they interact and play with their peers. The
game involves using a piece of string - length of Imetre adequate, a smaller length would make
the gates very small which are not easily recognizable, especially as the number of gates increase
to more than three- to produce different number of ‘gates’ (this is the name used for the game in
some parts of the country, particularly in the townships. The name varies from place to place. In
some places it is known as ‘Dihcke’ - this is the name used mainly in townships, whereas in other
places, particularly people who speak the Setswana language it is known as ‘Malepa’). The
‘gates’ or ‘diamonds’ are then used to find patterns that result from the geometrical shapes
(quadrilaterals and triangles) made by the string. This seems to be the most popular application
of string figures. Amir-Moez (1965) gives examples of how string figures can lead to
generalisations in mathematics as well as mathematical induction.

Mecthodology in the trial on string games

Three secondary schools in the vicinity of the University of The North in the Northern Province
of South Africa were used for the purpose of the initial trial. These three schools were selected
on the basis of involvement in an ethnomathematics project which had been running under the
auspices of the RADMASTE Centre at the University of The Witwatersrand (Amoah, 1996;
Laridon, 1995; Mosimege, 1995). Either the teacher or the researcher (some of the teachers asked
the researcher to conduct the lesson) started the lesson by introducing the game to be played in
class, then distributed the material to the students which they used to play the game.

At two of the secondary schools the teachers requested the researcher to continue with the lesson
as they were not any longer very familiar with the use of the worksheet on string figure patterns.
I gained an impression that the teachers had never looked at the material since the last workshop
(this workshop had taken place sometime in 1995, and this trial in the schools took place onc ycar
after the workshop), making the activities to be relatively new to them and this was likely to
create an embarrassment in the presence of the researcher. At the third school the teacher
conducted the lesson but asked the researcher for assistance whenever there was a need. The
procedure followed in class was as follows:

-each student was supplied with a piece of string and the worksheet on string figure

patterns;

-all the students were given a few minutes to try any of the string figure patterns that they

were able to do;

-the researcher then called on any of the students to demonstrate any of the string figure

patterns that they could do to the whole class, doing those that none of the students

could do;

-when this demonstration was done the rules of making a specific number of "gates’ were

explained to the whole class by the researcher and then the students were given some

minutes to try the gates again, following the demonstration ( this was intended to help

those students who didn’t know the game how to play the game).
All the students at the Secondary Schools who participated in this activity were in Standards 6
and 7 (Grades 8 and 9). The classrooms were selected on the basis of the knowledge that String
Figures lead to identification of geometrical shapes which are encountered in these standards. At
the end of the activities the students were given a questionnaire on the use of games in




mathematics to complete.

RESULTS OF THE INITIAL TRIAL AND DISCUSSION

All the children showed interest in playing with the strings, although some of them had not
played string figure games before - a greater percentage of the students were able to make some
gates, although most could do only two or three gates. The mathematics concepts that the
students mentioned were angles; triangles; and parallel line which are formed by the top and the
bottom part of the string after the gates have been made. However, it was clear that many of the
students did not clearly see the relation between mathematical concepts and the games. Even in
those instances where students were quite familiar with the game, it was still very difficult to
identify related mathematical concepts. In certain instances, the researcher had to question the
students on geometrical shapes that they had studied in their mathematics classrooms, and lead
the students through a series of questions so that they could ultimately see the relations. Further
analysis of the students’ responses suggest that they see games as something separate from the
mathematics they do in the classroom, leading to the difficulty in identifying geometrical shapes
that they had studied before.

TABLE 1
SCHOOL A (N=153)

QUESTION STANDARD 6 (N=86) STANDARD 7 (N=67)

YES NO YES NO

1. Ever played a game in the | 8,14% (7) 91,86% (79) |31,35% (21) | 67,65% (46)
mathematics classroom?

2. Did you enjoy playing the | 100% (86) 0% 100% (67) 0%
game today?

3. Did you understand the 30,23% (26) | 69,77% (60) | 47,76% (32) | 50,75% (34)
game and its rules?

TABLE 2
SCHOOL B (N=29)

QUESTION STANDARD 6 (N=20) STANDARD 7 (N=9)
YES NO YES NO
1. Ever played a game in the | 55% (11) 45%(9) 22,22%(2) 66,66% (6)

mathematics classroom?

2. Did you enjoy playing the | 100% (20) 0% 100% (9) 0%
game today?

3. Did you understand the 25% (5) 70% (14) 44,4% (4) 44,4% (4)
game and its rules?
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TABLE 3
SCHOOL C (N=102)

QUESTION STANDARD 6 (N=54) STANDARD 7 (N=48)
YES NO YES NO

1. Ever played a game in the | 25,93% (14) | 74,07% (40) | 35,42% (17) | 64,58% (31)
mathematics classroom?

2. Did you enjoy playing the | 100% (54) 0% 100% (48) 0%
game today?

3. Did you understand the 29,7% (16) 70,3% (38) 47,92% (23) | 52,08% (25)
rules of the game? '

A higher percentage of most of the children in all the standards except in standard 6 in school B
(55% indicated that they had played games before) responded that they had not played a game
at all in the mathematics classrooms. This situation is a cause for concern particularly in the
context of the use of games as recorded in the literature. It is important to note that a description
of a game had not been given to the students prior the questions on games, and as a result the
students may have not necessarily had the same understanding of the meaning of a game. All the
students in the study indicated that they had enjoyed the string figure games that we had played
in the classroom together.

The majority of the students in all the schools indicated that they had not understood the rules
of the games. When 1 asked a few students about understanding the rules of the game 1
discovered that most of them equated understanding the rules with having played the game before
or being able to successfully make many gates with the string. This highlighted one of the
difficulties that may accompany using games in the classroom, in which students may confuse

Most of the games that the students listed when asked to mention any game that they knew that
could also find use in the classroom were games like Monopoly, Maths 24, Snake and ladders,
Get Four,etc. These games are not necessarily cultural in nature in the same way as we could
refer to a game which is mainly known and played in a particular cultural setting. They are games
that students have played before, especially with friends outside the mathematics classroom
setting. A few cultural games like Moruba (a cultural game very popular in the Northern
Province), and Morabaraba were also mentioned.

It had been planned that at the end of the game the students would be given a worksheet on string
games to complete. However, the amount of time spent on the game itself was such that there
was not time left for this activity. This is another of the important outcomes which highlighted
the fact that in order for games to serve the desired purpose, there needs to be enough time
beyond the usual one or two 30 minutes periods allocated for mathematics lessons in a day.

RESULTS OF A SECOND TRIAL AT SCHOOL A AND DISCUSSION
One year after the initial trial i.e. 1997 the first school was visited to conduct a follow up
exploration in the classrooms. The same teacher who was involved in the first trial was asked to
conduct the lesson (in the first trial the lesson was conducted by the researcher). The trial was
conducted in two Standard 6 classes which were taught by the teacher - these were the classes
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which the teacher had been allocated to teach for the year and another teacher was allocated to
teach the classes that this teacher taught previously. The classes were taught on the same day,
giving the researcher an opportunity to observe any difference in the way the teacher approached
the lesson and improved on the ability and expertise of showing the different gates. This situation
however deprived the researcher of the opportunity of comparing the same students to determine
if they could improve on their performance in the same game.

TABLE 4
SCHOOL A

QUESTION STANDARD 6 A (N=62) STANDARD 6 B (N=67)

YES NO YES NO

1. Ever played a game in the | 59,68%(37) | 40,32%(25) 52,23%(35) | 47,77%(32)
mathematics classroom?

2. Did you enjoy the game 100% (62) 0% 100% (67) 0%
today?

3. Did you understand the 32,26%(20) | 67,74%(42) | 41,79%(28) | 58,21%(39)
rules of the game?

A comparison with the previous students at the school indicate an increase in the number which
had played games in the mathematics classrooms. The teacher ascribed this to the introduction
of some games in her mathematics lessons, which she did as a result of the active involvement
which she had noted in the previous year’s research. However, the students still seem to be
equating the understanding the rules of the string game with the ability to make many more gates.
This emerged when most of the students were able to make two or three gates but found making
more gates difficult.

IMPLICATIONS FOR THE CLASSROOM

Games can play a significant role in the teaching and learning of mathematics. The fact that
ultimately, after some probing, the students were able to mention some mathematical concepts
that were related to the game, showed that there is a definite use for games in mathematics
lessons. However, the use of games should be implemented with care. This means that the choice
of the game should be done with a specific purpose in mind. It is necessary that the game first
be analysed for its mathematical content so that these can be targeted when the objectives of the
game are set. However, if the analysis does not necessarily reveal any immediate mathematical
content, this does not make their use in the classroom any less important. As May (1993)
expresses it, the students may use the games to plan ahead for different mathematical tasks.

When games (irrespective whether they are cultural or not) are played in class, attempts should
be made by the teachers to go beyond the level of mere enjoyment of the game. The students
tend to be more engrossed in the playing than the learning process, except for a few who see the
intended lesson. When some of them are questioned at the end they can hardly relate or recall
what they have learned. However for some, the relations between games and mathematical
concepts are very apparent, and this seems to be the case with those who had a thorough
understanding of the game before the lesson. g
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students tend to be initially focussed on not losing the game and in the process may miss out on
the advantages of the use of a game. She continues to say that all students at times are inefficient
in monitoring conclusions and generalisations they made while playing the game. This is likely
to result from the use of games if the teachers do not review and change their roles accordingly
whenever games are used in mathematics classrooms.

One of the difficulties that emerged in this study is that it was not possible to get to the worksheet
on string games and subsequently an exploration of other mathematical concepts like symmetry
and induction which could be explored in the string game. Apart from the implications in terms
of availability of more time for games in general, it also suggests that another approach could
be tried to derive more benefit out of these games. The fact that some of the students were able
to demonstrate to their fellow classmates some of the gates implies that they have an
understanding of the game, A possible exploration in another related study could be to investigate
how students explain what they know to others. This would remove the constraint of imposing
personal understanding on these games and bring in the students’ understanding and
mathematical development.
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Enlarging Mathematical Acfivity From Modeling Phenomena to
Generating Phenomena

Ricardo Nemirovsky, James J. Kaput, Jeremy Roschelle
TERC and Department of Mathematics UMass at Dartmouth

Traditionally, mathematics has been used as means for modeling aspects of the
experienced world, and it is often taken as axiomatic that one can learn mathematics
more effectively if one is able to apply what one already knows and can do. We
illustrate how we can substantially deepen the connection with everyday experience
by using mathematical functions to generate phenomena as well as model them. We
- first provide a framework for examining relations among simulations, notations and
physical phenomena. We then illustrate with a 9th grade classroom episode how
Students’ activity taps into their linguistic, kinesthetic and notational resources to
deepen their engagement with important mathematical ideas.

Introduction

This paper builds upon prior work (Kaput & Roschelle, 1997; Nemirovsky, Tierney,
Wright, in press) to which the reader is referred for background and particular features
of the learning environments that we are using. For the reader’s convenience we
quote an edited abstract from Kaput & Roschelle (1997):

We address the question of how we might exploit interactive technologies to
democratize access to ideas that have historically required extensive algebraic
prerequisites. Illustrations will be drawn from work in the authors' ongoing
SimCalc Project, which builds and tests software simulations, physical devices,
and related visualization tools intended to render more learnable the ideas
underlying calculus and the Mathematics of Change & Variation beginning in the
early grades. We will reflect on how such technologies can change the experienced
nature of the subject matter by tapping more deeply into students' cognitive,
linguistic and kinesthetic resources. Substantial reorganizations are possible of
curricula that have been taken as given for centuries (p.105).

Our purpose here is to focus on an important new affordance of technological learning
environments, the ability to generate and not merely to model phenomena. These
environments enable the user to embody their intentions and conjectures within
phenomena that he/she can control and interact with in new ways. For example, a
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student can use mathematical notations or other controls within a computer
environment to control the motion of physical “Minicars” that move on tracks. The
same means can also drive a simulation “within” the computer. Our goal is to
understand how to use the rich learning opportunities that emerge as we combine
these 2 kinds of phenomena-generating capabilities with each other and with
traditional affordances such as linked representations & MBL devices.

We will first briefly describe the theoretical and technological contexts for our work,
and then sketch a classroom episode that illustrates the fundamental issues that emerge
in such learning environments. An enlarged version of this paper will be available at
the PME-22 Meeting, as will videos of the episode and demonstrations of the devices
described.

Activities Crossing Notational, Simulation & Physical Realms

Historically, we have always assumed that mathematics was to be used to model and
make sense of situations and phenomena - in Yerushalmy’s (1997) words * thinking
about one thing in terms of simpler, artificial things” (p.165). The thing to be modeled
is taken as having an existence independent of the model. But, as we turn to computer-
based learning environments, we need further distinctions.

1. Phenomena “inside the computer” vs physical phenomena “outside the
computer.”

2. “Target phenomena” taken as the subject of mathematical description or control
(e.g. motion) vs “notational phenomena” embodied within notations that may be
used to describe or control the former.

Clearly, distinctions between targets and notations are relative to intentions at hand.
We are using them for heuristic purposes to help expose structures of activities that
involve coordination across the different realms of phenomena reflected in Fig. 1,
whose arrows refer to electronically realizable connections. This diagram points to an
extremely rich set of activity-possibilities while simultaneously omitting some of the
most important features of all of them, such as: 1) human interaction: talk, gesture,
reflection, conjecture, imaging, comparing, explaining, etc. - the medium in which the
activities pointed to come alive. And 2) a related set of “invisibles” - the resources
that students bring to the activities, the at-hand results of their everyday experience
with language, symbols, space, time, objects, motion, and so on.

We now examine the structures of activities that the diagram points to, and in so doing
contextualize some traditional work involving computer technology and reveal some
special features of our own work.
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Expanding Realms of Activity-Structures
Expéhding linked representations in the notational realm to Rate-Totals links

Many researchers, too numerous to mention, have given attention over the past 10
years to the use of multiple linked representations of functions. In terms of Fig. 1, this
work concerns the inside of the upper left circle, although in practice much of the
work also involved modeling of situations, usually given independently from the
‘computer environments in text form, an exception being Yerushalmy (1997), some of
whose software incorporated text fragments as a fourth linked notation system.

Inside Outside

""Big Three" Off-line

Notational & Notations
Rate-Totals

» Physical Entities
Target Simulations " (Devices or
people)

Figure 1

Within the linked representation view, we take the perspective that understanding the
relations between rates and totals descriptions of varying quantities (and the
situations or phenomena that they describe), is a fundamental aspect of quantitative
reasoning as it relates to the MCV. For example, to understand the difference between
linear and quadratic growth as traditionally approached, one looks at the shapes of the
respective graphs, or the growth patterns in their respective tables, in relation to the
corresponding equation. But from our perspective, the linear and quadratic functions
must also be seen as related by the rates-totals connection. The quadratic is the
accumulation of linearly changing quantities, and the linear is the rate of change of
quadratically changing quantities. We believe that these kinds of connections allow a
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much deeper understanding of the basic mathematics than do approaches that ignore
them. We not only can connect graphs and formulas, we can cross-connect, for
example, a rate graph to a totals formula. Physical realizations of rate-totals
connections can take many forms, but we take the historical starting point, the
velocity-position connection in motion phenomena.

Expanding the realm of simulations to MBL Data

Simulations involve the top-down arrow in Fig. 1. Such a graphically-oriented
software context, called MathWorlds (http://www.simcalc.umassd.edu), was discussed
in Kaput & Roschelle (1997). A somewhat more formula-oriented environment, is
called AlgebraAnimator (Logal, 1995). And over the past two decades Microcomputer
Based Laboratory (MBL) devices (Tinker & Thornton, 1994), have become more
common, and are represented by the arrow from the lower right to the upper left in
Fig. 1. We and our colleagues have made extensions of this functionality to enrich the
work with simulations (see Fig. 5 in Kaput & Roschelle, 1997) to enable the student
both to increase the intensity and personal intimacy with the mathematical
representations (Middleton & Kaput, in preparation) as well as to create new
situations such as parades or dances that embed function-descriptions of motion in
interestingly complex relations. In Fig. 1 these constitute an extension bridging the
lower right circle with the two on its left. .

Expanding the realm of physical action and connections among notational,
cybernetic and physical phenomena

Nemirovsky (1993) has explored numerous ways to expand the realm of physical
action by designing devices that allow students to control air flow, the shape of a
surface, or rotary motion - either directly by acting on the physical device, or by using
a mathematical function defined on a computer that “drives” the device. This
functionality, now common in industrial manufacturing situations, is represented by
the upper to lower-right diagonal arrow labeled “LBM.” (“Lines Become Motion.”)
These devices have been used for investigating how students, explore, think and learn
about ideas of rate and accumulation (Nemirovsky and Noble, 1997).

This phenomena-generating capability turns a fundamental relationship between
mathematics and experience from one-way to bi-directional, which in turn supports a
much tighter and more rapid interaction on which to base learning. Because the
mathematical notation that controls a phenomenon also models it, one can test a model '
immediately, as we see below. Critically, the student’s intentions can be made visible,
explicit and testable through the phenomena that the student controls.

Our major goal is to understand how the two forms of phenomena-generation activity
- simulations and physical devices - can best be used in combination and in different
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kinds of classroom situations, optimally exploiting the strengths of one to compensate
for weaknesses in the other, as well as build on mutual strengths.

Case Study lllustrating Interactions Among Physical, Cybernetic and
Notational Spheres of Activity

The episode took place in the 9" grade algebra class of Michigan, USA teacher, Kellie
Bachman, who was participating in a series of experimental activities directed by her
colleague Marty Schnepp. In front of the classroom was a car on an inclined plane
(Fig. 2 A - upper) connected via MBL to a computer that displays its velocity in real
time (Fig. 2 B), and an LBM “Minicar” (Fig. 2 A - lower) whose motion can be
controlled by a graph drawn on the same computer screen.

The Episode

We will brleﬂy describe the first 30 minutes of the session. The teacher began the
class by reviewing a homework task; which consisted in creating qualitative graphs
describing the speed of a sled going up and down a hill. She drew 3 different graphs

that students had proposed:
Down the

Speed
hill piece Speed ?
Speed X
Up the Uy.tlu
hill hill
ic 3 piece \
Up the . Biaee Time Time
i Time Downthe Downthe
piece hill piece hill piece
Figure 3 Figure 3 Figure 4

The teacher proposed to measure the speed of the car on the inclined plane to generate
a graph that would correspond to the “ downhill” part. The graph that appeared on the
computer screen as the car rolled down was similar to Fig. 6 (the car bounced back a
few times as it reached the end of the inclined plane). The immediate discussion
focused on the negative velocity peak. Students commented: “it hit a tree or
something,” *it bounced back.” Students proposed some experiments to verify that

Q
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the meaning of negative velocity was “ going backwards.” The first one was to move
the car by hand to see whether the velocity becomes negative. Then they wanted to see
if they could “catch” the car by hand on its way down, preventing it from bouncing
upwards. This proved to be difficult because one tends to stop the car rolling down by
slightly pushing it upwards; this subtle effect that became apparent in the resultmg
velocity graphs with short negative sections. .

Velocity
Velocity
Time
Time

Figure 6 Figure 7

Right after one student succeeded in stopping the car without producing negative
velocity, the class discussed small “bumps” that appeared on his velocity graph after
the car had been *“stopped.” Another student explained the bumps: “it is because he
stopped it, let it move [the car], stopped it, let it move, until it [the car] got to the
bottom [of the inclined plane].” Students accompanied these descriptions by moving
their hands in the manner they thought had generated the small bumps. To see more
clearly the effect of these small bumps, the teacher proposed to move the Minicar
driven by the same velocity graph that included the “little bumps,” transforming the
velocity model to a velocity generator. Because the motor makes a sound whose pitch .
is proportional to its speed, the teacher advised to “listen carefully to the sound of the
motor.” (Variations of speed that are difficult to see are often easy to hear). The
Minicar reproduced in its motion the “bumpy” slow motion that the student had
produced by hand to let the car reach the bottom of the inclined plane. Inspired by this
experiment, students now wanted to make the Minicar reproduce the original motion
of the car rolling down on the inclined plane when it “ bounced back.”

This was an opportunity for the teacher to discuss again the interpretation of Flg 6.
Since the students kept referring to this graph as the one where the sled had “hit a
tree,” she asked exactly at which point on the graph the sled had hit the tree. Some
thought that it was at the low extreme of the negative peak, others when the graph
crossed the horizontal axis. After running the Minicar and reaching an apparent
consensus on the latter, the teacher asked whether they wanted to make other
experiments. One student wondered how the Minicar would “do” if one drew a
velocity graph for it that did not start at zero velocity. How would the Minicar realize
such a request? They tried it and saw that even before running the car, the software
added an initial piece to the drawn graph so that it would start from zero. The student
who had proposed Fig. 4 for the homework said that a velocity graph could, however,
start from a non-zero value; one could, say, start the graph when one is walking

3-292



toward the hill with the sled. On the other hand “if you start from sitting at the bottom
of the hill I agree” that the graph had to start at zero velocity.

The teacher then proposed to discuss Fig. 5. Several students said that the graph
should be inverted (uphill slowing down and downhill speeding up). When the
inverted graph was drawn on the computer to drive the Minicar, the software modified
the “U” shape producing Fig. 7. At this point the class had no difficulty in
interpreting why the software had “added” the initial and the final segment. After
observing the Minicar enacting Fig. 7, two students made the following comments:

Jesse: When the graph is going up, the sled is going down. When the graph is going
down, the sled is going up or something. That’s confusing, because...

Ben: Just think about it as the speed going up, not the sled going up. We are talking
about the speed and the time, not the sled. It has to do with the hill because it has to
do with what part of the hill you are on, but it is really about the speed.

Analysis

Three aspects of this episode seem of particular relevance for our research question:
How can technologies and learning environments change the experienced nature of
the MCV by tapping more deeply into students’ cognitive linguistic and kinesthetic
resources? These 3 aspects suggest some of the ways in which the interplay among
notations, simulations, and physical phenomena can be productively expanded: by
incorporating the kmCStthlC activity, empowering notations to create phenomena, and
testing similarities and differences between virtual and physical phenomena.

L. Incorporating the kinesthetic activity. The car rolling downward displayed its
corresponding graph showing, for the first time in this class, the possibility of negative
velocity. To account for this new possibility the students did a number of experiments
moving the car by hand. The task of stopping the car without generating a negative
velocity became an engaging kinesthetic challenge. Note how negative velocity
developed a significance that went beyond the mere statement of “it means going
backwards It brought to the fore the common but ignored fact that the act of
“stopping” a motion ordinarily generates a damped oscillation.

2. Empowering notations to create phenomena. Controlling the Minicar with the
“bumpy” graph generated by hand not only confirmed that the velocity bumps
represented slow and discrete motions, but gave to the graph, as a symbolic notation, a
different status: it can create phenomena. The graph not only represented how the
student had moved his hand, but it was also “empowered” to drive a physical car. An
indication of this new relevance is the spontaneous student requests to run the Minicar
according to other graphs that had been discussed before.

N
i )
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3. Experimenting with similarities and differences between virtual and physical
phenomena. Even though this particular class was not using simulation software,
there were pervasive “imaginary” simulations in their talk about the sled going up
and down the hill, hitting a tree,” sitting at the bottom of the hill,” etc. The
discussion of starting at non-zero velocity made prominent some of the differences
between cybernetic and physical phenomena. While the students could imagine a
velocity graph starting at non-zero velocity by beginning the graph as one “is already
walking,” the graph driving the Minicar — subject to the constraint that it must
describe the entire motion of the car - is forced to start at zero velocity.

Overall, the students and teacher seemed fluently and easily to combine the three
realms in Fig. 1 (the 4th, Offline Notations, appeared in the homework). They did
not seem confused or troubled by referring to the car on the inclined plane as hitting a
tree that was not there or by using the same graph to symbolize different actions.
This seems to indicate that these tools and learning environments help to recruit
linguistic and cognitive resources from their everyday experience.
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Young Students’ Constructions of Fractions

Karen Newstead and Hanlie Murray:
Mathematics Learning and Teaching Initiati\}e, South Africa

Grade 4 and 6 South African students’ concepts of and operations with fractions
were investigated using written tests. Their responses to some of the items were
analysed in terms of success and misconceptions. In line with international studies,
these students had several limiting constructions regarding fractions. Some of these
may be interpreted as the result of the current teaching approach for fractions, while
others might be the result of students’ incorrect intuitions which have not been
resolved or clarified in the classroom.

Introduction

This- paper reports on the first phase of a project that addresses the learning and
teaching of fractions in the elementary grades. The project involves the development
and selection of materials and the in-service training of teachers. In order to inform
this development, and to make evaluation of the success of the implementation of
these materials and training possible the project began with a base-line study of
students’ present understandings m four large government schools in the Western
Cape, South Africa.

The results of this baseline study are interpreted within our existing theoretical
framework of the learning and teaching of mathematics in general, as reported in
previous PME papers e.g. Murray, Olivier & Human (1996). Such an approach is
based on the view that students construct their own mathematical knowledge
irrespective of how they are taught. Cobb, Yackel and Wood (1992) state: “...we
contend that students must necessarily construct their mathematical ways of knowing
in any instructional setting whatsoever, including that of direct instruction,” and “The
central issue is not whether students are constructing, but the quality and nature of
these constructions™ (p. 28, our italics).

There are many factors that may contribute towards elementary school students’ poor
understanding of common fractions. Based on the research results reported by, for
example, Baroody & Hume (1991); Streefland (1991) and D’ Ambrosio & Mewborn
(1994) as well as local projects e.g. Murray et al. (1996), there appear to be three
mam possible causes:

o The way and sequence in which the content is initially presented to the students, in
particular exposure to a limited variety of fractions (only halves and quarters), and
the use of pre-partitioned manipulatives;

e A classroom environment in which, through lack of opportunity, incorrect
intuitions and informal (everyday) conceptions of fractions are not monitored or
resolved; and
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o The inappropriate application of whole-number schemes, based on the
interpretation of the digits of a fraction at face value or seeing the numerator and
denominator as separate whole numbers. This can be seen as a special case of the
previous problem, but is commonly reported in the literature and will thus be
considered separately.

This paper reports on our investigation of our first hypothesis, namely that if these
were the main causes, they would be evident in our analysis of students’ present
understandings of fractions.

Methodology

In South African primary schools, fractions are usually introduced by presenting
halves and quarters using pre-partitioned geometric shapes or other manipulatives. It
is expected that by Grade 4, students should have been introduced to selected
fractions in the mathematics classroom in this manner. By the beginning of Grade 6,
according to the syllabus, students should have been exposed to equivalent fractions,
comparisons of the sizes of fractions, and then addition and subtraction of fractions.

Thus Grade 4 and Grade 6 were selected as important age-groups at which students’
current understandings of fractions should be investigated in the base-line study.
Written tests were designed to evaluate these students’ concept of what a fraction is
(Items 1 to 3 in Table 1), comparison of the size of fractions with different
denominators (Items 4 to 6) and their operations with fractions (Items 7 to 13). It can
be seen from Table 1 that the tests for Grade 4 and Grade 6 had several items in
common, in order to investigate the effect of age and teaching. Although
multiplication and division with fractions are not covered in the syllabus at either
level, such items were also included in the Grade 6 test, in particular division items
that challenge common experience-based ideas, e.g. that ‘division makes smaller’.

The tests included context-free items and items in context. Some items were adapted’
from previous studies (e.g. Baroody & Hume, 1991; Pirie & Kieren, 1992;
D’Ambrosio & Mewborn, 1994). The items were refined and adapted after an
analysis of students’ responses in a pilot study in three schools.

370 Grade 4 students and 382 Grade 6 students participated in this study,
representing all three main language groups in the Western Cape, namely Xhosa,
Afrikaans and English. Tests were available in all three languages. The tests were
administered and coded by the Fractions Working Group of the Mathematics
Learning and Teaching Initiative.

Results

The following table gives a summary of the success rate on each of the items, as well
as the most common misconceptions identified.
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Discussion

It was not always possible to identify common misconceptions, as in many cases
students omitted items or responded with various fraction or whole-number answers
with no explanation.

Misconceptions arising from initial exposure to fractions at school Some students
produced memorised ‘recipes’ for fractions, for example “numerator, line segment,
denominator” (1b). There was also evidence of the reproduction of pre-partitioned
illustrations (1c, 2b). For example, some students responded to Item 2 by drawing the

following three shapes:

Some students even wrote “square, rectangle, circle”, particularly in one class where
such an illustration of fractions was displayed on the wall. The generalisation of the
partitioning of a shape into four parts to a triangle indicates a limited concept of a
fraction that does not include equal partitioning. The introduction of fractions usmg

mainly a continuous area model in which the fraction represents part of the whole®,
was also evident from the fact that while 20% of Grade 4

students and 35% of the Grade .6 students produced such
illustrations of shaded geometric shapes, only 2% of Grade 4
. students and 3% of Grade 6 students represented % as a part of a

“collection of objects, for example:

The ‘smartie’ problem (Item 3) which addresses this particular meaning of the
fractions, had a particularly poor success rate, especially at Grade 4 level (2%). It is
probable that the students had not previously been exposed to problems that address
the fraction as part of a collection of discrete objects.

The poor success rate on Item 6 (2%; 3%), in which students did not consider the role
of the whole (6a), could also be interpreted as the consequence of being exposed to a
limited range of problems. In this case, the problems that the students have solved in
the past probably required them to compare the size of different fractions in cases
where the whole is always the same and is usually a single continuous shape.
Similarly, exposure to division problems which can always be interpreted as sharing
and in which the divisor is thus always a whole number and always smaller than the
dividend, may also be a cause of the poor success rate on Items 10 (8%) and 11 (5%;
T%).

The results also suggest that some of the students had been exposed to a procedure
for generating equivalent fractions, but with little understanding of the purpose of this

4 Itis of course true that the given responses might not be the students’ only interpretation of fractions, but the first or
easiest response or that which the students believe is expected of them.
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procedure (9a) or the reasoning behind it. The latter resulted in some students
remembering only part of the procedure, namely finding the lowest common
denominator (8b). Other students took 5 as the lowest common denominator (8c).
The latter can be interpreted as the result of the traditional sequence for teaching
addition of fractions: first addition with like denominators, then with denominators of
which one is a multiple of the other (of which one then chooses the larger), and
finally with unlike denominators. In this case, students may have generalised their
current rule (for the second type of problem) to ..z unfamiliar situation of fractions
with unlike denominators.

Misconceptions arising from students’ own incorrect intuitions and informal
experiences Students’ inability to interpret the item “2 + ! as ‘how many !’s are
2 2

there in 2?° provides an example of a limiting construction arising from their own
intuitions and real-life experiences. The division of fractions out of context conflicts
with students’ deep-seated ideas about division, as it produces an answer larger than
the number to be divided and, unlike whole-number division, cannot be interpreted as
a ‘sharing’ situation (Baroody & Hume, 1991). However, exposure to a wider variety
of division situations at school would have provided an opportunity for this conflict
to be resolved, as mentioned above.

Inappropriate application of whole-number schemes One of the most common
general errors identified in this study was the students’ inability to see a fraction as a
quantity - a quotient relation between two numbers — rather than two separate whole
numbers. In fact this is an example of a misconception or a limiting construction
based on students’ own intuitions and previous experience. In this study, it affected
the students’ success on the items investigating their concept of a fraction,
comparison of the size of fractions and addition of fractions. Students responded to
the face-value of the denominator and numerator, separating them and carrying out
inappropriate operations with them (Misconceptions 1a, 2a, 4b, 4c). When it came to
adding fractions, some students mechanically combined the two denominators and
numerators (7a, 7b, 7¢c, 8a). It is interesting that the application of a similar whole-
number scheme leads to success when it comes to multiplying fractions (Item 9). The
interference of whole-number strategies, which results in students simply adding the
numerators and the denominators, has been widely reported in the literature (Baroo-y
& Hume, 1991; Streefland, 1991; D’ Ambrosio & Mewborn, 1994). Even if students
had not previously been exposed to the addition of fractions, it is disturbing that they

were unable to judge that 30 and 165 are not reasonable answers for “% + %” (Item
D.

Comparing the size of fractions by considering only the size of the denominator cari

also be considered a case of regarding the numerator and denominator as two

unrelated whole numbers (4a, 5a, 6b). This misconception was actually more

prevalent in the case of the Grade 6 students than in the case of the Grade 4 students,

although the success rate on these problems increased across these grades. The
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tendency to choose as the larger fraction the one with the larger denominator has also
been reported in the literature (e.g. Baroody & Hume, 1991).

Also in the case of division by a fraction, students responded by attempting to apply a
previous whole-number scheme (10a). Similarly, changing 4 + 8 to 8 + 4 may be a
misapplication of the commutative law that applies in the case of addition but not in
the case of division (11a).

In summary This research has found that, in line with research in other countries,
these students have, after their first few years of school, limited and limiting
understandings of fractions which persist into the upper elementary grades. These
meanings could in some cases result from students’ own intuitions or might be a
direct result of aspects of the teaching approach currently used for the introduction
and development of the fractions concept in these schools. In both cases the findings
presented here suggest that the current teaching approach has not been successful in
challenging students’ incorrect intuitions and in preventing the development of
additional limiting constructions.

Testing our approach to teaching and learning fractions Although this study suggests
that students have some intuitions and experienced-based ideas which are incorrect,
there is evidence that very young children are able to understand and solve sharing
problems involving fractions (e.g. Empson, 1995; Murray et al., 1996). It was also
clear from the findings of this study that students can use non-mathematical
interpretations to make sense of unfamiliar fraction situations in the context of
problems; It can be seen from Table 1 that Items 12 and 13 were solved with greater
success than many of the other items in spite of the fact that they could be classified
as division with fractions. Both items were given in the context of a problem. For
example, the success on Item 13 was 20%, compared with that on Item 10 which was
not given in a context and was solved with less success (8%) by older students. There
was also other evidence of students responding sensibly to the contexts provided, for
example the student who chose 3 3 rather than 3 3 of a pizza (Item 5) “because I don’t

eat a lot”, or the students who sald “I would 11ke that because I have no pizza. I would
like both (pleces) of fraction pizza” and “No, because is it not a hole but me I want a
hole”!

Based on the analysis of our findings in this base-line study, and on the evidence that
students can make better sense of unfamiliar situations with fractions in a problem
context, we have developed material and a programme for in-service training in our
four schools. The approach is problem-centered (e.g. Cobb, Wood, Yackel, Nicholls,
Wheatley, Trigatti & Perlwitz, 1991; Olivier, Murray & Human, 1990). Different
meanings of fractions and operations with fractions are developed using a rich variety
of carefully-selected problems, supported by a learning environment that encourages
reflection and social interaction. Teachers do not demonstrate scluiion methods for
problems, but expect students to construct their own strategies, and depend on peer
collaboration for error identification and the devclopment of more powerfil
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strategies. Written symbols and the introduction of symbolic algorithms for
operations with fractions are delayed until students have had the opportunity to
conceptualize fractions as single quantities (Baroody & Hume, 1991; Empson, 1995).
There is already some evidence. of the success of such an approach with young
children (e.g. Empson, 1995; Murray et al., 1996). Our next hypothesis, which we are
currently investigating, is that this approach contains at least some elements which
directly address the causes of misconceptions discussed in this paper, by encouraging
students to construct their own knowledge and by attempting to establish social
procedures like discussion and justification to monitor and improve the nature and
quality of those constructions.
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Development of the concept of Conservation of Mass, Weight and Volume in children
of Mezam Division, Cameroon.
Ngwa, Rosemary Kongla - Government Teacher Training College Bamenda

ABSTRACT

This study investigated the acquisition of the concept of conservation of mass, weight and
volume. Conservation in mathematical terms is the invariance of property under some
transformation. 120 subjects, 60 from urban and 60 from rural communities who were matched for
age, sex and the number of years (3-7) spent in school participated in the study. The instrument
used was a modified version of the traditional Piagetian tasks (Piaget and Inhelder 1941; Elkind
1968) of Mass, Weight and Volume in clinical interviews. The results showed no significant
difference between boys and girls and a significant difference between rural and urban subjects,
with rural subjects conserving better. There was a significant age difference. The "decalage”
between conservation of weight and volume was not as distinctive as it is with European studies.

INTRODUCTION

In the wake of independence, many African countries recogmzed the reality
that to ensure a high quality of man-power to support its development, they must
invest heavily in their education system. However, they have tended to emphasize
quantity at the expense of quality in that educational effort. This has been the case in
Cameroon were a very marked progressive increase in enrolment has been
experienced in Nursery, Primary, Secondary and Higher Education. In spite of such
achievements, the Cameroon school system continue to experience many qualitative
problems: shortage of teachers, paucity of instructional materials, prevalence of poor
teaching methods, teachers' inability to diagnose students' learning problems, high
rate of underachievement, a higher drop-out rate and so forth. The problems of
underachievement would be addressed more effectively if teachers and the school
system begin to give attention to intellectual developmental processes, to how
children learn and the problems they encounter in the learning process. To this end,
this study focuses attention on some of the factors that may influence the educational
development of the child. Specifically it probes the acquisition of the major concepts
of cognitive development:- the concept of conservation which Piaget (1952)
considers to be, "a necessary condition for all rational activities".
Theoretical Background

Jean Piaget (1896-1980) worked on cognitive development. His objective was
to formulate a genetic epistemology of intelligent behavior. He has provided
Psychology, education and other behavioural sciences with an understanding of the
active mind adapting to changes in, and pressures of the environment. Piaget
believed that the individual tends to organize his behavior and thought to adapt to the
environment. These tendencies result in a number of intellectual structures which take
different forms at different ages. The child progresses through a series of stages each
characterized by different intellectual structures before attaining the age of adult
mtelllgence (Ginsburg and Opper, 1979, 20). Piaget's clinical method of studying
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these intellectual structures led him to identify four major stages of intellectual
development. -

- The Sensori-motor stage (from birth -2 years)

- Pre-operational state (2 years - 7 years or 8 years)

- Concrete operational stage (7 or 8 years - 11 or 12 years)

- Formal Operational Stage (11 or 12 years and above)

Although these stages are only rough estimates as they vary from individual to
individual, from culture to culture and from one social environment to another, they
have been corroborated by other investigators (Pinard & Laurendau, 1969; Lovell,
1959, 1961). The acquisition of the concept of conservation generally occur during
the concrete operational stage. For this reason there is a need to examine this stage in
detail.

The Stage of Concrete Operations (7/8 - 12 years)

_ The clearest indication that a child has reached this stage is the presence of
conservation - the ability to reverse internally, to decentre, that is, to take into account
more than one feature at a time and to focus upon the transformation between one
state and another. Piaget frequently found that there is a definite line of Progression
in the attainment of conservation with respect to mass, weight and volume. Usually,
conservation of mass appears first followed by weight and lastly towards the end of
the concrete operations period, volume. Conservation develops gradually and
progressively and when it does, the underlying logical structure is the same. These
logical structures called the structure of "grouping." The psychological existence of
groupings can be inferred from the responses of a child (justification), for without
grouping there can be no conservation. If a child is capable of reasoning with the
structure of groupings, he knows in advance that the whole will be conserved even
though it is broken into parts.

Piaget (1952) identifies five conditions of groupings which form a logico-
mathematical model as follows:

i)’  Combinativity or closure iv)  Identity
ii)  Reversibility va) Tautology
iii)  Associativity vb) Iteration

When a child has developed the overall structure of groupings, he has available
a number of important concepts whose existence marks a considerable advance ir
logical thought and also enables him to reason in a way not possible in the intuitive
stage. Operational intelligence or operational thinking is fundamentally the
application of logical systems in the service of thought. The child can transform
reality by means of internalized actions that are grouped into coherent reversible
systems. Studying the development of logic-mathematical thought implies studying
the children at the period of concrete operations.
Statement of the Problem

The development of conservation is the focus of this study. The majority of
primary school children in Cameroon and in fact all of Africa are in this sensitive
childhood stage of mental development. The question then is do these African
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subjects develop these logical structures in the same manner as European subjects? If

there is a variation in these psychological norms internationally accepted, what reason

can be advanced to explain this variation. Environment, Age, Sex or what?

Hypotheses
It was hypothesized that there would be no significant difference between the
African subjects and Europeans in the acquisition of the conservation of mass,
weight and volume.

That urban and rural subjects would not be significantly different in this respect
That Age and sex will not significantly affect the acquisition of conservation of
quantity.

Method
The investigator structured interview questions modeled from the original

Piaget and Inhelder (1941) conservation tasks. Pliable play dough made from flour

using a cook-book recipe was used as substance for the conservation of mass/weight.

Conservation of volume was by transformation and displacement. All interviews were

conducted by the researcher

I: The test Items for the conservation of Mass (CM) comprised the following;:

Two equal balls and three unequal balls were placed before the subject
and the subjects were asked the following questions: '

1.  Choose any two balls out of five balls that are the same. If the subject failed to
find the two equal balls, he was asked the next question. (He would choose two
unequal balls)

2. What will you do to make the two balls you have in your hands equal? He then
proceeds to make the balls equal. After he has ascertained equality of the balls ,
investigator will proceed. ,

3. If I make this ball here (take one of two equal balls) into a pancake (flattened
shape), will there be the same amount in the pancake as in the ball?
(Transformation - mental)

4. I am now making this ball into a pancake (while the subject looks on). Is there
the same amount of dough in the pancake as in the ball? (deformation-practical)

5. Why do you think so? (Justification)

II: Test Items for the Conservation of Weight (C.W.). Subjects were asked to

weigh two balls (of Play dough) on the weighing scale provided. When they had made

certain that the balls weighed the same, the following questions were asked.

1. If I flatten this ball (one of the two equal balls) into a pancake, will the weight
of the pancake be the same as the weight of the ball? (the other ball).

2. I am making this ball into a pancake. Does it (pancake) weigh the same as the
ball?

3. IfI make this ball (the 2nd ball) into a roll (like a fish roll), will the roll weigh
the same as the pancake?

4. I am now making the ball into a roll (while the subject watches). Does the roll
weigh the same as the pancake? (deformation)

5. Why do you think so? (Justification)
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5.

Test Items for the Conservation of Volume (C.V.) 2 equal glasses, labelled
(A) and (B) contained good drinking water filled to the marked levels, two
unequal glasses labelled (C) and (D), (C) tall and slender, (D) stout and fat.
Subjects first ascertain that the water in the equal glasses (A) and (B) are equal
(same level).
The water in glass (A) is poured into glass (C) and investigator shows glass (B)
and (C) to subject. "Is there the same amount of water in this glass (C) as in the
other (B)?" (Transformation-judgement)
The water in glass (B) is then poured into glass (D) (stout/fat). comparing the
water in glass (D) to that in glass (A); "Is there the same amount of water in this
glass (D) as in the other? (C)" (Judgement)
The water was returned to the identical glasses and subject again ascertained
that the level of water in both glasses was the same.

Two equal balls (play dough) were shown to subject. One of the balls

‘was given to subject. "If I put this ball into this glass of water and you put your

own ball into the other glass of water, will my ball raise the water in the glass
to the same level as your ball? (Displacement-prediction)

I am now putting my ball into the water. Can you mark the level of the water. I
am making your ball into a pancake (or roll). If I put the pancake into the other
glass of water will the water come up to the same level as in this glass? (the
glass with ball). (Deformation/Displacement-judgement) :
Why do you think so? (Justification)

-Anticipated Answers and Scoring

1. Conservation of Mass

1. Right judgement — identifies two Wrong judgement - two unequal balls. (Omk)
equal balls (5mks)

2. No task to_perform. (Smks)
3. Right Prediction-Pancake and ball will | Wrong prediction - inequality of ball and
be the same quantity. (Smks) pancake(0mk).

4. Right judgement-amount of dough in Wrong judgement - inequality of ball and
pancake is the same as in ball. (Smks). Pancake (Omks)

S. Right justification (Smks)

Correct Responses Wrong Responses

Wrong response in(1) if corrected in (2) (Smks)

‘| No point to justify wrong responses. (Omk)

Note: Justification responses

i
ii.

iii.
v.

Identity - "You did not add any or take any away.

Reversibility: "You can roll the pancake back into a ball and it will be the
same."

Compensation: "The pancake is flat but thinner, so it is the same as the ball".
General: "It is the same no matter what shape you make it into, that wont
change the amount.

These were the best four responses for which the subject scored 5mks. If he

couldn't explain his reason or if he gave a wrong explanation he scored zero (0 mk).
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II. Conservation of Weight

Correct Responses Wrong Responses

1. Right Prediction - pancake will weigh Wrong Prediction - inequality in weight.(Omk)
the same as ball. (mks)
2. Right Judgement - The pancake weighs ~ Wrong Judgement inequality in weight. (Omk)
the same as the ball (Smks)
3. Right Prediction - The roll will weigh Wrong Prediction - the roll does not weigh the

the same as ball. (5Smks) same as ball (Omk).
4. Right judgement - The roll weighs the Wrong judgement they do not weigh the same.
same as ball. (5mks) (0mk).

5. Right justification as in I above either Whatever reason given is wrong. (Omk)
on the basis of identify, Reversibility,
Compensation or general. (5mks).

Conservation of Volume

Correct Response Wrong Response
1. Right judgement -the amount of water in (c) is Wrong Judgement - Inequality as
the same in (b). (Skms) response. (Omk
2. Right judgement -the water in (d) is the same Wrong prediction - the level of
amount as in (c). Smks) water will not be the same (0mk).

3. Right prediction - the balls will raise the water Wrong prediction (Omk)
" to the same level in both glasses. (Smks)

4) Right judgment - the pancake will raise the Wrong judgement (Omk)
water to the same level as the ball. (5mks)
5) Right justification as in i above, either on the Whatever reason is giving will be
- basis of identify, reversibility, compensation wrong. (Omk)

or general (5mks)

Note: - Total marks obtainable = 25 marks for each conservation task.

- Any subject who got all responses correct in each section scored 25 marks.
Any subject who corrected the response as from item (2) could score a maximum of
20 marks and correction right from item (3) gave a minimum of 15 marks. As from
this point even if the response appeared to be correct the subject scores 0 mark.

In the final analysis, the subject scoring 70-75 marks total for conservation
were categorized as those having high volume conservation, Those scoring 60-65
marks as high average those scoring 45-55 as average conservation: 60 - 75 —
Conservation, 45 - 59 — Transition, 0 - 44 - Non conceivers. '

Since the use of verbal explanation (justification) as a sufficient criterion for
measuring conservation raises difficulties specially amongst children with less
developed verbal abilities, the use of the prediction and judgement tasks (non-verbal)
which do not discriminate against subjects who have inadequate language .
development, were included in the conservation tasks to ensure that the chances of
children falling into the category of non-conservers were minimized. Of the 5 tasks in
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each of the conservations, only one was verbal explanation making it possible for
subjects to conserve in the other four tasks. Hence a score of 15 out of 25 or 3/5 was
considered good enough to be taken as a conserver in that given task. (Transition)

RESULTS

The analysis of the t-test showed that no significant difference existed between
male and female subjects in the overall conservation of mass, weight and volume, and
that there is a significant difference between rural and urban subjects. Rural subjects
conserved better than urban subjects. Meanwhile the ANOVA of scores on
conservation on the basis of Age (3 age groupings - 7/8, 9/10, 11/12 years) showed
that there was significant age-group difference. The older subjects performed better
than the younger ones in line with European studies. It was observed that for -
conservation of mass, there was a significant difference between the age groups and a
non significant difference between the three groups in the conservation of weight.
There was a very significant difference between the three groups in the conservation
of volume. This difference was shown to be real between 7/8 and 9/10, and 7/8 and
11/12 but not between 9/10 and 11/12 age groups. A Scheffe's test analysis was
further performed to confirm the t-test and ANOV A analyzes.

DISCUSSIONS AND RECOMMENDATIONS

Elkind's study (Sigel and Hooper, 1968), which was replicated here, gives
mean number of conservation responses for mass, weight and volume, which showed
the same order of difficulty as that observed by Piaget (1952) indicating that all
subjects scored highest in mass and lowest in volume. This study obtained the
following mean scores of conservation responses for the same quantities: mass 14.8,
weight 16.5, volume 16.4. These results do not give the same order of difficulty as
the order observed by Piaget. The difficulty level is reversed. Children gave less
conserving responses in mass than in weight and volume. The fact that the mean
scores for Mezam children are higher than those tested by Elkind in the United States
should not be surprising since Elkind included 5 - and 6-year-olds who scored less
than the older children. It seems for Cameroon children that the decalage between
conservation of weight and volume is not as distinctive as it is with the American
children. This difference could be attributed to the environmental factors - the
subsistence agricultural life that the Cameroonians lead, with much practical and
concrete use of materials as opposed to the much more abstract and analytical
thinking emphasized by Western Education. In the present study, an f-ratio for age
level was observed to be 8.97, (Pr > F = 0.0002 and Crit. F = 3.07), and very

“significant at.the 0.05 level of significance, which also confirms that conservation

responses for Cameroon children increased with age.
...Elkinds study showed that differences between age groups appeared as the

effect of the type of quantity.

" In this study, the multiple comparison of means showed that for mass, weight
and volume respectively, the 7-8 and 9-12 groups differed significantly in the number
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of conservation responses given.

Elkind converted his results into percentages for comparison with Piaget's
criterion of 75%. The results of this study were also converted into percentages for
comparison with Elkind's results. Percentages are given in Table 1 below.
Observation of Elkind's results showed that for mass, the 75% criterion was reached
at age 9 (86%); for weight, it was reached at age 10 (89%), and for volume, it was not
achieved at age 11 (25%).

Table 1: Percent * of conservation responses for mass, weight and volume at
successive age levels (N. 40 at each Age group)

Type of Quantity Age Levels
7-8  9-10 11-12
Mass 45 77 75
Weight 57 72 70
Volume 47 80 85

* of 75 possible scores.

Table 1 shows that the 75% criterion for mass was reached at age 9-10 (77%). For
weight it was not reached at all while for volume, it was reached at 9-10 (80%)
seemingly earlier than Elkind had found. Thus making weight the most difficult to
conserve for all groups.

In conclusion, this study, unlike Elkind's does not confirm Piaget's assignment
of the conservation of mass to ages 7-8; the conservation of welght to ages 9-10 and
the conservation of volume to ages 11-12.

The Justification Question
American Children:

Children's explanations in Elkind's study were categorized in the following

manner:

a. Romancing: “It's more because my Uncle said so”

b. Perceptual: “It is more because it is longer (thinner, wider, narrower, flatter)”

¢. Specific: “You did not add any or take away” (identity)
“You can roll it back into a ball, it will be the same” (reversibility)
“The roll is longer but thinner, so it is the same” (Compensation)

d. General:It is the same because no matter what shape you make it won’t change
the amount". _
Categories (a) and (b) were found to be given by non conservers. Elkind
reported that romancing and perceptual explanations first increased and
then leveled off with age.

Cameroonian Children

Explanations given by the Cameroonian children fitted into three of the four
categories given by Elkind's subjects - perceptual, specific and general. The
explanation question was the one that posed the most difficulty. Most of the non-
conservers gave vague answers which showed their uncertainty. There were a good
number of perceptual explanations even in the 9-12 year groups. Specific
explanations increased with age. Most of the children who achieved conservation did
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so through identity rather than reversibility or compensation. All conserving
responses involved the previous identity or equality of the two balls.

Finally, of the 120 subjects, 14 reversed the order of conservation difficulty. 18
children conserved weight before mass, 19 conserved volume before weight and 10
conserved volume before weight and mass, 13 subjects did not achieve any of the
concept of conservation of mass, weight or volume. While conservation of mass has
been reported to be the easiest, in this study, for most of these children it appeared to
be difficult. These individual variations must be taken into account and kept in mind
when abstracted average statements are made. While there were differences between
age groups, it was not possible to predict individual performances according to
subject's age, because in some cases young children who were not expected to
conserve some quantities did conserve, while older ones who were expected to
conserve failed to conserve.

Educational Implications and Recommendations
The following are some educational implications and recommendations

adduced from this study:

1. Children studied here can benefit from Piagetian diagnostic tests and from
Piagetian-oriented curricula which has met with success among European
children.

2. Individual experiences account for vast variations found among groups and.

among individuals, - although other factors cannot be left out, such as the
subject's personality, the experimenters bias and familiarity with test materials
(e.g - the play dough).

a. To what extent do the materials used for a particular tasks and the procedures
adopted affect performance? How can the basic competence of the child be
determined rather than just his performance in a specific situation.

b. How does performance on Piagetian tasks relate to school performance in other
situations? To what extent does either measure indicate desirable out-comes of
science and mathematics.
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SUBTRACTION STRATEGIES IN DEVELOPMENTAL
PERSPECTIVE: A COMPARISON OF MATHEMATICALLY NORMAL
AND MATHEMATICALLY DISABLED CHILDREN

Snorre A. Ostad
University of Oslo

Abstract

This study was designed to investigate the character and extent of differences
between mathematically disabled children (MD children) and their mathematically
normal peers (MN children) as reflected in the use of task-specific strategies for
solving elementary subtraction problems as children move up through primary
school, i.e., from grade 1 to grade 7. The pattern of development showed the MD
children as being characteristic of: (1) use of backup strategies only, (2) use of the
most primary backup strategies, (3) small degree of variation in the use of strategy
variants and, (4) limited degree of change in the use of strategtes from year to year
throughout the primary school.

Introduction

Many researchers have examined the issue of problem solving in
mathematics, and considerable progress has been made during the 1980s and 1990s
in describing the problem-solving process. The nature and influence of what affects
problem solving has been described from many different perspectives. Among the
most critical factors that have been shown to be associated with performance in
mathematics includes the varying use of problem-solving strategies. For instance,
investigations concerned with development of problem-solving strategies used by
mathematically normal children have shown an obvious progression, over time,
from immature, inefficient counting strategies, through verbal counting, and finally
to automatic fact retrieval from long term memory as children move through
primary school . Thus, a normal development reflects an increase in the use of
retrieval strategies, and a decrease in the use of backup strategies (e.g., Ashcraft,
1992; Carpenter & Moser, 1984; Geary, 1993; Siegler & Jenkins, 1989). A growing
body of research has provided useful information regarding the strategy
characteristics of mathematically disabled children (e.g., Geary, 1993; Geary
&Burlingham-Dubree,1989; Goldman, Pellegrino & Mertz, 1988; Jordan, Levine

g
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& Huttenlocher, 1995; Siegler, 1988). Previous studies, however, have focused
more or less exclusively on single age-groups and on the youngest age-groups in
particular. What characterises strategy use, as this develops year by year during the
primary school stage, has not been adequately studied.

P The present study

The present study was designed to determine potential deficits associated
with the pattern of development that unfolds when children move up through
primary school, as reflected in the use of task-specific strategies in subtraction.
The central theoretical viewpoint in the research includes aspects of strategy
variability as a fundamental characteristic of mathematical cognition. In particular,
four aspects of strategy variability were applied through an examination of (1) the
use of backup strategies versus retrieval strategies, (2) the use of specific backup
variants, (3) the number of different strategies used, and (4) the changes in strategy-
use as children moved up through primary school, i.e., from grade 1 to grade 7.

‘Sample. The sample included 32 MD pupils in grade 1, 33 MD pupils in
grade 3, 36 MD pupils in grade 5 and a corresponding number of MN pupils in €ach
of the grades.

Dcsign. The children were observed systematically over a period of two
years, grade 1 children from the end of grade 1 to the end of grade 3, grade 3
children from the end of grade 3 to the end of grade 5, and grade 5 children from
the end of grade 5 to the end of grade 7.

Procedure. The procedure was almost identical to that followed by Siegler
(Siegler, 1988, p. 844). More specifically, the pupils were asked to solve 28 single-
digit subtraction problems on two different occasions (T-I and T-II) separated by

.an interval of two years. The task-specific strategies used by the pupils were
recorded on a “trial-by-trial basis” and classified as defined single variants of
backupstrategies and retrieval strategies, respectively.

Summary of the findings and discussion

1. Across times of measurement the MN children showed an increased

" reliance on retrieval strategies, and a decreased reliance on backup strategies. This
change in distribution of strategy-use was consistent with earlier research assessing
the strategy development of basic arithmetic skills (Ashcraft, 1992; Geary 1993;
Goldman et al., 1988; Siegler, 1988). However, from grade 1 to grade 7, no more
than 40 per cent of the backup strategies had been replaced by retrieval strategies
by MN children. These findings provide substantial support for arguments advanced
by Siegler (1987b) that children make use of a mixture of strategies, usually
combining counting with direct retrieval. In contrast to the MN children, the MD
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children characteristically used backup strategies almost exclusively (close to 100
per cent) throughout the same period. This reflects memory retrieval deficit
(Garnett & Fleischner, 1983; Geary, 1992; Goldman et al., 1988). The MD child’s
typical lack of retrieval activity throughout the whole primary school, as exhibited
in this study, can be said to confirm earlier results (Goldman et al., 1988; Ashcraft,
1992). Consistent with developmental difference model (Goldman et al., 1988), the
acquisition of strategy skills in subtraction by MD children seemed to follow a
sequence that is fundamentally different from that observed in normal achievers.

2. In the case of the MN children, a course of development was observed
involving an age-determined shift in strategy-use away from the most primary
counting strategies. This implied that other variants, especially verbal counting,
were used more frequently (Carpenter & Moser, 1984). It was expected that the
corresponding data for the MD children would reflect a developmental delay model,
establishing that the difference between the two ability groups would converge
early in the elementary school years (Goldman et al, 1988, Geary, 1993).
Unexpectedly therefore, the typical MD children continued the use of primary
backup strategies throughout the whole primary school stage. These results seem

- to conflict with the arguments proposed by Geary (1993) that the development of
the procedural and memory-retrieval skills of MD children are largely modular; that
is, functionally distinct.

3. Usually, the MN child used several different variants of the two main types
of strategy (i.e., backup or retrieval strategies). A course of development was
observed which showed a gradual but marked increase in the number of strategy
variants as the children became older. This result suggests that these children have
at their disposal a rich amount of domain-specific strategy-knowledge, i.e., factual
knowledge about various strategies and their areas of application. In the case of the
MD child, however, the course of development was characterized by far less
frequently use of a large number of different task-specific strategies (1-2 variants
only) throughout the primary school. This result gives argument to the suggestion
that the MD child’s insufficient domain-specific strategy knowledge in itself limits
the choices available to him/her.

4. The comparison of strategy-use at T-I and T-II showed that the MN
children, who had already employed several strategies two years before, continued
to change their strategy-use in the direction of new strategy variants (at T-II). The
MD children on the other hand, were less likely than MN children to use different
strategy variants for the same subtraction problems on repeated testing. The typical
MD child seems to use the same strategy variant(s) again and again, year after year,
right through the entire primary school. This pattemn of development and the
similarity between this pattern and the pattern of development showing the number
of strategies used, provide substantial support for the suggestion that inefficient
strategy-use might be a consequence, in part, of perseverative use of primary
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backup strategies (e.g., Goldman et al., 1988).

In all: The pattern of development as reflected in the strategy-use for solving
simple subtraction problems applied in a long-term perspective throughout the
elementary school years shows the typical MD child as being characteristic of: (1)
use of backup strategies only, (2) use of the most primary backup strategies, (3)
small degree of variation in the use of strategy variants and, (4) limited degree of
change in the use of strategies from year to year throughout the primary school.

Within the whole period covered by the study, the MD children used
subtraction strategies which, in a normal course of development, would be typical
of the youngest MN children. The use of strategies seems to have been almost
permanently established at the end of first grade. The early and striking stagnation
shows a strategy development that is divergent from the development observed for
the MN children. As indicated above, results from this study reflect a
developmental difference model in respect to all (four) variables included.

There is no simple explanation for the pattern in the results. The matter of
mathematical difficulties can be explored from many different perspective (Geary,
1993). In particular, two broad perspectives have been suggested to account for the
differences between MN children and MD children in the present study, i.e., the

"quantitative and the qualitative perspective in the strategy-use. In the case of the
© quantitative perspective, attention is focused on the amount of factual knowledge

the child possesses about the range of strategies available and their applicability.
Research has suggested that domain-specific knowledge, i.e., substantial factual
knowledge, is an important component in an effective strategy-use (Pressley,
Brokowski & Schneider, 1990; Ohlson & Rees, 1991). Thus, if this suggestion is
valid there is reason to assume that the amount of domain-specific strategy
knowledge, will be reflected during the problem-solving process through the range
of variation in the strategies used (Kolligan & Sternberg, 1987). The characteristic
pattern of development for the MN children as they move up through the grades of
the primary school, which accentuates that they use a number of different strategy
variants to solve the problems in hand, exhibits a richness of strategies, i.e., of
substantial strategy knowledge. The fact that in this study the typical MD child
seldom varied his/her choice of strategy could be a sign of a lack of strategies.
Accordingly, there is evidence that the quantity of domain-specific strategy
knowledge might be a critical factor for normal development (Ostad, 1997).
However, the inefficient strategy-use observed among the MD children can
hardly be explained as a function of a lack of strategies only, regardless of the
quality of the strategy knowledge. According to the qualitative perspective in the
strategy-use differences can be expressed as differences in metacognitive
competence, an expression referring to the pupil's conscious knowledge about
when, where, how and why different strategies are effective (Flavell, 1987). When
each child's use of strategy at T-I was compared with his/her use at T-II, it was
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found that the MN children, who had already used several strategies to solve their
problems two years before, continued to change their strategy-use in the direction
of new strategy variants. The result could be a sign of greater knowledge, but could
also relate to the generality of this knowledge indicating that children have the
ability to "call forth" appropriate strategies by actively selecting and judging
between the strategies at their disposal (Ashcraft, 1992; Brown, 1987). In this case,
the children have achieved what can be called strategic flexibility. They have
improved the quality of their knowledge about the different strategies, giving them
greater flexibility in adapting their strategy-use to external and internal (cognitive)
variations from one situation to another during the problem-solving process
(Ashcraft, 1992; Geary & Burlingham-Dubree, 1989; Siegler & Jenkins, 1989;
Schneider, 1993). The MD children, on the other hand, do not change their strategy-
use to nearly the same degree as they move up through the grades, so their pattern
of development is characterized by strafegic rigidity. This apparent rigidity or
dogmatism among the MD children, could be the result of a limited and functionally
inefficient pool of strategies from which to draw upon (Ostad, 1997).

The findings in the present study have educational implications. Special and
general educators should bear in mind the suggestion that children can be
channelled into inappropriate development patterns, for which teaching itself might
be partly responsible. The consistency with which some MD children used various
backup strategies is an indication that these strategies may very well have been
restrictively taught. There are at least two possible explanations for this suggestion,
and it is quitc possible that both are true. One is that the characteristic pattern of
development of the MD children might have becn created by excessive emphasis
on teaching methods that invite the use of primary counting procedures. This seems
particularly relevant when teaching for thc youngest age groups (as in the schools
included in the study) is based to a large extent on ready-printed exercise books,
often with concretes functioning as counting instruments; the main thing the pupil
has to do is to count the concretes and write in the answers. The second explanation
is that the MD children’s strategy-use reflects the fact that nowadays schools spend
relatively little time performing mechanical calculations mentally. These children
may need not so much to be highly accomplished and accurate at using any
particular strategy as to be flexible in applying different strategies in different
situations. One could, for example, expect strategy variability to be influenced by
the extent to which an individual’s school instruction has encouraged or
discouraged such variability.

As we have seen, children who have mathematical difficulties require more
than ready-printed exercise books, concretes, or real-word practice in solving
mathematical problems to become good problem solvers. To address the needs of
the MD children, the instructional methods generally needs to change focus, early
in elementary school years, from how to learn more mathematics to how to learn
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mathematics by means of appropriate approaches; that is, providing MD children
with instruction to help them to become good strategy users and move beyond rote
application of basic skills (Ostad, 1992). These children need explicit instruction
in problem-solving strategies as well as guided learning experience in mathematical
problem solving (Montague, 1997).

Several projects were initiated to address the need for better mathematics
instruction. The importance of metacognition to mathematical problem solving is
well acknowledged in the literature (Hiebert & Carpenter, 1992). Cognitive strategy
instruction is a promising alternative to current approaches for teaching
mathematics to students with learning difficulties. Intervention research focusing
on instruction for mathematical problem solving has provided evidence that pupils
who lack problem-solving strategies need explicit instruction to faciliate their
reading, understanding, executing, and evaluating of problems. In contrast, students
who have a repertoire of problem-solving strategies but use them inefficiency or
ineffectively may need metacognitive strategies (e.g., self-instruction, self-
monitoring, self-evaluation) to help them activate, select, and monitor strategy-use
(Graham & Harris, 1994). However, whether MD children would become good
strategy users after extended strategy instruction in the early age groups remains an
open question. More definitive answers to this question must await further research.
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REPRESENTING PROBLEMS IN THE FIRST YEAR OF SCHOOL

Lynne Outhred, Macquarie University, Australia

Sarah Sardelich, Eastwood Heights Public School, Sydney

This paper describes the development of representations of numerical problems
by children in their first year of school. Children’s drawings of problem solutions
were obtained from two classes over the period May to November in successive
years. Both classes were taught by the same teacher. The children solved a
range of numerical problems by modelling them with concrete materials, then
drawing representations of the problem situations. Over the period of the study
the representations became more structured, with groups delineated in various
ways, including use of letters and labels. By the end of the year, the children were
writing their own problems and many children were also representing problems
symbolically.

INTRODUCTION

Problem solving is an umbrella term that subsumes many cognitive processes,
including among others, establishing goals, verbal and syntactic processing, change
of representation, and algorithmic processing (Goldin, 1992). Representation is an
important area of problem solving and little is known about the relationship
between internal understandings and representations and their external counterparts
(Mariotti & Pesci, 1992). For example, how do young children learn to represent
problems and to make connections among the different representations (concrete,
pictorial, symbolic and mental) generated as part of the problem solving process?

The relation between internal and external representations has been explored by
Cobb, Yackel and Wood (1992) who believe that mathematical meanings given to
representations result from interpretation and construction by students. The idea
that children develop individual interpretations of concepts, has changed the
emphasis in mathematics teaching, from producing answers to the solution process,
including how children interpret problems, as well as how they represent and
explain their solutions. While representational systems may be individual, Thomas
and Mulligan (1996) suggest that the further the representational system has
developed structurally, the more coherent and well organised will be the external
representations that students use. But what are signs that indicate increasing
structural development? ’

When one structure is represented by another, a crucial understanding is the extent
to which the original structure is preserved in the representation (Kaput, Luke,
Poholsky and Sayer, 1987). Two factors have been suggested as important in
representing problem structures: incorporation of numerical information from the
problem into the representation and clear depiction of the relationships among
problem quantities (Lopez-Real and Vello, 1993). These factors are essential
features of representing numerical problems, however, both perceiving and
representing such features may be difficult for children. Recognition of such
features when a representation is provided is difficult. Beveridge and Parkins
(1987) found that provision of a diagram or a model indicating the procedure
Q 0y .
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required to solve the problem was only effective in helping students solve it when
the representation was such that students recognised the structural correspondence
between the diagram or model and the problem. The situation appears even more
complex when children create their own representations, especially in the beginning
years of school when such representations may be difficult for teachers to interpret
and for children to explain.

Concrete materials have been suggested as a way young children can model solution
processes because such representations mirror conceptual structures. Therefore, the
structure of the representation may assist children to construct a mental model of
the concept, providing children see the correspondence between the structure of the
material and the structure of the concept. An inability to recognise such structural
similarities has been suggested as a reason why concrete representations do not
always assist children to learn about particular concepts (Dufour-Janvier, Bednarz,
& Belanger, 1987; Hart, 1987; Janvier, 1987). Similar concerns have been
expressed about visual representations. Dubinsky (1989) commented “It may be true
that a picture is worth a thousand words, but what if it is the wrong picture?” A
child’s representation may have omitted key information or coded in a form that is
difficult to use (Davis, 1984). Another concern is that children may not be taught to
represent problems as a means of finding solutions. In a study of Year 5 and 6 only
5% drew diagrams for 693 “diagram-suitable” problems (Lopez-Real and Vello,
1993). When the children were asked to draw diagrams and use these to solve
problems, correct solutions were given to approximately one third of problems
previously answered incorrectly.

If a representation is provided students may not recognise structural similarities
between a situation and its representation but for students to create their own
representation requires knowledge of the conceptual structure and articulation of its
essential features. So how do students learn to recognise structural features and
incorporate these into their mental models? One important factor in recognising and
representing structural features would seem to be experience of translations among
the different types of representations, as well as translations within each. This factor
has been emphasised by Lesh, Landau, and Hamilton (1983). These authors consider
that the act of representation may facilitate  the emergence of concepts and
representations during problem-solving sessions as students use different
representation systems, in series or in parallel, to solve problems. They found that
in problem-solving situations, good problem-solvers were usually able to sw1tch to
the most convenient representation during the solution process.

In a synthesis of the literature on problem solving Lester (1996, p. 666) suggests
that to become successful problem solvers, students need to solve many problems
over a prolonged period of time. Moreover, most students benefit from planned
instruction, although teaching them about problem solving strategies does little to

‘improve their ability to solve mathematics problems in general. He also commented

that for students to benefit from instruction, they must believe that their teacher
thinks problem solving is important. The first point would suggest that problem
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solving should start as early as possible in a child’s schooling. Indeed it has been
shown that kindergarten children could solve multiplication and division problems
when they were encouraged to represent relationships or actions described in the
problems (Carpenter, Ansell, Franke, Fennema, and Weisbeck 1993). These authors
felt that assisting children to consolidaté and extend the intuitive modelling skills
they apply to problems might provide a framework for developing problem solving
in the primary school.

The other points Lester (1996) makes stress the importance of the teacher’s role in
assisting students to value problem solving as well as to solve problems. The present
study is an intensive investigation of how children’s representations of numerical
word problems develop in the first year of school when the relationships among
different representations (concrete, pictorial, and symbolic) and emphasised and
how children’s understandings of such relationships change over time.

METHODOLOGY

The children in this study were all from 5 to 6 years of age and were enrolled in
kindergarten in a school in a medium socio-economic area of Sydney. They were
separated into four groups early in May 1996, although these groupings were not
fixed and some children later changed groups. From May until November each
group worked on problem solving for 30 minutes once a week during the
mathematics activity time. The groups rotated through different activities over the
week; the teacher worked with the problem solving group while volunteer mothers
worked with the other three groups. A similar structure was followed in 1997.

The data for this paper is primarily based on the drawings of nine children from the
1996 class whose work was available because they used dark pencils when drawing,
thus enabling their work to be photocopied. The drawings were not initially
collected for the purpose of analysing their representations but to use as
worksamples for student teachers. Only later were the drawings examined with the
aim of examining the changes in the children's representations over time. In 1997,
the children were observed and taped during problem solving sessions and all their
drawings collected but these data are yet to be analysed in depth.

The contexts of the problems were based on either literature read in class or
familiar situations. In the problem solving sessions the teacher began by reading the
problem to the children and prompting them to model it with cubes. This step was
crucial because the children could not read the problem so the cubes acted as a
memory aide. The children were then asked to draw a picture to show how they
solved the problem. The groups generally attempted the same problems although
some children attempted additional problems and some children required far more
support than others. In later sessions the children progressed to writing their own
" problems. The problem types (Carpenter et al., 1993) included addition, subtraction
(combine and separate), multiplication (equal groups), division (partition and
quoitition).

El{fC‘ 3-321 328

IToxt Provided by ERI



RESULTS

In both years the children's drawings developed markedly over the two terms. None
of the children’s initial drawings were structured but the later drawings of all
children showed evidence of their solution strategies and most children’s
representations were increasingly organised in the way both quantities and
relationships were depicted. Because the cubes that the children used to model the
problems were coloured, it would be expected that colour would be used as a means
of depicting problem parameters and relationships and this was so. However, the
children developed other drawing strategies including:

° size (eg adults, children) and key features (not detailed drawings);
e  separation for subtracﬁon and addition;

e crossing out and partitioning of sets for subtraction;

o drawing lines to indicate sharing relationships;

°  array structure to show equal groups in a multiplicative situation;
e letters and words to label elements of sets or sets.

Eight of the children at the party are trying not to
get sunburned noses. Five are wearing suncream
and the rest are wearing hats. How many children

There were 12 children in the playground. Seven
children were playing hopscotch and the rest were
skipping. How many children were skipping?

are wearing hats?”
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Jeffrey - 13/8/96 Jeffrey - 3/9/96

Figure 1 Jeffrey’s labelling of groups

While the use of size, pictorial details, and separation to show groupings would
seem to be a natural part of drawing a picture for young children, use of letters to
label group elements or words to label the groups might not be predicted. Jeffrey
(see Figure 1) suggested using letters to label the elements of a set, e.g., H for hats
and S for sunburned. In a subsequent problem Jeffrey labelled groups, rather than
individual elements. The impetus for this strategy may have come from the
emphasis on initial sounds in early reading. Ideas such as this were often adopted by
other children in the group.

Figure 2 shows the structures used by some of the children. Joel has used a very
clear method for showing that two children from one team had to move and has also
written a number sentence to represent this. The other two problems in Figure 1
involve grouping, Edward counted out 15 cubes, then separated these into groups of
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three. In his drawing he has used lines to connect each group and written a repeated
addition number sentence. Shani copied the correct structure of a wall made of
Lego blocks and wrote a number sentence to represent this structure. Late in the
year calculators were introduced to the problem solving sessions and children used
them to solve their number sentences and also to experiment (see Jake’s example).

It is time for gym and the children have to make 2 | Today KS are using the computers. If there are
teams. One team has 8 children and the other has | 15 children and 3 children can share each

4 children. How many children have to move to computer, how many computers will we need?
make the teams equal.
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Joel - 13/8/97 Edward - 19/11/97
| Here is Humpty Dumpty sitting on his wall. Write the most interesting number sentence you
Draw Humpty sitting on his wall and write a can think of. Use your own way to work out the
number sentence about the wall. answer.
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Shani - 26/11/97 Jake - 19/11/97

Figure 2 Structures and number sentences from the 1997 data

Use of number sentences

The impetus to use number sentences came from children, in each year a child asked
about the "plus" sign. The teacher worked through an example with the group and
assisted children to write number sentences. In the 1996 group, six of the nine
children did not seem to have difficulty writing both addition and subtraction
number sentences when these could be clearly related to the children’s
representations of problem structure. The children who wrote number sentences
tended to draw groups that were delineated in some way; that is, separated, labelled,
or shown with different pictorial details (such as stick figures wearing hats).
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Because the children were translating from a written problem to a concrete, then a
pictorial and finally to a symbolic form, production of a number sentence was a
mapping of the concrete or pictorial representation rather than of the written
problem. Thus, it is not clear from the 1996 data whether the children could have
solved the number sentences if there was no accompanying representation (cubes or
drawing). In general the children used a count-all strategy to determine the answers
to the problems, so most of them relied on an intermediate representation such as
the cubes or drawing to work out an answer. As they gained counting skills such
representations might not be necessary. The 1997 data indicates that by the end of
the year some of the children could translate simple addition and subtraction word
problems directly into number sentences and solve these using calculators as well as
to begin to experiment with large numbers (See Figure 2).

Self-generated problems

In 1996, soon after the children began writing number sentences the teacher asked
them to write their own word problem. In general, the structure of the self-
generated problems was modelled on the structure of the immediately preceding
problem. However, there were exceptions and one of the later self-generated
problems, “Write your own problem about the zoo.”, produced more varied
responses. The given problem was “Geoffrey went to the Zoo to see all the animals.
He brought along ten slices of bread for the elephants. When he had finished feeding
them he had two slices of bread left. How many pieces of bread did the elephants
eat?” The two children dictated addition problems of the form:

There was a giraffe, a tiger and a monkey. How many animals were there?

Four other children modelled the same operation as the original problem
(subtraction) but the structure of their problem was simpler; instead of modelling a
change situation as in the given problem (10-x = 2) they made the result the
unknown, for example:

There was one lion and ten fairy penguins. The lion ate two of the penguins. How
many were left? (Craig)

There were five kookaburras and one snake. The snake ate two kookaburras.
How many were left? (Anthony )

These children included three parameters in their problems but not in earlier
separate situations because most children generated take away situations (birds
flying away, koalas climbing down trees, etc.). For the given zoo problem Craig
wrote 10-2=, then crossed this out and wrote 10-8=2. For his own problem about
the zoo (see above) he confidently wrote 10-2=8. Anthony first wrote 2-3=3, then
crossed this out and wrote 5-2=3. The three remaining children wrote their own
problems and these were more complex:

There wor 5 lin and there wor 8 tigrs tace awae too of them ho mach wor there loft
(David)

There was 10 stars and 15 children ho memey mor stars do we need? (Alison)
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Threr worer five benarnas and 2 muncies. bothe of the 2 muncies aete 1 eche.
How meny benarnas were left? (Jefirey)

None the above structures had been given to the children: David and Jeffrey both
developed multistep problems while Alison wrote a compare subtraction structure.
Alison and David attempted to write the number sentence; David wrote 5-8=12
while Alison first wrote 10+15, then crossed it out and wrote 10-15=. The reason
for the increasing complexity of these problems may have been that the preceding
problems were not simple structures to model but ones in which the change had to
be determined given initial and final states.

CONCLUSIONS

Although the sample is not a representative one, the results for these children
“support those of Carpenter et al. (1993) who showed that after eight months in
kindergarten children who were taught problem solving could solve a variety of
quite difficult word problems. The children in this study had relatively little time
spent on problem solving, yet they were remarkably successful in representing and
solving complex word problems. The children's drawings of the problem situation
show that they used a variety of strategies to represent aspects of the contexts
including showing properties of the problem elements (colour, size, pictorial
details); separating groups or crossing out individual elements; partitioning sets and
drawing lines to indicate sharing relationships; drawing array structures to show
equal groups in a multiplicative situation; and using letters and words to label
elements of sets or sets.

All nine children had written number sentences for single step problems with a
direct relation between the quantities by the end of the year, and some had a good
grasp of representing problems symbolically. A preliminary analysis of the data
from 1997 suggest that the children had gained more control of linking concrete,
drawn and symbolic representations than the 1996 group, perhaps because in 1997
began writing symbolic expressions and writing their own problems earlier than the
1996 group.

The results presented in this paper suggest that in the beginning stages of problem
solving children can make considerable progress when:

*  children model situations with concrete materials but are also required to
draw a representation to show their thinking;

e children are expected to explain their solutions and their attention is drawn
to the connections among representations;

*  language structures are empha51sed and problems are linked to familiar
contexts;

»  problem solving is seen as an enjoyable activity valued by the teacher;

*  the teacher has an expectation that all children will benefit from problem-
solving with scaffolding provided to support children at different levels; and

*  problem solving skills are consolidated and extended over a period of time.
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The value of linking modelled and drawn representations may be that the drawn
representation gives children a means of recording their thinking and using this to
explain the solution process. Moreover, asking children to explain how their
drawings and their models are the same focuses their attention on similarities
between the two structures from the beginning. If the same strategy is followed
when number sentences are introduced, children develop number sentences that
directly relate to their solution strategies. If the above conditions are part of the
teaching environment, then some children achieve far more than would be expected
at kindergarten, both in terms of representing problem situations symbolically, and
in generating problems that they have not previously encountered. The children also
enjoyed problem solving and this initial enthusiasm needs to be fostered in
subsequent years.
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OPERATIONAL AND CONCEPTUAL ABILITIES IN THE
LEARNING OF ALGEBRAIC LANGUAGE. A CASE STUDY

PALAREA, M\M. and SOCAS, M.M.

We present a student's biographical case study by means of the data obtained from various
instruments (pre and post-test, classroom notebook and interviews). The study provides us with
information about the student's conceptual and operational cognitive processes when learning
algebraic expressions. This work forms part of a much wider project in the design of a Curricular
Proposal for algebraic language in the Spanish Secondary Education system. Our Curricular
Proposal takes into account the operational and conceptual cognitive abilities that facilitate
transition from arithmetic to algebra, based on the Jour sources of meaning and within the
JSramework of Duval’s work (Semiosis-Noesis).

Over the past twenty years there has been enormous interest among both

researchers and teachers in the study of the difficulties involved in the teaching-
learning of school algebra. However, the problems in this area have not been resolved
and what should be taught and learnt in algebra has yet to be decided.
' As Kieran (1992) points out, algebra implies: the recognition and use of
structures, the meaning of the letters in the algebraic context, and the change to a
series of different conventions other than those used in arithmetic. As such, a
procedural approach, based solely on a simple generalization of arithmetic, does not
seem suitable.

Sfard (1991) shows that abstract notions in mathematics, such as algebraic
language, can be basically conceived of in two different ways: structurally (as objects)
or operationally (as processes). The existence of historical stages during which the
different mathematical concepts, such as number and function, have evolved from the
operational to the structural, has led Sfard to design a three-phase parallel conceptual
model: interiorization, condensation and reification.

We believe that in the way they are currently presented there is a dilemma
regarding the status of the objects of algebra, as well as other mathematical objects: a
dynamic operational status whereby objects are seen as a process, and a static
structural status whereby objects are seen as a conceptual entity. However, while the
structural status of the mathematical object presented is organized into various
conceptual networks and is completely accepted, the semiotic representation systems
(SRS) characterizing the operational status (numerical representations, algebraic
codes, graphs, diagrams, etc.) in which algebraic objects are expressed and by which
they are communicated, have received less attention from mathematicians and the
educational community. '

Kaput (1987) points out that all SRSs possess at least four sources of meaning:
translations (conversions) between formal SRSs, translations (conversions) between
formal and non-formal SRSs, transformations and operations within a single SRS,
independent of any other SRS, and consolidation through the construction of mental
objects by means of actions, procedures and concepts present in the intermediate SRS,
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which are created throughout the teaching sequence.

Research into visualization in mathematics and the role played by ment
images has shown the importance of representations in the proper formation ¢
concepts. Various researchers -Janvier (1987), Hiebert (1988), Kaput (1987, 1991
Duval (1993, 1995)- have carried out experiments and advanced theory in order
shed light on the articulation mechanisms present within the process of understandir
knowledge.

Of all these works we would like to single out Duval's (1993, 1995). Duv
performs a coherent task that brings together different theoretical approaches
representations (Semiosis - conception or production of semiotic representation, ar
Noesis - articulation of several semiotic representations).

From our experimental studies of algebraic language (Palarea and Soca
1994a, 1994b) we have confirmed the necessity to extend the sources of algebra
language meaning to SRSs derived from visual sources (geometric registers - Palare
and Socas, 1994b). Four sources of algebraic meaning, based on Kaput’s terminolog
are thus given as follows:

Formal registers Numbers and operations

(formal algebraic SRS) (formal arithmetic SRS)
Geometric registers Real situations
(geometric visual SRS) involving quantities and relations

Geometric registers make use of two-dimensional geometric representation
represent algebraic expressions and terms. We propose a Visual Geometric S.R.
whereby any expression codified in it can be used for both syntactic and semant
purposes. This system is based on operations with magnitudes and it is a system fi
culturally, didactically and mathematically meaningful representation. Algebra
expressions, then, are contextualized in a system of geometric representation whe
numbers and letters are lengths of known and unknown segments. Letters a
considered either as geometric objects or as generalized numbers, with two differe
registers: “a” and “1 . a”. So “a + b” accepts the registers | | 1 and

a b
]
a .

Calculations in a Visual Geometric S.R.S. are built upon the five properties th
characterize the number system: a+b=b+a;(@a+b)+c=a+ (b+c);ab=b.
(a.b).c=a.(bc);ab+c)=ab+ac.

In terms of Duval's thesis, the Visual Geometric SRS interacts with the F orm
Algebraic Semiotic representation system in the following way:
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Cognitive object represented

Noesis
Mental Mental
Representation ¢ Representation
l T Semiosis Tl Semiosis

Visual-geometric SRS| Convprsion Formal-algebraic SRS
(analogic) —F 5 (digital)
Transformation | (semantic-syntactic) Convprsion|  (semantic-syntactic) | Transformation

\\ LMathcmatical obj?l l//

(Palarea and Socas, 1997)

The purpose of the present work is to provide information about the operational
and  conceptual cognitive processes for algebraic expressions manifested in the
ransition from arithmetic to algebra. We give a biographical case study in which we
cxamine the data obtained from various measurement instruments, including Pre-test

and video recordings, together with analysis of students' workbooks, recordings and
Post-test.

Method

The student chosen for the.case study belongs to an experimental group of
hirty-one 12-13 year-old students (7th Primary Grade, Tenerife, Spain). All students
inderwent a Pre-test and Post-test which were organized around 28 questions related
o the operational and conceptual abilities. The students worked on an instruction
nodel designed by the researcher herself. Nine students were interviewed individually
n semi-structured interviews regarding the cognitive abilities.

The case-study student was selected on the basis of being an average student
vithin the group as regards academic performance and because the student's
bservable behavior and reactions (classroom, clinical interview) afford the
esearcher understanding and explanation of situations of interest.

’ Tasks and Results

tudents’ tasks involving operational cognitive abilities are proposed and worked on
1 a single formal register (Semiosis), and their tasks involving conceptual abilities
re proposed and worked on with two registers (Semiosis-Noesis). The results of the
hosen are expressed here in their formal registers, except for register conversion
isks. They are denoted as Pe (Pre-test), Po (Post - test), I (Interview) and T
lassroom work).

1sks [Results

0.1 Carry out arithmetical operations in general or with letters without using brackets
The question a + 3 a can be written in a more
wplified form as 4a. Write the following in a
re simplified way, reducing the expressions to
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the shortest form possible:

al)2a+5a a.l)7a(Pe.and); 74 (Po,).
a2)2a+5b a.2) 7ab (Pe.and Po.); 7ab, he express: "as it is” and
he writes “7ab"” (1).
a3)2a+Sb+a a.3) 8d° b (Pe. and Poj; 8a b (I).
a4)atd+a-4 a.4) Not solved it (Pe); 2d (Po);Sa+3a=2a(l).

~ 0.2 Carry out operations with brackets in additive and multiplicative contexts, paying
special attention to what is denoted by the brackets
a) The question a + 3 a can be written in a more
simplified form as 4a. Write the following in a
more simplified way, reducing the expressions to
the shortest form possible

al) (a+b)+a a.l) 3d" b(Pe. y Po); 2ab+a = 3ab (I).

a2) (a-b)+b a.2) Not solved it (Pe); labz(Po.) a b+ b=2b+a(l).

a3)3a-(b+a) a.3) Not solved it (Pe).1b (Po.); 3a-2ab=1ab (l).

a4) (a+b)+(a-b) a.4) Not solved it (Pe); 2d°b° (Po.) ; 2ab +ab=3
a b ().

0.3 Make formal substitutions with reference to both specifying and generalizing processes
a) Fill in the gaps as shown in the first section of]

each column: Pre-test Post-test Interview
X = x+4 x> x+4 x+ 4 x+4
6 - 6 > x+6 6+4 6+4=10
r - r > r+r r+4 r+4
b+2 » b+2 > 4+b+2 b+2+4=b+6;
Now, if a = 2b, what can 5a + 3 be transformed
into? 10+3=13 Sa+3
5.0 + 3=
a=2b
a) Fill in the gaps as shown in the first section of| a)
each column: Pre-test  Post-test  Interview
X - x.4 x> x.4 x. 4 x. 4
6 - 6 > 6x 4.6 6. 4=24
r - ro r? 4.r 6.r = 6r
b+2 > b+2 > 4(b+2) 4.b+4.2=4.b+8

C.1 Carry out conversions between the  various registers, paying special attention to the
designations of the brackets in the formal register
a) The product (a + b) (c + 5) can be written
using the area of the rectangle with sidesa+by

c+5, as:
c 5
b [ o Pre-test Interview
aja.b+a.5 a a.b+a.$5
(a+b)(c+5)=ac+aS5+tbctbs b) a.bta 2+3.b+3.2= b) a.b+ a2+3.b+3.2
Write the following products: =2a+3b+6
a)a.(b+5)= c)a.a+ab+ b.a+ bb= ¢)a.atabtbatbb=
b)(a+3)(b+2)= =d’+ab+ ba+b’ =’ +ab+ ba+h’
¢y (a+b)a+b)= =+ ab’+ ¥ =a’ + 2 (ab)® +b°

O

ERIC o KRR 3-330

)



b) Represent (a + 5).b by means of rectangles
and use a double-entry chart.

c) Write the following operations with algebraic

language:

c.1) Triple of x. c.1) 3x (T, .Po and ])
¢.2. Double of n minus 4. c.2)2n-4 (Pe, Tand 1)
¢.3) Triple of the addition a and b. c.3)3(a+b) (T andl)
c.4) Double of the difference between h and i. |c.4) 2 (h-i) (T. and )
¢.5) Triple of the square of b. c.5) 3 5 (T. and I).

C.2 Contextualize algebraic language in general, and letters in particular, as geometric
objects and as generalized numbers in area and perimeter contexts
a) A school bus driver made “n” trips in a day,
carrying 50 children on each trip. How would you| a) n= trips
express the total number of children he carried n. 50 = x children (Pe)
that day?.
b) Calculate the area of the following diagram: bA=b.a=3a.4=12 a (Pe)

4r 1 A= A=b.c=3a.4=12a(Po)
a 3
c) A newspapers sells 135 newspaper a day. How| ¢) x = 135 newspapers
would you express the total number of] d = 14 days . ox.d
newspapers sold in two weeks (14 days)?. .
d) Calculate the perimeter of the following d)8§+8+6+6+a+a=28 a’
diagram: 16 12 a? (Pe)
8 d)8+8+6+6+ata=16+12
1 28 +2a(l).
6 a
perimeter =

C.3 Interpret and understand the meaning algebraic expressions, letters and signs, paying
of special attention to the use of the equal sign.

Write the following expressions: (Pe) Not solved it.
n+1,n+4,n-3,n, n-7. Which is the greatest | (I): smallest greatest
and which the smallest?. n-7 n+4
Justify your answer,.............c...... n+i, n+4, n-3, n, n-7
8+1=9 8+4=12 8-3=5 & 1
Discussion

With regard to operational cognitive abilities O.1 and O.2, it can be seen that
this student's greatest difficulty is a lack of operational ability with letters, as shown
in the examples given. especially regarding addition.

Later this translates into errors when calculating areas where the student tries to
express square units by adding an exponent 2 to the final letter. So, the area of 3[ |
the student expresses this by 3b”. b
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The student evidently assumes that area has two dimensions and is not
concerned where these dimensions come from.

Here is a literal transcription of Questlon a of Item O.1 (S =

Interviewer)

S: (studying the text and pointing at the "a" in "a +
3a").Here it's as if it was 1.

I: In other words, you think that this is as if you
had a I, don't you?

S: Yes, (he beginstocount) la+ 3 a; 2a+5a=
7; 2a + 5 b=, here you couldn't because they
aren't similar terms, you couldn't add.

I: OK, then, how would you do it?

S: You couldn't add. How can I add it?

1: And how does it finish, then?

S: Well, like this (2a + 5b).

I: Yes, like that, that's it.

S: 7ab.

1: Is that the same? If you think you canat add you
leave it as it is, and if you think that you have to
put 7ab, well then ...

S: Well, they aren't similar terms, that's what I've
been taught, and because they aren't similar you
can't add ...

I: What's the result, then? As you've got it?

S: Yes.

1: Well, do it, if you think that it's like that because
they aren't similar ...

S: No, likethis2a+5b=7ab.

1: If you think ...

S: 7ab.

Student, I =

1: Let's go on to the Ihlrd example.
S:2a+S5b+a=8d" b

1: In other words, when you have a + a, it's .
S:Noa+a=2a

1: Go on. As far as you're concerned, is this’
(pointing at 2 a + 5a) and this (pointing at 2a +
5b + a) the same?

S: Yes, they're the same.

1: They 're the same?

S: No, the result wead have for this (pointing at 2
a+5b+a)isgreater; a+ ais2asquared. .
1: And this 2a you have here?
S: This is multiplied by "a".
squared.

S:a+4+a-4.

1: Finally, what do you think?
S: Well, here I can't put 4a because that would be
multiplying.

1: So?

S: As I can't put ... here you have a 1. 5a, no. It
would be 5 a. This 3a is the same as 2a.

1: In other words, you've got this 5. Where ..?

S: From the a of a + 4 and the 3 from the lof the
other a minus the other 4.

1: Isee

So, it isn't 8ab

We can see two erroneous expressions used systematically: "2ab" is considered

to be the result of "a+b", and in other examples, which we have not published in this
work for lack of space, "ab" is considered to be the result of "a-b". Also, there is a
tendency to add the coefficients of all the terms, whether or not they are similar.
However, in the interview the student states that if the terms are not similar you
cannot carry out operations. This type of situation is very common in teaching: the
student has the conceptual ability but he cannot transform this into operational ability.

The student's understanding of distributive properties as such is obvious, but
his lack of operational ability when adding leads him to make mistakes in the
subsequent sequence of operations.

With regard to substitutions (Category O.3) the student is secure and always
expresses the product first with an "." and then, making use of the conventions of
algebra, he copies the expressions by leaving it out.

The student has no problems in converting representations (Category C.1). He
knows the key words used perfectly: triple, double, following, preceding, square,
product, difference. His rephes are always right when it comes to conversion in
context.
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A surprising fact is that when carrying out conversions from ordinary language
to algebraic language he sometimes fails to make such conversions correctly when the
language is closely related to contexts familiar to a student of his age.

When contextualizing algebraic language (Category C.2) the student's lack of
operational ability, referred to above, is even more notable when -performing
calculations in which the letters refer to geometrical objects.

The idea of product associated with the notion of area leads the student to
express 3.b = 3b?, where the b% is an expression associated with area as the product of
two dimensions. This is repeated in calculations concerning perimeters, where
although it was checked that he had a clear idea about perimeters, he makes mistakes
in those operations involving the calculation of perimeters when the diagram (whether
it be a rectangle or not) has some of its sides divided in dimension. In such a case, the
student performs invalid operations such as "2 + x" for "2x" and "3 + y" for "3y".

The student's conceptual ability regarding area and perimeters has been
enriched through a change in procedure, in as much as he does not assign to areas and
perimeters units of measurement which are not explicit in the dimensions of the
diagrams. '

* With regard to the interpretation and understanding of the meaning of the
algebraic expressions, signs, and letters (C.3) in the question given above in the
Table, which proves difficult for most students, this student reasons his replies very
well, and does so correctly from the start, without ever glvmg any numerical value to
"n", and then giving "n" the value of 8.

The student understands that when adding a greater number to a given number
the result is always greater and that, on the other hand, when subtracting a greater
number from a given number, the result of the expression is always smaller.

Conclusions

Among the most important conclusions, the following are noteworthy:

Direct ‘conversion of real situations involving quantities and relations in
different contexts does not appear to pose any difficulties when the student knows the
key words that permit such conversion: triple, double, following, precedmg, square,
product, difference, etc.

Conversions between the Visual Geometric Semiotic Representation System
and formal algebraic SRS pose difficulties in both area and perimeter contexts,
especially when some of the dimensions are subdivided.

Difficulties in operational abilities are more apparent when carrying out
additive operations. When performing operations involving the . calculation of
perimeters, the student makes mistakes even though he has a clear idea about the idea
of perimeters. This error is more common when one of the dimensions is
subdivided.(Kiichemann, 1981; Chalou and Herscovics, 1988).

With regard to problems of multiplication, especially those involving
distributive property, the student is sure of himself, both on the left as well as on the
right. The subsequent additive situations do not cause any difficulties.
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It seems surprising that even when he knows the rule "if two terms are not
alike, operations cannot be carried out" the student does not have much additive
operational ability. This situation is very common in teaching: the student seems to
possess the conceptual knowledge but is unable to transform this into an operational
ability. As Booth (1984) states: "the ability to describe a method verbaily does not
necessarily mean the ability to recognize the correct symbolisation of this method."

Fixed rules outweigh conceptual knowledge. In spite of having incorporated
conceptual knowledge of the new register, the underlying operational abilities (formal
arithmetic SRS) make the student commit errors because of a lack of meaning in the
new register. This lack of meaning is not made up for by transformations in the
formal algebraic SRS (semiosis), but is acquired in noetic processes.

The case study student makes suitable articulations between visual geometric
SRS and formal algebraic SRS in multiplicative questions, especially when involving
distributive property. However, this mental scheme leads him to commit errors in
additive contexts when he needs to express the letters as square powers, an expression
associated with area.

Based upon the data obtained, we can affirm that the proposed model can be
deemed a good method to go deeper into qualitative analyses of the difficulties,

obstacles and errors that arise when making the transition from arithmetic to algebra.
Refercnces

CHALOUH, L. and HERSCOVICS, N. (1988). Teaching algebraic expressions in a meaningful way. In A.E.
Coxford (Ed.), The ideas of algebra K-12 (1988 Yearbook pp. 33-42). Reston, VA: National Council of
Teachers Mathematics.

DUVAL, R. (1993) Registres de représentation sémiotique et functionnement cognitif de la pensée._Annales
de Didactique et de Sciences Cogmnms. IREM de Strasbourg

DUVAL, R. (1995) Sémiosi ioti i intcllectuels. Peter
Lang. Suisse.

HIEBERT, J. (1988) A theory of developing competence with written mathematical symbols. Educational
Studies in Mathematics. Vol 19, 3, pp. 333-335.

JANVIER, C. (1987) Representations and Understanding: The notion of Function as an example. In C.
Janvier (Ed.), P Mﬁmmnaumummlqmmga_nw_mn&mhe_mw Lawrence Erlbaum
Associates, p. 67-71.

KAPUT, J. (1987) Representation Systems and Mathematics. In C Janvier (Ed.), Problems of representation
in the Teaching and Learning of Mathematics. Lawrence Erlbaum Associates.

KAPUT, I. (1991) Notations and representations as mediators of Constructive Processes. In Von Glasersfeld
E. (Ed) Radical Constructivism in Mathematics Education, Kluwer Academic Publisher.

KIERAN, C. (1992) The Learning and Teaching of School Algebra, In Grows, D.A. (Ed.), Handbook of
Research on Mathematics Teaching and Learning. Macmillan Publishing Company. New York.
KUCHEMANN, D. (1981) Algebra. In Hart (Ed.), pp. 102-119.

PALAREA, M.M. and SOCAS, M.M.(1994 a) Algunos obsticulos cognitivos en el aprendizaje del lenguaje
algebraico. Suma. Monografico Lenguaje y Matematicas, Vol. 16, pp. 91-98. -

PALAREA, M.M., SOCAS, M.M. (1994 b) Elaborations sémantiques vs élaborations syntactiques dans
Penseignement- apprentissage de 1’algébre scolaire (12-16 ans), dctes de la 46%° Rencontre de la
CIEAEM Toulouse. (France).

PALAREA, MM. and SOCAS, M.M.(1997) Las fuentes de significado, los sistemas de representacién y
errores en el algebra escolar. Uno. 14, pp.7-24.

SFARD, A. (1991) On the dual nature of mathematical conceptions. Reflections on processes and objects as
different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

3 “i 3,$ f 3- 33:_1




E

WIDENING THE INTERPRETATION OF VAN HIELE’S LEVELS 2 AND 3

John Pegg and Penelope Currie
Centre for Cognition Research in Learning and Teaching

University of New England, Australia

Despite controversy, the van Hiele levels continue to be used as an important framework for
interpreting students’ understanding of geometrical ideas. However, as they stand, the level
descriptors offer a restrictive base. These cause problems when questions are posed outside of the
direct notions of properties of figures, class inclusion and deduction about which the theory is
explicit. This paper builds upon an initial attempt to broaden the level descriptors in a way that is
corisistent with the original ideas of the theory but which allows for more inclusive criteria. This
paper reports on three issues. First, examples of the restrictive nature of the van Hiele level
descriptions are identified. Second, the relevance of certain notions, drawn from the SOLO model,
are explained. Finally, three brief case studies are reported using the new descriptions to provide
empirical evidence.

Introduction

The van Hiele Theory has been the focus of considerable research attention, and many theses,
reports and articles have been published conceming issues related to verification and exploration of
the five hierarchical levels, and their associated characteristics. The levels have proved a useful
tool in (i) identifying problems in students’ understanding of certain geometrical concepts, (ii)
evaluating the structure or development of geometric content in secdndary text books, and (ii1)
guiding the development of syllabuses. However, the theory has not been without controversy.
Some (Gutiérrez et al, 1991) have challenged the discontinuous nature of the levels. Others have
queried the apparently simplistic one-dimensional nature of the levels and believe the theory fails to
describe the diversity evident in students’ behaviour (Pegg, 1995). Despite these forms of
criticism, there is considerable empirical support for the levels (Clements & Battista, 1992).

The van Hiele Theory hypothesises five levels of thinking identified as Levels 1 to 5. Of interest to
this study are the first three levels. These are described below.
Level 1: Figures are identified according to their overall appearance.
Level 2: Figures are identified in terms of properties which are seen as
independent of one another.
Level 3: Relationships between previously identified properties of a figure are established as
well as relationships between the figures themselves.

One issue that has confronted the writers is that the current level descriptors are narrow and not
easily generalisable to a range of question types common in school geometry. When one considers
some of the typical questions asked of students in the junior secondary school there does not appear
to be much guidance from the van Hiele Theory in allocating levels. Reference to van Hiele’s
writings or the two most commonly used tests, i.e., those devised by Usiskin (1982) and Mayberry

O
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(1981) do not help. For example, the following four multiple choice questions, taken from a State
examination in New South Wales, typify the concern.

Question 1 Question 2
' : In the diagram
x=17 El=JF
JFEITHG
<JFG = 130°
E G
A. 33 B.38 C. 48 D.57 A.50 B.30 C. 100 D.130 -
Question 3 Question 4
The diagram shows a cyclic The diagram shows a
¥y quadrilateral. circle centre 0.
Which statement below is s x=1
always true?
w i A. 110
A z=w B. 120
B. x=w C. 130
. C. x+y=180 D. 140
\—/z D. x+w=180

These items were given, as part of general mathematics examinations to some 35,000 students (who
represent 40% of the Year 10 (16 year old) student population) doing the advanced mathematics
course in the state of New South Wales, Australia. Significantly, a consistent pattern emerged in
the nature of responses. This showed (i) students who were correct on Questions 2 (approx 75% of
the candidature) were also able to handle correctly and consistently typical Level 2 items, and (ii)
students who were correct on Questions 1 and 3 (approx 45% of the candidature) performed
correctly and consistently on more typical Level 3 items. Approximately 60% of the candidates
were correct with Question 4.

While there was clearly a close relationship between these items and van Hiele’s Levels 2 and 3,
van Hiele’s descriptors give little guidance to support coding the nature of the thinking associated
with these four questions.

One approach to addressing the issue of more inclusive level descriptions is to refer to a theory that
is seen to have some sympathy with the van Hiele Theory. The SOLO model (Biggs & Collis,
1982, 1991) has been identified by several writers (€.g., Jurdak, 1989; Olive, 1991; Pegg & Davey,
1989) as having strong similarities with the van Hiele Theory, despite philosophical differences.

The SOLO Taxonomy, as with the van Hiele Theory, has its roots in the Piagetian tradition and
both theories are relevant to, and designed to facilitate, school-learning activities, albeit in different
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ways. The van Hiele levels are a series of signposts of cognitive growth reached through a
teaching/learning process as opposed to some biological maturation. SOLO, however, is
particularly applicable to judging the quality of instructional dependent tasks. It is concerned with
evaluating the quality of students’ responses to various stimulus items. While it is possible to set
questions which encourage a response at a particular level, it is students’ attempts at an item that
are of paramount interest as well as the many natural groupings of answer types. This focus
represents an important departure from, say, Bloom’s Taxonomy where levels have an a priori
quality and students are deemed either successful or not. With SOLO, the data (students’
responses) are treated polychotomously (as opposed to dichotomously, i.e., true or false) and the
categorisation of answers into multiple groupings with similar characteristics reflects various stages

of cognitive growth.

This represents a philosophic shift from van Hiele's (and Piaget’s) ideas, as the levels describe
responses, not people. With SOLO, a response provides a measure of a student’s attainment at a
particular time and in a particular circumstance, it does not, necessarily, determine some stable
stage of cognitive functioning. This approach overcomes the décalage problem identified by Piaget
in which a person may respond at a different level to the same (or similar) tasks from one testing

episode to the next.

Fortunately, this difference in focus between SOLO and the van Hiele Theory does not represent a
fatal flaw to any comparison of level descriptions across the two frameworks. The main difference
between them is manifested in the conclusions that are drawn about the overall nature of a student’s
level of thinking. This contrasting view is not the focus of this paper and useful comparisons about

levels can be made without confronting this issue.

A SOLO classification combines two aspects. The first of these is the mode of functioning and, the
second, a level of quality of response within the targeted mode. Of relevance here is the mode
referred to as concrete symbolic and the three levels within the mode referred to as unistructural,

multistructural and relational.

In the concrete symbolic mode a student is capable of using, or learning to use, a symbol system,
such as a written language and number notation. The important feature of this mode is that there is
an empirical referent available. This is the most common mode addressed in learning in the upper
primary and secondary school. This mode becomes available after an individual has progressed to
a certain level of attainment within the ikonic mode. (The ikonic mode is where a person
internalises outcomes in the form of images. It is in the ikonic mode that a child develops words
and images that can stand for objects and events.) Hence, early responses in the concrete symbolic
mode carry with them the need to base judgments on observable, physical experiences that make

sense to the real-world understanding of the person.

The three levels within the concrete symbolic (C.S.) mode (Biggs & Collis, 1991), represent a
growth from the more ‘concrete’ to the more ‘abstract’. Brief descriptions of these levels are:

r
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The unistructural level of response is one that contains, or draws upon, one relevant concept or
datum from among all that was available.

The multistructural level of response is one that contains several relevant but isolated concepts or
data from among all that was available.

The relational level of response is one that contains an over-riding linking concept. Alternatively,
each relevant concept is woven together to form a coherent structure.

The development encompassed by the three SOLO levels moves from a focus on a simple (one
aspect) and more tangible aspect, which is closely aligned with an individual’s real-world
experience, to the less tangible aspects, namely, relationships between concepts. This growth is, in
part, determined by the availability of working memory for the completion of the task. At the
unistructural level the student has only to understand the question, relate the question and the
answer, and use one concept. The multistructural level response requires a similar ability except the
student needs to be able to access a number of concepts. The relational response requires, in
addition, an overview of relevant concepts while being able to monitor the process or task from
beginning to end, thus allowing for a logically complete conclusion.

Finally, notions of consistency and closure are also strongly related to each level. The former refers
to the need felt by individuals to make a response that is not contradictory, either from the
perspective of the answer or the data provided. The latter refers to the desire to provide an answer
and hence finish the task. These two needs represent opposing forces that impact on the nature or
quality of the response.

The link between the level descriptors of SOLO and the van Hicle Theory have been summarised
recently elsewhere (Pegg and Davey, in press) and in summary it is: unistructural responses (C.S.
mode) and multistructural responses (C.S. mode) are associated with Level 2 thinking; and,
relational responses (C.S. mode) with Level 3 thinking.

This link has identified a way forward to expand upon the descriptions offered by van Hiele for his
Levels 2 and 3. In essence, this development means, in the case of Level 2, that the characteristic
of thinking in terms of independent properties can be intefpreted within SOLO as an aspect of a
broader thinking category in which concepts are addressed in isolation. These concepts need to
have an obvious visual basis and individual closures (answers) must have a strong real-world
referent for students. Aspects of processing which occur towards the end of a task appear
independent of any initial processing. The individual steps (or closures) leading to a final solution
can be performed in sequence without concern given to some general overview. A distracter in the

[

process can cause concerns.

At Level 3, thinking identified by van Hiele concerns the acceptance and use of relationships
between properties and figures. The broadening of this level using SOLO is associated with the
ability to have an overview of relevant elements and to form, on this basis, appropriate
generalisations. Consequently, for a given task, relevant data are identified and the student can
monitor these data. This allows f(:r }_he.reasoning at a later stage in a question to be adjusted in the
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light of earlier thinking. Also at this level, students have a notion of a generalised number by using
algebraic symbols which can stand for ‘real’ numbers. Hence, they do not, necessarily, replace
pronumerals with numbers but students feel secure as they have the option to do this in cases in
which they perceive to be more difficult. This ability to work with pronumerals allows students to
refrain from the need to calculate particular answers for each step of a problem (a characteristic of
Level 2 thinking), and opens the way for relationships between different concepts to be utilised.

Interestingly, support for these latter ideas can be found in van Hiele’s own writings although he
chose not to pursue this aspect. He stated “The differences between the objects of the second and
third levels can also be demonstrated by different ways of writing. At the second level, calculation
deals with relations between concrete numbers: 4 x 3 =12, 6 + 8=14. At the third level of thinking
it deals with generalisation of results: ax(b+c¢)=(axb)+(axc). In these generalisations you do
not return to the original objects of the second level, namely the concrete numbers” (1986, p.54).
Here, we can see van Hiele broadening his own level descriptions. For example, at the second level
there is a focus on actual numbers, single concepts are involved, and working memory demand is
relatively light. At the third level, the working memory demands are heavier, the example given is
more abstract in nature and actual numbers are not used. The rule cannot be known by its separate
parts, only by an overview of all the elements and the structure of the relationships can the pattern
be understood. The letters in the equation each represent an entity in their own right; there is no
direct concrete referent for the rule although substitution of numbers remains an option which

would guarantee uniqueness of outcome.

The remainder of this paper reports on the results of a longitudinal study which, in part, explored
within an interview situation the responses of 12 fifteen year olds, who were selected to represent
the bottom, middle and top 20% of the age cohort, to the four questions stated previously. A
student has been selected from each group and their responses to the four questions, given on two
occasions some six months apart, are reported and discussed.

Results

Sam In his first interview session Sam relied entirely on the look of the angles in the diagram for
each of the four questions. For example, in Question 1 he stated, “Being that that angle there is 66°
and that looks a little bit smaller than that one and bigger than 38 so I think 57 is the appropriate
(one).” This answer represents a transition in thinking between van Hiele’s Levels 1 and 2 (and
could be coded between the ikonic and concrete symbolic mode using SOLO) as the student is not
solely relying on visual skills but is aware of angle sizes which he can interpret in terms of degrees.

In the second interview session Sam showed little change. There was an indication with Question 1
that he was trying to move beyond visualisation techniques and he focused on the two data
elements of 2x" and 66°. He stated, “um it would be equal to 33 because you have 2x and 66
degrees, they would have like x and you have like two of them, then that is 33 to equal 66.” Such
thinking would be seen as very early Level 2. For all the other questions he relied on the required
angle’s visual appearance as he had done in the first interview.
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Ann In her first interview session Ann was able to complete successfully Question 2 but was
unsuccessful in the other three questions. In Question 2 she successfully undertook a series of
tasks, such as finding the base angles of the isosceles triangle, then the third angle, and, finally, she
used the notion of equal corresponding angles to find x.

Question 1 was seen to be more difficult. She attempted to use ‘opposite angles’ but on realising
this was not correct she was not able to continue. “These two angles are opposite so they have to be
the same. Um this side equals that side, oh no it doesn’t (pause). I can’t do that one.” For Question
3 she chose B citing corresponding angles and assuming parallel lines. In Question 4 she linked a
number of facts, such as one angle being 160°, two radii being equal, and the angles opposite these
being equal, but she was unable to sequence the ideas.

Overall, there was a consistency in her approach to the questions. A form of Level 2 thinking was
demonstrated in all questions. For Question 2 the task was straightforward enough for her to
sequence the steps. Her lack of familiarity with circle properties precluded this happening in .
Question 4, and for Questions 1 and 3 the cognitive load was such that she could only undertake a
single process which, in each case, was inappropriate.

Ann’s performance improved marginally in her second interview. She was correct on both
Questions 2 and 4. In this latter question she started with the 50° angle and ignored the 20° angle.
“Um if x is 50 this must be 100 because that is twice that, and these two lines are equal because
they are both radius of a circle so that is an isosceles triangle so both these angles must be 40 so um
angles on a straight line are 180 so that must be 140.”

While the structure of her response to Question 1 remained the same (i.e., a focus on one issue) the
feature chosen was more clearly related to the question than in her earlier attempt.

Ann: I think that these two angles are the same, um but if it is these two angles the same than
x has to be 33".

Int: What makes you think that 2x and 66 are equal?

Ann: Um when we did circle geometry I remember something about these angles that are way
off in the corner being equal, but I don’t know if it these two or these two, I can’t
remember.

For Question 3 she offered D as the solution but could not provide a reason.

Overall, Ann’s second interview showed her consolidating her ability to solve Questions 2 and 4,
and she was more directed in her attempts to solve the other questions. This means that when the
cognitive load was lighter she could undertake a series of tasks and order these tasks - Level 2
thinking. As the cognitive load increased she was able to focus only on a single relevant issue, i.e.,
early Level 2.

Chris In the first interview Chris was correct for both Questions 1 and 2 and he made a reasonable
attempt at Question 4 but could not attempt Question 3. For Question 1 he found the missing two
angles in the triangle containing 2x". First, he used the 66° and then the 2x°. Seeing a triangle with
all angles marked prompted him to use the angle sum of a triangle from which he found the correct
answer,
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The assumption in Question 4, that the large triangle was isosceles, caused an error. This lead to
Chris using the 20° angle to determine the base angles of the small isosceles triangle to be 45°. As
a result x ° was found to be 135°.

Chris demonstrated relatively sound Level 2 skills in the three questions he attempted. In each case
he was prepared to move forward from the known angles until he reached a value for the unknown.
He always commenced the question with a known specific angle. While this strategy is generally
successful it caused him a problem in Question 4 when he chose the wrong angle to start and in
Question 3 where there was no specific angles available to choose.

In the second interview, all questions were correct although he was unable to explain his attiempt
for Question 3. Of interest was the fact that in Question 1 he chose to identify the angle equal to
2x" first and then complete the angle sum. In doing this it was clear he had an overview of the
question and he knew that the answer would proceed from the process he put into place. This was
very different to the ad hoc approach he adopted on this question in the first interview. Also of
interest was his choice to begin Question 4 with the 50" angle (and to ignore the 20° angle) and then
move efficiently to obtain the correct response.

Overall, Chris was now showing signs of early Level 3 thinking. He was able to efficiently
undertake sequential tasks and was showing signs of being able to monitor a number of relevant
elements in questions. Problems occurred when the data seemed to be too removed from real-world
referents, as was the case with Question 3.

Conclusion

The four questions posed earlier in the paper can now be discussed within van Hiele’s framework.
In doing this, the difficulties and successes students experienced with these questions can be
interpreted.

The two questions, Questions 2 and 4 can be solved by students at Level 2. To complete
successfully these tasks, the student must be aware of the relevant concepts and be able to employ
more than one concept. There is a clear, unique end-point, the use of actual angle measurements
ensures a series of ‘real’, meaningful closures for the students. The questions can be solved without
the need of an overview of the questions and the available data. Students can be successful by
moving logically along a path from the given angle to the answer without needing to know in
advance how they might proceed. Indeed the path to the answer would be unexpec'tbed until the
completipn of the activity. The reason for the increased difficulty for Question 4 is related to either
unfamiliarity with circle properties or by the distraction caused by the 20° angle. This latter error
sets up some interference to the solution process with students attempting to start with this angle or,
alternatively, using it part way. Absence of an overview means such information can set a student
on an unsuccessful solution path from which they cannot recover.

It is possible to complete Question 1 using Level 2 thinking (see Chris’s first interview). However,
there is a trial and error feel about the approach and the student’s success rate is very inconsistent
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when undertaking similar questions. For a student to be routinely correct on Questions 1 and 3,
thinking at Level 3 is required. The major advance in thinking appears to be the ability to refrain
from seeking individual closures (answers) before proceeding to the next step. This represents an
ability to form a generalisation based on previous ‘concrete’ experiences with specific cases
although final uniqueness of the result still needs to be guaranteed. This level also represents an
ability to work with pronumerals. In each case this usage can be supported by replacement of some
unique numbers, which make sense to the student within a question’s context, if the student feels
pressured. In both questions, students who are consistently successful at this type of problem have
an overview of all the elements of the question. They are aware of the correct solution strategy
which relates the use of various concepts before they start the question and, unlike those who
perform at Level 2, the arrival at the final answer would not come as a surprise.
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CLASS DISCUSSION AS AN OPPORTUNITY
FOR PROPORTIONAL REASONING

Angela Pesci . -
Dipartimento di Matematica, Universita di Pavia, Italia

Abstract

The initial phase of the construction of proportional reasoning with students aged 12 to 13 is
described. In the proposed problematic situation, the recourse to the constance of ratios originates
as a strategy necessary 10 tackle this same situation and more importantly it clashes with other
resolutive strategies which are quite spontaneous but not really suitable.

The fundamental part of the didatic proposal turned out to be the discussion conducted by the
teacher, which gave the students the opportunity to freely express their agreement or disagreement,
even with original argumentation from the mathematical point of view.

In reference to current constructivist perspectives, the main points of contact are underlined, with a
particular emphasis on social constructivism.

1. Introduction

At primary school, the students leam to recognise the concept of ratio with the so-called
"partitive" or "quotitive” meanings (Nesher, 1988, Silver, 1986). This picture is gradually
extended to the junior high school, where in the area of proportionality between sizes
(homogeneous or not), the concept of ratio can be applied to many other situations in
mathematics, physics and other areas.

The fact is that text books tackle this theme in a way which can be defined as dogmatic,
because the theory presented is put forward in most cases without any kind of argumentation
or justification (Triulzi, 1995). Also, the text books usually make the student go through a
large variety of exercises which they learn to perform in a mechanical way: the same
arrangement of exercises, in the section dedicated to ratio and proportionality, certainly
doesn't challenge the student to utilise other resolutive strategies instead of ratios.

The concept of ratio and in general of proportionality, covers a particularly important area in
mathematics, because it undoubtedly constitutes a central concept which has many
applications even in high schools and universities.

It is only during the course of the junior high school however, that the students have the
opportunity to study ratio and proportionality between sizes as a separate subject and to
tackle also, among various types of problems, situations which call for a proportional
reasoning: therefore it is necessary to dedicate time to it and to pay particular attention to its
conceptualisation.

At high school, even when the subject of proportionality between sizes is taken up again, it
is assumed that the students know the problems and it is taken for granted that they know -
how to identify without hesitation the situations which call for the use of such a concept.

So it is right then, during the course of junior high school that a didactic intervention on this
subject can be inserted, aimed at challenging, before even presenting, a way of reasoning
which relies on the constancy of ratios.

The didactic proposal which we have devised for the second year of j Jumor high school sees
the extensnon of the concept of ratio and the construction of proportienal reasoning; a
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construction which has been worked out, discussed and agreed upon by the whole class,
through the exploration of appropriate problematic situations.

In this paper, the first part of this didactic proposal will be described, after a three year
experimentation period with students aged 12 to 13 (the complete experience is described in
Castagnola, 1995 and Torresani, 1997). In particular, the first worksheet for the students will
be described and displayed, as well as the main results gathered from the students' protocol
and the ideas which emerged in class during discussions led by the teacher.

2. Theoretical Framework
In reference to the abundance of literature available on proportional reasoning and on the
didactics relating to this subject (see References), the itinerary planned by our research
group focuses particularly on the initial phase of exploration of specific problematic
situations and especially on the discussion of the resolutive strategies which emerged in
class. The role of the discussion, conducted properly by the teacher, is considered
fundamental and decisive to the comprehension of mathematic concepts, in our case to the
conscious construction of proportional reasoning. »

In reference to French literature, the discussion was conducted following the so called a-

didactic modality (Brousseau, 1986): it means that during this phase of interaction between

students the teacher does not take any position with respect to the knowledge involved. In
addition the teacher plays different roles, according to different didactical phases: he (she)
coordinates the discussion, solicits pupils for explanation, stresses different positions,

promotes peers’ verbal interaction (Arzarello et al., 1996, Bartolini Bussi et al., 1995).

Therefore the dialogue and the negotiation of meanings during mathematics class have a

central role, according to the principles of social constructivism sustained by Bauersfeld

(1995), Cobb, Yackel, Wood (1992) and Emest (1995).

The experimentation was carried out also in accordance with those researchers who

underline the role of pupils’ errors as a source of investigation. With particular reference to

Borasi (1996) we did indeed consider students’ unappropriate solution strategies as the

source of opportunity for mathematical investigation, not as something to be hidden or

erased: the atmosphere of inquiry was established and maintained in class thanks only to
these incorrect strategies. }

The basic ideas discussed and shared by the teachers involved in the experience, who took

part from the beginning in the realization of the study, are summarized in the following

issues:

o the teacher is the person who helps students in the process of personal construction of
mathematical ideas; '

o the teaching process is active and constructive, during which students face problems
posed by the teacher but that they themselves decide to solve;

o the teaching - learning process is interactive, characterized by continuous negotiation of
mathematical meanings: the interaction takes its origin from the discrepancies between
students’ solution strategies;

o the language and its interpretations negotiated in class are therefore like mediators, during
the knowledge construction that students perform through dialogue, between their
cognitive processes and the experience they live in the class.
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During the conducted experience the class discussion, following the individual work on

worksheets, had therefore the main role, as stressed before. It may be important, in relation
to this phase, to clarify more precisely the role of the teacher, which is that of coordinator.

The teacher

- encourages each student to motivate his (her) answer or solution;

- calls upon the students to speak when they require to do so;

- invites students to listen and to express themselves on the positions of schoolmates;

- promotes the negotiation of the meanings related to the used words;

- syntesizes (eventually) different positions emerged in the class;

- does not take any position on the correctness of students’ proposals but solicits everyone

to reflect on each of these proposals.

Only at the end of the process (which could require more class discussion) the teacher

formulates, together with the class, the concept or the procedure which is the object of

discussion. This happens, in any case, in a way that takes into account both the usual

mathematics shared by society and expecially the activity worked out together.

In what follows the pupils’ main interventions during the first discussion are reported, with

the aim of higlighting the nature and sometimes the originality of their argumentations

from the point of view of mathematics connected with the situation they faced. It is

interesting to reflect upon the maturity of the argumentations that students spontaneously

put forward, when the teacher gives them enough time to reflect and to discuss. We believe

this is the result of the positive and constructive atmosphere, established in class by the

teacher, consequent to the theoretical principles mentioned before.

The different roles of the teacher, which could be described following her interventions

throughout the discussion, will not be described here: this should require the complete

reproduction of the discussion protocol.

3. Students’ intervention during the first part of the didactic itinerary

For the first worksheet, which was aimed at testing spontaneous recourse to the use of the
ratio concept, we decided to use a context which was quite familiar to the students, not
uncommon in school tests and frequent in literature: the mixing of colours. The choice of
the context and its verbal formulation required long discussion within the research group: it
had to be simple from the arithmetic point of view and it had to promote more solution
strategies. In addition, the meaning of ratio related to the situation had to be different from
“partitive” or “quotitive” meanings. The following is the text which appeared on the
worksheet:

Three panels of different dimensions have to be painted and equal size tins of yellow and
blue are available. The panels have to be painted the same shade.

MARCO painted the first panel using a colour obtained by mixing 4 tins of blue and 6 tins
of yellow.

LUISA has to paint the second panel: to obtain the same shade of the colour and with 6 tins
of blue available, how many tins of yellow does she need?

PIE}}O has 3 tins of yellow for the third panel. How many tins of blue does he need?
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Explain your reasoning in answering the questions:

It may be that students face the proposed problem using intuitive strategies which prelude

the proportional reasoning: some could appeal explicitely to the constancy of ratios

between the given quantities. In any case, from the answers to this worksheet the teacher
derives information about the different cognitive levels in the class group. This is therefore
an introductive worksheet, whose aim is that of promoting a profitable discussion.

The following results are usually obtained from our experimentation classes:

- the majority of the students apply the criteria of the "constant difference”, that is, they
maintain in every case that the number of yellow tins is equal to the number of blue tins
plus 2. Therefore, they say that Luisa needs 8 tins of yellow while Piero needs 1 tin of
blue;

- some students keep the total number of tins (10) to be used constant (“constant total”
stategy): Luisa needs 4 tins of yellow and Piero needs 7 tins of blue.

- only a minority of students make recourse to intuitive strategies which deal with
proportional reasoning. Some observe, for instance, that Luisa’s blue tins (6) are one and
a half times the amount of Marco’s (4), therefore it has to be the same for the yellow tins:
if Marco has 6 tins, Luisa has to have 9. In the case of Piero the situation is simpler: he
has 3 yellow tins, half the number of Marco’s, so he also has to have half the number of
blue tins, that is 2, half of 4.

Right at the end of the individual work, the teacher invites pupils to read their solution

strategies, to explain them and to discuss discrepancies.

What follows are the most significant passages of the discussion carried out in one of the

classes involved in the experimentation.

At the beginning of the discussion, the different types of solution strategies described

above are put forth by students and then the teacher asks them if all three strategies could

be correct or not.

Valeria: In my opinion they cannot all be correct.For instance Simone’s strategy (who

used the ‘constant total’ strategy) is not right because if Piero has 3 tins of yellow and 7 of

blue and mixes them together, the result is not green, because the blue is darker and so the
result is blue.

Teacher: So, in your opinion, where has Simone gone wrong?

Valeria: He has mixed more blue than yellow.

Alberto: I think that Jacopo (who used the’constant difference’ strategy) is wrong because

here it is said that the panels have to be of the same shade of green and in order to have

the same shade, it is necessary to have the same ratio of blue tins to yellow tins.

Teacher: Jacopo, in your opinion, is Alberto right or not?
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Jacopo: I don’t know.

Giovanni: I don't think he is right, because it doesn’t matter how many tins there are. If
the difference is always 2, the colours are always the same, even if the quantity changes.

Jacopo: There are not always the same number of blue tins, but if you always add +2 of
yellow, the shade, in my opinion, comes out the same.

Alessio: / want to say something interesting. Imagine you have to paint a house in the same
shade of green. If you use 1000 buckets of blue and 1002 of yellow, do you think you'll get
the same shade of green ?

Giovanni: Yes, I do.

Alessio: Really ?

Giovanni: Yes, the quantity wzll change but the same green will come out.

Pamela: In my opinion what Jacopo says is wrong but I don't completely agree with
Alberto, because here it is said that the panels don't have the same dimension, so if you use
less tins, both of blue and of yellow, but always in the rzght quantity, then there is never a
different green.

Paolo: But in fact he does not always use the same tins. For instance if you have a panel

twice the size, you will also use twice the amount of paint: that is, 4x2 tins of blue and 6x2
~ tins of yellow.

Niccold: Thanks to Alessio’s example of the house, I have understood that to get the same

shade you have to maintain the same ratio, because I am not convinced that by adding

1002 tins of yellow to 1000 tins of blue you'd get the same green.

Alessio’s contribution is of a theoretical nature: he wants to demonstrate that when dealing

with a large quantity of paint where the difference between blue and yellow is always two,

the quantity of each colour is almost the same, so it is impossible for the final colour to be

the same as that obtained from 4 tins of blue and 6 of yellow. It is interesting to note that

Alessio has used, in his protocol, the ‘constant difference’ strategy, but at the beginning of

the discussion he realized its incorrectness and became a convinced promoter of the

‘constant ratio’ strategy.

In class there is confusion: Alessio’s example has created two opposed factions: one in

favour and one in opposition to Alessio. Jacopo wishes to speak.

Jacopo: Using 1000 litres of blue and 1002 litres of yellow or mixing 1 litre of blue and 3

litres of yellow, I believe, you obtain the same shade.

Teacher: Do you agree with Jacopo ?

A chorus of ‘yes’ and ‘no’ breaks out. No one backs down from his or her position. The

problem is how to decide if the same shade of colour, in the proposed situations, is

maintained or not. Paolo requires to speak.

Paolo: If you have 2 tins of blue and 2 tins of yellow you get one shade of green. If you add

another 2 tins of yellow you get a lighter green, almost yellow. But if you have a lot of

green and you add 2 tins of yellow, you don't get such a yellowish green, but the original

green colour remains almost the same.

What Paolo means is that 2 tins of yellow have much less of an effect on a lot of green than

on the mixture of 2 tins of blue and 2 tins of yellow. His intervention is in accordance with

Alessio’s argumentation: they both stress that the effect of 2 tins of yellow on a little

quantity and on a big quantity of the same mixture cannot be-the same.

O
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At this point, the discussion is interrupted as the lesson has come to an end. Some
schoolmates appreciated the interventions of Alessio and Paolo and have expressed their
agreement (4 students, during the discussion, have passed from the strategy of the ‘constant
difference’ to that of the ‘constant ratio’) but it is not exactly the same for the whole class
group: the construction of proportional reasoning is only at the beginning.

Summarizing the results of the discussion, the strategy of the ‘constant total’ has been
rejected also by the respective promoters and only the strategy of the ‘constant difference’
and that of the ‘constant ratio’ remain: it is not yet clear which of these is right, even if
interesting argumentations against the use of the difference have emerged. The class is
ready to face proportional reasoning in the different contexts of successive worksheets.

It is not possible to give details here of how the itinerary was developed, but it seems of
some interest to report another of Paolo’s interventions during the successive discussion,
centered on another proposed situation. With the aim of contrasting the strategy of the
‘constant difference’ supported by some schoolmates, Paolo refers again to the first
situation of colours and suggests the following type of reflection:

Paolo: I would say to Giovanni (who is convinced that the strategy of the ‘constant
difference’ is right): you say that, in order to have the same shade, the yellows have 10 be
always 2 more than the blues. But if there are 2 yellow tins, there have to be 2 less blues,
that is, 0. It is not possible to obtain the same shade: yellow comes out. Therefore the same
difference does not work. )

This time Paolo makes recourse to a different and interesting argumentation to contrast the
‘constant difference’ strategy and his explanation is very clear.

In conclusion, it seems important to stress that the students’ argumentations are all of a
theoretical nature: they don’t have real colours to try, but they have the skill to imagine the
situations, to construct mathematical models, to make analogies, to force the models to
their limits and to interpret them in the given situation, confuting some strategies with an
original recourse to extreme cases (using 0 and 1000).

On the basis of successive class work, it would be possible to conclude that especially the
recourse to 0 must have had a noticeable effect on the pupils because often similar
motivations to Paolo’s emerged with the aim of contrasting the ‘constant difference’
strategy.

3. Concluding remarks

It seems important to underline some features which characterize the activity proposed to

pupils and allow us to define it as a ‘problematic situation’ (in the sense specified by

Jaquet, 1993):

o The initial knowledge of the students was judged to be sufficient in order for them to
proceed by themselves: that is, to use a strategy which refers (even unconciously) to
proportional reasoning or another type of ‘pattern’, which in any case they were able to
accept or to reject.

o The pupils were able to decide for themselves (to ‘validate’) if a particular solution was
correct or not: the discussion was in this case fundamental, starting from the strategies
proposed by the students themselves.

o The pupils had to build a new concept: the aim was to reach proportional reasoning.
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o The knowledge which we wanted the students to acquire, was the most suitable means
of solving the problems proposed: the additive strategies were inadequate and the most
suitable mathematical method was recourse to constant ratio.

Also in accordance with teachers’ judgment, the mentioned features made the cognitive

participation of the class and the success of the experience possible.

In reference to the way of carrying out the didactic program through class discussions, the

following positive aspects were specified by the teachers:

- there was a major participation of the class in the proposed activity;

- students were aware of their direct involvement in the construction of their knowledge;

- leaving a problematic situation open (sometimes for a long time), enabled every student
to have adequate time for reflection and many opportunities for expression and
comparison;

- leaving the students to speak freely put the path of their learning processes in evidence
and also the cognitive obstacles they met;

- the interaction between peers developed their skill of reasoning in formulating their own
point of view and of interpreting that of schoolmates (educating them to respect and
compare others’ ideas);

- there was an awareness, on behalf of the teacher and of the students, that mathematics
was being constructed through activities which were exclusive to their class.

Concluding the analysis of the features related to the described didactic procedures, it

_seems important also to mention two unresolved problems. First of all the didactic material
for realizing such a project has to be prepared entirely: the usual textbooksin their nature,
cannot propose situations with a development similar to that of a particular class. In
addition (and this is also a wider problem) teachers are not yet prepared to realize such an

.educational project: the acceptance and the preparation for a new teacher’s role and a new

way of working in class are necessary. Some efforts have been made in this direction, but a

lot of work has yet to be accomplished.
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