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Abstract

The performance of analysis of covariance (ANCOVA) and six

selected competitors was examined under varying experimental

conditions through Monte Carlo simulations. The six alternatives

were Quade's procedure, Puri and Sen's solution, Burnett and

Barr's rank difference scores, Conover and Iman's rank

transformation test, Hettmansperger's procedure, and the Puri-

Sen-Harwell-Serlin test. The conditions that were manipulated

included assumptions of normality and variance homogeneity,

sample size, number of treatment groups, strength of the

covariate/dependent variable relationship, and multiple

combinations of these factors. Results indicated that variance

heterogeneity, especially in combination with unbalanced designs

and severe nonnormality, had a profound impact on Type I error

rates. The ANCOVA F-test was robust and exhibited high power

under variance homogeneity, and for some cases of variance

heterogeneity, but became less competitve as conditions departed

from normality.
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Introduction

Next to analysis of variance, analysis of covariance may be

the most popular procedure for comparing group means in

educational and behavioral studies. Schneider (1996) reported

that ANOVA and ANCOVA together accounted for almost 35% of the

statistical techniques used in three leading educational research

journals from 1978 to 1987. When the subjects under study are

found to differ on one or more preexisting conditions, the

analysis of covariance offers the major.advantages over ANOVA of

greater statistical power and a reduction in bias (Frigon and

Laurencelle, 1993).

The analysis of covariance procedure combines regression

analysis and analysis of variance to adjust for the effects of

one or more covariates. The model for one covariate can be

written as:

ro = g + + 0 (Xij gx) + 6.0

i = 1,..,N; j =

where Yij is the value for the ith subject in the jth group on the

dependent variable Y, p is the grand population mean across all

observations, tj = pj g is the treatment effect, 0 is the slope

between the covariate .and the dependent variable, Xij gx is the

deviation of the covariate score about the grand X mean, and
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is the error term. This model can be extended to two or more

covariates and to factorial designs.

Although ANCOVA is similar in its application to analysis of

variance (ANOVA), the presence of covariates reduces the ANCOVA

error variance and offers a more sensitive test for the

hypothesis that the population means of the dependent variable do

not differ. However, this greater sensitivity comes at the

expense of a set of assumptions additional to those underlying

traditional ANOVA. Violations of one or more of these

assumptions may threaten the validity of the ANCOVA results and

warrant the consideration of another test.

Review of Literature

ANCOVA Assumptions

The eight assumptions Huitema (1980) recognized as

underlying proper application of fixed effects ANCOVA

(randomization, homogeneity of within-group regressions,

statistical independence of covariates and treatments, fixed

covariate values that are error free, linearity of within-group

regressions, normality of conditional Y scores, homogeneity of

variance of conditional Y scores, and fixed treatment levels)

include three which meet Johnson and Rakow's (1994)

classification of data set violations, those concerned with the

data set and parent population. These three assumptions
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(linearity, normality, and homogeneity of variances) are directly

a consequence of data set problems, are well-suited for Monte

Carlo studies, and are necessary for statistical simplicity and

validity of statistical tests (Elashoff, 1969).

Atiqullah (1964) investigated mathematically the effects of

nonlinearity on the ANCOVA F test and reported that nonlinear

regression produced a biased treatment effect. More recently,

Harwell (1997) studied the effect of a nonlinear regression term

on the behavior of the ANCOVA F test and found that the presence

of a quadratic term had little effect on Type I error rates, but

power was affected. His Monte Carlo simulations showed that

power losses could be as high as 20% and depended on the

magnitude of the nonlinear term's regression parameter.

Normality of conditional Y scores requires that the

dependent variable values be normally distributed at each level

of the covariate. Huitema (1980) surmised that ANCOVA may be

more sensitive to departures from normality than ANOVA. He felt

that Monte Carlo studies were needed on the effects of sample

size, skewness, and kurtosis together to determine the degree of

bias caused by conditional nonnormality of the dependent

variable.

Most studies have found ANCOVA to be reasonably robust to

moderate violations of the normality assumption, but when

conditional nonnormality was combined with other violations the

6
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results were less conclusive. Olejnik and Algina (1984) reported

that ANCOVA tended to be conservative when conditional

nonnormality was combined with heteroscedasticity, small sample

sizes, and nominal a equal to 0.05. Seaman, Algina, and Olejnik

(1985) found power advantages for ANCOVA over the alternatives

tested except when the correlation of the sign of the skew and

effect size was negative, in which case the power differences

were small.

Conover and Iman (1982) compared parametric ANCOVA with rank

ANCOVA procedures for four nonnormal distributions: (a)

lognormal, (b) exponential, (c) uniform, and (d) Cauchy. Their

results showed parametric ANCOVA to be conservative when applied

to the lognormal and Cauchy distributions, and reported power

advantages for the distribution-free approaches when the

conditional distributions were exponential and Cauchy.

More recently, Harwell and Serlin (1988) and Johnson and

Rakow (1994) have investigated the effects on ANCOVA of a number

of conditions, including conditional nonnormality of Y. Harwell

and Serlin matched four conditional Y distributions (normal,

double exponential, exponential, and approximate Cauchy) with

equal and unequal treatment group slopes, and equal and unequal

group sample sizes for power and Type I error analyses. They

found that the parametric F test maintained good Type I error

rates across a variety of nonnormal distributions and other

7
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simulation conditions for both equal and unequal slopes, but the

power advantage for nonparametric tests expanded with increasing

nonnormality irregardless of slope conditions. Johnson and Rakow

explored the effects of unequal sample sizes, unequal group

regression slopes, and group variance heterogeneity on the

robustness of ANCOVA and included a range of shape perturbations.

They found that combinations of unequal group variances, sample

sizes, and regression slopes posed the greatest threat to ANCOVA

robustness, but the authors did not extend their research to

power considerations.

The assumption of homogeneity of variance of conditional Y

scores has two cases in which a violation may occur: (a) the

variance of the conditional Y scores is assumed to be the same

for each treatment group, and (b) the variance of the conditional

Y scores should not depend on the value of X

(heteroscedasticity) . The first case, different treatment group

variances on Y but constant within groups variance across X, is

of greatest concern when found in the presence of unbalanced

designs, and perhaps with other assumption violations or sample

conditions. Huitema (1980) concluded from his review of other

studies that, similar to the patterns found for ANOVA, the effect

of group variance and sample size differences depends on how the

variance and sample sizes are associated. When the larger

variances are associated with the larger sample sizes, the F test

6
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is conservative, and when the variance/sample size matchings are

inversely related, the bias is liberal.

Alternatives to ANCOVA

Among the most frequently cited nonparametric alternatives

to ANCOVA are procedures proposed by Quade (1967), Puri and Sen

(1969), McSweeney and Porter (1971), Burnett and Barr (1977),

Shirley (1981), Conover and Iman (1982), Hettmansperger (1984),

and Harwell and Serlin (1989) . These tests have been the

subjects of a number of simulation studies and reviews in which

their performance has been compared to that of parametric ANCOVA

(Olejnik & Algina, 1984; Olejnik & Algina, 1985; Seaman, Algina,

& Olejnik, 1985; Harwell & Serlin, 1988).

Although Monte Carlo studies have been constructed to

investigate the performance of ANCOVA and its alternatives, the

published research remains limited in both the extent and depth

of experimental conditions and alternatives considered. Power

studies are underrepresented in the literature (Olejnik & Algina,

1984), and few studies have included both a wide range of

simulation conditions and more than one or two alternatives.

Most studies have restricted their range of assumption violations

and sample conditions, or the number of alternatives, or both.

The most extensive study found (Harwell and Serlin, 1988)

included four simulation factors, but did not consider variance

9
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heterogeneity, was limited to three nonnormal distributions, and

ran only 2,000 replications per condition. The present study

assessed the robustness of parametric ANCOVA under a variety of

conditions and situations, and compared its performance with six

of the eight alternatives cited above: Quade's procedure, Puri

and Sen's solution, Burnett and Barr's rank difference scores,

Conover and Iman's rank transformation test, Hettmansperger's

procedure, and the Puri-Sen-Harwell-Serlin test.

Methodology

Simulation Design

Hoaglin and Andrews (1975) suggested that Monte Carlo

studies be treated as statistical sampling experiments, such as

factorial designs with crossed factors. With this approach,

the effects under study become the factors that are manipulated

in order to define the simulations. Such factors may include the

number of groups, distributional parameters (e.g. kurtosis,

skewness), and group sample sizes.

The most frequently mentioned technique for simulating

nonnormal data employs a power transformation developed by

Fleishman (1978) . From the equation W = -c + bz + cz2 + dz3 a

standard normal variable z can be transformed into a new variable

W having the desired skewness and kurtosis. The constants c, b,

and d are chosen accordingly from a table prepared by Fleishman.

This method has gained wide-spread acceptance and has been used

10
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by numerous researchers in ANCOVA studies (Olejnik & Algina,

1984; Seaman, Algina, & Olejnik, 1985; Harwell & Serlin, 1989;

Harwell & Serlin, 1988; Harwell, 1997).

Six simulation factors were chosen for this study: (a)

groups (two levels, 3 and 5), (b) strength of X / Y relationship

(three levels, .2, .5, .8), (c) sample sizes (four levels for the

three group case and three levels for the five group case), (d)

conditional Y distribution (normal and four levels of nonnormal,

(e) group variances for conditional Y scores (five levels of

group variance ratios), and (f) treatment levels (null and

nonnull) . One covariate was used for all cases, and its

distribution remained as standard normal throughout the study.

Two levels of significance, a = 0.01 and 0.05, were reported for

all null tests, and power was computed for each nonnull case that

maintained an acceptable a. The values of skewness and kurtosis

([s,k]) selected for this study, which were representive of

ranges discussed in the literature, were: [0,0] (normal

distribution), [0,1], [0,-1] (uniform distribution), [0.5,1], and

[1.5,3].

For each replication two sets of standard normal random

variables were generated with the SAS RANNOR function, a

dependent variable was created with a designated correlation with

the covariate, and the dependent variable was transformed to the

desired degrees of skewness and kurtosis using Fleishman's power

.11
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transformation. The transformed data were subdivided into groups

for further alteration and analysis.

Prior to the power transformation of the data, a new

variable was created which was correlated to the initial variable

that was generated. The initial variable became the covariate in

the later analyses, while the newly created variable was the

dependent variable. The correlation between the variables was

one of the factors manipulated in the study.

The within-group sample sizes are an important variable in

ANCOVA simulation studies because of their relationship to the

power of the test and their interaction with group variance

inequalities. Generally, the power advantage of parametric

ANCOVA over rank ANCOVA increases as sample size increases, so

smaller sample sizes should favor the rank ANCOVA tests (Huitema,

1980).

A further consideration in selecting sample sizes for a

simulation study is the interaction between group sample size and

variance inequality among the groups. According to Huitema

(1980), the most sensitive situations for the ANCOVA F test occur

when heterogeneous group variances exist with unbalanced designs.

When variance and sample sizes differ, the direction of the

differences appears to dictate the bias of the test. The sample

sizes used for this study included equal and unequal sample size

designs. For the equal sample size designs, 10 and 25 for both

12
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the 3 and 5 group configurations were used. Three arrangements

were used for the unbalanced designs, 5, 10, 15, and 10, 20, 30

for 3 groups, and 5, 10, 15, 20, 25 for 5 groups.

The variance ratios that were investigated in this study

were 1:1:1, 1:1:4, and 4:1:1 for the 3 group designs, and

1:1:1:1:1, 1:1:4:4:4, and 4:4:4:1:1 for the 5 group division.

These designs allowed for an examination of the effects of

matching the largest group variance with the largest group sample

size, and alternatively, matching the largest group variance with

the smallest sample size. All combinations of the simulation

factors were included, and each simulation was replicated 10,000

times.

The Simulation Procedure

Two streams of data were generated from the SAS RANNOR

function, which uses the Box and Muller (1958) transformation to

create standard normal random variables. These two random

variables, X and X1, created the dependent variable through the

equation Y = rX + X1(1 r2)112, where r was the nominal

correlation between the covariate, X, and the dependent variable,

Y. For normal conditional distributions and variance

homogeneity, samples generated with Y, which had mean zero and

variance one, and X were used in the ANCOVA F test and its

alternatives.
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The performances of the seven tests were assessed at two

levels of significance, a = 0.01 and 0.05, by computing the rates

of rejection for each of the procedures. The rate of rejection

was the ratio of the significant results obtained to the number

of replications performed. To account for sampling error

associated with the estimated Type I errors, Bradley's liberal

criterion, .5a a* 1.5a, was used to establish sampling error

ranges around a. For a = 0.05, the sampling error interval was

(0.025, 0,075), and for a = 0.01 the similarly calculated

interval was (0.005, 0.015) . Estimated error rates outside these

intervals were considered conservative or liberal.

For non-normal conditional distributions, a new variable was

created using Fleishman's procedure. The new variable still had

mean zero and variance one, but the skewness and kurtosis could

be altered as desired. To violate the assumption of group

variance homogeneity, the dependent variable values were

multiplied by their respective treatment group standard

deviations. The Type I error rates were assessed for all seven

test procedures under these assumption violations.

Power was investigated by further perturbing the dependent

variable values through the addition of a treatment effect

specific to each group. For the three group case, the treatment

effects were -0.5, 0.0, and 0.5, while the five group case had

1 4
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the same overall range of 1.0 standard deviation, but with the

inclusion of the two intermediate values, -0.25 and 0.25. A

power analysis was conducted on all tests that maintained the

nominal Type I error rate within the appropriate sampling error

intervals.

To confirm that the conditions of the experimental design

were maintained, tests were performed on the data generated for

the simulations. The nominal covariate/dependent variable

correlations were checked by a routine incorporated into the

simulation program that returned the actual correlations between

the generated random variables.

Results

The mean Type I error rates for all test statistics are

given in Tables 1 3, and the percentages of robust results by

distributional shape are presented in Table 4. Each table

contains the mean results of the simulations for the ANCOVA F-

test and all six alternatives identified for this study. The

values for the seven test statistics are given in the columns

under the headings F (ANCOVA F), Q (Quade's Distribution-Free

Test), PS (Puri and Sen's Solution), BB (Burnett and Barr's Rank

Difference Scores), CI (Conover and Iman's Rank Transformation

Procedure), H (Hettmansperger's Procedure), and PSHS (the Puri-

Sen-Harwell-Serlin Test) . For each cell the first row represents

1 5
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the a = 0.05 level of significance and the second row the a =

0.01 level.

Bradley's (1978) liberal criterion was used for the sampling

error range rather than 95% confidence intervals to allow more

power analyses to be conducted. Power analyses were only

conducted for the Type I error rates that were maintained within

the a = 0.05 sampling interval defined by Bradley's liberal

criterion (0.025 a* 0.075) . This allowed for the maximum

number of simulations to be considered for power analyses.

Summary of Type I Error Rates

An examination of the results for each of the four designs

under the combinations of correlation, skewness, kurtosis, and

variance ratios showed that the patterns of Type I error rates

were dependent primarily on the presence or absence of variance

homogeneity and the degree of skewness and kurtosis, with some

lesser effects from the sample size configuration. Under

variance homogeneity, all tests maintained excellent control of

Type I error for all sample size designs even under the harshest

conditions of skew and kurtosis.

The presence of variance heterogeneity affected robustness

similarly for the equal sample size designs, with little

difference between the 3 and 5 group designs. The F test

maintained the best control over Type I error across sample size,

16



16

number of groups, and distributional shape when variance

heterogeneity was combined with equal sample sizes.

Variance heterogeneity with the unequal sample sized design

was separated into two divisions, matching the largest group

variance with the largest group sample size, and the inverse

coupling. The results for these two categories were quite

different. Under the. first variance ratios (1:1:4 or 1:1:4:4:4),

most tests behaved like the equal sample size designs. Across

distributional shapes the unequal sample size designs performed

nearly as well as the equal sample size classification, except

for the most severe case of skew and kurtosis, when the unequal

sample size design was much more robust for both the 3 and 5

group designs (Table 4) . Otherwise, the 5 group unequal sample

size designs did only slightly better than the respective 3 group

designs.

When distributional shapes were combined, the unequal sample

sized rank based tests outperformed their equal sample sized

counterparts for both the 3 and 5 group designs. The F test

performance, however, was superior when sample sizes were equal.

Generally, control over Type I error did not improve when sample

sizes were increased.

Matching the largest sample group variance with the smallest

group size had a dramatic effect on Type I error control, causing

very liberal results that were rarely ever robust. Only three

17
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tests, BB, H, and PSHS, produced any robust results, the best

Showing coming from the BB test at 60% Type I error control for

the n = 5, 10, 15 sample size design. The poor control over Type

I error was equally evident when data were examined by

distributional shape, although the 3 group, unequal sample size

design did perform slightly better than its 5 group complement.

Overall rates of robustness for each statistic under variance

heterogeneity (for a = .05) were 54.7% for the F test, 59.3% for

the Q and PS tests, 74% for the BB test, 58.7% for the CI test,

65.3% for the H test, and 61.3% for the PSHS test. The

performance was similar for all tests under variance homogeneity,

with respective percentages given as 73.3, 76.1, 76.1, 84.7,

75.7, 79.6, and 77.2.

Power Analyses: Summary

The factor that had the greatest effect on power was

variance heterogeneity. When sample sizes were unequal, variance

heterogeneity depressed power when the largest group variance was

coupled with the largest sample size, and prevented any power

analyses when the variance/sample size association was indirect.

The strength of the covariate/dependent variable association also

affected power, causing it to increase with increasing r.

Under variance homogeneity and normal to moderately nonormal

conditions, the F test was generally the most powerful test. As

18
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conditions became more nonormal, the advantage shifted to the Q

and CI tests, which were (usually) most powerful. The BB test

was consistently the least powerful statistic.

The F test continued to exhibit good power under variance

heterogeneity when the sample sizes were equal and conditions

favored normality. As nonnormality increased, the alternatives

to the F test became more powerful, with the Q or CI tests

generally most powerful. With unequal sample sizes and the

largest treatment group variance and sample size directly

matched, the CI and Q tests were again the most powerful, while

the F test had generally lowest power.

Overall, no test was universally most powerful, but the F,

Q, and CI tests were more frequently the most powerful. Under

variance homogeneity and for most distributional shapes, or when

sample sizes were equal and variance heterogeneity was present,

the F test was as powerful, or more powerful, than any other

test. When nonormality was most severe, or when sample sizes

were unequal and variance heterogeneity with direct variance

ratio/sample size coupling was present, the Q and CI tests were

most powerful, followed closely by the PS test. Under variance

heterogeneity, unequal sample sizes, and the inverse matching of

variance ratio and sample size, no test was robust enough to be

most powerful.

19
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Conclusions

Both Type I error control and power were affected greatly by

variance heterogeneity. Under variance homogeneity, all tests

maintained excellent control of Type I error for all sample size

designs even under the harshest conditions of skew and kurtosis.

When variance heterogeneity was coupled with unbalanced designs,

such that the largest treatment group variance was matched with

the largest group sample size, the nonparametric alternatives,

especially the Conover and Iman and Quade's procedures, were most

robust and had highest power. When variance heterogeneity was

combined with the inverse coupling of sample size and variance

ratio, no test maintained adequate control over Type I error.

The strength of the covariate/ dependent relationship had a

pronounced effect on power, causing it to decrease as the

relationship weakened.

2 0
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Table 1

Mean Type I Error Rates at a = 0.05, 0.01, under variance

homogeneity.

a F Q

3 Groups

PS BB CI H PSHS

10 0.05 .0495 .0506 .0501 .0488 .0507 .0418 .0446
0.01 .0098 .0108 .0078 .0097 .0109 .0056 .0062

25 0.05 .0498 .0500 .0499 .0491 .0500 .0464 .0478
0.01 .0092 .0102 .0090 .0099 .0103 .0078 .0083

5a 0.05 .0499 .0509 .0503 .0497 .0513 .0403 .0450
0.01 .0102 .0103 .0071 .0095 .0102 .0053 .0059

10b 0.05 .0490 .0498 .0497 .0500 .0498 .0455 .0472
0.01 .0101 .0102 .0088 .0092 .0102 .0075 .0081

a F Q

5 Groups

PS BB CI H PSHS

10 0.05 .0501 .0509 .0475 .0492 .0510 .0409 .0434
0.01 .0100 .0106 .0071 .0098 .0105 .0055 .0061

25 0.05 .0506 .0508 .0496 .0497 .0511 .0462 .0478
0.01 .0103 .0104 .0091 .0097 .0104 .0082 .0086

5c 0.05 .0491 .0501 .0476 .0497 .0498 .0419 .0448
0.01 .0101 .0100 .0078 .0099 .0100 .0063 .0070

a Sample sizes were

Sample sizes were

c Sample sizes were

5,

10,

5,

10,

20,

10,

15.

30.

15, 20, 25.

2 4
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Table 2

Mean Type I Error Rates at a = 0.05, 0.01, under variance

heterogeneity, a2 = 1:1:4 (3 groups) and a2 = 1:1:4:4:4

(5 groups).

3 Groups

n a F Q PS BB CI H PSHS

10 0.05 .0661 .0762 .0755 .0674 .0764 .0555 .0688
0.01 .0195 .0227 .0177 .0163 .0229 .0112 .0152

25 0.05 .0634 .0955 .0954 .0841 .0955 .0727 .0927
0.01 .0181 .0237 .0311 .0250 .0334 .0199 .0286

5' 0.05 .0255 .0425 .0421 .0483 .0426 .0296 .0375
0.01 .0048 .0088 .0063 .0092 .0090 .0040 .0049

10c 0.05 .0228 .0462 .0461 .0509 .0462 .0368 .0439
0.01 .0041 .0105 .0092 .0109 .0105 .0063 .0086

5 Groups

n a F 4 PS BB CI H PSHS

10 0.05 .0608 .0781 .0733 .0668 .0735 .0532 .0681
0.01 .0152 .0212 .0156 .0158 .0215 .0096 .0138

25 0.05 .0596 .1053 .1034 .0908 .1053 .0696 .1009
0.01 .0156 .0354 .0323 .0277 .0354 .0170 .0313

5c 0.05 .0283 .0611 .0419 .0531 .0441 .0308 .0398
0.01 .0054 .0093 .0075 .0117 .0094 .0048 .0071

a Sample sizes were

b Sample sizes were

c Sample sizes were

5,

10,

5,

10,

20,

10,

15.

30.

15, 20, 25.

2 5
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Mean Type I Error Rates at a = 0.05, 0.01, under variance

heterogeneity, a2 = 4:1:1 (3 groups) and a2 = 4:4:4:1:1

(5 groups).

3 Groups

n a F 4 PS BB CI H PSHS

5a 0.05 .1484 .0957 .0948 .0734 .0961 .0774 .0874

0.01 .0608 .0308 .0243 .0187 .0312 .0182 .0208

10b 0.05 .1478 .0988 .0987 .0784 .0990 .0867 .0950

0.01 .0628 .0325 .0297 .0209 .0326 .0242 .0281

5 Groups

n a F 4 PS BB CI H PSHS

5b 0.05 .1397 .1343 .1301 .0984 .1343 .1006 .1252
0.01 .0512 .0468 .0402 .0291 .0469 .0259 .0381

a Sample sizes were 5, 10, 15.

b Sample sizes were 10, 20, 30.

b Sample sizes were 5, 10, 15, 20, 25.

2 6



Table 4

Percentages of Robust Results by Distributional Shape Based on

Bradley's Liberal Criterion at a = 0.05.

a2 = 1:1:1 or 1:1:1:1:1

s,k 3 x e 5 x e 3 x u 5 x u

0,0 100.0 100.0 100.0 100.0

0,1 100.0 100.0 100.0 100.0

0,-1 100.0 100.0 100.0 100.0

.5,1 100.0 100.0 100.0 100.0

1.5,3 100.0 100.0 100.0 100.0

a2 = 1:1:4 or 1:1:4:4:4

s,k 3 x e 5 x e 3 x u 5 x u

0,0 100.0 100.0 90.5 95.2

0,1 100.0 100.0 90.5 95.2

0,-1 90.5 100.0 88.1 95.2

.5,1 100.0 88.1 92.9 95.2

1.5,3 11.9 16.7 83.3 71.4

(table continues)

2 7
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a2 = 4:1:1 or 4:4:4:1:1

s,k 3 x u 5 x u

0,0 14.3 4.8

0,1 16.7 9.5

0,-1 9.5 4.8

.5,1 14.3 4.8

1.5,3 2.4 0.0

e = equal sample size grouping, u = unequal sample size grouping.

28
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