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LEARNING ALGEBRAIC STRATEGIES USING A COMPUTERISED BALANCE MODEL

James Aczel

Department of Educational Studies, University of Oxford, UK

A Popperian analysis of the research literature on-the learning of algebra has yielded
an interactive, game-like, computer-based balance model of the simple linear
equation, that also incorporates word problems solvable by formulating such
equations. A study is described that explores the potential of this software to improve
the algebraic knowledge of 10 to 15-year old children. Questions are raised about the
transferability of knowledge between types of algebra problems.

Some difficulties with the balance model
Lins (1992) describes the balance model as "one of the most popular didactic artefacts
used to teach the solution of linear equations" (p. 208). Yet it cannot easily handle
negative signs and negative numbers; and decimal coefficients can be difficult to
visualise. Such restrictions "lead to major cognitive difficulties for students in the long
run" (Linchevski & Herscovics, 1996).

But it is much criticised on a variety of other grounds in several research studies.
Schliemann et al. (1992) found that children rarely use a spontaneous cancellation
strategy to find unknown weights on physical balance scales; Dickson (1989) found a
balance model did not lead to the desired learning; while Filloy. & Rojano (1989)
found deleterious effects, and the links between operations on the model and
operations on the equation were often not made; and Lins concluded that the balance
model is "inadequate not only for quickly becoming a complex net of what are in
effect different models, but also for not fostering a frame of mind adequate for the
development of an algebraic mode of thinking." (p. 209). Criticisms have also been
made that such concrete materials encourage at best the use of letters as unknowns
rather than as variables; and at worst as standing for objects rather than for numbers.

Moreover, it is not clear how the model might provide a purpose for conventional
algebraic representation. Nor is it clear in a balance model whether an algebraic
strategy is necessarily more attractive than numerical trial-and-improvement, a whole-
part sharing strategy or inverse operations. So can the balance model be useful at all in
helping students to appreciate the power, beauty and challenge of algebra?

The Popperian Psychological Perspective
A distinctive psychological perspective has been developed for the study of the mind
in an educational setting, inspired by Popper (e.g.1968). It focuses on students'
strategic theories and concerns.

Many theories can be seen as elementary strategies. For example, each of
Ktichemann's (1981) letter interpretations enables certain algebra problems to be
tackled with varying degrees of success. The balance model provides a strategy of
simplification while maintaining an equality.



From this perspective, learning is seen as creative, strategic, trial-and-error-elimination
of theories in response to concerns. By "concerns", I mean problems of special interest
to an individual, including desires, motivations and fears. The myriad explications of
cognitive processes (such as the interplay of innate faculties, mental representations,
modes of thought and gestalt) can be reinterpreted in terms of World 3 objects such as
theories and concerns.

In the case of understanding and using equations, the perspective would characterise
this knowledge in terms of strategic theories; and ask what problems these theories .

solve - such as how to represent a situation.using algebraic notation; or how to
simplify by operating on both sides of an equality. Could the balance model be adapted
to make these problems into concerns? The study described below attempts to check
this, by testing to see if a computerised version of the model makes the use of an
algebraic strategy more attractive than other strategies.

But are there "deeper" insights that have to be obtained in learning mathematics than
the gaining of merely operational knowledge (e.g. Sierpinska, 1994)? The relationship
between the "meanings" that students have - for letters, expressions, equations and
operations - and the cognitive demands of using and solving equations can be
questioned. It could be argued (given the Popperian view of the products of
understanding as a succession of theories attempting to solve a problem) that such
interpretations, images, concepts and meanings are not fimdamental insights into
students' cognitive processes, habits and resources; but rather the theoretical by-
products of engagement with past problems (especially ones solved using arithmetic or
proportion). Such "decontextualised theories" are valuable in that they may give
insight into concerns, experiences and consequent rationalisations; and therefore
perhaps may help teachers and researchers to conjecture students' theories in a given
problem situation, or potentially act as strategies in another problem situation. They
are not, however, indicative of an over-arching or underlying "conception" or
cognitive structure (cf. Linchevski & Herscovics, 1996). The study therefore checks
whether any decontextualised theories improve as a result of using the computerised
balance model; i.e. if students learned something over and above that ostensibly
involved in using equations to fmd an unknown number in a situation.

A Computerised Balance Model
One issue that has guided the computerisation of the model is whether it is more
productive to aim to help students to represent situations using conventional algebraic
notation; or to represent less conventionally but transform more easily. For example,
students could be helped to represent conventionally by reflecting on the way symbols
are used; by using syncopated language; by formalising trial-and-error; by emPloying a
mathematics machine like that of Booth (1984); or by using computer algebra systems
such as Derive and MathCad. Less conventional representations could include
spreadsheets and computer languages (see Kieran, 1992).

9
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The conventional approach has to ensure that students realise that formal operations
aim to simplify matters rather than constituting an end in themselves; whereas with the
unconventional approach, very few activities are found in the research literature that
involve equations as opposed to expressions or functions. Should simplification of
expressions therefore precede solution of equations?

If it is not so much the act of representing as an equation that makes an algebraic
strategy attractive, but the associated simplification of the problem, perhaps students
could transform a given representation that gradually becomes conventional. The
program - called EQUATION - therefore starts with randomly-generated balance
puzzles that are initially accessible to informal strategies such as guessing or whole-
part sharing; but as the pu77Ies get harder, such strategies are harder to implement. A
simplification strategy (in the form of "Take off' buttons) should thus become more
attractive. The de facto separation of operation choice from operation execution not
only obviates the need for arithmetic, but enables students to focus on simplification
decisions, and thereby improve their strategies without an initial requirement for
accurate theories of operations on expressions.

IM:11 ffr' barrell

EQUATION initially presents students with balance puzzles of the form E + b = F and
Kb = E, where E and F are weights, b represents the weight of a barrel, K is the
number of barrels (less than 5 at this level). Level 2 puzzles are of the two-step form
E + Kb = F and (potentially across the "cut" of Filloy & Rojano) E + Kb = (K + 1)b.
Puzzles on Levels 3-5 are of the form E + Kb = F + (K+1)b, E + Kb = F + (K+2)b and
E + Kb = F + Lb respectively. Until this point, although division may be necessary, the
answer is still ensured to be a whole number. On Level 6, the El key can be used to
deal with fractional answers.

Algebraic notation is now introduced piecemeal. On Level 7 , the multiple weight
pictures are replaced by a single weight picture. On Level 8, the barrels are labelled
with the letter '13', and the two "Take Off' buttons are replaced by a single El button.
On Levels 9 and 10, the balance pictures are replaced by symbolic notation. Level 11
equations involve negative answers, breaking with the balancing context. Level 12
equations involve negative signs and a ID button. Future features could include a tilting
balance, subtraction via dragging, simultaneous equations, rearrangement and
quadratics.

2 - 3
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V. Problem

4. Solve the
problem

A wallet contim £200 in £5, £10 and £20
notm. 'the number of £5 notes exceeds twice
the number of 110 nctes by 4, while the 5(2x+4)+ I Ox+20(x-3)-200

number of £20 notes is 3 fewer than the numberm
of 10 notes. How many 1.5 notes are there?

\1/4
-40 + 40x = 200

TAW' PM

2. Enter an
equation

3. Solve the
equation

The final levels present students with word problems (such as those in Lins, 1992) that
can be tackled using an optional "Model" button to enter an equation. On Level 13,
each problem is a description of a balance puzzle. Level 14 problems may include
negative signs; Level 15 involves combining ratios; and Level 16 requires expressions.

Exploring the Computerised Balance Model
The empirical work described here aimed to analyse how the algebraic knowledge of a
class of 22 students aged 14-15 could improve as a result of EQUATION; in particular
whether an algebraic strategy (such as representing a situation using conventional
algebraic notation, and simplifying by operating on both sides of an equality) was
chosen in preference to trial-and-improvement or whole-part sharing.

The students were given a pre-test based on items in the research literature, especially
Booth (1984). These items were divided into 4 problem types. Representation items
included "Cl(i) Find the area of this shape [rectangle shown with sides n and m]";
"C2(iii) Find the perimeter of this shape [partial diagram given of a shape declared to
have n sides, each of length 2]"; "C4 Describe a situation in which x 4c could help
you or tell you something."; "C5 Blue pencils cost 5p each and red pencils cost 6p
each. I buy some blue and some red pencils and altogether it costs me 90p. If b is the
number of blue pencils bought and if r is the number of red pencils bought, what can
you write down about b and r?"; and the student-professor problem (C6).
Transformation items included "Dl(ii) Add 4 onto 3n";
"D3(ii) Solve 5x + 4 =4x 31"; "D4(iv) Write 2a + 5b + a more simply if possible";
and "D5 When is L+M+N=L+P+N true? [Always, Sometimes, Never]".

Among the Modelling items was the seesaw Sam and his bricks
weigh 189 kgproblem adapted from Lins (1992).

Sam throws away some bricks and George throws
away four times as many. Now they are balanced.
Flow much weight did Sam throw away?

George and his bric
weigh 273 kg

The fourth problem type was labelled Patterns and included a question with a
sequence of piles of matches (4, 7, 10, 13...). Al (ii) asked for the number of matches
in the 100th pile; and Al (iii) for the number of the pile with 568 matches.

2 - 4
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The class also completed a questionnaire about their views of algebra, including "Why
do you think some people fmd equations difficult?"; "How confident are you about
algebra?"; "Have you ever made up an equation?"; and "If you had to explain to
somebody younger what sort of thing an equation is, how would you describe it?".
Two pairs of students were also given a semi-structured interview lasting about 30
minutes, in which their responses were probed more closely.

The class then used EQUATION for two hour-long lessons, mostly in pairs. One
advantage of the Popperian perspective is that it should be possible to identify
students' strategic theories and concerns not only through their responses to written
items, but also in medias res, when learning is taking place. The program therefore
recorded each pair's inputs to the computer in a log. This can be re-played on-screen
or printed out; and so the research is not limited by the number of video cameras or
tape recorders available. The conversations of the students who were interviewed were
also audio-recorded. This data was collected to try to relate any learning to the
problems contained in the software.

Finally, the class was given a post-test and the students who had been interviewed
were re-interviewed. This was to detect prima facie evidence of improvement in
theories and concerns. A parallel class was given both tests as a control, but did not
work on algebra between the two tests.

Some Test Results
The class had already been taught much algebra - including simplifying expressions,
solving linear, quadratic and simultaneous equations, and functions. Yet the tests
showed that many of the students struggled with algebra, and the questionnaires
suggested that many saw algebra as a pointless ritual. The EQUATION group
improved significantly in terms of raw score (p=0.0064 using a t-test); the control
group did not. But the program is certainly no panacea: the post-test results for the
EQUATION group are not always significantly higher than the control group.

UATION Grou s Control Grou
Item ire sost im i wor s s re most im wor
C1(i) 82 86 2/4 1/18 0.288 92 96 2/2 1/22 0.287
C2(iii) 50 77 8/11 2/11 0.028 50 67 6/12 2/12 0.081

C4 9 36 7/20 1/2 0.015 58 38 2/10 7/14 0.048
C5 9 27 4/20 0/2 0,021 0 8 2/24 0/0 0,081

C6 45 55 6/12 4/10 0.270 38 33 6/15 7/9 0.394

D1(ii) 45 68 6/12 1/10 0.028 58 67 5/10 3/14 0.246
D3(ii) 18 45 8/18 2/4 0.028 4 8 2/23 1/1 0.287
D4(iv) 77 91 3/5 0/17 0.041 83 79 3/4 4/20 0.357
D5 27 59 7/16 0/6 <0.001 42 50 5/14 3/10 0.246
seesaw 23 59 10/17 2/5 0.009 29 42 3/17 0/7 0.041

A1(ii) 45 55 5/12 3/10 0.246 54 71 7/11 3/13 0.106
A1(iii) 50 50 5/11 5/11 0.500 54 46 2/11 4/13 0.213
NB pre and post are facilities (%); imp = (number of students who improved) / (number who could
have improved); wor = (number who worsened) / (number who could.have worsened)

2 - 5 12



Equation-solving improved, as one might
expect. But more interestingly, students 30

25

improved in modelling whether or not 20
15

they used EQUATION. Looking at the
strategies used, an increased concern to 0

-5 WA
use an algebraic strategy in the 10

% Change In Test Score

EQUATION group

tit CrinUol group

ry4v

/

Patterns Modelling Representation Transformation
EQUATION group contrasted with an
increased success with trial-and-improvement in the control group.
The EQUATION group used the following strategies in the seesaw problem:

Pre IT IT IT .17

Post IA A A I? 17 17 IA if IA ./7 IA A ./7 IA IT IA
A = Algebraic, T = Trial-and-error, W = Whole-part, ? = unknown, - = question left blank, I -- correct

Nevertheless, transfer between modelling problems appears to be non-trivial: algebraic
strategies were not used in A1(iii).

Intriguingly, the alleged dangers associated with b being used to stand for "barrel"
rather than "weight of a barrel" do not appear to be reflected in items C6 and D1(ii).

Two Students' Interactions with EQUATION
The class logs have not yet been fully analysed, but preliminary analysis suggests that
they show the active creation and improvement of strategic theories. This is especially'
convincing when listening to the audio-tape of the students' conversations while the
program replays on the screen what the students saw and did.

Rebecca and Nicola, working together, solve puzzles on the first two levels quite
easily. They then simplify a puzzle from 19kg + 4 barrels = 12kg + 5 barrels to
19kg + 1 barrels = 12kg + 2 barrels, but it is not until another student suggests it that
Rebecca says in confident tones "Yeah, take off one barrel.". There's a pause and then
she asks him "What... have you done this one before?", suggesting that she still
doesn't appreciate the need for the barrel to go. But when the new picture appears, she
exclaims, "Ah that's obvious now" and quickly gets the answer. The question is now -
can Rebecca modify the theory to take off in one go as many barrels as there are on,
the side with the smaller number of barrels? A few similar puzzles later, and she can.

Nicola, however, is still struggling to grasp Rebecca's strategy. For example, faced
with 49 = 19 + 2b, Rebecca has no hesitation in doing (49 19) 2; but Nicola asks
"Why are you minusing it?". Rebecca's reply - "Because then you get a balanced
equation and then you just divide it by the last two barrels left." - indicates that
although Rebecca has a good theory for solving the puzzle, her rationale does not
involve the idea of simplifying a situation. In any case, Nicola is quite happy using
subtraction on the very next puzzle - further evidence that grasping a theory does not
always depend on having a coherent rationale for it. It then takes them some time to
work out that they can take off as much weight as there is on the side with the smallest
number of kg displayed. In other words, the theory for barrels does not automatically
get employed for weights.
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The move from pictures to symbols on Level 9 does not cause conirnent - far from
confusing them, they continue with their strategy and in fact are even quicker than with
the pictures because they no longer have to count barrels. The following graph
illustrates this remarkable result, and also indicates the improvement in strategic
theories occurring in response to changes in the nature of the problem at each level:
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Puzzle Number symbolic

The break with the balance model on Levels 11 and 12 was less traumatic than might
be the case with paper-based exercises: the following puzzle log shows the sort of
exploration of algebraic form that enabled students to develop strategic theories to
cope with negative answers and negative signs:

# Action Resulting Equation Time (s)

-22 14b = -12 + 4b

1 Subtract 12 -34 14b = -24 + 4b 13

2 Subtract 4b -34 18b -- -24 12

3 Add 24 -10 18b = 0 13

Add 10 -18b = 10 13

5 Guess -18/10 24

6 Guess 10/-18 Correct 10

Note how the feedback to
Action 1 allows them to
debug their strategy.
Nicola says "You
should've plussed 12.".
Rebecca isn't convinced,
until she tries it.

Rebecca and Nicola seem well aware that choosing an unhelpful operation is not fatal
to the solution process. They can experiment with algebra, try hunches and make
mistakes without having to start from scratch. The evident satisfaction derived from
this success kept the whole class on task for an hour's lesson. However, the above
graph suggests that Rebecca and Nicola need more practice in equations with negative
signs, to consolidate the variety of possible permutations. Moreover, the transfer from
computer-based solution to pencil-and-paper should not be taken for granted.

In retrospect, the modelling problems could have been graduated better - being asked
to find a quantity that was not the obvious choice to be represented by a letter was a
bigger, hurdle than anticipated. Nevertheless, it was amazing not so much that students
chose to formulate their own equations and that they were able to; but that once the
equation appeared on the screen, students said things like "Ah, now I can do it!" and
"It's easy now!". In other words, the equation had become for them a powerful
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problem-solving tool that they were confident about using. Enjoyment in using algebra
was, for many of the students in the study, a new experience.

Conclusions
This study suggests that the objections that might be applied to a physical balance or a
balance picture in a textbook do not apply to the interactive, game-like, computer-
based balance model in EQUATION.

Did any decontextualised theories improve as a result of using EQUATION? Prima
facie evidence (with some provisos) of improved theories for representation and
transformation items would suggest so, even though EQUATION does not instruct
students in tackling such items. It can be argued that this is because the strategic
theories developed when using the program are robust enough for use in other
contexts. The hypothesis that those who struggle with algorithms require explicit .

consideration of meaning in a variable-centred approach to algebra would appear to be
challenged by the apparently greater understanding of the role of algebraic
representation demonstrated by these students. However, test conditions, students'
informal discussions between the tests, and the excitement of being involved in
research might prove to be better explanations for statistical significance than
EQUATION itself. Moreover, there are no guarantees that these improvements are
sustained over long time-scales. Therefore, given that this empirical work was
piiinarily.to illustrate a theoretical analysis of learning processes, rather than to achieve
a large, rigidly controlled experiment with random sampling and allocation, further
research is required to substantiate such claims about effects.
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CHILDREN'S PERCEPTION OF MULTIPLICATIVE STRUCTURE IN
DIAGRAMS

Bjernar Alseth

Telemark College, Norway

Abstract

This paper reports from a larger study of children's perception of multiplicative
structure and how this develops over a period of time. In the reported study, 16 8-
year-olds were asked to consider whether various drawings were appropriate and
helpful or not for someone trying to solve a given problem. The students accepted
drawings that showed the correct number of objects no matter how these objects
were arranged. It was not necessary that the drawing reflected the mathematical
structure in the problem.

Background

Children's use of diagrams and drawings while performing mathematics has
interested many researchers in mathematics education. The research has mainly
focused on the use of diagrams or drawings in solving mathematical problems. In a
meta-analysis Hembree (1992) finds that "draw a diagram" is the strategy that has
been most successful in experiments conducted to improve students' ability to solve
mathematical problems. In a study of students' use of diagrams, Lopez-Real and
Veloo (1993) presented various text problems to 96 students in grade 5 and 6. Out of
a total of 693 responses, only 5% used diagrams. They got 126 responses which were
considered wrong or incomplete. In such cases, the interviewer suggested that the
student made a diagram. In 107 of these cases, the student was able to do so, which
led to a correct solution in 41 cases. In 78 of the remaining 86 cases without a correct
solution, the interviewer presented a ready-made diagram. With this aid, the students
were able to find a solution in 52 of the 78 cases. From this Lopez-Real and Veloo
conclude that 1) students do not use diagrams very often, 2) many students are able
to draw and use a diagram to solve a problem when they are stuck, and 3) students
are able to interpret and use a diagram to solve a problem even though they cannot
produce one themselves.

In addition to being used as a problem solving aid, diagrams may play a significant
role in students' development of mathematical concepts. This role of diagrams has
not been researched to the same extent, even though several researchers include a
visual component in their theoretical framework for describing students'
mathematical conceptions. Goldin (1992) puts emphasis on "imagery" in his attempt
to build a unified model for describing conceptual systems. One central element in
this model is a person's internal representations of a mathematical concept, where
"imagistic systems" is one important aspect. The representations within this category
will be more or less visual since the category also includes auditorial and tactile
systems. Gutstein and Romberg (1995) discuss the use of diagrams and other
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mediative representations in the teaching of addition and subtraction. In their review
of research in this area, they find two main directions: one where it is supposed best
to let the children develop their own diagrams and the other where the children are
taught specific diagrams that are supposed to be useful. The research in both of these
dimensions shows good results for the participants, and Gutstein and Romberg
conclude that it is probably best both to let the children invent their own diagrams
(and procedures) and to teach them directly how to use diagrams (and procedures)
that are connected "to students' prior knowledge at every point in the process" (p.
317).

Reynolds and Wheatly (1992) present interviews of four grade 4 students and one
six-year-old. During the interviews the students are given some unfamiliar
mathematical problems and encouraged to express how they "see" the problem and
eventually use pencil and paper as an to find a solution. During the interviews
Reynolds and Wheatly find that the students mathematical thinking is heavily based
on images: "we believe that meaningful mathematics is image-based" (p. 248), but
also that: "images may not be used when students perform prescribed computational
methods" (p. 248). There has been conducted an extensive amount of research on
students' algorithms for solving problems with additive or multiplicative structures
(see Fuson, 1992, and Greer, 1992, for reviews on this research). The study of
Reynolds and Wheatly (1992) suggests that it can be of interest to study children's
mental images while working with such problems as well.

Thomas, Mulligan and Goldin (1994) describe parts of children's conceptual
understanding of the number system by analysing children's visual representations of
the numbers from 1 to 100. The children in the study were asked to close their eyes
and to imagine the numbers from 1 to 100. Then they were asked to draw the
pictures they.. saw in their mind. The responses show a great diversity of
representations that to a varying degree embody the structural aspects of our number
system. Thomas et al. conclude that "the children's internal representations of
numbers are highly imagistic" (p. 7). Another result of their research is that the
children's drawings to a small degree reflect the structures in the number system, e.g.
how it is built up by units of ten.

The distinction between diagram as a part of ones mathematical conceptions and as a
problem solving device is not clear. As Nunokawa (1994, p. 34) points out:

In the problem-solving process, the solver gives a certain structure to the
problem situation in which the question is asked. This structure consists of
those elements the solver recognises in the situation, the relationships (s)he
establishes among these elements, and the senses (s)he gives to the elements
or the relationships.

The structure the problem solver is working within, is not inherited directly from the
problem situation, but imposed on the situation by the problem solver. Therefore a
student's use of diagram in a specific problem solving situation will depend on
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his/her knowledge of the mathematical concepts involved and on the application of
diagrams as a problem solving tool in general. In the study by Lopez-Real and Veloo
(1993), students in 85 out of 126 cases were not able to produce a helpful diagram
when this was suggested. This might be because of a lack of knowledge about the
use of diagrams as a problem solving tool, or because, as Nunokawa suggests, the
mathematical structure in a problem situation is not sufficiently recognised for the
production of a diagram. The student's conceptual knowledge may not contain the
elements necessary for discerning the mathematical structure embedded in the
situation.

This connects diagrams with a student's mathematical concept knowledge. On the
other hand, there are researchers who separates these aspects. Fischbein (1987, p.
158) claims that: "A diagram is necessarily a post-conceptual structure". The aim of
the research I'm undertaking is therefore to investigate the relationship between

students' perception of mathematical structure in a problem situation and their use
of diagrams as representations of this structure and

their content knowledge regarding that structure and the development of this
knowledge.

This paper presents a part of these investigations.

Method

The results reported here are based on interviews of sixteen 8-year-olds who had just
started their second year of schooling. None of the students had received any formal
education in multiplication prior to the test. Half of the students came from a small
town school, the other half came from a class in a school in an upper-class area in a
big town. Both samples showed a wide range of abilities. The children were
interviewed as part of a longitudinal study. The interviews were based on selected
tasks on multiplication and place value. All tasks contained a visual component. This
was insured by asking the children to produce drawings or diagrams as a response to
the tasks or by asking the children to comment on different drawings/diagrams. The
responses to two of the tasks are presented here.

Each of the two tasks consisted of a problem statement and 11 drawings or diagrams
that might be helpful to a student trying to solve the problem. In the interview, the
problem statements were read by the interviewer, several times if necessary. Then
the drawings were presented one-by-one, and the students were asked whether the
drawing was or was not appropriate to the problem and helpful for someone trying to
solve it. The drawings were made so that they did reflect the structure in the problem
situations in different ways: in groups, along the number line, in arrays. For each
such drawing there were made drawings that looked quite similar, but that did not
reflect the structure.
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Discussion and analysis

The first item was: In a classroom there are 5 tables. There are 3 students seated at
each table. How many students are there in the classroom?

This item was solved correctly by all students except one. Some students found the
correct answer almost immediately, while others solved it after seeing the first
drawing. One student found the correct answer after seeing the second drawing, but
he remained quite uncertain about the correctness of his answer all through the
session.

When asked if a particular drawing was appropriate to the task, the students usually
answered "Yes". Table 1 shows the percentages of students answering "Yes",."No"
or "Uncertain/Yes and No/Don't know".

Drawing 1 2 3 4 5 6 7 8 9 10 11

Yes 38 69 56 69 44 50 81 44 69 50 75

Uncert. 19 19 19 31 6 25 6 38 25 31 25

No 44 13 25 0 50 25 13 19 6 19

Table I. Percentages of students considering the drawings 1 to 11 as appropriate to task 1.

Every drawing presented was considered to be appropriate and helpful to the task by
more than one third of the students. Only for drawing 1 and 5 there were more No's
than Yes's.

Drawing 1

The students who did not accept drawing 1 as helpful, did so for mainly two reasons.
Firstly because the squares were interpreted as the tables in the classroom. This is
what Hughes calls a pictographic representation (Hughes, 1986, p. 57), a
representation that incorporates both the shape and the position of the objects as well
as the number of objects. These students counted in threes e.g. while tapping three
times for each square. They therefore concluded that there are too many squares in
the drawing. The second reason for not accepting this drawing, came from students
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who counted the intersections of the lines in drawing 1. This way they got 4x6 or
4x5 points which they regarded as too many.

Drawing 3

Of the 6 students who answered "Yes" to the drawing 1, 5 answered "Yes" to
drawing 3 as well. The 6th student hesitated and did not give an answer to the 3rd
drawing. The students who thought drawing 1 was appropriate and helpful for this
problem, seemed to do so because of the drawing's representation of the 15 objects
in the drawing. That the drawing also reflects the 3 times 5 multiplicative structure
seemed to be of less importance.

Similar pattern can be seen by comparing the responses to drawings 7 and 10:

Drawing 7

CO 0 ) CO 0 0

(s )
13 students answered "Yes" and 1 student was uncertain to drawing 7, while the
corresponding numbers for drawing 10 were 8 and 5. If a student solved this problem
entirely by counting and (s)he had already figured out that the answer is 15, drawing
10 is as acceptable as drawing 7. This is probably the reason why half the students
found drawing no. 10 helpful. Both drawings helped them do the counting something
that confirmed their calculated answer. For these students the number of objects in
the drawing seemed to be the most important criteria, the way the objects were
organised and the relationships between the objects in the drawing played a less
important role. The student did not relate the drawings to the multiplicative structure
of the question. This assertion is confirmed by the fact that some of the students
accepted drawing no. 5, a picture of 3 children. Even though most students did not
find this drawing helpful, 7 students did. All of these used counting as their main
strategy both for solving the actual problem and for judging whether the drawings
were helpful or not. As commented by a girl who found the drawing of the 3 children
helpful: "It's OK, it's 15, I counted several times."

Item 2 was: Joe bought 4 cookies and he paid 5 kroner for each cookie. How much
did he pay?
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All students found a solution to this task before seeing any drawing, using counting
or additional facts (e.g. "5+5=10 and 10+10=20"). Some of the students modified a
wrong initial solution after seeing the first drawing. Table 2 shows the percentages of
students answering "Yes", "No" or "Uncertain/Yes and No/Don't know" to this task.

Drawing 1 2 3 4 5 6 7 8 9 10 11

Yes 75 94 94 81 44 94 94 88 75 100 69

Uncert. 19 6 6 6 0 6 0 6 6 0 19

No 6 0 0 13 56 0 6 6 19 0 13

Table 2. Percentages of students considering the drawings 1 to 11 as appropriate to task 2.

The number of drawings considered helpful is higher and there are fewer
"Uncertain" than in task 1. One reason for this may be found in that more students
solved the task correctly before starting judging the drawings. The only drawing that
was rejected by more than half of the students was no. 5:

Drawing 5

But still, 7 students found this drawing appropriate_ and helpful.. Most of them
counted, e.g. the number of candles, the number of plates and/or the number of
glasses. If they got "20" one way or another, they concluded that the drawing ,was
helpful. It should be noted that of the 7 students who accepted drawing 5, 4 did
accept all the eleven drawings and 2 accepted all drawings in the first task as well.
This implies that their reason for accepting can both be a reliance on a counting
strategy and a wish to please the interviewer. They might have interpreted the
instruction, not as "is this drawing helpful?", but as "is there a way that this draWing
might be helpful?" which is easier to agree upon.

Acceptance of drawings which do not resemble the multiplicative structure in the
problem, as found in task 1, was also found in task 2. The following drawings, no. 2
and 4, were both accepted by almost all students.
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Drawing 2

CO 0 0 0 C 0 0 0

CO 0 0 0 o.C. CO 0 0 0

The same goes for drawings 7 and 8:

Drawing 7 Drawing 8

While drawing 2 and 8 represents the multiplicative structure in the problem,
drawing 4 and 7 do not. Still most students accepted these drawings as appropriate
and helpful as well as those illustrating the structure.

Conclusion

When young children are presented this type of task, they respond according to their
perception of the task, with respect both to the problem statement and to the situation
within which the problem solving takes place. The responses reported here indicate
that young children accept a wide variety of visual representations of multiplicative
problem statements. This variety is in accordance with the findings of Thomas,
Mulligan and Goldin (1994).

When the children considered a drawing, the most important feature seemed to be
that the number of objects in the drawing was the same as the result of the
calculation. It was of less importance that the arrangement of the objects showed the
underlying mathematical structure in the problem. This supports Nunokawa's (1994)
claim that students do not inherit directly the structure in mathematical problems no
matter how obvious or "intuitive" it might seem to well-educated mathematicians. A
structure is rather imposed on the problem by the student and this perceived structure
is based on the mathematical challenge and on the student's previous knowledge.
This means that a diagram, as a device for representing the mathematical structure in
a problem situation, may not function as such if the problem solver does not have the
appropriate conceptual knowledge. It seems like the understanding of and the use of
diagrams is deeply connected with other aspects of the student's conceptual
knowledge. Teaching of diagrams must therefore be considered connected to the
students' conceptual development, and it is likely to follow the same principles of
teaching and learning as other parts of the mathematical concepts.
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A Discussion of Different Approaches to Arithmetic Teaching

Julia Anghileri

Homerton College, University of Cambridge

Arithmetic is central in mathematics teaching in the elementary years of schooling,
not only for the knowledge of number that has applications in the 'real' world, but
also because computation introduces increasingly complex mathematical processes.
The operations of arithmetic provide opportunities for making connections within a
growing knowledge of numbers, and for developing mental strategies through
written symbolism. International and cross cultural studies have identified
differences in achievements in arithmetic tests and have highlighted differences in
teaching approaches that bring into question the appropriate emphasis to be placed
on fundamental processes like counting, using place value and recording within
standard algorithms. This paper will use the operation of division, including
procedures for 'long' division, to exemplift fundamental differences in teaching
approaches. In particular, it will take as examples the 'culturally cognate'
European neighbouring countries.of England and Holland.

In "A cross cultural investigation into development of place value concepts of children
in Taiwan and the United States", Yang and Cobb (1995) reported that Chinese
students' arithmetical conceptions were generally more advanced than those of
American students even though place value was not explicitly taught as a separate
topic. The notion that numbers are composed of units of ten and one gradually
emerged as an established mathematical truth in the Chinese classroom, in contrast
with the procedurally based manipulative experiences in the American classroom.
The authors suggest that 'it might be fruitful to explore instructional approaches in
which the construction of increasingly sophisticated place value concepts is treated as
an extended problem-solving process rather than the acquisition of predetermined
facts about number'. It is not only the direct teaching of place value that needs to be
questioned as a basis for calculating with numbers, but the role of counting and the
use of known and derived number facts in the development from mental to written
strategies as problems become increasingly complex.

Different teaching approaches

In some countries the explicit understanding of place value is seen as crucial to the
development of number knowledge. Vertical algorithmic recording may be introduced
and structured materials used to illustrate procedures that enable two digit and larger
numbers to be 'disaggregated' into tens and units (SCAA, 1997) so that operations
may be related to single digit number facts. In Britain, for example, there is an early
emphasis on written approaches that promote the use of place value concepts. ,

'Understanding of place value is central to pupils' learning of number....Progression in
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understanding about place value is required as a sound basis for efficient and correct
mental and written calculation' (SCAA, 1997)

Other countries place emphasis on development of a more holistic characterisation of
numbers and focus on mastery of counting to develop informal mental strategies. The
Dutch 'Realistic' approach to arithmetic teaching, for example, reflects the work of
Freudental (1973) who advocated linking up early maths activities to children's own
informal counting and structuring strategies. Discovery of simple patterns and easy
structures like counting in 2s, 5s and lOs is conceived as an important emergent
mathematising activity. In a move away from structured materials the 100 number
square and more recently thc 'empty' number line (Beishuizen, 1993) have been used
to work explicitly at the development of mental counting strategies in a process of
'progressive mathematisation'.

These differences between the British and Dutch approaches to arithmetic are clearly
exemplified in the way the operation of division is ihtroduced and taught. It is
traditional in Britain for pupils to be introduced to the 'bus shelter' notation for
division 4)36 at a stage when the problem may be solved by recall. Encouragement
is given in text books to use this written algorithmic format, as illustrated by the first
example in Nuffield 4 Teacher's Handbook (1992) which sets out the problems in
vertical format 4)36 , and places emphasis on the arrangement where the answer "9 is
placed above the 6".

This recording will facilitate solution of problems with larger numbers like 639+3 .

where a :digitwise' approach provides an algorithm requiring limited understanding of
the numbers involved. Indeed, this written algorithmic approach may later constitute a
mental strategy based on the same 'clisaggregation' of the dividend into digits.

In contrast, pupils in Holland are expected to work mentally only in the early stages of
learning division and they do not meet a written approach until grade ,V(age 9-10)
where very large numbers, e.g. 1670+14, are used to make mental calculation without
some written recording inappropriate. A popular textbook series 'Rekenen en
Wiskunde' (Van Galen et al., 1988) developing the 'Realistic Mathematics Education'
approach (Streetland, 1991), shows the clear distinction made between mental and
written strategies. In the pupils texts, all division problems involve a single digit
divisor are presented in context 'word problems' or in symbols with no numbers going
beyond the facts of the times tables. Introduction of a written algorithm is deliberately
postponed until pupils have a secure understanding of mental strategies for division.

"In grades I, 2 and 3 there is no room for the standard algorithm Mental .

arithmetic must be developed first, according to the realistic idea. If the
algorithms are introduced in grades 2 and 3 mental arithmetic does not stand
a chance, certainly not for weaker pupils, and arithmetic threatens to
deteriorate to blind manipulation with numerical symbols - this at the expense
of both pure arithmetic as well as the ability to apply it."
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The teachers' guides in this Dutch series introduce problems with larger numbers
through context problems like calculating the number of buses needed to transport
1128 soldiers when each bus has 36 seats (Streefland, 1991). Through discussion of
such problems pupils are led through many different stages which relate their mental
strategies with written recording of this thinking. Pupils are expected to make
progress at different rates towards more 'abbreviated arithmetic methods' and greater
efficiency in recording.

Organisational characteristics

In these two approaches there are contrasts in classroom organisation, timing for
introducing written recording and motivation when introducing a written approach.
British pupils practice written procedures using a standard algorithmic approach, as
individuals or in small groups, early in their experience of division. Small numbers
arc initially used to develop a 'place value' recording system that has direct
application to problems with larger numbers. Dutch pupils work together as a whole
class and initially develop mental strategies and recall for division of small numbers.
Only later is whole class discussion used to establish the way strategies may be
recorded for larger numbers.

In understanding the contrasting teaching approaches in Britain and Holland these
organisational characteristics including the use of group work and whole class
teaching become relevant. It is common for pupils in Britain to work from an early
stage independently with pencil and paper. To accommodate the needs of individuals
who develop arithmetical understanding at different rates division may be introduced
to individuals or small groups at different times throughout years 4, 5 and 6 (ages 8 -
11). This is in contrast to the tradition in Holland (and many continental countries)
where whole class teaching involves all pupils starting division at the same time and
early emphasis on mental strategies.

There has been much publicity recently in Britain encouraging whole class tcaching
but it must not be forgotten that such an approach is facilitated in many European
countries by a policy of pupils at the lowest end of the attainment range repeating one
or more years and by the withdrawal of pupils with special educational needs. Data
presented by Prais (1997) contrasts English classes with 100% of pupils of the same
chronological ages in the same class with only 58% chronologically 'correct' in
corresponding classes in Switzerland where delayed entry into school and repeated
years are common.

Partitioning down and Counting up

The fundamental difference in the two approaches referred to above is not only the
stage at which written recording is introduced but also the way large numbers are
dealt with and related to the facts already established for small numbers.

On the one hand, numbers are split/disaggregated into tens and units or HTU and
practical activities are linked to this model of deconiposition. Within such teaching,
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written algorithms are related to the use of structured apparatus like Dienes blocks
(SCAA, 1997) and usually linked to a vertical system of written recording.

On the other hand, counting is used to build an understanding of patterns which help
to characterise numbers as wholes in relation to each other. Support for this holistic
approach to numbers has been identified in use of the 'empty' number line
(Beishuizen, 1993) where 'steps' may be taken in different sizes and focus is placed
on behaviour around the tens and hundreds boundaries.

Whether 'partitioning down' from the dividend or 'counting up' from the divisor, the
division of large numbers can only become efficient if pupils recognise that numbers
are made from constituent parts in different ways. In order to divide 639 by 3, for
example, the digits 6, 3 and 9 corresponding to 600, 30 and 9 may be divided in turn
by 3 with a standard written system 3)039 facilitating this solution strategy.
Alternatively, 639 may be 'built up' in stages of 300 and 300 to give 600 (200 lots of
3) and then 30 (10 lots of 3) and 9 (3 lots of 3). Clearly there is a correspondence
between these methods but strategically the approach is different. In either case it is
important that pupils' overall number sense continues to be developed through
connections with existing number knowledge and mental strategies and that
efficiency in written formats is not developed at the expense of understanding.

A study in Britain

In a small scale study of 51 pupils in years 5 and 6 (9 to 11 year olds) in Britain,
each pupil was asked to solve six division problems which were chosen to involve
different types of solution strategy. Pairs of pupils were videotaped solving the
division problems which were presented one at a time in symbols (e.g. 96 + 4) on
individual cards. After thcy had completed each problem, using pencil and paper for
working, each child was asked to explain their solution procedures to the interviewer
(and the camera). The same children were video taped again four months later
attempting similar problems after they had received further instruction for division.
This instruction included practice with the standard written algorithm. As expected,
overall performance improved but this was not the case for all the problem types or
for all the individuals tested.

Problem % Successful
(Oct/Nov)

% Successful
(Feb/March)

1) 96+4 / 96+6 53% 47%
2) 34+7 / 41+7 11% 33%
3) 6000+6 / 8000+8 61% 87%
4) 4+% / 3+% 35% 54%

5) 6+12 / 4+8 19% 16%

6) 68+17 / 76+19 25% 35%

Table showing results in tests (n=51)
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Improvement from an unsuccessful attempt at 96+4 to a successful attempt at 96+6
was seen in 6 children (12%) and in 4 cases this involved a change from an informal
counting strategy to use of the written algorithm. In a further 9 cases (18%), however,
success with 96+4 changed to failure with 96+6 despite further instruction. In 2
cases the written algorithm was used successfully for 96+4 but not for 96+6. In the
other 7 cases counting stratcgies involving multiples of 4 (or 6) were used for both
problems and deterioration may be attributable to the change in divisor from 4 to 6.
Further practice with multiplication facts may explain the improvement in the second
type of problem (34+7/41+7) while improvement on the third type (6000+6 / 8000+
8) showed evidence of more successful use of the written algorithm. Additional
experiences with fractions may explain the better performance for the fourth problem
type.
In the fifth problem type (6+12/ 4+8) the obvious error of interpreting the problem
with numbers reversed (i.e. 12 +6/ 8+4) was more prevalent in the second testing
than in the first.
The final example was most interesting because out of the 13 pupils who were
successful with the problem 68+17 in the first test, more than half (7 individuals)
switched to a written algorithmic approach that was not successful for 76+19.
Improvement overall was due to 12 individuals who were not successful with 68+17
but successfully used a counting strategy involving adding 19s to solve 76+19.

improved deteriorated overall change
96+4 / 96+6 12% 18% down 6%
68+17 / 76+19 14% 24% up 10%

Table showing changes in performance between first and second test

These two examples give cause for concern because of the large deterioration in
performance,compared with the improvement after instruction.
The overall performance for the individual children across the six items showed
improvement in 24 cases (47%) but for 10 individuals (20%) they achieved fewer
correct answers in the second test than in the first. In one notable case, David was
correct for 4 items in the first test using informal strategies but used the written
algorithm for all six items in the second test and was successful only with 8000+8.
Although this is a small sample and the items were not identical across both tests
there are some aspects from the results that cause concern, particularly where a
successful informal strategy is replaced by an unsuccessful application of a written
algorithm.

Formalising procedures

In a comparative study of mental computation performance in Australia, Japan and
the United States, Mc Intosh, Nohda, Reys and Reys (1995) concluded that 'early
concentration on formal computation for all children, whether mental or written, may
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not be beneficial in the longer term. Indeed, it may be time wasted which could
profitably have been used on material at a more appropriate conceptual level".

Formalising strategies for arithmetic problem solving is at the heart of arithmetic
teaching and a fundamental question appears to be the relevance of place value as a
central organising characterisation for work with large numbers. Structured materials
have been very influential in both the U.S. and the U.K. (Stern & Stern, 1971;
Thompson, 1997) to support place-value approaches with corresponding written
(vertical) procedures. Stern and Stern emphasized that this method should be
preferred because "the important principles of mathematics must be demonstrated"
(p. 223).Counting is seen as a mechanical and meaningless activity, which should not
be stimulated but instead should be replaced (as soon as possible by arithmetic
blocks and following the formal HTU structure). Beishuizen and Anghileri (1998)
argue to the contrary that counting needs to be developed and extended to include
abbreviated forms of counting in units other than ones. The empty number line
provides a model that is used in Holland to teach mental strategies for addition and
subtraction enabling imaging of moves forward or backward in steps of tens and
hundreds as well as convenient units that may relate to any particular problem. This
develops pupils' familiarity with numbers and their construction in a variety of ways
from different component parts. It has also been argued that the calculator can be an
important support for developing understanding of the ways different numbers are
constituted. Ruthven (1998) identifies pupils confidence that is particularly related to
the Calculator Aware Number (CAN) curriculum in which explicitly taught mental
methods were based on familiarity with 'smashing up' numbers or 'breaking dowri'
numbers i.e. disaggregating them into convenient components. Anghileri (1998)
refers to this process as 'chunking' and notes the way 'chunks' will vary across
different problems. For example 96 4 will be facilitated by 'chunking' 96 into 80
and 16 while 96 ± 6 will be better related to 96 as 60 and 36.
The role of recording

In the two approaches contrasted in this report, through place value or extended
counting, written recording appears to be an important consideration. Ruthven (1998)
identifies two distinct purposes for written recording: "to augment working memory
by recording key items of information" and "to cue sequences of actions through
schematising such information within a standard spatial configuration". In the case of
long division it appears that recording methods can 'direct and organise' the solution
strategy or 'follow and record' steps in a mental strategy. Of course these distinctions
are not clear cut but teaching of long division appears to illustrate well two diverse
approaches with the same objective of curtailing procedures and ultimately producing
an efficient recording process that will have application to any problems. With
growing interest in international comparisons of performance in arithmetic more
collaboration is needed in analysing and sharing the principles underlying teaching
approaches and more research is needed to evaluate the effectiveness of such different
approaches.
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A MODEL FOR ANALYSING THE TRANSITION
TO FORMAL PROOFS IN GEOMETRY
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Summary. This report sketches a model for interpreting the processes of exploring geometric
situations, formulating conjectures and possibly proving them. It underlinesan essential continuity
of thought which rules the successful transition from the conjecturing phase to the proving one,
through exploration and suitable heuristics. The essential points are the different type of control of
the subject with respect to the situation, namely ascending vs. descending and the switching from
one to the other. Its main didactic consequence consists in the change that the control provokes on
the relationships among geometrical objects. The report frames the research in the existing
literature (§1) and exposes the main points of the model through the analysis of a paradigmatic
case (§§ 2,3); in the end (4) some partial conclusions are drawn.

1. Introduction.
In the current literature on mathematics education, the concept of proof is

examined in a wide sense, which goes beyond the narrow formal one; in fact, also
explorations, conjectures, argumentations produced by novices and experts while
solving problems, as well as semi-rigorous, zero-knowledge, holographic proofs (dee
Hanna, 1996), are taken into account, because of their interest in the pragmatic' of
proof (Hanna & Jahnke, 1993). However, in real school life, even if proof is
generally considered central in the whole mathematics, it does not enter all the
curriculum, but it is restricted almost exclusively to geometry (Hanna, 1996). The
processes through which pupils and experts approach proofs are analysed 'from
different points of view and by means of different tools. First, at least two
components are considered crucial for focusing the meaning of proof, hamely a
cognitive and a historic-epistemological one (Barbin, 1988; Balacheff 1988, '1991;
Simon, 1996; Harel, 1996; Mariotti et al., 1997). Of course the two components can
be separated only for reasons of theoretical analysis; on the contrary, they are deeply
intertwined in the reality (Hanna, 1996) and both must be considered in order to
tackle suitably the didactic of proof (even if different authors underline more one or
the other of them). Second, the production processes of proofs are analysed pointing
out continuity and discontinuity features both from the epistemological and the
cognitive point of view; the question is particularly intriguing when one considers
the relationships between the argumentative, informal side and the discursive, formal
one of a proof (in the wide sense of the word). For example, the transformational
reasoning of Simon, 1996, the cognitive unity of Mariotti et al., 1997, all underline a
substantial continuity from a cognitive point of view. The issue of continuity from
an epistemological point of view has been faced in Polya, 1957, Barbin, 1988 and
Thurston, 1994. Moreover, some authors, like Duval, 1991, mark the dramatic
epistemological and cognitive gap between argumentation and proof: Duval tackles
it from a didactic point of view using suitable semiotic mediators, namely graphs for
representing the formal deductions. In an intermediate position we find Harel, 1996
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with his students' proof schemes and Balacheff, 1988, who, following the analysis of
Lakatos, stresses the big epistemological discontinuities, which can be overcome by
pupils, insofar as they become able to pass from the naive-empiricist way of looking
at matheinatical sentences towards a more formal approach, through the discovering
of the so called generic example. The explicit or implicit attitude of the teacher
towards the question 'continuities vs. discontinuities', both from a cognitive and an
epistemological point of view, reveals to be crucial for planning the didactic of proof
in the class (for examples of concrete approaches see Balacheff, 1988; Duval, 1991;
Mariotti et al., 1997). The problem becomes even more intriguing when new
technologies are taken into account and such softwares as Geometer's Sketchpad,
Cabri-Géomètre, Derive, Excel or others are used in the class as tools for exploring
situations, making conjectures and validating the same process of proving theorems.

Within this research issue, a crucial point consists in analysing the delicate phase
of transition to the formal side, exploiting its connections with the informal one.
Important variables for such an analysis are: the mathematical area, for ex. geometry,
algebra, analysis, etc.; the modalities after which the problem is given, namely
exploring an open situation vs. proving a given statement; the environment, namely
paper and pencil vs. computer (for ex. a Cabri setting). Our research group has been
studying . the above problem for two years in the area of elementary geometry,
making experiments in different environments with high-school and college
students, as well as with their teachers. In this report we expose a theoretical model
we elaborated to investigate the transition to the formal side. It is based on a careful
analysis of processes of thought in experts or clever students who explore open
problems in paper and pencil environment. It is used as a key to interpret processes
of thought in pupils of different levels who solve geometrical problems in different
environments and with different modalities. The main sources for this model are the
papers, quoted above, which analyse the relationships between conjecturing and
proving under the issue of continuity. In particular, we are indebted to Gallo, 1994,
for the notion of ascending/descending control and to Mariotti et al., 1997, for that
of dynamic exploration, which supports the selection/specification of conjectures in
the form of conditionals and rules the passage to the proof construction, by
implementing the logical connections of sentences. We illustrate the model by means
of a paradigmatic example, which is exposed in §2 and commented in §3.

2. A paradigmatic example.
We expose the protocol of solution given by a teacher to the following problem:
Problem. Given a quadrilateral ABCD and a point Po, construct the point P1,

symmetric of P0 with respect to A, P2 symmetric of PI with respect to B, P3 symmetric
of P2 with respect to C, P4 symmetric of P3 with respect to D. Determine which
conditions the quadrilateral ABCD must satisfy so that Po and P4 coincide.

The subject solving the problem used pencil, paper and (sometimes) ruler; he was
invited to use only elementary mathematics and to think aloud: an observer took
notes of his comments (which are written in italics, while observer's comments are in
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bracket parenthesis). The solution process has been divided into 15 episodes, which
lasted about six minutes in the whole; a minor episode (n.6) has been skipped,
because it is a detour not relevant for our analysis; references are to figures at the end
of the protocol. The comments on the protocol are given in §3. (S = subject) .

1. [S draws very rapidly and sketchily, without using the ruler: fig.1].
2. "I'll check for a simpler case, with only three points" [S sketches a figure with
triangles instead of quadrilaterals, i.e. D and 134 disappear] "I do not see anything".
3.7 consider a particular case, which is easier: the rectangle" [S sketches fig.2].
"Perhaps it closes in the rectangle's case" [in the figure it is dubious if Po and P4
coincide (Po, P1, P2/ P3/ P4 close) or not, because the figure has been drawn by hand].
4.7 can't see that in this way. I redraw a very different case, always with rectangle:
Po far away from A" [S draws fig.3 without ruler but with more attention, with a
smaller rectangle but with Po far from A: Po and P4 seem to coincide].
5.7 see the Varignon's case in the opposite way" [Varignon's theorem is a classic
Cabri problem, well known to S; it says that, given a quadrilateral, if K, L, M, N in
order are the middle points of its sides, then the KLMN is a parallelogram;
successively asked, S says that he meant that he saw the Varignon configuration,
with K, L, M, N as the rectangle of fig.3] .

[S looks carefully at the figure] "However I realise it's not so".
6. [In this short episode S tries to follow another idea, but he abandons it soon].
7 . "Let me draw it better" [S draws fig.4 with the ruler and with great care].
"I see Varignon's case applied to crossed quadrilaterals, 'cause I've drawn all
segments completely" [S drew full segments between Po, P1, P2, P3/ Pa] .
8. "Now I am going to use the analytic method. I imagine the problem has already
been solved. In my mind I anticipate that it's Varignon" [By analytic method S
means the method of Analysis due to Pappus (see Panza, 1996); S redraws a figure
like fig.4, using the ruler; but now he first draws points Po, Pli P2, P3, then A, B, C, D
as midpoints of the sides P0131, P1P2, P2P3, P3P0; in all previous drawings S drew A,
B, C, D first and then Po, P1, P2/ P3/ Pa].
9. "I see it's a rectangle again" [In fact, in fig.4, even if S started from 'generic' Po,
PI, P2/ P3/ P4 the quadrilateral ABCD looks like a rectangle].
"I conjecture that if it is a rectangle it will close".
10. "I'll prove it. I'm guided by Varignon's proof It results that AB // CD // P0P2 and
BC // AD // P IP3. Now I look at the figure again to prove it's a rectangle." [He looks
at the figure... he draws AC, BD...].
11. "...hem...1 reconsider AB // PoP2... and I observe that [the angle] ABC is equal to
[the angle formed by the lines] P0P2, P1P3. I come to believe that in general it isn't a
rectangle: I look for a counterexample. I start from Po, P 1, P2, P3 and draw ABCD
carefully". [see fig.5].
12. "It's a parallelogram. The proof is done! I write it down".
13. "I know that given a quadrilateral ABCD (even crossed), the quadrilateral
constructed on the midpoints is a parallelogram, 'cause of Varignon. Now let us
consider a parallelogram ABCD. If Po,P),P2,P3,P4 are built as symmetric then the
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thesis is that the points Po and P4 coincide. I go back to the figure to prove it" [S
writes the key words of his theorem arranged as hypothesis and thesis on another
sheet of paper; then he comes back to the sheet with his drawing... ].
14. "It's a synthesis!" [...S takes a new sheet of paper and draws a figure that is
deliberately 'wrong', by hand without a ruler, see fig.6].
"I consider P0,P1,P2,P3 with the resulting quadrilateral: I construct the first three
midpoints which are A, B, C. [While speaking, he draws fig.7] Then I construct D',
midpoint of P0P3. ABCD' is a parallelogram because of Varignon".
15. [Now S draws fig.8 and writes down what he is saying] "ABCD is a
parallelogram too, by hypothesis. If D D' then CD CD', but they are both
parallel to AB. It's absurd! Then ABCD and ABCD' are congruent. Therefore Po and
P4 coincide".
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Fig.5

Fig.7

Fig.6

Fig.8

3. The theoretical model.
It is now time to explicit our model of transition from conjecturing to proving (see

the protocol as a paradigmatic example).
As a first working hypothesis, which we shall modify during the exposition, we

use that of Mariotti et al., 1997 (but the responsibility of the interpretation is only
due to this report's authors). High and middle level subjects, who explore
geometrical problems in different environments in order to conjecture and to prove
theorems (within their own theoretic framework) show successively two main
modalities of acting, namely: exploring/selecting a conjecture and concatenating
sentences logically. In fact, any process of exploration-conjecturing-proving is
featured by a complex switching from one modality to the other and back, which
requires a high flexibility in tuning to the right one. Our aim is to analyse carefully
how the transition from one modality to the other does happen, using the protocol
above: its dynamic has been divided into four main phases, each corresponding to a
different modality or transition. At the end, the picture of the transition will appear
and we shall rephrase the working hypothesis in a suitable way (§4).

PHASE 1. Episodes 1-3 show a typical exploring modality, with the use of some
heuristics to guess what happens working on a particular example (ep.3), hence
selecting a conjecture. The conjecture in reality is a working hypothesis to be
checked: its form is far from a conditional statement and to confirm it new
explorations are made by using a new heuristic principle (namely: choose very
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d(erent data, to check the validity of the conjecture, ep.4). The phase culminates in
ep.5: some of its general features are described in Mariotti et al., 1997, specifically
the internalisation of the visual field (the subject 'sees'), and the detachment from the
exploration process (which is seen from the outside); the situation is described by the
subject in a language which has a logic flavour (ep.5), but it is not phrased in a
conditional form (if...then) nor it is crystallised in a logical form: in fact, the subject
expresses his hypothesis (which is more stable and sure than that of ep.3) not yet as a
deductive sentence, but as an abduction, namely a sort of reverse deduction, albeit
very different from an induction (Peirce, 1960) (1). In fact the subject sees (with his
mind's eyes, because of the internalisation of his visual field) what rule it is the case
of, to use Peirce language. Namely, he selects the piece of his knowledge he believes
to be right; the conditional form is virtually present: its ingredients are all alive, but
their relationships are still reversed, with respect to the conditional form: the
direction after which the subject sees the things explored in the previous episodes is
still in the stream of the exploration: the control of the meaning is ascending (we use
this term as in Saada-Robert, 1989 and Gallo, 1994). It is in the stream of the
preceding exploration that the negative validation at the end of ep.5 happens. Ep.7 is
still in the same stream of thought; now the heuristic is: draw better to see better;
indeed it is the last drawing (fig.4) which allows the second abduction (ep.7): it is
interesting to observe that the hypothesis changes (now the quadrilateral is crossing)
but it is still in the reversed abductive form.

PHASE 2. Ep.8 marks the switching from the abductive modality to the deductive
one: the meta-comments in the protocol show this clearly; but this change is showed
also by the way in which the figure is drawn: see the observer's comments. Now the
control is descending and we have an exploration of the situation, where things are
looked at in the opposite way. Ep.9 shows this: exploration now produces as output
the figure which in previous explorations was taken as input. The reversed way of
looking at figures leads the subject to formulate the conjecture in the conditional
form. Now the modality is typically that of a logical concatenation.

PHASE 3. Now in the new modality suitable heuristics can be used, namely look
for similar proofs (ep.10): this task seems straightforward for the subject and so does
not generate any further exploration, at least as far as parallelism of sides is
concerned. Some exploration (with descending control) starts at the end of ep.10, for
proving that it is a rectangle, but it does not work, so a new exploration, after a new
selection (concerning angles) starts with ep.11. Here the descending control is
crucial: it allows the detached subject to interpret in the 'right' way what is
happening: it is not an abduction (what rule it is -possibly- the case of) but a
counterexample (what rule it is not -surely- the case of); the switched modality has

(I) The example given by Peirce is illuminating. (Peirce, 1960, p.372). Suppose I know that a certain
bag is plenty of white beans. Consider the following sentences: A) these beans are white; B) the
beans of that bag are white; C) these beans are from that bag. A deduction is a concatenation of the
form: B and C, hence A; an abduction is: A and B, hence C (Peirce called hypothesis the abduction).
An induction would be: A and C, hence B.
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started a new exploration process, which culminates in the final conjecture of ep.12.
PHASE 4. It is the real implementation of logical connections in a more global and
articulated way than the local concatenation of statements, which featured the
previous conjecturing phase. Here detachment means to be a true rational agent
(Balacheff, 1982), who controls the products of the whole exploring and
conjecturing process from a higher level, selects from this point of view those
statements which are meaningful for the very process of proving and rules possible
new explorations. In this last phase, conjectures are possibly reformulated in order to
combine better logical concatenations (ep.13) and new explorations are made to test
the latter: looking at what happens word by word, this exploration is not very far
from those made under ascending control. It is the sense attached to them by the
rational agent to change deeply the meaning of what happens. A typical example is
ep.14, where a 'wrong' figure is drawn (fig.6) in order to explore the situation,
anticipating that it is an impossible case: during the episode a second figure is drawn
(fig.7), where the 'logical impossibility' has changed the relationships among the
points: in fact the old point D has been substituted by a new point D', which
incorporates in a positive way the logical impossibility. The control is typically
descending and global; in fact a proof by contradiction is tackled: the sense of the
logical relationships among the drawn objects produces a 'new' situation, which is
explored. In ep.15, the 'old' and the 'new' situations are put together by the rational
agent (fig.8), who can draw the conclusion by contradiction.

4. Some partial conclusions and related problems.
Our model is somehow different from the starting working hypothesis: in fact the

exploration and selection modality is a constant in the whole conjecturing and
proving processes; what changes is the different attitude of the subject towards
her/his explorations and the consequent type of control with respect what is
happening in the given setting. It is the different control to change the relationships
among the geometrical objects, both in the way they are 'drawn' and in the way they
are 'seen'. This seems essential for producing meaningful arguments and proofs.
Also detachment changes with respect to control: there are two types of detachment.
The first one is very local and marks the switching from ascending to descending
control through the production of conjectures formulated as conditional statements
(that is local logical concatenations) because of some abduction, like in ep. 5 and 7.
The second one is more global and we used the metaphor of the rational agent to
describe it: in fact it is embedded in a fully descending control, produces new (local)
explorations and possibly proofs (that is global logical combinations), like in ep. 10,
11, 12, 14. The transition from the ascending to the descending control is promoted
by abduction, which puts on the table all the ingredients of the conditional
statements: it is the detachment of the subject to reverse the stream of thought from
the abductive to the deductive (i.e. conditional) form, but this can happen because an
abduction has been produced. The consequences of this transition are a deductive
modality and the new relationships among the geometrical objects of the figures, as
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pointed out above (ep. 8). The inverse transition from descending to ascending
control is more 'natural': in fact as soon as a new exploration starts again (ep. 14),
control may change and become again ascending, even if at a more local level (with
the rational agent who still control the global situation in a descending way). In
short, the model points out an essential continuity of thought which rules the
successful transition from the conjecturing phase to the proving one, through
exploration and suitable heuristics, ruled by the ascending/descending control
stream. The most delicate cognitive point is the process of abduction, crucial for
switching the modality of control; the most relevant didactic aspect is the change in
the mutual relationships among geometrical objects, which are the essential product
of such a switching. Many scholars, with a different language, exploited carefully
various aspects of the way in which the switching can be realised by pupils in the
class. In another ongoing research, we use our model to study how the Cabri
environment can support pupils in getting the above switching and changing of the
relationships among the geometric objects.
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Summary. in this report we analyse some modalities that feature the delicate transition from
exploring to conjecturing and proving in Cabri: we use a theoretical model that works in other
environments too. We find that the different modalities of dragging are crucial for determining a
productive shift to a more formal' approach. We classify such modalities and use them to describe
processes of solution in Cabri setting, comparing it with the pencil and paper ones.

1. Introduction.
The literature on computers as cognitive tools (Midler, 1993) which modify the

learning of mathematics because of their specificity and 'situativeness' as learning
environments (Hoyles & Noss, 1992) is especially rich for Cabri-geometre (Laborde,
1993; Balacheff, 1993; Hölz1, 1995, 1996). In particular, several researches which
analyse specific components of Cabri's epistemological domain of validity
(Balacheff & Sutherland, 1994) point out that for learning geometry in Cabri
environments the dialectic figures vs. concepts (Mariotti, 1995 and Laborde, 1993)
and perceptual activity vs. mathematical knowledge (Laborde & Strasser, 1990) is
essential. Typically, a geometrical problem cannot be solved only remaining at the
perceptual level of figures on the screen, even if their graphical space is provided
with movement as a further component (Laborde, 1993): a conceptual control is
needed, and it requires some pieces of explicit knowledge. Dragging, which has a
complex feedback with .the visual perception and the movements of the mouse, is a
crucial instrument of mediation between the two levels (1-161z1, 1995): its function
consists in validating procedures 'and constructions built up using the menu
'commands (Laborde & Strässer, 1990, p.174; Mariotti et al., 1997). While dragging,
pupils who make constructions or explore geometric situations often switch back
and forth from figures to concepts and an evolution of their attitudes from the
empirical to the theoretical level can possibly be generated in the long run
(Balacheff, 1988; Mariotti et aL; 1997; Laborde, 1997). This switching (and the
generated evolution) can also be observed in pencil and paper environments,
particularly in experts' and clever students' performances; it is crucial in all
environments insofar as it makes possible for pupils to manage the big gap between
the status of knowledge based ori drawings and the one which refers to geometrical
concepts, sustaining them in the 'solution process and avoiding stumbling-blocks.
Our research group developed a model for analysing such processes of switching in
pupils who explore geornetric situations, who produce conjectures and prove them.
To get it, in the 'last two years we carried on teaching experiments in different
environments with high-school pupils, college students, some of their teachers and
we collected many 'eriipiricardati..In this report we use our model for describing the
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switching modalities in pupils who use Cabri (1) to solve geometric problems and for
contrasting therm with the modalities of pencil and paper environments. Such a
description will isolate in a transparent way some components of Cabri's
epistemological domain of validity, which become important didactic variables for
our project of teaching geometry at high-school level with a multi-medial approach
(pencil and paper, Cabri, geometrical machines, etc.). The major results of our
research are two. First, dragging behaviours change according to the specific
epistemological and cognitive modalities after which pupils develop their control
(and consequently make their actions) in Cabri; hence, looking at dragging
modalities can give an insight into other inner and more theoretical variables.
Second, in some pupils, particularly in those who produce good conjectures while
exploring open situations, the modality of dragging involves different specific
features, such as the so called lieu muet (dummy locus), described below (§2).

2. Explorations and constructions in Cabri.
Before discussing some concrete examples, we sketch very shortly the main points

of our model. We consider tasks of exploring open geometric problems (Arsac,
1988) in order to select/formulate conjectures and possibly to prove them. The
model points out an essential continuity of thought, which features the successful
transition from the conjecturing phase to the proving one, through exploration and
suitable heuristics, ruled by what we call an ascending/descending control stream
(see Saada-Robert, 1989 and Gallo, 1994). The process of switching from one
control modality to the other is a delicate cognitive point, which has also a relevant
didactic aspect: in fact it is deeply intermingled with the change in the mutual
relationships after which the geometrical objects of the situation are seen. It is
precisely in these two aspects that one can observe different dynamics between
'pencil & paper' and 'Cabri' environments. In both, the transition is ruled by
abduction, which will be explained below; but while in the former the abductions
are produced because of the ingenuity of the subjects, in Cabri the dragging process
can mediate them: our model allows to describe how Cabri can support pupils in
getting the above transition.

We distinguish between 'constructions' and 'open problems' explorations', which
correspond to two different modalities of using Cabri. The former consists in
drawing figures through the available commands of the menu, because of a
construction task, which is considered solved if the figure on the screen passes the
dragging test: the Cabri figure will not be messed up by dragging it (it has been
studied by Mariotti et al., 1997). For the latter, let us illustrate it with an example.
Consider the following problem to be solved in Cabri:

Let ABCD be a quadrangle. Consider the bisectors of its internal angles and
their intersection points H, K, L, M of pairwise consecutive bisectors. Drag ABCD,
considering all its different configurations: what happens to the quadrangle HKLM?
What kind of figure does it become?

(1) All our experiences refer to Cabri I, MS-DOS version.
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This is a typical example of the open problems we use in our experiment, which is
being carried out in the second year of a 'Liceo Scientifico' (pupils aged 15), aimed
at teaching geometry with a multi-medial approach (in this specific case, with
Cabri). Our example will illustrate other modalities of dragging, namely: (i)
wandering dragging, that is dragging (more or less) randomly to find some
regularity or interesting configurations; (ii) lieu muet dragging, that means a certain
locus C is built up empirically by dragging a (dragable) point P, in a way which
preserves some regularity of certain figures.

We analyse the data collected from a class of 27 students, who have already
learned some Euclidean geometry the year before; the exposed activity takes place in
a two-hour lesson. One hour is devoted to the work with Cabri (two students for
each computer): having created a paper and pencil drawing of the geometrical
situation, the pupils go on working in Cabri and making conjectures. The second
hour is devoted to a mathematical discussion about the groups' discoveries: groups
show their discoveries to the class, using a data-show, and the teacher orchestrates
the discussion (according to the methodology illustrated in Bartolini Bussi, 1996) so
that students can move towards more general statements. The analysis of the
collected material shows three different ways of using Cabri in order to solve the
problem, corresponding to the three dragging modalities mentioned above: lieu
muet, dragging test, wandering dragging. A case in point of the first two is the
protocol of Group-A (high-level students):

1. The pupils start to shape ABCD into standard figures, apparently following an
im licit order 1-2 i.e.: when ABCD is a parall., HKLM is a rectan le , 2-3, 3-4.

EXTERNAL FIGURE ABCD INTERNAL FIGURE HKLM
Parallelogram (1) Rectangle (2)
Rectangle (2) Square (3)
Square (3) The bisectors and the diagonals all

pass through one point. (4)
2. As soon as they see that HKLM becomes a point when ABCD is a square, they

consider it an interesting fact, therefore they drag ABCD (from a square) so that H,
K, L, M keep on being coincident (lieu muet exploration).

3. They realise that this kind of configuration can be seen also with quadrilaterals
that apparently have not got anything special; so they look for some common
properties to all those figures which make HKLM one point. Paying attention to the
measures of the sides of the figure ABCD (which appear automatically next to the
sides and change in real time, while dragging along the lieu muet), they see that the
sum of two opposite sides equals the sum of the other two; they remember that this
property characterises the quadrilaterals that can be circumscribed to a circle.

4. Using the Cabri menu, they construct the perpendicular lines from the point of
intersection of the angle bisectors to the sides of ABCD: they 'see' that this point has
the same distance from each side of ABCD, then they draw the circle which has this
length as radius: it is the circle inscribed in ABCD. They formulate the following
'conjecture': If the external quadrilateral can be circumscribed to a circle, then its
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internal angle bisectors will all meet in one point, so the distances from this point
are equal and the sum of the opposite sides is equal too.

5. They wonder whether this works even if they begin their construction with the
circle: they construct a circle, a quadrilateral circumscribed to this circle, its angle
bisectors and they observe that all of them meet in the same point; afterwards, they
write down this 'conjecture': If the internal angle bisectors of a quadrilateral all
meet in the same point then the quadrilateral can be circumscribed to a circle.

Let us examine carefully episodes 2 and 3. First, pupils look for an object more
generic than a square (which is thought as "trivial" and "too easy a figure"), such
that points H, K, L, M still coincide: they do that by lieu muet dragging. Then, their
attitude changes: they look at the figure in Cabri without moving anything, try to
discover some rule or invariant property under the lieu muet dragging, select 'which
rule it is the case of in their geometrical knowledge; this phase is marked by a
continuous switching from figures to theory and back. Some general features of this
new attitude are typical and described also in Mariotti et al., 1997: specifically we
see in these pupils the internalisation of the visual field (the subjects 'see'), and the
detachment from the exploration process (which is seen from the outside).
Moreover, it is typical also that the subjects express their hypothesis not yet as a
deductive sentence, but as an abduction, namely a sort of 'reverse deduction', albeit
very different from an induction (Peirce, 1960) (2). In fact the subjects 'see' what
'rule' this is the case of, to use Peirce language. Namely, their visual field has been
internalised in order to find a property which can help them to classify the figures
into something they know; they select the part of their geometrical knowledge they
judge as the right one. The conditional form is virtually present: its ingredients are
all alive, but their relationships are still reversed, with respect to the conditional
form; the direction after which the subjects 'see' things is still in the stream of the
exploration through dragging, the control of the meaning is ascending, namely they
are looking at what they have explored in the previous episodes in an abductive way.
Control direction changes in ep.4: here students use the construction modality (and
the consequent dragging test) to check the hypothesis of abduction and at the end
they write down a sentence in which the way of looking at figures has been reversed.
By lieu muet dragging, they have seen that when the intersection points are kept to
coincide the quadrilateral is always circumscribed to a circle; now they formulate the
'conjecture' in a logical way, which reverses the stream of thought: 'if the
quadrilateral is circumscribed then the intersection points coincide'. It is not a
mistake! This episode marks the switching from the abductive to the deductive
modality: now the control is descending and things are looked at in the opposite
way. In ep. 5 the descending control continues; exploration now produces as output

(2) The example given by Peirce is illuminating. Suppose I know that a certain bag is plenty of white
beans. Consider the following sentences: A) these beans are white; B) the beans of that bag are
white; C) these beans are from that bag. A deduction is a concatenation of the form: B and C, hence
A; an abduction is: A and B, hence C (Peirce called hypothesis the abduction). An induction would
be: A and C, hence B.



the figure which in previous dragging was taken as input: the pupils now construct a
figure with the underlined property in order to validate the conjecture itself and
check whether the figure on the screen passes the dragging test. So they come to
explicit a conjecture expressing a sufficient and necessary condition "if... and only
if..." in a conditional form, even if they are not able to summarise it into one
statement only. Hence, at the end of their resolution process they have got all the
elements they need to prove the statement.

We can find some interesting elements also in the discussion which immediately
followed the activity in Cabri (St 8, 9 = students of Group-A):

1...] St 9: "Well, we can find many other figures in which all the bisectors meet in
the same point, in some quadrilaterals that apparently haven't got anything special.
(1) [he moves the figure by lieu muet in order to have a generic quadrilateral in
which H, K, L, M are coincident] But, if we draw a circle ...no, first of all let draw a
perpendicular line through one of these points [H, K, L, M] to one of the sides of
ABCD (2) [he draws the perpendicular from L to DC] and consider the intersection
point ... [he draws], we notice that this quadrilateral is circumscribed to a circle,
then since it is a circle all the radius are equal and all the distances from the sides
of ABCD are equal too..."

St 8: "... all these centres are coincident ..." 1.4
St 9: "If a quadrilateral can be circumscribed to a circle, all its angle bisectors

meet in the same point."
St 8: "We proved the same thing but starting from a circle too (3); we drew the

tangent lines and we came to the same conclusion." 1.4
These students recollect what they have just found out reversing the exploration

process: the descending control is ruling their thinking in the discussion phase. It is
important to underline which concerning Cabri elements are still present in their
words, which now are spoken from a detached point of view (numbers refer to the
sentences in the discussion): (1) The lieu niuet dragging, which allows them to move
from a square to a more generic object that keeps H, K, L, M coincident [they are
probably moving along a diagonal of the square]. (2) The construction activity
(perpendicular line), with the dragging test, which supports their reasoning towards
proof. (3) The "only if' form of their conjecture. Here we have a second form of
detachment, fully embedded in the descending control stream, which we call the
rational agent (Balacheff, 1982): they control the products of the whole exploring
and conjecturing process from a higher level, selecting from this point of view those
statements which are meaningful for the very process of proving and rule possible
new explorations. They are reversing again the way of looking at the relationships
among the objects: however this is not an abduction, but a logical concatenation of
the 'only if part (see Mariotti et al., 1997 as regards the 'only if reasoning).

We also found another modality of dragging (wandering dragging), which we will
illustrate sketching Group-B strategies. These students (of middle level) have a
dynamic approach to the problem as well: they begin by dragging the vertices of
ABCD at random and observing what happens to HKLM. As soon as they see
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soinething interesting about HKLM, such as a known or a 'strange' shape (for ex. a
crossing quadrilateral), they stop moving. Then they go on by (lieu muet) dragging
ABCD so that HKLM keep the same shape and they look at ABCD, trying to find
out what kind of quadrilateral it is. We notice an evolution in their way of using the
drag mode in Cabri: at first they seem to move the drawing just because Cabri allows
them to do so, they haven't got any plan in their mind and move points at random;
then they change their behaviour and move points in such a way as to keep a certain
property of the figure, e.g. along a fixed direct' on. They continue switching from the
first mode to the second one, every time they find an 'interesting' shape of HKLM.
Hence the lieu muet dragging can be seen as a wandering dragging which has found
its path, as some possible regularity has been discovered, at least at a perceptual
level: both the dragging modalities are in the same stream of thought, namely in the
ascending control one; at the opposite side we find dragging test, which is typical of
descending control (albeit it can be used at different levels of sophistication).

3. Dragging by lieu muet as a reorganiser.
The protocols above are very important, because they clearly show how the

dialectic between the different modalities of dragging can deeply change the
relationships among the geometrical objects of the situation; so through the analysis
of the dragging modalities used by pupils we can observe how such a shift takes
place. In particular we shall concentrate on lieu muet modalities. A lieu muet can act
both as a logical reorganiser (Pea, 1987 and DOrfler, 1993) and as a producer of
new powerful heuristics (1161z1, 1996). The former shows a new, intriguing way
after which dragging can act as a mediator between figures and concepts (Hölzl,
1996), namely at a deeper and unexpected level of conceptual knowledge; the latter
makes accessible some aspects of such a reorganised knowledge at a perceptual level
and in a strongly 'situated' way, so it seems to support a 'situated abstraction' in the
sense of Hoyles & Noss, 1992 (compare group-A protocol with the example in
Hölz1, 1996).

Let us sketch the kind of logical reorganisation that the lieu muet encompasses: it
shows a new and wide component of Cabri's epistemological domain of validity.
The example of exploration showed in our protocols illustrates this in a paradigmatic
way; a lot of explorations described in the literature seem to be coherent with our
analysis: e. g. the cases discussed in Hölz1, 1996, where he observes a shifting of
perspective in students "from the constructions of certain points to the interpretation
of certain loci" (p.181).

The lieu muet 'shows' a new logical relationship between points and figures, which
adds to the usual functional dependence of the kind variables-parameters, where
some constructed objects depend in their construction on others which are
considered as 'given'.

The new relationship consists in the fact that: (i) a certain locus C is empirically
built up (see group-A protocol, as well as example at p. 176 in HOlzl, 1996) thanks
to a feedback given by the preservation of some 'regularity' in drawn figures and the
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movement of the mouse dragging a (dragable) point P in a suitable way (which
means precisely that P describes C as a lieu muet); (ii) when the point P runs on C
some corresponding figures F(P) satisfy some regularity, invariance or rule (in the
example, for each P belonging to the empirical curve C, the bisectors of the
corresponding quadrilateral Q(P) meet in the same point). To use a mathematical
language, the (usually algebraic) variety C (usually of dimension 1, that is a curve)
parameterises (all or some of) the figures of the situations in a way which is
perspicuous for the problem to solve. This parameterisation of course is given only
through dragging and not by equations: if made explicit they would express the
relationships found empirically by dragging in the language of algebra; that is to say,
dragging makes relationships of logical inclusion between algebraic varieties
accessible to pupils at a perceptual level. The role of lieu muet in the dynamic of
ascending/descending control supports and helps students to produce abductions and
provokes the switching between ascending and descending control modalities. A
lieu muet, as a perceptual counterpart of the above algebraic relationship, expresses
an abduction in a figural and perceptive way: C is indeed the 'rule which the figures
F(P) are the case of, provided the functional dependencies among the constructed
objects. In fact, the successive dynamics of pupils' actions have the same structure as
those in pencil and paper environments: namely, first the pupils formulate a
conjecture in a conditional way (which is a regularity produced by the lieu met
dragging), then they make explorations and constructions to validate the hypothesis,
as we have seen in the protocols above. The latter are ruled by a descending control;
the function of dragging changes: it is now used as a test for validating the
hypothesis. This dragging dialectic makes accessible a 'jeu de cadre', in the sense of
R. Douady between Euclidean geometry and algebraic varieties. The former
becomes explicit for pupils through constructions and dragging test ruled by
descending control; the latter remains implicit, at the perceptual level of lieu muet
dragging, but the dragging test makes accessible abductions (and possibly
conjectures and proofs), which concern more difficult problems than those that they
can tackle in pencil and paper environments to pupils.

4. Some open problems.
In our opinion, four main questions seem worthwhile studying: (i) designing

didactic situations, where the switching transition by lieu muet becomes object of
teaching and does not depend only on the ingenuity of some pupils; (ii) exploiting
the algebrthc aspects incorporated in Cabri, more than the purely Euclidean ones;
(iii) applying our model to focus the switching features among the different control
modalities within other media used to approach geometry, e. g. 'geometric machines'
(Bartolini Bussi, 1993); (iv) using all the discovered variables to define in a suitable
way the notion of didactic space-time of production and communication for
geometry, as we have aheady done for algebra (Arzarello et al. 1995).
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Abstract

This project explored teaching strategies and learning outcomes with low-attaining
8 year-olds. The research team collaborated with teachers to develop teaching
strategies through observing 'real-time' practice using a oneway mirror. The
teachers then used these strategies in school. Changes in attainment for the targeted
pupils were compared with a matched control group. Targeted pupils substantially
out performed control pupils in post intervention assessment in terms of numbers of
items correctly answered. Targeted pupils also demonstrated gains over control
pupils in terms of developing more effective strategies for answering questions
correctly, as demonstrated through item by item analysis of strategies used to
answer questions.

1 Theoretical background

Research suggests that two aspects of mental mathematicsknown facts and derived
factsare complementary. Studies of arithmetical methods used by 7- to 12- year-
olds demonstrate that higher attaining pupils demonstrate the ability to use known
number facts to figure out other number facts (Gray, 1991; Steffe, 1983) .

For example, a pupil may 'know by heart' that 5 + 5 = 10 and use this to 'figure out'
that 5 + 6 must be eleven, one more than 5 + 5. At a later stage, a pupil may know
that 4 x 25 is 100 and use that to figure out that 40 x 24 must be 960.

The evidence suggests that pupils who are able to make these links between recalled
and deduced number facts make good progress because each approach supports the
other. Eventually, some number facts that pupils previously deduced become known
number facts and, in turn, as their range of known number facts expands so too does
the range of strategies that they have available for deriving facts.

However, it is also clear that there are many children who, even by the end of
primary school, rely more on procedures such as counting to find the answer to
calculation and do not make as much progress.

Traditional models of remediation programmes in numeracy in the UK tend to
concentrate on the inculcation of arithmetical 'facts' in the expectation that
establishing a core of basic knowledge will lay the foundation for later understanding
and application. Research findings show this to be inadequate in terms of a view of

1The research reported here was supported by a grant from the Nuffield Foundation. Any opinions,
findings, conclusions and recommendations expressed in this paper are those of the authors and do not
necessarily reflect the views of the Nuffield Foundation
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numeracy as the possession of an integrated network of knowledge, understanding,
techniques, strategies and application skills concerned with numbers and number
relations and operations.

Other programmes, for example the Cognitively Guided Instruction work (Carpenter
& Lamon, 1988), focus on building up teachers' understanding of pupil networks of
knowledge and matching teaching to this.

While the approach we proposed drew to a certain extent on such research findings
we were more concerned to work with the teachers on developing a general
orientation towards teaching mathematics that acknowledged that learning was a joint
responsibility between teacher and pupil (Lave, 1993; Rogoff, 1990; Wertsch, 1985)
and which challenged notions such as 'readiness' for particular mathematical ideas .

Questions that the project addressed were focused around examining the effect of the
programme on:

pupils' performance on standard tests;

pupils' performance on a specially devised diagnostic assessment interview;

pupils' pre and post intervention strategies as assessed through the interview;

teachers' attitudes, beliefs and practices in teaching mathematics.

A further focus on inquiry was to explore the nature of training that involved the use
of a one-way mirror to observe 'real time' teaching. The New Zealand Reading
Recovery Programme (Clay, 1993) had demonstrated this to be a particularly
effective method of training the teaching of reading (Clay & Cazden, 1990) and we
were interested to examine the extent to which this method might also be powerful in
mathematics education.

This paper concentrates on the pupil learning, particularly the quantitative results.
Other aspects of the research are discussed in Askew, Bibby & Brown (1997).

2 Methods

Year 3 classes (8 year-Olds) in twelve English primary schools constituted the
research sample with six of the 12 schools being identified as project schools, the
other 6 as control schools. Eight children from each Year 3 class were selected by
their teachers. Thus 48 project pupils and 48 control pupils were selected.

These 96 children were identified as being low attainers in mathematics, defining this
for practical purposes to be pupils assessed as operating below or just below the
expected level of attainment for their age as specified by national tests. The emphasis
was on selecting children who were considered to be low attainers in mathematics
rather than having special educational needs in mathematics.

The six teachers from the project schools were released for one day per week for
twenty weeks over the Autumn and Spring terms 1995/96. In the first term, the
teachers started by focusing on the use and interpretation of diagnostic interviews. In
the mornings they worked intensively with their groqp of targeted pupils in their own
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schools, in two sub-groups of four. In the afternoons, the teachers came together to
discuss the teaching strategies being developed and work on identifying effective
intervention strategies. Research findings were used to inform the discussion.

In the second term the major element of the afternoon sessions involved the teachers
taking it in turns to work with a group of pupils. These sessions took place at an LEA
centre where there was the use of a room with a one-way mirror to facilitate
observation. The teachers observed each other teach, identified pupil difficulties and
developed strategies that they considered to be effective in dealing with these
strategies.

Although it was not our main intention to develop models for working with pupils on
a one-to-one basis, a pattern of working emerged that appeared to be particularly
effective. The twelve to fifteen minutes that the teachers spent working with
individual pupils in the mirror room sessions covered four aspects:

Practising counting skills (2-3 minutes)
Pupils would work on counting on, in 2s, 5s or lOs forwards and backwards from
different starting numbers. They would also work on subitizing-skills (recognising
,the number of objects in small collections without counting).
Revising individual known facts (2 minutes)
The teachers kept an envelope where they and the pupil recorded what an
individual knew in number facts and spent some time reinforcing these.

0 Building on a known fact (8 minutes)
The teacher and pupil worked on deriving number facts from one of the pupil's
known facts. This provided the main teaching emphasis for the session.

0 Working with large numbers or problem solving (2 minutes)
The final minutes were spent either exploring what could be derived in terms of
large numbers (for example working on what double four hundred must be if a
pupil knew double four) or putting the number facts being worked on into a
problem context.

3 Results: Pupils' responsesquantitative results

Pupils' progress in quantitative terms was monitored using a framework for charting
understanding and a related diagnostic interview. Project and control pupils were
assessed twice using the diagnostic interview: early in the Autumn term, 1995 and in
the summer term 1996. Figure 1 shows the mean test gains for pupils over this
period. As it shows, the project pupils made greater gains than the control pupils in
terms of the number of items correctly answered in the diagnostic assessment. This
gain was statistically significant at the 0.05 level.

However, a focus of the project was whether or not the project pupils also made
greater gains in terms of the methods of calculation used in solving the questions in
the assessment. The assessment was therefore designed to not only record whether or
not the pupil could correctly answer a question but the method of solution used.
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Figure 1: Mean test gains

Pupils' solution methods were coded on the assessment under six different headings,
organised in increasing order of sophistication:

Not understood (NU) A pupils response was recorded as not understood if she or he
could not answer the question through lack of comprehension.

Modelling (M) This was used to record if the pupil had used physical objects,
including fingers, to answer the question.

Counting (Co) If a pupil used a counting on or counting back strategy, without
recourse to physical objects, this was recorded as a counting strategy.

Place value (PV) Used to code those occasions where pupils used their knowledge
of place value and the use of base 10 blocks to answer a question. (This category was
not appropriate for all questions.)

Known fact (KF) When a pupil answered too rapidly to have used a calculating
strategy and indicated that he or she simply knew the answer, this was coded as a
known fact.

Detived fact (DF) Coding used to indicate that a pupil drew on their bank of known
facts to deduce a derived fact.

Every data item on the diagnostic assessment was examined for evidence of changes
in strategies. If a pupil made a minor error in finding an answer but the method was
correct then this was coded against the method used. However, if a pupil used an
inappropriate method or was wildly incorrect, the response was coded as NU.

Figure 2 shows the changes on items which on the first assessment a pupil had not
understood. This shows that a proportion of items that were not understood by the
pupils on the first assessment were still not understood second time around, but the
proportions for project and control pupils are very different. Almost 70 percent of
the items that control pupils had not understood in October were still not understood
by them in July. In contrast, nearly 70 percent of the items that project pupils had not
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understood at first were answered using a range of appropriate strategies. These
changes are significant (p=0.001).

NU M Cb

Strategy

Figure 2: Changes in pupil strategies from Not Understood
Oct - July

The range of strategies used by both control and project pupils on items that had
previously not been understood spanned modelling through to known and derived
facts, but in every category the project pupils out-performed the control pupils.
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Figure 3: Changes In pupil strategies from Modelling
Oct - July

Figure 3 shows the percentage changes away from a modelling strategy. On a number
of these items both groups of pupils were still using a modelling strategy at the later
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date, and, in raw terms, the moyement aviay from_this strategy is similar for both
groups: around 70 percent of project pupi1s used a: chfterefit strategy coniPared to
around 60 percent of control pupils. ' ' '''

However, almost 20 percent of the movement on heips fOr control pupils is accounted
for by regression: items which had been insWered using a modelIing stiategy the first
time were not understood second time around. The extent of regression On Iterns by
project pupils was markedly less, at.only arOdrid .oght percent Akain 'these changes
are statistically. significant (p=,0.001).

Particularly striking is the changes from a modelling strategy-to using known or
derived facts. Thirty-six percent of, the he* that ,PrOject pupils had originally
answered using a modelling strategy ,74.Wq subsequently anSwered'using a known or
derived fact The corresponding figure for eontrol pupil's was 16 percent
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Figure 4: Changes in pupil strategies from Counting
Oct - July

Project pupils substantially out-performed control pupils on movement from counting
strategies to the use of known and derived facts: 51 percent as compared to 19
percent, as figure 4 shows.

Figure 4 again also shows that in both control and project groups, on a number of
items answered using a counting strategy, at the second assessment point there was
either no change in strategy or some regression. The figures for the two groups are
again markedly different: on 81 percent of the items control pupils had not made any
progress in terms of strategies used, compared to 45 percent for project pupils. All
these changes are significant (p=0.001).

The data indicates that on both accounts, number of items correctly answered and
range of strategies used, project pupils significantly outperformed control pupils.

It had been our intention to also.monitor performance at class level. Number items on
end national test that the pupils had taken at the end of the previous year were to be
analysed item by item and classes reassessed on these same items one year later.
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However, in gathering this data it became clear that the range of conditions under

which the national tests had been administered had been so varied as to make this

data too unreliable. For example, some classes had had every item read out to them

regardless of linguistic ability whereas other teachers had only read items to

particular groups of pupils. Again, some pupils had been allowed to take as much

time over the test as they liked, whereas others had been given a strict time limit.

However, the observation data of classroom practice clearly indicated that the

practices the project teachers used with the targeted pupils were adapted to being

used with whole classes. It would therefore be reasonable to assume that if the

changes in performance for the targeted project pupils were attributable to the

teaching practices then there would have been some impact at the class level.

Further to this observation, other similar research has indicated that teaching directly

at developing pupils conceptual understanding does not lead to a drop in attainment

on more procedural standardised tests (Carpenter, Fennema, Peterson & Carey, 1988;

Cobb et al., 1991; Simon & Schifter, 1993)

4 Discussion

The quantitative data analysis gives us confidence that the nature of the intervention

was effective in raising pupil attainment. Qualitative data analysis is beginning to

provide insight into possible reasons for this effectiveness.

Pupils' progress was also monitored through observation. This was done in normal
classroom conditions and also from the datagathered for the small group of pupils

used in the mirror room sessions. Field notes and recordings of teacher and pupil

discussion continue to be analysed, but some insights that are developing.

In particular the analysis of the qualitative data continues to raise questions about the

extent to which low attainment is actually the result of some 'deficit' in the pupil or

co-constructed between the teacher and pupil through each not being totally clear

about the expectations of the other.

For example, many pupils seemed to be doing what they thought was expected of

them, rather than relying on their mathematical understanding. For example, the

teachers would often ask pupils to count out, say, 10 cubes. Moments later when

asked how many cubes were there, the pupils would re-count them. In discussion, it

became clear that the teachers did not discourage this re-counting as they interpreted

as either demonstrating that the pupils lacked confidence or that they need to re-

inforce their counting skills. However, once the teachers started asking the pupils if

they could remember how many there were without counting, the pupils could

answer easily. The counting, it seemed, was a response to what the pupils thought the

teachers expected them to do, rather than what they needed to do.

The mirror room work was a powerful means of eliciting what the teacher believed

were the salient aspects of the teaching and learning. Having to comment as things

happened meant that it was harder for the teachers to present observations that they

might think were most acctep ble. For example, while the issue of pupil 'readiness' is
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no longer fashionable as a theory in mathematics education, this came through as a
strong construct that many of the teachers were still using to frame their teaching. If
pupils did not spontaneously demonstrate strategies this was 'read' by the teachers as
indicating that the pupils were not yet ready to be taught such strategies. The use of
the mirror room not only enabled the uncovering of such expectations but for these to
be challenged and the teachers to try out alternative approaches in a supportive
environment.
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Dialectical proof: should we teach it to physics students?

Roberto Ribeiro Baldino

Research-Action Group in Mathematics Education, UNESP, SP, Brazil

ABSTRACT

This paper attempts to introduce a dialectical conception of proof into the
discussion of proof teaching. Such a conception is used to design and
interpret results of a teaching.experience with physics students where an
explaining proof of L'HOpital's rule that unifies both cases, 0/0 and co/0
was tested.

1. For a dialectical conception of proof: circularity and essence

It is generally accepted that proof was born in the fifth century B. C. in Greece. Was
it accidental that it was born at the same place and time as democracy and banking
credit? Perhaps not. A century earlier, tradition held that, in spite of soil impoverishment,
the eldest son should stay at home, taking care of the rituals around the sacred fire and
guarding his ancestors' tomb. It was the time of reforms of Solon and Dracon. The
younger brothers were sent abroad to commerce; they came back rich and increased the
power of the polis as opposed to that of landowners. The conflict between tradition and
money could not be solved by the sword since it stemmed from inside the families.
Democracy became necessary. The agora, philosophy and, following the same line,
mathematical proof emerged. Three centuries later, when it became necessary to diffuse
this genial solution to the whole world, the Greeks built Alexandria's light-house, more a
symbol than an useful device. Proofs were arranged in logical packets. It was the time of
Euclid.

The dialectical circularity

The year 1976 saw two landmarks for Mathematics Education: the announcement of
the computer proof of the four color theorem [Apple & Haken, 1976] and the publication of
Proofs and Refutations [Lakatos, 1976]. Philosophers of mathematics were thrown into
turmoil. Is mathematics fallible? Are computers reliable? Will the computer culture
introduce new paradigms of proof into mathematics? At the apex of the stir, Horgan [1993]
blatantly announced The death of proof. While philosophers of mathematics struggled to
reestablish peace, mathematics educators discussed the (new) role of proof in their
classroom. This story is nicely told in Hanna [1995, 1996].

From Euclid to Hilbert, proof underwent a long development. Instead of departing
from objects and common sense truths about them, objects became "symbolic entities
which owe their existence only to the fact that they satisfy the rules by which they are
axiomatically linked" [Hanna & Jahnke, 1993, p. 425]. With computers, axiomatical
linkage further escaped control, as in zero-knowledge and holographic proofs, [see
Hanna, 1996, p. 23].

In the course of the discussion stirred up by the computer issue, every item that had
traditionally been evoked to present proof as a guarantee of truth was challenged. Hanna
[1983, quoted in Neubrand 1989] makes an effort to characterize conditions by which
mathematicians accept a new theorem. The new result should be understandable,
significant, and consistent, the author should have an unimpeachable reputation, and
there should exist a convincing argument. Of these five factors, Neubrand stresses the
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last one: "It is somewhat like a sine qua non condition and should therefore head all the
other social factors" [Neubrand, 1989, p. 6]. David Hersh reinforces the "convincing" factor
and introduces the community of "judges". "In mathematical practice, in the real life of
living mathematicians, proof is convincing argument, as judged by qualified judges" [Hersh,
1993, p. 389]. "At the stage of creation, proofs are often presented in front of a blackboard,
hopefully and tentatively" [ibid. p. 390].

These arguments stress the conception of mathematics as a discursive practice
[McBride, 1989]. "With few exceptions, mathematicians have only one way to test or
"prove" their work invite everybody who is interested to have a shot at it. So the day-to-
day mathematical meaning of "proof " agees with the colloquial meaning" [Hersh, 1993,
p. 392]. One could be tempted to say that proof is just a way of speaking, a form of
speech of a certain community: "What mathematicians at large sanction and accept is
correct" [Hersh, 1993, p. 392]. Pushing such a shift towards a pragmatic view a little
further, we would infer that mathematics is an office room conspiracy of scientists. Scared
by this conclusion, we would go back in search of a new and stronger normative attitude.
In order to stop swinging back and forth, We only have to assume the dialectical circularity
in its sharpest form: a theorem is true because mathematicians say it is; but they would
not say it is true if it were not. Now we can move on.

The movement of the concept: essence and dasein

"The movement is the double process and unfolding of the whole; thus each moment
places the other at the same time and each one has both moments in itself as two aspects;
taken together, these aspects constitute the whole, insofar as they dissolve themselves and
make themselves moments of such a whole" [Hegel, 1941, p. 36, my translation].

Throughout the literature about proofs, there are at least three consensual points:
1) proofs have to do with the general idea of truth (convincing, explaining, justifying,
demonstrating, deducing, etc.); 2) we should certainly teach proofs; 3) formalization is not
the best way to teach proofs.

From the perspective of the person who is reading them, formal proofs have long
been sharply criticized: "What one generally gets in print is a daunting cliff that only an
experienced mountaineer might attempt to scale and even then only with special equipment"
[Epstein & Levy, 1995, p. 670].

"The proof follows a course that starts at an arbitrary point, so that one cannot know
the relation between this initial point and the result that must come from it. The proof's
bearing requires such determinations and such relations and discards others, so that one
cannot immediately realize under which necessity this happens; an exterior finality
commands such a movement" [Hegel, 1941, p. 37, underlining added].

As a consequence of such criticism, attempts have been made to distinguish aspects
of formal proofs capable of providing alternative approaches to be used in classrooms.
Many categories have been proposed:

Explanation, proof and demonstration [Balachef 1987], preformal versus formal
proofs [Blum & Kirsch, 1991], proofs that prove versus proofs that explain [Hanna, 1995],
formal versus intuitive proofs [Fishbein, 1982], proofs to try and test versus proofs to
establish beyond doubt [Epstein & Levy, 1995], analytical versus substantial arguments
[Godino & Recio, 1997], structural versus linear-styled proofs [Alibert & Thomas, 1994],
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analytical, empirical and external proof schemes [Harel & Sowder, 1996], humanist versus
absolutist mathematics teacher [Hersh, 1993], technical versus critical perspectives
[Garnica, 1995].

All these attempts point to a subjacent aspect of proofs that lies beside or
underneath the pure stateMent of a theorem and its final written form. This aspect hinges
on the above-mentioned discursive practice that we can now identify with what Hegel calls
"exterior finality". In the following paragraphs, I shall underline the specific references to
the exterior finality that rules the development of proof:

"Should we give the impression that the best mathematician is some sort of magic
conjured out of thin air by extraordinary people when it is actually the result of hard work
and of intuition built on the study of many special cases?" [Epstein & Levy, 1995, p. 670].

"(...) a 'convincing argument' is not simply a sequence of correct answers. One
always expects some 'qualitative' reason or an intuitive capable basic idea behind the
nevertheless necessary single steps of the proof [Neubrand, 1989, p. 4].

"The feeling of the universal necessity of a certain property is not reducible to a pure
conceptual format. It is a feeling of agreement, a basis of belief, an intuition but which is
congruent with the corresponding formal acceptance" [Fishbein, 1982, p. 17].

"The best proof is one which also helps mathematicians to understand the meaning of
the theorem being proved: to see not only that it is true but also why it is true" [Hanna,
1995, p. 47].

"The concept of formal (...) proof can become an effective instrument for reasoning
process if, and only if, it gets the qualities required by adaptive empirical behavior"
[Fishbein, 1982, p. 17].

"(...) the general plan is never revealed (...) and the student may be reduced to merely
checking the validity of the deduction at each step" [Alibert and Thomas, 1994, p. 222].

What do these authors mean by "general plan", "adaptive behavior", "feeling of
agreement", etc.? What are they pointing at? What are they looking for? Hegel would
bluntly call it the essence. The "formal proof" from which they are trying to distance
themselves, Hegel would call dasein

"Also in philosophical knowledge, the development of dasein is different from the
development of the essence or of the inner nature of the thing" [Hegel, 1941, p. 37] .

What Lakatos [1976] describes is the development of essence. In brief, if we assume
the dialectical principle that all determinations are relative to each other, we can consider
the conceptual movement started in 1976 as the development of a single whole, along
which distinct aspects of proof are separated from each other. While we think of proof as
a fixed pivot around which we have been turning, proof is actually constantly becoming
everything that we have been saying about it.

2. The study

The study was carried out in a one-year freshmen calculus course for physics
students at UNESP, Rio Claro, SP, Brazil during 1995-97. Approximate numbers for each
year have been: 60 students enroll (40 freshmen plus 20 repeaters), 40 attend classes, 20
pass. Half of the students have part-time jobs and eighty per cent live in nearby cities.
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The Campus remains empty during weekends. The syllabus covers the first volume of the
textbook: Swokowski [1983].

Early in 1995 the Physics Department made the following request of teachers in
charge of mathematics courses for the physics students: "We need mathematics as
instrumentation for physics. We would like the students to gain familiarity with the
textbook. We would like you to teach less theorems and proofs and more exercises and
applications to physics". A negative reference was made to the linear algebra course
where questions like "show that x.0 = 0" used to appear in the exams.

What should I have done ? Should I have ignored the request and assumed that my
mission would be to open a window through which students would have the opportunity to
contemplate the mathematical world during some time, before they proceed in their
curriculum? Should I teach proofs in such a context? As far as I know, the question of
teaching proofs in mathematics courses for service departments has not been addressed
in the literature. Specifically, should we teach mathematical proofs to physics students? If
so, why and how? This question is not trivial since, as we have seen, mathematical proofs
have to do with mathematical truth while physics students are being trained to abide by
criteria of truth specific to their science. 'If you believe, as many do, that proof is math and
math is proof, then, in a math course, you're duty bound to prove something" [Hersh, 1993,
p. 396]. Well, I do not believe so. As the new calculus teacher for physics freshmen in
1995, I took the physics department's request as a challenge, not as an interference.

Here is what we I did . During 1995, we followed suggestions of Alibert & Thomas
1994, Arsac et al [1992, and Legrand, 19901. We tried to introduce scientific debates into
the classroom. We started with graphical problems about kinematics and tried to gradually
introduce mathematical instrumentation as problems became more algebraic. Students
were exhorted not to use formulas or results unless they could justify them. Exercises
were taken from the textbook and proofs were introduced through worksheets according
to the belief that "the main function of proof in mathematics education is surely that of
explanation" [Hanna, 1995, p. 47] and that the mathematics teacher should "use the most
enlightening proof, not necessarily the most general or the shortest" [Hersh, 1993, p. 397].
The approximately forty students were generally organized in groups of four. Slow
learners were invited to extra tutorial sessions once a week. [See Baldino, 1997].

We never succeeded in keeping more than one fourth of the class interested in the
debate. In the beginning of next year, the Physics Department complained that the
students that we had passed on to them were poor calculators of integrals. Therefore,
during 1996 and 1997, the course was split: four hours a week were dedicated to
concepts and applications and two hours a week were dedicated to straightforward
calculations of limits, derivatives and primitives. Scientific debate was restricted to tutorial
sessions. Now the students were told that they would eventually receive worksheets with
justifications of the results that they were already using, such as the chain rule and the
fundamental theorem of calculus.

L'Hôpital's rule emerged spontaneously from the classroom culture, introduced by
those repeating the course. Proofs that we found in the literature could not be classified
as explaining proofs. Besides, the case 00/00 cannot be immediately reduced to the case
0/0, unless the existence of the quotient limit of the functions can be granted beforehand.

I Myself and two graduate students: Tania Cabral and Ronaldo Melo.
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Having to show the existence of this limit makes the proof considerably harder. So, we
decided to take up Hanna's challenge: "Unfortunately there is no guarantee that every
theorem we might like to use will have a proof that explains" [Hanna, 1995, p. 48

Textbooks suggested in the course's syllabus adopt different strategies in order to
circumvent the difficulty with the co/co case. Hughes-Hallet et al. [1994]] do not even
mention L'Hôpital's rule. The authors evoke graphical calculators to solve classical limits
and prove the error expression in Taylor's formula by successive integration. Other books
do not mention that this case is more difficult: (Carvalho e Silva [1994, p. 279], Ayres Jr.
[1981]). Most authors mention the case coko but omit the proof and send the reader to
"more advanced texts": Linch et al. (1973, p. 514], Apostol (1976, p. 300], Leithold (1976,
p. 510], Keisler [1986, p. 246], Swokowski [1983, p. 622]. Shenk [1979, p. 304] leaves the
proof to an honors exercise, Strang [1991, p. 153] gives a proof assuming the existence of
the limit, and Simmons [1985, p. 569] gives a hint for the proof. Spivak (1967, p. 186],
Piskunov [1977, p. 149] and Seeley [1968, p. 643] are among the few that present the
proof in detail; unfortunately these are epsilontic proofs.

Seeley also offers one figure. We evaluated that this figure contained the essence of
the argument and took it as a starting point to design a worksheet appropriate for physics
students. In so doing, we were guided by directives summarized in the following table of
oppositions.

Deductive proof Dialectical proof
Development of dasein Development of essence
Hypothesis - thesis demonstration Thesis demonstration - hypothesis
Linearity of the significant chain Network of models
General case first Particular case first
Primacy of concept definition Primacy of concept image

3. Worksheet: Why does L'Hôpital's rule work?

Consider a moving particle along the trajectory AO in the xy-plane. Suppose that at
instant t, the particle is at P(t) = (x(t), y(t)) with position vector r(t), as in the figure.

v(t)

t=b

ax Vbx x=g(t)

L'Hôpital's rule: development of essence
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Suppose that at instant t = a the particle is at the origin and as t tends to b the
particle gets away from the origin so that both its coordinates tend to infinity.

Mathematically we are saying that: lim
f(t)

= 0 and lim
f(t)

=
+

. Let the particle's
t-sa+ g(t) 0 1,1)- g(t) + co

velocity at instant t be v(t) = r'(t) = (g'(t), f(t)). Suppose that at t = a the velocity has an
initial value v0 and that, as t tends to b, the velocity tends to a final value vb parallel to the
straight line OB. Let v. = (v., vay) and v. = v.y) be the components of the initial and
final velocities. Let the angles qi(t), 0(t), a and 13 be as in the figure.

1. Describe the trajectory as t tends to b.
2. Fill in the blanks:

lim fim e(t)=... fim 9(t)=... lim
1-413+ t-84. I-4b_ 1,13_

3. Consider the slopes of the straight lines determined by the vectors r'(t), r(t), v. e vb and
fill in the blanks:

f'(t) f(t)
I1111 =...
t-,a+ g(t)

f'(t)
=...

. f (t)
llmIlril -

1.8, g'(t)
11111
1,b- g'(t)

- =...
1,1)- g(t)

4. Conclude: why does L'Hôpital's rule work?

Two other sheets with different and higher degrees of formalization were distributed
to the students together with this one.
4. Outcomes and discussion

The worksheet was introduced to the students early in June and repeated in early
November. In each case we asked for a report: "Explain why L'Hôpital's rule works". Of
course, I expected the students to say Ah ha! Now I know why I am calculating limits in
this way. Interestingly enough, the hard point in formal proofs did not seem to hinder
them: all groups could describe reasonably well that, as t tends to b, the trajectory tends
asymptotically to a straight line parallel to OB. The existence of the quotient limit of the
functions was proved in action. Only one group needed help, and that was supplied by
hand-waving and dragging an eraser on the table.

I made an attempt to analyze the students' protocols in terms of proof schemes
proposed by Harel & Sowder [19961 It seems clear that the proposed explaining proof
may be classified as a transformational proof scheme: "justifications attend to the
generality aspects of a conjecture and involve mental operations that are goal oriented and
attended-anticipatory" [ibid. p. 621 Many protocols clearly indicate an authoritarian proof
scheme. For these students, L'Hôpital's rule authorizes them to use a procedure either to
get rid of the indetermination or to proceed when one gets stuck. "It holds because
calculating the quotient of the functions is the same as calculating the quotient of their
derivatives". Other protocols indicate a symbolic proof scheme: indeterminations are
puzzling objects that possess a life of their own, and L'Hôpital's rule explains exactly who

0
such entities are: "When we get or c° , this means that the limit of f is equal to the

0 oo

'
limit of

f". Other protocols evoke examples and may be included as empirical proof

schemes: "We apply L'Hôpital's rule to impose continuity on the indetermination, as in sinx "
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However, not a single group was able to clearly reproduce the unifying argument:
slopes of secant and tangent lines tend to the same value. So, how should we rate our
didactical effort? Flat failure? Can we say that we wasted four hours of class-time?
Perhaps not, if we look more closely at some protocols such as this one:

"L'Hôpites rule holds because, when we apply the quotient rule and we find an indeterminate
form, we apply L'Hôpitars rule that proves that, given a point P, when such a point tends to zero,
f' (t) and g'(t) tend to the initial values v and v,, where the angle 9 tends to the value of a."

That is: "L'Ilbpitars rule holds because it proves a property about trajectories". This
seems to nicely reproduce, at the level of pedagogy, what Hanna & Jahnke call "appeal to
the future" at the level of history. Like in the case of Newton's derivation of Kepler's laws
from the Law of gravitation, "that which is proved serves to legitimize the assumptions from
which it is derived".[Hanna & Jahnke, 1993, p. 4281.

Other protocols are quite difficult to interpret from the point of view of deductive
proof. "L'Hôpital's rule holds because, when we apply the limit in indeterminate forms, the
function tends to different "angles". However, the slope, when it tends to zero, is the same.
Deriving the function, we raise the indetermination and we can fmd the limits if they exist."
A perfect salad! However, if we accept dialectical circularities and obscurities, we may
look at this student's development as if we were looking to a developing photograph in a
dark room: the picture appears evenly all over the cardboard, not from top to bottom or
from left to right. Good mathematicians also "develop" themselves in this way. If a calculus
student talks about "limits of infinitesimals" we would take it as a symptom of confused
ideas. Nevertheless: "The determination of the 'tangent to the curve is reduced to the
determination of the limit of the ratio of two infinitely small quantities." [Duhamell, 1874,
p. 91].

As a final word, we would say that reduction of proof to deductive proof is a one-
sided view. It may be a necessary ideology for mathematicians' daily scientific practice of
theorem-proving, but it does not suffice for mathematics education. "Dialectical view of
proof' is an expression borrowed from Hanna & Jahnke, [1993, p. 422]. However, the
concept can be traced back to Hegel. Dialectical proof is a concept intended to apprehend
the development of History and of human subjects in a single unity: the movement of
concept.
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Abstract
In his plenary address at PME-21', Shlomo Vinner referred to the school system

as being above all, a credit system. He, introduced the notions of pseudo and true
knowledge and hinted at the dimension of faking and deceiving inherent to educational
actions. From this perspective, we characterize a mismatch between students declared
intentions and their actions. We briefly discuss the difficulties of considering this
mismatch phenomenon either from the strict cognitive point of view or from the
perspective of Peirce's semiotics. We offer an alternative approach based on Lacan's
psychoanalytic theory. We introduce the.four tYpes of discourse conceptualized by
Lacan. We invest the master's discourse to analyze a hypothetical traditional
classroom. The other three forms of discourse, the university's the object's and the
hysteric's discourses are presented schematically.

Introduction

The plenary conference of Shlomo Vinner in PME-21 [Vinner, 1997] pointed out a
phenomenon that has not yet been adequately considered, if it has been considered at
all, in the literature about mathematics education. Issues concerning the fact that "we
cannot avoid dealing with values when we teach" [p. 69] have long been addressed by
authors, specially of the Ethnornathematics group [see Powell and Frankenstein (Eds.),
1997]. However, issues stemming from the recognition that "the educational system is,
above all, a credit system" [p. 68] have not been dealt with. In the available extensive
literature about assessment, there is no reference to the credit system [see Gomes da
Silva's 1997 extensive bibliographic review].

Recognition of the existence of the credit system in school leads Vinner [1997] to
introduce the dimension of faking and deceiving, both on the part of the student as well
as on the part of the teacher. He admits that the student may develop a certain
knowledge about "how to get credit from the educational system" and he calls that
"pseudo knowledge", as opposed to "true mathematical knowledge" which is "knowledge
desirable by the educational system" [p. 68]. Vinner warns that the teacher can be easily
deceived by this pseudo knowledge. Then he adds: "But don't we want to be deceived,
especially when it comes to our student's achievements?" [p. 73]. In one word, Vinner
reveals that the widespread mismatch between discourse and action is also present in
the mathematics classroom: the student declares that s/he wants to learn, but all her/his
actions demonstrate that s/he wants to pass. We shall call this the mismatch
phenomenon. This phenomenon has been considered by Cabral [1992] during a one-
year observation of a calculus classroom. See also Cabral [1998].

Since pseudo-knowledge is involved, the mismatch phenomenon cannot be
approached from a strict cognitivist and formalist framework. "From this perspective,
cognitive processes are viewed as pure forms while the environment is factored out as
variables only tangentially related to cognitive events" [Meira, 1997, p. 232). This author
points to the necessity of considering issues of negotiation of meaning within the
classroom culture. In fact, meaning production and semiotics are becoming an increasingly

I Partial support from CAPES.
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important issue in PME. After Walkerdine's [1988] pioneering work, the subject has been
taken up, for instance by Radford & Grenier [1996] and Vile & Lerman [1996]. In PME-21,
questions of meaning production were specifically addressed by Godino and Recio

[1997], James, Kent & Noss [1997], and Meira [1997]. A discussion group was formed
[Radford & Vile, 1997] and probably a working group will come into existence very soon.

In summary, according to Vile & Lerman [1996], semiotics has two "roots", one in the

work of C.S. Peirce and the other in the structuralism through the work of Saussure and
Barthes. The vast majority of research in mathematics education adopt the view that
language is created by human beings with the purpose of communication. In this line we
should include researches that seek support on Piaget and Vygostky, such as the ones
developed by the Advanced Mathematical Thinking group of PME and, in particular, former
works of S. Vinner. Development of this line assigns a descriptive role to language and
leads to Peirce. The other root of semiotics assigns a constitutive role to language: reality
and human beings are creations of language. Here we should include Vinner [1997]
insofar as it assigns a determinant role to social interaction (credit system). Instead of :

human beings>social interaction>communication needs>language

we have:

social interaction>language>human beings>communication

The aim of this paper is to briefly discuss the mismatch phenomenon in the
framework of Peirce's semiotics and to suggest an alternative approach frorm the Freud-
Lacan perspective. One root of this perspective certainly lies in Saussure's semiotics; we
contend that another one is to be found in Hegel and Marx.

From Peirce to Lacan
When a student declares that s/he wants to learn but ail her/his actions demonstrate

that s/he mostly wants to get credit, s/he is contributing to the classroom culture in a way
that peers may imitate. This is an "act of communication". The mismatch may be
considered as a semiotic action that fits Peirce's definition of sign: 'something which
stands to somebody for something in some respect or capacity (Peirce quoted by Vile &
Lerman, 1996, p. 396). Difficulties start, however, when we note that "according to Peirce,

a sign captures only an aspect of its object, this aspect is the ground of the sign, that is, a
component of the signified (signifie) associated to the object (Radford & Grenier, 1996, p.
179). What would the object and the signified be in this case? What is the communication
act? "When one person catches another's idea the two are obviously engaged in communication,
furthermore they will "catch each other's ideas" because of a belief in a shared understanding"

[Vile & Lerman, 1997, p. 398].'We shall return to this quotation below.

Rather than force Peirce's semiotics into a domain that it was not primarily intended
to account for, we shift to the perspective of Freud-Lacan. For Lacan, both, declaration
and action are signifiers, and it is precisely in the mismatch between signifiers that he
places desire, the pivot around which the psychoanalytical movement turns. In this theory,
the mismatch phenomenon is a special case of a general and unavoidable language
mismatch, a vicissitude of any talking being. The joint occurrence of the signifiers
"mathematics" and "psychoanalysis" is rare and recent, both in mathematics education and

in psychoanalysis. There have been numerous attempts to look for support in

psychoanalysis to solve problems of anxiety or motivation in mathematics teaching and
learning. Such attempts invariably seek some kind of improvement and place themselves
under the shield of a certain hope. [See the specific edition of For the Learning of

,i.PB 24
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Mathematics, Blanchard-Laville, 19921. However hope has to be put momentarily aside if
we hope to say anything structurally rigorous.

For the sake of the argument we discard the academic conception that it is necessary
to first acquire an overall view of Lacan's work in order to be able to speak about it.
Indeed, what stand could support such a view? At the moment that we uttered the first
statement, we would already be in the plane of enunciation; that is, we would be inside the
domain of language, hence inside the reality that psychoanalysis takes as object.
Therefore we would be obliged to listen to what Lacan's theory has to say about what we
would be trying to say about it. We are inside the reality that we would be trying to
contemplate, or to apply from the "exterior". In order to circumvent this difficulty, we prefer
to take a fragment of Lacan's work, Le Seminaire 17, and use it to analyze a hypothetical
classroom situation.

According to Lacan, discourse should not be understood as a word-flow emitted by
one subject (the teacher) and listened to by another (the student). For Lacan, the concept
of discourse is precisely this: a statute of statements. In order to consider what happens
when someone talks, Lacan discards all notions from communication theory (transmitter,
receiver, code, noise, etc.). The phenomenon of speech is much more complex, because
when the subject talks, s/he becomes subjected to a complex process involving a double
structural mismatch. On the one hand, the intended meaning of what s/he says escapes
the control of the subject. S/he has to wait for a response through which the interlocutor
will inform her/him what has in fact been understood by what s/he said. Perhaps more than
anyone else, teachers know this vicissitude. On the other hand, even if the interlocutor
tries to repeat word for word what the subject has said, some difference is introduced
simply because the phrase is uttered a little later, by somebody else, with a different
accent, etc. The meaning intended by the subject is not received back exactly as s/he had
hoped. A metaphor is spoken and a metonym is heard back.

The discourse is the norm of what fits and what does not fit into the Other's ears, and
consequently what can and what cannot be said by the speaker. Lacan denotes the
"Other", written with a capital letter, "A", from the Latin "alter", and calls it the big-Other. It
is the frame that circumscribes the speaker. The big-Other is determined by the language,
by the historical moment, by the culture of the social formation where conversation takes
place. It includes all possible signifiers available to the speaker, as well as the rules to use
them. It contains the dictionary, the grammar and the laws

Due to the vicissitude of the speaker having to wait for the Other in order to learn the
meaning of what s/he says, Lacan denotes the subject by a barred S (5 ). Due to the
impossibility of the Other fulfilling the subject's hopes for understanding, Lacan denotes
the Other'by a barred A (A). The mismatch is denoted 0. Hence, the whole of Lacan's
work can be condensed in a single formula, SoA, the dialectics of the Subject and the
Other.

Following Lacan, we would say that the discourse in a classroom should be
understood as a joint effort of students and teacher in order to sustain a certain relation
(the statute) of actions and utterances; it is an effort to cover up for the necessary
language mismatch. When such a cover-up succeeds, people used to say that they have
"communicated". We now go back to the above quotation: "When one person catches
another's idea the two are obviously engaged in communication, furthermore they will "catch each
other's ideas" because of a belief in a shared understanding" [Vile & Lerman 1997, p. 398]. We
should say that it is not because of the "belief in a shared understanding" that people will
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"catch each other's ideas". It is because they make an effort to share each other's ideas
that they can catch each other's beliefs. Through the communication efforts (not acts ! )
people end up believing that a pre-existing "shared belier was responsible for their
communication. In one word, for Peirce, no shared beliefs implies no communication,
whereas for Lacan, the effort of communication implies the development of shared beliefs.

The demand: every discourse is an answer

Discourse does not start only when the invited speaker says "Ladies and gentlemen".
Well before this inaugural moment, people got dressed, left their homes and drove to the
conference site attracted by its title, by the speaker's name, by an invitation. They sat in
the room looking at the lighted pulpit supporting the microphone. What can be said there is
already determined by the expectation imposed by the situation. Hence, the discourse is
always the answer to a demand. In such a situation Michel Foucault said he would have
liked to have had a nameless voice precede him in such a way that he could just
intercalate his words in its moments of silence. We conclude that it is not only the question
that determines the answer, but that the question itself already is an answer.

So, the discourse starts before the speech; it starts with the demand. However,
paradoxically, the demand is only complete when it obtains an answer. When, to the
astonishment of all, Cicero started his discourse shouting about Ceti lina, instead of the
normal form of the Roman Senate, he defined the seriousness of the political tension of
the moment, and in this way, he determined the demand to .which he was answering.
Hence, speech and demand determine each other. Rather than being a "communication"
or a "message", the speech is what decides which expectation was set up to listen to it. It
is the speech that decides what the demand was. It is the answer that determines the
question. The discourse depends on the spoken word but is not reduced to it.

Speaking is a complex process involving simultaneously three registers: imaginary
(pre-suppositions of action), symbolic (language), and real (jouissance2). Discourse
requires a choice among possible utterances according to the directive lines that
interlocutors engaged in the discursive situation struggle to maintain. Systematic errors are
difficult to eradicate because the choice of response that leads to them is of the order of
the real; it involves the subject's jouissance organization. We contend that we need to
introduce into mathematics education a theory that takes into consideration that the
answers that our students give us cannot be listened to only from the cognitive point of
view, because students are much more than knowing subjects; they are desiring subjects.

Lacan's four discourses: the master's discourse

For the sake of the argument we have assembled all "negative" traces of classroom
culture in a single exaggerated cartoon, labeled traditional teaching. Probably such a
classroom cannot be found in its entirety anywhere. Each real classroom has some traces
of it. We shall consider such a classroom under Lacan's concept of discourse. Traditional
teaching consists in a sequence of four moments: 1. An inaugural moment, based on plain
authority, the course's introduction. This is the master's discourse. 2. A second moment
dominated by a verbal flux emanating from the teacher, the scéance magistrale. This is the
university's discourse. 3. A third moment centered on the credit system when the student
has to choose between two strategies or two objects, pseudo or true knowledge. This is
the object's discourse. 4. A final moment where the student only hopes for luck in the
exam. This is the hysterics' discourse.

2 We keep the French word in italics since the English correspondent term "enjoyance" is not in the dictionary.
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In fact, most of the literature on Mathematics education, including Baldino [1997],
suggest that these discourses should occur in the reverse order in the classroom. From
the inaugural master's discourse, we should move to a form of hysterics' discourse when
the student has to face some sort of unbalance. Next, we should provide the opportunity
for an object's discourse centered on true knowledge, not on the credit system. Finally, the
university's discourse should be promoted, this time with the student occupying the place
of the speaker. At the beginning of the school year, the stirring students are waiting for the
teacher. Somebody enters the room and announces: - / am the mathematics teacher. The
introduction is gratuitous, since it is time for the mathematics class, he is much older than
the students, and he places himself behind the desk on which he lays his briefcase. No
need to say anything... After a certain time, the students get up and go out. The class is
finished. The initial and final moments are the marks of a certain duration. They appear as
void and irrelevant. However, the teacher's leading presence in itself announces the
speech that is going to take place: the mathematics class.

Before the redundant introduction mentioned above, the teacher's figure is a pure
signifier, without a meaning, or to say it better, is a signifier whose meaning falls on itself.
The presence of somebody whom the students can consider "the teacher" is necessary in
order to start the game. At this moment, the teacher's figure is no more than this
necessary mark, supported by the institution's insignias: the desk, the stage, the
blackboard... The teacher is not yet a subject of the process that is going to take place.
The king's signet ring is the clearest possible example of such a primary signifier. Its mark
means nothing, but without it on the sealing-wax, no document is legitimate, no order is
obeyed. The master's signifier is S1.

When the teacher enters the room, some students sit down. Others go on playing.
From this moment on, their playing has the connotation of a challenge, a test of the
teacher's patience and resistance. The exercise of certain powers is the way to keep them
active. Michel Foucault teaches us that it is via its exercise that power constitutes itself.
Bourdieu and Passeron teach us that the more power disguises itself, the stronger it
becomes. Such considerations lead us to understand that the role of the nasty student is
not so undesirable as it is generally thought, but it is necessary to invigorate obedience.
Therefore, it is by the investment of a certain knowledge, precisely of a know-how, that at
this inaugural moment the students make a meaningless signifier out of the teacher, in the
name of which they demand the strengthening of a certain relation (statute) among actions
and utterances between them and the teacher. The teacher is supposed to stop their
playing in the name of the official knowledge cast in the syllabus and "get the class
started". The signifier of knowledge is S2

From the moment of his introduction, it is well known that the teacher will have
obtained authorization to exercise his functions. It is also known that such an authorization
is based on a certificate or degree that testifies his success in the school credit system.
Now, the students know the pathway of promotion in this systern better than anybody else.
They know that in the school system, most of the time one passes without knowing what
the syllabus states [Vinner, 1997]. In order to function as an Si, the teacher must not know
that he is there to promote this passing without knowing (pseudo knowledge, Vinner).
Students know many things, especially how to pass. However, what they know still better
is that the teacher wants the game to go on and things to work well. They also know that
the teacher does not know that this is what he wants. In order to be there, the teacher has
to inebriate himself with his phantasm of minister of knowledge.
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The clearest possible example of such a knowledge is provided by the people and
the king, so brave and courageous in his cherished portrait although everybody knows that
he is fat and flaccid and that he mounts a wooden horse. Everybody helps him to hide his
feet of clay. The students are not interested in exhibiting the master's ignorance either. At
most they threaten to reveal it to those who understand easily, in order to sit beside him
and help him fill in the marks in the grade sheet or to get a recommendation for a
fellowship. Such a truth that can never be fully stated as a truth determines the gap of the
big-Other. The signifier of the castrated subject is S. Lacan symbolizes such a relation

S,
between S1 and S by , the bar indicating that Si is supported by and hides S .

But it is not because of a personal capacity like physical force or ability with the
sword that the king makes himself obeyed. It is the serfs who make the king what he is by
the exercise of obedience to the symbolic law. Lacan symbolizes the basic relation
between Si and S2 as S, S2. The arrow defines the impossible: "(...) il est en effet
impossible qu'il y ait un maitre qui fasse marcher son monde. Faire travailler les gens est encore
plus fatigante que de travailler soi-même, si l'on devait faire vraiment. Le maitre ne le fait jamais"
[Lacan, 1991, p. 202].

What the student expects at the beginning of the course is to be able to identify loss
of jouissance with social promotion. The effort should be paid off by passing. We shall
explain this. The student needs a thick copybook or binder, full of solved exercises, all
equal to the first sample; simple applications of the same formula. This copybook, full of
blue marks that s/he shows to her/his proud parents should lead him/her to promotion in
the school credit system at the end of the year. It should never be revealed that the credit
is the cause (double meaning) of his/her desire, the biggest kick that he hides and that
constitutes him/her as a social agent - a student. The signifier of the cause of desire is the
small-a, a. At the end of the year, like the slave at the end of history in Hegel, the student
reaches a sort of absolute knowledge and finds out that the cherished copybook fits better
in the bonfire of useless and meaningless statements. However, next year, touched off by
a kind of compulsive bias for repetition, s/he starts all over again. According to Lacan "la
répétition est fondée sur un retour a la jouissance (...) dans la répétition même, il y a déperdition de
jouissance" [Lacan, 1991, p. 51].

We have described the discourse present at the first moment of the course, when the
teacher introduces the work contract or leaves it implicit. The work contract defines the
conditions for obtaining credit in the course: how many exams, what textbook, how grades
will be determined, etc. This discourse may be extended well beyond the inaugural
moment and may constitute the overwhelming classroom discourse during the year. Then
we will have a prototype of a certain traditional teaching. The teacher solves one exercise
on the blackboard and assigns similar ones to the students for drilling. Students should sit
upright in matrix position, look at the blackboard, pay attention and be silent. From the
teacher we hear: - This is the way to do it. That is what 1 want. Do it once more. Many
textbooks are still organized to facilitate this kind of teaching.

The student gives up learning in order to keep the school's game going. Learning
would imply passing to another knowledge, distinct from knowing how to pass. The student
would cease being who s/he is to become somebody else - a learner. Most of them refuse
to face this kind of death. The knowledge written in the thick copybook is his/her lost
jouissance. S/he produced it but the jouissance was lost in the repetitive actions. The
slave needs the master precisely in order to hide from himself that he has exchanged
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freedom for life and that he loses jouissance in producing for somebody else. What the
slave produces is not his own; but without producing it would be impossible for him to

S2maintain the game of life. The relation between S2 and a is represented a , the bar

having the same function as before. It means that knowledge S2 is supported by and is an
alibi for the credit system a. Of course, the castrated master cannot be put face-to-face
with the credit system. If this happens, the whole plot is revealed and collapses. Between
S and a there is a barrier that Lacan denotes by a black triangle $ a .

"(...) ii n'y a pas de rapport entre ce qui va plus ou moins devenir cause du désir d'un type
comme le maitre qui, comme d'habitude ne sai rien, et ce qui constitue sa vérité. (...) La barrière (...)
c'est la jouissance (...) en tant qu'elle este interdite, interdite dans son fond. (...) pas besoin de
reagiter les phantasmes mortiphéres" [Lacan, 1991, p.124].

Putting together the signifiers and their relations that we have described up to this
point, we get what Lacan calls a four-legged diagram representing the four discourses.
The first one is the master's discourse.

master-signfier --> knowledge Si S2

subject A jouissance T A a
There are four functional positions in the four-legged diagram. Those functions are

maintained insofar as the signifiers S1. S2, a, S circulate to produce the four discourses.
The master's discourse is the one from which the other three are obtained. Positions and
functions will be maintained while the signifiers are shifted through the diagram in order to
obtain the three Other discourses: the university's, the hysteric's and the object's discourse.

The upper-left position is the position of the agent, conceived not as the one who
acts, but as the one who is put into action by the demand. In the master's discourse, this
position is occupied by the Sj, master or teacher. It defines the function of desire insofar
as it stirs the Other's desire. In each of the four discourses, the signifiers will inherit
something from the positions they occupy and will leave a trace of their presence in this
position. The S2, the slave or the student, is in the upper-right position which is the position
of work. From this position the demand is exerted. It also defines the functions of the big-
Other, such as providing meaning to what is said, maintaining the law, and the ideology,
etc. The 5 , the castrated master or the ignorant teacher, is in the lower-left position, the
position of truth. It also characterizes the function of truth. Finally, the a, the slave's
production or the credit system, is in the lower-right position, the position of production that
characterizes the function of loss.

We shall not have space to explain the other three types of discourse. We can only
present their diagrams and leave their application to classroom situations to the reader's
imagination.

THE MASTER'S DISCOURSE
It is impossible to rule

desire work
agent demand
S

truth

> S 2

a

production
loss
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THE UNIVERSITY'S DISCOURSE

It is impossible to educate

desire work
agent demand

a

S

truth production
loss



THE OBJECTS DISCOURSE

It is impossible to analyze

desire work
agent demand

a

s 2
truth

-->
A

production
loss

THE HYSTERIC'S DISCOURSE
It is impossible to make desire

desire work
agent demand

a

truth

-> s

S 2
production

loss
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Which is the Shape of an Ellipse?

A Cognitive Analysis of an Historical Debate

Maria G. Bartolini Bussi (1)- Maria Alessandra Mariotti (2)
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ABSTRACT. This report starts from the cognitive analysis of an imaginary debate - reconstructed
with excerpts from historical sources - concerning the shapes of particular sections of a right cone
and of a right cylinder. The analysis, based on the theory of figural concepts (Fischbein, 1993),
suggests the following hypothesis: When conic sections are concerned, a break between the figural
and the conceptual aspects is expected and is not easy to be overcome. An exploratory study with
expert university students was carried out to validate the hypothesis exploring what kind of
conceptual control, if any, were students able to mobilise in order to overcome the break. After
reporting the findings of the study, we suggest which tools of semiotic mediation (Vygotsky, 1978)
could be introduced to make the students acquire the possibly lacking conceptual control.

1. The Task

An imaginary debate has been constructed with excerpts of historical sources from
different ages. It concerns the shape of a particular conic section. Read it carefully.

Serenus: Since I know that many expert geometers think that the transversal section
of the cylinder is different from the one of the cone that is called ellipse, I have
thought that they must not be allowed to make such a mistake. Actually it is absurd
that geometers speak about a geometrical problem without giving proofs and are
attracted by truth appearances, versus the spirit of geometry. However, since they
are convinced of that and I am convinced of the contrary, I shall proof 'more
geometrico' that both solids have a section of the same kind, rather identical,
provided that the cone and the cylinder are cut in a suitable way (The Sections of
Cylinder and the Sections of Cone, IV century A. D. )

Witelo: All the ellipses that are sections of the acute-angled cone are larger in the
side close to the base of the cone: this is not true for the ones obtained as sections of
the cylinder. It happens because of the sharpness of the cone and the regularity of the
cylinder. In fact, on the one side, let us consider the intersection of the axis of the
cone with a line perpendicular to a side of the axial triangle; if we draw a circle on
the cone with that centre and we imagine a cylinder with this circle as the basis: it is
evident that the bottom piece of the cone is external to the cylinder whilst the top
piece is internal. Hence the bottom part of the conic section contains the bottom part
of the cylindrical section, whilst the top part of the cylindrical section contains the
top part of the conic section. On the other side, the two parts of the cylindrical
section are equal because of the regularity of the solid and of the equality of the
angles with the axis. Hence the thesis follows (About Perspective, about 1200 A. D.).
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Darer: I do not know the German names of the (conic) sections, but I suggest to name
the ellipse, egg-shaped curve, as it is identical to an egg (Treatise on measuring by
rule and compasses on the line, on the plane and on every body, 1525).

Guldin: It is necessary to avoid the mistake of those who think that the (conic) ellipse
is narrower in the part close to the vertex of the cone and larger in the part close to
the basis of the cone: on the contrary they are very similar (Centrobaryca 1640).

What do you think? How could you convince an interlocutor (e. g a school fellow of
yours) whose opinion is different from yours? And how could you convince a Junior
High School student?

2. A Cognitive Analysis of the Historical Debate

The above imaginary dialogue reconstructs some elements of an historical debate
between voices from two antagonist and complementary worlds: the one of theoretical
geometry and the one of practical geometry (Balacheff 1997).

Theoretical geometry. Since the age of Apollonius a deep understanding of the
properties of conic sections had been gained. However, most of the properties were
expressed through relationships, immediately related to neither the shape of the cone to
be cut nor to the shape of the section. For instance, the theory of Apollonius was based
on proportions and applications of areas, by means of which the very 'symptoms' (i. e.
characteristic properties) of conics were expressed in the secant plane, despite the
initial 3-D approach. This process based on calculations culminated in the algebraic
representation of conics by equations in the 17th century. A simple and meaningful
link between the 3-D approach and the 2-D approach to conics was looked for by
mathematicians for centuries until Dandelin (1822) succeeded in relating the focal
properties of a conic to a configuration with a conic section and two spheres tangent to
the cone and to the secant plane, where the points of tangency are the very foci (see
fig. 6; for an elementary proof see Hilbert & Cohn Vossen, 1932; see also
http://155.185.1.61:80/1abmat/dandin.htm).

Practical geometry. Conic sections were studied also with the purpose of applications,
such as setting sundials, constructing burning mirrors and drawing in perspective.
Bacause of the modelling process the 3-D generation of conics was focused. Witelo
and Darer belonged to this tradition. In particular, Darer applied the graphic method of
double projection, practiced in the painter workshops to conic sections. However, in
spite of the keen (and right) method, that was reconsidered in the late 18th century by
Monge, he drew an egg-shaped curve (see the fig. 7 from Darer, 1525), instead of an
ellipse, probably deceived by arguments similar to the ones expressed by Witelo.
Guldin witnessed the permanence of the misconception more than one century later.

The above outline (for more details see Bartolini Bussi, to appear) shows the existence
of two relatively independent worlds, that came in contact with and nourished each
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other from time to time. However the relative independence from each other created
the conditions for the birth of autonomous manners of viewing and styles of reasoning.

The break between the arguments used in theoretical geometry and in practical
geometry seems interesting to be investigated from a cognitive perspective, besides the
historical point of view. Let us try to analyse it, in this specific case, according to the
theory offigural concepts (Fischbein, 1993).

The geometrical concept of cross section (i. e. the figure obtained as the intersection
between a plane and a surface or possibly the solid bordered by it) proves to be
difficult in general (Mariotti, 1996), since it is necessary to forget the global
appearance of the solid and infer from 'outside' what happens 'inside'. For instance,
think of a cube cut by a plane oblique in respect to all of its edges (see the fig. 1). It is
hard to overcome the possible conflicts between the figural aspect, deeply affected by
the global shape of the object and its components (all the faces of the cube are
squares) and the conceptual aspect, that concerns the properties of the intersection
between the set of the points of the cube and the set of the points of the given plane.
On the one side, there are many implicit properties of the solid, which become
determinant in order to characterise the shape of the cross section, but cannot be
immediately grasped, or which conflict with perceptual attributes; on the other side the
shape of the solid can hide other properties. For instance, the symmetry of a section is
hardly recognised since symmetry (unlike other geometric properties) is neither
invariant for intersection nor easily related to the properties of the two sets to be
intersected.

The above analysis shows that the solution of a section problem implies a high
conceptual control, which is supposed to be more problematic in practical geometry,
where a supremacy of the figural aspect appears and an adequate conceptual control is
not always available. Drawing on this analysis originated from an historical case, we
guessed that even experts might not be able to control practical arguments based on
the supremacy of the figural aspects, because of the break existing between figural
aspects and the available conceptual instruments, with a resulting conflict between the
strategies applied in the two cases.

3. The Exploratory Study

3. 1. PURPOSE. We made the following cognitive hypothesis: When conic sections
are concerned, a break between the figural and the conceptual aspects is expected
and is not easy to be overcome' (even for students formally educated). Our
investigation aimed to explore what kind of conceptual control, if any, were students
able to mobilise in order to overcome it. We wished to observe how they succeeded in
defending a position under the pressure of an imaginary debate, in order to by-pass the
break and harmonise the figural and the conceptual aspects. If the above hypothesis
had been validated, a new didactic problem should have arisen: how could have the
teacher made the students acquire the (possibly) lacking conceptual control.

7 3 2 66



3. 2. METHOD. 14 students from the courses of Elementary Mathematics from a
Higher Standpoint (i. e. a Course on Epistemology of Mathematics for prospective
teachers), taught by the two authors in the 3rd - 4th years of the courses of
Mathematics, accepted to take part in an afternoon problem solving session in their
respective Universities (A and B). Both groups had taken two one year-courses - i. e.
nearly 300 hours - in geometry including linear algebra, vectorial, euclidean, affine
and projective spaces and the algebraic study of conics and quadrics. In these courses
they had information about the intersections of a cone and a cylinder with a plane.
Hence they could be considered experts: there was no doubt about the fact that in both
cases it is possible to obtain an ellipse. They were divided into small groups (2 trios -
A2, B5 - and 4 pairs - Al,B1+B2,B3,B4), given individual copies of the text of the § 1
and asked to produce only one answer for each group (in one case, a pair did not
succeed in reaching an agreement, and the group produced two texts B I, B2).

3. 3. DATA. The problem solving session lasted two hours. We collected 7 written
protocols (Al A2; B1 B2 B3 B4 B5) with drawings and paper models. The groups
realised various and different explorations. We shall give only some details.

3. 3. 1. Witelo's and Diirer's Arguments. Some groups guessed the reasons for the
mistake and tried to find the bug . We shall focus on three different issues:

The symmetry reasoning. Some drawings (e. g. fig. 3) and the transfer of a property of
symmetry from the cone to the section might suggest the idea that the centre of the
conic section (if any) is the intersection of the axis of the cone with the secant plane. A
group (Al), tried to find a symmetry between the two parts ofthe section that are on
the different sides of the triangle of the paper model (fig. 2). When the model failed,
they drew a right cone and a right cylinder with the same base and a secant plane and
tried to show that the two sections are concentric ellipses, by estimating their
'distance'. But when they imagined to incline the secant plane more, they saw that the

'distances' change in a different way: on the one side the curves becomes closer and
on the other farther. This was even more puzzling because it stressed the difference
between the cylindrical and the conic sections against their wish of eliminating
differences. However it convinced them that the ellipses might be not concentric, i. e.
that the centre of symmetry (if any) might be out of the axis of the cone.

The containing-contained reasoning. A group of students (B3) drew a right cone and a
right cylinder with the same axis as described in Witelo's argument. Then they drew
the sections with the same plane. They obtained two closed curves intersecting in two
points (fig. 4). The particular configuration might explain, in their opinion, why there is
no contradiction in having a 'true' ellipse for the conic section that is contained in the
cylindrical section on the top side and that contains the cylindrical section on the
bottom side.

The limit case reasoning. A student (B2) explained Diirer's mistake by means of a
limit argument. He drew the section of a regular pyrami nd a regular prism with
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hexagonal basis by means of orthogonal projections and commented: It is evident that
the two sections are not of the same kind, in fact, whilst the prism section is
symmetrical, this is not true for the pyramid section. We can imagine that this
disproportion is maintained when, by increasing the number of sides, the pyramid
and the cone approach at the cone and the cylinder. [..] [In the case of the cone]
perception might suggest a not symmetrical curve (i. e. Diirer's egg). The mistake is
reinforced by the common pointwise construction of sections, that is usually made by
choosing on the circle the vertices of a regular polygon. However the student did not
try to explain the apparent conflict between the symmetry of the section of the cone
and the asymmetry of the section of the pyramid.

3. 3. 2. Models. The students referred to both 3-D mo.dels and 2-D models (drawings)

3-D models. In one case (Al), a pair of students started to cut, fold and glue paper and
to make some models. They were very hopeful because a good paper model could be
useful to convince Witelo practically, as Witelo is speaking in practice and not in
geometry. He's not giving any proof The most promising model, that was handled for
a lot of time, consisted of two equal isosceles triangles stuck together orthogonally
along their heights (fig. 2). The two students tried to describe with hands or pencil the
section in this model but without success. They hoped to find some symmetry between
the two parts of the section that are on the different sides of one triangle but they did
not succeed. This practical experience helped them later to exit from a blind alley (see
§ 3.3.1). Two groups of students (B3 and B5) suggested to use (not available) concrete
wood models to explain the result to young pupils too.

Drawings. From the very beginning, while reading the given text, all the students
started drawing. Since the problem concerns a 3-D configuration, different kind of
drawings were produced, according to their previous experience in high school;
however in most cases the scarce if any - mastery of effective drawing abilities did
not allow them to fmd conclusive evidences. For instance, a group (A2) focused
attention on only one position of the secant plane from the very beginning (fig. 3): the
little inclination of the plane suggested a false symmetry (see § 3.3.1); hence, for the
whole session, they tried to prove a false conjecture without success.

3. 3. 3. Proofs. Only one student (B2) introduced proofs in his answer.

Synthetic. He reminded a way to relate the focal property of the ellipse as a locus of
points to a conic section, by drawing Dandelin's configuration (fig. 6). He told to have
seen a model once and to have been struck by the ingenuity of the method.

Analytic. No student tried to approach the problem by means of analytic geometry,
even if some groups turned to equations later. Yet only the student B2 succeeded in
proving that cutting a cone with a suitable plane, the conic section is an ellipse, by a
fusion of synthetic and analytic instruments: the synthetic part allowed him to avoid the
problematic recourse to the system of the equations (in three variables) of the cone and
of the plane by shifting the reasoliwgto the secant plane only, where a local system of
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cartesian coordinates was introduced; in this system the equation of the section was
calculated correctly, using synthetic geometry, and reduced to the known canonical
form (fig. 5). But he was not satisfied by this proof 'more analitico' (as he called it),
because it cannot tell anything to a person - like Witelo - who does not know ellipses
as equations.

3. Discussion

Although its small size, the exploratory study confirms our hypothesis. Data highlight
the break between the figural and the conceptual aspects in the field of conic sections
and the great difficulties met to overcome it. The university students had information
about conic sections and nobody doubted about the truth of the known statement. Yet
only one student (B2) succeeded in proving that the conic section under scrutiny is an
ellipse. All the students looked for a direct argument against Witelo, that is an
argument that would not break the link with the figural aspect. The group B3
contrasted Witelo's argument based on set inclusion without offering a complete proof.
A lot of students expressed their faith in (not available) concrete models. Unfortunately
it would not be possible to control Witelo's argument only by refining perception: the
ellipses are not 'seen' as ellipses (as it is shown in his beautiful analysis of the ancient
drawings of circular wheels and elliptical shields, depicted according to Euclid's
Optics, by Knorr, 1992) and direct measuring with comparison of segments might be
impossible on the wood models proposed by the students. Actually a direct argument
to exert a conceptual control on Witelo's figural argument does not exist.

One could defend the elliptic form of a particular conic section in different ways, by
producing rigorous proofs: e. g. in the style of Apollonius, by proving that the section
has two orthogonal conjugate diameters (i. e. axes of symmetry); in the style of
Serenus, by constructing (and proving the construction) a cylinder with the same
section of a given cone; in the style of post-cartesian geometers by using analytic
geometry (Herz-Fischler, 1990). All the students had been trained in analytic
geometry, yet they (with one exception) did not use equations effectively. The cause
could be the failure in managing 3-D analytic geometry, but also the voluntary choice
of excluding a not appropriate way of contrasting Witelo's argument. Actually, even if
the task did not ask it explicitly, the students seemed to enter by themselves into a
voices-echoes game (Boero & al., 1977), where the two voices represented practical
geometry and theoretical geometry. They tried to express a dissonance by
appropriating Witelo's voice and refming it without success. Even the only student
(B2) who built a synthetic-analytic proof was not satisfied, because he thought that it
could not have convinced Witelo. Actually in the sequence of algebraic manipulations
of a formula it might be impossible to keep track of a sequence of geometric steps to
which the formal manipulations should correspond.

From these data, can we conclude that no form of conceptual control of Witelo's
figural argument is available for these university students? We do not think so. At least
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two purely synthetic arguments do exist that can be expressed in elementary terms and
can be explored through perception, up to becoming tools of geometrical reasoning:
(1) the (revised) Dfirer's method of double projection (fig. 7); (2) the Dandelin's
theorem (fig. 6). The former may be improved by the recourse to dynamic softwares
(like Cabri or Geometer's Sketchpad) which transform the pointwise construction into
a 'continuous' one and make 'visible' what happens in the secant plane while we shift
from the bottom to the top or viceversa, explaining also why pyramids and cones have
different properties. The latter creates a visible link between the conic section and its
foci. Yet, two problems arise. First, they do not address directly the symmetry of the
section, that could only be undirectly inferred. Second, to restore the harmony between
the figural and the conceptual aspects, a deep transformation of the original figure is
required: in the Dftrer's method, the object is broken into three different views (on the
vertical, the horizontal and the section planes) and, in the Dandelin's theorem, two
auxiliary spheres are introduced into an already complex configuration. Both appear as
'bid& that can be appropriated (but cannot be discovered without help) by students.
We have here two very examples of tools of semiotic mediation (Vygotsky 1978),
which may be introduced from the outside (by the teacher, by a book, by a model, by a
guided practice) and may have the effect of controlling the immediate reaction based
on perceptual appearance. Further studies are needed, but we guess that the very
analysis of the quality and of the amount of help necessary to restore the broken
harmony between the figural and the conceptual aspects could give a useful pointer of
the relative difficulty also in the case of advanced geometry tasks for the tertiary level,
such as the one we have presented in this report.

Acknowledgements. We wish to thank Marcello Pergola who first calledour attention
to this beautiful piece of the history of conic sections.
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CHILDREN'S UNDERSTANDING OF THE DECIMAL NUMBERS THROUGH
THE USE OF THE RULER
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Paolo Sorzio: Dip. Educazione. Universita di Trieste

Abstract:This is an exploratory study about the use of ruler to introduce the
concept of decimal number, in the normal classroom curriculum, with third-grade
children. We propose that the children's use of the ruler can have a mediational
role in their understanding of the additive structure underlying the standard written
decimal notation. In order to achieve our objective, we have designed a classroom
practice that engages students in a sustained mathematical activity which requires
an extensive use of the ruler to acconzplish different functions (measuring, drawing
segments, ordering and approximating decimal numbers). Opportunities and
constraints in children's use of the ruler to achieve the educational goal are
presented.

Framework
Educational models that are developed from the sociocultural and the constructivist
perspectives (Cobb, 1994; Confrey, 1995) have criticized the formalistic models of
teaching/learning mathematics in elementary classrooms, and have proposed new
directions for implementing learning environments.

Effective learning does not consist in the acquisition of a fixed amount of
knowledge, transmitted by a teacher, but mathematical thinking develops in rich
mathematical environments, in which children have many opportunities to deal
with dilemmas and problems, make use of tools, share ways of doing things, utilize
previous knowledge in order to contribute to an intended goal in practice.

Saxe (1991) interprets the development of mathematical thinking in terms of
shifting relations between form and function. Cultural forms such as the ruler and
the decimal symbol convention are acquired and used by individuals to accomplish
different cognitive functions (like measuring, calculating, ordering) that emerge in
a cultural practice. Children appropriate and specialize prior forms to accomplish
new cognitive functions. In order to support children's use of cultural forms as a
means to achieve relevant educational goals, the negotiation of a certain amount of
shared meanings is required. Therefore, classroom discourse provides resources
for, challenges to and constraints on children's thinking (Forman, & McPhail,
1993). Effective learning environments support the participants in their moving
from 'primitive doing' of mathematical actions through the use of tools, towards
progressively sophisticated abstractions (Pirie, & Kieren, 1992). In such
environments, the learners do not construct their representations of mathematical
symbols in a vacuum, but have manifold opportunities to ground their construction
of mathematical meanings in 'situation-specific imagery', as elaborated in practice
through the use of cultural forms (McClain, & Cobb, 1996).
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The formal. approach in introducing the decimal numbers in elementary classrooms

In previous studies (Bonotto, 1993; 1996), 10-11 year italian children's conceptual
obstacles in ordering decimal numbers are analyzed. The findings arc consistent
with classical researches (Nesher, & Pe led, 1986; Resnick, et al., 1989).

It was hypothesized that such findirigs may depend not only on the inherent
difficulties of the subject matter but also on the teachers' conceptions and
educational strategies. Many teachers introduce the decimal numbers by extending
the place value convention; they tend to spend little time to let the children
understand the meaning of the decimal number symbols and reflect on the decimal
number properties and relationships; efforts to connect decimals and decimal
measures lack. As consequence, children do learn to carry out the required
computations, but they have difficulties in mastering the meaning of decimals, the
relationship between meanings and written conventions and between fractional
representation and decimal representation, and finally in ordering sequences of
decimals.

Measuring activities as an alternative introduction to the decimal numbers

According to innovative instructional approaches, we mantain that children's
decimal number understanding can be fostered in rich classroom environments,
where learners can transfer their out-of-school knowledge and utilize familiar tools
(such as the ruler) to accomplish a recurrent set of mathematical activities, and
where they can share some minimal presuppositions about the problem definitions
and the goals.

We propose that a set of measuring activities that require an extensive use of the
ruler can offer the children good opportunities to move toward the construction of
an encompassing numerical structure, which integrates in a consistent whole both
the natural and the decimal number systems.

The ruler is a cultural artifact (Saxe, 1991) which can offer the children a first
approach to the decimal number as the result of a given measurement. On the
ruler, 'mathematical facts' are represented through its signs: the natural number
sequence is visible, and fractionary parts arc marked. Therefore, the ruler can
offer a 'situation-specific imagery' of the additive structure of the written decimal
number notation, which supports the children's progressive understanding. For
example in order to draw a 3.15 dm segment, the child firstly draws a 3dm line
and marks the final extreme, then she/he adds a lcm line to it, and finally a 5mm
line, and expresses each affixion as 'plus', or 'and'. The child can understand that if
there are two decimal digits after the decimal point, then there are units, plus tenths
plus hundredths, and that each digit specifies how many parts of a given magnitude
are included in the addition. The learner is expected to form images out of her/his
actions through the use of the ruler, and to visualize relevant properties. The child
can map this visualization onto the decimal number representation to attribute a
meaning to the decimal digits after the decimal point; her/his ability to solve
ordering problems is enhanced.
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Furthermore, the activity of measurement can offer a common reference in
communication, by making mutually explicit one's own operations and
understandings.

The research:
We have designed a classroom practice that engages students in sustained
mathematical activities which require an extensive use of the ruler to accomplish
different functions.

In the first year of experience (Basso, Bonotto, Sorzio, 1996), we had asked third
graders to draw, measure, compare segments expressed in centimeters, because it is
the unit of measure the children are familiar with in their classroom activities.
However, the introduction of the second decimal digit (expressing tenths of
millimeters) had been too difficult to understand for many children because it is
not marked on the ruler.

Therefore, we devised a second experience in which other 8-9 year children were
asked to represent given decimal numbers as segments, to measure and represent
given segments in the written symbol notation, to compare, and to order decimal
numbers. All the decimal numbers were represented in decimeters to make the
second decimal digit representable by a mark on the ruler.

In order to make the decimeter a meaningful unit of measure, we introduced the
tasks as representing some problematic situations in thc imaginary world of an
Olimpic Long Jump Game in Lilliput.

Research objectives: data are gathered and analyzed about:

-the children' understanding of the signs on the ruler;

-the children's use of the ruler to measure segments, and to draw segments of
required lenght;

-the children's understanding of measuring as a process of approximation;

-the children's understanding of the additive structure underlying the standard
written decimal notation;

-the children's process of detachment from the representation on the ruler and
from the presence of a given unit of measure;

-the children's understanding of the density of the enriched number line with
decimals.

The mediating role of small group and classroom discurse in enabling the children
to achieve the educational goal of connecting the representation on the ruler and the
standard written notation is also analyzed.

Sub'ects: 15 third grade children (aged 8-9 years) in a small school in a village (NE
Italy) participated to the experience.

We observed the children as they played the game once a week, for a period of six
weeks, two hours per session. Data were gathered from videorecordings,
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participant observations and children's protocols.

In the first hour of each session, the children were sorted in small groups of four
learners each to solve the tasks; in the second hour, the children discussed their
reasoning processes and the results in a classroom discussion led by the teacher.
Material: Each child was given a 3 decimeter ruler, a set of papers showing two
partially filled in tables recording the numerical representations of jumps, and a
series of segments representing jumps to be measured.

Procedure:: 1. In order to introduce the first decimal digit, the children were given
the first partially filled in table representing jumps in the decimal notation, and a
set of segments representing jumps to be measured. The children were asked to to
represent the measures at the first decimal digit in the table;

2. eventually (in the third session), the children were given the second partially
filled in table in which the second decimal digit representing the millimeters was
introduced by Lilliputians through the use of a more precise measuring tool; they
were asked to measure and represent jumps in the table;

3. finally, the children were asked to make comparison and ordering inferences
about decimal numbers and to mentally check whether there are numbers between
two given numbers. Children were expected to perform these tasks without relying
on the ruler, in order to begin a reflection about the number line properties, e.g.
density.

Cognitive fimctions accomplished by the children: measuring given jumps; drawing
jumps of required lenght; converting measures in decimal numbers to fill the table;
evaluating each Lilliputian's best jump; ordering the best jumps to ascertain the
winner, the second, the third in the game. Comparing the winner's jump and the
Lilliput world record, and evaluating the difference.

Ordering measures expressed in the decimal number notation; evaluating which of
two measures better approximates a third measure.

Ordering, comparing, and approximating decimal numbers.

Discussion

We briefly present some excerpts in which the individual constructions of the
decimal number understanding are mediated by the use of the ruler and by small
group and whole classroom discussions.

In the following passage from the third session, Marta's difficulty in understanding
the written decimal notation is highlighted. She is comparing two lilliputians' jumps
(Alberto's 3.20 dm and Carlo's 3.28 dm),

Marta (trying to draw the 3.20 segment as if it were 3 dm e 20 cm.): "No space...
It's 20, I am drawing the 3.20 dm, and I can't get the 20cm being in (my drawing
sheet)"

researcher: "the 20... what do they represent?"

Marta: "they are 20 millimeters, then. If I had to come to 20 (she means
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centimeters), I'd come to here (outside the leaf). Therefore, they are 20
millimeters!"

Michele (hc already drew the 3.28dm segment): "have you seen? these are 3 dm,
these the 2cm, and these the 8 mm (for each additional segment he points to the
corresponding mark he signed on the 3.28dm segment)"

Marta: "where are the 2 centimeters? Alta!"

At the beginning, Marta is not able to have an image of relevant properties of the
given decimal number, and she interprets 3.20 as it were a juxtaposition of whole
numbers, the decimal part representing how many centimeters (20) should be
added to the decimeters represented on the left of the decimal point. The measuring
activity offers a reference for Marta to have a specific imagery of her intended
action, that enables her to understand that each decimal digit position represents the
magnitude, and its value represents how many parts of a given decimal magnitude
there are.

Comparison: during a small group discussion (fourth lesson), some children are
ascertaining the smaller between 8.1 e 8.15

researcher: "which number is smaller: 8.1 or 8.15?"

Thomas: "8.1 is larger"

researcher: "why do you think soT'

Thomas: "because here (8.15) there are millimeters"

resenrchei: "and therefore you think it is smaller, don't you?"

Thomas is puzzled, others disagree.

Moreno: "8.1 e 8.15... it would be 8 dm and 1 cm., and 8.15 (would be) 8 dm, 1
cm e 5 mm (the other children agree). This (8.1) had only 1 centimeter, and this
(8.15) was 5 tnillimeters ahead."

Thomas correctly understands millimeters as connoting smaller parts than
centimeters, but he incorrectly concludes that the total value of the term with more
digits in the decimal part must be smaller. Moreno interprets the given decimal
numbers as measures, and therefore he understands each of them as representing a
summation; he compares the two numbers in terms of lenghts.

In this classroom discussion (fourth lesson) the process of representing a given
measure in the standard decimal notation is highlighted:

Each child is presented a 3.25 dm drawn segment and asked to represent it in the
standard decimal number notation.

Marta (measuring the segment): "3 dm, 2, let me count the millimeters ... 5." she
writes "3. 2.5".

Teacher: "can you mark it (select a unit of measure)? You wrote '3.2.5' (writes it
on the blackboard)"
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Marta: "32.5 (puzzled)"

The teacher points to the non standard notation '3.2.5' , and asks whether the given
segment can be expressed in a different notation; Marta repeats "32.5"

teacher: "you may be right, but which mark is correct?"

)

Mattia: "32 an point 5 nun"

teacher: "can you write it differently?"

Mattia "3.25"

The teacher (writing 3.25): "how do you mark it ?"

Mattia: "(...) decimeters"

teacher: "why do you think so ?"

Mattia: "because 1 think a Lilliputian cannot jump 3 centimeters and25 millimeters,

he can jump 3 decimeters and 25 centimeters"

researcher: "no, 3 decimeter, 2 centimeters and half, not 25 centimeters. (....) how
much 25 cm is ?"

Mattia: "2 decimeters e 5 centimeters"

Marta chooses a numerical representation that reflects her additive action of
measuring; when asked to translate in the correct form, she relies on the numbers
she reads on the ruler (representing centimeters). Mattia's answer reflects his
conflict between his experience with measures expressed in decimeters and the
numbers on the ruler which represent centimeters; however the ruler offers a
concrete representation that enables him to understand his mistake.

In the fifth session, the teacher expects the children to detach their understandings
about the decimal numbers from the representation on the ruler and from a given
unit of measure.

teacher (writing 3.15 on the blackboard): "How can you read it?"

The whole class "3 point 15"

teacher: "make your observations, Mania would you come to the blackboard"

Mania: "3.15 you can say 3 point 1 centimeter point 5 millimeters"

teacher: "what is the 3?"

Mania: "decimeters, if the unit of measure is decimeters"

teacher: "if there were no unit of measure?"

Battista: "centimeters are ten times smaller, the millimeters one hundred ..."

Elisa: "3 is the unit"

teacher: "3 what?"
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Mania: "unit"

teacher: "as to say... what?"

Mania: "3 decimeters" (...)

teacher: "why? here there is the decimal point, what is this right there?"

Child: "the smaller pieces"

teacher "smaller than what?"

Silvia: "than 3"

Mania: "no, because 5 is larger than 3 (maybe he is misinterpreting Silvia's
utterance)

Giulia: "no, because 3 is decimeters, (that is) 30 centimeter unities"

teacher: "(how do you represent it) in terms of just numbers?"

Child: "unit of a number"

teacher: "what is the 1?"

Child: "another unit of number"

Battista: "ten times smaller"

teacher: "than what?"

Battista: "than 3"

teacher: "what is 5?" (....)

Battista: "another unit of number, (which is) one hundred times smaller"
(teacher: "why do you think it is one lwndred times smaller?"

child: "because there are the millimeters"

Mattia: "and afterwards there would be the thousands ..."

teacher: "where would you place the parts (that are) smaller than 57'

Mattia: "right here "(he correctly points at the place after the last decimal digit)

teacher: "what would you place there, if nothing is signed?"

Mattia: "a 0".

Although the teacher is trying to lead the children towards a more abstract thinking
about the decimal number meaning, she is leaving underspecificated the new frame
of mathematical discourse her utterances imply. The children are utilizing their
prior experience with the ruler as a means to progressively gain more indications
about the teacher's intentions and to make the discussion go on.

To calibrate their understanding, they are utilizing their additive conception of
decimals, and are interpreting the place value convention in terms of 'smaller
picccs' or 'remains'. However, their difficulty in moving towards a conccption of
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the pure number persists, since the conflict they still experience between the
meaning to be attributed to each decimal digit value -which represents how many
parts of a given magnitude there are- and the meaning to be attributed to each
decimal digit position -which represents its magnitude.
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CONSTRUCTION OF MULTIPLICATIVE ABSTRACT SCHEMA FOR
DECIMAL-NUMBER NUMERATION

Annette R Baturo and Tom J Cooper
The Centre for Mathematics and Science Education

Queensland University of Technology, Brisbane, Australia

This paper reports on an intervention study planned to help Year 6 students
construct the multiplicative structure underlying decimal-number numeration. Three
types of intervention were designed from a numeration model developed from a large
study of 173 Year 6 students' decimal-number knowledge. The study found that students
could acquire multiplicative structure as an abstract schema if instruction took account
of prior knowledge as informed by the model.

Baturo (1997) explored students' acquisition of, and access to, the cognitions
required to function competently with decimal numbers. One hundred and seventy-three
Year 6 students from two schools (different socioeconomic backgrounds) were tested
with a pencil-and-paper instrument that included items designed to assess number
identification, place value, counting, regrouping, comparing, ordering, approximating
and estimating for tenths and hundredths. As a result of analyses of the students'
performances and of the cognitions embedded in decimal-number numeration processes,
Baturo developed the numeration model shown in Figure 1 to show these cognitions and
how they may be connected.

POSITION

VALUE

BASE

UNITILUIVALENCE

ADDITIVE
STRUCTURE

REUNITISING

ORDER

MUTLIPLICATIVE
STRUCTURE

Figure I. Cognitions and their connections embedded in the decimal number system (Baturo, 1997).

The model depicts decimal-number numeration as having three levels of
knowledge that are hierarchical in nature and therefore represent a sequence of cognitive
complexity. Level 1 knowledge is the baseline knowledge associatedwith position, base
and order, without which students cannot function with understanding in numeration
tasks. Baseline knowledge is unary in nature comprising static memory-objects (Derry,
1996) from which all decimal-number numeration knowledge is derived. Level 2

2 - 80



knowledge is the "linking" knowledge associated with unitisation (Behr, Harel, Post &
Lesh, 1994; Lamon, 1996) and equivalence, both of which are derived from the notion

of base. It is binary in nature and therefore represents relational mappings (Halford,
1993). Level 3 knowledge is the structural knowledge that provides the superstructure
for integrating all levels and is associated with reunitisation, additive structure and
multiplicative structure. It incorporates ternary relations that are the basis of system
mappings (Halford, 1993).

Within the model, multiplicative structure relates position and base into an
exponential system (Behr, Harel, Post, & Lesh, 1994; Smith & Confrey, 1994) to give
value and order. It is continuous and bi-directional and, for binary relationships, relates
all adjacent places to the left through multiplication by 10 and to the right through
division by 10. (For ternary relationships, it relates all adjacent-but-one places to the left
through multiplication by 100 and to the right through division by 100.) It is the
knowledge structure that underlies the concept of place value, the development of which
is i major teaching focus in the primary school. Thus, an understanding of
multiplicative structure is crucial and, as argued by Baturo (1997), if not explicated for
whole numbers, denies students one of the major conceptual underpinnings of decimal

numbers. It is also an excellent example of an abstract schema (Ohlsson, 1993) as

shown in Figure 2.

x100 x100
"<"------ x10 x10 <----- x10 x10

x100 x100<
xl0x10 xl0x10

.7100.010

<-- x10 --<-- x10 < x10 C x10 < x10 <--- xI0
Thounand. Hundred. Terns 0 nee tenth. hundredth. thoueandths

A 1 1 1 I i I I
IIIP

/10 --->--- /10 >-- /10 -->-- /ID 3-- /10 3,-- /10 3.
/100 /100 /100------> -->

/10 /SO /10 /10 /10 /10
/100 /10 0

/10 /30 > /10 /10

Figure 2. Place-value relationships embedded in the decimal number system.

The model was used by Baturo (1997) to develop interviews designed to probe
stdents' understanding of Levels 1, 2 and 3 knowledge with respect to decimal numbers

to hundredths. These interviews were administered to all students whose test
performance was very high (90%), high (80-90%), and medium (60-80%). Thus, the
interview selection comprised 16 very-higher performers (VHP), 16 high performers
(HP) and 13 medium performers (MP). Responses to the interviews (and the tests)
showed that a majority of the students did not have multiplicative structure to Level 3; in
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fact, a significant proportion of the medium students did not have multiplicative
structure at Level 1 (knowledge of position and order). Therefore, intervention was
undertaken, individually, with 17 of the 45 interview students to help them construct
multiplicative abstract schema for decimal-number numeration.

The intervention study

Three types of intervention were given to the 17 students (1 VHP, 7 HP, 9 MP).
Type 1 intervention was employed if the student had indicated evidence of procedural
knowledge for interview tasks such as "0.3 x 10 = This intervention aimed to
connect the student's procedural knowledge to the appropriate structural knowledge
through focusing on reverse tasks such as "change 7 tenths to 7 ones using a calculator".

Students were given Type 2 intervention if Type 1 failed or if procedural
knowledge was weak or unavailable. In Type 2 intervention used a large place value
chart (PVC) and digit cards in conjunction with the calculator. The students were asked
to model a binary relationship in one direction (x) by showing 7 tenths on the PVC,
making a change to the 7 tenths to show 7 ones, and mirroring this process with the
calculator. If students were successful on this task, they were then asked to model a
ternary relationship (e.g., 8 ones to 8 hundredths) in the opposite direction (+). The
decimal point was represented with the students' choice of small adhesive stickers of
hearts, geometric shapes, flowers or small animals. This was done to: (a) make the
students aware that the decimal point, like all mathematical symbols, is a cultural
artifact; (b) to add some excitement and motivation to an otherwise fairly dull task, and
(c) to make the symbol more meaningful by allowing the students to choose their own
representation. In this stage, the language used was vital in helping the students connect
the concrete/iconic place value procedures to the symbolic calculator procedures.

Type 3 intervention was given to those students who, in Type 2 intervention, had
shown an understanding of the bi-directional operations (x, +) that would effect the
direction of the shift but who did not understand the role of the base in binary (adjacent
places) relationships (and, therefore, ternary relationships). Students were shown the
sets of whole-number statements below and asked which statement in each set was
correct. The statements were chosen to be within the students' syntactic understanding
for multiplying and dividing by 10 (i.e., to be solvable by invoking rules such as
"add/take off a zero"). This task was used in conjunction with the PVC and digit cards
to represent the multiplicative structure of whole numbers in order to transfer this
knowledge to decimal numbers.

Set 1: 60 x 10 = 600, 60 + 10 = 600, 60 + 10 = 600, 60 10 = 600;

Set 2: 800 x 10 = 80, 800 + 10 = 80, 800 + 10 = 80, 800 10 = 80.

8 9
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Results and discussion

Type 1 intervention. This intervention involved Claire (VHP) and Kylie (HP)
who had exhibited robust procedural knowledge in the interview. They were
encouraged to make the connection between place change and operation. Claire was
asked to change 7 tenths to 7 ones using the calculator. She entered 7 tenths correctly,
but her finger hovered over the + key and then over the 0 key. She finally shook her

head and said: I can't do it. However, she very quickly made the connection when
directed to examine her correct answers to the procedural tasks (e.g., 0.3 x 10 = 3), as

the following protocol indicates. (Students' responses are in square brackets; I: =
interviewer; S: = student.) I: Here, we had 3 tenths multiplied by 10 equals 3 (pointing

to each component of the procedural item). [S: Ohhh (immediately reaching for the
calculator and entering x 10).] On Kylie's first attempt, she entered "+ 7"; for her
second attempt, she entered "7.00". She made one more attempt but then realised that
that didn't work either. At this stage, she was given intervention similar to Claire with

the same success.
Type 2 intervention. Each of the remaining 15 students were asked to show 7

tenths on the place value chart and then to move the digit to show 7 ones. They were
then asked in which direction (right or left) they had moved the digit and whether the
digit had become larger or smaller than it was before. Thus the students' kinaesthetic
knowledge of position change was developed though moving the digit card whilst the
associated language linked direction with size. The students were then asked to show
this change on their calculator. This process was repeated for other adjacent places so
that the relationship between the operation (x 10) and the leftwards direction was
consolidated. Once the leftwards direction was associated with an increase in value, the
students were asked to predict which way they would have to move the digit to effect a
decrease in value and then asked to use their calculator to show the operation that would
make the digit shift one place to the right. Again, the relationship between the operation
(+ 10) and the rightwards shift was consolidated with other adjacent places. The same
process was repeated to establish the relationship between the operation, the direction of
the shift and the number of places shifted with ternary relationships. However, although
the continuous and bi-directional properties could be simulated and promoted through
the place value chart (PVC) activity, the exponential property could not. So for those
students who did not have an understanding of the role of the base, this activity was not
effective. However, for those who did have the notion of the role of the base, this
intervention seemed to have an immediate positive effect on making the appropriate
connection between procedural and structural knowledge.

Once the students had moved the digits themselves (both directions) and then
mirrored the processes required for both binary and ternary relationships, their new-
found understanding was consolidated through activities where the interviewer moved
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the digit card (random direction and relationship but limited to ternaly) whilst they
mirrored the shifts on their calculator. Himansu's (MP) protocol exemplifies the
language used throughout Type 2 intervention. I: Show me 7 tenths on the place value
chart. [He did so.] Now show me where you want to get it to show 7 ones. [He slid the
digit card from the tenths place to the ones place.] Have you made the 7 larger or
smaller in value? [S: Bigger] How many times bigger? IS: Ten times bigger.] Now
enter 7 tenths on the calculator. [He did so.] What will you do to make the digit shift
from the tenths place to the ones place? [He entered x 10 and was delighted to see that
the operation produced the required shift.] Now, how do you think you could change
the 7 ones back to 7 tenths? [He entered ÷ 10.] Well done.

This stage of the intervention was repeated until he had shown a connection
between ternary shifts to the left with multiplication (x 100) and to the right with
division (4- 100). The next stage of the intervention was then undertaken. I: Now I'm
going to move the digit (PVC) from there (7 tens) to there (7 hundreds). How can you
do that on the calculator? IS: Multiply by 10.] So you make it one place bigger when
you multiply by 10. How do you think we could get the 7 hundreds back to 7 ones
(showing on the PVC)? Is it getting larger or smaller in value? IS: Smaller. (He
entered 100 and had 600.) No, that's wrong.] What undoes multiplication? [S:
Divide.] Well, leave your 6 hundreds and make it into 6 ones (showing on the PVC).
[He divided by 100.] Now, watch carefully because I'm going to try to catch you
(shifting the PVC digit from 6 ones to 6 hundredths). [He divided by 100.] Excellent.
How did you know to divide by 100? IS: Because 10 times 10 is a hundred.] Well
done! And did you get larger or smaller when you went from there to there (indicating
ones to hundredths on PVC)? [S: Smaller.] One more go but I'm not going to say
anything so you have to watch what I do (placing the digit, 3, in the tenths place and
moving it to show 3 tens). [He entered x 100, looking very pleased with himself.] What
a champ! The success experienced by Himansu was particularly gratifying as he had
been totally unsuccessful on the interview tasks related to position and order. . His body
language during the intervention changed from what apparent nervousness to confidence
whilst his smiles indicated that this intervention had boosted his self-esteem.

This stage of intervention was very successful for 8 of the 15 students. Of the
remaining 7 students, 5 eventually associated the leftwards shift with multiplication for
both binary and ternary relationships but continued to associate the rightwards shift with
subtraction. These students knew the equivalence relationship of 10 between adjacent
places and the relationship of 100 between adjacent-but-one places but were unable to
connect the relationship to multiplicative operations. Kirsty's protocol exemplifies the
difficulties in eliciting the connection between equivalence and the required operation.
I: Show me 7 tenths on the place value chart. [She did so.] Now show me where you
want to get it to show 7 ones. [She slid the digit from the tenths place to the ones place.]
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Have you made the 7 larger or smaller in value? [S: Larger] How many times larger?
[5: 10] Show me on your calculator how to change 7 tenths to 7 ones. [She entered 0.7
and then entered 10; she was bewildered when she saw the result, 0.71.] How many
times larger than 7 tenths is 7 ones? [S: Ten times larger. (Her finger hovered over the
+ key but she didn't press it.] What can you do to tenths to get ones? [She entered + 10
and again was bewildered by the result, 10.7.] What else could you do? [No response]
You made the 7 tenths 10 times bigger here [PVC], didn't you? [S: Yes] So what else
could you do apart from adding 10 to shift 7 tenths to 7 ones? [S: Times by 10?] Try
it. [She entered x 10 and looked very pleased with herself when she saw the result.]
Now, I'm going to shift the 7 ones back to 7 tenths (showing on PVC). How can you
make the calculator do that? [She entered 10!]

For all students who could not connect equivalence with the multiplicative
operations, the following questions usually elicited the given responses. How many tens
equal a hundred? [10] How many times larger than tens are hundreds? [10 or 10
times larger] What can you do to tens to get hundreds? [Add 10; add 90; x 10 (not
often)] What can you do to hundreds to get tens? [Subtract 10; subtract 90; ÷ 10 (not
often)] Thus, the first two questions elicited the base (10) but not the operation, whilst
the last two questions elicited an operation which, for most lower-performing students,
will be addition and subtraction (additive structure) or multiplication and subtraction
(conflict between multiplicative and additive structure). The latter response, giving the
multiplication operation but not the division operation, may have been the result of the
word "times" in the previous question. The students with this type of problem were not
provided with the third type of intervention because they already had an awareness of
the base. However, although the consolidation activities helped these students, it was
thought that they would require other, more intensive, remediation to establish the
connection between equivalence and multiplicative operations and to develop the notion
of division as the inverse of multiplication.

The remaining 2 students, Dean and Sarah (both HP) revealed that they had
associated the appropriate operations with the bi-directional shifts but they were not
aware of the role of the base in binary and ternary relationships. These two students
were given Type 3 intervention.

Type 3 intervention. This intervention initially focused on the binary patterns in
Set 1 of the mathematical statement (i.e., 60 x 10 = 600, 60 + 10 = 600, 60 + 10 = 600,
60 10 = 600). Instruction followed this sequence of steps: (a) the students' attention
was drawn to the similarities between the starting and finishing numbers (i.e., 60 and
600); (b) they were asked to show 6 tens on the PVC and then shift the 6 to its finishing
position; (c) they were asked to select the operation from the list of statements that
would make that shift; (d) they were asked to show the shift from 6 tens to 6 hundreds
on the calculator; (e) they were asked to show similar binary multiplication shifts for
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other adjacent places (e.g., 7 tenths to 7 ones; 5 hundredths to 5 tenths); and (f) they
were asked to use the calculator to show ternary multiplication shifts that were shown on
the PVC (e.g., 8 tens to 8 thousands). These steps were followed for the second set of
statements to extend the role of the base in binary and ternary relationships to division.
This intervention, in combination with Type 2 intervention, was successful for both
Dean and Sarah.

Implications

This study indicated that students need the three levels of knowledge shown in the
numeration model (see Figure 1) to understand and access multiplicative structure. The
students within the study exhibited particular weaknesses with regard to the bi-
directional nature of multiplicative structure and, whilst their responses indicated a
knowledge of base and equivalence, they were unaware of the role of base and
equivalence in linking decimal number places. Moreover, the students' knowledge
appeared to be available in static conditions only (connecting two given places) and was
generally not translated to dynamic conditions in which "10 times larger" needed to be
associated with a shift one place to the left and "10 times smaller" needed to be
associated with a shift one place to the right. Students were able to apply the
exponential relationship more successfully within the domains of whole numbers or
decimal numbers (e.g., tens and hundreds, ones and tenths) than across these domains
(to nonprototypic examples such as tens and tenths), and between adjacent positions
(e.g., tens and hundreds) than between non-adjacent positions (e.g. tens and thousands).
There was also evidence that whole numbers had been introduced with a focus only on
grouping (multiplication) by ten and the new decimal positions with a focus only on
partitioning (division) by ten. Thus, teaching should: (a) facilitate knowledge and
integration of the three levels of knowledge; (b) give priority to the bi-directional
relationship, starting with whole numbers and extending to decimal numbers; (c) use a
dynamic approach to change; (d) use examples across domains and between non-
adjacent positions; and (e) include reverse activities, that is, partitioning for whole
numbers and grouping for decimal numbers.

The success of the interventions indicated that students need to experience
material usage that reinforces size and bi-directional relationships. Therefore, grouping
material such as MAB should be used to show the size of a ten in comparison to a
hundred and to show the bi-directional relationship (i.e., a ten is 1 tenth of a hundred; a
hundred is equivalent to 10 tens); and partitioning material such as 10 x 10 grids (a
square divided into 100 smaller squares in 10 rows of 10) should be used to show the
size of 1 tenth compared to 1 hundredth and the bi-directional relationship (1 tenth is 10
hundredths; 1 hundredth is a tenth of a tenth).

Place value charts show position and order effectively and efficiently but do not
show size in a concrete way and, by themselves, do not show the exponential
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relationships nor the effect of applying such relationships. Calculators, on the other
hand, do show the effect of applying exponential relationships. The actions of the
students revealed that modelling with both place value charts and calculators
simultaneously had internalised the place value chart as an exponential model rather
than as a simple positional model. For example, some students nodded their heads twice
as they mentally moved from tenths to tens (for example) while others indicated with
their fingers that they were moving across two places. Therefore, activities which
require the students to physically move digits from one place to another on the place
value chart appear to develop the kinaesthetic aspect of the exponential relationship
whilst the calculator verifies the operation that effects the shift in position and together,
they provide a connection from external representations to internal representations.
Thus, the interventions indicated that place value charts, in tandem with calculators, are
invaluable aids in showing position, order and the bi-directional nature of exponential
relationships.

Although successful at the time, it is doubtful whether the interventions would
have long-term effects for those students who could not connect the notion of
equivalence with the multiplicative operation or who were unaware of the role of the
base in binary and ternary relations but connected the direction with the multiplicative
operations. Students such as these would need to have further intervention to establish
the appropriate notions and to connect these notions to the exponential model.
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Abstract

This paper reports the results of an observational study of fourteen high
school mathematics teachers who had been involved in varied numbers of years of
professional development focusing on content, pedagogy, equity issues, and use of
technology. Data from the study include classroom observations, informal and
formal interviews with teachers, and artifacts such as assessments, student projects,
portfolio assignments, computer/graphing calculator lab activities, and student
journal assignments. These data were analyzed using qualitative methods, with
categories formed by patterns discernible across the types of data collected. We
concentrate specifically here on issues of teachers' subject matter knowledge and
pedagogy.

Focus of the Paper

The main purpose of this project was to investigate the effect of two
professional development projects for high school teachers. One of these projects
(funded by the Eisenhower Mathematics and Science Education State Grant
Program) involved teachers in a single year of staff development, while the
subsequent project (funded by the National Science Foundation) involved teachers
in two to three years of intensive professional development.. Both projects focused
on content, pedagogy, attitudes, equity and leadership. We were interested in two
major questions:

What is the relationship between the professional development and changes
in classroom practice?

What differing effects did the various levels of staff development have on
teachers' classroom practices?

Although both investigators observed all teachers in the study, they each had
different major foci for observations and interviews. One observer focused on
issues of gender/ethnic equity and how these were manifested in teacher-student

The research reported in this paper was partially supported by the Dwight D. Eisenhower
Mathematics and Science State Program administered by the California Postsecondary Education

Commission (CPEC) grant # 785-5. The professional development projects being evaluated were
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interactions, student-student interactions, and curriculum choice. This was of
particular interest because both project's worked with schools which were
eliminating tracking as a means of increasing the number of underrepresented
students in academic courses. The second observer focused on how expanding
views of algebra and geometry were integrated into the content and pedagogy. In
particular, she was interested in how technology and modeling had become an
integral part of the classroom instruction.

Theoretical Framework

The professional development projects upon which this research paper is
based were founded on the assumption that what a teacher believes and what a
teacher knows both influence the teaching of mathematics (Fennema & Franke,
1992; Thompson, 1992). Here what a teacher knows is understood to include both
content knowledge and pedagogical content knowledge (Cooney, 1994). Cooney
(1994) has interpreted Shulman's (1986) original notion of pedagogical content
knowledge in the discipline of mathematics. For Cooney, pedagogical content
knowledge in mathematics involves integrating content and pedagogy, borrowing
ideas both from mathematics itself and from our knowledge about teaching and
learning mathematics. He presents the example of the rational numbers, for which
we have various interpretations and a deep knowledge base about how children
construct their understanding of the rational numbers through these different
interpretations. This integration of the mathematical and psychological domains
defines pedagogical content knowledge in this domain.

As we struátured the inservice education to enhance both content and
pedagogical content knowledge, we were mindful that teachers themselves are
constantly constructing knowledge, albeit knowlege about students' learning of
mathematics, effective teaching of mathematics, as well as mathematical content.
Therefore activities were structured to ensure that knowledge was actively
developed by participant teachers, not passively received. Participants were
frequently involved in presentations, facilitation of small group activities, and even
development of workshop foci. The professional development became a
collaboration among university faculty, district curriculum coordinators, and
participant teachers.

Related Literature

In the last edition of the Handbook of Reseach on Teaching, the chapter on
mathematics education (Romberg & Carpenter, 1986) hardly mentions research on
inservice teacher education. As Grouws pointed out (1988), and as is still the case,
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there is little information available about the overall design features of inservice
education programs which maximize changes in teacher beliefs and ultimately
classroom practices. Grouws called for studies which focus on the impact of
various features of inservice education on classroom practice.

Cooney (1994), in a review of research and teacher education, notes that,
while we are collecting in the literature many insightful stories about the lives and
work of teachers, we have yet to move beyond to develop theories which can help
explain what we see and predict what effects teacher education will have. Cooney
offers one, such theoretical perspective, what he calls authority, derived from the
work of Perry (1970) and the feminist conceptualization of ways of knowing
developed by Belenky, Clinchy, Goldberger and Tarule (Belenky, Clinchy,
Goldberger & Tarule,1986, 1997; Goldberger, Tarule, Clinchy & Belenky, 1996).
In Women's Ways of Knowing (Belenky, Clinchy, Goldberger & Tarule, 1986,
1997) for example, there are ways of knowing which are bound to external
authorities as the source of all knowledge and correct answers. Until a teacher
begins to see authority as an internal agent, Cooney points out, that teacher cannot
accept the relativism and sense of context necessary to exert control of curriculum
and even pedagogy. Current reform movements in mathematics in the USA call
for teachers to be reflective, adaptive and have a constructivist orientation.
Cooney claims that such an orientation cannot be achieved if one views the world
in general, and the teaching of mathematics more specifically, in absolute terms.

Methods

In previous small scale research on these projects, we had to rely primarily
on self-reported data, both quantitative and qualitative, from participant teachers.
We felt it essential to complement these studies with extensive observations of
classes, perusal of auxiliary materials such as assessments, and pre- and post-
observation interviews with participant teachers.

Thus we designed a qualitative study using participant observation techniques
(McCall & Simmons, 1969). Our 'mode of working in the classroom included a
pre-interview (often informal) about the goals of the lesson. During lessons we-
often interacted with students as they worked collaboratively in groups or on
individual tasks, asking and sometimes answering questions. After observed
lessons, a debriefing interview was held in which we discussed with the teacher:
decisions s/he made concerning ways to teach the specific content; how s/he
perceived the lesson succeeded in meeting goals; and, how this lesson fit into the
sequence in the unit. Ancillary materials were collected for later examination,
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including worksheets, tests and quizzes, student projects, portfolio instructions,
computer and calculator labs, and journals.

Each teacher was observed weekly over a semester, with each investigator
alternating visits. This enabled the two to highlight questions of interest for the
other to pursue in her next visit.

Unstructured observational field notes were collected during observations.
Interviews were mostly informal, with notes taken during the interview and
expanded immediately afterward. All notes were transcribed and expanded, with

patterns and questions to investigate further identified as work progressed (Glaser

& Strauss, 1967). The aim is to provide a rich description of the classroom
practices and how they have been affected by the inservice education in which
teachers participated, leading to grounded theory.

Fourteen high school mathematics teachers were observed during the 1996-

97 academic year. These teachers were chosen to represent different levels of
involvement in inservice: one, two, three or four years. Although 24 were asked

to participate in the study, only 14 were able to do so. The participants represented

one with one year of inservice, two with two years, seven with three years, and
four with four years. The sample included five male and nine female teachers
from nine schools and four different school districts. Three were Asian and the

rest European-American.

A total of over 200 classes were observed. Courses observed varied from an
algebra restart [for students who were unable to succeed in algebra the first
semester] to algebra 2/integrated course 3. A total of 17 different classes of the 14

teachers were visited, including one algebra restart, six algebra 1 classes, 5
geometry classes, one algebra 2, one integrated course 1, two integrated course 2,

and one integrated course 3. The texts used varied from the traditional to
"transitional," to integrated ones, as shown in table 1 below.

Traditional Transitional Integrated
Course
Algebra 1/Course 1 2 5 1

Geometry/Course 2 5 2

Algebra 2/Course 3 1 1

Table 1
Types of Textbooks Used for Each Course
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This range indicates the curricular differences across the districts involved in the
study. However, one commonality across districts is the elimination of tracking
and placement of all ninth grade students in algebra 1/course 1 or a higher course.

Thus data from the study included observational field notes, interview
transcripts and classroom artifacts.

Results

We have two categories of results to discuss in this paper: patterns in
teachers' subject matter knowledge, and teachers' use of pedagogy. The specific
topics within these categories are especially relevant as they were focal points of
our workshops.

Content. In the category of content, we focused both on teachers' professed
or inferred understanding of the content they had to teach and on how they chose
to present topics difficult for students to understand.

o Some teachers are completely unfamiliar with content that they are being
asked to teach in the new books.

One example is fractal geometry, included in the third year of College Preparatory
Mathematics: Major Change from Within (Sallee & Kysh, 1990 ). One of the
teachers in the study, who had been in four years of inservice, was faced with
teaching a unit including fractal geometry. Although we had had several sessions
on chaos and fractals, including Robert DeVaney as a speaker, and had bought
fractal software for each school, Belinda expressed concern about her lack of
knowledge in this area. However, later in the academic year Belinda volunteered
to present a workshop on fractals using what she had learned from the internet and
her experiences in teaching the unit.

Not all teachers, however, took this initiative to fill in gaps in their
mathematical understanding. Charles, in an interview with the two researchers,
expressed concern about his teaching of a new Advanced Placement statistics
course; he felt unprepared mathematically for teaching the content. When we
asked what he was doing to "get up to speed," he indicated he really did not have
time to pursue this so was just keeping a day ahead of the students by reading the
textbook.

9 9
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While we were able to purchase class sets of graphing calculators for each
school, and spent considerable time addressing uses of technology in
workshops, the potential integration of the power of technology in the
teaching of mathematics has not been tapped in most classrooms.

Of the fourteen teachers, only one (Sharon) was observed to make extensive use of
a computer lab in geometry. Four others used graphing calculators a number of
times. Charles, who was teaching algebra 2, only used calculators once although
there were a number of lessons in which they would have been appropriate.
Christa began using calculators but stopped when one was stolen. The classes in
which the calculators were used most extensively were taught by teachers who had
curricular materials conducive to their use and who had had extensive inservice on
technology. However, if teachers had to devise lessons and activities themselves to
integrate the use of calculators or comptuers, this was much less likely to happen.

Topics in probability continue to cause conceptual difficulty for some
teachers, so that instruction in this important strand is diminished.

Statistical concepts are also very difficult for teachers to teach for
understanding. Reliance on algorithmic approaches to concepts such as
variance and standard deviation does not aid students in understanding what
these mean.

One example was in Polly's integrated course 1, in which she was introducing the
concept of standard deviation. This was done initially in a rather traditional way,
putting an extensive table on the board including these columns:

x values x-j.t (x-1.02

then proceeding with the calculation. Polly made no attempt to provide
understanding of what the standard deviation was measuring. In fact, after the
class she volunteered to the observer that students would not know what the
standard deviation means from her instruction, and she needed to think about how
to do that. She did follow this exercise with use of the statistical features on the
calculator so that students would not have to do the calculation by hand. In a later

visit, discussion with students in groups confirmed that they could not describe in

their own words what the standard deviation is.
However, in a later lesson, Polly did a nice activity, collecting data on the

heights of students' navels from the floor and while standing on a chair,
comparing various measures of central tendency. Students were not surprised that
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the mean changed but very surprised that the standard deviation did not. This
activity seemed designed to help students begin to develop some intuition about
these statistical concepts.

o Topics in discrete mathematics, such as applications of graph theory, are still
relatively unfamiliar to many teachers.

Pedagogy. The inclusion of many more students in college preparatory
mathematics has resulted in more heterogeneity in teachers' classes. Cultural and
language diversity contribute to differences in learning styles which must be
accommodated. While many of the teachers used cooperative learning, few of
them made extensive use of: teaching and assessing problem solving; protracted
projects; a balance of conceptual understanding, problem solving and skills;
integrating mathematics with other disciplines; and techniques for working with
English language learners.

Teachers in the study were very aware of issues of equity with respect to the
"algebra for all" requirement. Support of this policy was strong among almost all
of this sample. However, classroom inequities were still apparent in many classes.
For example, teachers seemed unaware of bias which may be inherent in
"traditional" forms of assessment. Even more striking were typical gender
interaction patterns, with males dominating the classroom conversation, in many
lessons observed. In addition, a small number of males dominated the conversation
in these lessons. Ethnic differences were not so striking, perhaps because these
classes had a large percentage of students of color.

An additional finding relevant to pedagogy is that teachers are struggling to
use technology effectively throughout the curriculum. Questions teachers have
include: sequencing, e.g., when does one introduce the technology in relationship to
a certain concept; access issues, e.g., when should students have access to
technology; the role of technology in mathematical modelling; and the changing
view of algebra and geometry in a dynamic environment.

Summary

While the professional development projects had some substantial impact on
the teachers, including movement away from traditional textbooks toward use of
more "reform" texts, many of them are still struggling with the heterogeneity in
classes due to detracking, with the full integration of technology, and with teaching
new content in new ways. Support for teachers back in their classrooms as they
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attempt to change is critical. This research itself played an important professional
development role, teachers reported, in that it enabled them to reflect on what they
were teaching, how, and why with a non-evaluative observer. Perhaps in
retrospect that has been the most important aspect of the staff development.
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SOME MISCONCEPTIONS UNDERLYING FIRST-YEAR STUDENTS'
UNDERSTANDING OF 'AVERAGE RATE' AND OF 'AVERAGE VALUE'

JAN BEZUIDENHOUT, PIET HUMAN AND ALWYN OLIVIER

UNIVERSITY OF STELLENBOSCH, SOUTH AFRICA

A research method consisting of written tests and individual interviews was
introduced to explore first-year university students' understanding of fundamental
calculus concepts, after the concepts had been dealt with in their first-year calculus
course. A total of 630 students from three South African universities were subjected
to the tests pertaining to this study. The analysis of written and verbal responses to
diagnostic test items revealed significant information regarding the nature and
characteristics of students' concept images for key calculus concepts. Several
erroneous conceptions underlying students' mathematical activity, and some errors
that originated from it, were identified. This paper deals with students'
understanding of average rate, average value of a continuous function and average
velocity.

1. In trod uction

Many mathematics educators realise that a large proportion of students have great
difficulty in grasping key calculus concepts such as limits, continuity, derivative and
integral [Ferrini-Mundy and Graham, 1991]. It seems that the origin of students'
difficulties with these concepts is more profound than is often anticipated. Remarks
like the following indicate that the learning and teaching of the calculus need
appropriate attention: '... the state of most students' conceptual knowledge of
mathematics after they have taken calculus is abysmal' [Epp, 1986 : 48]. 'Students
demonstrate virtually no intuition about the concepts and processes of calculus'
[Ferrini-Mundy and Graham, 1991 : 631].

The main purpose of the research project, on which this paper is based, was to gain
more information on students' understanding of basic calculus concepts, after the
concepts conderned had been dealt with in the first-year calculus course. This paper,
however, is concerned only with students' understanding of 'average rate of change'
and 'average value of a continuous function'.

2. Theoretical Background

The theoretical framework for the research under discussion was developed
according to the principles of the theory of constructivism. A central idea of the
constructivist theory is 'that understandings are constructed by learners as they
attempt to make sense of their experiences, each learner bringing to bear a web of
prior understandings, unique with respect to content and organization'. [Simon and
Schifter, 1993 : 331]. Within this theoretical perspective the idea of a concept image
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(a term adopted from Tall and Vinner [1981 : 151]) was used. The term concept
image refers to the total cognitive structure that exists in an individual's mind
regarding all aspects of a specific mathematical concept. This is a structure that an
individual creates and develops as a result of personal experiences with a concept.

3. Method

The method used to explore students' concept images consisted of three phases. In
the first phase 107 engineering students wrote the preliminary tests. These tests were
conducted during a regularly scheduled tutorial class at the end of the second
semester of 1994.

The final diagnostic tests, consisting of Diagnostic Test A and Diagnostic Test B,
were compiled after analysis of the results obtained from the preliminary tests. A
total number of 523 fu-st-year university students from three South African
universities participated in the final testing that was conducted near the end of the
second semester of 1995. This group included students in engineering, the physical
sciences and students enrolled in service calculus courses. For the analysis of test
results, a random sample of 100 answer-books for each of the two tests, was taken
from the three different groups that participated.

The third phase involved task-based interviews with 15 students who had written
both final tests. For administration purposes the students were numbered Si to S15.
Each of these students participated in two one-hour interview sessions. The
interviews were structured around specific test items selected from the final tests. All
interviews were audiotaped.

4. Test items concerning average rate and average value

A selection of some of the test items concerned with 'average rate' and 'average value
of a continuous function', or aspects thereof, appears in the appendix to this paper.
This article deals mainly with students' responses to the following test items: test
items 6.1 and 6.3 (Diagnostic Test A); question 2 (Diagnostic Test B). We would
like to make some remarks concerning these three items.

4.1 Test items 6.1 and 6.3: Together the two items bring out two natural
interpretations regarding the average rate of change. Considering that S(x) = g'(x) the

3

fS(x)dx
g(3) g(0)

symbolic equation °
3

, which indicates the equality of the two
3

averages, therefore holds the idea that the average value of g'(x) on [0, 3] is equal to
the average rate of change of g(x) with respect to x on [0, 3].

4.1 Question 2: A variety of function representations were used in the two
diagnostic tests. While the two functions in question 6 have a tabular representation,
the function v in this question is defined in algebraic symbols. In question 1 of
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Diagnostic Test B the function representation is graphic (see appendix). The main
reason for the utilization of different representations of functions was to explore
students' understanding of concepts within different modes of representation.

This test item contains mathematical content that is closely related to that of test
items 6.1 and 6.3. If, in this question, the distance travelled in t seconds is denoted

4

fv(t)dt
s(4) 0

by s(t), then the symbolic equation
s(0)

indicates that the average
4 4

rate of change of distance with respect to time over the time interval [0, 4] is the same
as the average value of the velocity function over the time interval [0, 4]. The
principal aim of this test item was to gain more insight into students' concept images
for average velocity.

5. Students' procedures and conceptions

The analysis of students' written and verbal responses revealed significant
information regarding the nature and characteristics of students' understanding of
fundamental calculus concepts. Several misconceptions underlying students' activity
in the calculus, as well as errors originating from the application of such
misconceptions, were identified. In this section the emphasis is on some of the
erroneous procedures and misconceptions pertaining to students' thinking of average
rate and of average value of a function.

We will first consider some responses of students to test items 6.1 and 6.3 of
Diagnostic Test A and then responses to question 2 of Diagnostic Test B (see the
appendix for the test items). The following table shows the distributions of students'
answers to question 6.

TABLE 1
Distribution of answers to test items 6.1 6.3

(Number of students = 100)

Test item 6.1 6.2 6.3
Correct 23 48 3

Incorrect 63 41 77
No Answer 14 11 20

(Only one student answered both 6.1 and 6.3 correctly).

Students' attempts to find the average rate of change in test item 6.1 and the average
value in 6.3 resulted in a variety of procedures being used. Table 2 below contains a
summary of some of the procedures for the two test items. The number of students
who applied a specific procedure is also indicated. For the purpose of discussion, the
procedures in the table are numbered. Since it was given that the two functions in
this question is such that g'(x) = S(x), we assumed that students that drew upon
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function values of S in their answers to test item 6.1, had in mind function values of
g'. (Many of these students, but not all of them, did indeed refer to function values of

g' in their solutions).

TABLE 2
Some procedures concerning test items 6.1 and 6.3

Procedures for 6.1 Procedures for 6.3
1 g'(0)+g'(0,5)+g'(1)+01,5)+e(2)+g,(3) s(0)+S(0,5)+S(1)+S(1,5)+S(2)+S(3)

6

(10 students)

6

(25 students)
2 g.(3)+,e(0) S(3)+S(0)

2

(2 students)
2

(5 Students)
3 g'(3)+g'(0) S(3)+S(0)

3

(2 students)

3

(3 students)
4 g'(3)-e(0) S(3)-S(0)

3

(3 students)

3

(10 Students)
5 g'(3)- g'(0) S(3)- S(0)

2

(1 student)

2

(1 student)

6 g'(3) g'(0)
(6 students)

7 g(0)+g(0,5)+g(1)+g(1,5)+g(2)+g(3)
6

(3 students)
8

S(0)+S(0,5)+S(1)+S(1,5)+S(2)+S(3)
5

(3 students)

The interviews on test items 6.1 and 6.3 led to the disclosure of various aspects of
students' conceptions regarding average rate and average value. During the interview
sessions students were encouraged to give reasons for procedures they had applied.
Student S4 made the following remark with respect to his application of procedure 2

for test item 6.3 (see table 2): 'When I see average value I immediately want to add
the two together and divide them by 2'. It is evident that this student's concept image
for arithmetic mean had come into play here.

During interview sessions students' attention was often drawn to the two averages in

6.1 and 6.3. After student S4 had compared test item 6.1 and 6.3 with each other, he

expressed his opinion: '... So, in words, those two questions are actually the same
thing. Although I can understand why they are not the same. Okay, I can't really. I
know they shouldn't be the same, but it makes sense to me i f I say they are the same.'
At a later stage during the interview session the student mentioned that '... they are
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different answers, but they ask, I am sure they ask the same thing'. It seems that this
is an instance where the erroneous procedure dominates the student's conceptual
understanding of a mathematical situation.

Student S1 included the following in his explanation for applying procedure 5 (test
item 6.3): 'If you want the average, in other words you then want to find the average
rate of change. You then take the function value at the endpoint of the interval minus
the function value at the initial point of the interval and divide it by 2. Then you get
the average value at which it changes'. This student's reasoning points to a
conception of average value that emanated from a distorted concept image for

average rate of change. Student S12 explained that his procedure S(3) S(0)
3

(procedure 4) for test item 6.3 is based on the 'idea' that the average value of S(x) is
equal to 'the change in S(x) over the change in x'. Information that was gathered from
students' explanations suggests that some procedures may be the result of
misconceptions that originated from an interspersion of knowledge of different
concepts, including 'arithmetic mean' and 'average rate of change'.

As was the case with the averages in test items 6.1 and 6.3, many students did not
deal successfully with the average velocity in question 2 of Diagnostic Test B. Only
10 of the 100 students answered it correctly, while 88 of the students gave incorrect
answers. Two of the students did not answer this item. Students' erroneous
procedures include the following:

v(4) v(0)
(12 students)

4

v'(4)= 6
Average velocity = 6 (9 students)

o
v(4)

3 (6 students)=
4

v(4) v(0)
0 (7 students)

2

distance travelled
The procedures above do not reflect average velocity as the ratio

time elapsed
There were some other procedures with the same deficiency. During interviews it
was found that such procedures were often the result of a more mechanical approach
and that the application of relevant conceptual aspects was lacking. Student S9 for

An asterisk appearing next to a quotation, indicates that the quotation has been directly translated from Afrikaans to
English.
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example explained that his procedure,
v(4) v(0),

shows that the average velocity is
4

'the total change in y over 4 seconds divided by the total change in x for the 4
seconds". He added that the y denotes the function values of v and that x corresponds

with t. Unlike student S9, the student with a mature concept image for average
velocity will take conceptual aspects, like the above-mentioned ratio, into account in
such a situation.

5. Conclusion

The research described in this paper has proved fruitful in revealing some of the ways
that calculus students think about average rate and average value. A conceptual
deficiency demonstrated by students participating in this study, was inadequate
intuition about the two concepts. If students can enrich their concept images for these
concepts it may enhance their understanding of the Mean Value Theorem and the
Fundamental Theorem of the calculus the concepts mentioned are closely related to

these theorems.

For the average calculus student it may take an extended period of time to develop a
satisfactory understanding of the rate of change concept. Meaningful experiences
with the average rate of change concept at an early stage at the secondary school level
(before students' introduction to a formal calculus course) may help in this regard.
Moreover, the rate concept needs to be revisited at various times during the calculus
course. If elements of a concept image are not constantly reinforced, it has a good
chance to deteriorate and thus become distorted [Vinner, 1983 : 305].

Findings of this study suggest that students should get adequate opportunities to deal

with calculus concepts, in various representations and in conceptually based
situations. Meaningful experiences of calculus concepts in graphical and numerical
representations can make an important contribution to the student's understanding of
the conceptual underpinnings of the calculus.
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APPENDIX

DIAGNOSTIC CALCULUS TEST

TEST A

QUESTION 6

The following table shows certain x-values and the correspondinglunction values of
two continuous functions S and g which are such that g(x) = S(x):

x -1 -0,5 0 0,5 1 1,5 2 3
S(x) 4 0,75 -1 -1,25 0 2,75 7 20
g(x) 0 1,125 1 0,375 0 0,625 3 16

Find (show all calculations):

6.1. the average rate of change of g(x) with respect to x over the interval [0, 3];

6.2. 1S(x)dx

6.3. the average value of S(x) for 0 x 3.

QUESTION 1

TEST B

(

I ;

_

The figure shows the graph of a function f for 0 x 9 with / a tangent line to the
graph of f at the point (1; 0). Use the graphic representation of the function f to
answer the following.

1.2. For which one of the points A, B, C, D, E, F, G or H is f(x + 0,002) f (x)
0,002

closest to 1.

1 0 9 (
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1.4. Between which pair of consecutive points on the graph is the average rate of
change offix) with respect to x the greatest? Choose, therefore, only one pair
from the following seven pairs of consecutive points:
A and B; B and C; C and D; D and E; E and F; F and G; G and H.

1.6. Determine the value or an approximation thereof (as accurately as possible) for
each of the following:

9

1.6.4. ff (x)dx.

1.6.5. The average value of fix) for 5 5.. x 9. Also show your calculation of
this average value.

QUESTION 2

A vehicle, initially at rest, accelerates so that its velocity v after t seconds is given by
v(t) = it2 metres per second for the first 4 seconds.

4

Calculate the vehicle's average velocity for the first 4 seconds. (Show your
calculations).
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Operable Definitions in Advanced Mathematics:
The Case of the Least Upper Bound

Liz Bills and David Tall
Mathematics Education Research Centre
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This paper studies the cognitive demands made on students encountering the
systematic development of a formal theory for the first time. We focus on the
meaning and usage of definitions and whether they are "operable" for the
individual in the sense that the student can focus on the properties required to make
appropriate logical deductions in proofs. By interviewing students at intervals cn
they attend a 20 week university lecture course in Analysis, we build a picture of the
development of the notion of least upper bound in different individuals, from its firs,
introduction to its use in more sophisticated notions such as the existence of the
Riemann integral of a continuous function. We find that the struggle to make
definitions operable can mean that some students meet concepts at a stage when the
cognitive demands are too great for them to succeed, others never have operable
definitions, relying only on earlier experiences and inoperable concept images,
whilst occasionally a concept without an operable definition can be applied in c
proof by using imagery that happens to give the necessary information required ir
the proof

Mathematicians have long "known" that students "need time" to come to terms witt
subtle defined concepts such as limit, completeness, and the role of proof. Many studie
have highlighted cognitive difficulties in these areas (e.g. Tall & Vinner, 1981, Davis &
Vinner, 1986, Williams, 1991, Tall, 1992). Some authors (e.g. Dubinsky et al, 1988:
have focused on the role of quantifiers. Barnard (1995) revealed the subtle variety ir
students' interpretations of statements involving quantifiers and negation. Nardi (1996:
followed the development of university students' mathematical thinking by observinE
and audio-taping their first year tutorials. This highlighted the tension betweer
verbal/explanatory expression and formal proof, and tensions caused in proofs b)
quotin.g, results of other theorems without proof. Vinner (1991) drew attention to twc
modes of use of definition the everyday, and the technical mode required in forma
reasoning. In this paper we report a longitudinal study of the individual developments 01
students in their first encounter with a formal mathematical theory, to see the growth ol
their use of definitions in building concepts and proving theorems.

We initially formulated the following working definition:
A (mathematical) definition or theorem is said to be formally operable for a given individual if tha
individual is able to use it in creating or (meaningfully) reproducing a formal argument.

The intention of the study is to track the construction of the concept of least uppei
bound, and related concepts such as continuity, to see how (or if) operability develop:
over time and how this relates to the use of the concepts in later theorems such as th(
existence of the Riemann integral.
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Methodology

Five students were selected to be interviewed (and video-taped) on five occasions during
a twenty week Analysis course consisting of sixty one-hour lectures. This followed a
long-established syllabus in which the axioms for a complete ordered field were given in
the third lecture (using the least upper bound form of the completeness axiom) followed
by the convergence of sequences and series, the continuity and differentiability of real
functions, the Riemann integral and the Fundamental Theorem of Calculus.

The interviews were semi-structured, in that the same lists of questions were used with
each student but were then followed up in response to the students' answers. Students
were invited to speak about their experiences of the course and beliefs and attitudes, as
well as answering more directly content-related questions. Each interview tried to
capture the state of development of the student at that time, focusing initially on recently
covered work, then checking on the longer-term development of selected fundamental
conceptions including the notion of least upper bound.

Of the five students, Lucy, Matthew and Martin were mathematics majors whilst Alex
and Sean were physics majors taking several mathematics courses, including Analysis.
Lucy proved to be the most successful of the five; she was invariably able to talk
coherently about concepts and theorems but did not memorise definitions, preferring to
draft what she knew on paper and then refine her ideas. Matthew worked very hard,
attempting to commit material to memory by repeated readings; when explaining things
he would sometimes break down and then need to "refresh his memory" by looking at
his notes. Alex missed more lectures than the others and was not always conscientious in
copying up the notes; he later changed courses without taking the end of year exam,
nevertheless he had certain ways of operating which will be central to the discussion
which follows. Both Martin and Sean found the requirement for formality bewildering
and were unsuccessful in their examinations. We therefore choose to focus on the work
of Alex and contrast this with the more successful Lucy and the less successful Sean.

First encounters with the definition of a least upper bound

In the third lecture, the following definitions were given:
An upper bound for a subset A c R is a number KE IR such that a K Vae A.

A number Le IR is a least upper bound if L is an upper bound and each upper bound K satisfies

In the early interviews, all the students showed that they could give the concept some
kind of meaning, varying in the relationship to the formal definition. Lucy and Alex
focused on the second part of the definition which does not explicitly define the notion
of upper bound whilst Sean used his own imagery:

Lucy: Well, say k is an upper bound for the set, then we'll say that in [the least upper bound] is less
than or equal to k.

Alex: A least upper bound is the lowest number ... that is an upper bound. Any number greater than
it, no matter how little amount by, it's not going to be, you know it's not going to be, in the set.

Sean: The supremum of a set is the highest number in the set.



Lucy and her struggle giving meaning to the least upper bound

By the second interview Lucy was able to verbatlise the definition of least upper bound
in a manner close to the symbolic form:

Interviewer: If I asked you what was a least upper bound what would you say now? What
properties would you say that that's got?

Lucy: Well for a start it has to be an upper bound.

Interviewer: Right so what does that mean?

Lucy: An upper bound for a set S, if you take any element of S to be a, say, and for all a you can
find, say the upper bound was k, for all a, k will be greater than or equal to a for any number in that
set.

Interviewer: So that's the definition for k being an upper bound.

Lucy: ... and the least upper bound is also an upper bound but it's the least of all the upper bounds
so 1 has to be less than or equal to k for all k greater than or equal to a.

In the fourth interview she is very confident expressing the definition verbally:
Well it's got to be an upper bound itself and it's got to be the least of all the upper bounds.

But even in the fifth interview, when asked to write down the definition of the least
upper bound of a non-empty set S c IR, she wrote:

V s S, s ).1 [saying "g is an upper bound")

VkE IR s.t.s5..kandp.k,
After a discussion she modified the last part to "Vs e S, sk = l.tk." Although she had
most of the component parts of the definition, she still needed to negotiate the details.

Sean's concentration on his earlier experiences
Sean continued to have difficulty with the concept of least upper bound, as well as the
definition, throughout the course.

Sean (Interview 2): [you get the supremum by] looking at all the elements of the set to find out
which is the greatest and choosing that number. I always have trouble remembering whether the
supremum has to be in the set.
Interview 4: It's the greatest number of ... it's a number that's bigger than all the numbers in the
set.

Interview 5: The set { 1, 2, 3) has upper bound 3. [Is 7 an upper bound?] No, it's not in the set.

In the second interview when asked for the least upper bound of the set S of real
numbers x where x<1, he suggests "a very small number subtracted from one" or
"nought point nine nine nine recurring", thereby maintaining his (erroneous) belief that
the least upper bound is in the set. In the fifth interview he is quite articulate about his
struggle:

... when we have theorems in analysis lectures, stuff like supremums are just the basic workings;
since I can only just understand these individually, one of these basic foundations, I can't look at
all of them together and understand the theorem.

It is a classic case of cognitive overload. However, not only does he seem to have too
many things to think about, the individual items not only lack the precision of operable
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definitions, they seem diffuse and difficult for him to grasp as manipulable mental
entities.

Alex eventually learns the definition with apparent meaning

Alex is somewhat erratic in attending lectures so he does not get all the information from
the course that he should. In interview 2 he explains an upper bound L for a set S,
saying:

Alex: there exists L such that L is greater than or equal to max S what do you call it the greatest
number in S.

Interviewer: Has S got a maximum number?

Alex: Yes.

In the third interview he seems to become entangled with the completeness of the reals:
[the least upper bound is] not necessarily in the set well it depends if your subset is a subset of
the reals then it's going to be a real number, in which case it's going to be in the set but if you're
talking about a subset of the rational numbers, it's not necessarily in it, but it's the lowest number
that is an upper bound.

Yet, in the fifth interview he suddenly offers the full definition, writing:
VseS [saying "1 is an upper bound"]

If u is an upper bound [pointing to the previous line, saying "satisfies this as well"] then s u.

He explained that, since it arose several times in the interviews, he decided to learn it.

The Definition of Continuity
When the definition of continuity is given, the students have already met a succession of
ideas including convergence of sequences and series. Lucy works at making sense of
each new idea without always having the space to absorb earlier detail. For instance,
when studying convergence of series she has no recollection of the definition of
convergence of a sequence but, when asked for the definition of convergence of a series,
she responds with a precise formal definition of Cauchy convergence of its partial sums.
Although she tries to memorise the definition of continuity, it "would not stick", and she
builds it up from its parts (sometimes by visualising the page of notes in her
imagination). By the fifth interview she is fairly fluent with the definition of continuity
and when asked to explain the definition of f being continuous on [a, b] she constructs
her own version in steps, writing the following down in order (1), (2), (3):

VX,X0 [a,L)] > 0 38 > s.t. Xol< (x) f (x0)1< .

(1) (3)

Further conversation leads to this being modified as she explains:
I write down everything and say, "no that's wrong", and then I work backwards.

Neither Sean nor Alex ever come to terms with the formal definition of continuity.
Sean (interview 4): It means the function at that point minus the function at some other point very
near it is less than or equal to the epsilon.

2 107 114



Sean (interview 5): I can remember just about the definition of continuous but I tend not to use it
and still think of continuity as drawing the graph without taking your pencil off the paper.

Alex (interview 5): It's a line you can draw without taking your finger off the board.

The Riemann Integral

The definition of Riemann integral Li: f of a (bounded) function f is introduced later in
the course. The interval [a,b] is partitioned into what (in the course) is called a
dissection, D, consisting of sub-intervals a = x0 < xl < ... < x = b. From the definition of
least upper bound it is deduced that on any interval a bounded function has a supremum
(least upper bound) and an infimum (greatest lower bound). Using the supremum and
infimum of the function in each sub-interval to give an upper and lower rectangle allows
the upper sum U(f,D) and lower sum L(f, D) to be computed, as the total area of upper
and lower rectangles, respectively. Proving that L(f, Di)5_11(f, D2) for any dissections Di,
D2 shows that the set of lower sums has a least upper bound L and the set of upper sums
has a greatest lower bound U . If L=U, then the Riemann integral is defined to be
fl:f = L = U. Iff is continuous, then it is proved that L=U so the Riemann integral exists.

When the three students meet this sequence of theory, Lucy is already able to speak
about both the definitions of least upper bound and continuous function and write them
down (though sometimes with errors), Alex can write down one but not the other and
Sean can write neither. So how do they cope with the definition of Riemann integral?

Lucy is able to discuss it intelligently, though needing occasional assistance. For
instance, she says that a dissection of an interval consists of "lots of little bits" and, after
a suitable notation is suggested, is able to describe both upper and lower sums, and
upper and lower integrals as "the inf and sup of the upper and lower sums." She has a
broad grasp of the overall framework including most definitions and statements of
theorems, such as "a continuous function on a closed interval is bounded and attains its
bounds", although she is still "trying to understand it at the moment but I haven't got it

quite." However, she confidently explains why the function f(x) = {
0l'x c has a

Riemann integral in terms of a zero lower sum and an arbitrarily small positive upper
SUM.

In the final interview, Sean claims no knowledge of the Riemann integral, saying:
I can only say integrate using A level knowledge I don't know how you'd do it using the
theorem.

After the interviewer has talked through the definition of
the Riemann integral, Sean is asked about the integral of

{ 1, x = c ..e draws a graph wif(x) H th a vertical line' 0, x # c
from (c, 0) to (c, 1) and turns to his notion of integration as
the area under the graph explaining:

there's no way you can determine the thickness of that line and
when you let things tend to zero you can't account for that, so
there's no way you can work oil the area in that bit.
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When the interviewer offers a demonstration that this function is integrable in the
Riemann sense by considering upper and lower sums, Sean responds:

Ha I can't see any flaws in your logic, but I don't like it. ... Because if you try to define an area
you say it's something contained in this thing. ... If you had a hole where there was nothing you
could have great trouble finding the area at that point.

He has no operable definitions and no meaningful concept of proof from definitions.
Instead he attempts to translate everything into his own intuitive terms and ends up with
a diverse system of ideas that is just too unwieldy to make any sense.

In contrast, Alex produces a most fluent account of the definition of Riemann integral. In
particular he remembers and uses accurately the notations U(f, D) and L(f, D) introduced
for the upper and lower sums for a function f and dissection D, and U, L for the
supremum and infimum of the upper and lower sums. He is asked how to define the
integral, and replies

Alex:Well the integral is oh dear the integral is when that equals that [pointing to the symbols L
and U] it's that becomes oh it's the supremum of the lower bounds and the infimum of the
lower [sic] bounds become no wait he did write the integral sign with a lower thing for the
lower integral or something which was the supremum of this ([pointing to L].

Interviewer (aside): The supremum of all the Ls
yes, fine.

Alex (pressing on): ... and you get your upper
integral which is the infimum of your upper thing
so what happens is like the integral is when these
two equal each other so you've got to like take more
divisions, cos if you've got another division in there
then it's that thing where you've got L if you've
got DI which is a number of divisions here and
you've got D2 which just contains another one, then
you've got L(D I) L(D2) . U(D2) U(D1).

That's because you' ve now got another little
partition up there (points to the diagram) so that plus

it's like, this isn't this part and that part are now
your upper, so you've lost some whereas your lower has gone to there so you've actually gained
some and so it goes closer and closer together, as you get more things until those are equal.

The status of the various components of Alex's discussion is intriguing. In the absence of
an operable definition for continuity, he makes no formal mention of it or of any other
property that would cause the upper and lower sums to be arbitrarily close. Using the
diagram he sees the infimum and supremum as points on a ("continuous?") graph and
imagines them becoming close as the intervals decrease in width. He does have a
definition of least upper bound which is more formally operable and, by showing every
upper sum exceeds every lower sum, he is clearly showing that the lower sums are
bounded above and have a least upper bound, with the corresponding greatest lower
bound for the lower sums. However, on occasions he seems to imnine variable upper
and lower sums getting "closer and closer together." In this sense he is working with the
process of moving towards a limiting value rather than using the definition of the limit
concept.
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When faced with the integral of f (x) = 11, x = c
0 , x # c ' he draws a picture and focuses on the

limiting behaviour of upper and lower sum as the interval width tends to zero.
Interviewer: Now if you took your partition your lower sum
is always going to be zero and your upper sum is only going to
differ from zero in the interval or two intervals that contains
that. If you take these very small ...
Alex: Yeah if you're timesing that distance there by this
height, it will disappear.

Interviewer: So do you think that's integrable or not?

Alex: That's not going to be integrable no, that's just going
to give us zero isn't it?

Interviewer: Is the upper sum going to be zero?

Alex: The upper sum's going to be that is going to be integrable in that case because the lower
sum is always going to be zero, and the upper sum is going to go to zero as that gets smaller.

This extract shows interesting uses of the present and future tense. The interviewer asks
"do you think that's integrable or not?", intimating his view of the state of the function.
The response "that's not going to be integrable" suggests a sense of process, perhaps
relating more to the process of allowing the interval width to tend to zero.

Discussion

In defining the notion of "formally operable definition" we hoped to have a construct
which enabled us to see instances of the successful use of definitions in theorems to
build a systematic formal theory. Of the three students here, Sean claims to "only just
understand the 'basic foundations' individually" and "can't look at them all together."
Definitions for him are not operable and the ideas are so diffuse that he cannot
comprehend them. He does not understand the notion of a definition being used to prove
anything. Alex, a more sophisticated but erratic performer, has no formally operable
definition of continuity, but he is eventually able to formulate the notion ofleast upper
bound in an effective manner and use it operably in the definition of Riemann integral
even though other ideas (such as continuity) are not formally operable. Lucy is more
effective, but the definitions are not committed to memory, rather constructed and re-
constructed in a struggle for coherent meaning. She "writes down what she knows" then
says "that's not right" and "works backwards". Throughout the interviews, sometimes
with the assistance of an ongoing dialogue, she is able to build impressive links between
the materials, even when there are a significant number of gaps in them. During the
lecture course, she often continues to have difficulty with proofs long after she has been
presented with them. In other words, the "operability" of the definitions are for her an
ongoing struggle. There are at least two distinct components of operability, the giving of
meaning to the definition itself, not only through examples, but through the development
of a range of strategies for its use in different theorems.



A telling difference between the students is the manner in which particular verbal
expressions may be helpful or unhelpful in moving towards the formal definition from
the very outset. Lucy's initial conversations about the least upper bound are well-
targeted from the outset whereas Sean states that "it's the biggest element in the set."
Alex has some aspects of both. When he interiorises the definition of least upper bound,
it gives him the impetus to use the focused idea in the subtle construction of the notion
of Riemann integral a task which Sean is not even able to start.

We hypothesise that there is an important principle underlying this observation which is
more than just the use of particular terms. If a student is focusing mainly on the essential
properties in the definition then, in meeting new examples, there is the possibility of
focusing only on these essentials, thus greatly reducing the cognitive strain. A more
diffuse view of the possibilities means that successive examples may have a variety of
extra detail that can cloud the issue. The former approach has prior focus on the
"intersection" of the properties of the examples, the latter must sort out the important
essentials from the "union" of the examples with their subtle irrelevancies that can lead
to cognitive overload. This research has considered a mathematics lecture course "as it
is". New research is required to see if an explicit focus on the use of properties in a
definition can lead to a better comprehension of systematic proof. It is not just a matter
of how quickly the ideas are encountered in a mathematics course, but of the
individual's capacity to focus on the role of the ideas in the overall theory.
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BEYOND 'STREET' MATHEMATICS: THE CHALLENGE OF SITUATED
COGNITION

Jo Boa ler, King's College, London.

In this paper the perspective of situated cognition is used to analyse the results of
three year case studies of two schools. Students who were enculturated into a system
of active knowledge-use are shown to be more effective than those who learned
through transfer-based models of teaching. It is argued that the social, relational
nature of knowledge that the students' developed is inconsistent with notions of
'street' and 'school' mathematics.

In the not so distant past mathematics was simply thought of as mathematics. A
stable, elegant, abstract subject, to be learned, transferred and applied. As we move
into the 21st Century ideas about knowledge are changing. In the same way as human
intelligence, once regarded as a unitary possession, is now thought of in terms of
multiplicities (Gardner, 1993), acceptance of the different forms of mathematics,
such as 'school' and 'street' (Nunes, Schliemann & Carraher,1993) is widespread.
More fundamentally, Lave and others in the field of situated cognition have
suggested that all knowledge is situated and that human cognition is structured by
social situations (1988, 1991, 1993). Thus, when knowledge is brought to bear upon
a situation it is always a product of the people, their activities, their interests and
goals and the ways that these relate to the situation they are in. It is not surprising
that settings of the 'school' and the 'street' generate different formsof knowledge in
this perspective, as all knowledge is thought to be shaped by the moment in which it
is communicated.

My aim in conducting case studies of two schools was to explore these different
notions of situated cognition, 'street' and 'school' mathematics, within schools. There
isn't the space to report upon these case studies in any depth, but details of the two
schools and the general issues that emerged from them are provided elsewhere
(Boaler,1997).

The Research Study
In order to investigate the mathematical knowledge and understanding that students
develop over time I performed longitudinal, ethnographic, case studies of two
schools. These included 100, one hour lesson observations in each school,
questionnaires, interviews and a variety of assessments. I followed two 'year groups'
of students, about 300 in all, from the beginning of year 9 (age 13) to the end of
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year 11 (age 16). The students in the two schools were matched at the start of the
research in terms of sex, social class, gender and mathematical attainment. Prior to
the beginning of year 9 the students had experienced the same teaching approaches

working through small booklets designed to teach the students mathematics, with
no teacher input from the front. At the beginning of year 9 one group of students
moved to a traditional, textbook approach whilst the other group moved to an open-
ended, problem-solving approach. I will now summarise the data that I collected
from the two schools over the next three years.

Amber Hill School
'Amber Hill' is a large, mixed, comprehensive school, run by an 'authoritarian'
(Ball, 1987) headteacher. The school is disciplined and controlled, there are
numerous school rules that students follow and the corridors and classrooms are
quiet and calm. Mathematics lessons in Amber Hill School are typical of those in
many of the UK's secondary schools. In years 7 and 8 the students work through
individualised booklets in mixed ability groups. In years 9, 10 and 11 students are
taught in 'ability' groups, teachers demonstrate mathematical methods for
approximately 15 minutes at the start of lessons and then give students questions to
work through from their textbooks.
In lesson observations I was repeatedly impressed by the motivation of the Amber
Hill students who would work through their textbook exercises without complaint or
disruption. In a small quantitative assessment of their time on task I recorded the
number of students who were working ten minutes into, half way through and ten
minutes before the end of each lesson. Observing 158 students over an eight lesson
period, over 90% of the students appeared to be on task at each of these times.
Despite the students' apparent motivation however, there were many indications that
students found mathematics lessons boring and tedious. Students demonstrated a
marked degree of disinterest and uninvolvement in lessons, demonstrated by rows of
students quietly copying down methods without any apparent desire to challenge or
think about mathematics. In response to a questionnaire item asking students to write
about aspects of lessons which they disliked (n = 160), 48% of students complained
about their lack of practical or activity based experience and 31% criticised the
similarity of the school's approach.

As a result of approximately 100 lesson observations at Amber Hill, I classified a
variety of behaviours which seemed to characterise the students' approach to
mathematics. One of these, I termed cue-based thinking (Boaler,1997; Schoenfeld,
1985). At many times during lessons I witnessed students basing their mathematical
thinking upon what they thought was expected of them, rather than the mathematics
within a question. Usually this expectation was based upon a structural aspect of their
text books what they thought should be demanded of them at a certain stage or
the context within a question. If a question seemed inappropriately easy or difficult,
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if it required some non-mathematical thought or if it required an operation other
than the one they had just learned about, many students would stop working. The
students did not interpret their work using mathematical sense-making or
understanding, they searched for cues which prompted a familiar procedure used in
a 'similar' situation. I asked them in a questionnaire (n=160) to say which they
believed to be more important when approaching a problem: remembering similar
work done before or thinking hard about the work in hand; 64% of students said that
remembering similar work done before was more important than thinking hard
about the current situation.

A number of different sources also showed that students at Amber Hill had
abandoned trying to interpret situations mathematically and viewed mathematics as a
series of 'rules, sums and equations' that needed to be learned (Boaler,1997). The
Amber Hill students' mathematical experience was structured and orderly; students
completed a lot of work and learned a lot of different methods. For many this
experience was also characterised by a lack of meaning, a predominance of anxiety
about understanding, belief in the need to learn set rules and a lack of critical
thought.

Phoenix Park School
'Phoenix Park' school is different from Amber Hill in many respects. It is a small,

age 13-18, upper school, well known for its tradition of progressive education and
its concern for equal opportunities and special educational needs. In mathematics
lessons the students work on open-ended projects, in mixed-ability groups. A strong
theme which is important to the Phoenix Park approach is independence. In
mathematics lessons the students are given starting points, for example, "The volume
of a shape is 216: what can it be?" or "A farmer has 36 gates, what shape and size of
fences can she build?". Students are then expected to work on these ideas for
approximately three weeks, developing their own thoughts, collaborating with
partners, taking the work in interesting directions and using mathematics. If students
need to learn about a new mathematical idea or procedure, teachers explain it to
them within the context of their project. For example, in the project on 36 fences
some students wanted to work out the area of a 36-sided shape, so the teacher taught
them how to use tangent ratios.

At Phoenix Park there was no apparent structure to lessons and, in contrast to
Amber Hill, very little control or order. If students wanted to they could take their
work to other rooms and work unsupervised, as they were expected to be
responsible for their own learning. In lessons it was common for approximately one-
third of students to be wandering around, off task. A study of the number of students
working ten minutes into, half way through and ten minutes before the end of each
lesson showed that approximately 60% of students were on task at these times, from
an observation of 230 students over an eleven-lesson period. However, when the
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students were working, they needed to be thinking. In response to the questionnaire
item concerning memory or thought, 65% of Phoenix Park students prioritised
thought, compared with 36% of Amber Hill students, as noted above. When I asked
students in interviews to describe their lessons to me, they talked about the relaxed
atmosphere at Phoenix Park, the emphasis on understanding, the choice they
experienced and the need to explain methods.

In order to monitor the development of the students' understanding in the two
schools I used a variety of assessments over the 3 years which produced the
following results:

In short written tests set in different contexts, that were similar in style to the
Amber Hill students' textbook work, there were no significant differences in the
attainment of the cohort of students at the two schools at the end of years 9 or 10
(ages 13 15).

In an 'applied' task given to two groups of students at each school at the end of
year 9, Phoenix Park students attained significantly higher grades than Amber Hill
students (x2 = 4.44, d.f. = 1, n = 104, p < 0.05). At the end of year 10, a second applied
task was given to 4 groups of students at each school. By this time the differences
between the groups were even more marked. Phoenix Park students again attained
significantly higher grades than Amber Hill students on all aspects of the activity (x2
= 17.46, d.f. = 3, n = 188, p < 0.001). In tests that were designed to cover the same areas
of mathematics as the tasks, given to students at the same time, there were no
significant differences between the two schools. The Amber Hill students showed that
they could use mathematics in tests, but many could not use the same areas of
mathematics in applied situations. The Phoenix Park students were equally capable in
both.

In the national school leaving examination, the GCSE, which was similar in style
to the Amber Hill students' textbook work, the Phoenix Park students attained
significantly higher grades. Eighty-eight per cent of the Phoenix Park cohort passed
the examination compared with 71% of the Amber Hill cohort, (x2 = 22.22, d.f. = I, n
= 290, p < 0.001). My analysis of the types of questions that students answered
correctly showed that the Amber Hill students solved approximately half as many
'conceptual' questions as 'procedural': at Phoenix Park students solved equal
proportions of each type (Boaler, 1997).

In years 10 and 11 I interviewed 40 students from both schools and asked them to
think of situations when they used mathematics outside of school. The Amber Hill
students all said that they abandoned school mathematics and used their own
methods. This was because the students could not see any connection between the
mathematics they learned in school and the demands of their lives. Over three-
quarters of the Phoenix Park students interviewed (n = 36) said that they used their
school learned methods in situations outside school. The Phoenix Park students
reported that they did not perceive any real differences between the mathematics of
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school and the 'real world'. Thus, although the Amber Hill students spent more time
on task (Peterson & Swing, 1982) in lessons and completed a lot of textbook work,
whilst the Phoenix Park students spent a large proportion of their lessons wandering
about the room or chatting, it was this latter group of students who were more able
to use mathematics in a range of settings.

Discussion and Conclusion

The students at Amber Hill were consistent in their mathematical behaviour. They
were motivated and hard working and they tried to learn all the procedures that
were presented to them in class. However, in applied settings and examination
questions many of them found that they were unable to use the mathematical
procedures they had learned. At Phoenix Park the students showed that they were
mathematically more competent in a range of situations. This appeared to derive
from:

a willingness and ability to perceive and interpret different situations and develop
meaning from them (Gibson, 1986) and in relation to them (Lave, 1993, 1996)

0 a sufficient understanding of different procedures to allow appropriate procedures
to be drawn upon (Whitehead, 1962)

a mathematical confidence and understanding that led students to adapt and change
procedures to fit the demands of new situations (see Boa ler, 1997).

The students at Phoenix Park had not been taught about mathematical procedures,
they had been 'apprenticed' into mathematical use. When they encountered
mathematical problems they did not try and 'transfer' set pieces of mathematics as
the Amber Hill students did, they reflected upon their past experiences and changed
the methods they knew to fit the situations they were in. The students themselves
developed dynamic, relational views about knowledge-use which enhanced their
mathematical success:

JB: Is there a lot to remember in maths?

S: There's a lot to learn, but then you need to know how to understand it and
once you can do that, you can learn a lot.

P: It's not sort of learning is it?, it's learning how to do things.

(Philip & Simon, Phoenix Park, year 11)

JB: How long do you think you can remember work after you've done it?

G: Well I have an idea a long time after and I could probably go on from that, I
wouldn't remember exactly how I done it, but I'd have an idea what to do.



(Gary, Phoenix Park year 11)

In the first of these extracts Philip and Simon concur with Lave's claim (1996) that
notions of knowing should be replaced with notions of doing, in order to
acknowledge the relational nature of cognition in practice, as illustrated by the
distinction drawn out by Philip: 'It's not sort of learning is it?, it's learning how to
do things'. This comment also highlights the difference between the Amber Hill and
Phoenix Park approaches. At Amber Hill teachers tried to give the students
knowledge, at Phoenix Park the students 'learned how to do things'. This distinction
led to differences in the mathematical beliefs of the students at Amber Hill the
students thought that they needed to remember a vast number of rules and
procedures; at Phoenix Park the students thought that mathematical use involved
reflection, thought and adaptation. Gary's comment is also important because he
appears to suggest, quite explicitly, that he does not 'transfer' pieces of knowledge,
rather, he creates new ideas in relation to the situations he is in. Gary's comment
supports a relational view of knowing, because he dismissed the view that knowledge
existed in his head ('I wouldn't remember exactly how I done it') and stated that his
knowledge would only be informed by previously held ideas, he woUld 'go on from
that' and form ideas of what he had to do in different situations.

A common theme running through the Phoenix Park students' reflections was the
idea of change and adaptation:

L: Yeah when we did percentages and that, we sort of worked them out as though
we were out of school using them.

V: And most of the activities we did you could use.

L: Yeah most of the activities you'd use not the actual same things as the
activities, but things you could use them in.

L: Sometimes I know I have changed methods to make it easier for me if you
find it easier the way you learned it then you keep the same, whatever's easiest.
(Vicky & Lindsey, PP, year 11, JC)

These students support a situated view of learning (Lave, 1993), because they
describe the way in which they developed meaning in interaction with different
settings. Lindsey said that she would use mathematics 'not the actual same things as
the activities, but things you could use them in', she would adapt and transform what
she had learned to fit new situations. Later in the interview she said:

L: Well if you find a rule or a method, you try and adapt it to other things, when
we found this rule that worked with the circles we started to work out the
percentages and then adapted it, so we just took it further and took different steps
and tried to adapt it to new situations. (Lindsey, PP, year 11)

The analysis offered by Lindsey in this extract is very important, for it was this
willingness to adapt and change methods to fit new situations which seemed to
underlie the students' confidence in their use of mathematics in 'real world'
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situations. Indeed many of the students' descriptions showed that they had learned
mathematics in a way that transcended the boundaries (Lave, 1996) that generally
exist between the classroom and the 'real world'.

The results of this study lend support to some of the emerging ideas within situated
cognition. For example, they suggest that attempts to impart knowledge to students,
as characterised by dominant models of mathematics teaching in the UK, may be less
helpful than classroom environments in which students are enculturated and
apprenticed into a system of knowing, thinking and doing. The data also show the
importance of students' beliefs, goals and interpretations, to their degree of
mathematical effectiveness. These important features of their practice, central to
theories of situated cognition, go unnoticed in solely cognitive interpretations of
performance (Greeno, 1997).
Ideas of 'street' and `school' mathematics have been allied to theories of situated
cognition for a number of years yet they are, in many ways, diametrically opposed
to each other. It became clear in this study that the Phoenix Park students did not
develop knowledge forms that were as distinct or stable as those suggested by the
labels of `street' or 'school'. The students showed that the mathematics they used, in
the street, the school or elsewhere, was developed for that particular moment in a
process of reflection, adaptation and communication. A major claim of situated
cognition is that knowledge is not only influenced by, but structured by the social
setting. Such settings will also be variable even within the confines of the `street' or
the `school'.
In Bishop's review of a 1991 book by Saxe, which considered the question of in-and-
out-of-school learning, he writes that `I was very interested to see not the total
separation in the children's minds that I had expected, but the gradual interweaving
of the two sets of cognitive practices' (quoted in Kieran, 1994). I would go further
and challenge the very idea of `sets' of practices. Kress (1996) has levelled a similar
argument at the plurality of literacies that has been proposed, saying that: `This
paradox only exists if we assume that language is autonomous, unaffected by the
social and therefore stable. If we assume that language is dynamic because it is
constantly being remade by its users in response to the demands of their social
environments, we do not then have a need to invent a plurality of literacies.' (Kress,
1996. p115). The data from students at Phoenix Park suggest that mathematical use
has much to share with language-use in this respect, more perhaps than many would
acknowledge. This is not to say that ideas of 'school' and 'street' mathematics have
not been useful they have, not least because they have helped to dispel claims of a
single, autonomous knowledge (Street, 1997). But such notions were limited in their
applicability for the students at Phoenix Park because the dynamic, `relational'
(Lave, 1996) nature of the knowledge they developed was simply unexplained by
such stable models of knowledge-use.
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THE "VOICES AND ECHOES GAME" AND THE INTERIORIZATION
OF CRUCIAL ASPECTS OF THEORETICAL KNOWLEDGE IN A

VYGOTSKIAN PERSPECTIVE: ONGOING RESEARCH

Paolo Boero, Bettina Pedemonte, Elisabetta Robotti Giampaolo Chiappini
Dipartimento di Matematica, Univ. di Genova; I.M.A.-C.N.R., Genova I.M.A.-C.N.R., Genova

This report presents some new findings about the "voices and echoes game"(VEG), an
innovative educational methodology conceived in a Vygotskian perspective and aimed at
approaching theoretical knowledge, overcoming the intrinsic limitations of both traditional
and constructivistic approaches. Based on some improvements in the theoretical framework
of the VEG, new teaching experiments were performed. Analysis of student behaviour
allowed investigation of some individual and social cognitive processes underlying the VEG,
especially concerning the interiorization of some aspects of theoretical knowledge.

1. Introduction
In Boero et al (1997) an innovative educational methodology was presented:

the "voices and echoes game"(VEG). Based on Bachtin's construct of "voice", the
VEG was conceived with the aim of mediating (in a Vygotskian perspective)
theoretical knowledge, overcoming the intrinsic limitations of both traditional and
constructivistic approaches.

The aim of this paper is to present our recent findings about the potentialities
of the VEG and the individual and social cognitive processes underlying it.
Preceding results (see Boero et al, 1997, Discussion) and further reflexions about the
nature of theoretical knowledge (see 3.1.) have allowed us to plan new teaching
experiments and better analyse student behaviour. These experiments have involved
different grades (from VII grade to university entrance mathematics courses) and
different subjects (from mathematical modelling of falling bodies and heredity, to
mathematical analysis). Analysis of some episodes taken from the performed
experiments, such as those reported in Section 3, opened the way to a better
understanding of the cognitive processes underlying the VEG, especially concerning
the interiorization of crucial aspects of theoretical knowledge (see 4.).

This paper can be considered as a mid-term report about our research project.
Further theoretical refinements and experiments (concerning new mathematical
topics and tasks) are needed to increase present knowledge about the potentialities of
VEG and the cognitive processes underlying it (see 5.).

2. Recalling and Refining the Theoretical Framework
The purpose of this section is to provide essential background information, as

well as (in Subsection 3.1.) some improvements in the theoretical framework.
What is the VEG? Some verbal and non-verbal expressions (especially

those produced by scientists of the past but also contemporary expressions)
represent in a dense and communicative way important leaps in the evolution of
mathematics and science. Each of these expressions conveys a content, an
organization of the discourse and the cultural horizon of the historical leap.
Referring to Bachtin (1968) and Wertsch (1991), we called these expressions
'voices'. Performing suitable tasks proposed by the teacher, the student may try to
make connections between the voice and his/her own interpretations, conceptions,
experiences and personal senses (Leont'ev, 1978), and produce an 'echo', i.e. a link
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with the voice made explicit through a discourse. The 'echo' was an original idea
intended to develop our new educational methodology. What we have called the VEG
is a particular educational situation aimed at activating students to produce echoes
through specific tasks: "How might.... have interpreted the fact that...?", or "Through
what experiences might ... have supported his hypothesis?"; or: "What analogies and
differences can you find between what your classmate said and what you read...?",
etc. The echoes produced may become objects for classroom discussion.

Students' echoes: students may produce echoes of different types
(depending on tasks and personal adaptation to them). We distinguished between
individual echoes and collective echoes (these are produced during a classroom
discussion which may start from an external voice or some of the individual echoes
selected by the teacher as voices). In Boero et al. (1997), individual echoes were
classified. In this report we will focus particularly on resonances, the situations of
greatest interest. In this case the student appropriates the voice as a way of
reconsidering and representing his/her experience; the distinctive sign of this
situation is the ability to change linguistic register or level by seeking to select and
go deep into pertinent elements ('deepening'), and finding examples, situations, etc.
which actualize and multiply the voice appropriately ('multiplication'). The echoes
which develop at the collective level may consist of series of individual echoes of
the voice at the origin of discussion ('source voice') with a high level of connection
between successive echoes. In particular, both the examples related to the 'source
voice' (multiplication) and the expressions and expressive registers (deepening) may
undergo rapid and intensive enrichment. We called this phenomenon 'multiple echo'.

What is the aim of the VEG? Our general, initial hypothesis on this issue
was that the VEG might allow the students' cultural horizon to embrace some
elements (counter-intuitive conceptions, methods far beyond students' experience,
specialized kinds of organization of the scientific discourse) which are difficult to
construct in a constructivist approach to theoretical knowledge and difficult to
mediate through a traditional approach. The need to exploit the potentialities that
emerged in the first series of teaching experiments forced us to try to characterize
better the elements of theoretical knowledge to be mediated, in order to better
organize (through appropriate tasks) and analyse their interiorization by students.

2. 1. More about Theoretical Knowledge
In seeking to refine our framework about theoretical knowledge, we have

found three different sources of inspiration. Although they belong to different
cultural domains and orientations, they seem to offer coherent and useful hints about
peculiar characteristics of theoretical knowledge.

The seminal work of Vygotskij (1990, chap. VI) suggests that: theoretical
knowledge is systematic and coherent; it allows production of judgements
(predictions, validations...) about the experience through intentional reasoning based
on highly organized and culturally rooted linguistic patterns; it organizes the
experience (both material and intellectual) in connection with a cultural tradition; it
needs a particular mediation to be trasmitted to new generations.

Wittgenstein's theoretical costruct of 'language games' (Wittgenstein, 1953)
can be exploited to describe how the potentialities of language (particularly the
possibility of defining, of proving, of making the rules of inference explicit and, in
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general, of eliciting and discussing peculiar characteristics of a theory) allow
theories to be constructed, described and discussed. Wittgenstein's analysis of
common knowledge (1969) suggests that it offers the grounding and basic grammar
for culture (and 'certainty') at any level, but it reduces to a set of (possibly
incoherent) pragmatic tools if not systematized by a theoretical discourse.

Sfard's recent investigation (Sfard, 1997) suggests that "the discourse of
mathematics may be viewed as an autopoietic systetn [...] which is continuously
self-producing. According to this conception, the discourse and mathematical
objects are mutually constitutive and are in a constant dialectic process of co-
emergence".

Taking into account these references, we may try to point out some particular
characteristics of theoretical knowledge in mathematics, by considering both the
processes of theory production (especially as concerns the role of language) and the
peculiarities of the produced theories:
* theoretical knowledge is organized according to explicit methodological
requirements (like coherence, systematicity, etc.), which offer important (although
not exhaustive) guidelines for constructing and evaluating theories;
* definitions and proofs are key steps in the progressive extensions of a theory.
They are produced through thinking strategies (general, like proving by
contradiction; or particular, like 'epsilon-delta reasoning' in mathematical analysis)
which exploit the potentialities of language and belong to cultural tradition;
* the speech genre of the language used to build up and communicate theoretical
knowledge has specific language keys for a theory or a set of coordinated theories -
for instance, the theory of limits and the theory of integration, in mathematical
analysis. The speech genre belongs to cultural tradition;
* as a coherent and systematic organization of experience, theoretical knowledge
vehiculates specific 'manners of viewing' the 'objects' of a theory (in the field of
mathematical modelling, we may consider deterministic or probabilistic modelling;
in the field of geometry, the synthetic or analytic points of view; etc.)

We think that the approach to theoretical knowledge in a given mathematics
domain must take these elements into account, with the aim of mediating them in
suitable ways; indeed each of the listed peculiarities is beyond the reach of a purely
constructive approach. The next section will show how the VEG can function as a
learning environment where some of the elements listed above can be mediated
through suitable tasks.

3. Mediating what? Some Examples from Recent Teaching Experiments

EXAMPLE A (VII grade)
This example concerns the methodological requirements of theoretical

knowledge; it is taken from a new version (organized taking into account the content
of 3.1.) of the "fall of bodies" teaching experiment reported in Garuti (1997). For
further details about the new version, see Boero & Tizzani (1997).

The students met Aristotle's and Galileo's selected texts ("voices"), and were
asked to echo them in tasks of different types: "How might Aristotle have explained
the fact that... ?"; "How might Galileo have opposed the idea that...?" .
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The following individual task was set: "Galileo is convinced that Aristotle's
theory (proportionality between speed and weight of the falling body)

does not work and tries to prove that speed is proportional to height (from which

the body falls). In order to better understand Galileo's position imagine
dropping an object (not too restrained by air) from different heights, for instance
one meter, three meters first floor, nine meters third floor). In your opinion, is
the speed the same in the three cases? Why?".

Michele wrote: "...the body falling from the lowest height arrives first"
Chiara wrote: "If we drop a stone from one million km and another stone from

one km, the latter will arrive earlier because it has to cover a shorter distance".
Students were invited "to discuss Michele's and Chiara's answers, taking into

account Galileo's manner of reasoning". The aim of this task was to help the students
to overcome the Galileo's initial erroneous hypothesis ("speed is proportional to
height") through the methodological requirements of his own theory. During this
discussion, Galileo's mistaken hypothesis was considered and opposed. Then the
following episode was recorded (underlining indicates methodological aspects)

TEACHER: "OK, then we may deduce that Galileo's hypothesis does not
work. Chiara, according to you what relationship might exist between the speeds of
the two stones?"

CHIARA: "If we drop a stone from a height of one meter at the same time
when another stone starts from a height of two meters, the first stone will arrive
before the second because it is nearer to the ground, but the second stone will have
a higher speed - indeed, a speed which is twice the speed of the first"

MICHELE: "Then you do agree with Galileo!"
CHIARA: "Yes, but this agreement does not work for all the cases"
MICHELE: "Galileo said that a law must be valid for every case, even for two

bodies falling from one meter or 10,000 meters"
CHIARA: "Indeed, I agree with Galileo only up ... to a certain point"
MICHELE: "Before telling us your hypothesis, you should have tested it for

every case!"
CHIARA: "I was going to say it, Galileo criticizes Aristotle and then makes the

yame mistake, because his hypothesis does not work in all the cases."

EXAMPLES B) AND C) (Alessandria University Chemistry students)
These examples are taken from a long term teaching experiment concerning a

one-semester intensive mathematics course intended to provide students with a
common basic background concerning differential and integral calculus, analytic
geometry, matrices and linear systems. The experiment consisted in the systematic
proposition of some significant pieces of theory (crucial definitions, theorems, etc.)
as "voices", alternated with tasks calling for production of conjectures and proofs
requiring similar ways of reasoning, to make explicit the usage of similar tools, or
to find counter-examples in near cases, etc. (these, tasks were chosen in order to
activate "resonance" echoes).

EXAMPLE B) concerns thinking strategies. Students were taught the
"classical" proof that (given a real function f defined and twice derivable in an open
interval containing 0, with the second derivative continuous in 0) if f(0)=0 and
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f"(0)>O, then the function f is concave upwards in x=0, that is its graphic is over the
tangent in 0 in some neighbourhood of 0; this proof is based on analysis of the sign
of the Lagrange remainder in Taylor's formula. As echo, they were individually
invited to prove (using "similar manners of reasoning") that, under similar
hypotheses, in the case of f(0)=0, f"(0)=0 and r(0)>O, 0 is a point of inflection.
Few students (5 out of 23) produced satisfactory answers. A short discussion
followed, in which one student (Daniele) presented his reasoning and (following the
teacher's sollicitation) made explicit the analogy/difference that he had discovered
with the case n=2: "also with three the sign of the third derivative remains positive
in some neighbourhood of zero, due to the continuity of the third derivative; but
unlike case two, the sign of x3 changes from left to right of 0, and so the graphic of
the function changes from below to over the horizontal tangent".

In an evaluation test six weeks after these activities a specific task was set that
concerned proving that a function such that f(2)=1, f'(2)=0, f"(2)=0, r(2)=0,
f(Iv)(2)= -3 was concave downwards in 0 in the hypothesis of continuity of the fourth
derivative. A satisfactory answer was provided by 15 students out of 23 (65%); 8
answers (33%) explicitly and autonomously reported how the "voice" concerning the
case f(0)=0, f"(0)>0 was recalled and exploited '). For instance, Giorgia wrote: "In
the case presented by the professor, the crucial element was to consider the
Lagrange remainder in the Taylor's formula: f'(c)x2/2 and prove that the sign of the
remainder (which represents the difference between the tangent and the function)
was positive in some neighbourhood of 0 due to the continuity of the second
derivative (implying the permanence of sign) and the parity of the exponent of x; in
the present case, the situation is similar, because the fourth derivative is
continuous and the parity of four is the same as two."

EXAMPLE C) concerns the 'speech genre' of a theory. Another task in the
evaluation test considered above was to prove that, given a real function f defined
and derivable for every real number, if f(-1)=-1, f(1)=2, f(2)=0, then there exists at
least one point ci such that f(ci)>0 and one point c2 such that f(c2)<0.

(Elisabetta): "If f is derivable over R, then it is also continuous over R,
consequently (by the Bolzano-Weiestrass theorem) between -1 and 1 there is at
least one point c such that f(c)=0; thus by the Rolle theorem between c and 2 there
exists at least one point d such that f(d)=0. We may assume that d is a relative
maximum point because f(1)=2, consequently f is increasing in a neighbourhood
before d and decreasing in a neighbourhood after d; as f increasing in a
neighbourhood before d, in that neighbourhood there is at least one point c I such
that f(c))>0

') Three years before, the same evaluation test was done by 27 students enrolled in the same
faculty of chemistry in the same university in the same period of the year by the same teacher. As is
usually the case in Italian mathematics courses, those students had been taught the proof of both the
case n=2 and the case n=3, and a generalization had been stated (without proof) by the teacher. The
total time devoted to this topic was the same (about 75') as in the later course but the results were
significantly different: only 9 students (33%) were able to produce the proof in the case n=4; only 2
(8%) explicitly and autonomously recognized the connection with the theorem presented in the case
n=2. The difference in the results probably lies in the changes concerning both the activities performed
on the specific topic and the general educational orientation of the whole course.
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Note that although Elisabetta's proof is not valid, she uses the mathematical
analysis language keys fluently ("if f is derivable, then..., thus..., consequently..."
"there is at least one point c such that....", etc). Two thirds of the students produced
proofs which were at the same level (as concerns the 'speech genre' requirement) ').

EXAMPLE D (VIII grade)
This example concerns the problem of the mediation of manners of viewing.
In this case, the experiment consisted in the exploitation of some pieces of

Mendel's original paper (as 'voices') in order to introduce students to Mendel's
theory through the VEG. A crucial moment during the experiment was the
following 'resonance echo' task, concerning a plant (Mirabilis ialapa) with two
varieties, one producing white flowers and the other red, which when crossed
produce plants with pink flowers: "Mendel was convinced that his ideas were right,
and so, when he saw that in the second generation some plants still produced white
flowers and others red flowers, he was able to predict the percentage of plants for
every colour. What do you thin1c were the percentages predicted by Mendel? How
could Mendel interpret what happened with the first and the second generation?"

Many students regressed to their spontaneous conceptions about heredity
(mixing of father's and mother's characteristics, etc.); their quantitative prediction
usually bore no trace of Mendel's point of view. Here is one example: "The
predicted percentage was 33,3%; because adding the three percentages we
must get 100%, and so I have divided 100 by 3, the number of colors, and the result
33,3% should be the percentage of plants for every color".

Only seven students (out of 27) adopted Mendel's point of view. This is a
typical answer: "If I were Mendel, I would explain what happened in this way: a)
after crossing, the first plants bear pink flowers, because 1 think that in this case
colors are determined by two dominant genes and we may assume that there was a
mixture; b) if the two genes are dominant, the parents of the second generation must
have WR and RW genes, consequently they produce plants with genes WW, WR, RW
and RR, and so these plants bear (respectively) white, pink and red flowers 1.4, on
average, in the proportion 25%, 50% (WR and RW), 25%... ".

This task proved to be very difficult; for an interpretation of the difficulties
met by students, see Boero & Lladb, 1997.

4. The Interiorization Processes in the VEG
The reported examples may be analysed from different perspectives. In a

V ygotskian perspective, the study of the processes of interiorization is one of the
main questions; Davydov (1988, pages 33-34) explicitely refers to "theoretical
knowledge" and "theoretical thinking" as crucial issues for interiorization. Taking
into account the peculiar characteristics of theoretical knowledge listed in Section
2.1., we may try to understand how the students interiorized them through the VEG.

') Concerning the importance of this aspect, it is interesting to note that Elisabetta was able to
take active part in the discussion that followed. On the contrary, some other students who had
produced more appropriate intuitions but had expressed them in a rough manner that had little in
common with.mathematical analysis language had great difficulties entering discussion in a productive
way and found it especially hard to recognize the analogies between their thinking strategies and the
strategies proposed by their fellow students.
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The reported examples suggest that, in the case of the VEG, the students may follow
different patterns of interiorization, depending on the object of interiorization and
on the educational context (especially individual and collective taks). Indeed,

Example A suggests that the methodological requirements of a theory may
emerge at the level of shared consciousness in classroom discussions, through
multiple echo phenomena (multiplication and deepening in the reported excerpt);
opposing classmates' positions may induce students to select and make explicit
methodological elements which were explicit in the "voice" but only potentially
accessible to their attention (and indeed in the reported experiment practically no
student quoted methodological elements in his/her initial individual echoes). As
concerns the transfer problem for this kind of acquisition, we may add that in the
same experiment we collected experimental evidence about the fact that the
'methodological consciousness' that emerged during classroom discussion may
remain as a habitus in the individual performance of many students (in the shape of
an inner discourse). In a Vygotskian perspective, it was as if outward questions were
transformed into inward questions. As a representative example, we may quote the
following excerpt from an individual production written two weeks after the
discussion considered in Example A: "1 must check whether this assumption has no
exceptions, because Galileo's position is that 1..4".

Example B suggests that in the case of thinking strategies, some students may
become conscious of the structural-cultural aspects of the strategy through the effort
demanded by the echo task (by eliciting the aspects to be transferred to the case
considered in the task). However, inquiry concerning the structural aspects, although
needed to fulfil the task, in not spontaneously practiced by the majority of students,
nor may it be induced through a more detailed specification of the task. Classroom
discussion seems to be the appropriate environment for appraising, forcing and
extending this kind of inquiry (by making it explicit in the teachers' sollicitations and
multiple echo phenomena-deepening in the reported texts):the need to communicate
and compare one's own solutions leads to an appropriate explicitation of the
structural aspects which were already present in some students' echoes - see Daniele.

Example C suggests that in the case of speech genre, interiorization can be a
direct and rather spontaneous consequence of the practices of individual echoing and
discussion about echoes. Indeed no explicit discussion was held in the classroom
about elements of speech genre, and moreover we may remark that it is not easy to
bring up "speech genre" as an object of a discussion. These remarks and classroom
observations match what Vygotskij wrote about the potentialities of pure imitation in
the zone of proximal development of students (Vygotskij, 1978, chap. VI) and the
limited but certainly not irrelevant value of the learning of appropriate verbal
expressions on the path to learning scientific concepts (Vygotskij, 1990, chap. VI).

In the "Mendel's laws" teaching experiment (Example D) only about 25% of
the students were spontaneously and unconsciously able to interiorize Mendel's
manner of viewing. This result may be read in two different ways: as a potentiality
of the VEG, or as a challenge about the possibility of improving the results. Boero
& Lladô (1997) suggest that the results could probably be improved if this aspect of
Mendel's theory were brought to surface as an explicit object of discussion by
exploiting both pre-Mendel and Mendel's voices, the former being chosen in order
to represent students' conceptions about heredity at the theoretical level. In other
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words, the VEG should be integrated by tasks (and cultural contributions) which
allow students to make explicit different mathematical systems of reasoning about
heredity and compare them at the theoretical level.

S. Concluding Remarks
Only some elements, identified in Section 2.1. as peculiar characteristics of

theoretical knowledge, were intentionally mediated through the experiments
considered in this report. One issue for future investigation is the possibility of
mediating other elements (possibly through different tasks concerning new topics:
for instance, algebraic language).

As concerns the cognitive mechanisms underlying the VEG, the analysis
performed in Section 5 suggests a complex perspective, where different variables
must be taken into account: the alternation of individual activities and classroom
discussions, the formulation of the tasks for these activities, etc. We may remark that
the list of characteristics of theoretical knowledge outlined in Subsection 3.1. might
be extended and should be improved as concerns the precision of the different points
and the connections between them. These improvements might lead to further
experiments and in-depth analyses of student behaviours, aiming at a better
understanding of the conditions which allow the VEG to function productively and,
possibly, a unified and simplified educational perspective for the approach to
theoretical knowledge.

Finally, there lies the general problem of the space for the VEG in the
activities performed in the classroom. Especially with younger students, it seem
useful to alternate different kinds of tasks, limiting the VEG to a few, crucial topics
for which a constructivist approach does not seem to be productive. Another option
might be to alternate between different kinds of tasks when dealing with the same
topic (production and explicitation of students' solutions and comparison with voices
from mathematics and science). Furthermore, long-term experiments may highlight
the potentialities and limits of these orientations (particularly as concerns the delicate
problem of the didactic contract: the second orientation in particular demands
frequent 'breaks', which may be confusing for students!).
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CHILDREN'S CONSTRUCTION OF INITIAL FRACTION CONCEPTS

George Booker
Griffith University, Brisbane, Australia

A constructivist teaching experiment was carried out with an entire class of year 4
children in order to explore and study their development of initial fraction ideas.
Building on the naming conventions for fractions introduced in year 3, a series of
mathematical games was used as a basis for the children's construction of fraction
knowledge in a realistic social setting. Meanings constructed during the teaching
experiment, revealed by videotapes of the learning activities, children's written records,
and observations from the researchers and class teacher, were contrasted with those
brought from earlier learning and their intuitive fraction notions. The study indicates
how a base for an extended fraction concept can be linked to initial fraction ideas via
activities situated in the child's world of play through negotiated, shared meanings.

Introduction
Although students may not construct fractions in out-of-school contexts, they
do construct a wealth of informal knowledge on which we can base the
teaching of fractions. Learning this informal knowledge is crucial but not
sufficient. We must also learn how students actively construct fractions in
school-based learning environments. Steffe & Olive, 1991, p.24

Both the nature of what a fraction is and the means by which it might be
represented to develop a broad understanding in children are problematic.
Although some elementary, knowledge of fractions as parts of things, specifically
for halves and quarters, and a background of whole numbers is brought to the
learning of fraction ideas in schools, children's difficulties in moving beyond these
initial ideas are well documented (Murray, Olivier & Human, 1996). One reason is
that fraction ideas are amongst the first abstracted mathematics met by a young
learner, in that there is no natural context for fractions paralleling the experiences
of counting or using groups of objects that underpin whole number learning
(Booker, I996a). Indeed, prior knowledge of whole numbers is often a hindrance
to developing meaning for initial fraction ideas (Streefland, 1991) and, 'in spite of
the fact that they often do get the right answer on school fraction tasks (eg "Shade
one third'), their understandings of fractions may not be principled, but are based
instead on remembered images' (Ball, 1993. p.175). Children's thinking about
fractions is also made complex because of the variety of subconstructs that must be
eventually be interwoven and because ideas of ratio and proportion are intrinsically
concerned from the outset (Pitkethly & Hunting, 1996).

A full understanding of fraction ideas would seem to require exposure to
numerous rational number concepts (Pitkethly & Hunting, 1996; Behr, Harel, Post
& Lesh, 1993, 1992; Kierin, 1988). Kierin's (1988) model of mathematical-
knowledge building suggests that this development proceeds through four levels,
beginning with the basic knowledge acquired as a result of living in a particular
environment, such as a recognition of parts and wholes and the names of the
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elementary fractions in everyday use. At the next level, this is broadened to an
intuitive, schooled knowledge built from and related back to everyday experience,

as in the case when initial number knowledge is extended to cope with the names of
fractions in general. The third level includes the technical, symbolic language that

involves the use of standard language, symbols, and algorithms while the fourth and

final level consists of axiomatic knowledge of the system.

This study is concerned with the move from the level of naming fraction
amounts to being able to use fraction symbols meaningfully in both naming and

renaming contexts, including the initial ideas of equivalence, and thus to provide a

basis for transforming whole number computational processes into ones for the
various fraction forms. It is part of an ongoing investigation of the development of

fraction understanding which, being constructivist in orientation, sets out to 'trace

the development of fraction concepts in children' and reflect 'this natural

development ... in constructing the curriculum' (Pitkethly & Hunting, 1996, p.32).
The studies are set in a Catholic primary school which draws children from
predominantly middle class backgrounds and attempts to build an enquiry based
learning environment throughout all year levels. In the mathematics programs, the
children have been introduced to ways of learning through games and other
heuristic activities that encourage them to explore situations, look for patterns and

relationships, make conjectures and discuss their interpretations and emerging ideas

with others. Children are observed working in small groups on investigative tasks

and problems or participating in mathematical games designed to bring out issues in
the modelling, naming and renaming of fractions. These observations take the form

of videotapes of small group and whole class activities and discussion, teacher and
researcher observations and interviews with individuals or small groups.

Theoretical framework
Representing initial fraction ideas. The part-whole construct, based on
partitioning either a continuous quantity or a set of discrete objects, appears to be

fundamental to the development of fractions (Pitkethly & Hunting, 1996; Behr, et

al, 1993; Kierin, 1988). The difficulty, though, is to select a representation or
representations with which 'they can extend and develop their understandings of the

ideas, as well as their capacity to reason with and about those ideas' (Ball, 1993,
p.160). These need to be able to both facilitate the development of understandings
and processes and allow students opportunities to explore and make conjectures

. concerning their emerging ideas and understandings. In this way, through making

sense of the situations that arise, children can begin to appropriate these models and
representations as their own.

This has usually been taken to mean that a notion of a 'unit fraction' is

fundamental as it can be related to the part of the whole that names a fractional
amount, and then built up to a more general fraction through a process of iteration
(Pitkethly & Hunting, 1996; Steffe & Olive, 1993). Yet, historically, the notion of
unit fraction is only one of the bases on which a successful fraction concept and
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scheme has arisen. While the Egyptian system of fractions can be interpreted as unit
fraction in character, it is unique in this approach, and that evolved in other
cultures, principally in the early Indian mathematics on which many of our
procedures are based, took a compound fraction approach from the outset (Joseph,
1991). Perhaps, then, it is not surprising that a unit fraction basis for an
introduction to initial fraction ideas has consistently proven difficult for children.
For example, children commonly decide that 1/4 must be greater than 1/3 by
generalising from their knowledge that 4 is greater than 3, or associate 1/3 with 3
objects or parts out of 6, rather than 2 objects, by relating the fraction name (third)
to the number of objects within the collection or whole rather than to the subsets or
parts that might be formed:

arele a. [bud of the ft.

Cir one third a tte Isla.

12 of the 28 children in the study identified 1 third with three objects; only 5 children correctly circled .

two objects; 3 children circled 1 third of each object, 2 children circled 1 third of I object, while 4
children gave no response.

An alternative approach is to build from an initial conception of a fraction as a
part of something to focus on one of something made up of parts in contrast to
being used in the formation of larger whole numbers via place value ideas. These
parts can then be used to consider compound fractions of the form 'so many parts
out of the total number of parts' from the outset, and unit fractions would then
simply occur as one case out of many for each partitioning of 1 one. Manipulatives
as such would not be helpful, for when something representing 1 one is broken into
smaller pieces it is as likely that this would be interpreted as several smaller ones
rather than seVeral parts of the original. Children constructing their fraction
understanding need to experience this partitioning rather than be given materials
which have already been formed into parts so that a model in which equal parts are
completed and shaded seemed preferable to cutting something into equal pieces or
reconstructing 1 one from ready-made parts. Thus, activities to reflect this
partitioning process on the part of the individual learners were chosen, rather than
using materials such as Cuisenaire rods which need to be interpreted from a
fraction perspective, materials that could readily be broken apart such as plasticine
or paper folding which most readily relates to a process of successive halving and
thus leaves to one side more general notions of partitioning.

An emphasis on partitioning 1 one rathei than taking parts of a whole also lays
a foundation for fractions to be seen as numbers in an extended number system
rather than as a way of using already known whole numbers, separated by a point
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(3.46) or one on top of another ( 'T:). Just as 1 one was the base for all whole
numbers (10 ones form 1 ten, 10 tens form 1 hundred and so on), children need to
come to see that 1 one provides the basis for all fractions as well. The parts of 1
one give the initial fractions halves, thirds, fourths and so on, and in turn these
generate all numbers by allowing for parts of 2 or more ones such as 1 and 3 fifths,
2.7, or 350%.

Instructional games as a basis for the social construction of meaning.
Activities were designed to give situated meaning through the use of structured
games and tasks as opposed to the focus on rule-like procedures that often dominate
the learning of fractions. As Steffe and Wiegel (1994, p.117) suggest, 'playing in a
mathematical context could serve in children's construction of a mathematical
reality and as a source of their motivation to do mathematics'. Involvement in
instructional games induces children to make sense of their ideas and the
interpretations of others. The dialogue engaged in while playing facilitates the
construction of mathematical knowledge, allowing the articulation and manipulation
of each player's thinking. Such communication helps to extend a conceptual
framework through a process of reflection and points to the central role of
language, as it is the social interaction which gives rise to genuine mathematical
issues. In turn, these problems engender an exchange of ideas with children striving
to make sense of their mathematical activity and leads them to see mathematics as a
social process of sense-making requiring the construction of consensual
mathematical understandings (Booker, 1996b).

Method and procedure
Classroom setting. In studying the development of fraction ideas, problematic
activities were presented and children observed building up conceptual models,
developing arguments, discussing their ideas and negotiating their understandings
and interpretations. The teacher's role was to facilitate discussion and probe
children's thinking through questions related to the children's emerging
understanding of the activities and ideas that were being represented. At first,
children were engaged in cognitive play activities to establish the enactment of basic
conceptual thinking before the teacher intervened to transform this into
mathematical activity which aided the construction of underlying fraction concepts
(Steffe & Wiegel, 1994, p.118). Time was provided at the end of a set of activities
for children to write up and reflect on what had occurred in individual diaries, and
these, as well as issues that arose during the activities, formed the basis for whole
class discussions bringing together a shared understanding of the developing
mathematical ideas. In these discussions, the teacher acted as a facilitator of
classroom discourse, posing questions and bringing forth consensual meanings for
the underlying concepts as they emerged.

Initial assessment. Prior to the development of the new fraction ideas, an
assessment of understanding retained from teaching and learning in the previous
year was made. Although there was both informal knowledge from everyday
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experiences and a retention of many of the fundamental ideas developed in that
year, there were also common misconceptions. Shading objects to show simple
fractions or matching simple fraction names to shaded regions were carried out
readily, but whether this really showed understanding had to be questioned given
the range of responses to a situation involving several regions:

How muCh is shaded altogether? Re resentative responses
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The sequence of learning activities' Following an analysis of the initial
assessment data, the study began with some explicit review of the naming processes
for fractions, building in the conventions that are necessary (Ball, 1993, p.165), in
particular the notion of parts being equal-sized and the relationship of these new
numbers to (but distinct from) ordinal number names. Following this, a game,
Colour me fractions, was introduced in stages to build from a familiarity with
naming rectangular regions to relating this to regions with other shapes, then
building in the recording in all its complexities. This game followed a bingo format
in that a shape relating to a particular fraction name was to be located and coloured
just once on a game sheet shared by players to match the directions given by rolling
two dice, one with digits from 1-6 (later 0-9), the other with fraction names halves,
thirds, fourths, fifths, sixths, sevenths, eighths, ninths, tenths and twelfths. The
players who first coloured each shape won the game, provided there was agreement
that their responses matched the fraction concepts being developed.

The first playing board had rectangles with 3, 4, 5, 6, 8, 9, 10 and 12 equal
parts so that from the outset some rolls of the dice would not generate a fraction to
be coloured. The rule that if a particular shape already had some colouring then it
was now 'out of play' raised acceptance of the fact that there may not be a shape
corresponding to the dice (neither 3 sevenths nor 2 halves could be coloured) and
provided a means to reflect on the notion that other rolls of the dice would. also
generate fractions that could not be coloured (6 fourths, 5 thirds, and so on). These
possibilities were not bioached with the class, but were left to arise as problems to
be dealt with, conceptions to be negotiated on the route to building a robust fraction
concept.

' Videotaped episodes and transcripts will be presented at the paper session. An overview is presented
here as background to the video insights into the study and children ways of thinking.

139 2 - 132



An extensiron to the playing board involved a variety of shapes and sizes,
including examples where there were no partitioning marks raised the issue of
children determining the particular partitioning themselves and thus creating an
awareness of the variety of ways of viewing 1 one. Different shapes and sizes used
to represent the same fraction were also designed to extend children's fraction
concepts and give rise to argumentation of what was involved. In a final playing
board in this section of the study, shapes with non-equal parts were included to
assist in having the fraction concept to the fore rather than a procedure of simply
finding and counting parts.

A further aspect of the sequence of games that had been constructed, is that by
allowing sOme moves and denying others, situations arose where children wanted to
resolve for themselves issues concerning the meaning of the fractions that they had
rolled with the dice. In particular, when the question arose that you surely could
have 3 halves (children provided examples using familiar objects such as apples or
oranges), it became possible to extend the games by supplying game sheets with
more than one copy of each shape:
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Game boards used in the study

-This in turn led to discussions about how the 'new fractions' might be
recorded and a class discussion focussing on the link between earlier recording of
fractions such as 7/8 and the models used to portray them led to a consideration of
writing 13 eighths as both 13/8 and 1 and 5/8. At this point, there was a need to
relate the class suggestions to the mathematical conventions that had arisen over
time and this allowed students to construct the meaning for these recording
conventions for themselves from the playing situations in which they were engaged.
As a final set of games, versions of a `tic-tac-toe' fraction comparison game were
introduced (Booker, 1996a) and games using fraction representations in terms of
discrete objects were devised based on conventional bingo and card games that
encouraged the verbalisation of fraction names in both word and symbol form and
the interpretation of continuous and discrete pictorial forms.

Results Cbildren were able to construct for themselves strong and meaningful
representations of quite complex fraction forms. These can be showed in the
following succession of building from_ the initial fraction games:

riff
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to representations they drew themselves in order to answers posed when the teacher
rolled the dice and asked for two different ways of recording the resultant fractions

through homework
symbolic forms:
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However, an ability to compare fractions in mixed number form did not build from
this knowledge of naming and renaming fractions as might be expected, suggesting
that a stronger notion of equivalence would be needed to be built in to their
emerging connected pictorial, language and symbolic representations of fractions.

Circle the larger fraction: 10. I orkl 11. aor Q-1\+or 2i

11. ,f17_,'Nr 6i 14. or to. 5+ or4)

Finding the larger fractions did not translate to mixed numbers where earlier
whole number conventions continued to dominate

Conclusions and implications
The complex nature of thinking of fractions in a variety of ways, some consistent
with and others divergent from, children's existing whole number knowledge has
been brought out in their differing responses to fraction tasks. At the same time,
the construction of meaningful conventions for renaming fractions has proven
more successful than with the activities investigated in the earlier study (Booker,
1996a). The change from a solely part/whole conception of fraction to a more
extendable part of 1 one concept appeared to.reduce confusion in the renaming of
mixed numbers and improper fractions. The building in of models that went
beyond the rectangular region that built up an initial focus on a common notion of
unit for fraction naming and comparison to different shapes and sizes of these
representations, and then to collections of objects so that discrete fraction
representations could be accommodated provided an extended base of intuitive
ideas. This allowed more ready comparison of fractions through facilitating the
move from symbol to language as a mediating notion. In this way, this research has
supported Streefland's (1991) call for 'insightful reconstruction' of a system of
fraction ideas. The next phase in this ongoing investigation will be to trace whether
the conceptions that have been constructed are sufficiently robust to allow a
meaningful notion of fraction as ratio to be intertwined, both in its own right and
in the specific per cent form of fraction symbolism and representation.
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Abstract
In this paper we discuss three theories about how computers or graphing
calculators can be related to cognition. We present some data from a mathematics
classroom for biology majors at the State University of Seto Paulo at Rio Claro. In
this course, functions and derivative are main concepts. The data presented regards
an episode in which there is a transition from the work with functions to derivative.
Finally, we discuss how the data presented is connected to the theories.

INTRODUCTION
Studies about derivative and ideas related to it (such as tangent lines) have emphasized students'

misconceptions and comMon errors (Baldino, 1995; Scher, 1993; Artigue, 1991; Orton, 1983),In

order to overcome some of these difficulties, the use of magnification to generate the idea of local

straightness of differentiable functions often appears in the literature; Tall (1991) has proposed using

a graphic approach using computers to do this magnification.

The effects of computers and graphing calculators on students' thinking on calculus and precalculus

have been studied by different authors in teaching experiments with reduced number of students or in

whole classrooms (G6mez & Fernández, 1997; Mesa, 1997; Villarreal, 1997; Mesa & G6mez, 1996;

Borba & Confrey, 1996; Souza & Borba, 1995; Lawson, 1995; Hillel, Lee, Laborde & Linchevski,

1992).

Studies which stressed the (social) construction of mathematical knowledge in the classroom have

been more common at the elementary level (Graves & Zack, 1996; Wood, 1996; Mousley & Sullivan,

1995). Although there are exceptions, little research has been done regarding this at high school or

undergraduate level.

In this paper, we will emphasize the kind of discussion that emerges in a mathematical classroom

when graphing calculators are used regularly. We will report on students' different understandings of

a task which was meant to introduce the notion of derivative for first year biology majors. Graphing

calculators were regularly used and, in one instance, "they helped" to trigger an intensive
mathematical debate. In this paper, we will briefly discuss the relation of technology and cognition,

1This paper is part of a research project named "Pensamento Matematico, FungOes, Computadores e Outios Meios de
Comunicacao II" (Grant 520033/95-7) which is sponsored by CNPq, a funding agency of the Brazilian Government,
and it was developed by GPIMEM (Research Group on Technology and Mathematics Education-
http://www.igce.unesp.br/igce/pgem/gpimem). Although they are not responsible for the content of this paper, we
thank Miriam Godoy Penteado, professor of the Mathematics Department of UNESP-Rio Claro, Telma Souza, both
members of the Research Group Mathematics Education and Technology, and Anne Kepple, for their comments on
earlier versions of this paper.
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present the data related to the debate mentioned above, and link this data to the theoretical ideas

presented.

TECHNOLOGY AND COGNITION
In this article, we will base our discussion about the relationship between technology anC1 cognition

on the work of Tikhomirov (1981). This author describes three theories which relate computers and

human activity: substitution, supplementation and reorganization. In the theory of substitution, as

suggested by the name, computers are seen as substituting humans since they have the capability to

solve problems which previously were solvable only by humans. Tikhomirov rejects this theory,

arguing that the heuristic mechanisms used by computers and humans to solve problems are

significantly different.

The supplementation theory is described by Tikhomirov (1981) as seeing the computer as a
complement to humans, increasing the capability and speed of human beings to perform given tasks.

Tikhomirov (1981) cites information process theory as the basis of this argument, which is based on

the idea that "complex processes of thought consist of elementary processes of symbol manipulation"

(pp. 260). Tikhomirov (1981) criticizes this theory which views thinking as the activity of solving

problems, arguing that thinking involves not only solving problems but also formulating them:

"the formulation and the attainment of goals are among the most important manifestations of
thinking activity. On the other hand, the conditions in which a goal is formulated are not always
'defined' ... Consequently, thinking is not the simple solution of problems: it also involves
formulating them" (Tikhomirov (1981), pp. 261)

Tikhomirov (1981) goes deeper in his criticism of information process theory, suggesting that it does

not take into account meanings that are given to the manipulated symbols and other important

characteristics of solving and formulating a problem such as human values. He proposes that
computers should be seen as reorganizing human activity and that emphasis should be given to

human-computer systems and to problems which can be solved by them. Tikhomirov (1981)
proposes, in Vygotskyan fashion, that a tool is not just added to a human being but actually
reorganizes human activity: "as a result of using computers, a transformation of human activity

occurs, and new forms of activity emerge" (pp. 271). In Tikhomirov's view, computers play a role

similar to language in Vygotskyan theory, representing a different way of regulating human
intellectual activity. Human-computer systems lead to new forms of teacher-student relationships and

can suggest new ways of legitimating and justifying findings in the classroom (Tikhomirov, 1981;

Borba, 1994).

We believe that tasks designed for educational practices have to take into account discussions such as

the one outlined above. For instance, if one sees the computer as just a supplement, one may be

inclined to design tasks which are similar to those designed, to be solved without computers,
restricting the use of computers (or portable computers such as the graphing calculators) to
verification of results or illustration of a given topic. In our research program, we have attempted to
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use tasks which take advantage of these new resources. Elsewhere (Borba, 1997) we have discussed

classrooms in which the graphing calculator has a central role in students' discussions and the
reorganization of their thinking. In this paper, we will present an example that suggests that even

when the calculator is not being used by all the students (the students are not using it at every
moment), the graphing calculator, the tasks and the environment generated has led to such a
reorganization of thinking.

THE RESEARCH
This study is part of a research program of our research group (GPIMEM) at the State University of

São Paulo at Rio Claro (UNESP-Rio Claro) which investigates the relationship between media and

mathematics education at different school levels. This particular study has been going on for the last

five years with first-year biology majors who take their only mathematics course in their first semester

at the university. This course meets four hours per week (30 to 35 sessions of two hours each). There

are about 44 students enrolled in the course each year. The first author of this paper was the professor

of the course during all five years while the second author was a research assistant who sat in the

course at all the sessions during the last three years.

Although it is a college-level course, one should think of it as an advanced high school course in

which functions are analyzed more in-depth, derivative is introduced and notions of integrals are

sketched. Thirty percent of the students' grade is based on what we call the modeling approach. In

such an approach, students work in groups studying a topic of their choice. The professor
collaborates with all the groups in an approach which is similar to the one described by Vithal,

Christiansen & Skovsmose (1995). They were also told that it would be desirable, but not necessary,

for their investigation to somehow involve the main theme of the course, functions, which all of them

had been introduced to in high school. Students were expected to present partial and final written

versions of their work and to make oral presentations to the class. Examples from this part of the

class can be found in Borba (1997).

Parallel to this type of work, we have developed the calculator-experimental approach, in which the

graphing calculator was used as a vehicle for experimentation by students in response to assigned

tasks. Twenty Casio fx-8700 were available during each class. The classes included debates about

students' findings as well as lectures by the professor and textbook work. Students were expected to

write reports on their group activities involving the calculator. The data reported in this study came

from this part of the course.

The data collected included written examinations, written group reports about their modeling work,

and written reports about their group work with the calculators using the experimental approach.

Beginning in the third year, the parts of the class involving group work with the calculators and group

presentations about students' modeling projects were videotaped. Reflexive notes were taken by the

professor at the end of each class and by the second author of the paper. Data was analyzed by us and
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by the Research Group on Technology and Mathematics Education at the Graduate Program of

Mathematics Education at UNESP-Rio Claro, after several parts of the videotape were transcribed.

RESULTS
As part of the experimental approach we developed activities in which students used the calculator to

think about the distance between two points, about the equation of the straight line, and about the

relationship between coefficients and graphs of different families of functions such as: linear,
quadratic, logarithmic and exponential. We also stressed the notion of function as a way of modeling

data, when students analyzed a variation of a problem suggested by Schaufele & Zumoff (1995) in

which coal consumption is modeled by functions.

After this part, we have used, during the last three years, the following task as a means of introducing

the notion of derivative: is it possible to make the graph of y=x2 using just straight lines? This task

was the start of the data we will present regarding the reorganization of thinking and the
intensification of the mathematical discussion in the classroom. As this task was given for students

they were divided into small groups - two to four participants - and a lively discussion began that

lasted about ten minutes. Following this, discussion among the entire class started led by some of the

participants. As this discussion was occurring, many participants continued to work with their
graphing calculators. The first major input was made by Iris (I r) and her group who explained their

approach to the problem; it consisted of considering the positive side of y=x2, taking the points (0,0),

(2,4) and (3,9) and then, by trial and error, finding the straight lines which went through those
points. They also claimed that they could draw parabolas - made out of straight lines - more precisely

if they had taken more points. Camila (C) then entered into the discussion and added that she had

taken the points (2,4) and (3,9) and had calculated Ay/Ax to find 'a' in y=ax+b; she used algebraic

calculation with paper and pencil to calculate the value of b. Camila and her group had not used the

calculator to find the equation y=5x-6, except as a way of checking whether their algebra development

looked the way they thought it should in the graphing calculator. At this time, the following dialogue

took place:

Fernanda (F): professor, I don't think we will get a parabola just right, because if it is a curve ... it will always be
pieced together, there will be a bump.
Professor (P): there will be a bump, hum. . ?
F: it will not be complete, maybe in the calculator looks like [it is smooth] . . . .no, I don't think so, if you stop and
think, even if there were very short straight lines, there will be the little pieces to be put together ... because it is
straight line, do you understand? And the thing (the parabola) is curve, and I don't think it will be possible.

It seems that F is uncomfortable with the method presented by both Ir and C since they see that if we

keep taking smaller Ax, we will eventually be able to answer the question posed by the professor,

while F thinks that this method will never lead to a satisfactory answer since there will always be

some bumps left. The discussion continued:

Ir: But professor, what about i f I put a straight line at the little bump.
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F: But then you are going to smooth out the bumps, but there will be points, we are going to have only points on top
of the curve.
I: But if you smooth them out out with straight lines, you won't have bumps
F: But then you will end up having dots, and this is not a straight line, then there are points to fill out ... theparabola,
I think. . . .

Mayra (Ma): what I thought was the following , so . ., on each point of the parabola, we could find a straight line
which passes by this point.
F: But then we are going to have points, not straight lines.

The above debate is interrupted by about ten different people speaking at the same time; it is
impossible to understand what many students are trying to say except for the attempt of the professor

to get one student to speak at a time. The professor was eventually successful in his attempt. But

before we continue to present more data, we would like to emphasize that in the above excerpt, F

reacts to Ir's solution since she believes having points instead of lines is not a fair solution for the

proposed problem. Ma tries to solve the problem by suggesting they find a straight line which passes

by this point. After the disruption of the debate, Ma explains her idea better, bringing new issues to

the discussion:

Ma: for example, if we get 30,000 points in the parabola,
. . 30,000 straight lines which pass by the parabola . .

F: then there are many straight lines, but to fill out . .

.the bumps, it is going to get to another point in which
there will be only one point . . .

Ir: but he (the professor] said straight lines, he didn't say
whole straight lines

F: but what defines a straight line is not only a point

s..

Figure 1 - A figure which resembles the one F
drew in her written report.

There is a new "eruption" in the class as everybody speaks at the same time. It seems that F is

working with line segments, or straight lines with a restricted interval (see figure 1) while Ir is

thinking with staight lines with the domain D=R. The interpretation of F's work is also corroborated

by a drawing she made in her written report about her activities during the day. By working with line

segments, F seems to find that at the end she will not have a line, but a point, while Ir thinks that she

still has a line if it is tangent to the parabola. F seems to also stick to reasoning developed in previous

tasks in which the notion that we need to have two points to generate a straight line was stressed. She

wants, at this point, to have these two points on the parabola. It is important to know that this is the

interpretation of the researchers looking back at the experiment, since the professor, at the time of the

class, had no awareness of what we believe now was the root of the problem. F thinks that the other

solution is some sort of cheating, since the task presented mentions lines and not single points, as the

next interaction shows:

F: ...in order to have a straight line I need many points, right? and I believe that to fill out a parabola we would need a
straight line with many points inside the parabola....I don't understand the idea of having a straight line . with just
one point belonging to the parabola, do you understand?
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Tonini (T): professor, wouldn't it be the case that the points which go outside ...the parabola are so insignificant in
relation to the scale of the graph ... that they would be negligible ... could they be negligible? ... If you magnify the
scale of the graph and did a giant parabola (makes a parabola-like shape with his arms] so you could see 'the milimeters'
of all those points, of . . . those bumps of the straight line, wouldn't it be so insignificant and therefore negligible...?

The professor was trying to let the discussion flow and his comments thus had a management tone,

bringing the class back to organized discussion twice. He had also indicated that he was happy with

the nature of the discussion about the task presented and the issues related to continuity presented by

Ma. He attempted to summarize the discussion up to that point, without great success, but he was

able to make Ma be more explicit about her ideas:

Ma: then, this is what I thought: for each point of the parabola, you can have a tangent line .

F repeats her idea about points being different from lines, and T gets back into the debate:

T: what she (Mal talked about, the 30,000 points that the straight line passes through ... that a point of the straight line
can pass by the parabola, correct? ... and if a little bump shows up...it can be neglected...

The professor was interested in exploring the idea of 30,000 points as a way of passing from secant

lines to tangent lines and introducing derivative, even though he was aware that Ma's notion

resembled the idea of a continuous curve being similar to a necklace as described by Goldenberg &

Kliman (1990). Ma introduces for the first time, in an explicit manner, the notion of tangent line,

and another student characterizes it as touching the parabola just in one point but "staying outside the

curve". Many students bring in arguments which have been presented before, and the discussion

starts to go in circles. One exception is an idea brought by one student which talks more about zoom

and microscope, extending the metaphor from the graphing calculator to a biological tool. The

professor notes that class time is about ending and tries to summarize the issues raised by the

students, using the overhead projector and a calculator to give his interpretation of what had
happened. He also asks the students to bring to the next class answers to the question, Is there a more

precise method of drawing a parabola with straight lines?. He had in mind getting back to the

discussion about tangent lines. He leads an argument that if Ir and Ma's ideas are used, they can get

to a tangent line, and raises the question of how to calculate the slope of this straight line given just

one point instead of two as they had in some of the early classes. In the next class he introduces

derivative, without using the terminology yet, using the informal idea of limits and discussing the
possibility of making Ax so small (.6x->o) in Ay/Ax. In the next section, we will discuss how the

data presented is connected to the ideas presented before.

DISCUSSION
The discussion led by Ma, F, Ir,C and T illustrates how rich discussion about conceptual issues can

take place in a mathematics classroom where an experimental approach is used. We want to claim

that, although the graphing calculator was not being used all the time by the students, we can say that

human-graphing-calculator systems were in action during that class. For instance, without the

graphing calculator, Ir could have not used her trial and error approach and then tried to connect
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them to other approaches developed by her colleagues to find straight lines which connect two

points belonging to the parabola.

We also want to claim that the use of this medium did not suppress the use of other media in the

classroom: orality and "paper and pencil" were some of the media used to structure the discussion

which took place. In other words, the reorganization of thinking proposed by Tikhomirov is just an

abbreviation of what is taking place, since as F has shown, she thought with the calculator when she

came up with the idea of the impossibility of drawing a parabola with straight lines, but she also used

paper and pencil and orality in order to structure her arguments. Other students, C and her group,

used the graphing calculator "just to check their resulr in a way which is similar to the
supplementation theory. In other words, humans using a "new medium" - according to our
interpretation of reorganization theory - can also use it, occasionally, in a way which resembles the

supplementation theory.

Finally there is another dimension of reorganization of cognition which was not dealt with by

Tikhomirov, probably because computers were very different when he developed his theoretical

discussion. We want to talk about the metaphors used by students, such as T, during the debate
which were derived from his previous use of the graphing calculator. He talks about scale, about

bumps being negligible in a way which suggests that he had incorporated his previous use of the

graphing calculator in other tasks, and that we can think of a human-computer system being the actor

of his argumentation as well. We can also think that the student who connected the zoom of the

calculator with a microscope was thinking with these instruments as well even though the microscope

was not present there. In this case, he implicitly, showed the idea of local straightness of a
differentiable curve, as suggested by Tall (1991), which is strongly linked to the media.

In this paper, we presented a way of understanding the relationship between computers and
cognition, some original data which was collected within the activities of our research group
(GPIMEM). We summarized the ideas of Tikhomirov according to our interpretation and confronted

them with the data presented. In doing so, we raised some issues about the limitations and
convenience of his ideas regarding the links between computer/graphing calculator and cognition.

However, we do agree with his main idea regarding reorganization as we discussed above, abd we

believe that the data presented could not corroborate supplementation theory since the role of the

calculator was, for the most part, not peripheral.

Finally, we would like to add that the data presented is a relevant example which could also be

analyzed with respect to other issues, such as: the nature of the interaction between professor and the

students using some of the ideas about voice and perspective (Confrey, 1993); the relationship

between the knowledge being constructed about tangent lines in the classroom and the way academic

mathematics organized such notions throughout history; and Levy's (1993) notion of collective
thinking in which he proposes that cognition is a collective entity not only formed by humans and
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computers but also by other non-human actors. We believe that developing these ideas in other papers

will help us to build a broader picture of the nature of the mathematics which emerge from

experimental approaches within mathematics education.
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PRE-ALGEBRA: A COGNITIVE PERSPECTIVE1

Boulton-Lewis, G.M., Cooper, T., Atweh, B., Pi llay, H., and Wilss, L

Faculty of Education, Queensland University of Technology, Australia

Research in learning algebra has demonstrated the link between
arithmetic and algebra, identified a gap in this transition, and proposed
a pre-algebra level. This paper reports on a longitudinal study
discussing this transition from a cognitive perspective. Thirty-three
students in grades 7, 8, and 9 participated. Students' readiness for
algebra instruction and linear equations in terms of prerequisite
knowledge was explored in order to determine what constituted a pre-
algebraic level of understanding. A two-path model for the transition
from arithmetic to pre-algebra to algebra is proposed and students'
understanding of relevant knowledge is discussed. 1?esults showed a
developmental sequence that appears to fit the model.

Pre-algebraic and Algebraic Understanding

Some research in early algebra teaching and learning has focused on the transition
from arithmetic to algebra and the difficulties in developing algebraic concepts caused
by a cognitive gap (Herscovics & Linchevski, 1994) or didactic cut (Filloy & Rojano,
1989). It is suggested that the cognitive gap/didactic cut is located between the
knowledge required to solve arithmetic equations, by inverting or undoing, and the
knowledge required to solve algebraic equations by operating on or with the unknown
or variable. Linchevski and Herscovics (1996) proposed that students could not
operate spontaneously on or with the unknown and that grouping algebraic terms is not
a simple problem. They also argued that students viewed algebraic expressions
intuitively as computational processes (cf. Sfard & Linchevski, 1994) and suggested
that in teaching, instead of moving from variable to expression to equation,
arithmetical solution of linear equations might be more suitable initially for learning to
operate on or with the unknown. Filloy and Rojano (1989) believe such concerns
point to the need for an operational level of 'pre-algebraie knowledge' between
arithmetic and algebra.

However, what is not clear in the literature, is the level of understanding denoted by
pre-algebra. Herscovics and Linchevski (1994) consider that the cognitive gap
between arithmetic and algebra defines a level of pre-algebra and regard this as
"involving those intuitive algebraic ideas stemming from the presence of an unknown
in a first degree equation" (p. 75). Linchevski (1995) provided an explanation for pre-
algebra as incorporating substitution of numbers for letters; dealing with equivalent
equations through substitution; and allowing students to build cognitive schemes
through reflective activity and spontaneous procedures.

This research was funded by a grant from the Australian Research Council
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Bell (1996) proposed six hypotheses about algebraic thought. These included:
resolution of complex arithmetic problems by step-by-step methods working from

given data to unknowns or by global perceptions and use of multiple arithmetic
relations; coding and using systematic general methods for different problems;
recognition and use of general properties of the number system and its operations; and

use of a manipulable symbolic language to aid this work. We believe that these
hypotheses are concerned both with pre-algebraic and algebraic thought.

It is our contention that the transition from arithmetic to algebra involves a move from
functioning arithmetically with numbers and operations, to operating at a pre-algebraic
level which involves intuitive algebraic ideas and solution of linear equations with one
unknown using inverse procedures, to operating algebraically which encompasses a
series of operations and more than one variable and the understanding of relationships

expressed in general and simplified form.

The Role of Unknown

As stated previously, we consider that understanding the concept of the unknown and
solving to find the unknown in an equation, constitutes in part a pre-algebraic level of
understanding. Panizza, Sadovsky, and SeSsa (1997) suggest that the notion of
unknown may become an epistemological obstacle when trying to conceptualise the
notion of variable. However others, such as Rojano and Sutherland (1997), believe

that working with the unknown, both symbolically and numerically, will allow students

to accept the idea of operating with an unknown quantity. Graham and Thomas (1997)
maintain that allowing students to gain an appreciation of letters as labelled stores will
help develop an understanding that will improve assimilation of later concepts.

A study conducted by Ursini and Trigueros (1997) found that college students had
difficulty discriminating between variable as unknown and variable as generalised
number and propose that understanding of variable as unknown implies: recognising

and identifying in a problem situation the presence of something unknown that can be
determined by considering the restrictions of the problem; recognising the symbol that

appears in an equation as an object that represents specific values that can be
determined by considering the given restrictions; the ability to substitute for the
variable, the value or values that make the equation true; detennining the unknown
quantity that appears in equations or problems by performing the required arithmetic

and/or algebraic operations.

Analysis of Sequence for Learning Linear Equations

Complex linear equations in algebra such as 2x+3=11 include three crucial
components: an equals sign, a series of more than one operation, and a variable 'x'.
We are describing these equations as complex, because they include more than one
operation, as opposed to binary operations such as x+5=6. We propose a two path
model for learning complex algebra where binary arithmetic (2+3=5) operations,

complex arithmetic (35+7+8=13) and complex pre-algebraic operations [3(x+7)=24]

are necessary components of one path and binary arithmetic gpe,gatkns (2+3=5),
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binary pre-algebraic (x+7=16) and binary algebraic (x+y-12) operations are necessary
components of a second path. This means that understanding binary operations, such
as 2x and x-1-3, should be a prerequisite to understanding 2x+3=11 as should
application of operational laws to series of operations. Additionally, we suggest that
equations such as x+7=l 6 require solution procedures of a pre-algebraic nature which,
at the lowest level, comprise use of inverse arithmetical procedures to find the
unknown. The two path model also assumes that learning linear algebraic equations
will be facilitated by understanding isomorphic structures in complex arithmetic.

Evidence from the developmental literature supports this model in that it suggests
acquisition of pre-algebraic and algebraic concepts in the following order: one
occurrence of the unknown in binary operations, a series of operations on and with
numbers and the unknown, multiples of the unknown, acceptance of lack of closure
and immediate solution with a series of operations on the unknown, and finally
relationships between two variables and operations on them.

The purpose of our study was to explore students' early understandings of algebraic
concepts as they moved from arithmetic to algebraic. This was to determine: (a) the
validity of the two-path model of sequential development of algebraic understanding
and (b) what constituted a pre-algebraic level of understanding. Results from pilot
work were published in Boulton-Lewis et al. (1995), Boulton-Lewis, et al., (in press),
and for the pilot work and the first year of the study in Boulton-Lewis et al. (1997) and
Cooper et al. (1997). This paper presents results for the three-years of the longitudinal
study.

Method

Sample

The sample comprised 33 students who were tested in the first year in four state
primary schools in Brisbane. These were feeder schools for the high school where, in
the second and third years of the study, the students were in grade 8 and then grade 9.
Generally these schools were in a middle socio-economic area.

Interviews were conducted with the grade 7 students before any formal algebra
instruction took place and with grade 8 students after they had received instruction in
operational laws, use of brackets, and solution of aritlunetic word and number
problems. Grade 9 students were interviewed after they had learned about an
'unknown' in a linear equation and solution of a linear equation using balance
procedures.

Materials and Tasks

Students were presented with expressions and equations written on cards and asked
questions that investigated: commutative and inverse laws; order of operations
[(32+(1 2x8)3]; meaning of equals in an unfinished equation (287+20=) and in a
complete equation (28+7+20=60-36); meaning of unknown (0+5=9; x+7=16; 3x = 12)
and variable (0+5; 3x);); and solution of linear equations [3x+7=22; 3(x+7)=24].
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Procedure
Students were interviewed individually and videotaped. They were encouraged to
complete each task however if they could not respond the interviewer proceeded to the
next task.

Analysis

Interviews were transcribed and analysed to identify key categories. The NUD*IST
program (Richards & Richards, 1994) was used to classify response protocols under
these categories and further sub-categories. Responses for laws and order of
operations were categorised as satisfactory or unsatisfactory as a basis for learning
algebra. Responses for the other tasks were categorised as inappropriate, if they
indicated a lack of knowledge required for the task; as arithmetic, if they focussed on
arithmetical procedures and numerical answers); as pre-algebraic, if they evidenced
understanding between arithmetic procedures and intuitive algebraic ideas and used
inverse procedures; and as algebraic, if they evidenced recognition of relationships
expressed in simplified form and recognition and use of general properties of the
number system and its operations.

Results

The summary results below will be illustrated by Tables and examples of responses at
the conference presentation.

Commutative and Inverse Laws and Order Of Operations

In grades 7 and 8 the majority of students (19 and 17 respectively) could not explain
commutativity of addition and multiplication satisfactorily. However by grade 9, 25
students gave a satisfactory explanation for commutativity. Inverse operations were
explained satisfactorily by the majority of students in each grade (26, 30, and 33
respectively) and by grades 8 and 9 most students explained order of operations
satisfactorily (26 and 23 respectively compared with only nine satisfactory
explanations in grade 7.

Meaning of Equals

In each grade, the majority of students explained '=' in 28 + 7 + 20 = as find the
answer. Only one response in grade 8 and three responses in grade 9 evidenced
knowledge that '=' denoted an equivalence relationship when they stated that both
sides had to be equal. For '=' in 28+7+20=60-36, the majority of responses moved
from arithmetic in grade 7 when students (19) stated equals meant the answer, to
arithmetic (12) or algebraic (12) in grade 8 as students explained equals as either the
answer or denoting equivalence, to algebraic in grade 9 with most students (19)
explaining equals as equivalence or showing a balanced equation.

Meaning of Unknown and Variable

The majority of students in each grade indicated that D, in D + 5 = 9 (16, 22, and 21
respectively), and x in x + 7 = 16 (18, 24, and 26 respectively) represented an
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unknown number. However when x was presented in 3x = 12 in grade 7 most students
(18) did not know what this meant and gave an inappropriate explanation. In grade 8
most students explained concatenated x either arithmetically as a times sip (12) or
pre-algebraically as an unknown number (12). In grade 9 most students' (25)
explanations for x in 3x = 12 wcre pre-algebraic stating that x was an unknown
number.

For meaning of variable in grade 7 most students (18) stated pre-algebraically that 0 in
0 + 5 represented an unknown number with another eight students stating
algebraically it was any number. Five students gave inappropriate responses and two
stated it was the answer. In grade 8 and grade 9 the majority of students stated pre-
algebraically that El was an unknown number (15 and 18 respectively) or algebraically
that is was any number (14 each grade). In grade 9 there was only one aritlunetic
response and this indicated 0 was the answer. For x in 3x most students in grades 7
(19) and 8 (15) responded arithmetically that it was a times (multiplication) sign.
However by grade 9 the majority of students (17) stated pre-algebraically that it was
an unknown number and a further 10 students responded algebraically that it
represented any number.

Solution of Linear Equations

The majority of students in grades 7 (14) and 8 (13), as one would expect, did not
know how to solve 3x + 7 = 22. Eight students in grade 7 and 10 students in grade 8
used inverse arithmetic processes to find what they believed was missing after x
because they interpreted x as a 'times' sign. Nine students in grade 7 and 10 students
in grade 8 used inverse processes to solve for x which was categorised as pre-
algebraic. By grade 9 most students (23) solved 3x + 7 = 22 pre-algebraically by using
inverse processes. Two students did not know how to solve the equation, two used an
incomplete prealgebraic balance method which entailed balancing the equation by
taking 7 from both sides, however at this point the students then said that was 15
divided by 3 which is 5, rather than dividing each side by 3. Six students solved by
using a complete balance procedure which was categorised as algebraic.

For 3(x + 7) = 24 the majority of students (27) in grade 7 did not know how to solve
the equation, while six students used a pre-algebraic inverse procedure. By grade 8
the majority of students still did not know how to solve the equation, however 12
students did use a pre-algebraic inverse procedure. Six students used arithmetic
processes: two used the inverse by finding the space after the x and four used trial and
error. By grade 9 most students (19) used pre-algebraic inverse processes to solve 3(x
+ 7) = 24. Another four responses were pre-algebraic: three used an incomplete
balance process and one student used the balance method incorrectly. Six responses
were inappropriate, one student used a trial and error aritlunetic process, and three
students used a complete balance procedure which was categorised as algebraic.
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Discussion

By grade 9 most students had sufficient understanding of the commutative law to apply
this to linear equations, the majority of students also displayed a satisfactory
understanding of inverse procedures and of the correct order of operations.
Herscovics and Linchevski, (1994) include understanding the order of operations as
indicative of arithmetic functioning. These results indicate that by grade 9 most
students had satisfactory arithmetic understanding to enable them to apply these
principles to algebra

For equals in the unfinished equation, the majority of students each year indicated an
arithmetic understanding by stating it meant fmd the answer. However for the finished
equation, most understanding of equals moved from arithmetic in grade 7, to
arithmetic or algebraic in grade 8, with most students in grade 9 stating algebraically
that '=' denoted an equal or balanced relationship. However in all three grades almost
one third of the students interpreted '=' pre algebraically. Kieran (1981) noted that
students require an equivalence understanding of equals to operate algebraically. By
grade 9, 19 students demonstrated an equivalence understanding, however there were
still 14 students who were operating at either a pre-algebraic or aritlunetic level. This
suggests that while students' knowledge of '=' had developed over the years, there
was still a substantial number of students who did not understand '=' in an algebraic
sense and would need to learn the concept of equivalence. Providing explicit
instruction of equals at a pre-algebraic level, that is that each side is the same, may
help bridge the gap between arithmetic and algebraic understanding of equals.

Most students, over the three years, knew that 0 in the expression and equation
represented an unknown number. In the expression, in particular, this is indicative of a
pre-algebraic level of understanding as 0 could be interpreted algebraically as
representing 'any number'. In grade 8 and 9, 14 students did explain 0 as any number
and as understanding emerged in grade 9 some said that it was a variable. These
results indicate that understanding 0 initially as an unknown number appears to be a
suitable foundation from which to introduce the concept of any number or variable.
Similarly by grade 9 most students explained x (not concatenated) in the equations as
an unknown number.

Understanding of x in 3x was a more cognitively demanding task. Most students in
grades 7 and 8 did not understand concatenated x and hence could not solve the linear
equations. However by grade 9, after students had been instructed in concatenation
and use of inverse or balance procedures to solve an equation, most chose to use
inverse pre-algebraic procedures to solve linear equations while a smaller number of
students used balance procedures successfully. Sfard and Linchevski (1994) view the
process of solving to find an unknown by reversing procedures or backtracking, as
early algebraic thinking. We suggest that this solution process would be more
appropriately placed at a pre-algebraic level of functioning.
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Conclusion

Overall, results for the three years of this study, support the contention that there is a
case for focussing on an explicit pre-algebraic level of understanding. This was
particularly evident in students' explanations for equals in a finished equation, 0 and x
in the expressions, and solution of the linear equations. The findings also support the
sequence of instruction, as proposed in the model, that understanding of binary
operations such as 3x is a prerequisite to solution of complex algebraic equations. We
suggest that as arithmetic procedures are applied intuitively they should constitute a
sound basis for pre-algebraic instruction. Finally we propose that pre-algebra should
include instruction in: operational laws; equals as equality of sides leading to
equivalence; solution of binary and complex equations using inverse procedures; use
of letters to represent unknowns as distinct from variables; concatenation; and should
be based on students' arithmetic as well as intuitive algebraic knowledge.
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THE RIGHT BAGGAGE?

Mary Briggs (Mathematics Education Research Centre, University of Warwick)

Abstract
There has been a great deal of research into aspects of mathematics anxiety and learners negative
experiences and the effects of collecting this baggage that is carried onto future experiences with the
learner. Are the experiences and therefore the baggage collected by those who are successful in
studying mathematics different? This paper addresses the issue of what constitutes the 'right
baggage' collected from early experiences that positively iulluence attitudes and achievement in
mathematics. Using oral history as the method for collecting those early experiences this paper
describes the results from interviews of mathematicians, raising questions for mathematics educators.

Introduction

The baggage accumulated from early experiences is carried with the learner and
influences later attitudes to learning mathematics. Studies of people's learning of
mathematics have focused on those who had been unsuccessful, fearful or
disinterested. Briggs and Crook (1991) investigated student teachers' attitudes to
mathematics and found they used words like 'totally devastated,"frustrated',
'embarrassed', 'failing' and 'terrified' to describe their memories of learning
mathematics. Yet there are those who enjoy the subject, are successful and go on
study mathematics in great depth. A quotation from Russell gives a flavour of how
some people have very positive feelings about mathematics; "At the age of 11, I
began Euclid...this was one of the great events of my life, as dazzling as first love. I
had not imagined there was anything so delicious in the world," (Buxton, 1981,
p.17) What are the experiences of those who are successful? Do they have different
early learning experiences?

Oral History
Oral history is the collection of an oral record of interviews with individuals to
investigate specific events or groups of people through a focus on their lives. The
material generated provides a historical narrative. For the researcher this creates
advantages and disadvantages. Derived from human perception it is subjective but
being oral allows the researcher to challenge subjectivity probing beneath/beyond
the subjective responses of the interviewees. This does not mean that the researcher
accepts the material as objective as this approach is not chosen to identify specific
truths. The subjectivity itself can be more revealing, the way people remember
what happened and the effect that has is perhaps more important than what actually
happened.

Oral history has been used to study a wide range of historical events...'and proved to
be a training ground for imaginative interpretation, rather than an alternative to
archives....' (Niethammer, 1979,p.27). In choosing to use oral history material for
research purposes the intention is to focus on general pictures being conveyed of
individuals lives and the key events within them. For this study using oral history
provided the opportunity to focus on the lives of mathematicians and to find out
more about specific events, people and aspects of mathematics that have been of key
importance to them as individuals. It also offered the opportunity to look at the
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positive experiences of learning mathematics when the vast majority of the literature
available at present dwells on the negative aspects and experiences ofmathematics.

The interviews.
There were five people interviewed for this study all of who have studied
mathematics to doctoral level. The information gained during the interviews focuses

on the interviewee's childhood, family structure, education and experiences of
learning mathematics. The interviews were semi-structured, there were no specific
questions but all covered the following areas:- Introductions, date and place of birth,
family-parents-background and siblings, extended family, early childhood, school
entry, primary school, secondary school, influence of teachers, influence of events,
and, when mathematics and why? There were a number of supplementary areas
covered due to the information given by the interviewees, for example background
information about particular countries and political events during the interviewee's
life time. There was 'a basic shape to guide the mind' (Thompson 1978, p. 171),

and the structure trialed through use of a pilot interview. All interviews were
carried out in a location familiar to the interviewees as the location of the interview
is important in setting the right tone and can effect the responses recorded
(Thompson, 1978, p.119).

Analysis of the interviews.
When analysing any interviews the listener must be aware of the relationship
between the speaker and the material imparted.

Like myth, memory requires a radical simplification of its subject
matter. All recollections are told from a stand-point in the present. In

telling, they need to make sense of the past. That demands a selecting,
ordering and simplifying, a construction of coherent narrative whose
logic works to draw the life story towards a fable. (Samuel and
Thompson, 1990,p.8)

At the same time the interviews can be considered to contain facts plus the speaker's
interpretation of their lives with emotions and personal events (Giles, 1992). As a
result of this when evaluating the material a check for bias must be made. This can
be assessed by focusing on the internal inconsistency, though some minor in

consistencies might be expected, a tendency to fabricate information generally is

likely to be present throughout the interview. What is more difficult is consistency
within the selection and interpretation of material across a number of interviews.
This issue is discussed at length by Ochberg (1996), he describes the process as
trying..'to show what an informant accomplishes by recounting his or her history in
a particular fashion' (p.98). 'The point of the interpretation is not to understand a
single individual but to enlarge our conception of how sense might be made-'
(p.102) In interpreting a number of life histories the information is converted from
one kind of account into another, from a story into a particular argument with a
specific focal event or issue. As Ochberg (1996) says ..'people do not register
experience passively. Instead sense is made.' (p.112 ,IlleAoes on ...'Listening to
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them from an interpretative point of view is not demeaning. It is rather, the only
way we can notice both the power and the limits of our narrators' attempts to make
something of their experience-and, thereby, themselves' (p.112). Thompson (1978)
list of ways oral history can be put together: 1. Single life story narrative or; 2.
Collection of stories (groups of lives to portray a community) or; 3. Cross-analysis:
the oral evidence is treated as a quarry from which to construct an argument The
analysis in this study is focused on number three. The following are the key aspects
identified across the interviews.

Parental influence.
Parental influence was a strong theme of all the interviews. In some cases it was
centred on a forceful parent and their vision of what their children were going to go
on to do in later life. In these cases in appeared to predominantly be the mother
who organised and had the clarity of purpose as can be felt in the following:

I know for a fact that ever since I can remember my mother had
decided I was going to Oxford. (Interview with 'Thomas' 12/5/97)

Roberts (1995) describes a growing minority who was ambitious for their children,
encouraging them to stay on at school and going on to higher education.
Interestingly Roberts highlights that it was the mother's attitude that determined the
type and quality of education they received. For 'Thomas' and 'Sam' this was
clearly the case as their mother's were the family organisers. This is supported by
evidence collected by Roberts (1995, p.138) ...' mothers regarding the needs of their
children as paramount'. as in the following:

My mother was a very determined person, she was the one who
organised us all, with my father's backing...She always made sure her
job was tailored round being there for us and making sure we did what
we were supposed to do. (Interview with 'Sam' 16/7/97)

In terms of the trend in working class parents' children going on to University and a
correlation between parental aspirations and children's academic achievement then
'Thomas' and 'Harry' parents fit into this category.

They were quite supportive they thought of education as a good thing
because they hadn't had it. The people they admired and respected had
had it, had got on further so they saw it as something valuable for its
own sake but also as kind of economic security for my future.
(Interview with 'Harry' 5/7/97)

Yet in 'Sam's' interview the feeling was still prevalent as father was described as
'coming from humble beginnings'. All those interviewed mentioned support with
school work, this was sometimes overtly providing practice for tests.

Do well academically and that was the number one thing as we were
children and we were given every sort of help and encouragement like
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if there was a test coming up we were helped (Interview with 'Sam'

16/7/97)

Or it could mean providing extra classes to support the usual school work which
'Charles mentioned on a number of occasions. Above all these parents had
confidence in their children's abilities and set high expectations for their children.
For all those intervieWed this was positive, no one described this as being pushed or
struggling and becoming concerned about pressures to succeed. For at least one of
those interviewed the parental influence appeared stronger when decisions were to

be made about study at University level:
There was some possibility that I might do engineering because those

were the jobs, that were opening up and I quite liked it but I couldn't
decide so my father said do mathematics because you can always go on
do something else afterwards. ..(Interview with 'Charles' 4/7/97)

Roberts (1995, pp.51-3) details parental involvement in career and job choices as
being the norm for children brought up in the inter-war and,post-Second World
War. There was never any question of making decisions other than the ones your
parents made, it was a case of going along with their decisions. Other members of
the family influenced behaviour and learning at the same time sign posting possible
directions for future studying. This brings in the notion of role models and children
aspiring to emulate those they held in high regard. There was also specific subject
matter that could be learnt from thCse members of family.

When I Was 11 she (my aunt) taught me and my cousin, her son,
trigonometry,....I remember managing to work out what these things
were and enjoying that and she introduced me to the x when twas 11
and that certainly had an effect. I wanted to become a scientist because
she was and my mother also had been...(Interview with 'Edward'
29/7/97)

Role of the teacher.
In studies that focused on ,the negative attitudes to learning mathematics the teacher
played a significant part in people's recollections of events that formed their general
view of mathematics. Briggs and Crook (1991) cite a number of experiences where
people were humiliated by the teacher in front of the class and many others related a
lack of sensitivity on the part of the teacher.

The teacher thought I had cheated by looking up the answers in the back

of the book, because my answers were exactlY right. Although she
didn't accuse me, she called everyone up and tore the answers out from

our books. I never forgave her for humiliating me like that (p.49)

It is not surprising that teachers play a central role in many of the interviewees'
experiences of learning mathematics and the examples that follow show the positive
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influence the teachers had those interviewed. For Thomas being told what he needed
to do was an encouragement not a put down.

There was a guy who had this quality about him, he loved his
mathematics. He gave no praise to anybody, he never told me how
good I was, he always told me how bad I was, he told me what more I
needed to do to get there. (Interview with Thomas' 12/5/97)

A new teacher to a school offered a different role model, brought different ideas
with them and opened up possibilities that were previously not available.

He produced the first maths sixth form Obviously there was
something dormant there, but I think it could equally have been another
subject maybe I had some special affection for mathematics. (Interview
with 'Harry' 5/7/97)

Different ways of teaching become a significant issue and remembered when
considering ones own teaching methods.

We had a teacher who taught us geometry and he used to use more
modern techniques like ....set us problems and ask us to talk to our
neighbours about it this, he used to set us problems where he hadn't
previously shown us the solntion. (Interview with 'Edward' 29/7/97)

One of the things about signifiCant people in some one's life is that their influence
pervades the whole of their lives at the time rather than just influencing a small part
as the following shows.

'17th period we did non mathematics, so over two years we listened to
music, studied art and talked about current affairs, we talked about
philosophy, all sorts of things I didn't have in my home
background....He opened up a new world to me in that formative
adolescent period...a genius of a teacher had an enormous effect on my
life and my self esteem (Interview with 'Harry' 5/7/97)

Not all experiences have to be positive to influence and motivate the learner.
When I was about 10, I wanted to learn algebra. There was a girl in my
class in my primary school and she was allowed to read this more
advanced book and I told the teacher I wanted to be able to study this
more advanced book and the teacher wouldn't let me. One day at lunch
time I went to the cupboard and I stole this book out of the cupboard
and the next day the teacher hauled me up in front of the class and
demanded in a loud voice where this book was. This little girl who was
allowed to read this advanced book happened to be away that day so I
said she told me I could take the book from the cupboard (Interview
with 'Edward' 29/7/97)
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The mathematics is the thing.
For many people who have struggled with mathematics it can be the nature of
mathematics or specific aspects of the subject that cause significant difficulties. Bell
et al. (1983) point towards key areas of mathematics that cause difficulty. For some
of those interviewed in this project the introduction to specific aspects of
mathematics provided the key to shifting the focus of their attention towards
mathematics or showed an early indication of where their interests might lie in the
future. Or mathematics appeared to get easier and so became the selected subject for
study and gave some insights into the mathematicians view of mathematics as
opposed to views we might hold of the subject!

I loved doing it, I loved the shape, I loved the power of it, I loved the
way that it didn't matter which way you did it there was one truth
inside. What you were trying was to seek this distilled essence that was
in there that was so pure and beautiful. I got exquisite pleasure out of
mathematics. (Interview with 'Thomas' 12/5/97)

There's something about patterns that sort of attracts me but then it's
also about finding the links between them so may be you have a
numerical pattern and some algebraic thing, combinatorial thing kind of
tracing and this thing tells you about this one...(Interview with 'Sam'
16/7/97)

(Mathematical proof)...that is what started my interest in mathematics
and I am sad that they don't they don't do this sort of thing any more.
It is very enjoyable, perhaps not by everybody. I am an algebraist and
this is what interests me, not only to we have the rule but we know why
it works. .(Interview with 'Charles' 4/7/97)

It's a feeling that kind of these abstract things that all seem quite
mysterious but by thinking about them you can make sense of it so it's a
sense of the ability to dominate over the mysterious by giving a lot of
thought (Interview with 'Edward' 29/7/97)

As with anyone whom has a passion for a subject these people see many interesting
and exciting things in mathematics that challenges their skills and maintaining their
continued enthusiasm for the subject.

Turning points.
At the University level of study there were clear turning points for two of the
interviewees. For the first time spent boycotting studies resulted in a decision that
shaped the events to come.

I realised that the only way I could possibly catch up was by doing
mathematics, not by doing these four applied subjects at Cambridge, so
I became a mathematician. (Interview with 'Edward' 29/7/97)
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For the other a change .to an engineering career didn't happen as a result of moving
to England.

Part of the reason why I didn't become an engineer was I came to this
country and mathematics had a much higher status here than
engineering (Interview with 'Charles' 4/7/97).

Motivation.
What actually motivates people to do particular things or to decide a specific course
of action is probably individually based yet it is possible to see some trends in the
areas spoken about in the interviews. As Cyril Willis recounts in Humphries (1981,
p.58) at least two of those interviewed felt they had to succeed for their parents.

My mother was always there as this dominant force behind me. I was
going to conquer the earth so when I was working I was always aware
that I had to keep going to conquer the earth...(Interview with 'Thomas'
12/5/97)

The challenge that mathematics provided was a strong motivation for most of those
interviewed coupled with the fact that there were answers to found that could be
evaluated.

I think a lot of the reason I worked hard was wanting approval and not
wanting to be criticised to the point where anybody told me anything
wasn't perfect it really upset me so I would work to see that it was
really right (Interview with 'Sam' 16/7/97)

During the early stages understanding took on less significance than getting things
right.

I learnt the routines and liked getting the right answer and I liked
getting back my homework with lots of ticks on (Interview with
'Harry 5/7/97)

Or the challenge of finishing the work:
I was doing calculus questions, it was such a joy such excitement so that
first term coming up to Christmas day I'd nearly finished. When I
woke up on Christmas, I opened my presents then I put them away. I
was still doing calculus and finished that book at three o'clock on
Christmas day. (Interview with 'Thomas' 12/5/97)

Even at an early age for some the challenge was even more exhilarating because the
journey would continue and not cease.

You see the peak in the distance and you think I'm going to get there,
you get there and then all of a sudden as you get closer you begin to
realise...and you see through the mist another peak....It wasn't a
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deadening influence it was a liberating influence that I'd never sort of

complete the task. (Interview with 'Thomas 12/5/97)

Conclusions and implications?
'Oral History is not necessarily an instrument of change; it depends upon the spirit

in which it is used'. (Thompson, 1978, p.2). In drawing tentative conclusions from
the interviews it is possible to highlight four factors influencing the right baggage.
Firstly the support of parents in the education process that is perhaps the least
surprising of the findings since it is generally accepted that children do better at
school if parents take an interest. Though the role of the mother in particular in the
process was an aspect of this support I shall be more aware of as a result of this
work. ...'The educational historian becomes concerned with the experiences of
children and students as well as' the problems of teachers and administrators'...
(Thompson, 1978, p.6). Secondly and again unsurprisingly the role of the teacher

was for most of the speakers a factor in their success. If a teacher can influence
negatively then the converse should also be true. Thirdly the element of challenge at
the right time was iinked to the role of the teacher though not exclusively. This has
implications for the teaching of mathematics if children are to be encouraged
through challenges. This in itself is a challenging task as the teachel must identify
the children ready for the challenge and provide just the right amount of challenge
at the appropriate time!! Fourth that certain aspects of mathematics appeared to
trigger a real enthusiasm for the subject setting it a part frOm others with which
child might have been equally successful until they channelled their energies towards

mathematics.
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"LEARNER-CENTRED" TEACHING AND POSSIBILITIES FOR
LEARNING IN SOUTH AFRICAN MATHEMATICS CLASSROOMS

Karin Brodie
Department of Education, University of the Witwatersrand

This paper looks at the notion of learner-centred pedagogy, particularly, but not only, in
the South African context. A conceptual elaboration of important aspects of learner-
centredness is brought together with an .analysis of two mathematics lessons in the senior
secondary school. It is argued that focussing on the learner, at the expense of the teacher
and the mathematics, enables teaching that may look learner-centred, but which may not
enable mathematics learning. On the other hand, a focus on the mathematical problem-
solving process may enable more learner-centred teaching.

Introduction

"Learner-centred" teaching is on the agenda in South Africa. It is a key principle
informing curriculum development (National Department of Education, 1996), and is
being presented to teachers as a cornerstone of the new "Curriculum 2005". The
government's notion of "learner-centred" is rooted in constructivist theories of knowledge
and in the need to recognise and affirm diversity in schools and in the society, as can be
seen in the following quote: "The ways in which different cultural values and lifestyles
affect the construction of knowledge should also be acknowledged and incorporated in
the development and implementation of learning programmes" (National Department of
Education, 1996:11).

Teacher education around the new curriculum has emphasised learner activity,
participation and groupwork as central aspects of learner-centred classrooms. Teachers
are encouraged to "facilitate" learning rather than provide instruction. A "paradigm shift"
from past practices is urged, with the past being characterised as "teacher-centred" and
encouraging of passive learners who engage in individualised, rote learning rather than
creative and flexible thinking (National Department of Education, 1997:6-7). I have
argued elsewhere (Brodie, 1997, 1998) that such a characterisation is untrue and unhelpful
for teachers who want to improve their teaching.

Learner-centred pedagogy is not a new concept in many countries, nor in mathematics
education. However its insertion into curriculum discussions in South Africa at this point
enables a (re)consideration of some key issues. In particular, how might a notion of
learner-centred teaching enable teachers to work for improved learning of mathematics?
In trying to answer this question, I will first elaborate some important dimensions ofthe
concept of learner-centredness. Thereafter, I will analyse two senior-secondary
mathematics lessons, one where the teacher appears to be more learner-centred and
another where the teacher appears less so. To do this, I will draw on Edwards' and
Mercer's (1987) analyses of classroom interaction. In this paper I do not intend topresent
definitive answers to the question of what learner-centred mathematics teaching might
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look like. Rather, in drawing together some conceptual elaboration with an analysis of

classroom practice, I hope to raise questions and enable discussion which will be useful

for research and teaching.

"Learner-centredness"

The new, outcomes-based curriculum, "Curriculum 2005" forms part of the South African

government's strategy to transform South Africa's unequal, poorly resourced and divisive
education system. The new curriculum is part of the promise of "a better life for all"and

is intended to develop a "prosperous, truly united, democratic and internationally
competitive country with literate, creative and critical citizens, leading productive, self-

fulfilled lives in a country free of violence, discrimination and prejudice"(National
Department of Education, 1996:5)'. "Learner-centredness", as akey principle informing

the new curriculum, is closely connected to outcomes-based education. Outcomes focus

on the learner and express levels of competence in relation to skills and knowledge which
the learner should attain. This is a notion of learner-centredness which focuses on the

products of learning, the outcomes.

Juxtaposed with this product-oriented understanding of learner-centredness is the more
familiar Piagetian "process" notion where children are seen as agents of their own
learning, who can and will discover or construct important principles if provided with the
appropriate experiences at the right time. Direct teaching can be counter-productive for
children's learning, hence the terms "educator" and "facilitator" which are currently
preferable to "teacher" in the South African discourse. The process-product relationship
has not yet been articulated, and this may result in superficial rather than deeper
manifestations of learner-centred teaching.

Using an analysis of classroom talk in British primary classrooms, Edwards and Mercer
(1987) argue that teachers who attempt to allow pupil "discovery" (process) come up
against the need for pupils to "discover" particular principles (products). When the pupils
don't make the, required discovery, teachers are forced into particular forms of discourse
to help them achieve this. These include cueing pupils' responses, often quite heavily,
ignoring wrong answers, and reformulating correct answers into the ongoing classroom
narrative. So a focus on the pupil, at the expense of the knowledge to be learned, in the
context of school learning, creates a contradiction for teachers: children should discover
on their own, but they should also discover particular knowledge in particular ways.

Other critiques of a Piagetian notion of child-centredness include those of Donaldson
(1978), Bruner (1996) and Walkerdine (1984). Donaldson showed that the interactional
context influences children's responses to Piagetian tasks. Using Vygotsky, Bruner argues
for the social and cultural situatedness of knowledge and the learner. Walkerdine argues
that the notion of the child in child-centred pedagogy is a social construction, made

An important critique of the new curriculum is its naive view of the relationships between
education and development (see Jansen, 1997). This debate cannot be entered into here.
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possible by historically specific conditions in academic discourse and educational
practices at the time. Walkerdine's critique in particular suggests a reconsideration of
learner-centredness in the specific educational conditions in post-apartheid South Africa.

These critiques all suggest that we cannot focus too narrowly on the learner. Although
"learner-centred" is often set up in opposition to "teacher-centred", or "subject-centred",
in fact the learner cannot be thought about in isolation, and the interrelation between
learner, teacher and mathematics in context, is crucial in developing a useful notion of
learner-centredness.

In the South African government's explication of learner-centredness we see phrases such
as: "Curriculum development should ... put learners first, recognising and building on
their knowledge and experience and responding to their needs" and "Motivating learners
by providing them with positive learning experiences, by affirming their worth and
demonstrating respect for their various languages, cultures and personal circumstances
is a pre-requisite for all forms of learning and development" (National Department of
Education, 1996:11). While social context and diversity are acknowledged, this
understanding of learner-centredness emphasises the learner, possibly at the expense of
the teacher and the mathematics. Obvious questions which can be asked of the above
include: What happens when different learners' needs are in conflict, which is likely in
situations of diversity? How does a teacher put All learners "first"? If the learners are "put
first", what comes "second'? How are the learners' present needs balanced against future
needs, particularly the very important need for access to matheniatical knowledge.

In my work with in-service teachers, it is my experience that they are primarily concerned
with improving their pupils' learning and that they do think about what is best for their
learners, in relation to the mathematics that they need to teach. Current practices,
including those associated with "rote-learning" (for example chorusing and chanting, see
Setati, 1998) are seen to be appropriate ways to achieve better mathematics learning,
particularly in the context of large classes of underprepared pupils, learning in a language
in which they (and often their teachers) are not confident. So urging teachers to "put
learners first" without substantial discussion about what is meant, may become counter-
productive, firstly because practices which are problematic can beseen to fit with the new
rhetoric, and secondly, because in attempting to make shifts, teachers may lose the
strengths of current practice.

Another, seldom discussed, aspect of learner-centredness, is that children's ideas make
sense when seen in light of the pupils' own logic and perspectives. Therefore a more
useful notion of learner-centred teaching is for the teacher to actively engage with
learners' ideas on their own terms and in relation to the mathematics that is to be learned.
Real engagement involves extending and constructively challenging pupils' ideas. Teacher
mediation of the mathematics is crucial. Mediation is a complex practice, and dichotomies

2 Thanks to David Pimm for a discussion which provoked some of these questions.
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such as "facilitation", and "non-intervention", as opposed to "direct teaching", are not
useful in delineating helpful from unhelpful practices, nor in indicating where particular
teaching approaches can be improved to enable better mathematics learning. Teachers'
decisions about how to enable and follow up on learner contributions are important, as are
their ways of offering alternate ideas and frameworks which enable access to the
discourse of mathematics.

In light of this discussion of aspects of learner-centredness, I will look in more detail at
two mathematics lessons, one of which might be considered learner-centred in terms of
pupil participation and "discovery" and a second which would probably not be. I will look
at how each teacher enables and works with pupil contributions, and how they frame the
mathematics that is to be learned. I will argue that the second lesson, rather than the first
contains seeds of more substantial learner-centred teaching, because of the teacher's clear
focus on regulating and modelling the mathematics.

The data

The data comes from a larger research project (Adler, Lelliott and Slonimksy et al, 1997),
which includes mathematics, science and English teachers in South Africa. In Brodie
(1998), I present an analysis of a video-recorded lesson of each of the five secondary
mathematics teachers in the sample. Categories for analysing the verbal interaction in the
videos were developed according to the principles of networking (Bliss et al, 1983), and
were generated both from the data and from the literature in classroom interaction. A
more detailed description of the categories and results can be found in Brodie (1998). In
this paper I will use some pertinent results from the analysis of two lessons to illustrate
different possibilities for learner-centred teaching.

Lesson 1 is in a Grade 12 class, in a relatively well-resourced, urban school in Gauteng,
with 24 pupils present during the lesson. Lesson 2 is in a Grade 11 class, in a more rural,
less well-resourced school in the Northern Province, with 40 pupils present. The two
lessons are similar in that standard tasks were set, one in linear programming the other in
trigonometry, and the teachers interact with the pupils to work through the tasks on the
board. Both lessons are entirely in the Initiation-Response-Feedback (I-R-F) form of
classroom discourse first identified in British classrooms by Sinclair and Coulthard (1975)
and elaborated by Edwards and Mercer (1987). However, a closer analysis of how the two
teachers give feedback to pupils' responses suggests that the teachers' initiation and
feedback moves perform different functions in these two classrooms.

Lesson 1 - Questions for "discovery"

In this lesson, the teacher interacts in ways that resonate with Edwards' and Mercer's
(1987) descriptions. He asks questions to which he expects particular answers, and if the
expected response is not forthcoming, repeats his prompts or questions until it is obtained.
Edwards and Mercer argue that such question and answer sessions reflect attempts by
teachers to allow children to "discover" ideas for themselves, as encouraged by the child-
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centred movement. However, in doing this, teachers find themselves in a paradoxical
position, because they cannot allow pupils to discover just anything. Rather, they have to
"funnel" (Bauersfeld, 1980) pupils towards the ideas they want them to discover. An
unintended effect is that pupils resort to "guessing games" (Edwards and Mercer,
1987:34), since they have no means of establishing what is required for a successful
response.

For example, in the following extract, the class has drawn the graph of a linear
programming problem and shaded in the feasible region. They have provided a continuous
shading and the teacher wants the pupils to come up with the point that only whole
numbers should be included in the feasible region, requiring a discrete rather than a
continuous shading:

T: Look you've got everything here [points to feasible region]. Is this possible?
Pl: Yes
T: Why do you say so?
P1 : The amount (inaudible)
T: but now the way that you know, its not quite correct
P2 Sir, you say its not quite correct, you mean the lines?
T: Ja, I mean the whole thing, cause you see here you cannot do that, ne, its not quite correct. ...

Remind me what we are dealing with.

[a pupil comes up to the board, and shades the feasible region with parallel lines instead of crossed lines]

T: Its not 100% perfect. Now what are we dealing with here.
P3: Aircraft
T: Aircraft and?
P4: Passengers
T: So now can you have 1/2 a craft?
Ps: No
T: And can you have 1/2 a passenger? So everything, including fractions are included. So what you

must understand is when we're dealing with persons or aircraft, we're dealing with the 'whole'.

The teacher prompts the pupils by saying its not 'perfect', or not 'quite correct'. The pupila
do not know what he is referring to, and therefore suggest the exchange of one kind of
continuous shading for another. Because he does riot provide them with a better frame for
thinking about the nature of possible solutions to the problem, in the end, the teacher is
forced to tell the pupils what he wanted to hear, that they are dealing with whole numbers.
The rest of this conversation confirms that the pupils are, still are not sure what the object
of the discussion is:

T: What kind of numbers are here? [points to the axes which show even numbers]
Ps: Even numbers
T: (laughs) Yes I know they're even numbers, because I couldn't start from I. But from 1, 1,2,3,4?
Ps: Natural numbers
T. Alright

The pupils' gaze is on the representation of the problem on the board, the numbers visible
on the axes and the shading of the feasible region. They provide an acceptable answer to
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the teacher's question "what kind of numbers are here?" based on what they can see on
the board. After this response, the teacher basically gives them the answer. He does not
engage with their ways of thinking about what they see, and he does not formulate
questions or tasks which might enable them to think about the solutions to the problem.

This lesson had a high level of pupil participation (see Brodie, 1998) and the pupils were
clearly comfortable with answering questions. In an interview, the teacher explicitly talks
about his approach as "the question and answer" approach. Asking questions is a possible
interpretation of learner-centred teaching, as it allows for participation and involves the
pupils in the classroom narrative. However, although this teacher has managed to allow
pupil contributions, he does not provide a frame for useful contributions. His questions
put the pupils in the position of having to work out what he is thinking, rather than
developing their own thinking. When they do express their own ideas, he does not engage
with them, possibly because he does not understand how they are thinking. Although
incrcased participation by pupils might be seen to be learner-centred, on deeper analysis
it appears to be superficial, particularly from the point of view of mediating the
mathematics and the pupils' thinking.

Lesson 2 - Regulating and modelling the discourse

The second teacher, whose lesson is also in the I-R-F form, works somewhat differently
from the first. There are fewer incorrect responses in the lesson, and to these she is more
likely to explain why particular responses are incorrect, or to give the correct response,
from her perspective (Brodie, 1998). Therefore it would seem that her questions and
statements perform a different, or additional function from that of generating pupil
participation.

The problem being worked on is to simplify (sine + cos0)/(sec0 + cosecO) if sine = -3/5
and 00<0<2700. The lesson can be divided into episodes which reflect the important parts
of the problem-solving process: 1. determine in which quadrants sine is negative; 2.
determine which quadrant 0 is in; 3. determine x by using a diagram and the theorem of
Pythagoras; 4. determine Cos 0 and simplify the expression. The teacher's questions and
statements work to distinguish and connect the different parts of the procedure. For
example, she initiates episode 1 with the statement: 'firstly we must determine our sign",
which is a general statement of procedure and focuses the pupils' attention onto the
beginning of the process. During episode 3 she asks the question: "in order to find cos()
what is the definition?" which provides a rationale for finding x, and connects episode 3
to episode 4 and the ultimate goal of solving the problem'.

These utterances serve to focus pupils' attention on the salient parts of the mathematics,
and to provide links between the different parts of the problem-solving process, and
rationales for what is being done. They function as a regulatory mechanism which guides

3 Space limitations do not permit extended transcripts from this teacher's lesson. These will be
provided and discussed during the presentation.
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the problem-solving process. Mathematicians solving similar problems might ask
themselves similar questions. So this teacher is modelling a problem-solving process. In
Bruner's (1985) terms, she is acting as "vicarious consciousness" for the pupils.

This teacher's questions are mainly "closed" and usually have very clear "right" answers.
The form and nature of her questioning allow her to maintain tight control over the
discussion and knowledge generated in the classroom: On the other hand, the questions
are clearly framed, and the pupils can answer them on the basis of the mathematics that
they know. They do not need to try to work out what the teacher is thinking from clues
that are given (which is a less obvious, but equally controlling form of discourse). For
example:

T: What is the definition of sine?
P1 : Opposite over hypotenuse
T: Opposite over hypotenuse, which means if this is our theta, its the opposite of theta over the

hypotenuse, so let's take this as y, because its parallel to the ...
Ps: y axis
T: And this is the hypotenuse which is r, and this is the x-axis, so which means opposite over

hypotenuse which is y over r

Modelling the use of questions as a regulatory mechanism in problem solving can be a
powerful mediational technique in mathematics. A Vygotskian approach to learning and
development suggests that a teacher modelling the process can be a first step in the
development of self-regulation on the part of the pupils. What this teacher does not do (in
this lesson), is to begin to hand over the questioning process to the pupils. She does not
begin to remove the scaffolding, and so the problem solving process remains largely
centred around her. The pupils responses remain at the level of 'gap fills' and recalling
simple facts. Similarly to the first teacher, she does not attempt to find out what pupils are
thinking, nor why they think in the way that they do. In contrast to the first teacher, she
does mediate the mathematics.

When this teacher was asked what she thought about learner-centred approaches she
'answered that she did not understand the question. This suggests that she had not heard
about learner-centredness and its concomitant "discovery" approach, and so approached
her teaching as finding ways to best enable pupils to solve problems, which includes
modelling what for her is a successful approach.This teacher can develop her approach
to enable more possibilities for appropriation on the part of the pupils, or to enable other
methods to be developed and discussed. However, if she were to lose the mathematical
regulation that she provides for pupils in favour of some kind of "discovery", her pupils
might lose out on important learning opportunities.

Conclusions

In this paper I have compared two lessons which display a similar form (I-R-F) but where
the teachers' inputs, primarily their questions, perform different functions. I have argued
that one lesson might look more like a learner-centred classroom, in the "discovery"

A-

I 73
2 - 166



sense. However, the teacher's questions do not serve to frame or enable the pupils'
responses and the pupils are unable to make sense of what is required. The second lesson
is more teacher controlled, but the teacher's questions serve to regulate and model the
mathematics for the pupils. This lesson may have seeds for more learner- and
mathematics-centred approaches, and therefore, for better mathematics learning.

My analysis suggests that firstly, for the idea of learner-centred teaching to be useful for
mathematics teachers in South Africa, it needs to be clarified with and by South African
teachers, taking their perspectives, practices and contexts into account. Learner-
centredness is a complex notion and the relationships between learner-centred teaching
and learning are not obvious. As a slogan, without clarification, it may be more of a
hindrance than a help. Secondly, in order to be useful, the concept should not be put up
in opposition to teacher-centred or mathematics-centred. The interrelationship between
the three should be clarified in ways that do not leave teachers in contradictory positions
because they are trying to teach mathematics, or such that they lose sight of their own
roles and the mathematics in trying to acknowledge and accommodate learners.
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RESEARCHING TRANSITION IN MATHEMATICAL LEARNING
Tony Brown, Frank Eade and Dave Wilson

Manchester Metropolitan University

A theoretical perspective on the ways in which children progress in learning
mathematics and how this is treated in the research literature is examined. It
suggests that there is a difficulty in associating teaching discourses with the
mathematics they locate which can result in an incommensurability of alternative
perspectives being offered. This resists attempts to privilege any particular account
but rather demands an analysis of these discourses and their presuppositions. In
particular, it argues that the shift in the 'student's mathematical development from
arithmetic to algebra can be read in d. number of ways and that alternative
approaches suit different and perhaps conflicting outcomes such as demonstrating
awareness of generality or performing well in'a diagnostic test featuring the solution
of linear equations.

This paper is about development in student mathematical performance, but not so
much how to achieve it but rather how it is seen and how it functions as a notion in
guiding our actions, both in how we describe students progressing through successive
stages on a developmentally formulated curriculum and in creating alternative
approaches which better enable us as teachers to facilitate this. We shall review some
work describing the transition children make from work in arithmetic towards simple
algebra as an example of how student mathematical development is treated in the
literature. We will examine how this development is understood within these studies
and the ways in which they conceptualise the research task. We suggest the studies
downplay the social construction of the students and of the mathematics they perform
with a consequent suppression of the differences between the alternative
mathematical projects that may present within any given educational enterprise.

THE TRANSITION FROM ARITHMETICAL TO ALGEBRAIC THINKING
We wish to focus on two key studies which address the student's transition from
arithmetic to algebra: Filloy and Rojano's (1989) work which sees this transition as
mathematically defined and Herscovics and Linchevski (1994)work which sees it as
cognitive. These will provide examples of the different ways in which this transition
is described within the research literature. We will also be referring to two studies by
Sfard and Linchevski (1994 a b) whose work,suggests an interesting disruption to any
dichotomising of these two perspectives.
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Didactic cut

How might we characterise the shift from arithmetic to algebra? Filloy and Rojano
(1989) introduce the notion of "didactic cut" between arithmetic and algebra. They
see this as arising when the child's arithmetical resources break down in tackling
linear equations. They suggest that a sharp delineation between arithmetic and
algebra can be identified when in a first degree equation we have the unknown on
both sides, e.g. Ax+B=Cx+D. When the unknown only appears on one side they
suggest the solution can be found intuitively through purely arithmetical means and
hence with existing skills, such as counting procedures or inverse operation.
Thereafter they claim additional resources are needed and to overcome this barrier
the students require assistance from the teacher who needs to provide some sort of
device which enables the student to negotiate access to the new domain. They go yet
further by suggesting that this introduction of teaching strategies results in an
inevitable diversion in reaching mathematical objectives. This is because the teaching
devices create obstacles through their introduction of intermediate codes, ie between
functioning at the concrete level and the fully syntactic algebraic level. These

"hinder the abstraction of the operations petformed at the concrete level and are due
to a lack, in the transition period, of adequate means of representing to which the
various operations lead. The obstacles arise from a sort of "essential insufficiency' in
the sense that modelling ... tends to hide what it is meant to teach.

Such modelling, they suggest, is characterised by two components, namely transition
and separation. They argue:

When either of these two components is strengthened at the expense of the other, the
new objects and operations become harder to see

For example, the noting of generality might become obscured if the student becomes
locked within the domain of a particular model or teaching device, having separated
herself from the task of seeking the abstraction implied by the more concrete domain.

Cognitive gap

Herscovics and Linchevski (1994, pp. 59-61, see also Linchevski and Herscovics,
1996) also seek a "clear-cut demarcation between arithmetic and algebra" but
question the notion of didactical cut on the grounds, they claim, that it focuses on
mathematical form rather than process. They introduce the notion of a "cognitive
gap" which "is characterized by the students inability to operate with or on the
unknown" (p. 75, their emphasis). This they see as moving the boundary being
considered from one between two mathematically defined domains to one separating
developmental stages in the learner's conceptions. Their findings with seventh grade
students suggested that in equations where the variable appeared just once (e.g.
ax+b=c or 37-n=19) nearly all students solved the equations arithmetically by inverse
operations. However, a fundamental shift was noted when the variable appeared
twice, either on just one side (e.g ax+bx=cx+d) or on both sides (e.g. ax+b=cx+d).

2 - 169 176



They found

the majority of students were able to solve them only by reverting to a process of
systematic approximations based on numerical substitution. Although students
managed to spontaneously group terms that were purely.numeric, at no time did we
witness any systematic attempt to group the terms in the unknown. We came to the
conclusion that the students could not operate spontaneously with or on the unknown.
The literal symbol.was being viewed as a static position, and an operational aspect
entered only when the letter was replaced by a number. This inability to
spontaneously operate on or with the unknown constitutes a cognitive obstacle that
could be considered a gap between arithmetic and algebra. (Linchevski and
Herscovics, 1996, p. 41)

Having identified this gap the authors then carried out empirical research to examine
ways in which it might be crossed. Their findings include some suggestions of specific
teaching techniques designed to overcome this particular gap, such as exercises in
grouping like terms, developments of the balance model and decomposing into a
difference to facilitate cancelling subtracted terms (Linchevski and Herscovics, 1996).
They do however stress that "it is only when they (the students) achieve a more general
perspective on equations, solutions and solution procedures that they can appreciate the
value of a more general solution process" (op cit, p. 63)

Whether we privilege cognitive gap or didactic cut we suggest that the implication in
such a demarcation of a "before" and an "after" present in both studies creates
analytical problems in that it posits a singular subject progressing from A to B, in this
case from the domain of arithmetic to the domain of algebra. We suggest that this
creates difficulties in that it sets up a research model where we define a current actual
state (functioning in arithmetic) and a future state we desire to attain (functioning in
both arithmetic and algebra). Whilst we support Herscovics and Linchevski's decision
to incorporate a concern for process we feel their conception of process is potentially
too restrictive since they deemphasise processal dimensions rooted in the social
constitution of both learner and the mathematics itself. As many recent research
reports in mathematics education research remind us, mathematics and the students
studying it are socially construed entities susceptible to temporal and compositional
shift. We can always revisit and reread an interpretation of how a child proceeded
through some mathematical exercises. We thus need to be cautious in defining states
of mind, or even mathematical competencies, that position students in one domain or
another. For this reason there is a need to be cautious in introducing models and to be
more aware of, their presuppositions and limitations. Further, conceptions of
mathematics by the child.generated through evolving understanding within sequences
of exercises, discussions with teachers and peers, periods of reflection, periods of
sleep, periods of forgetting, prevent stable characterisations of where the child is now
in terms of developmental stages. Such critical perspectives have surely lost some of
their appeal in any case after the work of contemporary writers (e.g. Walkerdine) who

, have resisted psychologically oriented accounts centring analysis around singular
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developing minds, such as that provided by Piaget's stage analysis. At best accounts
of shifts by a child from arithmetic to algebra are held in place by analysis of
quantitative data demonstrating child's facility in particular environments. We can,
however, always create new tasks which simultaneously seek to capture whilst
extending the domain we are examining and thus add to the evaluative devices we
might offer in respect of it. We suggest that we cannot create a static picture without
suppressing significant aspects of the processal features which give rise to the
outcomes we are assessing. Also, the idea of "transferability" of mathematical
learning to other mathematical or non-mathematical domains has proved to be a
somewhat elusive concept in recent work on situated cognition (Lave, 1996), which
further disrupts any attempt at specifying particular mathematical competencies or
stages of development .

It also seems important to incorporate within any account a recognition of the
storying carried out by the students themselves and the ways in which they situate
any developing understanding of particular mathematical ideas within their broader
conceptions of what constitutes mathematics (see for example, Ruthven and Coe,
1994, Rodd, 1993). Any addition to the student's mathematical repertoire is
understood within a broader narrative frame within which narrower conceptions of
mathematics reside. That is, students utilise a broad range of metaphorical apparatus
in supporting their own mathematical thinking, situated within their broader narrative
accounts of why things are as they are and how they connect with other bits of
mathematics and life outside. The student's experience we conjecture is not of a
straightforward switch from arithmetic to algebra, their storying backdrop needs to be
extended at the same time, although as Sfard and Linchevski (1994 a) indicate
children do this in different ways and have different needs as regards providing
supporting rationale for their implementation of procedures. They show us that we
cannot assume consistency between children as to their apparent readiness to occupy
a new domain and that this readiness is not straightforwardly associated with broader
mathematical ability. They discuss a child whose preference for considered
interpretive assessment of meaning slows him down against a peer more amenable to
unreflective implementation of techniques. It is this example which gives rise to their
distinction between "interpreter" and "doer". They characterise the students'
respective motives as follows:

"Teachers and researchers are often bitterly disappointed to find out that even the
most reasonable and carefully implemented didactic ideas would not bring much
change. In particular, they are frustrated by their inability to significantly improve
students' understanding of mathematics. It seems however, that the meaningfulness
(or should we say meaninglessness?) of the learning is, to a great extent, a function
of student's expectations and aims: true interpreters will struggle for meaning
whether we help them or not, whereas the doers will always rush to do things rather
than think about them. The problem with the doers stems not so much from the fact
that they are not able to find meaning as from their lack of urge to look for it. In a
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sense they do not even bother about what it means to understand mathematics. (Sfard
and Linchevski, 1994 a, p. 264)

This is interesting since it muddies the water in any attempt to draw clear distinctions
between mathematical and cognitive domains. On the one hand we have unreflective
performance of mathematical procedures, on the other a more sustained attempt to
understand which seems to work against performance at least in the short term. This
seems to disrupt any straightforward attempt to correlate cognitive ability with
mathematical performance: If we accept Sfard and Linchevski's (1994 a) conjecture
of there being at least two types of learners what consequences can we assume for the
ways in which we construct learning theories and learners enacting them. The
conflicting preferences of interpreter and doer each of whose mathematical
progression is in different ways are dependent on, among other things, chosen
teaching strategies, the assessment instruments applied and the learning theories used
in explaining this progression. Thus learning theories might be seen as partisan,
prejudicing against particular learners or against certain capacities or potentialities
present within all learners. Insofar as mathematical learning supports both
intrinsically mathematical concerns as well as more utilitarian enterprises, facility
with both abstractions and concretisations seems crucial, where perhaps mathematical
agendas privilege the former while more utilitarian agendas (including those
frequently assumed within school mathematics) privilege the latter.

It was this work that led us to question the ways in which differences of results
between the two key studies cited have been put down to sampling differences,
different experimental conditions etc rather than to an overstretching of the research
models being applied (Herscovics and Linchevski, 1994, p. 75). Distinctions between
the respective intentions of interpreter and doer are not picked up by quantitative
research focusing on facility with alternative algebraic forms. At the instrumental
level of measuring algebraic achievement such distinctions are deemed irrelevant.
But similarly, the very quest for some clearly stated boundary between arithmetic and
algebra seems condenmed from the outset since we cannot breach the inevitable
divide that separates mathematical and cognitive domains within such models.
Between the two models there is a dichotomous choice between seeing the transition
as separating, in the former, two distinctive mathematical forms and, in the latter, two
developmental cognitive stages.

MULTIPLE ACCOUNTS

Filloy and Rojano (1989, p. 24) talk in terms of "the direction of what algebra is
intended to achieve", a direction which cannot be specified directly but needs to be
alluded to through teaching devices which, whilst assisting us in broaching new
territory, inevitably draw us away a little from the conceptual understanding we seek.
But we have suggested targets expressed in terms of desired trajectories are
problematic insofar as we attempt to claim movement from state A to state B. We
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cannot easily define an event to have happened which effects such a transition, for
within any such event there is the possibility of multiple accounts each implicating
alternative phenomenological features. This is interesting placed alongside two other
important studies concerned with algebra. Sfard and Linchevski (1994 b, p. 191)
assert that algebraic symbols do not speak for themselves, rather, any algebraic
expression can be read in a number of ways. For example, the expression 3(x+5)+1
can be read as a computational process, a certain number, a function, a family of
functions or merely as a string of symbols. Indeed, they claim, we can identify "an
inherent process-object duality in the majority of mathematical concepts" (ibid).
Meanwhile Gray and Tall (1994) introduce the term "procept" to identify this duality.
They suggest that the "ambiguity of notation allows the successful thinker the
flexibility in thought to move between the process to carry out a mathematical task

and the concept to be mentally manipulated as part of a wider schema". We take this
schema they refer to as being mathematical but as we have suggested earlier we can

assume an even broader focus. Even within a mathematical domain we can broaden
out in different ways. For example, the two key studies referred to earlier privilege
accounts which assume arithmetic precedes algebra, the direct opposite to that
described in the work of Gattegno (e.g. 1974). Meanwhile, we take from Mason's
(1996) work that the reductionism implicit in the transition being specified in the two
studies cited as a shift in the form of equation as drawing attention away from the
underlying principle of algebra being about the noting of generality. The
mathematician's ideality is both located but also evaded within the research models

we create in our analysis. This in itself will come as no great surprise; models are
inevitably simplifications introduced to help us see structure (e.g. Linchevski and
Williams, 1996, p. 266). It does however bring into question the virtue of any quest to
privilege any particular model or any final declaration as to the mathematical content
this locates. For example, all of the studies we have cited here seem to place emphasis

on attaining a better understanding of mathematics unfettered by the clumsy techniques
that get us there. An alternative objective may be effective performance in tests designed

to facilitate international comparisons in mathematical achievement. We suggest it is
formats of learning and assessment rather than purer notions of mathematical
understanding which underpin the hard currency required to make such comparisons
possible. In some ways it may be that the language of the mathematician has been
corrupted in the public domain. But when discussing mathematics in the public domain

we must ask whether it is the mathematician or the public which takes precedence?

It may be helpful to offer an another example of how pedagogical discourses
condition the mathematics learnt through them. In his analysis of a teaching scheme
Dowling (1996) found mathematics which was designed for less able students to be
of a very different nature to that given to their more able peers. For any given topic
the emphasis in the instruction varied. Insofar as this is true more generally this
would seem to result in exclusion for the less able from the real business of
mathematics as understood in more abstract terms, caught as they are in the discourse
of "less able" mathematics. This analysis identifies at least two levels ofmathematics

I
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each characterised by a discourse with associated styles of illustration, questioning
etc. But clearly there are many such discourses operating in mathematics education
and as with the distinctions between mathematics designed in the schemes for less or
more able students, differences between these are swept over in many situations as a
consequence of outcomes being seen primarily on a register of mathematical content,
independent of the processes that lead to these. Nevertheless each of these discourses
misses the mathematics it seeks to locate and is characterised by some sort of
illustrative approach which simultaneously serves as a teaching device but, in line
with the analysis of Filloy et al., draws us away from the mathematics. This, of
course, is also true of the mathematics designed for the more able students following
the scheme where situations are couched in more overtly mathematical form. But
each of these discourses is predicated on some sort of mathematical objective
whether this be tied down to performance in a specific discursive frame such as the
solving of a linear equation or more transcendental mathematical claims such as
abstraction, the noting of generality or intuition.

Mathematics education research is generally predicated on some notion of
improvement, whether this be children progressing through a curriculum or teachers
or researchers developing improved strategies for facilitating this. Part of our task
here has been to problematise conceptions of moving from one domain to another.
We suggest source and target domains and the transition between them each resist
phenomenological accountability. In our main example the studies cited are seeking
to pin down essential characteristics of functioning in arithmetic as distinct from
algebra. However, the stressing of certain features results in an assertion of a
particular view of mathematics as though this can be specified independently of
broader learning objectives, such as developing intuition or doing well on a
diagnostic test featuring linear equations.

Ricoeur (1988, p. 241) has argued that "temporality cannot be spoken of in the direct
discourse of phenomenology, but rather requires the mediation of the indirect
discourse of narration". Features of time, progress, development and shift are not
constituted through agreeable criteria, but all depend on interpretations reflecting
attitudes produced within history, ideology and auto-biography. Any movement to a
new way of understanding can only be spoken "by means of the complex interplay
between the metaphorical utterance and the rule-governed transgressions of the usual
meanings of our words" (Ricoeur, 1984, p. xi). Ricoeur suggests that this moves
beyond mere seeing as, but rather becomes "being as on the deepest ontological
level" (ibid, my emphasis). We cannot be limited to interpretation at the level of
immediate comprehension but need to include reflected upon application within
performance where the student's storying backdrop is given time to settle. We can
thus create a notion of mathematical understanding that is not merely defined in terms
of mental states but also incorporates some notion of time. We suggest that the
teaching devices such as the sort introduced by Filloy and Rojano (e.g. balance or
geometric) can be understood as contributing to this necessary and inevitable
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temporal dimensions of the constitution of the ideas we seek to address in our
teaching. Moreover, mathematics cannot be seen or understood independently of the
cultural filters through which we receive it. Further, mathematics as mediated and
articulated through teaching devices comprises an essential dimension of the
mathematics being learnt, and should not be seen merely as a means to an end.
Proficiency with concretisations is integral to the broader proficiency of moving
between concrete and abstract domains, a proficiency which lies at the heart of
mathematical endeavours (at least in school). Indeed, one might suggest that for
many students and many teachers proficiency in concretisations forms the backbone
and principal motivation of activity pursued within the classroom.
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METAPHOR AS A TOOL IN FACILITATING PRESERVICE TEACHER
DEVELOPMENT IN MATHEMATICAL PROBLEM SOLVING

Olive Chapman
The University of Calgary

This paper reports on a study that investigated the effect of using metaphor as a tool in
facilitating reflection and creating awareness of the nature of problem solving and teaching
to facilitate students' development of this process. Two groups of preservice elementary
teachers were studied using a humanistic research approach. Data consisted of the partici-
pants' writing of their thinking resulting from their reflections on a series of activities on
problem solving pedagogy. Analysis involved determining the nature of the metaphors used
and what the participants considered important in characterizing problem solving and its
teaching. The outcome revealed that "cued metaphors" provided a significantly meaningful
way in helping the preservice teachers to extend and enhance their interpretations of the nature
ofproblem solving and its teaching.

Introduction
Recognition of the importance of teacher education in facilitating effective

implementation of current reform recommendations in mathematics education (e.g.,
NCTM, 1989, 1991) seems to be the stimulus to the growing number of studies on the

mathematics teacher. Studies on preservice teachers have covered their content knowledge

(Ball, 1990), pedagogical content knowledge (Even, 1993), beliefs (Gorman, 1991) and
development (Simon, 1994). However, consistent with the currcnt climate in mathematics

education that is promoting a problem solving perspective to teaching and learning
mathematics, studies involving problem solving have not explicitly considered it as a
curriculum topic but as a pedagogical process. Thus, preservice teachers were either

engaged in a problem solving process to learn mathematics (Lester and Mau, 1993) or

looked at in terms of how they implemented problem solving in their teaching of
mathematics (Cooney, 1985). One could conclude from Cooney's study that preservice

teachers' "natural" inclination to problem solving, from years of focusing on an
algorithmic approach to problem solving, is likely to conflict with the problem solving

perspective of teaching and lead to unsuccessful implementation of it. Thus, special,

attention is necessary in teacher development in terms of preservice teachers' under=

standing of problem solving and its teaching beyond the traditional algorithmic approach.

This paper reports on a study of preservice teacher development in problem solving. The

goal of the study was to determine the effect of using metaphor as a tool in facilitating
reflection and creating awareness of the nature of the problem solving process in dealing
with non-algorithmic, non-routine mathematical problems, and teaching to facilitate

students' development of this process. In particular, it compared the nature of this
aivareness resulting from using a reflective process involving "cued metaphors" and one
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metaphor has been used as a research tool to understand inservice teacher thinking (Grant,

1992) and to facilitate professional development of preservice teachers (Bullough, 1994;

Marshall, 1990). The latter has focused on teaching metaphors, i.e., ways of conceptualiz-

ing teaching, with no particular focus on specific content areas. In this study, the focus

is more related to pedagogical knowledge regarding one area of mathematics problem

solving. Thus, the use of metaphor is exploratory to obtain information on its worthiness

in preservice mathematics teacher education.

Methodology

Methodology involved working with two groups of preservice elementary teachers in

their final term of their undergraduate education degree. All of the participants completed

at least 2 full courses of university mathematics, a half course of elementary mathematics

methods (did not include a focus on problem solving), and all of their practice teaching.

The study was conducted during a one-term, post-practicum year, elementary mathema-

tics methods course they were required to take as elementary mathematics education

majors. One group (8 females) was registered for the course in the winter of 1996 and the

other (7 females) in the spring of 1996. Both courses were taught by the researcher and

involved the same topics. About half of the course was spent on non-routine problem
solving. The winter group worked with the uncued-metaphor approach (did not require

a conscious determination of a metaphor) and the spring group with the cued-metaphor

approach (required a conscious determination of a metaphor).

The common, core aspects of these approaches were: First, the student teachers solved

non-routine problems individually, then reflected on this experience and past experiences

solving such problems to determine their understanding of thc nature of the problem
solving process. Second, they reflected on their thinking of how to teach problem solving.

Third, they reflected on readings on problem solving in mathematics focusing on
similarities and differences to their views in the first two activities, and any significant

revisions they would make to them. Four, they practiced with each other teacher interven-

tion during students.' problem solving, taking turns being teacher and student, and
reflected on when, how and why they intervened.

For each activity, all reflections were done first on an individual level, then on a group

level, then again on an individual level. This allowed for dialogical interactions in terms

of self-self and self-other relationships. All levels of reflections were accompanied by

written journals of each participant's thinking of each situatiOn they examined. In terms

of its meaning as a conceptual framework for thinking about something, metaphor was
Used by both groups of preservice teachers in their reflection of problem solving. Thus,

1 Q 2 - 178



with "uncued metaphors" and considered the nature of the metaphors used.

Theoretical Perspective

The study is framed in the context of teacher learning based on reflection on action,

thinking, and/or past experiences. Dewey (1963) and, to a greater extent, Schon (1983,

1987) have been responsible for significantly influencing this role of reflection in teacher

education. Such reflection has been promoted as a way in which teachers construct the

meanings and knowledge that guide their actions in the classroom (Schon 1983, 1987).

It also leads to re-construction of beliefs or construction of new perspectives of how one's

teaching could be. Thus, the importance of reflection in teacher education is usually

linked to the relationship between teachers' beliefs about content, teaching and learning

and their classroom behaviors. More generally, it is linked to creating awareness of belief

or conceptual systems framing one's thinking and actions.

Reflection bas, therefore, gained significant acceptance as a basis of teacher education

(Bennett, 1998; Grimmett and Erikson, 1988; Halton and Smith, 1995). Its importance

to teacher preparation programs is linked to findings that preservice teachers have well

developed personal and practical theories regarding teaching. They come to teacher
education programs with strong theories of teaching acquired during many years of being

a student (Brookhart & Freeman, 1992). These theories have been shown to influence the

way they approach teacher education and what they learn from it (Calderhead & Robson,

1991). In general, they tend to rely on their personal experiences as learners in construct-

ing meaning for classroom events. Thus, reflection becomes a necessary process to
establish awareness of their personal theories to facilitate growth.

The use of reflection in this study, then, is associated with developing preservice
teachers' craft knowledge in relation to mathematical problem solving. It is assumed that

merely solving problems, without intentional reflection on the process involved, may not
be enough for one to understand the nature of problem solving (and consequently, its

teaching), since one tends to lack awareness of particularities of the process while,
engaging in it solely, for the purpose of getting an answer. In this regard, metaphor iS

being adopted as a tool to facilitate intentional reflection on problem solving and its
teaching. This use of metaphor is based on the view of Lakoff and Johnson (1980) that

it is a way in which one makes sense of one's world. Thus, it provides a conceptual
framework for thinking about something and, consequently, shapes the way one thinks.

It determines what one sees happening in a particular situation, the way one interprets an
event, the solutions that are attempted, and the manner in which one is likely to behave.

It communicates messages about the meaning one constructs. In terms of this view,
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Find answer.
Look back at process, check calculations.
Ask if the solution makes sense.

In general, problem solving was depicted as a sequential process in which a successful

solution depended on a clear, logical choice among alternative strategies. Consistent with

this, the teaching of problem solving was viewed as guiding students through these steps.

For both the problem solving and teaching processes, affective factors were ignored.

These participants were also more "paradigmatic" (Bruner, 1986) in their treatment of

the readings on problem solving. They focused on "context-free and universal
explications" (Bruner, 1986), thus isolating procedural features of the problem solving

endeavor from meaning of experience. In general, they used the readings to justify their

thinking while trivializing or ignoring other features or considering them to be different

from their thinking only in form. On a test based only on the readings at the end of the

course, most of their answers reflected their thinking prior to exposure to the readings.

Cued-Metaphor Approach

The nature of the reflection was significantly different with the use of the cued-
metaphors. These participants' focus was more on a humanistic, holistic, contextual way

of thinking about the problem solving process and the teaching process. This humanistic

context was set by the nature of the metaphors they selected. Everyone had a different
metaphor. The metaphors involved activities (the metaphor activities) based on their

personal, real world experiences that had a strong emotional impact on them. They also

expressed their personal experiences and feelings about problem solving. The following

are examples of their metaphors for problem solving (i.e., problem solving is like )

and what they identified as the key factors influencing their choices of them.

Downhill skiing: "challenging and yet fun ... requires skill, practice, courage, and
perseverance"
Fishing: "patience and persistence"
Eating broccoli (a vegetable): "unpleasant but beneficial"

Both the metaphor activity (e.g., downhill skiing) and the problem solving process were

considered in terms of procedural and affective factors. The following is an excerpt from

one student's writing comparing her metaphor and problem solving experiences:

...While in line and then on the chair I scan the ski runs on the mountain. It seems like
such a long ride to get to the top. I then begin to feel a little anxious. My only means of
getting back to the chalet is to ski down. I know I can do it, but I am a little nervous so
I usually decide to stick with one of the easier runs.... Without a doubt, sometime
throughout the day I fall as a result of a mogul or a dip in the snow. Seeing as I am a

h
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"uncued-metaphor group" and "cued-metaphor group" are used instead of "non-metaphor

group" and "metaphor group", respectively, to distinguish the two groups. The uncued-

metaphor group was simply told to do the assigned reflection and write journals on their

thinking in their own words. The cued-metaphor group was told to think of and describe

a metaphor that reflected their experience of the problem solving process. The metaphor

was to then be used as a basis of their reflections and journals for all of the activities.

They were given no guidelines regarding the nature of the metaphor because it was one

of the factors being investigated.

Since reflection is related to perception of reality, a humanistic perspective of research

scemed to be most relevant to this study. In particular, the underlying rationale for the

form of data and analysis was linked to phenornenography (Marton, 1988) which focuses

on people's perceptions of a phenomenon. Thus, data for the study was all of the partici-

pants' journals associated with the problem solving activities. The journals were consider-

ed to be an indication of the nature of the participants' reflections, learnings and under-

standings. Analysis consisted of identifying the most "distinctive characteristics" (IVIarton,

1988) that appeared in the data regarding the effect of the two reflective approaches. The

effect was considered in terms of the nature of the metaphors used and what the
participants considered important in characterizing problem solving and its teaching.

Results
The results ure presented in terms of the .nature and effect of the two reflective

approaches with emphasis given to the cued-metaphor approach. In general, the
approaches resulted in significantly different quality of reflection.

Uncued-Metaphor Approach

The uncued metaphor used by the participants seemed to be a pre-existing framework

unconsciously called into action to interpret the activities. It portrayed a frame consistent

with the traditional, absolutist classroom view of problem solving. Thus, it made sense

that it was used by all of the participants given their similar backgrounds with traditional.

mathematics classrootns. Through this frame, the participants focused on a decontextual=

ized, algorithmic way of thinking about the problem solving process and the teaching

process. They considered both of the processes in tenus of "steps" to get to the outcome.

The following example from one student is representative of how they viewed the
Problem solving process.

Read question through quickly, skimming.
Read question over carefully.
Write down useable information, draw a diagram, formula etc.
Develop the strategy further and use to find the solution.
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fairly persistent person, I always get back up and keep going, sometimes choosing a
different route down. ... When I finally reach the bottom, I am relieved... As the day goes
by, my confidence increases and I eventually try out more challenging runs....
For the most part I approach problem solving quite eagerly as I do with skiing. ... I
glance over the problem to get a general feel for it. After reading the problem the entire
way through, I sometimes feel anxiety like I do when I look down the mountain before
skiing my first run of the day. I take a step forward to assess the situation and begin to
record some of the relevant information. I choose a strategy to try. ... As I work through
the problem, there are often points at which I get stuck or stumble and do not know how
to move forward toward the solution.... Oftentimes it takes re-examining the strategy that
I have been using and choosing to follow a different path towards the solution. Just
because a new strategy is chosen doesn't guarantee a smooth path. This process may
have to be repeated several times before reaching the final answer.... When I finally
reach the solution I feel like a conqueror!... My confidence in my ability to problem solve
grows with each successful experience. ...

The problem solving process emerging from these metaphors involved a preparation

stage, a decision making stage, an execution stage, anxiety/tension/uncertainty, connec-

tion to context, perseverance, disappointment, and satisfaction. Consistent with the
problem solving process, the teaching process took into account the affective factors. The

following excerpt of the description of the teaching of the metaphor activity (downhill

skiing) illustrates their basis for considering the teaching of problem solving.

... I would then encourage the student to attempt to head down the hill at his/her own
pace, trying to use the theory and techniques that he/she had been taught. ... I would
offer hints if requested or i f I noticed that she/he was having a lot of difficulty and
experiencing frustration. ... As the student become increasingly comfortable with the
sport, I would "stand back", let them make the decision as to the type of run, and allow
them to fall and get back up again, without interfering too much....

Building on her way of teaching her metaphor activity, each participant determined a

similar basis of teaching problem solving. This emerged as consisting of a teacher-guided,

skills and confidence development period and a teachcr-facilitated, self-development

period. The latter required a more hands off approach by the teacher with students engag-

ing in more self-initiated and self-management processes. The specifics of the teaching

process were dependent on the nature of the particular metaphor. However, the emphasis

was on making students comfortable, easing them into the situation, providing guidance

and support, and allowing them to experiment. Teacher intervention was also described

in terms of metaphors, for example: Intervention is like conducting a band,...

Like the uncued-metaphor group, these participants used the readings on problem
solving to validate their thinking, but they also used them to obtain details regarding the
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nature of skills and strategies for problem solving and other factors dictated by the
particular metaphor activity. They needed this detail to build a "story" of problem solving

that paralleled that for the metaphor activity. In fact, the more details they described about

these factors for the metaphor, the more details were drawn out about problem solving

from the readings. Similarly, the way in which they described how to teach the metaphor

activity, dictated the need for specific details of equivalent features in considering the

teaching of problem solving. In general, these participants showed more adaptability to

the readings. The cued metaphor seemed to facilitate better retention of the readings based

on their responses to the same test given to the uncued-metaphor group.

Conclusion

The potential of cued metaphors as a vehicle for raising preservice teachers' pedagogical

awareness of problem solving seems to be significant. The cued-metaphor group had
similar background in terms of mathematical problem solving as the uncued-metaphor

group. However, when asked to reflect on pi oblem solving, the only construct for the

latter seemed to be the traditional framework (the absolutist view), a frame that made
them lose sight of the humanistic aspects of problem solving. But the cued metaphor

enabled the other group to extend and enhance their interpretations of what they saw
beyond this traditional view. It provided a more humanistic way for them to learn from

experience and allowed them to hold knowledge differently and more meaningfully. It

contributed to a different level of sense-making about the nature of problem solving.

In general, the metaphors, cued and uncued, provided a way for the preservice teachers

to frame their understanding of problem solving. But these frames, in turn, suggested the

ways they would likely develop their conceptions of teaching problem solving. Chapman

(1997) argued that metaphor played a significant role in how experienced teachers
organized and conducted their teaching of problem solving. These metaphors were shaped

by the teachers' conceptualization of problem solving based on their personal experiences.

Thus, using cued metaphors for preservice teachers could enhance their development in

terms of the frame they construct to organize their teaching.

Metaphors do have limitations in that they create boundaries that may screen out salient

information from one's awareness. The uncued metaphor lens was more restrictive than

the cued metaphor lens. However, all cued metaphors selected by students may not be

equally meaningful in facilitating their understanding of problem solving. Sharing of
metaphors becomes important to broaden the boundaries of any one metaphor and to

reconstruct it in more meaningful ways. A combination of the cued and uncued metaphor

approaches could also more likely provide a more complete picture and understanding of
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problem solving. Cued metaphors can also be used as a way of sharing theory, as a basis

for students to resonate with their own metaphors. The study also suggests that
identification and analysis of metaphors is a promising avenue for uncovering and then

exploring assumptions about the teaching of mathematical problem solving. Finally,

problem solving itself can be conceived of as a metaphor for teaching and learning. Thus

metaphors used to conceptualize problem solving could provide a basis of understanding

teaching from a problem solving perspective. Such an approach could likely develop the

kind of flexibility in teachers' thinking that allows them to realize reform recommenda-

tions in the teaching of mathematics.
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RESTRUCTURING CONCEPTUAL AND PROCEDURAL KNOWLEDGE FOR
PROBLEM REPRESENTATION

Mohan Chinnappan
Centre for Mathematics and Science Education

Queensland University of Technology
Brisbane, Australia

In this study 1 examine the question, what is the nature of prior geometry knowledge that
would facilitate the construction of useful problem representations. The quality of prior
knowledge is analysed in terms of schemas (Marshall, 1995). The frequency of schemas
activated by high- and low-achieving students were compared under two conditions:
problem context and non-problem context. The results showed that the tivo groups differed
in the number of schemas activated during the course of solution attempt. However, in the
non-problem context both the groups accessed approximately equal number of schetnas.
These results are interpreted as suggesting that the schemas of the high-achievers are more
relevant for the negotiation of the knowledge states in the problem space, thus helping these
students construct representations that have the potential to lead them to the solution.

Representational studies of mathematical problem solving emerged from
concern with students' difficulties with problem comprehension, and what role, if
any, does the structure of content knowledge play in the construction of a particular
representation. The last decade has witnessed considerable investments in two
fundamental aspects of problem understanding and representation: nature of prior
knowledge and use of that knowledge during problem representation (National
Council of Teachers of Mathematics, 1989). It is suggested that effective use of
prior topic knowledge during problem solving is dependent upon the organisation
of that knowledge (Prawat, 1989).

Knowledge organisation and mathematical activity
There is a growing body of evidence to support the view that qualitative

aspects of students' content knowledge could exert a major influence on the
deployment of the prior knowledge during problem solving. Quality of
mathematical content knowledge is interpreted in terms of the degree of
organisation of the different bits of mathematical information. Network models of
knowledge organisation (Rumelhart & Ortony, 1977) provide a useful framework
in which to visualise how mathematical knowledge is organised. A well-organised
knowledge can be seen as one which has many components that are built around one
or more core ideas. There are connections between the core concepts and the
components, and among the components. The components could comprise
mathematical definitions and rules as well as knowledge about how to deal with a
class of problems. That is, organised mathematical knowledge encompass both
declarative and procedural knowledge (Anderson, 1995).

;
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The issue of organised content knowledge in the human memory has led to
the development of a key psychological framework called schemas (Marshall,
1995). According to Marshall, schema is a cluster of organised knowledge that help
students understand and represent a given problem, and provide cues for the
activation of relevant strategies during the solution process. An important
characteristic of schema is that they control students' processing activities by
identifying the relevant aspects of the problem. This point was made by Mayer
(1992) who suggested that both schematic and strategic knowledge need to be
activated in any successful mathematical problem-solving effort.

Schemas have also featured prominently in studies of experts vs novice
comparisons. In a study involving sorting problems, Chi, Feltovich and Glaser
(1981) found that experts used schemas that were elaborate and contained principles
underlying the problems whereas novice's merely attended to superficial features of
the problem. These results led Chi et al to conclude that qualitative differences in
prior content knowledge could explain why novices respond to the 'surface
structure' of a problem while experts respond to its 'deep structure'. Similarly,
Owen and Sweller (1985) pursued the question of importance of organised content
knowledge in their study of trigonometry. The results of this study showed that
students who produced correct solutions in the least amount of time tended to access
and use previously acquired schemas that were structured around properties of
right angles and other figures as well as knowledge about how to deal with
problems involving right-angles, i.e., students invoked schematised knowledge of
trigonometry.

The foregoing analysis and results suggests that successful students utilise
mathematical schemas during problem solving. The study of the relationship
between these structures and the outcome of a solution attempt constitutes an
important area of investigation. The study reported here takes up this question.

Schema activation and problem representation
Building a problem representation is a complex process in which students

attempt to establish meaningful links between elements in the problem statement and
knowledge embedded in their schemas about that problem. In their analysis of
problem understanding, Hayes and Simon (1977) have suggested that 'the
representation of the problem must include the initial conditions of the problem, its
goal, and the operators for reaching the goal from the initial state' (p.21). Thus,
representation requires that connections are made between elements of what is given
in the problem with components that are present in the relevant schema that is
accessed. It follows that the more elaborate a schema is the greater the likelihood
that students will be able to a) construct correct or useful representations and b)
construct multiple representations of the same problem. It therefore, appears that
the richness of the problem schema plays a pivotal role in helping students filter
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irrelevant information from given information and attend to information that would
be relevant to working out the solution.

A second area in which schematised mathematical knowledge can play a
significant role in directing problem-solving processes is mapping, a strategy in
which the solver attempts to establish correspondence between the features and
relations in the known problem (base) with those of the unknown problem (target
problem). A successful mapping procedure requires that students go beyond the
superficial aspects of the base problem in order extract its structure as encapsulated
by key features and relations, and use that structure to solve a new problem with a
similar structure. Information processing during mapping demands that students
draw out the similarities between base and target problems something experts would
do more effectively and rapidly because their processing of problem structure is
driven by sophisticated and powerful schemas than those of novice problem solvers.

The function of schemas in modelling problems was investigated by
Chinnappan (in press). The focus of this study was to examine the relationship
between schemas activated by students and how these schemas were deployed during
the construction of mental models. The results of this study revealed that a) students
accessed a range of schemas relevant to the problem, b) the successful students were
able to align components of the schemas in ways that suggested an understanding of
the problem structure and c) high-achieving students tended to build more complex
mental models for the problem resulting in novel paths to the solution than low-
achievers.

Thus, schema-driven problem search and representation constitutes an
important issue in our understanding of mathematical learning and problem solving.
The identification and probing of schemas that students activate in relation to the
solution of a specific problem has the potential to provide insight into the type of
schemas that students develop in the problem area and how they harness them in
constructing representation of problems. Both these issues are taken up in this
study.

One could adopt two strategies to generate data relevant to the issue of
schema development and problem solving. The first approach could analyse
schemas that are activated by students in a problem-solving context. In this context
schema accessing can be argued to be controlled by the need to achieve a goal, i.e.,
the solution of the problem. Secondly, one could provide a task which has most of
the basic elements of the above problem but the students are not required to solve it.
This latter approach is important as it could inform us about the schemas that
students activate or fail to activate which would allow them understand the deep
structure of the problem. The assumption here being that releasing the student from
the constraints of solving the problem could facilitate the accessing of a greater
range of related schemas, thereby, making more cognitive resources available for
problem representation.
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Method

Participants

Thirty students from five Year 10 mathematics classes in a middle-class
suburban high school volunteered to participate in the study. The mathematics
classes at this school were ranked on the basis of students' mathematics performance
in the previous years. Class rankings were relevant to the purposes of the present
study because they provided a useful way to identify students with different levels
of geometry knowledge schemas the assumption being that students from the top-
ranked class would have developed more elaborate and sophisticated schemas than
those from the lower-ranked classes. The high-achieving group comprising fifteen
students came from the top-ranked year 10 class, while the fifteen low-achievers
came from the bottom two year 10 classes.

Tasks. Materials and Procedure

The purpose of the present study was to identify geometry schemas that
students have acquired and to describe how they use these schemas to understand the
structure of a given problem. This was achieved by developing two tasks which
were different but related in terms of underlying geometry schemas. The first task
was a plane geometry problem (PGP) which included a statement and a diagram.
Students were required to find the length of an unknown segment. This task
provided the problem-context in which to view schemas. The second task of the
study involved students working on the diagram from PGP without having to solve
any aspect of the diagram. This activity was considered to be appropriate for the
observation of geometry schemas in a non-problem context.

Upon the completion of the problem, students were asked to work on the
second task. Two sets of instructions were given for this task. Firstly, students were
asked to study the figure, and a) identify all geometric forms that they could
recognise and b) state any theorems, rules or formulae which they would associate
with each of the forms they were able to recognise. In the second set of instructions
students were asked to expand the figure in any way they wished, after which they
were required to identify new forms and associated theorems that were created as a
result of additions and modifications to the original figure. All students' responses
were video recorded and transcribed.

Results

The store of students' schematised knowledge of geometry was analysed by
determining the frequency of the activation of these structures under two contexts:
problem and non-problem. In the first context, a frequency count was made of
schemas that were used by high- and low-achieving students during their solution
attempts of the problem. In Table 1 this is referred to as 'Problem Context'.
Schema activation in the non-problem context was considered under four
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categories. The first category, labelled as 'Diagram Intact (open-ended)', contains
schemas accessed by students whilst they were analysing the diagram. The 'Diagram
Intact (problem-relevant)' shows schemas from 'Diagram Intact (open-ended)' that
were relevant to a correct representation of the PGP. The third category, 'Diagram
Extended (open-ended), consisted of geometry schemas that were activated as a
consequence of expanding the diagram. And finally the 'Diagram Extended
(problem-relevant) category shows the number of schemas from 'Diagram
Extended (open-ended)' that were relevant to the solution of PGP. Table 1 also
shows a fifth category, 'Total (problem relevant)', which is essentially the total
number of problem-relevant schemas that were activated by the two groups of
students in the non-problem context.

Table 1: Total number of schemas under problem and non-problem contexts

Context of Schema Access Low-Achievers

(n=15)

High-Achievers

(n=15)

Problem Context

Solution of problem 52 108

Non-problem cnntext

Diagram Intact (open-ended) 162 179

Diagram Intact (problem-relevant) 38 60

Diagram Extended (open-ended) 67 39

Diagram Extended (problem-
relevant)

18 18

Total (problem-relevant)
56 78

Table 1 shows that regardless of the context high-achieving students tended to
activate greater number of geometry schemas than their peers in the low-achieving
group. This pattern is evident in all categories of the two contexts except one in
which students were given freedom to extend the given figure, and the schemas
were not relevant to the problem in question (Diagram Extended open-ended). As
expected when problem-relevant schemas were considered the high-achievers
activated greater number of these knowledge structures than the low-achieving
students. The difference between the groups is greatest in two categories: Solution
of Problem and Diagram Intact (Problem Relevant). Interestingly, both these
categories involve schemas that are relevant to solving PGP.
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Comparison of schemas that were not directly relevant to the solution of PGP
shows a lack of appreciable difference between the groups in two categories of
analysis: Diagram Intact (open-ended) and Diagram Extended (open-ended). In fact,
contrary to expectations, the low-achieving students generated greater number of
schemas than the high-achieving students when they were required to expand the
diagram and identify schemas.

Discussion

The aim of this study was to investigate the nature of schemas that students
developed in the area of Euclidean geometry. Specifically, I sought to learn more
about the quality of these domain-specific knowledge structures by examining
schemas accessed by students in two contexts problem and non-problem, and
explore the interrelations among these pieces of knowledge. Two hypotheses were
central to the aims of the study. Firstly, it was predicted that during the solution
attempt high-achieving students would activate and use a higher number of
problem-relevant schemas than low-achievers. Secondly, it was hypothesised that
high-achieving students would also activate greater number of schemas than the
low-achievers in a non-problem situations.

Frequency analysis of schemas provided support for the prediction that
students in the high-achieving group activate a larger number of these knowledge
forms than their peers who were considered to be low-achievers when the students
were asked to solve a problem, or extend diagram that was similar to one that
appeared in the problem. This result is consistent with other studies of mathematical
knowledge structuring and problem solving that were concerned with the magnitude
and quality of mathematical knowledge base and problem search processes (Prawat,
1989). Shoenfeld (1987), in his analysis of geometry problem solving, showed that
good students tend to not only build larger networks of mathematical knowledge
than those who are not as good but more importantly, this store of knowledge is
better organised. The better structured knowledge base of the high-achievers of this
study appear to drive moves during their solution attempts. Newell (1990) drew
attention to two types of search in the problem space - problem search and
knowledge search, both facilitated by a rich of store of schematised domain
knowledge of the type built up by the high-achievers here.

The results of this study, however, did not support the hypothesis that high-
achieving students would access greater number of schemas than the low-achievers
in a non-problem context. Contrary to expectation, the amount of knowledge from
both the groups in non-problem contexts was almost equal with low-achievers doing
better in one task that was concerned with extending the diagram and exploring new
schemas. In the non-problem contexts, students were given the figure that appeared
in the problem context, and were required to analyse the figure for schemas.
Further, students were invited to draw on the figure as a way to expand it in any
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number of ways. A key feature of this task was the absence of a problem goal, and
there was considerable opportunity for students to experiment with the figure. The
expectation was that the high-achievers, given their larger knowledge base of
geometry and related concepts would do more with the figure, and consequently
would activate more schemas. This was not the case, however. The results of
frequency count suggest that low-achieving student do build up a considerable
amount of geometric knowledge just as their high-achieving counterparts.

Taken together, the tentative support for first hypothesis and lack of support
for the second hypothesis provides interesting insight into the nature of geometric
schemas that are constructed by high- and low-achieving students. In non-problem
contexts, ability level does not seem to have a significant effect on the knowledge
accessed in the area of deductive geometry. However, when a problem-solving
condition is imposed, the high-achieving students tend to activate more relevant
schemas than the low-achievers. One possible explanation for this difference is that
schemas constructed by the high-achievers are qualitatively superior. That is, these
students are able to build multiple links between new geometric information and
information that is already stored in their memory. For example, when teacher
discusses the theorem that the diameter of a circle subtends an angle of ninety
degrees at the circumference, students are generally given the figure or asked to
deduce that the above theorem creates a right-angled triangle in a semicircle.
Because the high-achievers have built up more conceptual points in their repertoire
of mathematical knowledge, these students can now be expected to examine this
information and create more meaningful links than the low-achievers. They could
further invoke their prior knowledge about Pythagoras' theorem and trigonometric
ratios and explore potential problems that could arise in a semicircle or they could
link this theorem with other related theorems such as angles subtended at the centre
of the circle is twice that subtended at the circumference. As students build these
relations, over a period of time, knowledge built around the core idea of right-
angles in a semicircle spreads in numerous meaningful directions. Anderson (1995)
referred to this spread in knowledge network as an important mechanism in
building domain knowledge.

The more powerful and better-connected schemas exhibited by the high-
achievers play a vital role in facilitating understanding of problem structure. In the
present study, the high-achievers were more adept at decoding the structure of the
problem as reflected in the greater number of correct solution outcomes produced
by these students. In contrast, schemas from the long-term memory of the low-
achievers were less sophisticated and integrated and therefore, less effective in
decomposing the problem in ways that would reveal its structure. As a consequence,
these students activated fewer of these relevant schemas in conditions which
demanded accessing and search for solution of the problem.

The richness of schemas that students of both ability levels activated when
they were required to expand the figure and identify associated theorems and
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formulae suggest that students' geometric knowledge is integrated to some degree.
However, this level of integration appear to be insufficient when the task demands
that schemas be utilised in uncovering the structure of the problem. Teaching of
geometry has to explore ways of facilitating the construction of more complex
elaboration of ideas. That is we need to devise learning environments that has the
potential to 'help students develop knowledge structures would make structural
relations more salient' (Hassock, 1990: 532). Such schemas would facilitate the
transfer of prior geometric knowledge to the representation and solution of novel
problems.

In this present study I attempted to investigate the conceptual structure of
geometric knowledge by examining the type of schemas students were able to
activate in the context of a particular problem and its variant. While there is some
evidence here to support the claim that the quality of schematised geometry
knowledge have an important effect on representation of problems, the results of
this study are based on the analysis of one problem. There is, therefore, a need to
replicate this study with a variety of geometry problems and examine connections
among the associated schemas. The identification of the links among geometry
schemas that would help low-achievers understand problems is an important area
for future research.
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THE STRUCTURE OF STUDENTS' BELIEFS TOWARDS THE TEACHING
OF MATHEMATICS: PROPOSING AND TESTING A STRUCTURAL

MODEL

Constantinos Christou and George N. Phi !ippon

University of Cyprus

The present study examines the structure of students' beliefs about mathematics teaching. It

addresses two main questions: (a) What is the nature of students' belief systems about mathematics,
and how are the components of belief systems related to each other? (b) Are there differences in the
structure of students' beliefs in terms of gender and grade level? These questions are addressed by
estimating a theoretically informed multivariate causal model using data from students in grades 6
and 9 as input to the EQS computer program.

In recent years, mathematics educators have focused attention on rethinking the
process of mathematics education at all levels. Calls for reform of mathematics
education now urge teachers and faculty to improve not only the cognitive side of
instruction, but also to emphasize non-cognitive issues, such as students' feelings,
attitudes, beliefs, interests, expectations, and motivations (NCTM,1989).

Beliefs are important concepts in understanding students' thought processes,
practices, and change. Students' beliefs strongly affect what and how they learn and
are also targets of change within the process of teaching and learning. Beliefs are
thus thought to have two functions in mathematics learning: The first relates to the
constructivist theories of learning that suggest that students bring beliefs that
strongly influence what and how they learn (Torner, 1997). The second function
relates to beliefs as the focus of change in the process of education (Pajares, 1992).
In this paper, we outline a model for studying students' belief systems about the
"teaching of mathematics", which may accommodate both functions of beliefs: the
one that considers beliefs as central to learning mathematics and the other that relates
beliefs to changed mathematical behavior. To this end, the definitions of the terms
"beliefs" and "belief systems" are first examined, followed by a brief overview of
the proposed theoretical model. To illustrate the model, the methodology of the
study, the description of the latent constructs and analysis are then delineated. Lastly,
the results and the conclusions are summarized.

Definitions and the Purpose of the Study

Schoenfeld (1994) defined beliefs as an individual's understandings and feelings that
shape the way the individual conceptualizes and engages in mathematical behavior,
while Pehkonen (1997) explained that beliefs constitute the subjective knowledge of
mathematics. In this study, we combine the above definitions and thus by beliefs we
mean one's subjective knowledge about self and mathematics.

The spectrum of an individual's beliefs is very wide, and forms a structure
with multiple components, which influence each other. The construct "belief system"
is a metaphor used to describe how one's structure of beliefs about mathematics is
organized. The belief system consists of three components: cognition, affect, and
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action (Tomer, 1997). The cognitive component can be considered as the subjective
knowledge of mathematics, the affective component refers to the emotional
relationship with mathematics, and the action component is relevant to the readiness
or tendency of a person to act in a certain manner. Thus, beliefs towards mathematics
constitute a very complex and multi-layered system that enables individuals to find
orientation in their environment.

The present study is restricted to the cognitive level of beliefs, and emphasizes
on the identification of the structure of students' beliefs and views towards the
teaching of mathematics. A number of previous studies referred to belief systems but
few of them have examined the relationships among the different aspects of
mathematical beliefs. What is new in the present study is the identification of a
theoretical model for describing the hierarchical connections of the components of
students' beliefs. Specifically, the study purports to answer the following questions:

What is the structure of students' belief systems about mathematics and how are
the components of belief systems related to each other?

ID Are there differences in the structure of students' beliefs in terms of gender and
grade level?

The Proposed Theoretical Model

The model is informed by the theoretical tradition that views students' belief systems
as consisting of their beliefs about the nature of mathematics, the learning and
teaching of mathematics, as well as about students and teachers' roles during
mathematics lessons (Pehkonen, 1997). In the present study, we argue that students'
belief systems constitute a three level hierarchy as it is depicted in Figure 1.

At the first level of the hierarchy, students, in their daily involvement with
mathematics, form their beliefs towards the content (F1), the nature (F2), the
teaching (F3), and the learning of mathematics (F4). Students' beliefs towards the
content and the nature of mathematics are interrelated and form a second order factor
(F5). The latter factor reflects the interrelations between students' beliefs about the
nature and the content of mathematics, and it therefore reflects students' "images of
mathematics".

Students in their early school years become acquainted with the content of
mathematics through numerous activities and problems assigned by their teachers.
We assume that these activities and problems influence their motivation and interest
in mathematics. Students, for example, who perceive mathematics as a useful subject
or enjoy mathematics content are motivated to engage in more mathematical
activities, and thus develop more positive beliefs about the nature of mathematics.
On the other hand, how students perceive the nature of mathematics is an important
determinant of their beliefs towards the content of mathematics. However, it is
hypothesiied that students' views about the content and the nature of mathematics
do not influence their belief systems in a direct way. This influence goes through the
second-order factor "images of mathematics", which represents the common
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variance of students' beliefs towards the content and the nature of mathematics. It is
assumed that students with positive "images of mathematics", i.e., students who
believe that mathematics is a school subject accessible to all students, consider
mathematics content in its correct dimensions. On the other hand, students with
negative "images", believe that mathematics is only for the talented individuals, and
thus consider mathematics as an abstract structure of knowledge, which consists of
accumulated rules, formulas, terms, and algorithms.

(F6: Teaching
& Learning

F4: LearnitZ>-----

F7: Belief
System

)

Fig. 1: The proposed theoretical model

A second-order factor (F6) is also formed by the interrelations of students'
beliefs towards the teaching and learning of mathematics. Students' involvement in
the learning of mathematics increases their interest and motivation which
subsequently results in perceiving teachers' practices and teaching methods as more
valuable in developing their abilities to understand mathematics.

It is also assumed that students develop beliefs about their own abilities to do
mathematics in relation to their teachers' practices in the classroom. Students tend to
perceive their own successes or failures and consequently the abilities needed to do
mathematics from the various reactions of teachers reflected not only in grades but
mostly through teachers' methods and expectations. These various forms, in turn,
become the bases on which students judge themselves and thereby form their own
concept or opinion of themselves as students and their own opinion of the specific
abilities which are appropriate for the learning of mathematics. Thompson (1992)
showed that the way students perceive the teacher's role in organizing instructional
practices influences their beliefs and achievement. On the other hand, McLeod
(1994) indicated that the pressure exercised on children to cope with highly
demanding tasks, together with unimaginative instruction and non-positive teacher
attitudes have destructive impact on their beliefs of mathematics. Thus, as in the case
of content and nature of mathematics, the latent constructs "teaching" and "learning"
affect students' belief system indirectly through the second-order factor "teaching
and learning mathematics" (see Fig. 1).

Although different patterns of relationships can be argued theoretically, there
are no enipirical studies so far, to the best of our knowledge, which examine these
relationships or their causal ordering. The model stated in the present study was that
students' belief systems constitutes a hierarchy and can be decomposed into four
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first order and two second order factors. Specifically, it is assumed that students'
belief systems are gradually influenced by students' initial views of mathematics,
which in turn form two basic second order factors. Because of the lack of clear
empirical or theoretical evidence supporting the above assumption, the data analysis
was based on the theoretical model in Figure 1, which is, therefore, a data-oriented
model.

Method

Variables: The model being tested contains both observed (measured) variables and
latent constructs. The observed variables are specified as indicators for each of the
latent constructs. The latent constructs were the result of a preliminary factor
analysis of the questionnaire, in which four factors were identified as being the most
appropriate in isolating four distinct scales relating to beliefs. The following is a
brief description of the observed variables and latent constructs.

Content of mathematics (F1). This construct is measured with three items reflecting
students' views about the content of mathematics, i.e., mathematics involves
problems, calculations, constructions, diagrams, etc.

Nature of mathematics (F2). Three items are used as indicators of the latent
construct students' beliefs about the nature of mathematics. The first item refers to
students' beliefs about mathematics as a discipline that emphasizes fast and
correct answers, the second to students' beliefs about mathematics as an abstract
and strict discipline, and the third one to students' beliefs about mathematics as a
subject that can be understood by all of them (Table 1).

Teaching of mathematics (F3). Modeled as a latent variable, students' beliefs about
the role of teachers in the learning of mathematics are indicated by 2 items, each of
which reflects teachers practices in the classroom. The first item refers to the
teacher's role as the individual who helps students when they really need such help.
The second one reflects the dominant role of the teacher as the. individual who
explains everything in the classroom or the individual who tells students what to do.

Learning of mathematics (F4). This latent construct is measured by 2 items
reflecting the manner in which students view the learning of mathematics. The first
item refers to students' beliefs about the way they learn mathematics, while the
second one refers to students' beliefs about the effort needed in order successfully to
meet the goals of mathematics.

Data Description: Data considered here are based on the Zimmermann-Pehkonen
questionnaire (cited in Pehkonen, 1997) about students' beliefs towards the teaching
of mathematics. Four random samples of students were selected to represent boys
and girls in grades 6 and 9. Using listwise deletion of missing values in drawing the
variables that were needed in the analysis, the final sample size was 660 students. Of
these students 180 were males in grade 6 and 170 males in grade 9, while 190 were
females in grade 6 and 101 in grade 9.
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The analyses were conducted with covariance matrices, since the focus of the
Confirmatory Factor Analysis (CFA) was to test the invariance of solutions across
multiple groups, i.e., male and female students in grades 6 and 9. In the present study
10 belief indicators are hypothesized to represent four belief factors. We posited an a
priori structure (see Figure 1) and tested the ability of a solution based on this
structure to fit the data. Reflecting the relative importance of the different sets of
parameters and the purpose of the study, we tested the following ordering of models
which facilitates the comparison among different models and answers the questions
of the study (Marsh, 1994).

I. Totally non-invariant model with no between-groups invariance constraints.

2. Factor loadings invariant across groups.

3. Factor loadings and regression correlations invariant.

Results

The Structure of Students' Beliefs: In answering the first question of the study, i.e.,
to find the structure of students' beliefs, we first tested the ability of the a priori
model to fit the data simultaneously on the four groups with no invariance
constraints (boys and girls in grades 6, and 9). The factor loadings of maximum
likelihood estimation in our measurement model as well as the regression
correlations are reported in Table 1. A satisfactory fit was achieved only after the
introduction of first and second order factors (CFI=.910).

The findings indicate that students' beliefs towards mathematics can be
represented in a sound way through both the first and the second order factors. The
loadings on each factor (Table 1) were large and statistically significant, indicating
that the first-order constructs are strong common factors that account for the
observed variables. The results also show that the measures of the items under the
model are highly reliable and replicate across the four independent samples.

The second order factors support the interpretation and use of beliefs as a
multifaceted composite, and capture the structural organization of the belief system.
The structural model shows that the two first-order factors (content and nature of
mathematics) are intercorrelated through a second-order factor which can be th6ught
of as an abstract representation of the overall students' views of the teaching and the
learning of mathematics, and captures the shared variance across the two factors.
The main advantage of the second order factor is that hypotheses can be tested about
the hierarchical structure of students' beliefs towards mathematics. In the present
study, the first-order factors "content of mathematics" and "nature of mathematics"
can be represented by a second-order factor, which indicates students' "images"
about mathematics. Students' beliefs about "what is mathematics" are significantly
influenced by their beliefs about the teaching and the learning of mathematics. The
hypothesized paths are significant for students in both grades (loadings: .705 for
grade 6, and .718 for grade 9). In the same way, the first-order factors teaching and
learning of mathematics measure the same hierarchical concept (teaching and
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learning), and each factor contributes to the estimation of the hierarchical factor in a
specific way. The estimates of the latter second-order factor are all the same (.573)
for 6th grade students, while in grade 9 the construct "teacher's role" (.448)
contributes less than the constructs "student's role" and "practices" (.625).

Table 1:

Factor Loadings and Regression Correlations of the a Priori Model (without Constraints)

Factors Items Boys
Grade 6

Girls
Grade 6

Boys
Grade 9

Girls
Grade 9

F1: Content

F2: Nature

F3:Teacher's
role

F4: Learning

F1, F5*
F2, F5
F3, F6*
F4, F6
F5, F7**
F6, F7**

Mathematics
Teaching Involves:
Drawing figures (VI)
Word problems (V4)
Calculations (V8)

Mathematics is:
Finding the right
answer (V2)
Strict discipline (V3)
Understanding by all
students (V5)

Teacher helps, when
difficulties arise (V7)
Teacher explains at
every stage (V12)

Mathematics require
much effort (V9)
Mathematics require
practice as much as
possible (V13)

.504

.567

.490

.648

.470

.292

.297

.947

.380

.892

.766

.213

.752

.281

.795

.480

.576

.727

.610

.950

.467

.254

.113

.949

.309

.828

.875

.310

.717

.341

.695

.229

.681

.493

.552

.288

.950

.188

.761

.621

.600

.836

.893

.218

.879

.813

.864

.864

.689

.553

.624

.646

.352

.657

.207

.563

.589

.604

.927

.349

.931

.904

.948

.919

* Second-order factor. F5=What is Mathematics, F6=TheTeaching and learning of mathematics

** Third-order factor. F7= Students' Belief System

The invariance of the a priori model across grade level and gender: The results
provide good support for the hypothesized a priori model but do not address the
issue of the invariance of the parameter estimates across grades and gender. Since
literature in mathematics education suggests that there are gender and age
differences among students in temls of their beliefs towards mathematics, we tested
more specific hypotheses about the lack of invariance. To this end, we pursued two
more specific tests. In the first, we constrained the factor loadings of the two groups
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to be equal, and in the second, we constrained the factor loadings and the regression
correlations. Comparing the fit of the model with constrained factor loadings with
the a-priori model shows that constraining the factor loadings to be equal in each of
the four groups reduced the fit significantly. However, the fit of this model improved
significantly, once some of the across grade level and gender constraints were
released (CFI=.920; Table 2). This is indicated by the difference between the a priori
model and the model with some factor constraints.

Table 2:

Goodness of Fit for Separate Solutions for Each Group with No Invariance and for
Selected Invariance Constraints Imposed across All Groups

Model df x' CFI dfd )(V

No invariance constraints 203 269.53 0.910

Factor Loadings Constraints 221 283.59 0.920 18 14.06

Factor Loadings and 234 292.65 0.930 13 9.06

Correlations Constraints

Despite the differences in some indicators across grades and gender, there is
good support for the invariance of regression correlations. For each grade level and
gender, there is support that the structure of student's beliefs is invariant. Thus,
introduction of invariance constraints on the regression correlations across all groups
resulted in a change of x2 of 9.06 (df = 13; Table 2) which suggests a small
increment in fit (CF1=.930). Therefore, the hypothesized hierarchical structure of
students' beliefs is invariant across groups, meaning that the belief system of
students is created in their early school years.

Conclusions

The present study demonstrates that the proposed model supported the
invariance of factor loadings, indicating that students responses were equally valid
for boys and girls of different grade levels. The invariance of regression correlations
indicated that relations among the different factors are the same for boys and girls of
different grade levels and is relevant to the comparison of the gender-stereotypic and
gender invariance models. In particular, there is no support for a gender specific
pattern of correlations that varies with grade level, as it was hypothesized in many
other studies. The invariance of factor loadings and regression correlations indicate
that students' belief systems constitute a three level hierarchy and that the belief
systems can be decomposed into two second-order factors: students' beliefs about
the epistemological nature of mathematics (image of mathematics) and their beliefs
about the teaching-learning process of mathematics. In turn, these second order-
factors can be decomposed into four first-order factors: the content, the nature, the
teacher's role and the learning of mathematics. This hierarchy also indicates that
different factors influence the development of one's belief system towards the "good
teaching of mathematics".

4i-
A. Li
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The invariance of the model also suggests that the belief system is formulated
by the student experiences in primary school and it gradually develops in the same
form in later years. Thus, students enter high school with a set of deep-seated beliefs,
which are difficult to change. The structure invariance of students' belief systems is
in agreement with the results of previous studies, indicating that early student
experiences with mathematics have a significant effect on students' belief system.

In addition, the results of the present study indicate that change of the belief
system is possible if we take into account the factors that mostly contribute to its
creation and development. The present study shows that students' views about the
nature of mathematics are a stronger predictor of students' belief systems than their
views about the teaching and learning process, and thus change can be achieved by
focusing on activities that help students to consider mathematics in a more
meaningful way (see Table 1). This is in line with previous research indicating that
content or curriculum changes have consequences on students' belief systems
(Koupari, 1997).
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ABSTRACT SCHEMA VERSUS COMPUTATIONAL PROFICIENCY
IN PERCENT PROBLEM SOLVING

Tom J. Cooper, Annette R Baturo and Shelley Dole
Centre for Mathematics and Science Education, QUT, Brisbane, Australia

This paper explores the role of multiplicative comparison abstract schema in
percent problem solving. It reports on Years 8, 9 and 10 students' knowledge of
percent problem types, type of solution strategy, and use of diagrams. Non- and
semi-proficient students displayed the expected inflexible formula approach to
solution but proficient students used computational proficiency (a flexible mixture
of number sense, estimation, conversions and trial and error) instead of the
expected schema-based classification strategy.

When approached in terms of change from a mathematical perspective, percent
problems can be considered an application of multiplicative comparison as follows.

INITIAL QUANTITY COMPARISON GOAL QUANTITY
40 x 3 > I 20

40 x > 30

40 x 1.25 > 50
40 interest if rate is 25% > 10

40 resale price if 25% profit ----> 50

Multiplicative comparison situations can have an unknown in three positions,
thus leading to three problem types and corresponding solutions: (a) when the goal
quantity is unknown, the solution requires multiplication; (b) when the initial
quantity is unknown, the solution requires division; and (c) when the comparison is
unknown, the solution requires division. Thus, multiplicative comparison and its
relation to the three problem types represents an abstract schema (Ohlsson, 1993)
and appears to make the solution of one-step percent problems straightforward (i.e.,
identify the initial and goal quantities and the comparison, determine which is
unknown, and calculate appropriately). Consider, for example, the problem, Jack
bought a house. He paid a 35% deposit of $210 000. What was the price of the
house?. When this is rethought in terms of multiplicative comparison, the unknown
is seen to be the initial quantity (? x 0.35 ---> $210 000) and, therefore, the
solution is found by division

The three abstract schema problem types have been categorised in the
literature as Type A, B and C problems (Ashlock, Johnson, Wilson, & Jones, 1983).

Type A

Type B

Type C

Percentage unknown finding a part or percent of a number, for example,
what is 25% of $60 (i.e., goal quantity unknown);
Percent unknown - finding a part or percent one number is of another, for
example, what % of $60 is $15 (comparison unknown);
100% unknown finding a number when a certain part or percent of that number is
known, for example, 25% of the cost is $15, what is the total cost (initial quantity
unknown).

However, do students invoke some form of multiplicative abstract schema to
solve the three problem types?
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Percent problem solving
A knoWledge of percent is vital in many facets of the real world. For

example, percent discounts, profits, losses, savings, and increases are an integral
part of our society. Because .of this social necessity, percent is an important
component of the mathematics curriculum and has been the focus of curriculum
planning, observations and research studies. Four main strategies for solving
percent problems have been identified: cases, prOportion, unitary, and formula
(e.g., Dole, Cooper, Baturo,. & Conoplia, 1997; Parker & Leinhardt, 1995).

Cases students classify the problem and apply a different procedure for each problem
type (multiply the number by the percent as a decimal for Type A, divide the numbers and
translate the decimal answer to a percent for Type B, and divide the number by the percent
as a decimal for Type C).

Proportion - students classify the problem in terms of the unknown, consider percent as a
common fraction with a denominator of 100, equate this to a fraction made up from the
two other possible numbers (i.e. a/100 = c/d), and find the solution by algebraic
manipulation or cross-multiply method (the "rule of three").

Unitaty - students calculate I % of the "known" and calculate the required percent by
simple arithmetic computations (e.g., 11% of 200 is thought of as the product of 1% of
200 and I 1).

Formula studcnts substitute into a formula (e.g., P = BR, where P is percentage, B is
base number and R is percent) and find the unknown by algebraic manipulation.

The concept of percent can be modelled with 10x10 grids (a large square
divided into 10 rows of 10 small squares) or number lines (from 0 to 100), and
these models can help students visualise the computational procedures of percent
calculations (e.g., Bennett & Nelson, 1994). Mnemonic strategies, Which emphasise
the key words "of' (meaning multiply) and "is" (meaning divide), have also been
suggested to help students interpret percent problems and to order percent
calculations (e.g., McGivney & Nitschke, 1988).

The literature (e.g., Kouba et al., 1988) has confirmed that students perform
poorly on percent, problems particularly Types B and C problems (unknown is the
multiPlier oi- the first quantity). Percent is seen as a confusing topic in the
mathematics curriculum for both students and teachers (Parker & Leinhardt, 1995).
Furthermore, the results of comparative teaching studies do not conclusively
suggest that one instructional method is superior to another (Parker & Leinhardt,
1995), but indicate that instruction does effect performance and that prior
arithmetical knowledge assists solution. For example, Lembke and Reys (1994)
found that Years 5 and 7 students (no instruction in percent) used a variety of
intuitive strategies, Years 9 and 11 students used formulae, and all students used
common benchmarks (e.g., 50% is half, 25% is half of a half) to aid calculation and
check reasonableness of calculations.

Problem-solving success and solution strategy
Understanding percent requires appropriate mental models to accommodate its

"multiple and often embedded meanings and its relational, character" as well as the
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procedures solving percent problems (Parker & Leinhardt, 1995, p. 47). Students
can have knowledge that is syntactic, the correct performance of mathematical
procedures; or semantic, the understanding of the meaning of those procedures
(Resnick, 1982). Their knowledge can be intuitive, "everyday" real world
application knowledge normally acquired before instruction; concrete, associated
with representation by appropriate concrete materials during instruction;
computational, knowledge of the algorithmic procedures; or principled/conceptual,
knowledge of the principles that constrain/justify algorithmic procedures normally
taking place after instruction (Leinhardt, 1986). They can have knowledge that is
operational, dynamic sequential and detailed; or structural, abstract, static,
instantaneous and integrative (Sfard, 1991).

However, to solve problems, students also need to access this knowledge.
Prawat (1989) argued that access to knowledge is determined by the learner's
organisation and awareness of three factors: knowledge, concepts, principles, rules,
facts and procedures; strategic and metastrategic thinking, general problem solving
heuristics and metacognitive processes (e.g., planning, monitoring, checking,
revising); and disposition, habits of mind. In particular, as Garofalo and Lester
(1985, p. 167) argued, accessing mathematical knowledge is influenced by three
metacognitive categories of person knowledge, "one's assessment of one's own
capabilities and limitations with respect to mathematics in general, and also with
particular topics or tasks" including such affective variables as motivation, anxiety
and perseverance; task knowledge, one's beliefs about the nature of the
mathematical tasks; and strategy knowledge, awareness of strategies for guiding
problem solving. Thus, adequate percent knowledge consists of the meanings of
percent in its many dimensions, principles which legitirnise percent calculations, and
metacognition to'enhance access.

Therefore, it seems reasonable that students who can successfully solve all
percent problem types have semantic, principled-conceptual and structural percent
knowledge and strategic and metastrategic thinking, including self belief and
strategy knowledge. It also seems reasonable to suppose that students with this
knowledge would have some form of abstract schema with respect to percent
problem types and inultiplicative comparison, be able to access this knowledge when
solving one-step percent problems, and use solution strategies that efficiently
translate a schema-based understanding of percent to solutions, most likely, the
cases strategy. On the other hand, it seems reasonable that less successful students
would be unable to access knowledge useful to percent problem solving, have
syntactic, procedural and operational percent knowledge and lack strategic and
metastrategic thinking, and use rote procedures inflexibly in attempting to solve
percent problems, particularly the formula strategy.

This paper reports on a study (Dole et al., 1997) that attempted to see if the
expectation that success and abstract schema are related holds for junior secondary
students and percent.
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Study

. Ninety students from three classes (Years 8, 9 and 10) from a Brisbane
secondary boys school were given examples (designed to be within the experience of

the students) of the three types of one-step percent problems to solve and, from
their responses, were categorised as: proficient, able to solve all three types of
percent problems; semi-proficient, able to solve Type A problems but not able to
solve Types B and C problems; and non-proficient, not able to solve any type of
problem. A sample of 18 students, evenly representing all proficiencies and year
levels, was given a semistructured clinical interview. The tasks focused on students'
understanding of percent problems and the strategies the students used in solving

these problems. The first task explored students' schema of percent (i.e., their
knowledge of the three percent types) by asking how many different types of
percent problems there were; the second identified strategies used by the students in
solving percent problems by asking them to show how they solved the three
problem types; the third explored students' visualisation of the percent problems by
checking on their use of diagrams, and by asking them to solve problems with
diagrams if they had not spontaneously done so.

The students were removed from their class and interviewed in a separate
room. The interviews lasted 30 minutes and were videotaped. The students had
attempted the problems before the interview and the interview focused on recalling
the methods they had used in solution. If knowledge was detected that had not been
used in problems, the students were questioned as to why it was not used.

Results
The eighteen students are denoted as follows (the first number refers to their

Year level). It should be noted that only 6 proficient students were identified.

Proficient students 8PI, 8P2, 9P1, 9P2, 10P1, 10P2
Semi-proficient students 8SP1, 8SP2, 9SPI, 9SP2, IOSPI, IOSP2
Non-proficient students 8NPI, 8NP2, 9NP1, 9NP2, IONPI, IONP2

Students' responses on number of percent problem types. Four of the
six proficient student (8P2, 9P2, 10P1, 10P2) and two semi-proficient students
(9SP2 and IOSP2) stated that there were three problem types and identified them as

the three multiplicative comparison abstract schema problem types (i.e., Types A, B

and C). Two students (8SP2, 8NP2) identified problem types A and B. (8SP2 also
identified two extra problem types which he described as "profit problems" and
"loss problems".) The remaining 10 students (8P1, 9P1, 8SP1, 9SP1, 10SP1, 8NPI,
9NP1, 9NP2, 10NP1, IONP2) did not identify any of the three problem types;
rather, they used syntactic categorisations based on context (e.g., "questions on
maths tests", "percent in the real world", "percentages used to sell things",
"percentages used for exporting", and "those ones which you divide and multiply").
The non-proficient students were particularly creative in their categorisation of
problem types.
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Students' solution strategies. All the percent solution strategies (cases,
proportion, unitary and formula) were in evidence with the most widely used being
formula. The proficient students used a variety of percent strategies: 8P2 and 10P1
used the cases strategy, 8P1 and 9P1 used the unitary strategy, and 9P1, 9P2 and
10P2 used tile formula strategy. The semi-proficient students used less variety:
8SP1 and 8SP2 used the proportion strategy, and 9SP1, 9SP2, IOSP1 and IOSP2,
used the formula strategy. The non-proficient students showed no variety; all used
the formula strategy. (In fact, if the non-proficient students could not determine a
formula, they did not attempt the problem.)

Other strategies were used in tandem with the percent strategies, namely, trial-
and-error and key words Two proficient students (9P1, 9P2) and three semi-
proficient students (9SP1, 1 OSPI, I OSP2) used the trial-and-error strategy when
they could not remember or work out the formula. Four non-proficient students
(9NP1, 9NP2, IONP1, IONP2) used the key words strategy where "of' indicated
multiply and "is" indicated divide (McGivney & Nitschke, 1988) to assist then' to
determine what the formula might be.

As well, number sense was widely used in the solution of the problems.
Proficient students showed strong skills in mental computation and operation
relationships (8P1, 9P1, 9P2, 10P1), conversions between percent, common
fractions and decimal *fractions (8P1, 10P1, 10P2), and benchmarking,
approximation and estimation (8P1, 8P2, 9P1, 9P2, 10P1). For example, in the
Type B problem, "186 is what percent of 240", 9P1 argued that the solution was
larger than 50% because 50% would be 120 out of 240; in the Type A problem,
"28% of 150", 10P1 argued that the answer should be close to 50 because 28% is
approximately 1/3; in the Type C problem, "51 is 85% of what number", 8P1 said
that the answer had to be a little larger than 51 because of the relationship of 85%
to the whole.

Semi-proficient students also used benchmarking; approximation and
estimation to assist their problem solving. However, unlike the proficient, students
who used these skills formatively (on the way to a solution, and often with the trial-
and-error strategy), semi-proficient students tended to use the skills summatively
(for checking answers). Furthermore, they were not as skilled as the proficient
students in mental computation were. Two semi-proficient students (8SP2, 9SP1)
were skilful with' conversions.

Non-Proficient students did not generally reveal flexible thinking; rather, they
tended to follow routinised patterns of activity (e.g., converting the percent to a
decimal) even if that activity was not helpful in solving the problem. For some
non-proficient students, the activity was so automated that they did this before they
read the problem through.

With respect to structural analysis, four proficient students only (8P2, 9P1,
9P2, 10P1) indicated an ability to consider problems from multiplicative

,
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comparison abstract schema, to classify problems by type, and to use this
classification in their solution procedure. These proficient students tended to use
structural analysis in tandem with estimation and the trial-and-error strategy. For
example, when given two numbers and asked to find a percent, 9P2 divided the
smaller number by the larger, multiplied by 100, looked at the answer, and then
reversed what he had done when he thought the answer was unreasonable.

Students' responses with respect to use of diagrams. No students
spontaneously drew diagrams as part of their solution procedures. When asked to

use this strategy to help solve problems, all the proficient students, one semi-
proficient student (9SP2) and five non-proficient students (8NP1, 8NP2, 9NP1,
9NP2, 10NP2) were able to draw diagrams that reflected the problem. The
remainder could not think of an appropriate diagram to draw and resisted the
interviewer's request. Of the students who drew diagrams, four (8P2, 9P1, 8NP2,
IONP2) drew number lines, three (8P1, 10P2, 9NP2) drew pie charts, three (10P I,
9SP2, 9NP1) drew 10x10 grids, one (8NP1) drew rough rectangles, and one (9P2)
drew diagrams of rivers (!) and used the analogy of people crossing these rivers to
assist him to solve the problems.

Conclusions
Proficient students generally knew that there were three types of problems.

They could also represent these problems with a variety of effective diagrams when
asked to do so. With regard to their solution strategies, they found it frustrating to
discuss their procedures for solution and their preferred response was "I just do
it!". They were much more flexible than the less proficient students in that they did
not rely solely on the formula strategy but tended to use a variety of strategies and
procedures. Furthermore, if a strategy was unavailable or ineffective, they tried
another strategy. In their soluti ons, they constantly estimated and manipulated
numbers until the answers made sense, converted readily between percents,
common fractions and decimal fractions, and had a good understanding of the
relative size of numbers in terms of relationships in the problem (in this, they
tended to have the multiple meanings of percent as described by Parker &
Leinhardt, 1995). They appeared to have good mental calculation skills and to
understand the effect of operations (e.g., they reversed operations). Importantly,
they also appeared to be able to analyse problems in terms of their meanings,
predict the required operation and gauge the size of the answer relative to the
numbers they had been given (e.g., when given the Type C problem, "51 is 85% of
what", they could see that 51 was approximately 3/4 of the answer).

Except for one student (9SP2), semi-proficient students had no idea of the
number of percent problem types and could not represent percent situations with

diagrams. With respect to problem solutions, they were reliant on the formula
strategy although they were happy to use trial-and-error if they forgot the formula.
Like the proficient students, they also used benchmarking, approximation and
computational estimation but, unlike the proficient students, usually as a checking
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mechanism rather than as an aid for analysis and prediction. They were able to
realise when an answer did not make sense, but were unable to construct alternative
strategies to correct their mistakes or overcome difficulties.

Non-proficient students thought there were many types of percent problems,
usually seeing surface features as constituting difference (e.g., percent to sell things
and percent to import were different problems). Surprisingly, they were able to
draw (when asked) appropriate diagrams to represent problems but were unable to
use the diagrams in the solution procedure. They routinely attempted to solve
problems by the only strategies available to them, namely, formula and key words,
regardless of their appropriateness. Thus, their approach to percent problem
solving was syntactic in nature (Resnick, 1982) and limited. (If they could not
apply a formula, they could not attempt the problem.) They had poor estimation
and computational skills, and could not tell if an answer was sensible.

Expectations and implications
This study explored the expectation that percent problem solving success and

multiplicative comparison abstract schema are related. That is, proficient students
would use a schema approach to percent problems while less proficient would use
inflexible rote procedures. The expectation held for the less proficient students but
not for the proficient students.

The proficient students' problem solving behaviour did not strongly reflect a
schematic understanding although they did show some indication of structural
analysis and they did know the three problem types. They used strategies and
metastrategies and were confident in their solutions (as expected from the findings
of Garofalo & Lester, 1985). However, instead of a schema-based interpretation of
problems leading to a classification approach to solution (e.g., the cases strategy),
they tended to use what could be called a "first principles" approach to solution in
which the trial-and-error strategy, and computational proficiency (number sense
skills such as mental computation, estimation and benchmarking, and conversions)
are used with a flexible mixture of percent strategies (cases, unitary, formula).

The semi- and non-proficient students' behaviour did reflect expectation. Both
groups of students were inflexible and formula oriented. The semi-proficient
students used some estimation and trial-and-error while the non-proficient students
focused on key words and conversions, and discontinued solution attempts if they
could not determine an appropriate formula.

This leads to two implications and a dilemma. The first implication is related
to improving semi- and non-proficient students' performance to that of proficient
students'. Thus, number sense (including mental computation), benchmarking,
approximation, estimation, and conversions between percent, decimal fractions and
common fractions should be the focus of explicit instruction, along with the trial-
and-error strategy. Computational proficiency should be seen as a necessary
prerequisite for percent problem-solving proficiency.
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The second implication stems from the studentS' general inability to solve Type
B and C problems (only 6 of the 90 students tested could solve these problem
types). It is likely that students in lower grades have similar difficulties for these
problem types when related to whole-number and fraction multiplicative
comparison situations (e.g., John has 5 times the money that Fred has, John has $60,
how much has Fred?) Thus, Types B and C problems should be part of instruction
for whole number and fraction multiplication. Furthermore, connections should be
drawn between whole number and fraction multiplication problems and percent
problems for all problem types.

The dilemma is whether instruction should be taken beyond these two
implications. Should we be satisfied with students able to solve percent problems
from the "first principles" of computational proficiency, or should we develop a
curriculum that attempts to construct an explicit multiplicative comparison abstract
schema for all students? Is such an abstract schema a worthwhile end for
mathematics instruction, particularly when this study has shown that students can be
successful without it?
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IMPLICIT COGNITIVE WORK IN PUTTING WORD PROBLEMS INTO
EQUATION FORM

CORTES Anibal. ER125, CNRS, Université de Paris 8, France

In this research, we focus our analysis in the putting into equation process in which a single-
unknown equation can be written. We constructed a classification of word problems that appear in
school text books for 8th-grade classes. The solving of several problems is analysed to demonstrate
difficulties encountered, which are often inherent to each category of problems. Implicit cognitive
work involved in the putting into equation process is modelled.

Several authors have studied the solving of word problems among them: Bloedy-Vinner
H.(1996), MacGregor M. & Stacey K.(1996), Nesher P. & Hershkovitz S. (1994),
Schoenfeld A. H. (1985). The importance of the concept of function, in solving word
problems, has been put forward by several authors, among them: Rojano T. and Sutherland
R.(1993); Nathan M.J, & Kintch W. and Young E.(1992); Yerushalmy (1997)... In
agreement with these authors, we investigate how the concept of mathematical functions,
which is often implicit, plays a role in this process. Though a complete analysis of these
studies is impossible within the framework of this research.

Statements of problems proposed to students can be considered as a specific
representation of a fictitious or a real situation; the term reference is used to indicate each
of the different types of situations used. Linguistic difficulties, that students may encounter,
will not be analysed because, in general, the comprehension of problem statements thatwe
use do not pose major difficulties to our students.

Students' written equations are mathematical representations of these situations in which
unknown numbers must be calculated. We collect these equations which are written traces,
though from the reading of the problem statement and the writing of the equations, students
go through a considerable amount of implicit cognitive work; the nature of which occupies
the space spread out between what is not expressed and what is not expressible or even no-
conscious.

In this research, we focus our analysis in the putting into equation process in which a
single-unknown equation can be written. We constructed a classification of word problems
that appear in school text books for 8th-grade classes. The solving of several problems is
analysed to demonstrate difficulties encountered, which are often inherent to each category
of problems. Implicit cognitive work involved in the putting into equation process is
modelled.

Theoretical framework:
Our theoretical framework is based on the "Conceptual Field Theory" Vergnaud, G. (1990).
Cognitive behaviour is modelled in terms of schemes ("scheme"): the organisation of
behaviour (action) for a certain class of situations. The functioning of the scheme is based,
essentially, on operational invariants: knowledge, often implicit, that allows the search of
relevant information, to make inferences and anticipations. Starting from the analysis and
the classification of errors in the putting into equation process, implicit operational
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invariants have been identified in Cortés (1995). Operational invariants is mathematical
knowledge, the tools used in the construction of a mathematical representation.
Operational invariant in the putting into equation process:

Problem statements that appear in school text books use references (pebbles, lengths,
passengers...) whose additive and multiplicative properties students, in general, know.
Comparisons of measures are indicated, in natural language, by conventional sentences as:
"the length has 220m more than the width" or "3/10 of yellow tulips", "four times the
price..." that are, in general, enough well understood by our students. After reading the
word problem, students are faced with constructing or identifying useful correspondences
between spaces of measures, expressed in natural language. These correspondences are
particular cases of mathematical functions expressed in natural language. The student uses
an operational invariant: the implicit and pragmatic concept of modern mathematical
function (to a measure corresponds only one measure inside an other space). It is implicit
operational knowledge because students never seen this definition explicitly.

For example in the following problem: / - / - A merchant of fruit receives m Kilograms
of peaches. In the course of the sale he must throw out 3 kg of damaged peaches. The
merchant sells the remaining peaches at the price of 15F by Kg and the cash results 450F.
What is the number of Kg of received peaches ?

This problem states correspondences between the weight space (Kg) and the price space;
an explicit one is: 1Kg--> 15F; and another is easily inferred: (m-3) Kg--> 450F.
With the identification of these correspondences a numerical function can be implicitly
constructed, from a well known property of prices: prices (P) are function of the unit price
(p) and the number of objects (n), thus the equivalence p ni = Pi is a particular case of the
numerical function P= pn. Of course, students construct this function mentally, according to
theirs pragmatic representations using an operational invariant: the concept, often implicit,
of numerical function (it is implicit knowledge because student did not study linear
functions ,before). By implicit substitution of unknowns with given numbers or using it in
constructing a particular case of the numerical function; students can write an equivalence
(f.e. 15(m-3)=450). The writing of an equation (equivalence of measures) necessitates the
use of the concept of equivalence (another operational invariant). The introduction of the
"equal" sign implies a rupture with natural language and the passage to the algebraic
representation is guided by another operational invariant, a principle: "the respect of the
homogeneity of terms"(homogeneity of units and symbol signification).

The experimental work: our students, belonging to three 8th-grade classes, are able to
solve certain word problems using algebra, but their method is limited to the writing of a
single unknown equation. The three classes have been taught of the same manner: the
unknowns that appear in word problems are expressed as functions of the unknown that
one is to calculate by means of natural language , for example: "x is the weight of Jacques;
x+220 is the weight of John". Most of the students only write the final single-unknown
equation. The three 8th-grade classes were tested: 20 word problems were given to students
(5 different tests comprised of 4 problems each); each problem was solved by
approximately 18 students (6 students in each class). Two classes presented analogous
success rates, while the third, far more weak, had an inferior success rate for each problem.
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CLASSIFICATION OF PROBLEMS

In the present research, the writing of a single-unknown equation will be the outcome of
the putting into equation process, because it is the only mathematical object that our
students know. This written equation is a mathematical representation of the word problem
and it provides a means to calculate the numerical value of the unknown. By taking into
account that the outcome of the mathematical representation of a problem is always a single
unknown equation we have classified word problems that appear in school text books for
8th-grade classes in three categories.

It is possible to construct a single-unknown equation by:
I - substituting unknowns with given numbers and units into a given formula or into a
constructed function.

- substituting unknowns with linear functions into a two (or more) unknown equation.
III- equating two linear functions.

These substitutions are, in general, implicit cognitive processes.

I - Mathematical representation of problems in which it is possible to construct a
single-unknown equation by substituting unknowns with given numbers into a given
formula or into a constructed function.

The previous problem belong to this category. In solving this problem 23% of students
wrote the following equation: 15 (m-3)= 450 in which the quantity (m-3) Kg is processed
implicitly as a "number of objects" and consequently, the units of the term:
15(F/Kg)(m-3) Kg are considered as Francs. Likewise, in the next equation m=3+(450/15),
the quotient (450/15) is considered as a number (without units) having the meaning of
"number of Kg". Sixty-five percent of students responded with this type of solution, being
close to the arithmetic calculation. They respect the homogeneity principle.

However, in the following problem the processing of units has to be made explicitly:
I - 2 - A train passes ahead of an immobile observer in 6 seconds and crosses a tunnel of
2 Km in 60 seconds. What is in Km/ Hour the average speed of the train and what is its
length?

Fifty six percent of the students calculated the speed; most of them, by establishing
correspondences between time and distance spaces 60 s--> 2 Km, 1 min.---> 2 Km;
60 mM.--> 120 Km; thus, the speed is considered as the distance (120 Km) covered in one
hour. Only two students wrote the speed as a quotient of measures V=2Km/lmin Then
transform minutes into hours.

The calculation of the length of the train then becomes very difficult, only 19% of
students manage to calculate it. They establish correspondences between time and distance
spaces 60 s---> 2 Km; 6 s--> (6* 2/60) = 0.2 Km. Only one student used the formula d=vt
by replacing data and by respecting the homogeneity constraint. Most errors consist in
using data, dissociating numbers from their units which are accounted for at the end of
numerical calculations or ignored: the homogeneity constraint is not respected.

The resolution of the following problems implies the construction of functions and
equations comprising several additive terms: states and transformations which can be
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negative. We are particularly interested in the respect of coherence between the meaning
(and the sign) given to the unknown and that of the obtained numerical results: the respect
of the homogeneity of symbol signification. I - 3 - Robert has played two marble games.
He had 15 marbles at the beginning. At the end of the game he had 27 marbles more than
what he had had at the beginning. He no longer remembered what happened during the
first game, during the second game he has earned 35 marbles. In this problem, on the one
hand, the final state is an additive function of the initial state and of the successive
transformations (Ef = Ei+t 1 +t2) and its numerical value can be calculated:
Ef=Ei+T=15+27. On the other hand T is a function of the other transformations: T= tl + t2
(students did not use this relation). The nature of the unknown transformation (loss) is not
evident. Students mentally construct this function in their representations. Thus, 33% of
students wrote 15+x+35=15+27 x=-8 and end the problem by the sentence: "he has lost 8
marbles"; the negative sign of the result has the meaning of a loss; the coherence of the
process is kept. This coherence is also kept by a student that introduces the meaning of loss
in the definition of the unknown as well as in the equation that he writes x= (35 + 15)-(27 +
15)... x= 8. Several students elude the problem of the sign of the unknown (as well as the
reiterated utilisation of the data Ei= 15 into the equation) by calculating an intermediate
state: "x is the number of marbles at the end of the first game"; x+35=15+27... x= 7 and
then he writes "therefore, he has lost 8 marbles".

There are errors of coherence between the signification given to the unknown and the
sign of the result, for example: "x is the number of lost marbles", this signification is
introduced in the equation x+15+27= 15+35; x=-42+50; x=-8 where the wrong sign of the
result can be considered as a manner (not conscious) of again finding the meaning of loss.
Several students wrote wrong equivalencies, they "refuse" to use the data (Ei= 15) twice,
leading to the following solution: x=15+27-35 ... x=7 and "he has lost 7 marbles"; an
intermediate state is confused with the unknown transformation. In the equation
15+35+x=27 the resulting transformation is confused with the final state.

Problems I -1 1-2 1 - 3
Success rate 88% 19% 60%

Observations: In word problems involving multiplication of measures, if the
independent variable of the proportion can be processed as a number (without units), the
quotient of measures disappears and the multiplication of measures becomes the
multiplication of a measure by a number. The mental construction of a numerical function
and the writing of an equation as a particular case is then facilitated (I-1). On the other
hand, the difficulty to explicitly process multiplication and quotients of units often induces
students to work only with correspondences between two spaces of measures (I-2). They
use implicit knowledge, an operational invariant always present in mathematical
representation, the pragmatic mathematical function concept expressed in terms of
correspondences. This type of problems is studied in Nathan M.J. & Kintch W., Young E.

In word problems involving the addition of measures, students construct an implicit
representation of a function of several variables that serves as basis for written equations. In
cases where the nature of the unknown transformation (gain, loss..) can be easily identified,
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the rate of success considerably increases. They use implicit knowledge, an operational
invariant always present in algebraic representations: the pragmatic numerical function
concept (I-3).

II - Mathematical representations of problems in which it is possible to construct a
single-unknown equation by substituting unknowns with linear functions into a two
(or more) unknown equation. This type of problem is very frequent in school text books.

- 1 - Here are two piles of pebbles. The second pile has 22 pebbles more than the first
and there are 528 pebbles in all. How many pebbles are in the first pile?

In this problem it is necessary to process two unknowns, the number of pebbles in the
first pile (N1) and that of the second (N2). The knowledge of additive properties of
numbers of objects provides a means to implicitly construct the function "total number
(Nt=N1+N2)" as well as the two unknown equations 528 = N1+N2. The number of pebbles
in the second pile, as a function of the unknown that one wants to calculate (N2= N1+22),
is also constructed in students' mental representations and substituted. All students succeed
in solving this problem, most of them write: x+x+22 = 528. A student writes a function by
means of the notation that he/she knows: "the number of pebbles of the second pile is
(x+22)".

H - 2 - Two twins, John and Jacques, weigh 5.28 Kg. together. John weighs 220 gr.
more than Jacques. How much does each of twins weighs?

This problem is analogous to the precedent. There are two unknown weights P1 and P2.
The functions: "total weight" (P=Pl+P2) and the second weight related to the first
P1=P2+220, are constructed in students' representations using the knowledge the students
have about additive properties of weights. In this problem, respecting the homogeneity of
terms implies the conversion of data to the same unit. Thus, students that succeed are more
explicit; they write, for example: "x is Jacques' weight; x+220 is John's weight;
5.28Kg= 5280 g; x+x+220= 5280". There are errors in the conversion of units; for
example: 220 g becomes 2.2 Kg. The next erroneous equivalence (5.28-x) = (5.28-x)+220
(which also does not respect the homogeneity of terms) implies the mental transformation
of 5.28= PI + P2 into 5.28-P1= P2 (we used our notations) which is then substituted into
Pl= P2 + 220 in a wrong manner. The errors in this long implicit process makes it obvious
that memory has considerable limitations.

H - 3 - A gardener wants to plant a bed of tulips in which there would be 3/10 yellow
tulips, 2/10 red tulips and 30 black tulips. How many tulips did the gardener buy?
The resolution of this problem implies the processing of three unknowns and the
construction of three functions; it is not succeeded as well the others. The total number of
tulips is a function of the other numbers of flowers (x= Ny + Nr + 30). Unknown numbers
of red and yellow tulips are a "part" of the total number Ny---> (3/10) x; Nr---> (2/10) x.
By means of implicit substitution one constructs the calculable single-unknown equation.
Only 50% of the students succeeded using algebra: (2/10) x + (3/10) x + 30= x. Several
students (25%) proposed an arithmetical solution, for example: 30=(l0/10)-(3/10)42/10) ;
30= (5/10) , 6=(l/10) , 60= (10/10) , where the equal sign is used to note correspondences.
Twenty-five percent of the students process fractions as numbers of tulips:
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(3/10)+(2/10)+ 30= x; x= 30.5; the meaning of fractions "part of a whole" is not taken into
account. This problem is similar to those analysed in MacGregor, M. and Stacey, K. (1996)
and in this research "reversal errors" were not important; also, in our research "reversal
errors" do not appear.

II- 4 - One pays the sum of 1750F with 24 bills of 50 and 100 Francs. How many bills
are there of each kind? This problem is too difficult for most of our students. Two students
wrote: 1750= 100x + (24-x) 50; the expression (24-x) is the written trace of a long implicit
process (using author's notations): x+y= 24 transformed into y= 24-x, then substituted as
the addition of two sums of money Sl+S2=1750 being Sl= 50x et S2= 100y. Most wrong
equivalencies do not take into account the constraint concerning the number of bills (a
function is not constructed), for example: "x bills of 50F and 2x bills of 100F", 50x+200x=
1750;...x= 7F. There is only one "analgebraic" error (Bloedy-Vinner (1996)) made by the
unique student that uses two unknowns explicitly: 50x+100y= 1750xy...impasse. One can
formulate the hypothesis that this type of error appears when students undertake a
conceptual jump, for example, when they begin to process explicitly two unknowns.
A student proposes a solution based on numerical calculation of particular cases of the
mathematical function: 24 bills----> corresponding sum of money. He calculates x=y=12
and 600+1200=1800... x= 13 y= 11 and 650+1100=1750. This student used implicit
knowledge: the pragmatic mathematical function concept expressed as correspondences
(between number of bills and sums of money) using natural language and arithmetic
calculations.

Problem II -1 II - 2 II - 3 II - 4
Success rate 100% 81% 75% 19%

Observations: the problem statements concern measure (pebbles, passengers, lengths...)
which additive and multiplicative properties, in general, students are familiar with. The
respect of the homogeneity constraint increases the difficulty (11-2). Furthermore, when the
implicit construction of functions and substitution becomes too difficult or too long; many
students (some because of memory saturation) lose control of the process (11-5).

III - Mathematical representation of problems in which it is possible to construct a
single-unknown equation by equating two linear functions.

This type of problem is less frequent in school text books. These problems involve
difficulties, notably processing several unknowns. Solving them implies, at least, the
mental construction of two functions (for example y=ax+b; z=cx+d) and the use of a
condition (for example y= z) to construct an ,equation (ax+b= cx+d). This type of problems
is used in Yerushalmy M. (1997).

III - 1 - A father is 30 years old and his son is 4 years old. In how many years will the
father's age be the double of his son's age? The additions of an unknown time lapse (x) to
initial states provides a means to construct the implicit functions: "father's age---> 30+x",
"son's age----> 4+x" and "twice the son's age---> 2 (4 + x). The problem also states a
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condition, "the father's age---> twice the son's age", and this condition provides a means to
construct the problem equation, for example 30+x= 2(x+4). In this case, 56% of students
wrote the correct equation. The implicit construction of three functions and constraint
respect seems too long for some students. Thus, two students wrote only multiplicative
relationships 30.x=2.x.4 (in which the resolution does not respect the priority of
multiplication: 30x-2x= 2x.4-2x; 28x= 4; x= 7). Other students are not able to take into
account the condition between final states; they write, for example, 30+x=4+x (impasse).
Twenty percent of the students do not solve the problem.

Students solved the following problem better. III - 2 - To rent a car two possible
contracts are available: A) Pay 3F for each Km. driven. B) Pay 200F for the rental and 2F
for each Km. driven. For what distance will the two contracts be equivalent?

The first given correspondence (contract A: 1 Km---> 3F) allows, for most of the
students, to mentally construct a proportion (xKm ---> 3x). This proportion is globally
perceived as having the meaning of a sum of money; the analysis of units in the
multiplication of measures: 3(F/Km) * x Km is out of reach for our students: the xKm are
considered as a number. In contract B the proportion is easily constructed (1 Km--> 2F,
xKm--> 2xF) as well as the addition of the two sums of money suggested by the problem
statement (students know additive properties for sums of money). Thus 68% of the students
wrote the equivalence 3x= 2x+ 200 (x being designated as number of kilometres or as a
distance in Km) and then calculate the solution. For all types of errors, students construct
the two functions. For example, a student considers providing two different distances
corresponding to the same sum of paid money as a solution: A= 134 Km, 3*134= 402F
and B=101 Km, 200+2*101=402F. An other writes: x= 3x ; x= 200+2x and "I do not
know how to do it"; the writing of numerical functions need two variables and he uses only
one.

Problem 111-1 III- 2
Success rate 56% 68%

Observations: A good number of students do not feel capable at solving this type of
problem, stating that "there are several unknowns...". The implicit construction of functions
is easily made for certain problems (III-2). However, problems become more difficult if the
number of functions increases (III-1) or if the functions are more complex (for example,
y=x+2x+4x+8x and y=x+(x+22)+(x+44)+(x+66)).

CONCLUSION

Most of our students are able to put into equation form many of these problems, errors of
the type "syntactic translation" (MacGregor and Stacey (1993)), frequent at the beginning
of the learning process, do not appear here. The reversal error (for example: x=y+20 instead
of y=x+20) and "analgebraic" errors (Bloedy-Vinner H.(1996) ) are frequent when both
unknowns (x and y) have the same status and are used explicitly in the construction of
systems of equations Cortés (1995). Consequently, "reversal errors" does not appear in this
research and neither does it in Macgregor M. and Stacey K; (1996) research. Written
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equations must respect "the homogeneity of terms". We observe that the respect of this
principle is a conceptual construction that some of our students do not have.

We notice that when the problem is too easy (I-1), or rather difficult (II-3), many
students use arithmetic. For a very difficult problem (II-4) half of them do not solve it, and
we make the hypothesis that, often, errors are due to the saturation of memory. The
existence of superfluous data provokes a great number of failures; it can be hypothesised
that a good number of students use rules of action such as: "Use all the datas". Students
often organise their behaviour by taking into account school phenomena that do not
concern either mathematics or properties of references.

The analysis of student's cognitive behaviours shows that the function concept plays a
very important role and we observe, at least in France, that the study of functions is made
after and separately from the study of equations and the resolution of word problems. In
agreement with Yerushalmy (1997): "the function is the appropriate fundamental object of
secondary school mathematics, and focusing on the concept of function allows the
organisation of algebra curriculum around major ideas rather than technical manipulations".

This research has a dual purpose, on one hand, it provides a contribution to the theory of
implicit cognitive processes, on the other hand, it provides a contribution for the
construction of teacher training courses.

The classification of word problems and the model of the student's implicit processes that
we propose can become a daily work-tool for teachers. The teachers' mediation role
frequently includes the analysis and the correction of errors, it is therefore capital for them
to precisely infer what is missing or what is incorrect in the student's mental representations
in solving problems.
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"THREE SIDES EQUAL MEANS IT IS NOT ISOSCELES"

Penelope Currie and John Pegg
Centre for Cognition Research in Learning and Teaching

University of New England, Australia

Class inclusion, identified relationships between figures based on their properties, is an important
characteristic of Level 3 thinking in the van Hiele theory. While researchers have highlighted the
difficulties associated with understanding this idea and, the importance of class inclusion as a
prerequisite for deductive reasoning, there needs to be further research directed at how class inclusion
concepts evolve. This study, involving indepth interviews with 24 secondary students, addresses this
issue by considering their attempts at linking and grouping seven different triangle types. The
purpose of this paper is to report the findings of an initial exploration into the quality of the students'
responses to the task in an attempt to provide light on the difficulties students face with class
inclusion. The findings reveal important features about students' views of relationships between
figures and the students' responses were able to be interpreted within the SOLO model.

Introduction

The van Hiele theory (van Hiele, 1986), hypothesises five levels of thinking in Geometry which

provide a framework from which to view students' understanding. Thinking at the third level is

characterised by a focus on relationships that exist between figures and those that exist between

properties. The notion of class inclusion is an essential characteristic of this stage of cognitive
growth. Van Hiele (1986, p.95) described this aspect as requiring a student to "build up a network of

relations in which the figures are interconnected on the basis of their properties".

Through researchers' (Mayberry, 1981; Usiskin, 1982; Fuys, Geddes & Tischler, 1985; Burger &

Shaughnessy, 1986) explorations of the nature of the levels and the properties associated with the

level framework, a more detailed and workable characterisation of Level 3 has emerged. Studies

have acknowledged that class inclusion ideas are difficult to accept and simple questions requiring a

yes or no answer, such as: Is a square a rectangle?, provides little insight into the thinking of students

in this area. Some interesting findings, such as those of Burger and Shaughnessy (1986) and Pegg

(1992), suggest that at Level 2, students precluded class inclusion classifications due to their own

description of figures.

What is needed is a more intensive consideration of how students respond to activities which involve

class inclusion ideas. This paper reports the results of one aspect of a larger study developed to

explore these ideas. Of interest are the responses students made in an interview situation to an

extensive exploration of how they linked (or saw connections among) different types of triangles.

To develop this, a task was designed which enabled students to return on several occasions to their

response in order to further refine their ideas. To help with the analysis, the SOLO model was used

to assist in the interpretation of the results once the categories of answers were identified. Before

discussing the study, a brief overview of the SOLO model is provided.

2 2 3 2 216



The SOLO Taxonomy grew from Biggs and Collis'(1982) desire to explore and describe students'

understanding in the light of the criticisms to the work of Piaget. Rather than focus on the level of

thinking of students, their work focused upon the structure of students' responses. The framework

has two main components, these being: the modes of functioning; and, the cycle of levels within each

of the modes.

There are two modes of functioning relevant to this paper, namely, concrete symbolic, and formal.

The concrete symbolic (C.S.) mode involves the application and use of a system of symbols which

can be related to real-world experiences. This is the most common mode which is addressed in
primary and secondary education. The formal mode involves the consideration of more abstract

concepts. There is no longer a need for a concrete referent, and the person considers abstract or

theoretical perspectives. Within these two modes there exist a cycle of three levels referred to as

unistructural, multistructural, and relational. The sequence refers to an hierarchical increase in the

structured complexity of a response regardless of the mode that is being targeted. General

descriptions of the levels are:

Unistructural response is characterised by the focus on a single aspect.

Multistructural - response is characterised by the focus on more than one independent aspect.

Relational response is characterised by the focus on the integration of the relevant
components. The relationships between the known aspects are evident with

consistency within this system.

Design.

Three research questions guided the study. They are:

1. What was the nature of the links students formed when grouping different triangles?

2. Was there evidence of some developmental pattern in the different responses?

3. Does the SOLO Taxonomy provide a theoretical framework from which to explain the

findings?

Twenty-four students, six from each of Year 8 to Year 11 (ages 13 to 17), were selected from two

secondary schools. The students were of above average ability and there were equal numbers of

males and females.

The nature of this study was to have the students identify and justify relationships among seven

different triangle types, namely, acute scalene, obtuse scalene, right scalene, acute isosceles, obtuse

isosceles, right isosceles, and equilateral. The format of the interview is contained in Table 1 and

includes student tasks and the questioning focus common to each interview. This format was chosen

as it enabled students to work with familiar recalled information, supplemented information,
individual tree designs, and discussion involving prompts and probes 'from the interviewer. The

continual revisiting of the same relationships, as drawn on different maps and discussed by the
students, provided a vehicle for extracting further information, as the maps were used as a catalyst

for discussion concerning the reasons for the existence of connections (or relationships). The

analysis of the responses was facilitated by the development of a diagrammatical summary which
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combines the information gathered from student maps and interview transcripts. Four of these are

included in the result section to assist in the interpretation of the findings.

Triangle Relationships
(i) Int: I would like you to write a list of all the triangle names you can think of. Begin with acute

angled scalene. Draw each triangle.

(ii) Int: Design a tree diagram which links the different triangles. Draw a sketch to link each type.

(discussion follows concerning the reasons for links and/or lack of links)

(the following three points are addressed if required)

(iii) Int: There are some triangles that we can add to this list. (provide triangles not recalled)

Draw a sketch of each new triangle.

(iv) Int: Design a second tree diagram incorporating all the triangles on the list.

(discussion follows concerning the reasons for links and/or lack of links)

(v) Int: Return now to yOur first map. I would like you to add the new triangles to your original
tree. (discussion follows concerning the reasons for links and/or lack of links)

Table 1: Summary Interview Structure

Results

Overall, the students found the ideas familiar, but the questipns were seen as non-routine. The

codings take into consideration the types of relationships described and the justification of these

relationships. The students' responses can be summarised into seven types:

Type A A single similar feature is identified to relate triangles. Triangles appear in more than one

group depending upon the identifying feature for each group.

Type B Scalene, isosceles and equilateral classes of triangles are farmed and each is characterised by

name and related by slinilar properties. No connection is made hetween the isosceles and

equilateral classes of triangles. Sub-categories are formed with the addition of angle-type

links across the isosceles and scalene classes of triangles.

Type C Thrce triangle-type classes are formed with angle-type links across the classes as with Type

R. Similar properties are noted between the isosceles and equilateral triangles but the

differences described do not allow a connection to be made.

Type D Relationships are formed across the equilateral and isosceles classes of triangles based on

similar properties, but the equilateral triangle is not regarded as a subset of the isosceles

class. Again, sub-categories within this type occur based on the addition of angle-type links

across the three classes of triangles.

Type E Similar to a Type D response with indecisive statements concerning the possible inclusion of

the equilateral triangle within the,isosceles class of triangles, or statements concerning this

notion of class inclusion without justification.

Type F The equilateral triangle is a subset of the isosceles class of triangles with justification based

on properties.

0 (-)4
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Type G Similar to Type F but the subsets formed acquire further conditions. The relationship
between the acute angled isosceles and the equilateral triangle becomes significant and can be

justified.

To illustrate these categories and their SOLO interpretation, Types A, B, D, and F are considered

with diagrams and brief relevant samples taken from the interview transcript. In the light of the

SOLO Taxonomy, all the responses, apart from Group G, fall within the concrete symbolic mode.

This occurs because they include the expression of concepts which are drawn from the context of the

students' experienced world. In geometry, this means that the focus of the student's reasoning is

primarily on properties that can be triggered by reference to a diagram.

Type A This type of response indicates the use of a number of single similar features or properties

to relate triangles together, such as containing acute angles, unequal sides, or equal sides. Only one

feature or property is used in each grouping, and the groupings change according to the property or

feature which is the focus. Hence, a class of shapes has not formed an identity of its own. There

was only one response coded as Type A and this is summarised in Figure 1 below.

All have acute an les.

All have unequal sides.

All have at least two sides equal.

Figure 1: William's Triangle Relationships Summary

The following excerpt conveys the justifications for the relationships based on similar features or

properties described by William. It illustrates that the relationships form spontaneously, and
groupings change as often as the identifying property or feature changes. There were no links formed

across the groups unless the student was prompted.

Int: What have you done up on this top row?
William: They all have three sides and they all have at least one angle that is an acute angle.
Int: What have you done on the next row?
William: Um they all have uneven sides.
Int: And here?
William: They have, all have, at least two sides the same.

This group of responses has a high visual element as relationships between triangles are based on a

number of single observable features. Triangle groupings form spontaneously as a result of the

identification of the relating feature with a strong reliance on visual cues. Due to the spontaneous
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nature of the relationships, classes of triangles have not formed generic categories. Lack of
consistency is evident in groupings as the description of the relating feature is sometimes not

applicable to all triangles of the group, e.g., in Figure 1, William's group of acute-angled triangles is

based on the existence of at least one acute angle. In terms of SOLO this response would be seen as

a transition response to the concrete symbolic mode.

Type B These responses include the formation of three mutually exclusive classes of triangles,
these being, scalene, isosceles, and equilateral. Each of these classes represents a unit which has a

specific name to encapsulate the similarities of the group. The similarities include one, or a

combination, of the following; side properties, angle properties, axes of symmetry. None of the eight

responses makes a connection between the class of isosceles triangles and the equilateral triangle.

Ellen's response (see Figure 2) represents the best of a Type B response as it includes the three

classes (standard for this Type) and links that exist due to angle type. Overall, Ellen's justifications

for classes of shapes are based on the following similar properties: (i) the equilateral triangle has three

sides and three angles equal; (ii) the isosceles class of triangles has two sides equal, two angles

equal, and one line of symmetry; and (iii) the scalene triangles have no sides equal and no angles

equal.

right angle

Scalene

a te angle /Isosceles

obtuse angle
Equilareral

Figure 2: Ellen's Triangle Relationships Summary
A link is not made from the isosceles class to the equilateral class based on acute angles as the

equilateral is described as having specifically three angles equal and therefore it is not possible to link

the classes for any reason. The links across classes are only made according to angle types with the

exception of the equilateral. This is illustrated by the following excerpt.

Ellen: I have put the isosceles together.
Int: Why can they be linked?
Ellen: Because they have both got two sides the same. I have put these two scalenes together.
Int: Does it matter that one is acute and one is obtuse?
Ellen: Well they are still both scalene triangles. That one (equilateral) there won't link with any of

them. It can only link because it has got three sides ...
Int: Can you think of a reason why this equilateral can't link up with these others?
Ellen: Um because it has got all equal sides and it is the only one.

These responses represent a unistructural response in the concrete symbolic mode as each indicates

that the described features/properties combine to form three classes of triangles, namely, scalene,

equilateral, and isosceles. A class represents an identifiable unit, where any links are based on
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negative instances such as 'has two sides equal and one different' excluding the formation of subsets.

Some responses include angle-type links across the isosceles and scalene classes of triangles.

The Type C responses are similar to the unistructural response above and represent a transitional

group, as there is a tentative link between the equilateral triangle and the isosceles class of triangles.

With prompting, a connection between these triangles based on a similar property is suggested, but

not fully accepted. Reference is made to a connection between the equilateral and isosceles triangles,

but the differences described prevent any connection being formed.

Type D This group of responses made links between the equilateral and isosceles triangle classes

based on similar properties. Each of the eight responses in this group include three triangle-type

classes with the addition of a link between the isosceles and equilateral classes. The relationship is

based on both classes containing two equal sides and/or two equal angles, although, the equilateral

triangle is not yet described as a subset of the isosceles class of triangles.

Cameron's response as summarised in Figure 3 is typical of a Type D response including three angle-

type links. He described the triangle-type classes in terms of similar side properties. The link between

the equilateral and the isosceles class of triangles exists on the basis of both classes containing two

sides the same length.

right angle

acut angle

Scalene

/Isosceles

obtuse angle
Equilateral

Figure 4: Cameron's Triangle Relationships Summary

Int: Can you tell me about the link you have made between the equilateral and the isosceles?
Cameron: The equilaterals link because they have both got two sides that are equal and two angles

that are equal, the isosceles have one side and angle that is not going to be the same.

These responses represent a multistructural response in the concrete symbolic mode as the properties

describe the figures, and the figure is known by its properties. Unlike the unistructural response

where the differences dominated the similarities, here both can be dealt with separately.
Inconsistency, however, lies in the inability to consider in the equilateral triangle that two sides and

two angles equal is a subset of three sides and three angles being equal. Sub-categories are also

evident due to the addition of various angle-type links.

Type E can be described as transitional as they are characteristic of a multistructural response with the

addition of tentative statements concerning the equilateral triangle as a subset of the isosceles class of

triangles. When prompted, these responses describe the notion of class inclusion as a possibility but

without acceptance, or initiate this notion but without justification of the relationship.
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Type F A typical response describes the isosceles class of triangles as containing the equilateral
triangle. The equilateral triangle is identified as a form of the isosceles triangle, and the student is able

to justify the equilateral triangle's existence within this class. It can also be argued why an equilateral

triangle is an isosceles triangle and the opposite is not the case. There was one response coded as

Type F. The diagram developed from the information given by Sally is contained in Figure 3.

The equilateral is a form
of the isosceles triangle

/ acute Ingle

Isosceles
Equilateral

obtuse an le

Figure 3: Sally's Triangle Relationships Summary
Sally's explanation of the tree diagram illustrates the clearly defined relationships that exist between

the classes of triangles. Sally included the notion of class inclusion as an important feature of her tree

design and was able to justify this on the basis of properties.

Sally: Utn, all the triangles begin the tree. Then I differentiate between the side length with two
or more equal sides and sides are not equal.

Int: So you have ended up with the equilateral and the isosceles on the same branch. Do you
see those two triangles linking?

Sally: In that they have equal sides and equal angles. You could say that the equilateral triangle
is a form of the isosceles triangle in that it does have two equal angles and two equal
sides.

This response is categorised as relational in the concrete symbolic mode as it includes the notion of

class inclusion as the integrating feature of the described relationships. The equilateral triangle is

considered a subset of the isosceles class of triangles, thus, illustrating consistency in terms of the

described relating features of the triangle classes. The equilateral triangle, and the scalene and

isosceles classes of triangles each maintain a workable identity which takes into consideratis,n the

network of relationships based upon the properties of each class.

A Type G response accepts the class inclusion concept identified in the previous level but brings into

the discussion the constraints that need to be imposed on the isosceles triangles in this task. The

equilateral triangle is described as a subset of the isosceles class of triangles with a significant link to

the acute isosceles triangle. This differs from earlier attempts when only the visual feature of angles

being acute were acknowledged.

Conclusion

By considering the structure of the responses, a hierarchical framework has emerged which sheds

light on the development of student understandings of triangle relationships. An important
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implication of the identification of different types of responses which all incorporate connections
between triangles is highlighted by the justification, and in some cases the absence, of links. While
connections are made between the same triangles by different students, the nature of these vary. For
example, when considering the connection between the equilateral triangle and the isosceles class of
triangles they range from: precluding any connection because of the closed definition of each triangle
group, recognising two sides or two angles equal without acceptance of the equilateral triangle as a
subset of the isosceles class of triangle, and finally, recognising the equilateral triangle as a subset of
the class of isosceles triangles.

A developmental path was identified which leads to class inclusion as earlier notions were subsumed
by later ideas. For example, the simple aspects originally used to identify a particular class of
triangles which are independent and isolated, were later used to relate the classes together, and,
finally, used to justify the inclusion of different types of triangles into a category. In addition,
transitional responses were noted under probing where students were striving to provide a more
comprehensive response.

The SOLO model proved valuable in being able to assist in the interpretation of the developmental

pattern identified. The unistructural response (C.S. mode) is where the triangle classes, scalene,

isosceles, and equilateral, take on an independent meaning, and become a viable element in theirown
right. Any links between the classes were based on visual features only. The multistructural
response (C.S. mode) marked the emergence of the properties as a viable aspect which were able to

be employed in more than one class. This comparison meant that the equilateral triangle was seen to
have two sides and/or angles equal, however, this was not sufficient for students to consider the
equilateral triangle to be isosceles as the equilateral triangle had three sides and/or angles equal. The
relational response (C.S. mode) indicated that the student was able to rationalise the logic of both
three sides and/or angles being equal, and two sides and/or angles being equal within the one
triangle. It is the ability to hold all the relevant elements associated with the equilateral triangle, and at
the same time consider possible subsets which leads to the realisation that the equilateral triangle is
isosceles.
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"MAKING SENSE OF SINE AND COSINE FUNCTIONS THROUGH ALTERNATIVE
APPROACHES: COMPUTER AND 'EXPERIMENTAL WORLD' CONTEXTS"

Nielce Lobo da Costa and Sandra Magina
P.U.C./S.P. Brazil

This paper summarises the main results of a master dissertation which has

investigated the influence of two different contexts computer and
"experimental world" on trigonometry learning identifing which introduction
order would be more effective. A didactic sequence was prepared to be applied
into two groups of high school students: the Group B was first introduced in
computer activities followed by 'experimental world' manipulation, whilst the
inverted order was done to group C. There was also a reference group A. The
results showed that introduction order has indeed interferred in learning process.

Introduction

The difficulty of learning trigonometrical functions has been enphatically stressed
by students throughout our teacher careers. Mathematics teachers also find hard to help
students make sense of this topic. However very few research has been made exploring
this matter, mainly with specifically regarding the learning process of sine and cosine
functions.

Looking through recent research it is possible to note the increase of studies based
on constructivism point of view which has been used either computer (Wenzelburger,
1992; Gomes-Ferreira, 1997; Borba, 1993; Hoyles, 1991, 1996) or everyday life (Saxe,
1991; Lave, 1989; Nunes, 1993, 1996) or even both contexts (Magina, 1994).

Our concerning was to have both above contexts as a mediator tool in learning
process of trigonometrical functions. We had as hipothesis that both contexts would
certainly be suitable for our proposal and moreover they would complement each
other. However we could not predict wether the introduction order of these contexts
would interfere on the formation and development of student's trigonometry
concept.

The theoretical background to support this study came from a triplet of
Vygotsky's ideas zone of proximal development and indeed the role of cultural
tool as a way to make a bridge between individual and mathematical concepts ,
Vergnaud's thought theory of conceptual field, understanding that formation
concept emerges from problem solving where students are asked to deal with a
several number of different situations which reffer to related concepts and
Piaget's viewpoint, who explicitly states that knowledge is formed by two aspects:
figurative and operative and these aspects appear from the development of symbolic
function. We could not consider Piaget's ideas without understanding them inside
the equilibration process which is the central point to acquire and develop
knowledge.

We indeed gave great importance for the role the contexts would play in our
study. Context has at least four different meanings in Mathematics Education. The first
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is "what comes with the text" (con-text), which states that all written texts include explicit
or implicit informations and the meaning of any text depends on subject reading
experience (It is the case of Geertz, 1973 and Rorty, 1989 works). The second meaning is
related to real-world phenomenon that can be modelled by educators in order to give
sense to mathematical concepts (which is exemplified by Magina,1994 and Confrey,
1991 works). The third meaning for context is "semantic situation", i.e., where
students can associate the activity with their everyday life (as Nunes et al, 19.93). The
last way of understanding context is as a setting, it is related to place or physical site of
human activities, such as scientific laboratory, a supermarket, a computer laboratory, a
factory, etc (as Saxe, 1991). We used context as refering to the last meaning. However
the 'semantic situation' was also embeded in it. In fact, whatsoever the meaning of
context, there is a consensus among Mathematics Educators that is quite impossible to
deal with any mathematical contents without considering both influence of context and
situation in which students are going to experience this content.

We opted to work with sine and cosine trigonometrical functions, for this
proposal we planned a didactic sequence whose aim was to introduce the concept of
sine and cosine functions and their transformations, i.e., functions such as f(x) = a sen
(cox +xo)+b, or f(x) = a cos (cox + )+b with a, b, co, xo, real numbers, co> 0 and a 0.
This sequence involved two different contexts, one of them was 'experimental world'
where students were asked to solve problems by dealing with concrete materials such
as wood, sand, metal, etc. We chose to build activities from physics phenomena which
explored Unifonn Circular Movement and Simple Pendulum Movement. The reason
for our choice was based on our belief that those physical phenomena make the
visualization of periodic movement easy for students' perception. Three activities were
planned in this context: "Optic Alarm Simulative" built from a kit, composed by an
analogic watch and two lamps (see Fig.1), "Wheel with Laser Pen" (see Fig.2) and
"Sand Pendulum" (see Fig.3). Another context was the computer where activities were
developed using "Cabri Géomêtre II" and "Graphmatica for Windows" Softwares.
Although both contexts were being considered as alternative ones, they were clearly
distinguished from each other. Whilst activities embebed in 'experimental world' were
characterized by informalism and intending to represent (modelling) the real world, the
computer context showed as the main characteristic the immediate feedback, the
possibility to improve movement as well as to draw a lot of figures quickly and precisely.

This model was built with two lamps which illuminated a watch. All
hands of this watch were took out from it and a shaft was put instead of the
second pointer, in order to make a shadow in a milimetric paper. In this
way a trigonometrical point in motion with its projection sine and cosine
could be simulated. Students were asked to study this model to relate each
point of the cycle with its projection, in order to solve an espionage
problem.

Beginning with this problem we introduce sine and cosine fimctions.

FIG. 1 : Optic Alarm Simulative
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This model was a wood equipment
composed by two wheels. In one of them there
was a handle and in the other one there was a
laser pen fixed which made a point of light up
the table.

Students were asked to turn round the
wheel while pushing the whole equipment to
the left hand side. Afterwards they shoud
describe the trail of the point of light for
another student who had to draw it.

FIG. 2 : Wheel with Laser Pen

.f

The equipment was a Pendulum made by a
plastic bottle filled with sand. The bottle was fixed to a
metal shaft by a string. Below the Pendulum there was a
paper which was to be pulled by a student when the
pendulum started to move and drop out sand.

Students were asked to predict which figure
would be drawn in the paper. After this, they should test
their prediction by manipulating the Pendulum.

FIG. 3 : Sand Pendulum

The Study

The research involved 32 high school students from a private schoOl in São
Paulo State, Brazil, who were divided into three groups: A, B and C. Group A was the
'reference group', while the other two formed the experimental groups. The study
comprised five phases.

Phase 1 - PRE-TEST: It consisted of a Paper & Pencil test composed by eight
questions divided into 10 items following the formal way of school tests, i.e. seven out
of the eight questions were presented descontextualizedly. The test was applied
collectivelly to each group but students solved it individually. The aim of this phase was
to investigate the amount students could respond in a trigonometry test before getting
involved in our didactic sequence.
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Phase 2 - DIDACTIC SEQUENCE: For Group B the activities of the didactic

sequence were developed in the 'experimental world' context whilst for Group C the

activities were inserted in the computer context. This phase was developed
simultaneously for each group and took the same number of sessions. Students from

Group A had trigonometry subject in their class taught by the school teacher (not the
researcher). This group had three classes aiming the introduction of sine and cosine
trigonometrical functions in oral explanation as well as by doing exercices.

Phase 3 - INTERMEDIATE TEST: Such as the previous test, this was also elaborated

following the tradicional school test. Although this test covered the same trigonometry

topics as the Pre Test, it involved only half number of items. The reason for having

fewer questions was to reduce students tiredness. The main goal of this test was to

observe whether the groups presented different progress in understanding

trigonometrical concepts. In this way we could evaluate the influence of each context

on our sample.

Phase 4 DIDACTIC SEQUENCE: Here groups B and C changed contexts, i. e.,

Group B worked inside computer context while Group C in 'experimental world'. The

Group A continued to have trigonometrical functions in classroom.

Phase 5 - POST-TEST: It was applied as the same as the other two tests. Similarly to

the Pre-Test it involved the same number of questions and items.

The table below is to show the contents involved in each questions and also the

relationship among the tests.

Item Pre Test Intermediate Post Test Contents by items

1 Question la Qucstion 3a Question 6a Comparing and completing with >,<,.= (sine)

2 Question lb Question 3b Question 6b Comparing and completing with >,<,= (cosine)

3 Question 2a Question 5a Finding two valuers for q taken sen q

4 Question 2b Question 5b Finding two valuers for q taken cos q

5 Question 3 Question 4 Completing with function's maximum and minimum value

6 Question 4 Question 7 Given the function's image find the "a" parameter

7 Question 5 Question 1 Given a function's graphic, choose the correct algebraic expression

8 Question 6 Question 2 Question 2 Using the Fundamental Trigonometric Relation

9 Question 7 Question 1 Question 3 A contextualized test in physics

10 Question 8 Question 5 Question 8 Link the graphical shape with algebraic expression

Table 1: Topics included in the three tests distributed into ten questions

The follow diagram is to present a summary of the research design
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1 SESSION

3 SESSIONS

1 SESSION

3 SESSIONS

1 SESSION

PRE-TEST
( Au. 3 GROUPS)

THE STUDY

GROUP A
(16 STUDENTS)

CLASSROOM CONTEXT

GROUP B
(8 STUDENTS)

EXPERIMENTAL WORLD CONTEXT

GROUP C
(8 STUDENTS)

COMPUTER CONTEXT

GROUP A
(16 STUDENTS)

CLASSROOM CONTEXT

GROUP C
(8 STUDENTS)

EXPERIMENTAL WORLD CONTEXT

POST-TEST
(ALL 3 GROUPS)

Diagram 1 : The Experimental Design

Results

The way we chose to analyse the efficiency of each context was by using
formal tests. We decided to evaluate the contexts through paper & pencil test
because it is the school context by excellence, i.e., students are used to answering
written questions using paper and pencil. We also consider that if the evaluation
test took place either in computer or 'experimental world' contexts we would be
privileging those students who took part in our study and in this way no
comparison could be made between the experimental groups and the reference
group. In addition, we tried to avoid having an evaluation strictly related to the
contexts involved in our didactic sequence. This was supposed to give us a chance
to observe if and the amount students were able to transfer knowledge acquired,
after they had carried out activities inside both computer and "experimental world"
alternative contexts, to the school context (formal context).

Having this in mind, we analysed the results through seven different viewpoints:

a) The general performance of the all groups in the three tests by looking at
percentage of correct answers in each group;

6) The variation tax of correct answers obtained in each groups considering Pre
and Post Tests;

r)
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c) The individual performances of the experimental groups considering the
percentual variation tax of each student correct answer from Pre to Post-test;

d) The percentage of correct answers considering the didactic sequence aims;

e) The number of correct answers in the items, looking at Pre and Post test

results;
0 The variation tax of correct answers in each item;

g) The types of mistakes and procedures made by the experimental groups,
taking into consideration both Pre and Post-tests.

For the purpose of this paper and also considering the space we have to

present our results, we have decided to discuss only three out of these seven
viewpoints (a, b and e viewpoints) because we believe that they were powerful
enough to show an overall of the three groups performances. All tables are
presentied beside their respective graph. The Table 1 is to show a general picture

of all three groups with regarding Pre, Intermediate and Post Tests. Table 2 shows

the variation tax of correct answers of the three groups considering the Pre and

Post Tests. Finally Table 3 refers to the number of correct answers obtained from

each experimental group taking into account the items contained in Pre and Post
Tests. The discussion will start by looking at the tables related to these viewpoints.

Pre Test Intermedide Post Test

Group A
(roup B
Group c

8.75%
15.00%

45.00%

1250%
33.30%
43.75%

9.37%
77.50%
70.(0%

eacm
MCC%

CO.00%

50.0096

40.0036

32t 0036

211.0396

OM%

lime Test

0 !limed:To

01 Rd Test

A
. ,

44
Gem A Grow B Gr,,C

Table 2: General Group's Performance

From Table 1 it is

possible to interpret that the
didactic sequence an effective
way to introduce trigonometrical
functions to students.

It is clear that
experimental groups performed
better than reference group.

Looking at percentages
of correct answers of gyoup B
and C in the Post Test we could
say that they were closed to
each other.

However the performance of group B was more consistently increased.

Table 1 also indicates that both experimental groups presented greater leap of

correct answer from the Intermediate to Post Test than from Pre to Intermediate test.

Regarding the groups variation tax from Pre and Post Test, (see Table 2) group B

presented an enormous percentage of variation in comparison with the other two groups.
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Pre Test Post Test Variation
Group A
Group B
Group C

14
12
36

15
64
56

0.62%
65%
25%

OBS: The maximun number of correct answers for
Group A in each test is 160 (i.e. 16 students by 10 itens)

For Group B and C are 80 ( 8 students by 10 itens)

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

[['[[[ [[ [: ;eV
'

EtiffiAtil v4,-,4,L.T,±';44

'I 61..',LL ,' I,
A::: nm

"I:

ggi0.00%

Group A Group B Group C

Table 3: Tax of Correct Answers Variation

If we consider that a test can
be a thermometer which
expresses how much a person
knows about something, Table 2
points out that the school method
was not effective enough to
develop the introductory
trigonometrical concepts among
these students. In fact added the
information given by Tables 1
and 2, the reference group
started from a low level of
knowledge, increased a little bit
during a trigonometry class and
thus came back to almost the
same point as the beginning.

Looking at the experimental groups performance from items perspective, Table 3
shows that group B obtained better results than group C in 60% of the items ( six out of
10 itens), and only in 20% of them (two out of 10 itens) group C was better than B.

Item

2

Group%
i.re Test Post Test

2 7
1 6

7
56

8

Group C
Item Pre Test Post Test

1 5 6
2 2 4
3
4
5
6

6
02 5

5
6
7

Table 4: Number of Corrext Answer by Items

Conclusion

In fact, looking at items 5 and 6
of Pre Test there was no student
from goup B able to answer
them correctly but after the
sequence this number increased
to 6 and 8 students respectively.
Moreover in almost all itens
(except itens 8 and 9) the number
of students who correctly
answered them was increased.

We concluded that both
group performed better from Pre
to Post Test, however group B
presented the best results.

The general analysis of a students'performance which participated in our
experiment pointed to a constant growth of formation and development of concepts, to
both experimental goups, from the ,significative increase in the number of correct

`) "i
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answers in Pre and Post test. The application of the didactic sequence showed how

profitable it was to work in two contexts, since we noticed throughout the
development of group study that students were able to make correspondences among

the presented tasks in each context. Especially Group B - students have several times

referred to the facts which were observed in 'experimental world'when working with

the computers tasks. We are convinced that in order to develop the approached subject,
according to our didactic sequence, both contexts were necessary and complementary.

The main experiment conclusion supported by our analyses is that in this
research, the introduction order of contexts interfered on learning process. Whatever
the viewpoint we chose to observe the students'groups and the most successful was

the one which worked with 'experimental world' and afterwards with the computer

(Group B).

Our research suggests that the learning process in computer contexts becomes

more efficient when students do not have any previous contact with the subject and when

this subject is preceded by concrete manipulation in less compromised to formal situations.
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ABSTRACT: We examine the characteristics of the successful/unsuccessfull student
in Mathematics considering psychological and cognitive factors. The successfid
student at a long range was identified with that one which exhibits a flexible way of
thinking, which allows him to attain a more global and significant understanding of
the concepts. Starting from teacher and students interactions and from classroom
observations we have verified that when teachers make use of flexible forms of
thinking, they may be contributing for some students to seek for a sense in the use of
concepts and formulas, and also contributing for their success in Mathematics. We
suggest that teachers deliberately assume a classroom attitude which will stimulate
problem solving abilities and forms offlexible and autonomous thinking.

Flexibility of thinking and success and failure in mathematics

In our experience, we have noticed that the teaching process might be contributing
for error and failure in mathematics. The emphasis in formal procedures (algorithms
and rules) unrelated to the concept that supports them inhibits the necessary flexibility
of thought that is essential for success in mathematics (DAVID & MACHADO,
1996).

GRAY & TALL (1993) dealt with the question of success and failure in mathematics
going into the way students work with certain Mathematical concepts: the procepts.
To these authors the procepts are mental objects that consist of a certain combination
of a process and a concept produced by that process, and a symbol that may be used to
represent either or both of the above. For instance, the symbol 3+2 can be either the
process of adding 3 to 2 or the representation of the concept of addition of 3 to 2.
According to these authors the notion of procept applies to those concepts in
arithmetic, algebra and analysis which are initially learned through a process, but not
to concepts learned by definitions or to the major part of geometrical concepts which
are introduced through visual perception.

GRAY and TALL claim that students with success in mathematics are those that
master the mathematical symbolism both dealing with the symbol as a process and
realizing that underlying the symbol there is a mathematical concept, as in the

This research report is partly supported by CNN and has received colaboration from the students Gizellc da Silva
Leite, Alisson Augusto Marques and Denise da Silva Ribas Capuchinho.
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example above. These students can more easily both establish mathematical
connections and draw generalizations.

The work of GRAY and TALL contributed towards helping us understand and make
more explicit some problems in the teaching of mathematics which we have been
thinking about for some time now. It was a starting point in our interest for the
didactic-pedagogical factors that can lead the student to develop a greater flexibility of
thinking that enables him/her to reach a more global understanding of the concepts.

This understanding assumes the mastery of the symbolic language specific to
mathematics and the association between the symbol and a process or a concept

represented by the symbol or with other more general, concepts related to it as the
situation arises. The flexibility of thinking is related with the easiness with which the
student is able to cross these different levels of association in the adequate moments.

Research Methodology

We are developing our work in the Brazilian school system. We recognize its
assessment system privileges those students coming from the ruling classes and that it
has a conception of success and failure that is strongly related to social factors.

Despite our awareness of this situation and of the importance of other factors, such as

those of psycho-social and psychoanalytical nature and those related to the structure
and organization of the school system, we concentrate in our work, nevertheless, in the

analysis of cognitive factors keeping it in the pedagogical level, being given our

professional expertise.

Despite the fact that the aspects being considered here are seen by various authors as

less important to the question of success/failure in school than the aspects referred to
above, our aim is to demonstrate that the analysis of the interaction teacher-student-

content, made from the point of view of the classroom, may also give a significant
contribution to the discussion of the question being envisaged.

It is important to recall here the group of researchers that have been working in the line

of research of 'cognitive acceleration' and 'teaching to think' (ADEY, 1988; COLES,
1993; McGUINNESS, 1993; TANNER & JONES, 1995). Their work has been
demonstrating that teacher's interference can play a significant role in the development

of their student's thinking. These researchers base their work in instruction models
that start from the idea that the thinking and learning processes are social constructions

adopting a socio-constructivist approach.

We interviewed 21 students, some considered to be "good" students, others

"mediocre" and still others "weak" in Mathematics. The students belong to 5th, 7th
and 8th grades. They were observed during a month with an average of four lectures
being observed each week, in each class. We followed this classroom activity with the

aim of testing the method employed in the research. Considering the objective of our

work is to identify teaching methods that could be contributing for students' flexible
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thinking, we chose an observational and interpretative approach, i.e., direct
observation of the classroom followed by an analysis of the observed data. In what
follows we give only a .short account of the interviews and observations we have
made; a more complete account can be found in DAVID & LOPES (1997).

We chose this school because its students "are known" for showing an independent
way of thinking and for having an attitude of great autonomy regarding the learning
process. We exPected to find in this school teachers with methods of instruction that
would bring forward flexible ways of thinking , that is, emphasizing, among other
things, those abilities of thought which are stressed by the cognitive acceleration
research group (COLES, 1993; TANNER & JONES, 1995). That is to say, we thought
we might find in this school teachers that would encourage their students to think and
plan their own work by themselVes as well as discusS it.

The students' point of view about success and failure in mathematics

The interviews carried out in this 'school stress the association, on the one hand,
between the "good student" and the diligent, attentive and interested one, and on the
other, between the "weak student" and the inattentive one, that does not do properly
his/her work.

We asked the teachers thdt participated in our research to name, in each classroom,
two or three pupils that they would classify as "good in mathematics" and two or three
that they would rate as "in the mean", so as to be interviewed.

These interviews aimed at deepening our classroom observations and at getting to
know facts related to the student's school life that would allow us to identify striking
influences in his/her relation with mathematics.

Among the students interviewed those considered "good" maintained they have always
had interest in mathematics, easy understanding and pleasure in the subject. The
students considered to be "weak" stated that they had always felt difficulties in the
subject and that they did not like neither the subject nor to work in mathematics.
Generally speaking they did not associate their difficulties in the subject with the
teacher and his/her attitudes in the classroom.

In the group of students we interviewed, we found three which were very close to what
is, in our conception, a good student in mathematics, i.e., a student who makes use of
logic to solve problems free from given formulas and pre-established solving
strategies. They were the ones who were closer to the idea of flexibility of thought
(GRAY & TALL, 1993): ability to establish relations between different concepts and
to move freely between the concept its symbolic representation and usage. In
particular, among all the students observed, student Gu82, is the student that is closest
to GRAY & TALL's "successful student". He showed independent ways of problem

2 Students will be represented by an abbreviation of their names followed by tile number 5, 7 or 8, according to his/her
grade.
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solving which for the considered situations were more adequate, as they were simpler
and related to subjects of study learned before. This student's procedures are opposed
to those pupils' procedures imprisoned by canonical methods of thinking, rules and
formulas. The above mentioned authors stress that those latter students obtain a short
lived success. In the long nin they are bound to fail.

Teachers that make explicit the employment of flexible forms of thinking might .
be contributing to the success in mathematics of some of their pupils

At first sight, the observations made in the classroom did not match our expectations.
We found situations in which the instructors §eemed to lead to a dialogue with their
students that could encourage them to act autonomously so that they themselves would
take in their hands the learning process. Immediately, however, they would go back on
their own steps and take a posture that would inhibit this autonomy.

The example of teacher's interference that we considered the most positive from the
point of view of contributing to the flexibility of thinking of the student appeared in a
geometry class. It concerns the stun of the interior angles of a parallelogram. The
teacher asks: 'What if the parallelogram has angles greater then 90 °, how can the
total still add to 360 °?' This question produces a discussion between two students
where they search for a reason for the fact 'They are not all greater than 90 °, they
are not all equal. ' This example ends with a suggestive &ample presented by the
teacher.

It can be noticed that there was a positive interference from the part of the teacher that
draws an analogy with the sum of the interior angles of the rectangle that had been
studied before.

Next the teacher challenges the creatiVity of student Je5. His aim was that the student
would generalize the result about the sum of the interior angles of a parallelogram to
any quadrilateral.

'The teacher asks Je5 to draw a very crazy quadrilateral:

Je5 draws:

The teacher praises the pupil's creativity and says it is a quadrilateral but
not a convex one and that therefore it is not going to be studied at the
moment. He asks the student to draw another one'. (Classroom notes)

Je5 does as the teacher says drawing a convex, "less crazy", and less creative
quadrilateral and the class goes on.

The teacher misses the opportunity of exploring a little bit more the study of
quadrilaterals and its interior angles and ignores the possibility of making an
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interesting generalization about the sum of the interior angles of non-convex
quadrilaterals and calls back the attention of his students to routine problems.

We found, nevertheless, in this school some students with the characteristics described
by GRAY & TALL (1993), as in the following example:

'Exercise: Reduce to the same denominator
5'10'3

The teacher develops the algorithm in
the blackboard :

5,
5,

10,
5,

3

3
2
3

5, 5, 1 5

1, 1, 1 30
And says that it means 30.is ihe least conimon multiple of 5, 10 and 3.

He writes on the blackboard :
' '

and asks for the numerator of
303030

the first fraction 3 to be found.
5

Ma5 interferes saying it should be 18 since the denominator 5 has been
multiplied by 6, therefore the same should be done with the numerator.
The teacher says it is enough to do (30+ x 3. (Classroom notes)

The interference of the student is based on the concept of equivalent fractions and he
did not feel the need to evoke tbe algoritlun while the teacher is attached to the
canonical procedure.

Trying to understand these cases we decided to readdress our attention to the teachers
with the aim of verifying , if the classes we watched, gave us ground to decide whether
or not the teachers themselves were making use of the flexible way of thinking in their
classes. Shifting thus our attention from the student to the teacher we went back to the
classroom notes for a new reading. It -.allowed us to .verify that even though the
observed teachers were not encouraging in a totally deliberate and conscious way
flexible ways of thinking among their students the teachers themselves seize upon
flexible ways of thinking in several moments during their classes. Thus in an non-
intentional way they end up serving as an example to their students that adopt some
of these ways of thinking used by their teachers.

There .are several examples of this kind of situation we could present here. We elected
to show here two of the most significant ones.

Example 1

'A girl (Gi7) asked to solve an exercise but the teacher asked another'

student Th7 to solve it instead. Th7 should do:
2

, +%2., When Th7 put

x3 in the denominator, the other students were not sure whether it should
2x+5+x

be x3 or .0. He made an error and ended up with
x3

2 ' -3,2 - 236 -I



Since they were-unsure whether x3 or x' was correct, the teacher showed
that using different methods the answer turns out to be the same (.) Going
on the teacher explained that with x' one would have to factor
2x3 +5xs +x4

and she asked which factoring method should be used and
x'

the answer was the common factor method. Immediately after crossing out-
the x3, the teacher showed that the answer would have been the same if the
l.c.m. had been used.' (Classroom notes).

The teacher explores the studcnt's difficulties exchanging views with them and
comparing the two solutions.

Example 2

Going back to the sum of interior angles of a quadrilateral class we noticed P53
encourages his students to make generalizations and to justify them.

The procedures used by this teacher are mofe frequently closer to that variety of
procedures that is characteristic of the cognitive acceleration progiams mentioned
before

As we discussed before, P5 encourages his students to make generalizations:-

PS: What is the sum of the angles in a quadrilateral?
Some students answer 360 °, and Ma5 asks whether this is true for any
quadrilateral. The teacher says it is and asks someone to provide a proof
for the statement. Mrc5 interferes saying that it suffices to divide the
quadrilateral in two triangles and that each triangle has 180 °. The teacher
approves and draws the figure in the blackboard (Classroom notes).

Although this discussion is happening in a fifth grade classroom we noticed a
deliberate intention of P5 to carry his students into making an informal deduction.

Final Considerations
Summing up, these examples suggest that the very fact that the teacher himself seizes
upon some characteristics of flexible thinking in his/her classes, could be contiibuting,
even in a non deliberate way, to develop in his/her students some thinking abilities
important for the learning of mathematics.

A similar point of view was presented by HIRABAYASHI & SHIGEMATSU in a
work cited by TANNER & JONES:

Hirabayashi and Shigematsu (1987) argue that students develop their
concepts of metacognition by copying their teacher's behaviour, and thus,

3 Filth's grade teacher.
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their executive or control functions represent an "inner" teacher.'
(TANNER & JONES, 1994, p.420)

HIRABAYASHI & SHIGEMATSU discuss their results supported by VYGOTSKY's
work. In fact, VYGOTSKY (1996) states thaf all superior psychological functions are
originated from the real relations between individuals in a process which develops
from the interpersonal to the intrapersonal relations, up to being definitively
internal i zed.

This non-deliberate influence of the teacher needs to be deeply investigated, through a
more systematic observation of the work developed in the classroom and through the
study of the development of the students' thought.

Moreover, the point of view expressed by researchers such as COLES, who are
discussing principles, problems and programs for the 'teaching thinking', suggests that
there should be a more directed action of the teacher:

'...though it is reasonable to argue that good teachers in all subjects
encourage their pupils to think, this is not the same as teaching them how
to think, for instance by explicitly drawing their attention to the kind of
thinking they are engaged in. Teaching thinking means providing not just
encouragement and opportunity, but- a knowledge of principles and
techniques, and regular guided practice in applying those principles and
techniques.' (COLES, 1993, p.339)

Our analysis led us to believe that, if the teacher intentionally Carries through a work in
the direction of developing those abilities, he/she can reach a more significant number
of students. He/she can even reach those students, which are the great majority, and
sooner or later end overcome by failure in school mathematics.

Explaining in the interviews how they would solve mathematical problems, those
students said they would try to remember rules, formulas or concepts learned before,
or follow the model in the textbook or in the example given by the teacher. Thus, they
were being trained to answer what the teacher is expecting, and they would not be
acting autonomously. These students may even be well succeeded in school tasks
without necessarily making use of a reflexive thinking. Nevertheless, as GRAY &
TALL (1993), we also believe that these students' success in mathematics is only
transitory. From a certain point onwards, either because the level of demands on the
reflexive thinking increases, or because the level of demands regarding the amount of
rules and algorithms to be trained and memorized increases, their study procedures fail
to respond satisfactorily to these demands.

Our results suggest, therefore, that the abilities of thinking necessary for a long range
success in mathematics are not being sufficiently encouraged by teachers. This
situation seems particularly serious nowadays, when mathematics educators are
diminishing the importance of techniques and algorithms, and pointing to the necessity
of developing some 'basic' abilities (CARVALHO & SZTAJN, 1997; D'
AMBROSIO, 1997; LELLIS & IMENES, 1994), almost always related to problem
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solving abilities which presupposes an autonomous and flexible thinking, in the same
sense we have been discussing. This present perspective is practically a, consensus and
it can even worsen the problem of failure in mathematics, if teachers are not to quickly
and deliberately adopt a classroom posture to encourage autonomy and flekibility. If
from now on students are to be evaluated according to these abilities, even those
which still attain some success today because they cope well with school tasks, will be
faded to failure.

Our present research in other schools, still at an initial stage, seems to add further
evidence to this point of view. It will enable us to provide more orientation for the
teacher who is willing to contribute for his/her students' success in mathematics.
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THE INFLUENCE OF METACOGNITIVE AND VISUAL SCAFFOLDS ON
THE PREDOMINANCE OF THE LINEAR MODEL

Dirk De Bock (EHSAL, Brussels and University of Leuven; Belgium),
Lieven Verschaffel (University of Leuven; Belgium) and

Dirk Janssens (University of Leuven; Belgium)

Two recent studies by De Bock, Verschaffel & Janssens (1996, 1998) revealed a very
strong tendency among 12-16-year old pupils to apply the linear model in non-linear
problem situations involving length and area of similar plane figures. More recently,
we executed a new investigation in which we mamPulated two new aspects of the
experimental context to get a better understanding of the predominance of the linear
model observed in our previous studies, namely (1) the provision of a tnetacognitive
and (2) of a visual scaffold. While both scaffolds yielded a significant effect on the
number of correct answers on the non-linear problems, this effect remained remar-
kably small, suggesting that pupils' tendency towards linear modelling is indeed very
strong, deep-rooted and resistant to change.

THEORETICAL AND EMPIRICAL BACKGROUND

Pupils' tendency to apply linear proportional reasoning in problem situations for
which it is not suited, has been frequently described and illustrated in the literature
on mathematics education (see, e.g., Berté, 1993; Freudenthal, 1983, Rouche, 1989),
but until recently, empirical data on the scale and persistence of this phenomenon
were practically absent. In two recent studies (De Bock, Verschaffel & Janssens,
1996, 1998), this phenomenon of unbridled proportional reasoning was amply docu-
mented for secondary school pupils working on word problems involving length and
area of similar plane figures. In these two studies a paper-and-pencil test was admi-
nistered to 120 12-13-year old and to 222 15-16-year old pupils. The test involved 12
experimental items about similar plane figures: 4 items about squares (S), 4 about
circles (C), and 4 about irregular figures (I). Within each category of figures, there
were 2 proportional items (e.g. "Farmer Gus needs approximately 4 days to dig a
ditch around his square pasture with a side of 100 m. How many days would he
need to dig a ditch around a square pasture with a side of 300 rn?"), and 2 non-
proportional items (e.g. "Farmer Carl needs approximately 8 hours to manure a
square piece of land with a side of 200 m. How many hoyrs would he need to
manure a square piece of land with a side of 600 m?"). In both studies the pupils
were divided in three equivalent groups with different testing conditions. In Group I
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no special instructions were given. The pupils of Group II were explicitly instructed

to make a sketch or drawing of the problem situation before computing their answer.

In Group III every problem was accompanied by a correct drawing.

The major results of these studies can be summarized as follows. First, we

observed an extremely strong main effect of the task variable "proportionality" in

both studies: in study 1 (with the 12-13-year olds) the proportional items elicited

92% of correct responses, while only 2% of the non-proportional items was answe-

red correctly; in study 2 (with the 15-16-year olds) the overall percentages of correct

responses on the proportional and non-proportional items were, respectively, 93%
and 17%. Second, as expected, the type of figure played a significant role in both

studies: S-problems were the easiest and I-problems the most difficult kind of pro-

blem, but these differences occurred only in the non-proportional items. Third, we
unexpectedly did not find a beneficial effect of the self-made or given drawings,

neither for the test as a whole nor for the non-proportional items in particular.
While these two studies demonstrate pupils' very strong tendency to apply

linear proportional reasoning in problem situations for which it is not suited, they do

not allow a straightforward interpretation of it. More particularly, it could be argued
that the remarkably low results obtained in these studies, were an artefact of the
experimental conditions under which the data-collection took place, and that in a
more favourable experimental setting the predominance of the linear model would
probably be much less overwhelming. According to this argumentation, the extre-
mely weak results on the non-proportional items and the absence of a positive effect
of the self-made or given drawings were caused by the fact that the pupils had ap-
proached the test with the (implicit) expectation that it would consist of routine tasks
only (as is actually typically the case in current school mathematics tests). Moreover,
it could be asserted that the absence of a substantial effect of the self-made or given
drawings was not surprising, taking into account the lack of useful, reference points
for measuring lengths and areas in these drawings (for more. details about these
arguments see De Bock et al., 1998).

Starting from the available results and their multiple interpretations, a new
study was set up in which the administration of the proportional and non-proportional
items was experimentally manipulated in two different ways to get a clearer picture
of the predominance and the changeability of the linear model. More specifically, we
focused on the role of the following two scaffolds on pupils' solutions of word
problems involving length and area of similar plane figures: (1) a metacognitive
scaffold, aimed at enhancing pupils' mindfulness while doing the test, and (2) a
visual scaffold, aimed at increasing the efficacy of their actual use of drawings.
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METHOD

Two-hundred-and-sixty 12-13-year olds and hundred-and-twenty-five 15-16-year olds
participated in the study. In both age-groups pupils were matched in four equivalent
subgroups. In all four subgroups the same paper-and-pencil test as in the two previ-
ous studies was given to the pupils, but the administration of the test was different
four each group. In the M-V- group (= no metacognitive and no visual scaffold
group) no special help was given. In the M +V- group (= the metacognitive scaffold
group), the test was preceded by an introductory task involving the following non-
proportional item about a cube:

"A wooden cube with side 2 cm weighs 6 grams. How heavy is a wooden
cube with side 4 cm?"

This item was accompanied by two alternative solution strategies - an incorrect one
based on linear proportional reasoning and the correct one based on non-proportional
reasoning -, and pupils were asked to select the correct- one and to motivate their
selection. In the M-V+ group (= the visual scaffold group), every item in the test
came with an appropriate drawing of the problem situation on squared paper. Finally,
in the M+V+ group (= the metacognitive and visual scaffold group) both kinds of
help were combined.

HYPOTHESES

On the basis of the previous studies (De Bock et al., 1996, 1998), we first hypothesi-
zed that the predominance of the linear model would be a serious obstacle for the
majority of the pupils of both age-groups. Consequently, we predicted that pupils'
overall performance on the test, would be very low, due to their low scores on the
non-proportional items.
Second, based on the hypothesis that several years of secondary school mathematics
will bear a positive effect on pupils' ability to resist and overcome the "linearity
trap", we predicted that the 15-16-year olds would perform better on the test in
general and on the non-proportional items in particular than the 12-13-year olds.
Third, for reasom which are explained in detail in De Bock et al. (1998), it was
predicted that pupils' performance would be different for the distinct types of plane
figures involved in the study. More specifically, the S-items were expected to be the
easiest and the I-items the most difficult.
Fourth, we hypothesized that confronting pupils with a non-proportional problem and
forcing them to make a deliberate choice between the incorrect (linear) and the
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incorrect (non-linear) solution at the onset of the test, will have a beneficial effect on
the mindfulness with which they approach (the non-proportional items in) the test.
Therefore, we predicted that the two groups receiving the metacognitive scaffold (=
M+V- and M+V+) would perform better on (the non-proportional items in) the test
than those who did not receive this scaffold (= M-V- and M-V+). Furthermore, it
was hypothesized that the metacognitive support would be more effective for (non-
proportional) items about squares than for those dealing with circles or irregular
figures (because the geometrical figure of the introduction problem resembled most
that of the S-items), and also that this scaffold would be more effective in the oldest
age-group (because these pupils have greater mastery of the mathematical knowledge
and skills needed for solving non-proportional items).
Fifth, we anticipated a better performance on (the non-proportional items in) the test
for the two groups who received the visual scaffold (= M-V+ and M+V+) than
for those who did not get it (= M-V- and M+V-). This prediction was based on the
hypothesis that the availability of these drawings on squared paper would be of
considerable help to pupils who had difficulties in modelling and solving the (non-
proportional) items, by helping them see the relationships between the lengths and the
areas of the two plane figures involved in the problem and by suggesting an informal
but efficient solution method based on "paving". Moreover, we hypothesized that -

just as the metacognitive scaffold - the visual scaffold would interact with the two
other experimental variables, namely the nature of the figures involved in the (non-
proportional) items and the age of the subjects. With respect to type of figure, it is
evident that providing a drawing of the problem on squared paper is much more
helpful when the (non-proportional) item deals with squares than when it involves
circles or irregular figures. Therefore, we predicted that the drawing effect would be
greater for (non-proportional) S-items than for (non-proportional) C- and I-problems.
Moreover, we anticipated a greater facilitating effect of the visual scaffold in the
oldest age,group because 15-16-year old pupils are already more experienced in
effectively applying heuristic methods (including the use of drawings and other pro-
blem visualisations).

Sixth, we hypothesized a cumulative effect of the metacognitive and the visual
scaffold. The rationale behind this hypothesis is that pupils receiving both scaffolds
do not only receive a strong warning that not all items in the test are standard pro-
portional problems; moreover, they are armed with an extra tool for modelling and
solving these difficult and unfamiliar problems in an intuitive, context-bound, graph-
ical way requiring little or no sophisticated formal-mathematical knowledge. There-
fore, we predicted that the best performance on (the non-proportional items in) the
test would come from the group receiving both the warning and the drawings (M +V +).
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RESULTS

Table 1 gives an overview of the percentage of correct responses for the four groups
of 12-13- and 15-16-year olds on the proportional and the non-proportional items
about squares (S), circles (C) and irregular figures (I) in the test.

12-13-year olds 15-16-year olds

Proportional Non-proportional Proportional Non-proportional

items items items items

SCI S C I SCI S C I

M-V- 92 98 95 8 5 1 90 94 98 32 15 2

M +V- 92 100 95 9 3 0 74 80 97 44 21 12

M-V+ 95 98 90 19 8 2 82 87 97 29 18 3

M +V+ 84 90 91 24 10 0 87 78 97 60 23 8

Table 1 Overview of the results

As in the two previous studies, the results provided a very strong confirmation of the
first hypothesis. Indeed, an analysis of variance revealed an extremely strong main
effect of the task variable "proportionality" (F(1,377) = 3293.95; p <. .01): for the
two age-groups and the four different groups together: the percentage of correct res-
ponses for all proportional and for all non-proportional items was 91% and 15%,
respectively.

The second hypothesis concerning the impact of the age factor was 'also confir-
med: the 15-16-year olds performed better on the test in general than the 12-13-year
olds (F(I,377) = 20.77; p < .01); percentages of correct answers were, respective-
ly, 55% and 50%. Furthermore, an interaction effect between the variables "age"
and "proportionality" was found (F(1,377) = 55.83; p < .01): the 15-16-year olds
performed better than the 12-13-year olds on the non-proportional items (22% and
7% correct responses, respectively), but these better scores on the proportional items
were accompanied by lower scores on the proportional items (88% and 93% correct
responses, respectively).

In line with the third hypothesis, the type of "figure" involved in the problem
had a significant main influence on pupils' performance (F(2,754) = 38.21;
p < .01), and the scores were in the expected direction (58%, 52%, and 49% cor-
rect responses on the S-, C-, and I-items, respectively). Also, an interaction effect
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was found between "figure" and "proportionality" (F(2,754) = 107.43; p < .01).
While the percentages of correct responses on the non-proportional items were M the
expected direction (28%, 13%, and 4% for the S-, C-, and I-items, respectively), the
percentages of correct responses on the proportional items were in the opposite direc-
tion (87%, 91%, and 95% for the S-, C-, and I-items). These results indicate that the
above-mentioned main effect for type of figure was completely due to the observed
differences within the non-proportional items.

Fourth, we did not find an overall beneficial effect of the metacognitive scaf-
fold on pupils' performance on the test as a whole the overall performance of the
pupils from the M+V- and the M+V+ groups was almost exactly the same as that
of the pupils from the M-V- and the M-V+ groups (53% and 52%, respectively).
But the analysis of variance revealed the expected "warning x proportionality"
interaction effect (F(1,377) = 15.50; p < .01). The warning did have a positive
effect on the scores of the non-proportional items, but the size of this effect was
rather small: the percentage of correct responses in the groups with and without the
metacognitive scaffold were 18% and 12%, respectively. The better performance on
the non-proportional items in the M+ groups was parallelled with a weaker score on
the proportional items (i.e., 89% correct answers versus 93% for the M- groups).
Furthermore, the hypotheses concerning the differential impact of the metacognitive
scaffold on the distinct types of non-proportional problems was also confirmed. The
analysis of variance revealed a significant "warning x proportionality x figure"
interaction effect (F(2,754) = 5.45; p < .01). The percentages of correct answers
on the non-proportional S-, C-, and I-items were 34%, 14%, and 5%, respectively,
in the groups with warning and 22%, 11%, and 2%, respectively, in the groups
without warning, but only the difference for the S-items was significant (p < .01).
So, the warning did matter for the S-items, but this warning effect did not transfer
from the S- to the C- and I-items. Finally, the anticipated greater effect of the war-
ning in the oldest age-group, was confirmed too. The analysis of variance revealed a
significant "warning x proportionality x age" interaction effect. (F(1,377) = 7.35;
p < .01). The percentage of correct responses on the non-proportional items in the
groups with and without warning were 8% and 7%, respectively, for the 12-13-year
olds, and 28% and 16%, respectively, for ihe 15-16-year olds. In other words, only
the 15-16-year olds took advantage from the metacognitive scaffold.

Fifth, we also did not find an overall effect of the visual scaffold: the test
performance of the pupils who received the drawings on squared paper was not
significantly better than that of those Mi.() did.not receive these drawings; percentages
of correct answers were, respectively, 53% and 52%. But the analysis of variance
revealed a significant "drawing x proportionality" interaction effect
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(F(1,377) = 6.96; p < .01): the visual scaffold did have a small but significant
positive effect on the scores for the non-proportional items (the percentage of correct
responses in the two groups with and without drawings were 17% and 13%, respecti-
vely), but, once again, the better performance on the non-proportional items in the
M-V+ and the M+V+ groups was accompanied by a weaker score on the propor-
tional items (90% correct answers, versus 92% for the two no-drawing groups).
Finally, the results did not support the hypotheses that the drawings would have the
greatest effect on the, performance on the non-proportional S-items and in the oldest
age-group. The analysis of variance revealed neither a significant "drawing x pro-
portionality x figure" interaction effect, nor a significant "drawing x proportionality
x age" interaction effect, implying that the above-mentioned "drawing x proportio-
nality" interaction effect manifested itself equally in the distinct problem types (i.e.,
S-, C-, and I-problems) and for the two age-groups of pupils (i.e., the 12-13- and
15-16-year olds).

Sixth, the results did not support the hypothesis concerning a cumulative effect
of the metacognitive and the visual scaffold. There was neither a "warning x dra-
wing" effect nor a "warning x drawing x proportionality" interaction effect, which
means that both scaffolds did .not add up.

CONCLUSION

In two earlier studies (De Bock et al., 1996, 1998) the strength and omnipresence of
the linear model was demonstrated with respect to problems involving length and
area of similar plane figures in 12-16-year old pupils. In the present study we inves-
tigated the effect of the following two context variables on the (inappropriate) use, of
the linear model by pupils of the same age level who were confronted with the same
problem set: (1) the provision of a metacognitive scaffold in the form of an introduc-
tory task which was aimed at enhancing the mindfulness with which the pupils would
make the test, and (2) the provision of visual scaffolds in the form of a drawing of
each prtiblem made on squared paper, which provided pupils useful reference points
for measuring lengths and areas and thereby -. helped them in different ways to
model and solve the problems properly.

The major research question was to what extent these two manipulations of the
"experimental setting" would lead to a considerable decrease in the number of incor-
rect answers based on inappropriate linear modelling on the non-proportional items in
the test. The greater the improvement in pupils' test scores (on the non-proportional
items) as a result of these experimental manipulations, the more evidence we would
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have that the "alarming results" obtained in our previous studies (De Bock et al.,
1996, 1998) were not as frightening as we might initially have thought. On the other
hand, if we found that the warning and the drawings would have only a marginal
impact on pupils' scores (on the non-proportional items), this would yield further,
and even more convincing support for the strength, the omnipresence and the obsti-
nacy of the "illusion of linearity" among secondary school pupils.

The study yielded significant effects in the expected direction of both kinds of
scaffolds on pupils' performance on the non-proportional items. As a drawback of
these better results on the non-proportional items in the scaffolded conditions, the
pupils' results on the proportional items decreased. Apparently, the scaffolds made it

at least for some pupils easier to discover and resolve the non-proportional nature
of a problem, but as a result they sometimes began to question the correctness of the
linear model for problem situations in which that model was appropriate. However,.
the most important result of the present study is that the positive effects of the two
scaffolds on pupils' solutions of the non-proportional items were (very) small and
restricted to certain kinds of problems and age-groups. In this respect, we remind
that the combination of both scaffolds still did yield 40% incorrect answers on the
easiest problem type (S-problems) in the oldest age-group (15-16-year olds) (see
Table 1)!
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TO TEACH DEFINITIONS IN GEOMETRY OR TEACH TO DEFINE?

Michael de Villiers, University of Durban-Westville, South Africa

This paper argues from a theoretical standpoint that students should be actively engaged in the

defining of geometric concepts like the quadrilaterals, and presents some data relating to a teaching

experiment aimed at developing students' ability to define.

Introduction
Already early in this century the German mathematician Felix Klein (1924) came out strongly

against the practice of presenting mathematical topics as completed axiomatic-deductive systems,

and instead argued for the use of the so-called "bio- genetic" principle in teaching. The genetic

approach has also been advocated by Wittmann (1973), Polya (1981), Freudenthal (1973) and many

others. Essentially, the genetic approach departs from the standpoint that the learner should either

retrace (at least in part) the path followed by the original discoverers or inventors, or to retrace a path

by which it could have been discovered or invented. In other words, learners should be exposed to

or engaged with the typical mathematical processes by which new content in mathematics is

discovered, invented and organized. Human (1978:20) calls it the "reconstructive" approach and

contrasts it as follows with the so-called "direct axiomatic-deductive" approach:

"With this term we want to indicate that content is not directly introduced to papils (as

finished products of mathematical activity), but that the content is newly reconstructed

during teaching in a typical mathematical manner by the teacher andlor the pupils." (freely

translated from Afrikaans)

The didactical motivation for the reconstructive approach includes, among others, the following

elements, namely, that its implementation highlights the meaning (actuality) of the content, and That

it allows students to actively participate in the construction and the development of the content. With

different content (definitions, axiom systems, propositions, proofs, algorithms, etc.) one can of

course distinguish different mathematical processes by which that content can be constructed (eg.

defining, axiomatizing, conjecturing, proving, algorithmatizing, etc.). A genetic or reconstructive

approach is therefore characterized by not presenting content as a finished (prefabricated) product,

but rather to focus on the genuine mathematical processes by which the content can be developed or

reconstructed. Note however that a reconstructive approach does not necessarily imply learning by

discovery for it may just be a reconstructive explanation by the teacher or the textbook.

Defining
The direct teaching of geometry definitions with no emphasis on the underlying process of defining

has often been criticised by mathematicians and mathematics educators alike. For example, already

in 1908 Benchara Blandford wrote (quoted in Griffiths & Howson, 1974: 216-217):
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"To me it appears a radically vicious method, certainly in geometry, if not in other

subjects, to supply a child with ready-made definitiohs, to be subsequently memorized

after being more or less carefully explained. To do this is surely to throw away deliberately

.one of the most valuable agents of intellectual discipline. The evolving of a workable

definition by the child's own activity stimulated by appropriate questions, is both

interesting and highly educational."

The well-known mathematician Hans Freudenthal (1973:417-418) also strongly criticized the

traditional practice of the direct provision of geometry definitions claiming that most definitions are

not preconceived, but the finishing touch of the organizing activity, and that the child should not be

denied this privilege. Ohtani (1996:81) has argued that the traditional practice of simply telling

definitions to students is a method of moral persuasion with several social functions, amongst which

are: to justify the teacher's control over the students; to attain a degree of uniformity; to avoid having

to deal with students' ideas; and to circumvent problematic interactions with students. Vinner (1991)

and many others have presented arguments and empirical data that just knowing the definition of a

concept does not at all guarantee understanding of the concept. For example, although a student may

haVe been taught, and be able to recite, the standard definition of a parallelogram as a quadrilateral

with opposite sides parallel, the student may still not consider rectangles, squares and rhombi as

parallelograms, since the students' concept image of a parallelogram is one in which not all angles or

sides are allowed to be equal.

Linchevsky, Vinner & Karsenty (1992) have further reported that many student teachers do not even

understand that definitions in geometry have to be economical (contain no superfluous information)

and that they arc arbitrary (in the sense, that several alternative definitions may exist). It is plausible

to conjecture that this is probably due to their past school experiences where definitions were

probably supplied directly to them. It would appear that in order to increase students' understanding

of geometric definitions, and of the cdncepts to which they relate, it is essential to engage them at

some stage in the process of defining of geometric concepts. Due to the inherent complexity of the

process of defining, it would also appear to be unreasonable to expect students to immediately come

up with formal definitions on their oWn, unless they have been guided in a didactic fashion through

some examples of the process of defining which they can later use as models for their own attempts.

Furthermore, the construction of definitions (defining) is a mathematical activity of no less

importance than other processes such as Solving problems, making conjectures, generalizing,

specializirig, proving, etc., and it is therefore strange that it has been neglected in most mathematics

teaching. In mathematics we can distinguish between two different types of defining of concepts,

namely, descriptive (a posteriori) and constructive (a priori) defining (e.g. compare
Krygowska, 1971; Human, 1978:164-165; De Villiers, 1986;1994).

256,.
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Descriptive defining
"... the describing definition ... outlines a known object by singling out a few characteristic

properties". Hans Freudenthal (1973 : 458)

With the descriptive (a posteriori) defining of a concept is meant here that the concept and its

properties have already been known for some time and is defined only afterwards. A posteriori

defining is usually accomplished by selecting an appropriate subset of the total set of properties of

the concept from which all the other properties can be deduced. This subset then serves as the

definition and the other remaining properties are then logically derived from it as theorems.

Constructive defining
"... the algorithmically constructive and creative definition ... models new objects out of familiar

ones" - Hans Freudenthal (1973 : 458).

Constructive (a priori) defining takes places when a given definition of a concept is changed through

the exclusion, generalization, specialization, replacement or addition of properties to the definition,

so that a new concept is constructed in the process. In other words, a new concept is defined "into

being", the further properties of which can then be experimentally or logically explored. Whereas

the main purpose or function of a posteriori defining is that of the systematization of existing

knowledge, the main function of a priori defining is the production of new knowledge. We shall

further on mainly focus on a discussion of the teaching and learning of the process of descriptive

defining.

The USEME experiment
From the Van Hiele theory, it is clear that underStanding of formal definitions can only develop at

Level 3, since that is where students start noticing the inter-relationships between the properties of a

figure. Is it possible to devise teaching strategies for the learning of the process of defining at Van

Hide Level 3? This in fact was the focus of the University of Stellenbosch Experiment with

Mathematics Education (USEME) conducted with a control group in 1977 and an experimental

group in 1978 (see Human & Nel et al, 1989a). The experiment was aimed at the Grade 10.(Std 8)

level and involved 19 schools in the Cape Province. Whereas the traditional approach focusses

overridingly on developing the ability of making deductive proofs (especially for riders), the

experimental approach was (among others) aimed mainly at:

letting students realize: (1) that different, alternative definitions for the same concept are

possible; (2) that definitions may be uneconomical or econothical; (3) that some economical

definitions lead to shorter, easier prOofs of properties

developing students' ability to construct formal, economical definitions for geometrical

concepts
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The following is an example of one of the first exercises in (descriptive) defining used in the

experimental approach (see Human & Nel et al, 19896:21). Note that although these students had

already come across the concept "rhombus", they had not been given any definition in earlier

classes.

EXERCISE

1(a) Make a list of all the common properties of the figures above. Look at the

angles, sides and diagonals and measure if necessary.

(b) What are these types of quadrilaterals called?

(c) How would you explain in words, without making a sketch, what these

quadrilaterals are to someone not yet acquainted with them?

The spontaneous tendency of almost all the students in (c) was to make a list of all the properties

discovered and listed in (a); thus giving a correct, but uneconomical description (definition) of the

rhombi (thus suggesting Van Hic le Level 2 understanding). This led to the next two exercises which

were intended to lead them to shorten their descriptions (definitions) by considcring leaving out

some properties.

Typically the students then came up with different shorter versions, some of which were incomplete

(particularly if they're encouraged to make them as short as possible by promising a prize!), for

exaMple: "A rhombus is a quadrilateralWith perpendicular diagonals". This provided opportunity to

provide a Counter-example and a discussion of the need to contain enough (sufficient) information in

one's descriptions (definitions) to ensure that somebody else knows exactly what figure one is

talking about. Also note at this stage that they were not expected to logically check their

definitions, but expected to check whether the conditions contained in their definitions provided

sufficient information for the accurate construction of a rhombus.

Psychologically, constrOctions like these are extremely important for the transition from Van Hide

Level 2 to Level 3, since it helps to develop an understanding of the logical structure of "if-then"

statements (compare Smith, 1940). For example, studeZ lqrvd to distinguish clearly between the
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relationships they put into a figure (the premisse) and the relationships which resulted without

any action on their part (the conclusion).

The students were then led into a deductive phase where starting from one definition they had to

logically check whether all the other properties could be derived from it (as theorems). The same

exercises were then repeated for the parallelograms. Eventually, it was explained to students that it

would be confusing if everyone used different definitions for the rhombi and parallelograms, and it

was agreed to henceforth use one definition only for each concept.

In order to evaluate whether students had developed some ability to formally define geometrie

concepts themselves, the following were some of the questions given afterwards to the
experimental, as well as the control group. The first question was of a known concept that both

groups had already treated in class (the control group in a direct way & the experimental group in a

reconstructive way). So essentially they just needed to recall a definition done in class. This

question therefore served only as a base line against which to judge their ability to define in the next

question which was of a completely new concept that had been not treated at all in any of the
groups.

1.

2.

Give a definition of the parallelograms.

Quadrilaterals which look like the one below is called a regular trapezium.

The regular trapeziums have among others the following properties:

(1) One pair of opposite sides parallel, but not equal.

(2) Diagonals are equal.

(3) Base angles are equal (see figure).

(4) Top angles are equal (see figure).

(5) A top angle and base angle are togther equal to 1800.

(6) One pair of opposite sides are equal, but not parallel.

Answer the following questions:

(a) Provide a definition (as short as possible) of the regular trapeziums.
(b) Prove that the properties of regular trapeziums not mentioned in your definition,

indeed logically follow from your definition.

Table 1 gives the results that were obtained. Note that both groups had the same teachers and that

they were statistically comparable in terms of IQ, language ability, etc. It is immediately noticeable

that the experimental group gave higher percentages of correct, economical definitions in bothcases.
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The experimental group also gave fewer correct, uneconomical definitions in both cases. This

improvement in tcrms of economy of definition for the experimental group, however, appeared to be

at a slight cost in relation to Question 1, in the sense that there was a slightly higher number of faulty

definitions which contained insufficient properties. It is possible that this increase was due to

uncritical attempts at producing economical definitions. This indicates a possible risk of the

experimental approach. What was perhaps extremely surprising was that both the control and

experimental groups performed better in defining the unknown concept than the known concept. A

possible explanation could be that in Question 2, the act of constructing a definition themselves,

forced them to more carefully consider the underlying logical relationships, than to just uncritically

try and recall a previously leamt definition in Question 1.

Question 1 Question 2

Correct economical Control 25% 44%

Experimental 54% 58%

Faulty Control 22% 8%

Experimental 26% 4%

Collect uneconomical Control 51% 47%

Experimental 19% 39%

None Control 2% .0%

Experimental 0% 0%

Table 1
Further discussion
From the constructivist assumption that meaningful knowledge needs to be actively (re)-constructed

by the learner, it also follows that students should be engaged in the activity of defining and allowed

to choose their own definitions at each Van Hide level. This implies allowing the following kinds of

meaningful definitions at each Van Hide level (compare Burger & Shaughnessy, 1986):

Van Hiele 1: Visual definitions, cg. a rectangle is a quad with all angles 90° and two long and two

short sidcs.

Van Hiele 2: Uneconomical definitions, eg. a rectangle is a quadrilateral with opposite sides

parallel and equal, all angles 90°, equal diagonals, half-turn-symmetry, two axes of symmetry

through opposite sides, two long and two short sides, etc.

Van Hiele 3: Correct, economical definitions, eg. a rectangle is a quadrilateral with an axis of

symmetry through each pair of opposite sides.

Thc first two examples show that students definitions at these levels would tend to be partitional, in

other words, they would .not allow the inclusion of the squares among the rectangles (by explicitly

stating two long and two short sides). In contrast, according to the Van Hide theory, definitions at

Level 3 are typically hierarchical, which means they allow for the inclusion of the squares among the

rectangles, and would not be understood by student's at lower levels. However, research reported in
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De Villiers (1994) show that many students who exhibit excellent competence in logical reasoning at

Level 3, if given the opportunity, still prefer to define quadrilaterals in partitions. (In other words,

they would for example define a parallelogram as a quadrilateral with both pairs of opposite sides

parallel, but not all angles or sides equal).

For this reason, students should not simply bc supplied with ready-made definitions for the

quadrilaterals, but allowed to formulate their own definitions irrespective of whether they arc

partitional or hierarchical. By then discussing and comparing in class the relative advantages and

disadvantages of these two different ways of classifying and defining quadrilaterals (both of which

are mathematically correct), students may be led to realize that there are certain advantages in

accepting a hierarchical classification (compare De Villiers, 1994). For example, if students are
asked to compare the following two dcfinitions for the parallellograms, they immediately realize that

the former is much more economical than the latter:

hierarchical: A parallelogram is a quadrilateral with both pairs of opposite sides parallel.

partitional: A parallelogram is a quadrilateral with both pairs of opposite sides parallel, but

not all angles or sides equal.

Clearly in general, partitional definitions arc longer since they have to include additional properties

to ensure the exclusion of special cases. Another advantage of a hierarchical definition for a conccpt

is that all theorems proved for that concept then automatically apply to its special cases. For
example, if we prove that the diagonals of a parallelogram bisect each other, we can immediately

conclude that it is also true for rectangles, rhombi and squares. If however, we classified and

defined them partitionally, we would have to prove separately in each case, for parallelograms,

rectangles, rhombi and squares, that their diagonals bisect each other. Clearly this is very
uneconomical. It seems clear that unless the role and function of a hierarchical classification is

meaningfully discussed in class, many studcnts will have difficulty in understanding why their own

partitional definitions are not used.

cr-

A

Figure 1
On the other hand, the dynamic nature of geometric figures constructed in Sketchpad or Cabri may

also make the acceptance of a hierachical classification of the quadrilaterals far easier. For example,

if students construct a quadrilateral with opposite sides parallel, thcn they will notice that thcy could
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easily drag it into the shape of a rectangle, rhombus or square as shown in Figure 1. (Recently in a

session on Sketchpad with my 8-year old son, he had no difficulty dragging a parallelogram into the

shape of a square and a rectangle, and then accepting that they were special cases). In fact, it seems

quite possible that with dynamic software, students would be able to accept and understand this

even at Van Hide Level 1 (Visualization), but further research into this particular area is needed.
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STUDENT THINKING ABOUT MODELS OF GROWTH AND DECAY
Helen M. Doerr

Syracuse University
In this classroom-based research study, the thinking of two groups of precalculus
students about exponential models of growth and decay. Using a multi-stage
approach to model development, a curriculum unit was designed to elicit students'
creation of a model that can be used to describe, explain and predict the behavior of
an experienced, probabilistic system. This study thus brings together the research
strand of model building with students' understanding of exponential functions and
probabilistic data. The evidence presented suggests that the model eliciting activity
did support students' construction and successive refinement of a model of
exponential growth that became increasingly generalized and abstract.

Introduction
The mathematics of change and variation covers a broad spectrum of important

mathematical ideas for secondary students, including the understanding of functions
as co-varying quantities. The mathematics of uncertainty and chance likewise
provides a setting for interpreting and understanding a wide range of common
experiences. In this paper, I bring together these two themes in a research study on
student strategies in investigating a probabilistic exponential growth and decay
problem situation through a multi-stage model building approach. The first stage of
model development begins by confronting the students with the need to create, in the
first place, a model that can be used to describe, explain, manipulate, and predict the
behavior of an experienced system. The interpretation of the problem situation is an
essential part of the task. Students need to make and defend judgments about the
strengths and weaknesses of alternative conjectures, assumptions, descriptions,
representations and explanations. Exponential functions provide a rich mathematical
site for examining students' strategies for constructing such useful and meaningful
models and for gaining a better understanding of students' thinking about these
functions as it is revealed by their strategies. Relatively little research has been done
on students' thinking about the multiplicative structures that underlie exponential
functions (Confrey and Smith, 1994) and the role of probabilistic events in
relationship to these functions.

Theoretical Framework
A model building approach to learning mathematics suggests that an important

goal of such learning is for students to be able to construct mathematically significant
systems that can be used to describe, explain, manipulate, and predict a wide range of
experiences. Most school problems that are posed to students do not involve the
students in creating, modifying or extending systems of representations of meaningful
problem situations. In solving typical textbook "word problems," students generally
try to make meaning out of questions that are often simply a thin layer of words
disguising an already carefully quantified situation. The solution process is an
exercise in mapping the problem information onto an invariant model using symbolic
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notation in such a way that an answer can be produced. This activity rarely involves
an explicit examination of the underlying mathematical model; seldom is the
underlying model transformed, modified, extended or refined; rarely are students
involved in the creation of such models. Model building, on the other hand,
explicitly focuses on the activities of creating symbolic, graphical, and numeric
representations and descriptions of situations that are meaningful to the learner; once
created, such models can be explored, refined, extended and applied to other
contexts.

Modifying, generalizing, sharing and re-using models are central activities for
students to engage in as they learn significant mathematics. Model building is not
seen as steps in finding a solution to a given problem but rather as developing a tool
that a learner can use and re-use to find solutions in a range of contexts that are
structurally isomorphic (Bransford, Zech, Schwartz & The Cognition and
Technology Group at Vanderbilt University, 1996; Doerr, 1997). In this research
study, model building is seen as a multi-stage, multi-cycle activity. Within each stage
of modeling activity, students engage in multiple cycles of interpretations,
descriptions, conjectures, explanations and justifications that are iteratively refined
and re-constructed by the learner. This view of student's conceptual development
through modeling is shaped by earlier research that posits a non-linear, cyclic
approach to model building (Docrr, 1996).

The modeling process begins with the model elicitation stage, which confronts
students with the need to develop a model to describe, explain and predict the
behavior of an experienced system. Models that students have constructed can then
be explored for their own sake so as to generalize their range of applicability, to
extend their power and utility, and to make explicit the underlying patterns,
regularities and structures. The stage of model exploration provides students with
the opportunity to develop powerful structural metaphors to make sense of their
world of experience. Models that have been explored, and possibly refined, can then
be applied to new problem-solving situations that could not have been dealt with
adequately without the newly constructed model. This stage of model application
engages students in seeking new situations that can be described or explained using
the model that they have constructed. A model becomes a re-usable and shareable
tool to be applied by learners within new contexts.

The role of multiplicative structures, as described by Confrey and Smith
(1994), provides a theoretical basis for examining student understandings of
exponential functions. These researchers argue that "splitting" is an equally strong
approach to understanding multiplication as is repeated addition. The multiplicative
world of the exponential function has its origins in the actions of splitting, which is a
distinctly different operational view of multiplication than is repeated addition. This
would suggest that seeing the constancy of successive ratios should be as essential to
an understanding of exponential functions as is the constancy of first order
differences in linear functions. A particular instance of "splitting" would be the
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doubling of bacteria or the halving of radioactive decay or, in this study, increasing
or decreasing the number of elements in a set by applying a 50-50 chance to each
element for adding to or removing from the set. In this study, I examine how
students come to understand and interpret the exponential function in a probabilistic
problem situation.

Description of the Study
The instructional approach to the unit is based on the notion of providing a

model eliciting activity to motivate and guide the students' inquiry and to confront
them with the need to develop a model to describe and explain a problem situation.
The model eliciting activity (described in more detail below) was designed to provide
the students with a problem situation that they can readily understand through their
own first hand experience and to provide a significantly rich mathematical site that
will lend itself to refinements, extensions, and powerful generalizations (Lesh,
Hoover & Kelly, 1993). The overall curricular unit is designed to provide activities
that support (1) the generation of a model in the first place, (2) the exploration and
possible refinement of the significant mathematical relationships, representations, and
assumptions, and (3) the application of the model to other problem situations.

Setting
The setting for this study was two pre-calculus classrooms in a suburban upper

middle class high school. The classrooms were an open, flexible environment where
small group work is common and students are actively encouraged to express their
own ideas and take responsibility for their own learning. This study took place in
two classes with 17 and 13 students in grades 10 through 12, who had elected to take
the course. All the students had their own graphing calculators; a graphing calculator
overhead display unit was available at all times in the classroom and used
spontaneously by both the teachers and the students. There was also a single
computer and a printer in the room. The class met for three single periods of 40
minutes and two double period of 80 minutes each week. This particular unit lasted
approximately 4 periods.

The class was taught by an experienced mathematics teacher, who was
interested in including more technology based labs and student explorations as part of
the curriculum. This was the first year with double period scheduling for pre-
calculus classes. The teacher was very experienced with the graphing calculator and
flexible in her approach to the time needed for instruction. Each class was divided
into 5 small groups of 2 to 4 students. These groups provided a setting within which
to observe the students' interactions with the problem situation and with each other.

Data Sources and Analysis
Each class session of the overall unit was video-taped, and during small group

work, three selected groups were audio-taped and observed. All of the written work,
including mid-unit and end-of-unit testing, done by all of the students was made
available to the research team. Extensive field notes were taken by each member of
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the research team during the class sessions. The video-tapes of class sessions were
reviewed and selected portions were transcribed for more detailed analysis. The
research team regularly met with the classroom teacher for the planning of the unit,
for revisions and modifications made during the unit, and for reflection on the
students' learning.

Description of the Model Eliciting Activity
The lesson began by posing the following problem situations to the students.

Each group of students had a small cup and a supply of M&M candies, a popular
disk-shaped candy with an "m" on one side.

You will start with one or more M&Ms in your cup. Shake the cup and pour
the contents onto a napkin. For each M&M that has the "m" showing, add a
new M&M to the cup. Put all the M&Ms back in the cup and repeat the
procedure 10 more times. For each trial, record the total number of M&Ms in
the cup.

The students were asked to graph their data and to find an equation that could be used
to predict the total number of M&Ms for any given trial. They were asked for
specific predictions for certain trials and to find how many trials would be needed to
have 300 M&Ms. Most importantly, the students were asked to explain the meaning
of the constants and the variables in their equations. Earlier in the instructional
sequence, the students had investigated similar situations of exponential growth (e.g.
the doubling of bacteria, population growth, and compound interest), but this
particular problem situation was intended to extend those notions of growth to
probabilistic events.

The second problem situation had the students investigate a decay situation:
they were to start the experiment with a full cup of M&Ms and at each trial to
remove all M&Ms that had the "m" showing. Again, they were asked to create
graphs and equations, make predictions, and explain the meaning of the constants and
variables in their equation. This problem situation was the first introduction to the
idea of exponential decay and was intended to become the central metaphor for the
students' developing understanding of the mathematical ideas underlying exponential
decay. The experience of the physical phenomena was intended to ground the
students' thinking in an experience that was familiar and readily understandable.

A third problem situation was designed to provide an exploration of the
growth and decay models elicited in the first two activities. The students were asked
to consider a cupful of hypothetical four-sided M&Ms, with each M&M having
exactly one side with an "m" on it. This problem was intended to engage the students
in extending, refining, abstracting and generalizing the models that they built for the
first two situations.

Results
The students readily engaged with the problem situation in their small group

and the findings of the groups led to a rich and lively whole class discussion. In this
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13/23?" This is (from their table) the ratio of the increase in the number of M&Ms
to the number of M&Ms in the cup. The teacher who has joined them asked: "what's
changing?" S1 replied "the number of M&Ms with m's up. The number of M&Ms
we added?" The teacher focused their attention on the kinds of quantities they are
comparing as she questions: "What are you comparing?" "What is the rate of
change?" and "What per what?" S1 replied slowly: "So 4 M&Ms per (pause) per 9
M&Ms?" Clearly S1 was still thinking about the relationship between the total
number of M&Ms and the number of M&Ms with m's showing. The teacher asked
pointedly: "what are your variables?" and SI clarified that x= number of M&Ms
in the cup and y = the # of m's showing.

The teacher left and the students sat quietly, thinking. S2 returned again to h6r
premise "I'm thinking it might be exponential." S3 objected "but it looks more
linear." Then S2 really makes explicit that one of the variables should be the trial
number: "But the trials are the numbers" and "we need trials to be x" and then she
draws on an analogy to other unspecified problem situations: "in all the other ones it
was years". S3 graphed trials as the x variable and showed it to S2 who says "That's
good! What's the equation?" S3 gave the regression equation "Write y = 1.039
(1.46)"x." SI commented that they need to "figure out what these things mean."
This question was posed in the original problem, but they did not engage with this
question, perhaps in part due to a sense that time is running out. They collected the
data for the second problem, but without much discussion or any conjectures. The
model they have is one which has an equation from regression analysis, a table and a
graph, but certain things have not yet been integrated into their growth model,
namely the meaning of the constants in the regression equation, the randomness of the
data, the halving that occurred in the experiment, and how to account for the
linearity of the alternative model. This latter element becomes one of the unexplored
aspects of their model from a mathematical point of view. It is a piece of their
overall model that has been filtered or selected out. The decay model is barely
developed nor integrated into the growth model; the generalizations of the
hypothetical experiment were not addressed in their small group setting.

A second group of students moved somewhat differently through the activities.
Like the first group, this group of two students began by collecting their data and
constructing a table (see Figure 2). They began with 5 M&Ms in the cup, initially.
They did not give headings to their two columns of data and, unlike the first group,
began counting their trials at zero rather than one. The students looked quickly at the
magnitude of the first order differences and then immediately graphed the number of
M&Ms versus trial number. They easily adjusted the window to get a view of the
data. S4 suggested that the data is "something of per cent increase, something
increasing." S5 made a connection to a previous problem situation, saying it's "like
compound interest." S4 then claimed the data is "like 1.5"x only not curvy enough."
S5 identified the initial value as critical and suggested "start with 5 times something."
S4 reaffirmed S5's suggestion and they seem satisfied with their equation. S5 hinted

2 - 260



section, I will compare and contrast the strategies taken by two different groups, one
in each of the classes. This analysis focuses on the multiple modeling cycles which
occurred within each group, the extent to which ideas about probability emerged and
influenced student thinking, and student thinking about exponential functions.

The first group of students began by collecting and recording the data shown in
Figure 1. The teacher had given each group within the class a different starting
number of M&Ms in their cup. This particular group started out with two M&Ms.
The group decided to record both the total number of M&Ms in the cup and the
change in the number of M&Ms for each trial. While their initial language referred
to this number as the change, as they collected the data they recorded and referred to
this as the number of m's showing. There was no discussion or conjecturing as they
were collecting the data, but rather a focus on counting and recording.

trial # of
M&Ms
in cup

# of m's
showing

1 2 0
2 2 1

3 3 1

4 4 3

5 7 3

6 10 4
14 9

8 23 13
9 36 12
10 48 24
11 72 33

Figure 1.

When the table was completed, one student, S I,
proposed the first strategy to find a relationship
between the two quantities by suggesting they graph
"how many M&Ms are in there., horizontally..
versus how many have m's showing. Ignore the first
column." Another student, S2 offered a mild
challenge to this suggestion and said "let's do like two
graphs," although it was not yet clear which two
graphs she was thinking about. In the meantime, the
third student, S3, entered the 2nd and 3rd columns of
data into her calculator and suggested that the data "is
gonna be linear." But S2 opposed the linear
conjecture and said "no, it's going to be like the
doubling one" (referring to the bacteria problem
done earlier in the unit).

As the students continued to negotiate the competing claims of linear and
exponential growth, S3 introduced a quantification of the rate at which the total is
changing. S3 said "you are taking half each time - listen" and S1 agreed "half the
M&Ms [are] showing up [with an m] each time." S2 used this evidence to re-affirm
and re-assert her claim that "I think it's exponential." It would appear that the
increase by halving is isomorphic for S2 to the increase by doubling. S3 continued to
look at the linear regression, and she finally exclaimed: "No, I don't understand how
to figure this. I don't know how to figure this out from this random data." This is
the first time that the randomness of the data has been identified as an issue. SI asked
"shouldn't the y-intercept be 2 because we started with 2?" It's clear that the
somewhat linear data does not have a y-intercept of 2. It's less clear what S3 finds
unsatisfactory about the linear regression equation. At this point, the group appears
to be at an impasse.

Without a model in place, they moved on to the next question which is to
estimate the average rate of change on the 8th trial. S1 quickly said: "Wouldn't it be
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at a difference between this situation and others that they have worked on: "You
can't calculate because of human error. I think that's a valid equation
though." S4 articulated the meaning of the constants, saying "1.5
makes a lot of sense. 1 plus 50% cause 50% of the time you get an m.
Like compound interest." At this point they have created and justified
a model t that is a fairly good match with the data they have collected
and is analogous to similar problems they have seen earlier in the
unit. They use their equation and data table to unproblematically
make several predictions about the behavior of the system.

These students then moved to the decay problem. S4 began by
suggesting "why don't we just write out the equation" -- implying that
he already had generalized, or at least had an idea how to generalize,
the situation. S5 responded with a partially tongue-in-cheek "I don't
want to strain my brain." They quickly collected their data, entered it

into their calculators and graphed it. S4 immediately began to hypothesize "parabola,
square roots, 1 over something, 1/x, not what I wanted." S5 sat and thought and
hypothesized y = 130*1.5^(-x), arguing "seems like it would decrease at same rate it
increased at?" S4 challenged this saying "No, I'm not sure it should be 1.5." S5
engaged in an iterative guess and check strategy: "I tried something lower than 1.5
and it was worse. 1.7 is extremely close." S4 also continued with the guess and
check strategy even though he is somewhat dissatisfied with a strategy that doesn't
make sense, but he knows that the "school goal" and perhaps their own goal is "to
make it work." S4 did not find a regression equation, which he was quite capable of
doing, but rather stayed with a sense making strategy. S5 said 1.8 looks really nice.
S4 responded "I wonder. 112 looks best which makes even more sense. 1/2 to the x
makes more sense. Normal growth...only more sense. What did everyone else get?
y=130*(1/2)^x." S4 graphed this and said it "fits perfectly." S4 explained the
meaning of the constants and variables in their equation, but puzzled over the (112)^x.
She asked what it is the inverse of? S5 responded that it is the inverse of the normal
growth curve. This answer is accepted unproblematically.

They turned to the hypothetical situation of the growth situation for the 4-sided
M&M. S5 quickly generalized: "Say we started out with 5 of these cube M&Ms.
5(1.75)^x." S4 questioned if that's will or won't get an m and S4 changed his
expression to 5(1.25)^x. S4 shifted his thinking to the physical situation and
compared it to the 2-sided M&M: "Do we end up with less in the cup [compared to
the 2 sided M&M] at the end? Yes, so we want it to be 1.25. We endup with less."
S4 compared the 2 sided M&M growth to the 4 sided M&M growth as a piece of
sense making about the situation as well as a generalization. S5 focused on the time
rather than the quantity (as S4 did) and she observed that "it would take longer" to
arrive at the same final quantity for a 4-sided M&M. They were comfortable that
this is two different ways of looking at the same thing rather than an issue that has to
be resolved.

5 0
8 1

12 2
18 3

26 4
42
58 6
88
125
198 9
292 10
Figure 2.
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Discussion and Conclusions
Both groups of students in this study created meaningful interpretations and

useful representations of the probabilistic growth situation. The first group
encountered a conflict between a linear model and an exponential model to describe
their data, which focused on the total quantity and the change in the quantity. This
conflict was resolved by an examination of the rate of change in the total quantity,
which forced the students' attention to an identification of the kind of quantities.
This, in turn, led to an exponential model that was defined through a regression
equation, but that equation did not provide the students with explanatory power.
That is, there was no answer as to why these particular constants showed up in this
particular way in this equation. At least one student in the group, however, made
strong analogical arguments, drawing on the "halving" which occurred, that this
would argue for an exponential model.

The second group of students quickly drew on previous knowledge about
compound interest and percentage increases to develop an equation that fit their data,
that made sense in terms of previous problem situations, and that had explanatory
power for the situation at hand. Their interpretation of the decay problem was as the
inverse of the growth problem, but by negating the exponent. They worked through
an iterative refinement of this initial hypothesis to arrive at a base which again fit
their data and had some explanatory power for the situation at hand. They abstracted
and generalized their findings to a hypothetical experiment for the growth situation.
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ANALYSIS OF A LONG TERM CONSTRUCTION OF THE ANGLE
CONCEPT IN THE FIELD OF EXPERIENCE OF SUNSHADOWS

Nadia Douek, I.U.F.M. de Creteil

In this paper, I shall describe how different aspects of the angle concept emerged and evolved
during a long term classroom activity involving progressive geometrical modelisation of the
phenomenon of sunshadows. I shall try also to analyse how the idea of "inclination", related
to mastery of the angle concept in space, matured in a four-step sequence of individual and
collective activities.

1.Introduction
This report deals with a "problematique" regarding the multiplicity of the

angle concept: the multiplicity of embodiments and reference situations, multiple
relationships between dynamic and static aspects, etc. This has a long history in
mathematics education: from Freudenthal's educational analysis (Freudenthal, 1973;
1983), up to studies related to the Logo environment (see Clements & Battista,
1992) and recent investigations concerning the embodiment of the angle in turning
situations - see Mitchelmore & White, 1996.

This report focuses on the multiplicity of the angle concept as met by students
in a long term teaching and learning activity in the "field of experience" (Boero &
al, 1995) of sunshadows from the beginning of grade III to the end of grade IV. I
have studied how this multiplicity emerged (see 4.), evolved and matured within
tasks demanding a progressive geometrical modelisation of thc sunshadows
phenomenon. In this paper I will also consider a sequence of two individual and two
collective activities related to the same problem situation (see 5.). I will try to elicit
the ways by which maturation of the idea of "inclination" was reached.

2. Theoretical framework
About Concepts in General

I will mainly refer to Vergnaud's definition of concept (Vergnaud, 1990), as
"reference situations", "operational invariants" and "linguistic representations". The
"multiple" and "evolutive" characteristics of a concept inherent in Vergnaud's
theoretical framework are particularly stressed in other elaborations which concern
the idea of "concept" and belong to other domains. Deuleuze and Guatari's
elaboration about concepts in philosophy, concerning their "multiplicity" and their
"becoming" (Deleuze & Guattari,1991), suggests that multiplicity should be
considered from an evolutive perspective. Nelson's studies (Nelson, 1978) about the
genesis and evolution (from implicit to explicit, from particular to general) of
concepts from a psycholinguistic point of view suggest the different levels at which
concepts can be interiorized and treated by students.

About the Angle Concept
In the light of these elaborations, we can consider the multiplicity of the angle

concept. In this report I will describe how different aspects') of the angle concept

): "Aspect", or ....? The multiplicity of the angle concept does not consist in the splitting of the
"reference situations", "operational invariants" and "linguistic representations" into separate subsets.
For this reason I shall use the expression "aspect of the angle concept". Indeed each "aspect" may
involve some situations, invariants or representations in common with other "aspects", and
furthermore does not stand alone in the evolution of students' knowledge.
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emerged and evolved in a primary school class over a period of 15 months. I will
consider not only the static and the dynamic aspects, but also others which can only
roughly be reduced to the static-dynamic polarity. For each aspect of the angle
concept I will consider the reference situations (all related to the field of experience
of sunshadows) and the different levels of emergence and treatment (corresponding
to linguistic representations and operations in Vergnaud's definition): bodily
experience, verbal and graphic description of spatial relations, etc.

Inclination and Angle
In Book I of "Elements" (see Heath, 1908), Euclid defines a plane angle as

the inclination to one another of two lines in a plane... (def. 8). So, inclination works
as the defining concept for angle. But in Book XI, concerning stereometry, Euclid
defines the inclination of a straight line to a plane in this way:"Assuming a
perpendicular drawn from the extremity of the straight line which is elevated above the plane to
the plane, and a straight line joined from the point thus arising to the extremity of the straight
line which is in the plane, fit is] the angle contained by the straight line so drawn and the
straight line standing up". As Serres (1993) remarks, this definition (although the
straight line and the plane are in generic positions!) brings a strong sense of
"inclination" related to a horizontal plane: "elevated above the plane", "the straight
line standing up". In this way, "inclination" (coherently with its Greek etymology)
keeps a meaning of property of a line related to the bodily reference; the plane angle
enters the definition as the defining concept which will be exploited for
measurements, equivalences, etc. Historical and epistemological analysis suggests
that the relationship between inclination (especially, inclination intended in its space
and bodily meaning) and angle deserves special attention from the cognitive and
educational points of view.

About Context
I shall use Boero's definition of "field of experience" (Boero & al, 1995),

especially as concerns the ideas of external context and student's internal context.
For a given subject (in our case, "sunshadows"), the theoretical construct offers
guidelines for following the long-term development of the student's "internal
context" (i.e. her/his conceptions, schematas, etc.) in relation to the "external
context" (signs, concrete objects, physical constraints, etc.).

The idea of grounding metaphors (proposed by Lakoff & Nunez,1997), which
"allow us to ground our understanding of mathematics in familiar domains of
experience", suggests that we should try to identify the different aspects of the angle
concept within different representations (gestural, graphic, verbal...) in the observed
classroom activities concerning sunshadows.

3. The class, the educational context, the available data
Last year I was offered the opportunity of a one-month visit to an Italian

fourth grade class where the teachers (Ezio Scali and Nicoletta Sibona) had been
carrying out, since grade I, the Genoa Group project for primary school. The aim
of this project is to teach mathematics, as well as other important subjects (native
language, natural sciences, history, etc.), through systematic activities concerning
"fields of experience" from everyday life (see Boero et al, 1995). The sunshadows
field of experience is the ground, in grades III, IV and V, for developing
argumentative skills and geometry concepts.
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A sequence of four didactic situations was negotiated with the teachers. This
sequence represented a fairly common classroom routine consisting of: individual
production of written hypotheses on a given task; classroom comparison and
discussion of student products, guided by the teacher; individual written reports
about the discussion; classroom summary, usually constructed under the guidance of
the teacher and finally written up in the copybooks.

In most cases (as indeed in this one), classroom summary represented the
status of the knowledge that the students reached (with all possible ambiguities and
hidden mistakes), and not a phase of final institutionalisation (Brousseau, 1986),
something which was attained only in a few circumstances. This style of slowly
evolving knowledge without "sure" and final "truth" offered me the opportunity to
observe the transformation of the students' knowledge in a favourable climate where
this transformation was a normal, expected event.

The data used as a grounding for the analysis of the sequence derive from
direct observation of the four didactic situations, all the students' texts, and videos
(and transcripts) of all classroom discussions (see Section 5). The class being one of
the Genoa Group's "observation classes", a lot of information was accessible about
previous activities (see Section 4): students' individual texts, students' copybooks,
recordings of classroom discussions, and one video.

In this class, activities concerning sunshadows (and angles, a topic almost
exclusively treated in this field of experience) started in January, 1996 (grade III)
and ended in December, 1997 (grade V). I will consider only the activities
performed in the period January 1996 to April 1997.

4. Students meet the angle concept: an overview

4.1. Embodied, implicit approach to the angle in space: inclination
Students experienced some aspects of the angle concept by indicating sun and

its apparent movement in the sky with their arms, then discussed about their
observations and drew the situation. The outline of one student's shadow on the
ground was traced with chalk and (a few days later) drawn on a large sheet of paper
at different hours of the day and hung to the main wall of the classroom.
Photographs of the children standing in a row pointing at the sun were taken,
observed and commented on. The repeated observation and discussion of the
relationships between different positions of their bodies and the shadows on the
ground was performed. Students repeteadly were: actors (moving their bodies,
arms, eyes); objects (with their shadows) of observation and verbal and graphic
representation by their schoolfellows; and represented objects (in drawings, photos,
texts). This plurality of roles gave opportunity of multiple embodiments of the idea
of "inclination" (as phisically experienced, as observed and represented, and as
readable in different repr esentations).

During these long term activities (more than 30 hours in grade III) the word
"angle" was neither needed nor produced; on the contrary, the words "inclinazione"
("inclination") and "direzione" ("direction") were used as common Italian language
terms (without specific reflection on their meaning). In this phase, we may note
that, when students pointed at the sun, the word "inclination" took on a static
meaning (i) of a direction relative to the earth's plane in tridimensional space, but

4.
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also a dynamical meaning (i') linked with the movement of the sun when they
indicated the movement of the sun with their arm and wrote that "the arm
indicating the movement of sun in the sky during the morning moves upwards and
rightwards ". The intersection of the line given by the arm with its projection on the
plane of the ground was not visible nor important in this phase.

4.2. Plane Angles and their Reference Situations
I have selected four activities carried out in grade IV from October to March,

which covered about 30 hours of classroom work on sunshadows.
a) Gradual cons! ruct ion of the "shadow schema"

Initially, students drew themselves standing in the sun, their shadow and the
shadow space. This activity demandcd an important bodily activity: moving the
hands in different positions near and away from the body in order to discover the
existence of the shadow space and find its border.

This work gave birth to a first schema which gradually
became a static geometric modelisation of the spatial dynamic
relationship between the inclination of sunrays and the length of
shadows, establishing an initial link between the angle in space
and thc angle represented in the plane of the sheet of paper.

At the end of different student activities involving the use of
this schema, the teacher (see Scali, 1997) introduced the shadow
schema as a tool for interpreting some aspects of the sunshadow
phenomenon.

During the activities concerning the first and second schemas, the drawn
angles between the sunray and the body and between the sunray and the ground were
probably seen as an indication of the borders of the shadow space (ii): a limited
surface) and (iii) the intersection of two directions: the direction of sun rays and the
section of the earth's plane. For most of the students, the width of the shadow space
(ii') (as the "distance between its border and the body"), remained for a time the
(ambiguous) characterisation of what was to gradually become the "inclination of
sunrays". In this phase, neither angle was the object of reflective work, nor was it
named; it remained an implicit tool in the graphic representation of the relationship
between the body, the shadow space and the sun.The complexity of the observed
(and bodily experienced) situation and of the activity of graphical representation
created interesting ambiguities that were gradually cleared up through
argumentation (see d) and 5.)

b) Shadow fans
Later on, the students observed and traced out on a big

sheet of paper the "shadow fan" of the shadows cast by a fixed
nail, which were measured every hour throughout the day.

This was repeated once a month, and the students compared the fans,
analyzing the changes during the year.They also produced and compared shadow
fans of nails of different lengths. This activity implicitely concerned the angle seen
as a description of the constant rotational displacement of a direction independent of
the length of the segments representing it, corresponding to the effect of the _plane
rotation (ivlof the direction of a segment (perp1ied ,in an hour); thus, we may
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recognize here thc element characterising a geometrical transformation
(rotation)(iv'). In the shadow fans, there still remained a representation of angles
with the meaning of the gap between two directions in the plandii")

c) Scale reduction of the shadow fan
The students were set the task of reproducing (with necessary reduction!) the

large hourly shadow fans of 8-10 cm nails in their copy books: this open problem
situation was tackled individually, then a discussion followed (with short final
summary),In their individual solutions, many students tried to preserve particular
aspects of the original shadow fan as a representation of the phenomenon of
sunshadows during the day: some of them focused on the invariability of angles
through reduction(v) in order to preserve the whole shape of the shadow fan. In this
way, they experienced (as a theorem in action, Vergnaud) angle (v') as a
characteristic of a geometric transformation. homothety. Other students tried to
preserve the width of the rotation as a priority in order to reproduce the same
rotation effect between the same moments even though the segments are shorter,
thus preserving the angle as characterising another transformation, the rotation
(iv').

Discussion concerned these two strategies (based on the static and dynamic
meanings of the angle see Freudenthal, 1983). During the discussion, the word
"angle" was spontaneously used in an informal way by some students. Subsequently,
the teacher encouraged more and more precise usage, but without any definition. In
the final summary of the discussion the students reported the two reasons they had
found for "preserving the angles".

d) Displacing the nails
The sign originally proposed by the teacher ("shadow schema") did not

contain the sun (indeed, in a frontal position i.e., when the observer looks at the
nail perpendicularly to the shadow the sun cannot be seen!). But immediately after,
the students started to add the sun as a reference for the origin of sun rays. In order
to begin challenging the conventionality of the representation of sun within the
shadow schema, the teacher asked the class to hypothesize the effect that displacing
an object from one courtyard to another would have on the length of its shadow at a
given moment. Experiments followed.

This section ended with a schematic representation of
sunrays as parallels lines producing shadows of the same length
wherever the nail is put.

The spatial inclination (i) of sunrays then becomes an object of study; it is
unseen but repeatedly represented in the schema by plane angles seen as (iii) the
intersection of directions, signalled by the usual standard sign. It is also the constant
element which will explain the independence of the shadow fans from the
localisation of the nail. We may note that, in spite of the analogy between graphic
representations, no connection is made by students either with the situation where
(iii) emerged or with the word "angle" introduced in situation c): indeed no student
speaks in terms of "angle".

5 - Analysis of a short teaching sequence: maturation of "inclination"
The sequence covered 5 hours over 3 days. The initial task was as follows:
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At the beginning of classwork on sunshadows, Stefano (a grade VI student) thinks that
shadows are longer when the sun is higher and stronger. Oher students think the contrary. In
order to explain his hypothesis, Stefano produces the followingdrawing:

Wit bacja,

0-re 9 Ore

and writes: "As we can see in the drawing, the sun makes a longer shadow when it is higher, that is
at noon, when it is also stronger". We know very well that shadows are longer when the sun is
lower (early in the morning and late in the afternoon). So, there is something that does not work
in Stefano's reasoning. What is wrong with his reasoning, andparticularly with his drawing? Try
to explain yourself clearly, so that Stefano can understand.

The aims of this task, agreed with the teachers of the class, were: to get the
students to question the statement "when the sun is higher, the shadow is shorter",
especially as concerns the meaning of "high"; to develop the concept of inclination of
sun rays as a tool to explain Stefano's mistake; and to question some aspects of the
conventionality of the geometrical schema used by Stefano and shared by the class:
particularly, the sun at the end of the segment representing the sun ray.

We may note that the expression "height of the sun" had always been used in this class without
any previous questioning about its possible meanings. Some students used it with the meaning of
"inclination", having in mind the apparent circular movement of the sun in the sky. Others were caught

by the word and interpreted it as a "distance" (like Stefano). This ambiguity created a complex

situation, and raised interesting problems, providing good argumentation

opportunities which called for the (re)creation of suitable rigorous notions as well
as a clarification of the crucial "variables" in the shadow schema.

In analysis of the sequence originated by the task we shall consider only the moments when

the idea of "inclination" was considered and elaborated.
First individual writ ten productions

The students recognized inclination in the shadow schema: all of them made a connection
between the space situation and its plane representation.

Three students out of the 18 present that day explicitly analysed the key word "high": in order
to produce arguments against Stefano's position, they referred to "inclination" as such, or compared to
represented static reality (1), or to their personal conceptions about the movement of the sun (1').

Two other students used "high" as opposed to "far".
Twelve other students managed to grasp the idea of "inclination" as a crucial element in

opposing Stefano' s position: two expressed it only implicitly, four autonomously expressed it in

explicit terms, and six did it with the mediation of the teacher.
First classroom discussion

The discussion started by focusing on the meaning of the word "h'igh". [r he concept of
inclination is questioned].

A debate about the relationship between the direction of sunrays and length of shadows
followed. For the first time in this discussion the word "inclination" was proposed by a student and

its use was encouraged by the teacher. [This is the beginning of the work aimed at
"defining" inclination (i), which goes on with differentiation of it from the height.
An implicitly used entity must be focused on, named and recognised as pertinent and
important for the work undertaken].

The position of sun in the shadow schema was questioned: analysing the sentence "If I change
the position of the sun, the length of the shadow changes" that one of the students produced, some
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of the class discovered that the length of the shadow did not change if the sun was positioned at
different points along the straight line representing the sunray. [This discovery related to a
crucial property of angles the independence of the angle from the length of the
drawn sides, even if no student made an explicit connection with the "angle"].

A dynamic, global conception of the phenomenon was proposed (referring to the apparent
movement of the sun in the sky). [Inclination is a variable in a dynamic situation (i') ]

"Reality" came in: students recalled observations of the sun from the classroom and then one of
them related "high" to the direction of the arm [probably recalling past pointing at the sun, a
reference situation for (i)].

Another student claimed that "for us, high means that the arm is high" . Another student
reacted, saying that the height of the arm is not relevant. Practically, he proposed a real-life situation
to illustrate his idea - the teacher had to indicate (with his "high" arm) a far point which was lower that
the point indicated by the student with his "low" arm, giving an embodied reference to inclination.
[This was another important step in differentiating between "inclination" and the
previous idea of "height"].

A discussion about the observed situation followed. "Direction" was explicitly associated to
prolongation of the arm or drawn sunray.

Second individual written production
These students were asked to write down "which important ideas emerged during the

discussion". Fifteen students were present.
All the students expressed the meaning of "high": five as opposed to distance; two as

inclination of the sunray (these two had already mentioned "inclination" in their first text: MI); five
(three MI) as represented by the direction of the arm; four as a position in the movement of the sun
(three of whom had expressed a dynamic conception in the first text). Eight students made the
meaning of "high" for Stefano explicit (as "distance");

Three students characterised "direction" by prolongation of the arm (2 MI).
Twelve students referred to "inclination" in appropriate terms, associating it to the sunray, or

arms indicating sun, or in opposition to the meaning of "high" for Stefano. Two implicitly worked on
this concept without naming it (they both did the same in the first text). Only one student did not
consider it (in his first text he had expressed this curious conception: "the sun being high, the rays
get weaker when they arrive on earth and so they make short shadows").

One student, Marie Ila, autonomously related "inclination" with "angle", although this idea did
not emerge during the first discussion. One student referred to rotation of the schema (he had already
taken part in the discussion along these lines).

In general, we may note that there was either a direct usage of the word
"inclination" in its right meaning or a differentiation from "height" in order to
overcome the previous ambiguity about these words.

Second classroom discussion
This discussion was aimed at production of a final summary text, which was to containe

(according to the teacher's intentions) the meaning of "high" for Stefano, the meaning of "high" for
the class, the idea that the position of the sun in the shadow schema is purely conventional and,
possibly, the approach to the connection of the inclination concept with the angle concept (exploiting
Mariella' s idea in her second text). In the discussion, the students showed no difficulty with these
goals, except for the last. Indeed relating "inclination" to "angle" was not easy: the
teacher invited Mariella to present her idea about it, but for many students "angle"
evoked only work on paper in the plane, and so they finally managed to "see" the
connection in the shadow schema, not in space.

6. Some Conclusions
The aspects of the angle concept that we have described were of different

kinds, and emerged in different ways: directly, with descriptive or interpretative
aims, for static relative positions of lines (i, ii and iii), and for dynamic, consecutive
positions under the effect of rotation (i' in the space and iv on the plane);
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indirectely, identified by the researcher as characteristics of geometrical
transformations homothety (v) and rotation (iv').

We can identify peculiar conditions which allowed the progressive maturation
of some aspects of the angle concept. We have signalled some points where the
cotnplexity of the situations stimulated rich argumentative activities. And these
were crucial for the emergence of "properties", gradually preparing the ground for
the angle as a geometry "object" (cf Sfard, 1997).

'The studied sequence (see 5.) was not aimed at integrating the aspects of the
angle concept that had worked as tools for solving problems in different situations.
However, it is astonishing how often inclination (ii) and plane angles (iii)
intervened in the same context, in similar situations, and how difficult they were to
integrate. Referring to the analysis regarding "inclination and angle"(see 1.), we
may wonder how strong the effect of embodiment is on the building of
"inclination", which for so long remains an entity separated from the other aspects
of the angle concept. This question raises another, more general question: if
embodiment plays such a strong role in conceptualisation, what are the effects of the
lack of embodiment in the traditional teaching of space geometry? From another
point of view, taking into account the discussion of Euclid's definition of the
"inclination of a straight line to a plane" (see 2.): Does embodiment constitute a
negative element in the perspective of building decontextualised concepts, or rather
an inevitable, and positive, phase on the road towards complex and long concept
building?

The different aspects of the angle concept did not integrate, but the systematic
argumentative activities made them evolve and intersect, bringing them closer each
time and strengthening them. During the following activities (from April, grade IV
to December, grade V) it was possible to appreciate the significant effects of these
steps on the final, progressively more explicit and conscious integration of the
different aspects towards the institutionalisation of the knowledge concerning angles.
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ON VERBAL ADDITION AND SUBTRACTION
IN MOZAMBICAN BANTU LANGUAGES

Jan Draisma
Universidade Pedagogica, Beira & Maputo

This report presents the results of a first interview on addition and subtraction skills
of unschooled adults. The interview was carried out in ten.different languages. The
Mozambican languages have very regular numeration systems, based on ten. The
majority of the languages also use five as an auxiliary base. The information was
collected by students of the BEd program in Adult Education (Maputo) and students
of the MEd program in Primary Mathematics (Beira). The stydent-interviewers are
experienced adult educators or primary teachers and it is hoped that their present
studies will contribute to the improvement of teacher education, through the richness
and flexibility of oral mathematics, which is traditionally ignored in Moiambican
schools.

1. INTRODUCTION

As a lecturer of Didactics of Arithmetic I dedicate quite sonic time to verbal
arithmetic as distinct from written arithmetic. The reasons are the following:

a) Children's initial arithmetic should receive considerable attention in any course of
Didactics of Elementary Mathematics. But their arithmetic is concrete, practical and
verbal, just as the mathematics of unschooled adults (e.g. Carraher et al. 1988).
b) Many teachers think that mathematics always means written mathematics,
neglecting or depreciating oral mathematics (Carraher et al. 1988, Draisma 1993,
Gerdes 1995). But all written mathematics depends on the use of basic facts. These
basic facts are acquired through non-written mathematics (Padberg 1986). Some
teachers are not aware that, if you don't know that 15 7 equals 8, you cannot apply
the written algorithm in order to find the 8.

c) Carraher et al. 1988 show that real life oral mathematics is in several ways
superior to the predominantly written school mathematics, but its value is not
recognized by the school system.

d) The present day mathematics syllabus for primary school in Mozambique
recommends a considerable amount of mental arithmetic, but without explaining
sufficiently that this mental arithmetic should be essentially verbal and not a mental
version of the written algorithms (Seccao de Matem6tica, INDE, 1989).
As a main eye-opener I have my students carry out interviews with unschooled adults
on their arithmetical skills. With these interviews, I intend to achieve the following
objectives:

to confront my students with unexpected experiences;
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to collect information on verbal arithmetic done in the local Bantu languages,
particularly in languages that use an auxiliary base five;
to train my students in doing interviews with individuals on their mathematical
skills and understanding.

2. THE 1991 INTERVIEWS CARRIED OUT IN BEIRA

In the end of 1991, students at the Beira Campus of the Higher Pedagogical Institute
(ISP) now Universidade Pedagogica (UP) conducted a limited number of
interviews with unschooled women, who were participating in a literacy program in
the local Sena language. A first interview contained simple addition and subtraction
problems, which according to the existing primary mathematics syllabus may be
solved mentally orally). A second interview contained simple problems of
multiplication and division.

For the students, who were all experienced primary teachers, it was a big surprise that
illiterate women calculated so well in their own language, without having to write
anything, being sometimes so fast that our students had difficulties in following and
understanding the computations.

For me the results of the interviews were very helpful, because the women used
verbal computation strategies, similar but more varied than those that are suggested
in the present day syllabus for primary education. Teachers have difficulties in
following the syllabus, because traditionally mathematics teaching in Mozambique
focusses on written computations only (see Direccäo Geral de Educacâo 1969,
GETEA w.d., and Kilborn 1990).

With my students we analysed the particularities of verbal computation in the
different Mozambican languages,

The first results were published in Draisma 1993, integrated in A numeragtio in
Mozambique, a monograph on Mozambican numeration systems, organized by a
group of seven 1SP lecturers co-ordinated by Paulus Gcrdes (Gerdes (Ed.) 1993).

The results focus on:

a) the advantages of the regular, explicit expressions used for numbers: counting
after ten has, in all Mozambican languages, the explicit, regular form: ten-and-one,
ten-and-two, ..., two tens, two tens and one, two tens and two, etc. There are no
irregular expressions that have to be translated in terms of the known numbers, like
the English words eleven, twelve, twenty, thirty, ...

b) particular advantages of the auxiliary base five, that is used in many
Mozambican languages, in combination with the general decimal structure of the
verbal numeration systems. These advantages are similar to those involved in the use
of tiles, structured in units, fives and tens, as advocated in Japan (Hatano 1982), and
similar to the advantages of the Dutch computing frame ("rekenrek"), with 20
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counters, organized in two rows of ten, and in each row fives are distinguished by
colour (Treffers & de Moor 1990). The similarities consist not only in the 1-5-10
structure, but also in the possibilities of interiorization of the calculation strategies.

c) verbal calculation in bases 5 and 10 may be supported by gestures, as the fingers
of the hands present the same numerical structure, avoiding counting one by one.
d) verbal computation in a base-ten-language may make use of the advantages of
the 5-10 structure, if supported by gestures, in a similarway as verbal computation in
Dutch, Japanese or Korean uses a 5-10 structure, when accompanied by the
computing frame (Treffers & De Moor 1990), the 1-5-10 tiles (Hatano 1982), or
gesture computation (Fuson & Kwon 1992).

ln Table A we present a selection of the number words used in two Mozambican
languages: Tewe, a Shona variant, spoken in central Mozambique, and Changana, a
Tsonga variant, spoken in parts of southern Mozambique.

Table A

n English Tewe
(variant of Shona)

Changana
(variant of Tsonga)

1 one posi xin'we
2 two piri swimbirhi
3 three tatu swinharhu

four cina mune
5 five shanu ntlhanu
6 six tanhatu ntlhanu ni xin'we
7 seven nomwe ntlhanu ni swimbirhi
8 eight sere ntlhanu ni swinharhu
9 nine pfemba ntlhanu ni mune
10 ten gumi khume (or chume)
11 eleven gumi ne posi khume ni xin'we
12 twelve gumi ne piri khume ni swimbirhi
13 thirteen gunli ne tatu khume ni swinharhu
14 fourteen gumi ne ina khume ni mune
15 fifteen gumi ne shanu khume ni ntlhanu
16 sixteen gumi ne tanhatu khume ni ntlhanu ni xin'we
17 seventeen gumi ne nomwe khume ni ntlhanu ni swimbirhi
18 eighteen ne sere khume ni ntlhanu ni swinharhu
19 nineteen

_gumi

gumi ne pfemba khume ni ntlhanu ni mune
20 twenty makumi mairi makume mambirhi
21 twenty one makumi maid ne posi makume mambirhi ni xin'we
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28 twenty eight makumi mairi ne tanhatu makume mambirhi ni ntlhanu ni
swinharhu

73 seventy three makumi manomwe ne tatu ntlhanu wa makhuMe ni mambhirhi
ni swinharhu

89 eighty nine makumi masere ne pfemba ntlhanu wa makhume ni manharhu ni
ntlhanu na mune

100 hundred zana zana

3. THE 1997 INTERVIEWS

In 1997 a group of students at the Maputo UP Campus, all linked to adult education
programs, conducted the same interviews with adults in different parts of the country.
Their task was to find and interview an adult with reasonable arithmetical skills,
without having been to school. Until now we have received 17 interviews on addition
and subtraction. The interviewed people had the following professions: peasants (8),
market vendors (4), fisherman (1), tractordriver (1), housewife (1), and two non-
identified professions. The interviews were held in 10 different languages. In 12 of
the interviews a base 5 language was used and in the other 5 interviews a base 10
numeration system was used, including one in Portuguese.

Results Addition and subtraction skills

All interviewed adults have more or less developed skills of verbal arithmetic: in
general more developed than those of the average primary school teacher or the
average UP student, who have the habit of using the written algorithms.

The interviewed adults showed a great variety of computation strategies and corres-
ponding explanations. The adults who were interviewed rarely resorted to counting (7
out of 120 answers in addition, 19 answers out of 98 in subtraction). However, the
number of cases coded as "counting" is probably too high: as the interviewers had
little experience, some may not have noted the discrepancy between an immediate
answer and an explanation of the answer as if it were obtained by counting.

In general the adults are sure of their computations, make very few mistakes (less
than 2%), and know, when a problem exceeds their capacity.

An important aspect of the explanations given by the adults is that the explanation
generally focusses on some steps of the calculation, whereas other steps remain
implicit, i.e., they are not mentioned in the explanation, although they must have
been executed mentally. In the presentation of results and examples of addition and
subtraction, we will give examples of more abbreviated explanations (with more
implicit steps) and more complete, explicit explanations.

Strategies used for addition

In Table B we present data on the different strategies that were used for a number of
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addition tasks. We distinguish the following strategies:
completing 10: two step addition, completing ten or a multiple of ten, like in 8 + 5 =

(8+2)+3 =10+3=13
completing 5: two step addition, completing five or a multiple of five, when base

five is used, as in 4 + 7 = 4 + (5+2) = (4+1) + (5+1) = 5+5+1 = 10 + 1 = 11

use 5+5 = 10: use the fact that 5+5 = 10 (or 50 + 50 = 100); e.g.: 8 + 5 = (5+3) + 5
= (5+5) + 3 = 10 + 3 (especially when base five is used, but not only)

Table B

Task:

Strategy:

8 + 5 4 + 7 8 + 9 14 + 6 3 + 48 19 + 7 64 + 80 390 + 48

completing 10 4 8 11 11 6 15 3 6

completing 5 3 3

use 5+5 = 10 7 1 3

counting 2 2 2 1

other 1 6 1 1

without explan. 4 3 3 3 3 2 5

not solved 0 0 0 0 1 0 5 10

Total 17 17 17 17 17 17 17 17

The number of cases where the interviewer got no explanation constitutes 14% of the
total number of problems that were solved. These cases may correspond to the lack
of experience on behalf of the interviewers, of having his interviewees explain their
computations, especially, when these computations are done very quickly.

Explanation styles

Using the task 19 + 7 = ? as an example, we present two different ways of explaining
the computation: a more abbreviated and a more explicit explanation.

Deolinda, a 54 year old peasant, explains in Changana language:

Ka chume ni n'tlanu ni mune ni patsa
xinwe svi ku machume mambirhi.

Ni tlhela ni patsa n'tlanu ni xinwe svi ku
machume mambirhi ni n'tlanu ni xinwe.

To ten and five-and-four I add one,
which makes two tens.

Then I add again five-and-one, which
makes two tens and five-and-one.

In this explanation (or is it the real computation?) the attention is fixed on the number
that has to be completed (nineteen) and the number that is needed for that (one, in
order to make twenty). Simultaneously there is a second, mental computation going
on: the one that is needed, is taken from the five-and-two (seven), remainingfive-and-
one, to be added later to the twen0i.

Beatriz, market vendor, 60 years, explains more completely, in Gitonga language:
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Nhididussa mujyó hava nha libandre na
dzimbili, nhipata hava nha likumi na li-
bandre na dzina, para gukala magumavili.

Depois, nhipata magurnavili ni libhandre
na muéyó, dzingatsala hava nha libhandre
na

Gukala magumavili na libhandre na
muéyó.

In this explanation, the calculation starts with the origin of the one, that is needed to
make twenty from ten-and-five-and-four. In order to take one from five-and-two, you
must first have heard, that one is needed. In this case, the explanation starts with a
secondary calculation (7 1 = 6), then going back to the main calculation (19 + 1 =
20), that had already been done mentally, before doing 7 1 = 6.

Strategies used for subtraction

In Table C we present data on the different strategies that were used for a number of
subtraction tasks. We distinguish the following main strategies:
one step subtraction: subtraction, from the position where that is possible, like

14 5 = (10 5) + 4 = 5 + 4 = 9
two step subtraction: subtraction, like 14 5 = (14 4) 1 = 10 1 = 9
use 5+5 = 10: use the fact that 5+5 = 10 (or 50 + 50 = 100)

I took away one from the five-and-
two, added it to the ten and five-and-
four, in order to make two tens.

After that I added two tens with five-
and-one that had remained from the
five-and-two.

That makes two tens and five-and-one.

Table C

Task:

Strategy:

11 4 14 5 12 7 16 9 62 5 31 28 910 79

one step subtraction 4 6 4 7 7 2 1

two step subtraction 7 6 5 5 4 1

use 5+5 = 10 1

counting 5 4 5 3 2

other 2 7 2

without explanation 1 1 2 1 1 2

not solved 0 0 0 1 3 3 14

Total 17 17 17 17 17 17 17

Explanation styles

Using the task 62 5 = ? as an example, we present two different ways of explaining
the computation: a more abbreviated and a more explicit explanation.

Helena, a 43 year old housewife and market vendor explains in Changana language,
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after having given the answer rapidly:

Nisuse ntlhanu ka ntlhanu wa makume ni
lin'we,

se niteka le ta timbirhi, nipatsa ka ntlhanu,

se sviku ntlhanu wa makume ni tlhanu ni
timbirhi.

I took awayfive from thefive tens and
one (ten),

I took those two, added to five,

that makes five tens and five-and-two.

Note that in Changana the expression for 60 is ntlhanu wa makume ni lin'we, which
means "five tens and one". You can hear that the one is a ten, because of the prefix
li used in lin'we. The numeral for 51 is slightly different: ntlhanu wa makume ni
xin'we, meaning also "five tens and one"; in this case people understand that the one
refers to one thing (xilo xin'we). However, in order to avoid ambiguity, you could say
explicitly ntlhanu wa makume ni chume lin'we, that is "five tens and one ten".

Faina, a 65 years old peasant, explains more explicitly in Sena language:

Pinthu makumatanthatu bulusa nkhumi
ibodzi, anasala makurnaxanu.

Pa nkhumi ibadzi bulusapixanu
pinasalambopixanu.

Nda kuata pinthupiwiri thimizira pa
pixanu pinankhalapinomwe.

Makumi maxanu na pinomwe nde pinthu
makumi maxanu na pinomwe.

Six tens of things, take away one ten,
remainfive tens.

From one ten take awayfive, remain
five.

I take two things, add to five and
obtain seven.

Five tens and seven is five tens and
seven things.

Note that Faina's last step is no step at all- she just repeats the three parts of the
numeral five tens and seven : a typical example how the regular verbal numerals
simplify the computation.

Faina uses sometimes the word pinthu, which means things, possibly because it was
used by the interviewer, when posing the problem. On the other hand, Faina uses the
numerals always with the prefix pi, what is probably an indication that she has the
word pinthu in mind, although it may have also a kind of neutral, abstract meaning,
representing a way of calculating without thinking about specific objects.

Some interviews support the idea of Reed & Lave 1981, as quoted by Carraher et. al.
1988, that the verbal calculations are done as manipulation with quantities, as the
numerals for 1, 2, ..., 9 function as adjectives, that require a prefix that varies with the
objects they refer to. However, in general people use the prefix that corresponds to
the word for "thing", which turns the verbal calculation abstract, like manipulation of
verbal symbols. The difference with abstract written computation is that in verbal
computation the tens, hundreds, thousands, etc. are explicitly mentioned, whereas in
the written standard algorithms only basic facts are used.

0 Q
,
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4. PERSPECTIVES

Presently, several MEd (Primary Mathematics) students at UP Beira are writing their
final thesis on research done in verbal mathematics in different Mozambican
languages, with children or unschooled adults.
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TEACHERS' BELIEFS AND THE 'PROBLEM' OF THE SOCIAL

Paula Ensor
School of Education

University of Cape Town

Research on teachers beliefs has tended to view these as stable systems which
operate consistently across contexts. This paper describes a longitudinal study which
tracked a cohort of preservice mathematics teachers through their mathematics
method course and into their first year of teaching. It takes a single case in order to
show the variation of commitment across context and suggests a way of describing
teachers' beliefs so as to recognise the interrelationship of subjectivity and social
context.

In 1992 Paul Ernest wrote a paper entitled "Constructivism and the Problem of the
Social" in which he pointed to the limitations of constructivism (in particular radical
constructivism) in explaining the transmission and acquisition of mathematical
practices in social context. Children may well construct their own knowledge, but not
in circumstances of their choosing. They may not have the same access to the
pedagogic texts which are on offer, as Cazden and Mehan (1989) for example point
out. The organisation of classrooms, the flow of questioning and discussion and the
formation of groups can distribute very different kinds of pedagogic knowledge to
different categories of children.

My interest in this paper is not in constructivism but rather with the 'problem' of the
social in relation to another predominant focus in the field of mathematics education,
that of teachers' beliefs, and the relationship between teachers' beliefs and classroom
practice. For both preservice and more experienced teachers, the argument flows,
teachers' beliefs either do, or should, regulate the way in which they teach (for a
review, see for example Thompson, 1992). This interest continues to generate a
significant body of research and in my paper I want to consider the methodological
implications of some of this and in particular its failure to theorise the social. My
paper is interrogative rather than programmatic, and the study I draw from was
designed for an interest other than teachers' beliefs, but it does, I think, raise
interesting questions which that research perhaps needs to address.

Underpinning most of the research on teachers' beliefs is the assumption that beliefs
are individually constructed and owned, stable systems that organise action across a
range of contexts. These stable systems or frameworks are organised by a single,
stable rationality which is assumed to operate consistently across contexts and which
regulates action. In other words, it is assumed that there is, or at least should be, a
correspondence between cognition and action such that cognition organises action. It
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follows therefore that if teacher X holds to a quasi-empiricist view of mathematics,
this should be reflected in the way in which he/she organises her classroom, arranges
mathematical tasks and so on, and also in the way he/she talks about teaching either in
an interview or through a questionnaire.

This rationalist account of the individual, operating selectively but nevertheless
consistently on the world, reproduces what Henriques et al (1984) term the
individual/social dualism, that which holds society and the individual as 'two entities
[..] necessarily thought of as antithetical, as exclusive (though interacting), as
separable and even as pulling in opposite directions' (pg.14/15). This dualism rests on
an untheorised 'core, presocial individual which remains intact' as it moves across
contexts (pg. 21) 'who is the actor who takes on and performs the roles. [..] The
external has been welded on to the individual but is still peripheral, able to be taken
on and cast off ' (pg. 23).

This approach has important implications for research. Insofar as it foregrounds
continuity of discourse and practice, research effort must inevitably be driven towards
seeking out this continuity. In relation to preservice teacher education and beginning
teaching, for example, which is my own area of interest, studies tend to focus on
whether, and the extent to which, student teachers change their beliefs and attitudes
over the course of their study, whether these new frameworks then 'transfer'
consistently into student teaching practice, and again whether continuity is further
detected as students become beginning teachers. Instead of continuity, however, the
studies with few exceptions find disjuncture. Students' or teachers' classroom
practice is found to be largely inconsistent with their espoused beliefs about teaching
and the effects of teacher preparation seem to be 'washed out' (Zeichner &
Tabachnik, 1981) by beginning teachers both in words and in deeds. (See for example
Tabachnik & Zeichner (1986) Borko et al (1992),Eisenhart et al (1993))

Little attention is given to the status of the texts which form the basis of data analysis
in these studies. Research on teachers' beliefs uses interviews, classroom observation
and questionnaires, in different combinations and with different emphases. In most
cases, these are regarded as transparent and seamless texts, as windows to that unified
rationality which is assumed to be operating across space and time. Rarely is self-
reporting interrogated, or the strategies interviewees use when positioned within these
contexts. Variations in account by respondents at different points in time, or in
different locations, are foregrounded only insofar as these constitute a "problem", as a
deviation from the normality of the consistent narrative.

This discontinuity is not explained by re-examining the founding assumptions about
subjectivity nor the interrelationship between subjectivity and context. Rather, the
students or teachers themselves are held to account (their beliefs did not really change
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during the course of study after all or if they did, were faulty) or the programme of
study is considered deficient (it failed to effect the desired change in beliefs). Very
often the teaching context is evoked to explain disjuncture; the lack of support from
other teachers, the pressure of time in covering the syllabus, the social organisation of
schooling, and so forth. As Scheffler comments:

with independent knowledge of the social context, we may judge belief as revealed in word
and deed. Where the latter two diverge, we may need to decide whether to postulate weakness
of will, or irrationality, or deviant purpose, or ignorance, or bizarre belief, or insincerity; and
the choice may often be difficult (Scheffler, cited in Thompson, 1992, pg.134)

I want to suggest that this 'divergence' can be read differently. I argue in this paper
that human subjects are inserted into different social activities and that what they
"believe" is contingent and not necessarily stable across these. While human subjects
do acquire repertoires of knowledge and skills and more or less loosely structured
webs of predispositions or commitments to act, which one might call "beliefs", these
are foregrounded and backgrounded according to the context in which subjects
operate. Arguing that beliefs are stable across contexts leads us into many of the same
difficulties we have encountered in researching the relationship between mathematics
in schools and everyday life. Both Lave (1988) and Dowling (1997) have argued that
this relationship is characterised by disjuncture rather then continuity, and develop
their descriptions through an elaboration of the notions of site, context, and most
particularly in the case of Dowling, subjectivity. Unfortunately there is no space here
to develop these ideas but I hope to illustrate some of these issues by drawing on data
from a study concerned with preservice mathematics education and beginning
teaching.

The study

The data which I refer to in this paper was drawn from a two year longitudinal study
which tracked 23 preservice mathematics teachers-to-be through their university
mathematics method course, and seven of this group as beginning teachers into
schools. Data gathering in the first year incorporated observation notes of sessions,
reflective journals, leaching practice journals, curriculum projects, tests and exams,
and interviews with students at the end of their course. In the second year of the
study, I visited each teacher four times, combining interviews with videoed lessons.
My focus is the recontextualising of pedagogic practice; what students acquire on
their method course, and what they recruit into their classrooms as beginning
teachers.

The analytic framework I use is drawn from Dowling's social activity theory.
Following this, I describe mathematics educalion as a social activity, realised in two
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subactivities, mathematics teacher education and mathematics classroom teaching. As
a social activity, mathematics education is interested in the transmission and
acquisition of mathematical practices, and both produces and reproduces itself
through texts and sUbjectivities, in specific contexts. Both mathematics teacher
education and mathematics teaching are specialised in turn by specific discourses;
constructivism, fundamental pedagogics and so forth, distributed to particular social
positions; teacher educator, student, teacher and pupil. The texts I shall examine here
(re)produce both mathematics teacher education and classroom teaching; the first
through the practices of an acquirer, the second through the practices of a classroom
teacher. I want to focus on four texts produced by a student teacher, Mary; an extract
from her reflective journal, an extract from her teaching practice journal and an
interview she had with me at the end of her preservice year, and finally an extract
from an interview with me as a beginning teacher.

Methodological issues

The texts I shall refer to involve accoUnts of self and settings, of classrooms,
staffrooms, lecture halls, and moments of private reflection. What is the status of
these accounts? Clearly they do not straightforwardly provide windows on different
worlds, be they inner or outer ones. Rather, they represent these worlds, not
necessarily consistently, through selective description and redescription.

I argue that in each case the produced text is evoked within a particular context, by a
specific invitation to speak. In this sense the contexts are productive. At the same time
they are constraining insofar as each context, with its audience, both canalises and
silences expression. Each context is an invitation to subjects to position themselves in
relation to each other, and recruit or recontextualise linguistic and somatic resources
in order to achieve this. The evoking context in each case foregrounds and
backgrounds subjectivities, repertoires and positions and in this way motivates the
selective recruitment of resources. In other words, each context calls forth or
interpellates certain subjectivities and backgrounds others, and these subjectivities
recruit resources in their elaboration. Potential resources for recruitment are learning
theories, utterances of lecturers, teaching colleagues and learners, ensembles of voices
and associated practices in various sites, mathematics and so on.

The reflective journal

Students were required to write a reflective journal as part of the requirements for
their mathematics method course. An extract from Mary's first entry is as follows:

The first session left me excited, stimulated, enthusiastic and eager to do a lot of thinking and
exploring so as to be maximally effective and creative. I'd like to be holistic in my teaching
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approach to my subject, using all that I am social, emotional and intellectual - to facillitate
(sic) a total learning experience for my pupils.

Mary here locates herself as a student and teacher-to-be in relation to her audience, the
teacher educators with whom she affiliates. She achieves this affiliation in the following
ways: by invoking an inner voice, one immediately made public through introspection,
one engaged in a project of self transformation which elsewhere in the journal she
asserts as the key to successful teaching practice. In articulating this she is privileging
the reflective practice emphasised on the mathematics method course. In other journal
entries she affiliates by partitioning teaching practice in the way this is done on the
course, contrasting 'teaching with an exam orientation' and its attendant emphasis on
achievement and the learning algorithms, with the provision of a 'creative, holistic
experience' which privileges understanding, pupil awareness and discovery of concepts.
She emphasises the importance of demonstrating the usefulness and logic of
mathematics to pupils instead of rule-based presentations, of 'exploration' rather than
`spoonfeeding'; of guesses and haphazard explanations which are recognised and
rewarded rather than 'only one answer which the teacher has', of making use of pupil's
own intuitive methods against the safety of the textbook, the syllabus and tried-and-
tested methods. She celebrates the development of intuition, investigating, exploring,
questioning, making observations and recording discoveries, approximating those
engaged with by "real mathematicians", over the traditional, algorithmic methods she
was exposed to as a pupil. In all these ways she espouses a commitment to the
precepts valued on the course and she does so to achieve an affiliation with her
teachers, the teacher educators.

On the basis of her journal, one could conclude that Mary's "beliefs" were very close
to those espoused by the teacher educators on her method course.

The teaching practice journal

Towards the end of her second teaching practice, which takes place in the second of
the two-semester course, Mary wrote in her journal as follows:

I learnt several helpful things from the subsequent discussion with Mrs B [the supervising
teacher] and V [a fellow student]:

my explanations are clear, precise and show an understanding of where the pupils are at and
how they will best understand

I demonstrate an awareness of pupil misconceptions and plan for it in my lessons, evidence of
a good teacher

I need to be 'harder and meaner' as far as discipline is concerned
my pupil interaction, individual explanations and rapport are very good.
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She goes on to say that she in future she must develop order and system in her teaching
in the form of systematic and orderly boardwork and regular and thorough marking of
homework. She needs to emphasise to pupils that work must be meticulously set out
and very systematic, 'exactly as the memorandum would require', assigning marks for
various steps, neatness and the final answer. She discusses various penalties that might
be imposed for the non-production of homework.

Here, Mary's position would appear to be at odds with the commitments of her
reflective journal. In her teaching practice journal, she addresses a different audience,
her teaching practice supervisor (either a university academic or someone appointed by
the university to assist with teaching practice supervision but only co-incidentally a
specialist in the students' own subject area), and here she recruits those resources which
will establish her competence; a careful exponent of mathematics, monitor of pupil's
efforts and a relatively strict regulator of classroom behaviour.

The final interview as a student

In the interview with Mary towards the end of the HDE year she adopts a stance
primarily with respect to the researcher and not directly in relation to the lecturers.
She does not affiliate with the lecturers, but objectifies them and acts selectively on
their pedagogic message.

I think that's definitely one thing that has come out this year, anti the teacher feed, you know,
everything into them and very much pupils participate, do the work, find out things for
themselves, a lot of pupil interaction and pupil discovery and being open-minded, thinking
about your subject and not taking the syllabus for granted, making it relevant to, like in maths
to what the children need, where it links with the outside world and that kind of thing, [....) is
it relevant, can I teach it in a relevant way, not in an isolated, unconnected kind of way

Having said this, she also comments that 'a lot of things I think I have accepted I'm
not sure that I'll actually implement [...] I found [on teaching practice - PE] there was
quite a discrepancy between what I was writing in the journal and how I was teaching
in some ways.' Mary recruits the practices of teachers she encountered on teaching
practice to raise questions about the applicability of what she has learned on the
mathematics method course. She wants to be innovative but as one of the teachers on
her second teaching practice pointed out, 'it is the old methods that work, the old
methods get the results.'

She thus affiliates with the lecturers insofar as they provide useful orientations to, and
resources for, teaching, but she affiliates also with classroom teachers. She indicates
that there are aspects of the way she was taught as a pupil that she regards as
important; orderliness and structure, meticulous boardwork, setting and checking of
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homework. She acknowledges that there may well be a contradiction here between
what she holds to be important for mathematics learning but she thinks that this
structure is important in mathematics teaching and learning.

Talking as a beginning teacher

In an interview in the first semester, Mary spoke in the following way about
classroom teaching:

that's in a way I think my frustration a little bit because I'm doing the same thing every
lesson with every class .. do an example on the board, let them do some work, you know, give
thern another example and let them do some more work, mark some homework, do an
example, do some work, and that's how it is every time

Discussions about classroom teaching were imbued with concerns about discipline
and control, being able to get through the syllabus at an adequate pace and explain
mathematical content carefully and clearly. The only aspects of the method course
which Mary indicated that she used were a small number of discrete activities which
she had engaged in on the method course. Apart from this, she has not recruited
anything else.

Conclusion

On the face of it, these extracts suggest that Mary's 'beliefs' about teaching have
changed in the course of writing her reflective journal, her teaching practice journal,
speaking to me in her interview while a student, and then again with me as a
beginning teacher. We might conclude from this, following research in the past, that
Mary's beliefs did not really change and that her writing in the reflective journal was
simply a veneer, or a form of 'strategic compliance' (Lacey, 1977). Or we might
conclude that Mary authentically 'believed' in the views expressed in her journal, but
that these changed when she moved into teaching. The problem is, on what basis do
we privilege one reading over another? To question her again and again in search of
an unvaried "authentic" account would be to engage in infinite regress.

It is perhaps more productive to view Mary as a human subject inserted into a range
of different contexts, each of which defines competence differently. In other words,
each is characterised by different evaluative conditions. Within each she recruits what
is appropriate in order to establish herself as competent. She uses the reflective
journal to restate the pedagogic message privileged on the method course and
demonstrate her conunitment to self transformation and good pedagogic practice as
defined by the lecturers on the course. In this sheAocates herself as a successful
acquirer. She uses the teaching practice journal to establish competence in another
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environment, that of the school classroom with respect to pupils and other teachers,
being able to ,exercise control and explain carefully. Here she is positioned as a
competent transmitter, as defined in the school environment in which she is placed.
There is a resonance between her interview with me as a teacher and her teaching
practice journal writing as a student teacher, achieved in that both address the same
site of practice and the same social relationships. Disjuncture appears between these
inscriptions and those of the reflective journal, as the latter is produced in a different
site ordered by different social relations.

By foregrounding the differences in social context it is possible to describe Mary's
multiple positioning in positive rather than negative terms, and to construct a
rationality for her actions and utterances which is both multiple and contingent.'
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Abstract
This paper explores some of the cognitive difficulties with the generalized number
pattern approach to algebra experienced by junior secondary students at a typical
Cape Flats school. Three patterning activities were examined: a worksheet; a
physical match stick pattern; and a functional table. Each activity engaged the
students in: the "seeing" of the pattern; expressing the pattern in words; expressing
the pattern a concise (symbolic) form; and solving problems based on the pattern. A
number of cognitive difficulties were uncovered, e.g., a fixation with recursive rules;
a tendency to over-generalize; a piece-meal perception of the pattern; inadequate
linguistic facilities, etc. The results imply that these cognitive obstacles have to be
overcome before the typical junior secondary student on the Cape Flats will be able
to make the jump from number patterns to elementary algebra.

Background
The generalized number pattern approach to algebra has become a prominent part of
the curriculum reform debate in South Africa (e.g., AMESA Western Cape Region
Inservice Curriculum Material for Algebra, 1995; Draft Syllabus of Western Cape
Education Department, 1996). While the existing literature deals extensively with
the mathematics beyond number pattern's (e.g., Abbot,1992; Andrew, 1992;
Andrews, 1990; Pagni, 1992; Richardson, 1984), the factors that might influence the
overall viability of the generalized number pattern approach in the classroom, e.g.,
cognitive demands, feature only in a few papers (e.g., Booth, 1986; 1988;
MacGregor and Stacy, 1993; Orton and Orton, 1994; 1996). The viability of the
approach seems to be a tacit assumption that runs throughout the literature. Booth
(1989) and Pegg and Redden's (1990) discussions of guiding questions that are to be
asked during the approach could even be interpreted as guidelines for a possible
instructional methodology. This paper reports on a small scale research project
aimed to test the viability of the approach with junior secondary students at a school
on the Cape Flats.

Research Methodology
Grade 8 and 9 students were used in the research as they constitute the Junior
Secondary Phase. Based on the guiding questions suggested by Booth (1989) and
Pegg and Redden (1990), number patterns were used as stimuli to engage pupils in
the following activities:
1. Experiencing ("seeing") number patterns.
2. Expressing the rules which govern the particular number pattern in full sentences.

,
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3. Rewriting the rule(s) which govern the number pattern in an abbreviated form.
4. Using the pattern to solve the problems more efficiently.

Only students ,who volunteered to be interviewed were used for the research.
The interviews were conducted during the activities and were audio taped with the
students' consent.

The research involved three patterning activities:

Activity One: The Worksheet
The first activity was aimed at providing an overview of how the students would
react to a number pattern when presented in the form of a worksheet. The drawings
of the first three match stick figures in the worksheet are shown in Figure 1.

Figure 1
The worksheet was given as a take-home exercise which the students had to fill in
and return at a pre-set date. Three volunteers were interviewed afterwards to clarify
some of their responses to the questions, providing useful insights into their thinking
and revealing some cognitive difficulties.

Activity Two: The Match Stick Pattern
The second activity dealt with a deeper study of the students' cognitive processing
when confronted with a physical match stick pattern of which the interviewer
physically built the first three figures (Figure 2) while the students watched.

NI
ommO x=61

qP \--4'0 3 I
Figure 2

The students were then invited to continue the pattern and were interviewed during
the activity in an attempt to explore the cognitive processing beyond their responses
to the set of guiding questions as suggested by Booth (1989) and Pegg and Redden
(1990).

Activity Three: The Functional Table
The third activity dealt with a number pattern presented in the form of a function
table (Table 1).
Top Row 1 2 3 4 5 6

Bottom Row- 2 5 8 11

Table 1: Funct'on Table for Activity Three
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Students were told that the table works like a computer that uses a "secret rule" to
convert the numbers in the "top row" into numbers in the "bottom row". Reference
to "x" and "y to indicate independent and dependent variable respectively was
deliberately avoided in order to allow for the creative invention of their own
representation system rather than imposing pre-set symbols (Reynolds and
Wheatley, 1994) on them. Once more the students were interviewed during the
activity.

Results and Discussion

Activity One: The Worksheet
Table 2 provides a summary of the grade 8 students' responses to the questions in
the worksheet. The cognitive requirements of the individual questions and processes
beyond some of the responses will be discussed.

Question 1 Question 2(a) Question 2(b) Question 3 Question 4
Correct 97,9 % 66,7% 33.3% 20,8% 52,1%
Wrong 2.1% 31,2% 64,6% 72,9% 43,7%

No answer 0% 2,1% 2,1% 6,3% 4,2%
Table 2: Grade 8 students ' performance in the worksheet.
The questions in the worksheet read as follows:
Question 1: Fill in the following table (Table 3) for the
sequence.
Position of figure in sequence 1

Number of matches 5

first six figures in the

2 I 3 I 4 5 6

8 1 11 1

Table 3: Number of match sticks in each figure in the worksheet pattern
The question posed little challenge other than the spotting of a recursive rule (add
three matches every time). Most students were able to do this successfully.
Question 2(a): Find a way to work out how many matches you need to make up the
17th figure in the sequence?
Question 2(b): How many matches do you need to make up the 57th figure in the
sequence?
Both Questions 2(a) and 2(b) can be solved by adding on three matches until the 171h
and 57th figure respectively are made up. The decline in the percentage of correct
answers shows that the process becomes increasingly exhaustive the further down
the figure is situated.
Question 3: If you have not done so yet, work out a general formula that you can use
to determine the number of matches in any one of the figures in the sequence. Apply
this formula to the n-th figure. Success in this question requires of the solver to
reason beyond a recursive rule in order to make a generalization and then to translate
it into a symbolic representation. At least two mental frames are required: one to
perceive a generality in the pattern, linking the number of matches in any one figure
to its position in the row; and another frame for the translation of this generality into
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an appropriate algebraic model, using some form of symbolic notation. If the solver
does not posses such frames at this stage, this activity should create the need to
develop them. The question elicited four types of responses:
(1) The arithmetic operation, e.g, 26 + 3 = 29. Many of the responses included this

particular example. The interviews revealed that the n-th figure referred to in
the question was read as a first letter abbreviation for the ninth figure, which
links this type of response to the initial letter response. Hence 26 which is the
number of matches in the 8th figure plus 3 to get the number of matches in the 9th
figure. None of the pupils explored the other possibilities, e.g., 19th, 90th, 99th,
etc.

(2) The "add three every time" response written out in full. Crude as it may be, it
gives an honest account of the recursive rule that many have used.

(3) The symbolic formula, e.g., n x 3 + 2 and n + 3. The response n x 3 + 2 was
supposedly an indication of the successful attainment of a connection between
the variable n and the position of a figure in the row, which is a prerequisite for
the discovery of the formula. The response n + 3 shows that the respondent
interprets n as the number of matches in any given figure rather than as its
position in the sequence; hence the argument that n + 3 must be the number of
matches in the consecutive figure. This is the same as the recursive formula
f(n+ 1) = f(n) +3.

(4) The initial letter response where n is interpreted as an initial letter abbreviation
for any word that starts with n, e.g., "nine" or "north". This response is
probably the result of the premature imposition of a conventional symbol (n) for
the variable via the question, before the need for it has arisen spontaneously. On
the other hand, it could also be the result of prior exposure to examples in
arithmetic where initial letter abbreviations are indeed desirable, e.g., I for liters;
s for seconds; m for meters; etc.

Question 4: In what position in the sequence would you find the figure made up of
exactly 98 matches?
In this question there was a significant increase in the number of correct answers.
This revealed that when the recursive rule is applied, it is easier to find the position
of the figure made up of 98 matches (the 321th figure) than it is to find the number of
matches in the 57'h figure. Almost all of the responses to Question 4 were single
number answers with no indication as to how they were worked out.

A fixation with a recurrent rule turned out to be one of the major cognitive
difficulties preventing successful pattern perception and rule generation. It turned
out to be a cognitive obstacle for a number of students in all three phases of the
research. For example, Tracy, 13 years old, explained:

4) T: Just add three every time.
5) I: How did you know to do that?
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6) T: Five... three... You must add three over there to get eight... and eight plus
three to get eleven.., eleven plus three to get fourteen... fourteen plus
three to get seventeen.

7) I: Right... Uhm... When you did that, did you look at the pictures or did you
look at the table?

8) T: At the table.
9) I: So you never had a look at the pictures actually?
10) T: No.

Activity Two: The Match Stick Pattern
This activity revealed a number of cognitive difficulties that were picked up in the
interviews. These include:
(1) A fixation with a recursive rule that prohibits the generation of a functional

relationship between the number of matches in a figure and its position in the
row. Students consistently failed link the number of matches in a figure to its
position in the sequence rather than to its predecessor. The situation was
probably aggravated by having them physically build the match stick figures. In
doing so, it soon becomes clear that the next figure in the row can be constructed
by adding four matches onto the previous one in a particular configuration.
Although this is important to know, pupils al too soon became trapped in this
discovery and failed to make the second and more important discovery -- the
functional relationship between the figure and its sequential position that is to
become the general rule.

(2) Over-generalization from the known to the unknown. This is based on the
assumption of a direct proportionality between the number of matches in a figure
and its position in the sequence. For example, if the 10th figure consists out of 41
matches, then the 80th figure would consist out of 41 x 8 matches.

(3) Using repeated addition as an alternative for multiplication. This complicates
the formulation of a generalized rule that links the number of matches in a figure
to its position in the sequence and totally eradicates any hint of a correct symbolic
version of such a rule.

(4) Impulsive multiplication or division of the first two discernible numerals. This
strategy probably stems from: (i) earlier learned frames in arithmetic where a
good strategy usually amounts to the careful selection of one of the four basic
arithmetic operations and its application to two given numbers; and/or (ii) a
recognition that the pattern is expanded by successive additions of four matches
at a time neglecting the fact that the first "block" in the pattern consists out of
five matches.

(5) Problems with the expression of a generalized mathematical rule in a natural
language. To compensate, the application of the rule is demonstrated by using
specific examples (often only one) and hence loosing the generality. For example
Ester, 15 years old, who explained:
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58) I: Okay... Can you write down a general rule?
59) E: A general rule?
60) I: Yes... Write down the method so that you can use it for any pattern.
She then wrote: "If I want to get up to 27 patter (sic) I say 5 match stick (sic) plus
four plus anather (sic) four up antill (sic) I get to 27 anthen (sic) I get my
answer". Note how she too used repeated addition in preference to
multiplication. One would expect Ester to have come up with a general rule
description like: Take five and keep on adding fours to it until you have added
one less fours than the number of the 'pattern'. .Yet she chose to explain her rule
by using the 27th figure as an example.

Activity Three: The Function Table
This final activity revealed a number of cognitive difficulties in addition to those
already discussed. These included the following:
(1) A piecemeal perception of the pattern leading to inadequate generalizations or

generalizations unfit for translation into the algebraic code. Some students
failed to take the whole pattern into account, choosing rather to focus on a small
part of it only.

(2) Failure to spontaneously check the validity of their assumed rules. This lack of
metacognitive awareness was prevalent amongst all of the interviewees. They
simply made certain assumptions about the pattern without stopping to check its
validity. This led to, for example, over-generalization going undetected.

(3) Immature ways of expressing arithmetic operations. For example, Claude, 14
years old, who also noticed a recurrence in the "bottom row". However, instead
of seeing it as the recurrent addition of three every time, he sees it as "two
numbers gone in between". This is how he explains his perception of the pattern:
5) C: With the 'bottom row'...uhm... there's two numbers gone like in between

the... the numbers...
6) I: Explain that again.
7) C: The 'bottom row' is is two numbers... uhm... two numbers gone in

between the numbers here like... 2, 5, 8, 11... between 2 and 5 there must
be 3 and 4...

14) I: Can you explain how you got to 14 and 17?
15) C: Here in between 2 and 5, 3 and 4 is gone sir.., like here between 5 and 8,

6 and 7 is gone... and the same here by 8 and 11 sir.., so it will be the
same here by this two... 14 and 17.

Claude's rule is the same as adding on three every time, provided that one works
with consecutive natural numbers, but the problem with such a crude description
is that it would be very difficult to translate directly into algebraic form. One
would have 'to convert it into proper arithmetic form first, and then perhaps into
algebraic form.
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(4) The cognitive need for a more succinct symbolic representational system has not
yet matured None of the interviewees spontaneously attempted to use some
form of symbolic representation for the variable. Instead all chose to explain
their methods by means of numerical examples, in some cases more than one
example to show how the method can adapted to suit different numbers in the
pattern. Symbolic representations were only used when specifically asked for
during the interview, and then in a clumsy manner, not doing justice to their
verbally stated general rule.
No significant differences between grade 8 and grade 9 students' responses

were detected. They all struggled with the same cognitive difficulties.
The cognitive difficulties with the number pattern approach that were

highlighted by this research are not necessarily linked to problems with algebra as
such, but rather to pattern perception and representation. If the number pattern
approach is to succeed at all, priority will have to be given to the addressing of these
cognitive difficulties.

Conclusions
The cognitive difficulties that Cape Flats students experience with the generalization
of number patterns are by no means unique to this area. Researchers from as far
south as Australia (MacGregor and Stacy, 1993; 1994) and as far north as England
(Orton and Orton, 1994; 1996) have reported similar findings. What this research
points out, however, is the need for some form of cognitive intervention to equip the
Cape Flats junior secondary student with the necessary skills to transcend the
cognitive difficulties that were pointed out. An adaptation of the existing
methodological framework of the generalized number pattern approach to include
opportunities for the much needed cognitive intervention is not only necessary, but
also seems more feasible than a separately taught intervention programme.
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AFFECTIVE DIMENSIONS AND TERTIARY MATHEMATICS STUDENTS1

Helen J. Forgasz & Gilah C. Leder

La Trobe University, Australia

Abstact

A large sample of Australian tertiary mathematics students enrolled in the
first year of their undergraduate courses was surveyed. Background
information was gathered, as were the students ' attitudes and beliefs about

factors associated with explanations for gender differences in mathematics
learning outcomes. We report findings from the analyses of the various
affective measures by gender, socio-economic status, language
background and age group of students. Several significant differences
were found for each grouping variable, particularly gender and age.
Analyses of two-way interactions revealed that language background was
a critical intervening variable. The results suggest that students ' attitudes
and beliefs are influenced by a complex of interacting social factors.

Introduction

For some time it has been recognised that participation rates in mathematical studies at
all levels are not equitably distributed among groups within populations. While the
stereotyped image of mathematics as the domain of white (Anglo-Saxon), middle-class
males has been challenged, data reveal that disadvantaged groups tend to be under-
represented. Almost without exception females are found less likely than males to
study the most demanding mathematics courses offered and to persist with
mathematics to the highest degree levels (Leder, Forgasz & Solar, 1996). The
identification of other disadvantaged groups would appear to be context dependent and
may be based on racial, religious or socio-economic differences, for example.

Using a variety. of methods and theoretical perspectives, previous research exploring
gender differences in mathematics learning outcomes has identified a complex of
contributing variables: cognitive, affective, and environmental or contextual (e.g.,
Burton, 1990; Fennema & Leder, 1994; Leder, Forgasz & Solar, 1996). The recently
published Third International Mathematics and Science Study [TIMSS] data showed
that Australia was one of only a few countries for which there were no significant
gender differences in the mathematics achievement of the population of 13-year olds
tested (Lokan, Ford & Greenwood,1996). Analyses of the achievements of grade 12
mathematics students in the state of Victoria have revealed that perfonnance
differences relate to the form of the assessment; males tended to outperform females
on timed examinations while females' performance levels were higher on more open-
ended classroom (and take-home) tasks (Leder, 1994). Kimball (1989) similarly
reported that the direction of gender differences in mathematics achievement is related
to assessment type. Australia-wide, males' participation rates in the most demanding

l'his project was funded by the Australian Research Council Fellowship Scheme and the Australian Research
Council Large Grant scheme. We would like to thank Dr Christine Brew who assisted with the data analyses.

3 3 2 296



mathematics options at the grade 12 level are more than twice that of females' (Leder
& Forgasz, 1992). Hence, participation rates are an important focus of research
endeavour in Australia. Much Australian work has centred on school-aged children,
with factors influencing participation rates in mathematics and learning outcomes at
the tertiary level attracting little attention.

Higher participation rates in school mathematics in Australia have been found for
students from higher socio-economic backgrounds [SES] (Ain ley, Robinson, Harvey-
Beavis, Elsworth & Fleming, 1994; Teese, Davies, Charleton & Polesel, 1996). Lamb
(1997) reported that gender differences in participation rates were associated with the
interaction of positive attitudes and beliefs about mathematics and SES. At the tertiary
level, Forgasz (1996) found that the attitudes and motivations of mature-age2
mathematics students were more functional (that is, more likely to lead to success and
future participation) than those of their school-leaver counterparts and argued that
more mature-age students should be accepted into tertiary mathematics courses.
Perceived levels of discrimination by gender and ethnicity, Forgasz (in press)
contended, had the potential to impact negatively on the decisions of some students to
persist with tertiary mathematics study.

In this paper, we examine differences in the attitudes and beliefs of tertiary
mathematics students by gender, SES, language background, and age. We also explore
for interaction effects that might add to our understanding of gender differences in
mathematics participation rates. Of special interest also were differences between
school leavers and mature-age students.

The sample, instrument and methods

A survey questionnaire was administered to mathematics students enrolled in their first
year of undergraduate study at five Australian tertiary institutions (see Table 1). The
institutions were carefully selected to reflect the diversity within the Australian higher
education sector; established and newer_ universities were represented as were those
offering traditional academic courses and more vocationally oriented programs.

A survey questionnaire which aimed to identify critical variables that might influence
students' decisions to study tertiary mathematics was administered by Forgasz (in
press). Among the range of factors included were several affective variables. A slightly
modified version of the questionnaire was used in the present study. The modifications
allowed for a sample population of first year undergraduates and for a focus on
mature-age students. Minor wording changes were necessary and a few new items
tapping students' perceptions of their competence with calculators and computers were
added. The items relevant to the findings reported in this paper included:

Biographical and background information: sex, age, language background, and SES
indicators. These formed the independent variables in the analyses.
Beliefs about tertiary mathematics e.g., perceived usefulness, interest, and
difficulty.

2 Students who are at least 21 years of age when they commence undergraduate tertiary studies
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Beliefs about self as a learner of mathematics e.g., enjoyment of mathematics,
perceived achievement and competence levels, confidence of passing, and

attributions for success and failure (to ability, effort, task, environment).

Students responded to most items measuring attitudes and beliefs on 5-point Likert
type scales (1 = strongly disagree to 5 = strongly agree or 1 = weak to 5 = excellent).
For the remaining items students selected among categories (e.g., yes/no/sometimes).
Responses were analysed using SPSSININ. Four-way analyses of variance [ANOVAs]
and chi-square tests were used to explore for differences and interaction effects among
the various groups of students. Statistical significance was set at the .05 level.

Table I. Sample sizes by gyouping variables: gender, language background, age,
socio-economic status [SES]

Student Sex Language Age

M F ESB NESB SL2 MA
SES

Austudy No Aus
Total N=7811 477 297 491 288 685 96 262 517

(%) (62) (38) (63) (37) (88) (12) (34) (66)

Males 302 174 412 65 166 310

Females 184 112 268 29 92 204

ESB 442 49 143 348

NESB 241 47 118 168

School leaver 213 471

Mature-a e 49 46
Seven students did not identi& their sex; two did not indicate whether they were ESB/NESB;
two did not indicate whether or not they received Austudy (See below for details of this grant)

2 SL School leavers; MA = Mature age

Context for the grouping variables used in the study

Unlike in the USA and the UK for example, where large minority groups are
distinguished by racial/cultural backgrounds, Australia's multicultural profile is often
characterised by language usage (e.g., the population census). Individuals can be
considered to be of non-English speaking backgound [NESB] if a language other than
English is frequently spoken in the home. This definition of NESB is one of a range of
definitions that has been used in Australia over the years in a wide variety of data
collections (see Yates & Leder, 1996) and was adopted in this study.

The Australian government provides financial assistance to some tertiary students
through the Austudy scheme. For students up to the age of 25 to receive a level of
financial assistance, combined parental incomes must be within a pre-defined range.
The receipt of Austudy is therefore a measure of socio-economic status, Most
commonly, students meeting tertiary requirements enter the sector directly from
school. There are alternative entry paths for older students. While the definitions of
and criteria for 'mature-age' entry vary slightly between institutions, commencing
undergraduate students who are at least 21 years of age are generally categorised as
'mature-age'.
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Results and discussion

On Table 2 the mean scores for the entire sample and by grouping variables (gender,
age, language background, and SES) are shown for each variable for which at least
one main effect in the 4-way ANOVA was statistically significant.

Table 2. Mean scores for affective measures by grouping variable

Variable All M F SL MA ESB NESB Austudy No Aus.
Self-ratings: perceived abilities
Maths 3.54 3.58 3.48 3.57 3.34* 3.56 3.51 3.48 3.58
Gr.12 maths 3.74 3.76 3.70 3.77 3.49* 3.77 3.69 3.55 3.83-*
Uni maths 3.37 3.41 3.30 3.35 3.49 3.33 3.44 3.32 3.39

Computer 3.64 3.89 3.30- 3.64 3.67 3.71 3.52* 3.78 3.57

competence (323)1
Calculator 4.16 4.26 4.01-* 4.19 3.98 4.24 4.03- 4.20 4.14
competence (514)
Other affective variables (beliefs about self)
S/Effort 4.11 4.05 4.19* 4.06 4.42** 4.05 4.21 4.16 4.08
F/Ability 2.85 2.79 2.94 2.84 2.93 2.74 3.06*** 2.88 2.83
Confident of 3.73 3.81 3.60- 3.73 3.76 3.74 3.70 3.68 3.75

.passing -
Beliefs about tertiary mathematics athematics at university is...)
Challenging 3.93 3.88 4.00* 3.91 4.08* 3.95 3.89 3.93 3.92
Interesting 3.27 3.22 3.35* 3.22 3.65.- 3.20 3.39 3.38 3.22

Useless 2.21 2.19 2.24 2.25 1.91- 2.21 2.22 2.17 2.23
NB. * p < .05 ** p < 01 *** p < .001
I Reduced sample sizes. Responses included were from students who responded 'yes' to: Are you

expected to use computers/calulators in your mathematics course?

The data in Table 2 indicate the following differences among the various groups:

Gender differences (6). Compared to males, females:

O perceived themselves less competent in using computers and calculators

O believed that success was to due to effort to a greater extent

O were less confident of passing mathematics at university this year

O found tertiary mathematics more challenging and interesting

Differences due to age (6). Compared to school leavers, the mature age students:

O had lower self-ratings of their mathematical achievement levels and their levels of
performance in mathematics at Grade U.

O believed that success was due to effort to a greater extent

O found university mathematics more challenging, interesting and more useful

Differences by language background (3). Compared to those from English-speaking
backgrounds, NESB students:
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O perceived themselves less competent in using computers and calculators

o believed that failure was due to lack of ability to a greater extent

Socio-economic status differences (I). Compared to students from higher SES
backgrounds (no Austudy), lower SES students:

o had lower self-ratings for their performance level in grade 12 mathematics.

These findings reveal that there were more intra-group differences for the independent
variables 'gender' and 'age' than for SES and language background. To understand
better the gender differences and those between school leavers and mature-age
students, we also examined the four-way ANOVA results for two-way interaction
effects with gender and for two-way interactions with age.

Two-way interactions with gender

For all except one of the variables which showed main effect gender differences, no
two-way interactions were found. Thus the pattern of gender difference was essentially
the same among students no matter how they were grouped. For 'university
mathematics is interesting' and for three variables which had no main effect gender
differences, there were statistically significant interaction effects. For 'self-rating of
mathematics achievement' there were two interactions (language background and age).
Overall, there were three two-way interactions with language background and one with
age. These are listed below. Mean scores are shown.
O University mathematics is interesting: no differences for ESB males and females

(M=3.20, F=3.21): NESB females scored higher than males (M=3.26, F=3.58).
o Self-rating of mathematics achievement: ESB males rated their achievements higher

than females (M=3.83, F=3.66); the pattern was reversed for NESS males and
females (M=3.64, F=3.76). Among the mature-age students, there was a larger
difference in self-rating of mathematics achievement favouring males (M=3.48,
F=3.00) than there was among the school leavers (M=3.60, F=3.53).

o Attribution of failure to lack of ability: ESB females scored higher than males
(M=2.63, F=2.92); the pattern was reversed for NESB males and females (M=3.11,
F=2.98).

o Self-rating of mathematics achievement at grade 12: ESB males rated their
achievements higher than females (M=3.83, F=3.66); the pattern was reversed for
NESB males and females (M=3.64, F=3.76).

These fmdings suggest that, in general, ESB males have more functional beliefs than
females as do NESB females compared to males. For variables with main effect gender
differences, the two-way interactions provide further insights into what other factors
are contributing to them. While males and females may not differ on particular
affective measures, particular subgroups within the population do exhibit gender
differences. Previous research frequently reports gender differences favouring males
on variables such as 'self-rating of mathematics achievement'. Were it not for the very
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high-scoring NESB females, this usual pattern would be evident in the data gathered in
the present study. It would be very convenient to conclude that there were no gender
differences on this variable. However, the explorations of other contributing social
factors have revealed patterns worthy of further investigation.

Two-way interactions by age

For three of the six variables showing main effect differences by 'age' (beliefs about
tertiary mathematics being challenging, interesting and useless), and for all but one of
the five variables for which no statistically significant main effect differences were
found, there were no two-way interaction effects. The patterns of difference or no
difference between school leavers and mature-age students were thus the same for
each of the other gouping variables.

There were four statistically significant two-way interactions with 'age'. The two-way
interaction for 'self-rating of mathematics achievement' with gender was discussed
above. Of the remaining two-way interactions, two were with language background;
the third was with SES. Mean scores are given:

O Self-rating of mathematics achievement at grade12: very little difference between
the self-ratings of NESB mature age students and school leavers (SL=3.69,
MA=3.72); ESB school leavers rated their achievements higher than mature-age
students (SL=3.82, MA=3.29).

O Success attributed to effort: very little difference between NESB mature-age
students and school leavers (SL=4.19, MA=4.16) in attributing success to effort;
ESB mature-age students scored higher than school leavers (SL=4.00, MA=4.63).

O Confidence in passing mathematics at university (no main effect difference by age):
Among Austudy recipients (lower SES), schools leavers were more confident than
mature-age students (SL=3.95, MA=3.59); the pattern was reversed for those not
receiving Austudy (SL=3.63, MA=3.77).

Language background was also an important variable, illuminating differences among
mature-age students and school leavers from different language backgrounds. It was
the ESB students who contributed to the main effect differences by age.

In summary, language background appeared to provide partial explanations for
patterns of gender difference (and sometimes as explanations for no gender differences
overall) and for patterns of difference by 'age'. Language background appears to be a
critical variable worthy of inclusion in studies exploring beliefs and attitudes about
mathematics at the tertiary level in Australia. In other countries, equivalent variables
might be race or cultural/ethnic background. SES did not appear to have as large an
impact on the gender and age-related differences evident in the sample surveyed.

Table 3 contains percentage frequency distributions and results of the chi-square tests
on the items tapping enjoyment of mathematics at school and at university.
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Table 3 Percentages of students who enjoyed mathematics by grouping variable
% M F SL MA ESB NESB Austudy No Aus

Enjoyed Yes 57 57 58 53 57 57 58 57
Maths at No 11 8 9 20 10 9 10 10
School S'times 32 35 33 31 33 34 32 33

Enjoy Yes 37 37* 35 48* 34 41** 42 33**
Maths No 22 14 19 15 23 12 21 18
At uni. S'times 42 49 46 37 43 47 37 49

Significant differences in response distributions: p<.05 p<.01 p<.001

Table 3 reveals a general decline in the enjoyment of mathematics between school and
university. There were no significant differences in the distributions of responses for
each grouping variable with respect to the enjoyment of school mathematics. However,
with respect to tertiary mathematics, differences emerged for each group:
0 males were more inclined not to enjoy university mathematics than females
0 mature-age students, NESBs and Austudy recipients enjoyed university

mathematics more than their respective counterparts

The rapid decline in students' enjoyment of mathematics from school to their first year
of tertiary mathematics study is noteworthy. Why this has occurred should be of
concern to tertiary mathematics teachers. Could it be that there are differences in the
school and tertiary teaching/learning environments that have resulted in this change?
The finding that 'disadvantaged' groups those of non-English speaking backgrounds,
older students, and those from lower socio-economic backgrounds are less affected
by the transition is also worthy of further investigation. In having reached the higher
education sector, do these students have greater motivation to achieve in their tertiary
studies? This finding also re-inforces the contention that factors other than gender
alone are crucial in understanding differences in participation rates in tertiary
mathematics.

Final words

Gender differences in mathematics learning have attracted much research attention.
The findings of the present study confirm that an examination of more subtle within-
group differences yields ,a fuller understanding of factors influencing participation and
performance in tertiary mathematics. Self-responses from a representative sample of
first year university students revealed not only a number of gender differences, but also
differences between school leavers and their older 'classmates' (i.e., mature age
students) in self-perceptions and responses to aspects of the mathematics subject(s) in
which they were enrolled and between students from different home backgrounds. For
example, ESB males appeared to have more functional beliefs about mathematics and
their ability to cope with the subject than ESB females; but NESB males had less
functional beliefs than their female counterparts. ESB school leavers rated their year
12 mathematics achievements, and the role played by effort in attaining success, higher
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than mature age ESB students. No such differences were found for students from an
NESB background. NESB students, those receiving Austudy, and students designated
as mature age, seemed to enjoy tertiary mathematics more than, respectively, ESB
students, those from higher socio-economic backgjounds, and students moving directly
from school to university. While important in themselves, the survey findings reported
in this paper can fruitfully be supplemented with more detailed information gathered
through case studies and interviews. These comprise the next stage of our research.
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Social Class Inequalities in Mathematics Achievement: A Multilevel Analysis

of "TIMSS" South Africa Data.

George Frempong (frempong@unb.ca)

Atlantic Centre for Policy Research in Education

University of New Brunswick, Fredericton, NB, Canada

This paper describes the extent of inequalities in South Africa's grade 8 mathematics
classrooms. Inequalities in mathematics achievement associated with social class
differences were found to be significant and varyfrom class to class. There are
significant sex differences favouring males and the difference is especially large in high
achieving classes. Achievement gaps also exist between classes because of the social
class background of the students in the class. An achievement gap of more than half a
standard deviation exists between high and low SES schools. The general attitude of
students in a class towards mathematics, rather than the individual students attitudes
towards mathematics, is more important in reducing social class inequalities and levels
of mathematics achievement between classes.

Research has increased our understanding of how schools and classrooms affect

children from diverse backgrounds by addressing two major questions: (1) To

what extent do schools or classrooms vary in their outcomes for students of

differing status? and (2) What school and classroom practices improve levels of

schooling outcomes and reduce inequalities between high and low-status groups?

(Willms, 1992). The term "social-class gradient" refers to the relationship between

an individuals' educational outcomes and their socioeconomic status (SES). SES

is a description of an individual's or a family's social class. Factors such as

income, the prestige of a person's occupation, and their level of education are

usually used to measure SES (White, 1982). Gradient can also be a measure of the

inequality in an educational outcome between males and females.

Research shows that there is a relationship between SES and school outcomes
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especially academic achievement. White (1982) reviewed research on SES and

achievement using meta analysis. The average of about 489 individual- level

correlations he analysed was 0.25 with a standard deviation of 0.16 in the

correlations across studies. In mathematics, the mean correlation was 0.20.

Researchers have often used Bourdieu's (1977) "cultural capital" theory to explain

the positive relationship between SES and school outcomes. Cultural capital is

about the values, norms of communication, and organizational patterns possessed

by middle class parents. The argument is that schools are largely controlled by the

middle class who impose their values, language patterns and organizational

patterns on schools (Lamont & Lareau, 1987). Middle class parents find it easier

to relate to school authorities and are frequently involved in school activities with

the sole objective of achieving what is best for their children (Lareau, 1987).

Children raised in middle class environments, through the participation of these

language patterns at home, and the expectations from parents, possess the cultural

capital that enable them to adapt and fit easily into the school environments.

However, school environments and classrooms differ in terms of composition of

students' population. Although school population depends on a number of factors

including, the geographical location of a school, parental interest, students'

preferences, or admission policies including some measure of the students'

aptitude, social class play a major role in the social composition of the school

population. In simple cases, a school population will reflect the social class

composition of the neighbourhood it serves while, in complex cases where the

attendance area embraces different neighbourhoods, the school population will be

more heterogeneous, but usually a particular social class will dominate. Schools
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are therefore segregated in terms of social class.

Research indicates that the social background characteristics of students in a

school have substantial effect on students school outcome over and above the

students own ability and social class (Willms, 1992). This is what is referred to as

"contextual effect". School or classrooms with students from high social-class

parents tend to have several advantages associated with the learning contex.

These schools are also more likely to attract and retain talented and motivated

students. The result of segregation of schools along social class lines is that

students from social class advantage background not only do better but are also

more motivated to learn than those from disadvantage backgrounds.

Research shows that in general students.are motivated to learn mathematics and do

well when they have a positive attitude towards mathematics (ATM). The review

of research on ATM and mathematics achievement indicated that most of the

studies have been done at the student level with virtually no study in the school or

classroom level to determine for instance how the "general" ATM of students' in a

particular class affects their mathematics achievement over and above their own

attitude towards mathematics and their social class backgrounds (see review in Ma

& Kishor, 1996). The main objective of this study is to assess the extent of

inequalities within and between grade 8 classrooms in South Africa, especially,

with respect to social class. The effects of students' ATM and the general ATM of

a class on mathematics achievement and inequalities in mathematics achievement

are also assessed.

The South Africa grade 8 data from the Third International Mathematics and
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Science Study (T1MSS) are used in this study. This study was conducted under

the auspices of lEA (International Association for the Evaluation of Educational

Assessment) in 1994-95 academic year in more than 40 countries. In the

population 2 study, the mathematic achievement test was administered to a

selected grades 7 and 8 students from a randomly sampled schools within the

countries. Students and teachers also responded to a set of questionnaire about

themselves, their schools and classrooms.

Multilevel statistical models were employed in this study. Over the past decade,

the development of multilevel statistical models has resulted in the

conceptualization and estimation of model's pertaining to levels of outcomes and

gradients for data that have a nested structure, such as students within a classroom

(Bryk & Raudenbush, 1992). In classroom effects research, the approach will

entail the estimation of a separate regression equation for each class, which will

yield a set of intercepts (i.e., levels of outcome for each class) and slopes (i.e.,

gradients for each class). The set of intercepts and slopes become the outcome

variables at the second level of the model, which can be regressed on variables

describing classroom processes.

Models and Data Analyses.

The analyses of the data involved 5 models. The first model (model 1) usually

called the "null" model does not include any independent variables. This model

simply partitions the total students' variation on the dependent variable

(mathematics achievement score) into within class and between class variations

(similar to what is done in Analysis of Variance) - the mathematics achievement

score is standardized. In the second model, I included the SES measure into the
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equation to determine the extent of the effect of SES on mathematics achievement.

The educational level (measured in years of education) of mother and father of

students along with some 16 selected items, including books, TV and a car in a

student's home were aggregated and scaled to have a mean of 0 and standard

deviation of 1. Sex and ATM were added into the equation in Model 3 to

determine the effect of these variable on SES and also on mathematics

achievement. MeanSES was added to the Model 4 to assess the contextual effects

on levels of mathematics achievement and on SES and sex inequalities.

MeanATM entered the equation in Model 5 to determine the independent effect of

the ATM of a class on the levels of mathematics achievement, and on SES and sex

gradients (See Table 1 for the description of these variables).

Table 1

Means, Standard Deviations, and Descriptions of Variables

Variable Mean SD Description

Student-level variables (N = 4491)

Sex 0.51 0.5 Coded as: Male=0, Female=1.

SES 0 1 Socioeconomic status.

Attitude Towards

Mathematics (ATM)

2.87 0.997 Scale coded as dislike a lot =1,

dislike=2, like=3, like a lot =4.

Classroom-level variables (N=116)

MeanSES -0.02 0.59 Mean SES of a class

MeanATM 2.85 0.339 Mean ATM of a class
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Table 2

Hierarchical Regression Coeffecients, Variances and Correlations.

Models model 1 model 2 model 3 model 4 model 5

Student-level Equation Regression Coeffecients

Constant -.119** -.120** -.116** -.108**

SES .037* 0.036 0.018 0.021

Sex -.069** -.073** -.074**

ATM .070** .072** .065**

Class-level

SES MeanSES .176** .165**

MeanATM .122**

Sex MeanSES -.074 -.060

McanATM -.082

Adjusted

Score

MeanSES 595** 543**

MeanATM .480**

Variation

Within Classes 0.541 0.539 0.534 0.533 0.534

Between

Classes

Average Score .382** .223** .208** .097** .073**

SES Gradient .020* .021* .007* .005*

Sex Differences .006 .005 .003

Correlation Between Parameter Variances for model 5

Adjusted Class Score (1)

1 2 3

1.00 -0.82 0.86

Sex Differences (2) -0.82 1.00 -0.97

SES Gradients (3) 0.86 -0.97 1.00
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The estimates from the five models are displayed in Table 2. Model 1 indicates

that about 58.6% of the total variation on students' mathematics achievement is

within classes (.541/(.541+.382)) and 41.4% is between classes. The between

class variation was significant (p<.001) suggesting that the levels of mathematics

achievement differ from class to class.

When the SES variable was added to the equation it reduced the between class

variation by about 41.6% (from .382 to .223). The effect of SES on mathematics

achievement was .037 which was significant at p<.05. This is small compared to

what pertains in the literature. However, the variation on SES gradients (.020)

was significant at p<.01 suggesting that classes differ on their SES gradients.

With a variance of .02 (S.D.=.141) the SES effect could be as high as .330 (.141*2

+ .037) in some classes. The SES gradient is positively cOrrelated with level of

class achievement which means that the social class inequality is wider in schools

with high levels of mathematics achievement.

In model 3 when sex and ATM were added to the equation the variation in

adjusted class achievement scores reduced by only 6.7% (from .223 to .208). The

sex effect (adjusted for SES and ATM effects) was significant at p<.01. The

difference in achievement between the sexes was about .069 in favour of males.

The variance of .006 on the sex gradients was not significant. There is a negative

correlation between the sex gradients and class achievement levels suggesting that

in classes where there is a high achievement, sex differences favour males. The

ATM effect (.070) was significant but did not seem to have made any significant

impact on either the SES gradient - the SES effect reduced from .037 to .036 when

sex and ATM were added to the model.
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In models 4 MeanSES reduced the variance by 53.4% (.208 to .097) and between

class SES gradients by 66.7% (.021 to .007). This means that much of

achievement differences between classes are mainly due to contextual effects the

effect of the class SES on students achievement irrespective of their social class

background and attitude towards mathematics. The meanSES effects on SES

inequalities and adjusted class achievement levels were both significant at p<.01.

For two schools with a unit differences (one standard deviation) in meanSES, the

achievement gap is about .176 between low and high SES students and there is an

achievement difference of about .595 between the classes. The MeanSES

flattened the SES gradient by about 50% (from .036 to .018) but did not appear to

have any effect on sex inequalities. The meanATM had significant effect on

meanSES inequalities and adjusted class achievement levels. For two schools

with about a unit difference in meanATM, there is an achievement gap of about

.12 between high and low SES students in favour of high SES students and an a

gap of about .480 between the two schools. A change in attitude of students in a

class from disliking to liking mathematics is likely to increase the average

mathematics achievement of that class by 48% of a standard deviation.

MeanATM also reduced the variance on the SES gradient by about 28.6% and

between class variance by 24.7%

Conclusion

These analyses suggest that much of the differences in class achievement is

associated with the social class background of students and the composition of

students in terms of their background characteristics. There is an achievement gap

of about 4% of a standard deviation between students with high SES families and

those from low SES families in favour of those from high SES families. In high
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achieving schools, female students and students from low SES families tend to

perform poorly in mathematics. The mathematics achievement gap between high

SES schools and low SES schools is about 60% of a standard deviation. The

general students' attitude towards mathematics in a class rather than individual

student's attitude will be more effective in reducing mathematics achievement

gaps between schools and the gap associated with the background characteristics

of students.
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CONTEXT INFLUENCE ON MATHEMATICAL REASONING
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ABSTRACT. The problem studied in this paper is how and under which conditions students accept
or refuse the rules of formal deduction. In particular, the focus is on the role of the context in the
activity of proving, where by 'context' we mean the 'semantic context' of the statement to be proved
and not the global context in which the classroom is set. Our study is based on the analysis of the
answers of 40 students aged 16 years to a questionnaire on the introduction and elimination of 'and',
and on the introduction of 'or'. The results of our analysis reveal, in our opinion, a remarkable
interference of the context, which includes both the semantic meaning of the propositions involved in
a deduction step and certain implicit assumptions induced by the conunon usage of certain words in
the natural language; this is particularly evident in the case of the introduction of or.

I. INTRODUCTION AND OUTLINE

BACKGROUND. In the past the traditional theories about human reasoning
developed in the field of psychology used to assume that a mental 'natural' logic
exists structured around the pattern of classic formal logic. We can observe a
consequence of this assumption in school practice: students are asked to accept some
rules as self-evident, even though they feel these rules are not. That position is
questioned by recent empirical studies, which show that human performances in
reasoning are far from the ideal correctness of classic formal logic. For example, the
papers (Balacheff, 1988; Chazan, 1993; Martin & Harel, 1989; Porteous, 1991) show
that students prefer empirical rather than hypothetical-deductive reasoning. Other
studies, for example (Zazkis, 1995), point out the use made by students of alternative
schemes of reasoning. It is important to note that this issue is central in the studies on
artificial intelligence.

Duval (1991 and 1992-1993) has made the important point that usual reasoning (i.e.
the one performed, in a variety of contexts, rather informally in a natural language)
and formal reasoning (formal deduction), though apparently similar in some respects,
are actually deeply different. Indeed, as Duval rightly argues, in usual reasoning the
rules of inferential deduction are implicit and the conclusions strongly depend on the
semantic meaning of the premises, while in formal reasoning the inferential rules are
explicit and the conclusions are deduced independently of the semantic meaning of the
premises (in Duval's words, only on the basis of the "operational status" of the
propositions involved).

In a previous research, see (Furinghetti & Paola, 1996), we have investigated some
aspects of the above issue, i.e. how and under which conditions students accept or
refuse the rules of formal deduction, through a questionnaire and interviews. From
our findings we argued that:
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- quite often the rules of formal deduction, implicitly used in classroom mathematical
practice, are perceived as unnatural compared to usual reasoning

when engaged in some deductive reasoning, almost invariably the students try to
associate a meaning with the premises and are strongly influenced not only by that
meaning, but also by the overall context allowing to give a meaning to the
propositions involved. We can say that in certain cases the semantics provided by the
context may act as an element of diversion in proving.

Since the general information provided by that work needed to be checked and
refined, we have gone further with the research reported here, which is aimed at
investigating how students deal with the rules of:
- the introduction of the conjunction and, formally

H K
(i.e. from { H,K} we can infer {Hand K})HAI(

the elimination of the conjunction and, formally
HAK (i.e. from {Hand K}) we can infer H)

together with the analogous obtained by exchanging H for K and conversely
the introduction of the disjunction or, formally

HK (i.e. from {H} we can infer {H or K})
v

together with the analogous obtained by exchanging H for K and conversely.

Our main emphasis is on the influence of the context on the application of such rules,
since our working hypothesis is that, whenever the association of meaning to
propositions is impossible or beyond the students' ability, then we may experience
either a student being stuck or, paradoxically, giving a better performance than within
a context providing too many information (i.e. less answers, but, proportionally, a
better percentage of correct answers). This is not opposed to, but rather
complementary to the findings of some studies, like for example (Chazan, 1993),
where it is shown that an appropriate semantic context may be of help in proving.

The research here reported is part of a large project on mathematical reasoning, under
development since a few years and investigating different aspects of that activity, like
mastering the mathematical language, role of intuition and of rigour, visualization,
empirical checking of conjectures or statements, impact of computers.

METHODOLOGY. We have assumed that dealing with the rules of deduction requires
a certain mathematical experience. For this reason the present study has addressed
students aged 16; indeed, according to our national curricula, they have already been
trained in proving some theorems (mainly in arithmetic and geometry). The research
has been performed by means of a questionnaire to be answered in half an hour,
assigned to 40 students of two classes of an Italian high school. In the curriculum of
this school mathematics has an important role. The questionnaire is three pages long; it
contains 12 questions, with 4 options plus the possibility of a comment. The questions
are grouped in 3 sections (il, i2, ii): the first two concern the conjunction and, the

32.1.
2 314



third the disjunction or. Each section consists of 4 questions constructed according to
the same schema, but set in the following different contexts:
Context A. Mathematical context rich of meaning for the students (analytical
geometry, which constitutes the main part of the mathematical program)
Context B. Mathematical context without meaning for the students (metatheoretical
results of mathematical logic)
Context C. Everyday experience rich in meaning (card-game)
Context D. Artificial context (the sentences in the questions are expressed in the
natural language, in a grammatically correct form, to which we have added three
imaginary words; thus the sentences are without any meaning but those the students
themselves can attribute).

After having collected the data we have proposed the same questionnaire to 9

students of the fourth year of the mathematics course at.the University. They went
through a great amount of theorems in analysis, geometry, topology. We do not
discuss in detail the results of this last category of students; we only point out that the
trend of their answers is analogous to that of the younger students. The interest of the
further information provided by these university students is in the comments they
write. While the younger students showed a poor ability in explaining their strategies
or why their are not able to answer, the university students showed a certain
awareness of what they do and why they do it. Thus their comments are clearer and
richer in information than those of their younger colleagues.

2. EVALUATION OF THE EXPERIMENTAL RESULTS

Section il (Introduction of the connective 'and')
In all the 4 questions of the section the options are as follows: [a] nothing, [b] the
right answer, [c] manifestly wrong, [d] two right propositions, but the second is not
deducible (in terms of formal rules) from the two given propositions. In the tables for
each question we report the percentages of right answers; the data not reported refer
to null percentages of answers.

Question ilA. Given the two following propositions:
1. The straight line of equation x - 2y = 0 passes through the point (2,1)
2. All the straight lines non parallel to the straight line of equation x - 2y = 0 passing through
0(0,0) have in common with the straight line of equation x 2y = 0 the point 0(0,0)
Using the rules that you habitually use when proving what you can conclude from the two
propositions (only from them)?
[a] nothing
1b1 The straight line of equation x - 2y = 0 passes through the point (2,1) and All the straight
lines non parallel to the straight line of equation x 2y = 0 passing through 0(0,0) have in
common with the straight line of equation x - 2y = 0 the point 0(0,0)
[c] The straight line of equation x 2y = 0 passes through the point (2,1) and The straight line
of equation x 2y = 0 passes through the point (1,0)
[c1] The straight line of equation x - 2y = 0 passes through the point (2,1) and The straight line
of equation x - 2y = 0 passes through the point (4,2)
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*1 Brief comment ti

a b c d a,d b,d b,c,d only comment no answer
0 27.5 0 18 2.5 50 2.5 0 0

The semantic context is familiar to the students, since they are studying analytical
geometry at the moment they answer the questionnaire. They do hot feel the need of
adding any comments, as we will see it happens when the semantic context is not well
mastered. The main difficulty is to consider only the given propositions, since students
tend to give as much information as they can. In this case the second proposition in
the option [d] is some additional information easily obtained by means of calculations
in the field of analytical geometry. Performing these calculations is, in the students'
mind, what the teacher is expecting from them. This fact may explain the preference
accorded to [d]. Another cause of this preference can be found in the students'
reluctance to draw conclusions which are trivially contained in the premises, as it is in
the case of the option [b]. It may be interesting to note that a student who answers
correctly all questions of Section il, underlines the words "only from them" in the
text of the questionnaire.

Question ilB. Given the two following propositions:
L PA is incomplete
2. All the extensions w consistent recursively axiomatized of PA are incomplete
Using the rules that you habitually use when proving what you can conclude from the two
propositions (only from them)?
[a] nothing
[b] PA is incomplete and All the extensions w consistent recursively axiomatized of PA are
incomplete
[c] PA is incomplete and The number of integers is finite
[d] PA is incomplete and The nutnber of odd numbers is infinite
[*1 Brief comment o tional

a b c d a,b only comment no answer
10 55 0 0 5 25 5

The percentage of right answers is considerably increased. In this totally unknown
context there is no misleading information due to the interference of the experience
(from school, as it was in the case of analytical geometry or from outside school, as
we will see in the case of the card-game). The students have less information to
organize and have the possibility to be more concentrated on the rules of deduction.
On the other hand we observe that the lack of semantic context raises disorientation,
as shown by the increasing number of students answering that nothing can be
concluded and by the number of comments which are given not only in isolation, but
also accompanying the various answers; for example, 40% of the right answers are
accompanied by a comment. The student who in the question ilA has underlined the
words "only from them" answers rightly, but adds "What does the sentence mean?".
Another one, also providing good answers, points out "I have chosen the option [b]
by logic, but I do not know what does it mean". The most common comment is of
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the type "I do not know what the words recursively and axiomatized mean and thus I
am not able to give a sensible answer to this kind of questions".

Question i1C. Given the two following propositions:
1. The playing-cards are of two colours
2. All the red cards not diamond are heart
Using the rules that you habitually use when proving what you can conclude from the two
propositions (only from them)?
[a] nothing
[b] The playing-cards are of two colours and All the red cards not diamond are heart
[c] The playing-car& are of two colours and The spade ace is red
[d] The playing-cards are of two colours and The club ace is black
1*1 Brief comment o tional

a b c d b,c b,d only comment no answer
2.5 35 0 2.5 2.5 52.5 2.5 2.5

We see that the trend is similar to that of the question ilA. In both cases for the
majority of students we find that the richness of information contributes to hide the
formal structure of the text and the deductive step is not made thanks to the formal
role of the propositions, but thanks to their meaning. These students accept the
introduction of propositions that are true, even when they are not those given at the
beginning. However in both cases all students feel confident and do not feel the need
to add comments, apart one who asks about the number of the cards and the colours.

Question ilD. Given the two following propositions:
1. Lim is a tohgh
2. All the pohl rhythmic consulted of a Lim are dusty
Using the rules that you habitually use when proving what you can conclude from the two
propositions (only from them)?
[a] nothing
[b] Lim is a tohgh and All the pohl rhythmic consulted of a Lint are dusty
[c] Lim is a tohgh and The men are immortal
[d] Lim is a tohgh and The men are mortal
[* Bdef comment (o tional)

a
7.5 52.5 0 2.5

a,b b,d only comment no answer
5 2.5 27.5 2.5

In the above propositions three words ('Lim , 'pohl', 'tohgh') occur, which do not
exist in the Italian language (nor in the English language too). The numerical data
show a trend similar to that of the question 2. Even in this case the lack of semantic
context provokes disorientation, as witnessed by the high percentage of comments,
not only in isolation, but also accompanying the various answers. However, the lack of
meaning does not introduce elements of diversion, as indicated by the low percentages
of answers containing the option [d].

Section i2 (Elimination of the connective 'and')
In all the 4 questions of the section the options are as follows: [a] nothing, [b] right
answer, [c] right answer, [d] a proposition true, but not deducible (in terms of formal
rules) from the two given propositions. To give an idea of the kind of questions of this
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section we report the text of the second question 12B, whose context is mathematical
logic. In the four tables after the question the results are presented with the same
criterion used in Section il.

Question i2B. Given the following proposition:
PA is incomplete and All the extensions w consistent recursively axiomatized of PA are
incomplete
Using the rules that you habitually use when proving what you can conclude from the two
propositions (only from them)?
[a] nothing
[b] PA is incomplete
[c] All the extensions w consistent recursively axiomatized of PA are incomplete
[d] PA is incomplete and The number of odd numbers is infinite
[*] Brief comment (optional)

Context A Anal tical eeometr
a b c d s b,d b,c,d only comment no answer
0 0 10 12.5 42.5 2.5 27.5 0 5

Context B Mathematical lo ic
a b c d b_s a,c a,b,c only comment no answer

2.5 5 5 0 52.5 2.5 5 17.5 10

Context C Cards game
a b c d bc b,d c,d b,c,d a,b,c,d only comment no answer
0 2.5 5 2.5 15 2.5 7.5 52.5 2.5 2.5 5

Context D atural Ian ua e without meanin
a b c d bc a,b,c b.c,d a,b,c,d only comment no answer

7.5 0 7.5 2.5 45 5 5 2.5 17.5 7.5
The percentages show a trend rather similar to that of the first part of this section. In
the contexts rich of meaning, A and C, the option [d] containing right sentences is
chosen by 42.5% and 67.5% respectively versus the 0 and 2.5 in the contexts B and
D, both as for the influence of the context and as for a rather good level of acceptance
of the rule (here the elimination of and). The comments of the University students
point out a possible specific reason of this preference. For example, a student writes
that she cannot deduce anything since the propositions give information she already
has. This student considers deduction as an activity which necessarily has to increase
the amount of information. Another student writes "I cannot deduce anything, but
what I already know".

Section ii (Introduction of the connective 'or')
In all the 4 questions of the section the options are as follows: [a] nothing, [b] right
answer, [c] right answer, [d] right answer. To give an idea of the kind of questions of
this section we report the text of the third question iiC. In the four tables after the
question the results are presented with the same criterion used in the Section il.

Question iiC. Given the two propositions:
1. The playing-cards are of two colours
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2. All the red cards not diamond are heart
Using the rules that you habitually use when proving what you can conclude from the two
propositions (only from them)?
[a] nothing
[b] The playing-cards are of two colours or All the red cards not diamond are heart
[c] The playing-cards are of two colours or The spade ace is red
[d] The playing-cards are of two colours or The heart ace is black
[*] Brief comment (optional)

Context A atural lan ua e without meanin
a b c d b,c b,d c,d b.c,d only comment no answer
10 27.5 2.5 10 2.5 10 2.5 7.5 17.5 10

Context B Anal tical geome
a b c d a,c c,d b,c.d only comment no answer

22.5 27.5 0 2.5 2.5 2.5 2.5 25 15

Context C Anal tical geomet
a b c d a,c b,d b.c.d only comment no answer

15 7.5 2.5 7.5 2.5 32.5 2.5 0 5

Context D Anal tical geome
a b c d a,c b,d b,c,d only comment no answer

12.5 20 5 5 2.5 5 2.5 32.5 15

To emphasize the students' difficulties in the use of the disjunction or we show
altogether the data about the right answers in the following table.

Question iiA
7.5%

Question iiB
0%

Question iiC
2.5%

QueStion iiD
0%

The analysis of the answers points out that the meaning given to or is mainly exclusive
(aut). This fact comes from the natural language in which or is mainly used in this
way, e. g. "do you want tea or coffee?" means that you are supposed to have only
one type of drink. We point out that, while the younger students in their comments
write generic sentences such as "it does not make sense", "it is impossible to
answer", the University students offer precise explanations of the incorrect answers.
They explicitly write "I have interpreted or as aut"; "it is wrong to use or, since both
statements are deducible from the propositions and one does not exclude the other".

In (Johnson-Laird, 1993) there is an interesting explanation of the cause of the
difficulty in the use of the connective or: it is ascribed to the non acceptance by the
students of 'semantic dissipation'. For students to deduce HvK from H is to dissipate
meaning. For example, it is observed the reluctance in accepting that from the
proposition "for any real x, x2 + 1 is greater than 0" it is possible to deduce the
proposition "for any real x, x2 + 1 is greater or equal to 0". This deduction is
considered "wrong" or "without sense", or "useless and thus to be refused".
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Apropos of this fact Freudenthal has observed that students are used to tell not only
'the truth' but 'all the truth'. By the way this attitude is also suggested by the
common sense in the situations of everyday life. Thus we have that both natural
language and common sense generate conflicts in the use of or.

CONCLUSIONS

In the paper (Furinghetti & Paola, 1997) we have shown that the performances in
proving are not 'context free', because of the many elements which may interfere
negatively in the students' behaviour. In that case the interference came from
arithmetic and algebra. To have focussed on the specific rules concerning and, or has
allowed us to identify other interferences, those originated by the common sense, the
natural language, the richness of information provided by the context. In this kind of
interferences we can find one of the causes of the cognitive rupture in passing from
the phase of construction to the phase of formal settlement of a proof. Our findings
support the idea that this passage is not `natural'; even more, that there are moments
in which the two phases are opposing each other, for example, when the syntactic
aspects of formal proof are in conflict with certain aspects of the usual reasoning. This
fact induces us to think that, in order to introduce the pupils to the proving process, it
is necessary to propose tasks leading them to perceive and to use the proposition's on
the basis of their operative status within the inference rule and not of their semantic
meaning. To succeed it is necessary that students' attention be concentrated on the
control of the deductive organization, giving the due relevance to the inferential rules.
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What Do They Really Think?
What Students Think About the Median and Bisector of an Angle in the Triangle,

What They Say and What Their Teachers Know About It.

Hagar Gal - The David Yellin Teachers College, Jerusalem.

The subject of special segments in the triangle raises some specific difficulties. We use it
as an example of a process of iden46ling difficulties during learning, and observing the
way teachers deals with them. The purpose is to draw teachers attention to the
possibility that some difficulty is hidden (or even not- hidden) behind the students
answers, to introduce an opening towards understanding the difficulties, and to increase
their motivation to look for solutions. This is part of a broader research concerning
identiniing difficulties in Geometry instruction, analyzing them according to cognitive
theories, and suggesting the analysis to the teachers in order to help their decision
making during instruction (according to the paradigm of the Cognitively Guided
Instruction (Carpenter & Fennema, 92).

Background and Method
The comprehensive research (see also Gal & Vinner, 97) tries to identify difficulties in
geometry, analyze and find their sources, and suggest this pedagogic knowledge to the
teachers in order to take it into consideration during their instructional decision making.
This is a qualitative research which involves 7 pre-service teachers, in their third and
fourth year of study. (Concerning the type of difficulties detected, the researcher does
not distinguish between pre- and in- service teachers. Hence, from here on, the term
"teacher" would describe pre-service teachers as well). They were teaching geometry to
8th-9th graders (slow and fair learners), 2 hours a week throughout the year. The lessons
were partly videotaped, the teachers were interviewed before and mainly after the
lessons and their lesson outlines were read.

In this paper we demonstrate some stages with two teachers, Alon and Udi, pre-service
teachers in their third year of study. Alon and Udi taught geometry in the same class,
alternately, both present in the classroom. There were about 18 students in class, mainly
slow learners. The class was studying the subject of special segments in a triangle, and
our interest was mainly bisector of an angle and median. (The median was the first to be
taught). The article describes a four stage process: a. Observing a lesson about the
bisector and identifying difficulties. b. Discussion with the teachers about the lesson. c.
Observing the lesson that follows the interview. d. Interview and conversation with the
teachers.

a. A Lesson About The Bisector of an Angle in a Triangle
The lesson was led by Alon. He was demonstrating how to find the bisector by using
paperfolding, (mainly it was he who performed the folding...), he pointed out the
differences between a bisector of an angle and a bisector of an angle in a triangle and
defined each of them. Then, the students were given worksheets on which different
triangles where drawn, and they were asked to draw the bisector.
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The observations show that many of the students did not pay attention to the bisecting
of the angle: No controlled procedure was observed. For example, a student used a wide
non-transparent ruler, in order to draw the segment from the vertex to the opposite side.
But since the angle and the opposite side were partly hidden behind the ruler the student
could not estimate "where is the middle". It did not bother him...

In many cases the students bisected the side opposite the angle (instead of bisecting
the angle itself). It could be seen in several ways: First, the segment that they drew in
the triangle did not bisect the angle but did bisect the opposite side. Second, in some
cases, the students were "searching" for the middle of the side in different ways:
measuring with the ruler, "measuring" with their finger, etc. Third, in some other cases,
students started their drawing from the middle of the side in the direction of the vertex,
while in drawing the bisector of an angle the opposite is expected: start from the vertex.
We may conclude that part of the students "bisected the angle" by drawing segments
from the vertex to the opposite side and from the vertex to the middle of the opposite
side, regardless of the attribute of the segment as the bisector of the angle!
No reaction of the teachers was noticed to any of these cases. Furthermore, the teacher
did not explicitly tell the students how to draw the bisector. Probably, he did not find a
special difficulty in drawing a bisector of an angle and considered it (rather
unconsciously) as a simple application of the previous part of the lesson.

b. Discussion with the teachers about the lesson
After the lesson the teachers were interviewed and the difficulties were discussed:
I. While planning the lesson, Alon did not expect any special difficulties in the
assignment of drawing bisectors of an angle in the triangle.
2. When Alon hears about the "median instead of bisector" seen by the interviewer, he
explains it by confusion with the other special segments.
3. Alon has a relational instructional motivation. (Interviewer: For what purpose do we
teach the bisector of an angle? Alon:.../t 's because of the mathematical meaning of this
issue). He does not specify what is the mathematical meaning that he finds in the
bisector of an angle, but still there is no clue in his words to instrumental goals of
studying this issue. On the contrary! He wants the students to understand! (Alon: In fact,
I want them to understand what the bisector of an angle does in a triangle).
4. When a student declared that he was drawing a bisector of an angle, though it did not
look like it, the teacher refered to the answer as imprecision. (Alon: When they say that
they drew a bisector though I see that it's not equal, but they say: "1 meant it to be
equal, it just didn't work out", then I accept it as O.K.). Alon does not treat such an
answer as misconception or as a different purpose in drawing the segment. The teacher
does not take into consideration the possibility of a gap between the verbal declarations
and the student's concept image ( Vinner, 91).
I would like to specify this point. The student heard from his teacher many times what a
bisector of an angle is. The words: "bisector of an angle", "to bisect an angle", "two
equal angles" etc. were used by the teacher and by the students, were written on the
board and even in (part of) the notebooks. Therefore the student knows (even if not
aware of it...) that these words describe the issue of "a bisector of an angle" and
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therefore are worth being used as an answer to a question concerning this issue. If that
is the case, they can be thought of as pseudo- conceptual answers (Vinner, 97), in which
words are connected to words, not to ideas. Moreover, when the student heard these
describing words, he had probably built a concept image of bisecting an angle. We do
not actually know what this image includes and what procedures are cotmeeted with
bisecting an angle (how he draws the segment, what he thinks of while drawing the
"bisector", e.g. bisecting the opposite segment). But it could be even more troubling:
maybe there is no procedure at all. Considering the Van Hie le levels (Hoffer, 83), such a
procedure occurs in the 3rd level! The student may have a global-visual concept image
(based on examples or non-examples of a bisector of an angle). In this case, drawing the
bisector does not involve an analytical process but raises the prototype in his head. This
time we consider Van Hie le's 1st level - Visualization! The teacher, 3rd level
interpretations oriented, will probably interpret the students words as having the same
meaning he gives them. But do they have the same meaning when used by the student?
5. Alon suggests to overcome the difficulty by confronting the solutions of two
problems: If they were drawing median as a bisector they will see now a "real" bisector
and find out that they have actually answered a different problem. The teacher uses
logical-analytical arguments. He explains that the segment bisecting the opposite side of
the angle creates a median and is not necessarily a bisector of an angle. The interviewer
reminds him that the student may think in a different way, but the teacher sticks to his
logical arguments.
During a simulation of dialogue with a student, he suggests a logical investigation of a
conflict. (Interviewer: They say: "we bisect the opposite side, and that will bisect the
angle". Alon: Then let's copy the angle on a piece of paper. If we check, we find out
that it's not equal to the other' angle. So it's not a bisector of an angle!). This
suggestion, based upon a cognitive conflict, implicitly presumes that a single solution to
different problems would cause: a. rejecting one of the solutions. b. the one to be
rejected would be the false one. These two assumptions can be opposed! Can't the
student "live with" a same construction (bisecting a segment) which leads to two
different concepts (bisector of an angle and median)? Does he really consider them as
two different concepts? Or maybe they are two terms, representing the same concept?
6. When Udi is being asked about possible difficulties, he identifies a difficulty of
mixing up median and bisector of an angle. He believes that this difficulty is caused by
their "similarity". (Udi: No, the difficulty is not mixing-up with median, but that the
bisector of an angle really looks like a median). This is a "1st level" phrase, and offers
global-visual identification of the median which "looks like" the bisector of an angle.
7. Udi believes that the problem exists only in prototypes of triangles, in which the two
segments are not easy to be distinguished (Triangles with no extreme attributes: without
very sharp angles, without big differences in lengths of sides, etc.). The way the teacher
deals with the case of non-prototype triangle (he draws a non-isosceles obtuse-angled
triangle and draws two different segments) is probably based on his analytical
knowledge, and on the way he and his own teachers dealt with medians and bisectors of
an angle (dealing, amongst others, with triangles where two different segments are
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needed). Distinction between different cases makes the impression of 3rd level - "from
attribute to shape": indeed, different requirements lead to different segments! But, later
on, when the teacher draws a bisector of an angle by himself, he abandons this
knowledge and returns to first level!
8. Udi reconstructs the drawing from the lesson and draws a "bisector of an angle".
Unintentionally, he draws the median. The interviewer asks for his arguments and the
teacher gives only verbal arguments of equal angles, incoherent with the drawing (the
teacher claims equal angles).
9. The interviewer tries to show him that he was wrong: making an isosceles triangle out
of the original triangle (by hiding part of the triangle) should make it easier to see that
the segment was not bisector of an angle. But the teacher refers the results to his
impreciseness in his drawing. Suspecting that the interviewer meant he was drawing the
median he denies. Later on, he gives the reason of "a bad eye" and at last, frankly: "It
will always be difficult for me, it is difficult for me".
10. The interviewer asks him to draw the bisector of the angle again, but this time "only
when he is sure about it". After thinking and concentrating on the angle itself he draws
the bisector of the angle. If so, it seems that when there is no intervention, the cognitive
processes of the teacher are similar to those of the students. Such a drawing of the
bisector corresponds to the first level of Van Hiele, which is based on the prototype of a
bisector of an angle in triangles, in which the median and the bisector of the angle are
almost the same. Therefore, the learner internalizes the image of a segment which meets
the midpoint of the side opposite to the angle. When the teacher is being asked, he
knows to give the right explanations ("you need to get 2 equal angles") but does not do
it in practice. When the interviewer does not give up he carefully watches his step,
leaves the prototype and performs "from attribute to shape".

We notice skipping back and forth between the levels: The teacher explains in 3rd
level, performs in 1st level and when asked about his performances - he answers in 2nd
level. (He "checks" the attribute of equal angles as was in the prototype, irrespective to
its correctness. e.g. when drawing the "bisector of an angle" which does not really bisect
the angle...).. When the teacher confronts the conflict between ideal and reality he finds
it difficult to accept and insists upon: "I didn't draw a median". Didn't he?
Last part of the discussion: insight of the teacher and didactic conclusions
1. Udi adopts the process that he was going through as the one to go through with his
students. (Udi: I'll do what you did to me). We can consider what he says as a
recognition of the difficulties he himself had, and the conviction that this way can help
solving them. He specifies: Clear non-isosceles triangles should be considered.
2. All of a sudden we feel a double insight: a. Udi understands what was wrong. (Udi: I
can tell you what was wrong from the start.. I was following my eye..). b. He
understands that he possibly did not recognize his students' mistakes. (Udi: They may
have done as you said and maybe I saw that and considered it as a correct answer).
3. While internalizing the difficulty, the teacher is now able to suggest didactic
altenatives: Drawing the segments would not help him decide if the students do
understand. Therefore, he suggests to observe and listen to them in course of work.
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4. Now, that he has become aware of things, he is seeking for the source of the
difficulty!
5. Udi likes the interviewers' explanation and is motivated to search for an alternative
way, in order to by-pass the difficulty. His reaction while hearing the explanation, may
suggest a satisfaction in the possibility of following his students' cognitive processes.

To summarize, we have met Alon, "a naive idealist" teacher, with relational
motivation, who wants his students to understand 'what they do. He acts at the 3rd level
and treats his students as if they were acting at the same level.
Udi and Alon, take the students' answers as they are, and believes that they reflect their
deeds and their way of thinking. But we face a different situation, since Udi encounters
difficulties similar to those of his students, while Alon thinks his students think and
understand the . same way he does. Naturally, it is difficult for Udi to face his
difficulties. Perhaps, the transfer from one level to another, which sometimes enables
him to see things from 3rd level point of view, makes it more difficult for him to notice
his 1st level way of thinking.
We may point out the beginning of an impressive process of transition to a
constructivistic way of thinking! Udi is interested in the cognitive processes of his
students, and wishes to fit his instruction to the new situation.

c. Extra Lesson About The Bisector of an Angle in a Triangle
The discussion led to an extra lesson about the same subject. The students got a working
sheets with two big triangles drawn on it (non-isosceles obtuse triangles). They were
asked to draw a median in the first triangle, and a bisector of an angle in the second
triangle. They were asked to describe their work. The teachers were walking around,
asking some of the students to describe their work aloud. Their purpose was to check
what the students understand considering each of the special segments in the triangle (or
could we say: what i§ the students' concept image of the special segments).
A dialog between Udi (T) and a student (S):
The student, who was asked about the bisector of the angle,
answered a reasonable verbal answer (and also pointed at the
angle) (S: I bisected the angle. T: How? S: I drew a line in the
midle of A (pointing)).
Udi, who became suspicious after the last conversation, decides to
check things thoroughly, using the median as a starting point. (T:
And what came out? S: Half an angle and another half. T: And if
you'll be asked to draw a median in the other triangle, how will you do it? S:
Somehow.). The student knows the definition of the median and it may seem that he
understands! (T: How do we draw a median from D? What is a median? S: It bisects
the segment. T: Which segment? S: FE).
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But his answer considering the median is not enough for Udi. For a
reason! Was it only a declarative answer? The teacher uncovers the
concept image of the student: (T: Good. And how do we draw a line
in order to be sure? S: (Places a ruler and draws a line) T: And
after you drew the line? What is equal to what? S: F and D are
equal to E and D. They are not equal, you have to make them equal).
(The student used an improper name for a segment (F and D instead of FD).

In his concept image there are equal "things", but they could be different "things":
1. It seems that the student seeks for equality between the two neighboring sides of the
relevant vertex. Moreover, the student does not consider the given triangle to be
something static, given, fixed, but a dynamic, variable thing which can be changed.
2. The median concept image contains division into two "equal" triangles (T: Now you
drew the median.... to what have you divided the segment EF? S: Into two. T: Into two
equal segments. Which are the equal segments? S: F and D, and E and D (pointing).
T: Why? S: I have bisected them in the middle.... no, let'ssay that we add some A here
(he adds "A '). Then ADF should be equal to ADE (pointing at the two triangles). T: Is
that what I was asking for? that the two triangles will be congruent?...What would be
equal to what? S: That FD will be equal to DEN).
Another dialog was between Alon (T) and a student (S1)
S l built a median and a bisector of an angle in the same way - by bisecting the side
opposite the angle. He uses the same procedure to get two different results: bisector of
an angle and median. If so, what guides the student to do what he does?

It might be that his only interest is in a necessary adding of a segment to the figure.
Necessary, because in the prototype of a bisector of an angle appears additional "line"
inside the triangle. Probably, the student was never asked to focus on the angle itself,
therefore did not pay attention to different possible results of drawing a segment (e.g.,
the angle may be divided into equal or non-equal parts). While looking at examples in
which there was a "line" inside the triangle, he might have paid attention to other
attributes, and noticed, for example, the equality of the angles near the "bisected" angle
(equality which was a non-critical attribute in the examples he saw!).
(T: What did you mean to do? S I : To bisect the angle. T: And what did you get? S 1 :
That the two angles are equal. T: Which angles? Sl: This and that (pointing at the
angles E and F).

We may say that drawing a segment is a necessary "line" adding to
the "figure", in the context of global-visual perception of a triangle
with a bisector of an angle (1st level). In this case, the student does not
associates the drawing procedure to some "concept attribute" (does
not act in 2nd level).( S 1 : Then I'll write down: "I drew a line from
vertex D to the opposite side. Then I formed a bisector of an angle") -
first, the student draws the line, and only then the bisector is formed!

We may give another explanation to the students' answer about the equal angles E and
F. It may be a pseudo analytical answer (Vinner,97). A pseudo - analytic solution is
using spontaneously a procedure which solved a similar problem, without operating a
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control mechanism: The ieacher arid his students have mentioned many times " two
equal angles" in the context of a bisector of an angle. The student, who was asked about
equal angles finds two angles, the most salient in the figure, and point at them.
(Probably, they were already "used" as equal angles in the past).

Moreover, the drawing of the bisector of an angle, on its own, may reflect a pseudo-
analytical behavior: vague memories of procedures seen in the past, in which the student
"identified" drawing a segment in a triangle, causes him to act the way he did: simply
drawing a segment which will create a figure that suits the prototype of "triangle with a
segment".

But the teacher uses logical arguments. He tries to convince that one procedure can not
cause two different results (3rd-4th level), but that is absolutely not the way that fits the
students' level! As we claimed, he does not consider procedures.

Reviewing the teachers' solutions to difficulties arose during the students' work, show
a wide set of reactions, based on attention, listening and an attempt to "get into the
students' head" and also 2nd-3rd level explanations, which might be hopeless.

d. Discussion with the teachers
We shall point out the main elements that arose in the discussion after the extra lesson:
I. Udi noticed that up to now they were hinting the answer to the students by starting it
or indicating the direction. All that remained to do was to complete it. We may say, that
was encouraging a pseudo conceptual and pseudo analytical answers!
2. Udi and Alon noticed that up to this point the students did not have to explain but just
to perform. Now when they were asked to explain, they found it almost impossible! We
may add that in such "learning" the students did not need to pay attention to the
attributes. This manner encouraged 1st level functioning without progress to 2nd level.
Moreover, Alon found thdt the students were not interested in the process but only in
the final result. We can assume that a global-visual referring, a typical I st level, (which
occurs when interested only in the result) causes troubles in analytical description,
perhaps because it does not even exist!
3. More specifically, Alon described, enthusiastically ( for the first time, I noticed
that.."), a student who was looking for some imaginary point on the opposite side of the
angle from which to start the bisector of the angle (instead of focusing in the angle
"area"). He began to look for explanations of the students' cognitive behavion( "In their
head, like in the case of height and median, there is some segment emerging from the

.vertex and has to reach somewhere. They don't understand that in this case, it doesn't
matter where it reaches, we don't look at the opposite side!").

Conclusion
In this paper we learned about students' concepts and difficulties on one hand, and

about the process of learning of the teacher (subject matter, conceptual, pedagogic
knowledge), on the other hand. The teachers we were observing, were not attentive to
the special obstacles, therefore they accepted the students' answers (which were
"logically argued", "fair looking") as correct. Wouldn't many of us react as they did?
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Generally, it is hard to identify our own mistakes. But it worth trying! We were
following the magnificent dynamics of the teacher being aware of his own cognitive
processes, and using them as a didactic lever: he checked things in a different way,
suggested to investigate what the students really think, was open to find out the truth
about their concept image, and finally, he was eager to know what are the difficulties'
sources, looking for solutions. Still, the teachers were not aware of the students' levels
of thinking, therefore some of the instructional decisions were faulty.

Could this pedagogical situation be reconstructed and duplicated with other teachers?
What will cause the teachers to be open minded, and interested in the cognitive
processes of their students and try to adjust flexible didactic solutions? These questions
emerge and become guidelines for further research.
Furthermore, being ready to open "Pandora's box", and find out what the students
really think, invited "surprises": Which are the equal angles considering the bisector of
an angle? And who are the "equals" in median? segments? triangles? The teachers
probably lost their "innocence": It seems that the students' answers were not accepted as
they are any more! This is a big step forward. No more "Pseudo- knowledge"! But there
was something else: the teachers were ready to go on an independent journey,
"searching for the truth" in points that they were not prepared for or thought about in
advance (e.g. "what is equal"). The challenge is enormous! If we do not ignore such
cases, we should introduce didactic alternatives, which will give answer to the different
difficulties of different students. First, we should try to foresee and understand the
possible cognitive processes in order to be prepared for them. This is the goal of our
broader research.
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Levels of generalization in linear patterns

Juan Antonio Garcia-Cruz & Antonio Martinón

Universidad de La Laguna (Spain)

In this paper we set forth a proposal about levels of generalization based
on students' spontaneous performance during the process of solving
linear generalizations problems. The students' acquisition of each level is
related to the actual generalization achieved and some features of the
students generalization process are provided. We conclude with a first
approach to a genetic decomposition schema of the linear pattern's
conceptual structure that students develop when solving linear
generalizing problems. We also outline some didactic remarks that should
be considered during the teaching and learning process.

Theoretical Background

The study of patterns' generalization in school mathematics has been the focus

of research conducted over the last years. Many researchers have made some attempts

to investigate stages or levels in the development of patterning ability mainly focused

on students' ability to generalize. Stacey (1989) has identified some methods of

solution that students use when solving linear generalizing problems. In Orton &

Orton (1994, 1996) the adults' and children's answers to questions involving quadratic

and linear patterns are classified in stages running from answering questions about

concrete numbers to algebraic generalization. Redden (1994) has used the SOLO

taxonomy to state two hierarchies of growth concerning first the students' use of data

from the questions (Data processing dimension); and second the sense of an overview

of the data that can be provided in the form of an expression of generality in the

students' pattern description (Expressing Generality Dimension). However, we think

that these attempts are mainly focused on the students' written responses to an item

and to specific questions within an isolated item. Thus, the dynamic development of

learning is not reflected enough. We have also missed a general framework to cope
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with the problem of students' pattern generalization that can be used not only to
classify the students' responses but also to highlight some didactic guides to be used

during the process of learning and teaching. Krutetskii (1976, p236) has pointed out

that the ability to generalize mathematical material can be considered from two levels:

"(/) as a person's ability to see something general and known to him in what is

particular and concrete " (subsuming a particular case under a known general

concept) and "(2) the ability to see something general and still unknown to him in

what is isolated and particular" (to deduce the general from particular cases). The way

the two levels are 'formulated shows that they do not constitute a hierarchy of students'

educational development but both should be seen as educational goals. It is the second

level, generalization through empirical induction, the ability we want to develop in

students when they are dealing with new problematic situations.

The Main goal of our research, we report in this paper, is to state some

hierarchical levels of generalization that can reflect the students' performance when

dealing with that kind of problems, and can also be used to provide some didactic

remarks in helping students to move from one level to the next.

The role played by Reflexive Abstraction (Piaget, 1975) in the generalization's

process has been the key feature of some recent research, for instance the action-

process-object framework of Dubinsky(1991), and the operative generalization of

Dörfler (1991). In our research we have taken the action-process-object framework

front Dubinsky, in which the generalizations are constructed through the internal

coordination of processes. These processes have their genetic sources in actions

performed by the subject on a given stimulus, but we have added the key feature of

Dörfler's theory, i.e., a generalization is achieved through the establishment of an

invariant which genetic source is again an action performed by the subject. Briefly, a

physical or mental action performed by the 'subject could lead to an internal process,

and through coordination or reconstruction. (assimilation-accommodation) of existing

conceptual schemata, the- subject could establish an invariant for the action. The

generalization developed could take different forms depending on the actual kind of

assimilation of the stimulus by the subject, and therefore different levels related to
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mathematical concept's achievement could be defined. On the other hand, what is

actually achieved in any level could be used to derive some didactic remarks to be

implemented during the process of teaching and learning.

Methodology

We have conducted our empirical research on a population of secondary

education students (15-16 year olds). The first phase consisted in video-recorded

interviews administered to eleven students. The second phase was an interactionist

teaching experiment with a group of 18 students. Thus, from the interactionist

perspective (Bauersfeld, 1994) there are neither pre-given criteria about what is a

correct solution nor what constitutes a different solution to a give problematic

situation. So students have to contribute to the whole-class discussion providing their

own solutions to a problem, and give different solutions from the same problem. They

were also encouraged to judge any solution presented to the whole class discussion.

Our goal was that these sociomathematical norms (Yackel & Cobb, 1996) could help

students to develop a better and deeper understanding of the linear pattern. We think

that when a student assumes and uses explanation, judgement or argument as an object

itself of discourse, he will require the development of methacognitive abilities that

will improve the student's learning outcome.

During the four classroom sessions the students were presented with three linear

generalizing problems (stimulus items). These problems underlie a linear pattern,

f(n)=an+b, being f(n)>O, a>0, b,.0, whole numbers. The text format is a word

problem illustrated by a drawing of an object and the first three terms of the sequence

(number and drawing) are given, i.e., f(1), f(2) and f(3), and students were asked to

find f(4), f(5) (introductory questions) and f(I0), f(20) and f(n) later. Our role was to

facilitate and encourage students' participation in small-group and whole-class

discussion. When a solution was explained, we had to ask for any other students who

wanted to judge it, being careful not to show disagreement or any kind of behaviour

that could give any hint to the whole group about the correct or incorrect quality of
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that solution. Students were obliged to try to develop personally meaningful solutions

that they could explain and justify, and reflection upon their own and others' strategies

of solutions was encouraged.

Results and Discussion

Some early research (Garcia-Cruz & Martin On, 1997a, 1997b) has provided us

with useful information about the students' process of generalization. The actions

developed and invariant schemata established during the process of solving a sequence

of linear generalization problems are the key feature to achieve a generalization. Also,

the conceptual schemata coordinated by the students are important to characterize each

level. At each level, we have stated what previous schemata are coordinated and which

generalization is achieved by students. Also these levels characterize the cognitive

students' behaviour and can be used to distinguish between procedural activity,

procedural understanding and conceptual understanding (Zazkis & Campbell, 1996).

Our findings are summarized in a final developmental schema that can be seen as a

genetic decomposition (Dubinsky & Lewin, 1986) of the linear pattern's cognitive

structure through linear generalizing problems.

Level-I (Procedural activity)

At this level, the student recognizes the iterative and recursive character of the

linear pattern, and these are used to calculate the introductory questions. These

strategies are not generalizable but are important in highlighting the constant

difference of the linear pattern. Such a routine behaviour is later used (another level)

when checking the validity of the rules developed. Here students are focused in the

most perceptual feature of the pattern: adding the constant difference and this action is

the only generalization achieved at this level. There is a subtle difference between the

"counting all" strategy (f(10) = f(1)+d+...+d) and the "counting on" strategy (

f(10)=f(9)+d): one thing is to add repeatedly the constant difference to get any term,

extending the numerical sequence (iterative character) and another thing is to use the
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recursive character of the pattern using a known term and from this numerical value

perform some calculations to get the required term. The term procedural activity could

be used to characterize the student 's behaviour at this level.

Level-2 (Procedural understanding. Local Generalization)

At this level, the student has established a local generalization. This means that

he or she has been able to establish an invariant from an action performed on the

picture or numerical sequence, within any new problem given, although this invariant

could be different from problem to problem. The establishing of the invariant means

that the same calculation rule, derived from actions to calculate a specific term, has

been applied to any other calculation within the same problem or situation (Garcia-

Cruz & Martinón, 1997a).

'The establishing of an invariant also means that the stimulus has been

assimilated and accommodated within an already existing cognitive schema, i.e.

indirect counting methods, function (as a process), and proportional reasoning. The

existing cognitive schema is identified by the student 's written of verbal response.

The student can also establish an incorrect invariant because the stimulus is

assimilated to an incorrect cognitive schema, i.e., proportional reasoning. As we said

above the establishing of an invariant is detected through the calculation rule used by

the student in any question within a problem. If the canonical form of the linear pattern

is f(n)=5n-1, then the assimilation of that stimulus to the incorrect cognitive schema of

proportional reasoning could lead the student to the establishing of an invariant of the

form f(2n) = 2f(n). Later through checking and adjustment, this invariant could take

the form f(2n)=2f(n)-1 which is valid only for even terms in the sequence. The

student's attention can be also focused on some relations and connections between

some elements of the drawing, and as a result an invariant of the form f(n) = 6n-(n-1),

or f(n) = 6+5(n-1) can be established. So in establishing an invariant, students confer a

variable quality to f(n) and n, i.e., value of the term and position occupied in the

corresponding sequence be numerical or pictorial.
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The key feature here is that a shift from procedural activity to procedural

understanding has taken place, and this shift can be clearly observed in the students

performance. Thus, what has been generalized here is the specific rule for a

calculation. This rule has always variable and non-variable elements, and the character

confered to the variable elements should be taken as a generalization. Indeed, an

extensional and intensional generalization has taken place, because the specific

elements, numerical or pictorial, used to develop the rule have been detached from

their initial meaning and their reference range has been extended. When the

established invariant is correct the term procedural understanding could be used for the

student's cognitive behaviour.

Level-3 (Conceptual understanding. Global Generalization)

At this level, the student has generalized a strategy. That means that he or she

has performed the same action and established the same invariant in a new but similar

problem. The rule developed and used in an early problem is now an object which

serves as an stimulus for an action: apply or transfer the action performed and

invariant established in another problem to a new problem which has been recognized

as similar to other already known. At this level, what is achieved as a generalization is

the student's overall performance when dealing with these situations, and this is what

we call a strategy. So a strategy has the action and the invariant established as

components in a particular situation. Now this strategy is used in a new but similar

situation. The constant elements, if any, (which are present in the syntactic structure of

the invariant) acquire the quality of variables through that process because they loose

their constant character and are substituted by different numbers. The students

cognitive behaviour could now be considered as conceptual understanding.

The following schema summarizes the above discussion and could be

considered as a first approach to the genetic decomposition of the students' conceptual

structure of linear patterns developed spontaneously by students though linear

generalizing problems (Dubinsky & Lewin, 1986).

311
2 334



Numbers Function
<Counting methods> <as a process>

Level- I Iteration
"action of f(n)=f(1)+d+d+
adding up
the constant
difference" Recursion

f(n+1)=f(n)+d

Proportional reasoning

Level-2
"Rule used for a
specific calculation"

Level-3
"A strategy"

V

n_j(n)

1.
<Iwcd> <Iwncd>

(nf(n)) as variables and some <constant elements>

"variables with substitution property"

(Note: Iwcd and Iwncd stand for Invariant with constant difference and Invariant with no constant
difference respectively)

The above schema should be taken as the ways in which students spontaneously

develop their understanding of linear pattern's conceptual structure, but perhaps we

think it is not complete.

From the teaching experiment we have drawn some conclusions.

First, it takes time before a student realizes that the existing conceptual

structures are not sufficient to assimilate the new problematic situation, so many

students keep on establishing incorrect invariant and it seems for us very difficoult to

remove this unsuccessful behaviour. For those students we strongly recommende the

generalization of conditions for actions (second process of Dörfler's theory), so in

order to carry out actions these are better if the constant difference are a key

component:

Second, other students are successful in establishing an invariant (local

generalization) but they move from one invariant to another (even incorrect) when

confronted with a new situation. For those students we strongly recommend the
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generalization of the results of actions (third process of Dörfler's theory).

Third, once a local or global generalization has been achieved, the students

should be confronted with a large number of new situations before the new cognitive

structure becomes stable and permanent.
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USING HAND -HELD DYNAMIC GEOMETRY TECHNOLOGY

John Gardiner and Brian Hudson
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Abstract

This paper considers how the use of hand-held dynamic geometry software can
contribute to the development of pupils' understanding of ideas associated with
construction and proof. In adopting a socio-cultural perspective, the technology is
seen as a mediating tool and intellectual development as a complex, dialectical
process. Classroom research is reported on involving a group of Year 8 pupils (aged
12-13) in a mixed urban comprehensive school in the North of England during the
autumn term of 1997. The data analysis is undertaken with particular reference the
Vygotskian notions of 'spontaneous' and 'scientific' concepts. It is suggested that
such a perspective helps to illuminate the potential of the technology in supporting
the complex and dialectical process of developing ideas of construction and proof.

Introd uction

The classroom research reported on in this paper is part of a wider study with the aim
of investigating the potential of hand-held dynamic geometry software in the
secondary school classroom. The research and development has taken place using
Cabri on the Texas TI 92 calculator. The focus of the paper is on how the use of such
technology can contribute to the development of pupils' understanding of ideas of
construction and proof.

Background literature

Dynamic geometry software, seen as a mediating artifact, provides an environment,
which supports mathematics learning as highlighted by Jones (1996). The TI 92 has
the particular characteristic of enabling the development of a desktop environment in
which the dynamic geometry environment (DGE) can be one mediating artifact used
alongside more traditional tools.

Healy et al (1994a) illuminate the way in which dynamic geometry can be introduced
using the drag function to emphasise the difference between drawing and construction,
and proceed to consider constructions in particular further (1994b). Hoyles et al
(1995) consider the interdependence of construction and proof and the replacing of
proof by construction in a dynamic geometry environment.

In developing the use of the DGE in this study, the drag function and the idea of a
construction invariant under drag have been central. The associated classroom
materials, which have been developed are directed at making a distinction between
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drawing and construction, and at seeking an understanding of concepts such as that of
using a circle to preserve length (Healy et al, 1994a, 1994b). Pupil fluency with the
technology has been a further central consideration as highlighted by Goldstein et al
( I 996).

The work of Fischbein (1982) is considered to be relevant to this study. He identifies
three forms of conviction; formal, arising from argument, empirical arising from a
number of practical fmdings, and an intuitive intrinsic conviction, which he calls
'cognitive belier. It is suggested that the DGE can reflect these ideas through
dragging to test constructions, dragging to provide empirical proof and also through
children's intuitive ideas which are triggered by the use of the DGE.

Theoretical Framework

This study is framed within a Vygotskian perspective. Such a perspective places
emphasis on the idea of mediation by a variety of tools, as highlighted by Jones (1996)
in a similar environment, within the zone of proximal development (Vygotsky, 1962).
Vygotsky originally defined the zpd in terms of development whilst more recent
definitions, found to be relevant to this study, have related the zpd to activity theory
(Engestrom, 1987) and to the teacher and class as a whole (Hedegaard, 1990).

The interplay between everyday and scientific is also considered relevant:

'In working its slow way upward, an everyday concept clears a path for the
scientific concept in its downward development. It creates a series of structures
necessary for the evolution of a concept's more primitive, elementary aspects,
which give it body and vitality. Scientific concepts in turn supply structures for
the upward development of the child's spontaneous concepts toward
consciousness and deliberate use.' (Vygotsky, 1962)

In considering the notion of development, Confrey (1995) highlights this as follows:

'Development conceived of as a complex, dialectical process characterised by a
multifaceted, periodic timetable ... by a complex mixing of external and internal
factors, and by a process of adaptation and surmounting of difficulties.'

Confrey argues the need for an historical analysis and that one must examine the
growth of higher mental functions in order to understand them.

Methodology

From a Vygotskian perspective it could be said that methodology should not only be
all-pervasive in a study, it should be the study.

"The attempt to categorize Vygotsky, to `dualize' him as either a psychologist or a
methodologist, contradicts, ironically, not only Vygosky's life-as-lived, but his self-
conscious intellectual revolt against dualism" (Newman and Holzman, 1993, p 16).
Vygotsky can be seen as a methodologist/ psychologist in the sense that his all-
embracing view of the science of learning brings in the Marxist historico-cultural
dialectic and the ideas of revolutionary activity and practice. It provides a
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methodology, which informs and pervades a study and is available to constantly
influence the conclusions drawn and the direction of future progress.

This methodology is echoed in the idea of "tool-and-result" outlined by Newman and
Holzman (1993 p38), who draw a distinction between tools such as hammers and
screwdrivers (tool for result), and dies and jigs (tool-and-result). Hammers and
screwdrivers are bought and used as needed, dies and jigs are tools designed and
refined by the worker. Vygotskian methodology is a 'tool-and-result'. Like the jig, it is
bound up in its result.

Found to be consistent with such an approach have been ideas drawn from Grounded
Theory (Strauss and Corbin, 1990). This involves the systematic process of review
and refinement to allow the simultaneous development of theory and collection of data
and for a progessive focussing on the emerging issues.

Data Collection

The classroom research so far has taken place in two phases. In the first phase the
teacher/researcher taught a class of 30 Year 7 pupils (aged 11-12). The second phase
involved working with a group of Year 8 pupils (aged 12-13). Both phases were
carried out in mixed urban comprehensive schools in the North of England during
1997. The classroom research has involved the development of materials, which have
the aim of releasing the potential of the dynamic geometry software and which, at the
same time capitalise on the hand held nature of the T 1 92. The development of the
materials was guided by the ideas of Hedegaard (1990) and in particular the notion of
a 'whole class zpd' in which the role of the teacher in relation to the class as a whole
is emphasised. This development has been against a backdrop of the desktop
environment where a hand-held DGE has been shared between pairs of pupils in order
to stimulate collaboration and interaction.

Data Analysis

This paper reports on the second phase of the classroom trials. The pupils had not
used the T 1 92 before and met with the teacher/researcher in their lunch breaks. After
a brief period of familiarisation, they were given a task of constructing a square, which
was stable under drag. The following fragments from the resulting dialogue are
presented below. The three pupils involved are Ryan, David and Joanne and the
teacher/researcher is JG.

The pupils had been allowed to take the machines home and Ryan had seen the
'Regular Polygon' option, which allows 'construction' of a square directly. This
extract is from the following session.

/. D Does anyone know how to draw a square?
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2. R Polygon, Regular Polygon

The 'Regular Polygon' option offers a hexagon first and it is not immediately evident
how to draw a regular polygon with fewer sides. In this case the use of the technology
was not that helpful in assisting pupils to develop their ideas about construction.

Joanne also had taken a machine home and her explorations had led in another
direction, towards the 'measuring' menu.

3. J I'm doing it on nornial polygon it's a lot easier and you can always measure
4. your lines.

5. D It's hard to get it a proper square.

6. J But afterwards you can measure your lines.

7. R Yeah you can can't you

8. D I know! You could do it two triangles, two right angled triangles next to each
9. other and merge them, then it'd be a proper square.

10. R I think I've got a perfect square here.

11. J See, I've just figured out mine's not right, cos one of my lines is 1.91 cm and
12. the other is 2.03 cm

13. J There's also area; you can do the angle and see if the angle's a right angle, as
14. well.

15. R Well you can tell if it's a right angle.

16. J Yeah but you can't for definite

17. D I think it is regular polygon.

All three went on to use regular polygon successfully and dragged their squares.

Joanne's investigation led her towards attempts at simply drawing the square.
However the development of ideas of construction as distinct from drawing become
evident from this interaction. For example, David makes reference to a 'proper
square' at line 9 and Ryan talks about a 'perfect square' at line 10. These examples
could be viewed as evidence of these pupils' spontaneous conceptions of the idea of
construction (of a square in this particular case). The discussion at lines 15 and 16
centres on different levels of conviction. For example, Ryan suggests that 'you can
tell if it's a right angle' which Joatme counters with the comment that 'but you can't
for defmite'.

In the second part of the exercise the group were asked to carry out the same task, but
not to use polygon or regular polygon. David (Figure 1) and Ryan (Figure 2) both
used a circle, a radius and a perpendicular through the centre, as a starting point. Ryan
had defined a point where he estimated the other corner of the square to be and drawn
two rays through that point. David had drawn two segments, again by eye, to complete
his square. Dragging showed himl.hat the point was not defined. Ryan drew two angle
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bisectors, which coincided originally but separated if he dragged the undefined corner
of the square

Figure 1 (David)

This conversation followed.

18. D I'm trying to do an angular bisector... cos if the angular bisectors make a right
19. angle in the middle then that'll mean it's a square, but I can't get it to do them.

20. JG How do you know that the angle bisectors will meet in the middle in a
21. right angle?

22. D Well I don't know that they will in a right angle

23. R They will

24. D If it's a proper square then it'll be in a right angle because you'd be chopping
25. the square like diagonally

26. R There'd be four triangles

27. D There'd be like four triangles and they'd all be right-angled triangles

28. R There'd be two 45° angles

(Shown how to draw angle bisector)

29. D Yes!! Now that looks like its going at a 45° angle right through.

30. That meets in the other corner there, so I think that means it's a square.

Once again, it is suggested, there is an interplay between different levels of conviction
and mathematical argument. In the passage from lines 22-28 a sufficient defmition of a
square is arrived at eventually, only to be abandoned at line 30 for the germ of a new
approach.

Joanne used a different starting point. She began by drawing a line segment and was
wondering how to continue.

31. JG So you've got one line like that.... What would help you to draw a
32. square?

33. J It would have to be parallel

34. JG So you want to draw a line parallel to this...

MRIN DEG *MOE (PIC

Figure 2 (Ryan)
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35. J Yes

36. .IG and where does it have to be?

37. J It has to be the same length as that down

38. JG Like that? So how would you draw it? What shape would help you draw
39. that down to there?

40. J A triangle

41. JG Look on F3

Joanne chose the circle option and went on to successfiffly draw a square (Figure 3)

Figure 3 (Joanne)

There followed an attempt to probe understanding of geometrical isometries. This
conversation refers back to Figure 2.

42. R I dunno. If I try dragging this ray, because the ray's not secure at the point,
43. that ray'd drag around wouldn't it?

44. But if that was a perpendicular to that ray,......

45. JG So this circle is a good starting point isn't it

46. Ifyou have that circle and that ray, how many sizes of square can you draw?

47. R just one

48. JG as soon as you've drawn that and that

49. R Once you've drawn the circle then you've got the size

Ryan went on to construct a square by drawing a circle (Figure 4), a ray from the
centre and a perpendicular through the centre, followed by two perpendiculars where
the first two lines intersected the circle.

Figure 4 (Ryan)
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Pressing the grab key when the cursor is away from the diagram makes the
independent points in the diagram flash. This useful facility allows pupils to explore
geometrical isometries.

50. JG What flashes?

51. R That corner there. (The centre of the original circle)

52. Does that mean that's the only corner that can be dragged?

53. JG That's the only point that can be dragged Tell me what you drew first.

54. R I drew the circle first

Ryan went on to discover that he could grab the circumference of the circle as well as
the centre and so alter the size of the square, and alter the orientation of the diagram
by dragging the original ray. By a similar process Joanne realised that the original line
segment in her diagram completely defmed her square.

Discussion

In observing this classroom activity and in analysing this interaction, there is a clear
interplay between ideas of drawing and construction and also between notions of
necessary and sufficient conditions (for construction). It is argued that this interplay
reflects that between pupils' spontaneous concepts and their developing ideas related
to scientific concepts, which in this case are associated with ideas of construction and
proof. These pupils can be seen to be operating in a dialectic between their
spontaneous conceptions of proof, informed by their ideas and the insights available to
them via the mediating role of the DGE and other desk top tools, and the scientific
concepts of construction and proof. The second episode in particular.provides a rich
illustration of how everyday (spontaneous) concepts 'create a series of structures
necessary for the evolution of a concept's more primitive, elementary aspects, which
give it body and vitality' and hence how scientific concepts 'in turn supply structures
for the upward development of the child's spontaneous concepts toward
consciousness and deliberate use' (Vygotsky, 1962). By the end of this episode, it is
suggested that both Ryan and Joanne have displayed evidence of an appreciation of
the idea of construction and that they have had at least an elementary introduction to
ideas associated with geometrical isometries.

It is further suggested that this development can be seen to parallel Fischbein's (1982)
three forms of conviction; formal, arising from argument, empirical arising from a
number of practical findings, and an intuitive intrinsic conviction or 'cognitive belief. .

It is also suggested that this interaction is illustrative of development 'conceived of as
a complex, dialectical process characterised by a multifaceted, periodic timetable ...
by a complex mixing of external and internal factors, and by a process of adaptation
and surmounting of difficulties' (Confrey, 1995).

In considering this process of development, the role of the teacher within the zpd has
been found to be an essential element in assisting pupils to move from their
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spontaneous/everyday conceptions towards more scientific concepts. 'This echoes the
findings of Jones (1996) who argues the need for a significant input from the teacher
when pupils are working within a DGE.

A further aspect of the wider study, for which there is little room in this paper, to
consider in any great depth has been the interplay in the desk-top environment
between the DGE and the traditional tools such as pencil and paper.

A final observation in relation to the aims of the wider study is of the undoubted
potential of such hand-held dynamic geometry environments to promote the
development of pupils' understanding of notions of construction and proof.

Thanks are due to pupils and staff from King Edward VII School, Sheffield and
Mossley Hollins School, Tameside,
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AND DIFFICULTY OF PROOF
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The cognitive unity of theorems a theoretical construct originally elaborated to interpret
student behaviour in an open problem solving holistic approach to theorems was transformed
into a tool that may be useful for interpreting and predicting students difficulties when they are
engaged in proving statements of theorems. The aim of this paper is to explain (through
"emblematic" examples) the potentialities of this tool and indicate possible further developments
concerning both research and educational implications for the approach to proof in schools.

1. Introduction
In preceding papers regarding the approach to geometry theorems in scliool

(Garuti & a1,1996; Mariotti & a1,1997), a specific theoretical construct ('cognitive
unity of a theorem') was introduced in order to stress the importance of a holistic
approach to theorems and to interpret some of the difficulties met by students in the
traditional approach to proof. Cognitive unity of a theorem is based on the continuity
existing between the production of a conjecture and the possible construction of its
proof.

The idea of this construct initially came from the epistemological analysis of
work done by past and present geometers, which revealed many examples of
continuity between the production of a statement and the construction of its proof, in
particular as concerns the relationship between, on the one hand, specifying the
objects of the conjecture, determining stricter hypotheses or stating a new weaker
conjecture and, on the other, performing trials to prove the statement (Lakatos,1976;
Thurston, 1994). We then found a cognitive counterpart of this analysis: in a teaching
experiment concerning the production of theorems (conjectures and proofs) by
beginners in a mathematical modelling problem situation concerning sunshadows, we
found experimental evidence of the cognitive unity between the phases of conjecture
production and proof construction. We expressed this unity in the following terms:

(CU) "during the production of the conjecture, the student progressively works
out hislher statement through an intensive argumentative activity functionally
intermingled with the justification of the plausibility of his/her choices. During
the subsequent statement-proving stage, the student links up with this process in a
coherent way, organising some of the previously produced arguments according
to a logical chain.".

These findings led us to state that in order to bring about a smooth approach to
theorems in school, it is necessary to consider the connection between conjecturing
and proving, in spite of the undeniable differences between these processes. We also
wondered whether in a traditional school approach to theorems one of the difficulties
that students face could be that of reconstructing that unity, when it happens to be
hindered. A very particular, we should say extreme, situation is that of the task "prove
that ..." : in this case the process of conjecturing is not demanded and the unity is
broken. Unity may be reconstructed only by the riappropriation of the statement
through a new process of exploration, i. e. reconstructing the whole cycle: exploring,
producing a conjecture, coming back to the exploration, reorganizing it into a proof.

Q



These reflections suggested the following questions: Can the cognitive unity
construct be a tool allowing teachers and researchers to predict and interpret
students difficulties when they have to prove a given statement? Can it be a tool that
allows the teacher to select appropriate tasks that increase in difficulty, in relation to
the increasing difficulty in establishing continuity between the statement and the
proving process? The study reported in this paper aims to produce some partial
ansvers to these questions.

2. Towards a Tool for Interpreting and Predicting Difficulties in Proving
In the aforementioned teaching experiment, we analysed the behaviour of all the

students who had produced mistaken conjectures. When they had to prove the
statement finally agreed on in classroom discussions, they were in the same situation
as the students who have to prove a statement they themselves had not produced (that
is, in the same situation as the traditional school approach to proof -see 1.). We
discovered that all the students who had successfully managed the proving activity
appropriated the conjecture to be validated through a dynamic exploration of the
problem situation; they produced arguments for the conjecture's plausibility, which
then were useful for proving the statement (a process similar to the production and
validation of an original conjecture, according to the analysis performed by Boero &
al, 1995). The activity of dynamic exploration and search for arguments for
plausibility appeared to be a necessary step towards the construction of the proof.

Research work by Simon (1996) and Hare! (1996) suggested that the students'
proving processes should be considered from another wider perspective. Simon
describes the possible role of "transformational reasoning that involves envisioning
the transformation of a mathematical situation and the results of that transformation"
in "theorem generation, making of connections among mathematical ideas and
validation of mathematical ideas". Harel points out the role of "transformational proof
schemes" as "foundation for all theoretical proof schemes". Thus, Harel's and Simon's
work suggested us to take into account the different kinds of transformation (of what?
in relationship with what?) that can intervene during the proving process. Indeed, we
may consider different objects and different levels of transformation: a purely
syntactic, but goal oriented transformation (like in some proving processes based on
algebraic transformations see Boero, 1997); a transformation of the situation
represented by the statement, in order to generate another statement, easier to prove; a
translation into another language (for instance, from verbal to algebraic language), etc.
"Dynamic explorations" considered by Boero & al. (1996) are based on suitable
imagined, or concretely performed transformations of space configurations. We also
note that a proof (the final product of an effective proving process) may be regarded,
by itself, as a chain of transformations of the statement according to logical rules.
Further possibilities of "transformational reasoning" in proving are suggested by
Polya's work concerning problem solving, combined with the idea of "mathematical
theorem" as a statement, its proof and the reference theory (see Mariotti & al, 1997).
Polya pointed out that in some cases it is very profitable to perform the global
"transformation of the problem" to be solved by setting it in a theory different from
that in which the problem was originally conceived. As an example of
transformational reasoning in proving applied to the reference theory, let us consider

.0 .
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the history of the proof of the Fermat's last theorem. In this case exploration of the
statement in the field of arithmctics did not produce arguments which might be
immediately exploited to construct the proof; construction of the proof called for a
major transformation of the statement (by interpreting it as a particular case of a
conjecture concerning a different field of mathematics- a change of reference theory)
together with a jump in the complexity of the elaboration of appropriate arguments.

Taking into account these reflexions and our preceding work, finally we
reconsidered our theoretical construct of the cognitive unity of a theorem (see CU) in
order to get a pointer of the difficulty of proving a given statement and, consequently,
as a tool to predict the level of difficulties met by students. We defined as gap between
the exploration of the statement and the proving process the distance between the
arguments for the plausibility of the conjecture, produced during the exploration of the
statement, and the arguments which can be exploited during the proving process. In
some cases the gap remains inside a reference theory; in othcr cases (see Fermat's
theorem), the gap concerns also the transition from arguments in one reference theory
to arguments in another reference theory. At this stage of our research, we may
formulate the following tentative hypothesis:

the greater is the gap between the exploration needed to appropriate the statement
and the proving process, the greater is the difficulty of the proving process.

Taking into account the preceding reflections, we may say that this gap may be
reduced through suitable transformations (concerning the formulation of the
statement, and/or the situation represented by it, and/or the reference theory, etc.); the
exploration of the situation described by the statement and these transformations
appear as necessary ingredients of the construction of the proof of a given statement.

We shall present some examples that illustrate and support the validity of this
perspective in the case of proofs of given statements which do not need changes
concerning the reference theory;These were chosen in a non-geometrical field (the
elementary theory of numbers) in order to avoid our perspective, which was
elaborated in the geometrical domain, being regarded as context specific.

In spite of all the experimental evidence collected till now, we think that an
important work remains to be performed, i.e. the final, precise formulation of our
hypothesis, its verification, its integration in the perspective outlined above (where the
idea of "transformation" in interplay with the idea of "dynamic exploration" plays a
major role) as well as the implementation of its educational implications. These topics
will be outlined in Section 5.

3. Construction of Proofs of Given Statements: Some Examples
The following examples were produced by students ranging from grade VII

(lower-secondary school) to undergraduate level. They have been chosen as
representative cases, so their comments point out general aspects. All the examples
concern students accustomed to dealing with open problem situations and reporting in
detail their reasoning in written form. All the tasks are of the type "Prove that..."

3.1. "Prove that the sum of two consecutive odd numbers is a multiple of 4 "
Two examples of proof are reported:
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a) a grade X student
,t 1 can write two consecutive odd numbers as 2k+1 and 21c+ 3, so I will find:
(2k+ 1) + (2k+ 3) = 2k+ 1+2k+ 3 = 4 k+4 = 4(k+ 1 ).
The number 1 get is a multiple of 4».
This student quickly appropriated the statement; he wrote down the sum of the

two consecutive odd numbers in a suitable way (by a translation from verbal language
into algebraic language) and then performed suitable standard algebraic
transformations; the interpretation of the final formula validated the statement.

b) a grade VII student
c< I shall perform some tests: 3+5=8 ; 1+3=4 ; 5+7=12; then I can write these
additions in this way: 3+5=3+1+5-1=4+4=8 (the same for the other additions).
It is like adding the even number in the middle position to itself and the double of
an even number is always a multiple of four".
In this case the student does not know algebraic language, so he needs to

explore the statement in order to transform it. The exploration shows the equivalence
between adding two consecutive odd numbers and adding two appropriately chosen
equal even numbers. The interpretation of the result of the performed transformation
("double of an even number..") allows the validation of the statement. We may remark
that the student moves inside the frame of a very elementary theory of numbers as
"reference theory" (appropriately exploiting properties like "The sum of two even
numbers is even").

In spite of the differences between the two proving processes (usage of
algebraic language vs natural language), in both cases there is continuity between the
appropriation of the statement and the construction of the proof, and the
transformation of the statement is not a difficult task.

3.2. "Prove that the number (p-1)(q2 -1)18 is an even number, when p and q are odd
numbers " (following an idea by Arzarello, 1993).

The proof chosen as an example was produced by a fourth year university
student (in a mathematics education course concerning problem solving). In order to
facilitate the analysis, the student's text is subdivided into "episodes":

Ep. 1: « p and q are odd, then p=2m+ I and q=2n+

Ep. 2: « 1 shall analyse the formula: (p-1) is even, q2 is odd, then (q2-1) is even,
so (p-1)(q2-1) is even, being a product of even numbers. But in this way I get no
result because in general it is not true that an even number divided by another
even number makes an even number.

Ep. 3: « I shall try a transformation:
(2n+ 1-1)[(2m+ 1)2-1]18 = 2n(4m2+4m+ 1-1)/8 = 2n 4 (m2+ m)/8

Ep. 4:« i f p=1 e q=3 then 04'8/8=0; p=5 and q=7 then 4*48/8=24; p=11 and
q=13 then 10*16818=210. It seems that by substituting q with an odd number,
q2-1 is always divisible by 8. f I succeed in proving this in general. everything is
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fine, because at this point I would get an integer number multiplied by an even
number (that is, p-1) and so it is obvious that the result is even.»;

Ep. 5: « Now./ shall prove that, if q is odd, q2-1 is always a multiple of 8;
q=2n+1 then q2-1= 4n2+4n+1-1= 4n(n+1). This is at least divisible by 4, and so
what remains is n(n+1), which is surely divisible by two, because if n is even
everything is fine, if n is odd then (n+1) is even. We may conclude that q2-1 is a
multiple of 8»;

Ep. 6: d know that (p-1)(q2-1)/8 is even if p and q are odd. The conclusion
arrives quickly after the illumination that q2-1 is divisible by 8».

(our underlining).

Analyzing this student's performance, we may remark that:
- the first episodes (1, 2 and 3) apparently lead nowhere, but they serve as non-goal-
oriented exploration of the statement. It is as if the student is "testing the ground" to
find something, but without knowing what. The meaningful passage appears in
Episode 4, and the manner in which it arises is typical of conjecturing: numerical tests,
observation of a regularity which leads to a conjecture. The underlined sentence is
illuminating: it is rather frequent, during exploration of a statement, to arrive to this
point: "if I could prove B, then I would have proved A" (crucial lemmas are frequently
generated in this way). From this moment on, students' operations are goal-oriented
and intended-anticipatory (see Harel, 1996); that is, they aim «to derive relevant
information that deepens one's understanding of the conjecture and potentially leads
to its proof or refutation»
- exploration of the statement leads the student to generate a new theorem ("q2-1 is a
multiple of 8, if q is odd"). This aspect, which we consider particularly interesting,
confirms what Simon (1996) observed, although in different situations, about
trasformational reasoning (see 2., quotation from Simon).
- between Ep. 4 and Ep. 5 we may observe, from the student's subjective point of
view, a change in the status of the sentence: "(q2-1) is divisible by 8". Indeed, at the
beginning it is considered as a conjecture; the student is not sure about its truth and
writes "It seems that"; it then becomes a statement to prove: the student starts Ep. 5 by
writing "I shall prove that". The same behaviour had been observed also in a very
different situation, with 8th-graders (see Garuti & al, 1996).

In general, we may say that this student appropriates the statement by
transforming it and establishing continuity between the exploration of the transformed
statement and the proving process. Metaphorically we may say that through the
exploration of the statement the student tries to unravel a tangle, and then by following
the thread builds up the web of proof. In our opinion in the case of this theorem the
gap is greater than in the preceding case, because the appropriation of the statement
needs a more complex transformation and finding the "thread" (which allows
continuity) is more difficult. In order to support this hypothesis, we may consider the
behaviour of students who fail to costruct the proof. Some of them meet difficulties in
interpreting the same formula reported in Episode 3, which was obtained by them
through standard algebraic transformations; some of them (in episodes similar to
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Episode 2) think they have proved the statement by writing that the product of (p-1)
and (q2-1) is always an even number

3.3. "Prove that if two numbers are prime to one another, the sum will also be prune
to each of them " (Euclid's Elements, Book 7, Prop. 28; taken from Heath, 1956).

Also in this case, the chosen example concerns a fourth year mathematics student.
Ep.1 :« GCD(a,b)=1 then GCD(a,a+b)=1 and GCD(b,a+b)=1
1 shall try to reason by contradiction: if GCD(a,a+b)=c with c1, then
a+ b=cn, consequently (a+ b)/c=n, that is a/c+ blc=n
1 can say nothing because for instance 1/2+1/2=1, but 1 is not divisible by 2»;

Ep.2 :« As a is divisible by c and c=GCD(a,a+b), it follows that c divides both a
and a+b. Then alc=m and then blc=n-m, that is c divides b: absurd!»

Ep.3: « 1 think that this is true; 1 shall try to formalize it better:
GCD(a,a+b)=1 with c1; then a+b=cn, a=cm;
(a+b)/c=n , alc+blc=n , m+blc=n ; blc=n-m=m' then b= cm'
a and b have at least c as a common divisor, but then GCD(a,b)1 and this is
absurd. The idea of reasoning by contradiction came to mind because 1 consider
it natural when 1 have to prove things of this kind.».
Analysing this proving process we may note that:

in Ep. 1 the student translates the statement into symbolic language and transforms
"to be prime to one another" into GCD(...)=1, then performs standard algebraic
transformations leading him nowhere; note how his interpretation of "GCD(a,a+b)=c
with c1" in terms of "a+b=cn" is only partial!

full appropriation of the statement happens in Ep. 2, when the student interprets the
property formally expressed by "c=GCD(a,a+b) " as "c divides both a and a+ b", and
then translates this statement into formulas which allow . an easy and effective
algebraic transformation. This very passage will allow him to prove the statement by
continuity with the preceding exploration;
- the passage marked with [*1 is the missing link in Ep. 1; this passage becomes
explicit only after the exploration performed in the Ep. 2;

performing a proof by contradiction presents no difficulty for this student as for
other students in the same group.

In general, we may remark that exploration of the statement is made difficult by
the fact that the statement encapsulates a non-trivial "logical" content. The gap
between the exploration of the statement and the proving process is relevant:
exploration may remain at the level of formal transformations of the statement (for
instance, from "to be prime to one another" to "GCD(...)=1" to a contradiction: "if
GCD(...)=c with c1" ) without fully penetrating the meaning of the statement. On the
contrary, in the preceding case 3.2. an effective exploration was possible through
standard algebraic transformations or conjectures about numerical cases.

Once again, our interpretative hypothesis is confirmed by students who failed
the proof: they made numerical trials' (which provide arguments for plausibility), they
performed formal transformations (like at the beginning of Ep. 1), but they did not
succeed in penetrating the logical knots of the statement; for instance, some of them,
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while reasoning by contradiction, erroneously supposed that "a is a multiPle of b "(or
"b is a multiple of a"), failing the interpretation of "to have common divisors".

4. Returning to a Preceding Experiment: A Deeper Interpretation
Our hypothesis concerning the cognitive unity of a theorem allows a deeper

interpretation of what happened in a preceding teaching experiment, described in
Boero & al. (1995). Seventh grade students had produced (through explorition of
numerical examples) two different formulations of the same property:
a) "A number and the number immediately after have no common divisors except for
the number 1" (We called this a "relational statement").
b) "If you add I to a number, all its divisors change, except 1". (We called this a
"procedural statement")

We observed how in this particular case the different formulations of the
statement influenced the proving process: students who referred to the relational
statement were not able to go beyond exploration of the conjecture. Indeed they
considered, in some numerical cases, the divisors of a number and the divisors of the
following number, observing that there was no common divisor, with the exception of
1. No general proof was constructed.

On the, contrary, some students referring to the procedural statement were able
to construct a proof; they considered the divisors of a given number, then they
transformed it into the following number and checked if the divisors of the first
number divided also the second, discovering that the added unit constituted the
remainder of the division of the increased number by the divisors of the initial number
(and so they developed an appropriate, general argument for a proof).

These different behaviours led us to hypothetize the existence of a "textual
continuity" between the statement and the proof. We now believe we can interpret
those students' behaviours in a deeper and more appropriate way: the gap between the
exploration of the statement and the proving process is leSs with the second
formulation (the exploration provides a suitable, crucial argument for the proof).

S. Concluding Remarks and Further Developments
At this stage of the research we can say that, from the educational point of view,

the teacher can use the construct of the cognitive unity as a tool for predicting and
analysing some difficulties met by students when they have to construct a proof. In
particular, the way a statement supplied by the teacher is formulated is of relevance,
especially for beginners (see 4.). But it is also important that students gradually learn
to transform autonomously the given statement in order to establish a continuity
between exploration of the statement and construction of proof (indeed, in an example
like that discussed in Section 4. students can obtain an easy proof, by transforming the
statement). This remark confirms the importance of transformational reasoning and
the necessity of nurturing it (Simon, 1996, p. 207). The problem of how to implement
this indication in class work remains still open!

From the research point of view, let us consider the case of proofs needing a
change of the reference theory: the skills needed, and especially the nature of the
exploration process leading to this change, should be carefully investigated.

We also think that the study we have reported in this paper could be developed
further in order to understand better the nature of the exploration of the situation
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described by a given statement and the conditions which allow to make a productive
connection between such exploration, transformational reasoning and construction of
proof. The need for further investigations is made clear in the following example.

In an Alessandria University orientation (non selective) test, students had to
prove that "Each number which is even and larger than 2 can be written as the sum of
two different odd nunthers". In spite of the apparent ease of the task, about 90% of
students were unable to produce a complete proof.

The most common approaches can be described as follows:
i) after some rather casual numerical trials, some students proved that "the sum of two
different odd numbers is even"; this approach could be the effect of an effort to
transform the statement, given the difficulty of proving it, with a final approach to a
statement not equivalent to the original one but easier to prove!
ii) some students considered many numerical cases, without finding any regularity; in
this case, the exploration remained non-goal oriented (as concerns the development of
the proving process), although it confirmed the validity of the statement in many
numerical cases (so providing arguments for its plausibility);
iii) other students wrote(for instance)4=1+3;6=1+5;8=1+7;10=1+9;12=1+11,but they
were not able to elicit the general relation ("each even number is the sum of two odd
numbers,1 and the preceding number"); indeed some of them grasped the existence of
a "regularity", but wrote:"/ am not able to write it in general".In few cases, the
interviews recorded after the test revealed that the difficulty derived from insufficient
mastery of algebraic language; in other cases, the student was not able to see that the
second addendum of the sum was always odd because it preceded an even number!

These behaviours show the necessity of taking into account other aspects of the
proving process, which concern both the exploration process and the transformation of
the statement: the nature of the "control function" of transformations, and how to
develop it (see i); why does the exploration process prove in some cases absolutely
blind (see ii); the role (and the difficulty) of that particular exploration which aims to
interpret the results of a transformation or a preceding exploration (see iii).
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