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Abstract

Commonality analysis is a method of decomposing the R2 in a multiple regression analysis

into the proportion of explained variance of the dependent variable associated with each

independent variable uniquely and the proportion of explained variance associated with the

common effects of one or more independent variables in various combinations. Unlike other

variance partitioning methods (e.g., stepwise regression) that distort the results, commonality

analysis considers all possible orders of entry into the model and does not depend on a priori

knowledge to arrange the predictors. However, traditionally commonality analyses have been

underutilized in research. The purpose of the present paper is to introduce commonality analysis

as a accurate and efficient method for partitioning variance. A data set is used to provide a

heuristic example that explains the steps and guidelines necessary for performing a commonality

analysis. Tables are utilized to provide visual aids.
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Partitioning Predicted Variance into Constituent Parts:

A Primer on Regression Commonality Analysis

Initially, ANOVA was developed to relieve researchers of the computational burden

inherent in analyzing data; because it partitions the variance of the dependent variable

uncorrelated parts it provides computational simplicity (Cohen, 1968). In fact, all OVA methods

(i.e., ANOVA, ANCOVA, MANOVA) convert intervally-scaled independent variables into

nominally-scaled independent variables, even when these variables are not already nominally-

scaled (Thompson, 1984). However, increased access to computers and rapid advancements in

computer software have led to reduced dependence on OVA methods. As a result, researchers

and analysts do not need to continue the prodigal discarding of variance that occurs when

intervally-scaled variables are converted to nominally-scaled variables (Murthy, 1994), which

consequently leads to a loss of information and a less sensitive analysis (Pedhazur, 1982). In

addition, it has been shown that OVA-type methods also reduce the reliability of the variables

considered in the design, inflate Type II error probability, and distort the distribution shapes and

relationships among the variables (Cohen, 1968; Murthy, 1994; Thompson, 1992).

These shortcomings have resulted in less use of OVA methods by researchers (cf. Elmore

& Woehlke, 1988; Goodwin & Goodwin, 1985; Willson, 1980) and a greater use of general linear

model approaches such as regression (Rowell, 1991, 1996; Thompson, 1992). As Thompson

(1992) explains, the increased usage of multiple regression is due, in part, to the realization that

all parametric statistical analyses are part of a single general linear model (e.g., regression,

canonical correlation analysis, and structural equation modeling). As Neter, Kutner, Nachtsheim,

4
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and Wasserman (1996) noted, "Regression analysis is a statistical methodology that utilizes the

relation between two or more quantitative variables so that one variable can be predicted from the

other, or others" (p. 3). Regression analyses are of great use in identifying the unique contribution

of each predictor variable in explaining the variance of the dependent variable. The interpretation

of a regression analysis is fairly straightforward when the design consists of only one predictor

variable, as in Case I, or when the predictor variables are perfectly uncorrelated, as in Case II.

When there is no overlap (i.e., perfectly uncorrelated) between the predictor variables, the sum of

the squared bivariate correlations (r2) for the predictors is equal to the squared multiple

correlation (R2) involving all the predictors (Thompson, 1992).

Therefore, the partitioning of variance in Cases I and II is relatively easy and

straightforward to interpret. However, models that have predictor variables that are correlated to

some extent, which is usually the case, provide greater complications, making it more difficult to

determine the "true" effects of the independent variables on the dependent variable. Of particular

concern is the fact that the sum of the squared simple correlations rarely sums to the squared

multiple correlation (Beaton, 1973). As Thompson and Borrello (1985) emphasized, in such

instances it is necessary to examine both beta weights and structure coefficients when interpreting

such data. However, examining the beta weights and the structure coefficients does not explain

the relative contribution of each predictor, uniquely or in combination, with other predictors, in

the regression analyses.

Researchers can better understand the contribution of each predictor variable with the use

of methods that partition the variance of R2 into all the constituent parts that can be attributed to

5
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each predictor variable (Rowell, 1991, 1996). One method for conducting this partitioning of

variance is by performing a commonality analysis on the data. Commonality analysis, also referred

to as "element analysis" (Newton & Spurrell, 1967) and "component analysis" (Wisler, 1969), is

defined as a "procedure for decomposing R2 in multiple regression analyses into the percent of

variance in the dependent variable associated with each independent variable uniquely, and the

proportion of explained variance associated with the common effects of predictors" (Seibold &

McPhee, 1979, p. 355). In addition, they contend that decomposing R2 into its constituent parts is

essential because:

Advancement of theory and the useful application of research findings

depend not only on establishing that a relationship exists among predictors

and the criterion, but also upon determining the extent to which those

independent variables, singly and in all possible combinations, share

variance with the dependent variable. Only then can we fully know the

relative importance of the independent variables with regard to the

dependent variable in question. (p. 355)

Unlike other variance partitioning methods (e.g., stepwise regression) that distort the

results by selecting variables that are not necessarily the best predictors for a particular model

(Snyder, 1991; Thompson, 1995), commonality analysis considers all possible orders of entry into

the model. In addition, commonality analysis is fairly safe because it does not depend on a priori

knowledge to arrange the predictors. The benefit of not needing a priori knowledge is particularly

important when the knowledge is fallible. According to Cooley and Lohnes (1976), "The

6
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commonality partitioning method is neutral, and its neutrality allows the information inherent in

the data about the value of organizing observations in a certain framework (that of the domain of

predictors) to emerge" (p. 219).

Writing Commonality Formulas

The purpose of the present paper is to provide a brief introduction to commonality

analysis as a method of variance partitioning. More detailed explanations on the derivation and

calculation formulas are provided by Beaton (1973), Pedhazur (1982), or Seibold and McPhee

(1979).

The unique contribution (U) of a predictor variable is defined as the portion of the

variance that can be attributed to that predictor when it is entered last into the equation

(Pedhazur, 1982). When there are two predictor variables the unique contribution can be

expressed as:

Ui = R2y.12 - R2y.2

where Ui = the unique contribution of variable 1; R2y.12= the squared multiple correlation between

the dependent variable (Y) and variables 1 and 2; R2y.2 = the squared multiple correlation between

Y and variable 2. Similarly, the unique contribution of variable 2 is:

U2 = R2y.12 - R2y.i

where U2 = the unique contribution of variable 2; R2y.12 = the squared multiple correlation between

Y and variables 1 and 2; R2y., = the squared multiple correlation between Y and variable 1.

Unique contributions are basically the squared semi-partial correlation between the dependent

variable and the variable of interest after the effects of all other variables have been partitioned
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out.

However, a commonality analysis also considers the fact that portions of the total

explained variance may be common to two or more variables (Seibold & McPhee, 1979). The

portion of the explained variance that is attributed to a particular group is called the common

component. The common component for a two-variable model is defined as:

C12 = R2y.12- U( 1 - U(2)

where C12 = the common component of variables 1 and 2. The equation can be modified with the

right-hand side of the equations presented earlier for unique contributions and written as:

C12 = R2y.12 - (R2y.12 - R2y .2) - (R2y.12 - R2y.2)

= R2y.12 - R2y.12 R2y.2 - R2y.12 R2y.1

= R230 R2y2 R2y.12

The common component of variables 1 and 2 is called a second-order commonality. In addition,

third-order common components are determined for all sets of three variables, fourth-order

common components are determined for all sets of four variables, and so forth as variables are

added to the model. The number of components into which the explained variance can be

decomposed is equal to 2^ - 1, where n is the number of independent variables in the regression

analysis.

Therefore, the difficulty of commonality analyses increases in exponential proportion to

the increases in predictor variables. For instance, in the case of a model with six predictors, R2 can

be decomposed into 64 different components. Of the 64, 58 are common components and six are

unique components. One way of bypassing this problem is to arrange the variables into common

8
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groups, then run the commonality analysis on the different groups rather than separately on

individual variables. However, the problem with this method is that if the predictors are

conceptually distinct, grouping them may not make any sense. Consequently, if the predictors are

highly correlated, it would be extremely difficult to justify separate analyses for each variable

(Pedhazur, 1982; Seibold & McPhee; Thompson, 1984). Table 1 presents the formulas for

conducting commonality analyses on 2-, 3-, and 4- variable models.

To conduct a commonality analysis it is necessary that the R2 values be computed for all

possible combinations of the predictor variables (or the predictor variable groups). Rowell (1991,

1996) suggested that researchers interested in conducting a commonality analysis use the SAS

(PROC SQUARE) program that will print out all possible R2 combinations for the independent

variables in the model. If SAS is unavailable, researchers can compute all necessary R2 's by

individually computing each R2 combination with SPSS. The Appendix shows all the possible R2

combinations necessary for a three variable commonality analysis. These R2's will be used in the

heuristic example of the upcoming section. In any case, whether one uses SAS or SPSS, the

procedure for calculating the necessary R2's is fairly easy, especially if a microcomputer

spreadsheet program is used.

Heuristic Example

The data set from a study conducted by Holzinger and Swineford (1939) is used here to

illustrate the procedures involved in conducting a commonality analysis. The data set consists of

27 different variables obtained on 301 participants on various cognitive tests. For heuristic

purposes the author arbitrarily chose scores from a General Information Verbal test (GIV) to be

9
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the dependent variable, and scores from a Paragraph Comprehension test (PC), Word Meaning

test (WM), and grade level (GL) to serve as the predictor variables.

The first step is to obtain the seven equations necessary to compute the unique and

common components for a 3-variable model (see Table 1). As mentioned previously, commonality

analyses can be conducted with more than three variables; the author chose a 3-variable model

because it illustrates the statistical procedure without being computationally exhausting. The next

step is to determine all the necessary R2 values required for the equations in step 2 and to arrange

them in tabular form. The Appendix presents all the R2 combinations for the predictor variables

used in this model.

Next all the unique and common components are determined. First, the researcher should

substitute all the appropriate R2 values into the pertaining formulas. Any spreadsheet program

(e.g., Quattro Pro or Micro-Soft Excel) can be used to perform the calculations. An example of

the calculations is:

Ul (PC) = R2 y.123 - R2 y.23

= (.5886) - (.5561)

= .0325

Thus, the unique contribution of variable 1, scores on the Paragraph Comprehension test, to the

total explained variance is .0325, or approximately 3%. Furthermore, the common component of

the Paragraph Comprehension test predictor with word meaning is:

C12 = -R2y.3+ R2y.13+ R2y.23 - R2y.123

= -.0456 + .4379 + .5561 - .5886

= .3598

1 0
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Therefore, the common variance accounted for by the shared contributions of the paragraph

comprehension test and the word meaning test is .3598, or approximately 36%. The last step is to

arrange all the unique and common components into a commonality table, such as the one

presented in Table 2. Once in tabular form, the results of the unique and common components

calculated can be checked by summing down each colunm to obtain the r2 value when only one

variable is entered into the regression equation. For instance, summing down column 3 (grade)

results in a value of .0456, which is the r2 value for the regression model when only the variable,

grade level, is entered. In addition, the sum of all the unique and common components should

equal to .5886, which is the R2 value when all three predictor variables are entered into the

regression model.

Discussion

An inspection of Table 2 indicates that the unique predicted variance of the Word

Meaning test is approximately 15% (.1507), and its total common component with one or more of

the other predictor variables is approximately 40% (.3958). In this particular model scores from

the Word Meaning test account for 55% (.5465) of the variance and are considered the best

predictor of performance on the General Information Verbal test. In addition, scores on the

Paragraph Comprehension test uniquely accounts for 3% (.0325) of the total variance, however

the total common component is approximately 40% (.3994). The other variable, grade level,

contributes little to the total variance, a unique contribution of .00051 and total common

component of .0405.

Although not illustrated in this heuristic example, commonality analyses can occasionally

1 1
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result in some components obtaining negative values. These negative values should not be

interpreted as a variable's ability to explain less than 0% of the variance (Pedhazur, 1982; Seibold

& McPhee, 1979; Thompson, 1985). Instead, the presence of a negative value is usually attributed

to the presence of suppressor effects.

Commonality analysis is one method of partitioning variance in regression analyses. When

there are no more than four predictor variables the analysis is fairly easy and straightforward.

Commonality analysis should be very useful to educational and social science researchers when

constraints restrict the number of predictors that can be used in a model. Commonality analysis is

an excellent method for partitioning the variance of the dependent variable into its constituent

components and for understanding the relationships of the predictors with each other and with the

criterion variable.
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Table 1

Formulas for Unique and Commonality Components of Variance

Two Independent Variables

U(1) = R2y.12 - R2y.2

U(2) = R2y.12 - R2y.i
C(12) = R2y.2 R2y.i R2y.12

Three Independent Variables

U( 1 ) = R2y.123 - R2y.23

U(2) = R2y.123 - R2y.13

U(3 ) = R2y.123 - R2y.12

C( 1 2) = - R2y.3 R2y.13 R2y.23 - R2y.123

C( 1 3 ) = R2y.2 + R2y.12 + R2y.23 - R2y.123

C(23 ) = - R2y.i + R2y.12 + R2y.13 - R2y.123
C(123) = R2y., R2y.2 R2y3 R2y. 12 - R2y.13 R2y.23 R2y.123

Four Independent Variables

U( 1 ) = R2y.1234 R2y.234

U(2) = R2y.1234 - R2y.134

U(3) = R2y.1234 - R2y.124

U( 1 ) = R2y.1234 - R2y.123

C( 1 2) = - R2y.34 + R2v.134 R2y.234 - R2y.1234

C(13) = - R2y24 + R2y.124 R2y.234 - R2y.1234

C( 1 4) = - R2y.23 + R2y.123 + R2y.234 - R2y.1234

C(23) = - R2y.14+ R2y.124 + R2y.134 - R2y.1234

C(24) = - R2y.13 + R2y.123 + R2y.134 - R2y.1234

C(34) = - R2y.12+ R2y.123 + R2y.124 - R2y.1234

C(123) = - R2y.4 R2y.14 R2y.24 R2y.34 R2y.124 - R2y.134 - R2 y.234 + R2 y.1B4

C(124) = - R2y.3 R2y.13 R2y.23 R25,34 R2y.123 R2y.134 R2y.234 R2y.1234

C(134) = - R2y.2 + R2y.12 + R2y.23 R2y.24 R2y.123 R2y.124 - R2y.234 R2y.1234

C(234) = - R2y.i R2y.12 R2y.13 R2y.14 - R2y.123 - R2y.124 - R2y.134 R2y.1234

C(1234) = R2y. R2y.2 R2y.3 R2r4 R2y.12 - R2y.13 - R2y.14 - R2y.23 - R2y.24 - R2y.34 R2y.ln

+ R2y.124+ R2y.134 R2y.234 - R2y.1234

Note The difficulty of interpretation increases in proportion to the increases in predictor variables.
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Table 2

Commonality Analysis Summary Table

Component
1

Paragraph Corn.
2

Word Meaning
3

Grade Level

U(1) .0325

U(2) .1507

U(3) .0051

C(12) .3598 .3598

C(13) .0045 .0045

C(23) .0009 .0009

C(123) .0351 .0351 .0351

Total .4319 .5465 .0456

.0325 .1507 .0051

.3994 .3958 .0405

Note. The sum of the columns equals the R2 of that particular predictor and the

sum of all the unique and common components equals the multiple R2 of the

regression equation.

17
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Appendix

R-Squares of Paragraph Comprehension Test. Word Meanins Test. and Grade

to General Information Verbal Test

Number of Procedures in Model R-s uare Variables in Model

1 .4319 1 Paragraph Comprehension
test

.5468 2 Word Meaning test

.0456 3 grade level

2 .5835 12

.4379 13

.5561 23

.5886 123

18
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