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Abstract

The purpose of the present paper is to review the basics of repeated measures designs. It

is demonstrated that repeated measures data can be analyzed using ANOVA, linear

regression, and MANOVA. Discussion is provided detailing the assumptions that must be

met in order for the test statistics to be accurate. A wide array of analytic choices is

provided when the assumptions are not met. A small heuristic data set is utilized to make

the discussion more concrete.
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Experimental designs employ random assignment in an attempt to equate groups

with respect to the dependent variable prior to the experiment. This equality prior to the

experiment is desired so any posttest differences can be attributed solely to the

independent variables (i.e., treatment effects) that were introduced (Girden, 1992).

However, random assignment is not always possible or even the most desirable

experimental design; repeated measures designs can prove more advantageous.

An example of the simplest repeated measures design is a pretest, posttest

experimental design with intervening treatment (Minke, 1997). In this design a single

group of subjects are measured under various treatments, also called conditions (Stevens,

1996). Repeated measures designs are also advantageous when the research is focusing

on performance trends over time. For example, participants might be randomly assigned

to two experimental groups, and then at the conclusion of the study all be posttested at

three times on a monthly basis, so as to explore decay or enhancement of the treatment

effects over time.

Repeated measures designs are implemented in a variety of research settings, thus

researchers use many different designs, called by many different names (Minke, 1997).

She provided a list of these different names, including a one-way repeated measures

ANOVA, also called a one factor within-subjects ANOVA, a treatment-by-subjects

ANOVA, or a randomized blocks ANOVA. This list includes a two-way repeated

measures ANOVA, also called a two-way within-subjects ANOVA, a two-way ANOVA

with repeated measures on both factors, a multiple treatments-by-subjects ANOVA, or

treatments-by-treatments-by-subjects ANOVA (Huck & Cormier, 1996).

4
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Repeated measures designs can include both between and within variables. Such

designs are termed "mixed-model designs" (Barcikowski & Robey, 1984). Stevens

(1996) wrote that a between variable is merely a grouping or classification variable (e.g.,

sex, age, social class) for which subjects will appear in only one level. For example,

gender is inherently a between variable, since it is not reasonable to alter everyone's

gender during the course of the experiment. A within variable is one in which the subjects

will appear in each level (i.e., subjects participate in more than one experimental

condition), although at varying times.

There are several advantages of implementing a repeated measures design. Lewis

(1993) indicated that the main advantage is the control of subject variability (i.e.,

individual differences). He wrote that by selecting only one group of subjects and having

that group participate in all the treatment conditions it would seem to guarantee that any

observed differences among the treatment conditions will be due solely to the effects of

the treatment. That is, in a between subjects design, even though random assignment is

used, a highly unusual person or outlier may substantially influence the results in the

group to which that person was assigned, notwithstanding the fact that assignment was

random. Of course, the effects of such individual differences will be particularly

noteworthy when group sizes are small.

However, Lewis (1993) noted that controlling an outlier's influence by assigning

all subjects to all groups might not fully control individual difference, because in fact

subjects do not remain perfectly constant. For example, a subject's interest level,

attention, motivation, and knowledge of a task may change at differing levels of the

treatment. However, these types of changes are probably not going to be as great as
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differences produced by the random assignment of subjects to the different experimental

conditions (Lewis, 1993). Therefore, if everything else remains constant, the error sum of

squares, SS error, associated with the experimental conditions should be lower in a

repeated measures design than in an experimental design in which randomly assigned

groups of subjects are utilized.

This is associated with another advantage of repeated measures designs, the

reduction of error variance. The lower sum of squares error represents an increase in

statistical power and economy (Lewis, 1993). Stevens (1996) stated that because the

subjects remain the same, the variance due to subjects can be partitioned out of the error

variance term, thereby making any statistical tests more sensitive (powerful).

Repeated measures designs are also more economical in terms of subject

recruitment. Because repeated measures designs employ the same subjects throughout

different treatments, they require fewer subjects overall (Minke, 1997). Girden (1992)

provided a simplistic example: An investigation of the effect of three different drugs

(each a level) at two different doses (two levels) would require six different groups of

individuals. Supposing a minimum of 10 individuals per group, a total of 60 individuals,

need to be recruited. However, if a repeated measures design is utilized then the same

subjects can take part in all conditions of the study, thereby requiring fewer participants.

In this scenario, the same study might employ only 10 or 20 subjects each measured six

times. These designs are particularly beneficial when the subject pool is limited.

However, there are also disadvantages associated with repeated measures designs.

One such disadvantage is a carryover or practice effect, which Lewis (1993) stated

concerns the fact that subjects may change systematically during the course of multiple

6
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testing. He wrote that practice effects can be both positive (i.e., subjects show

improvement) or negative (i.e., boredom or fatigue results due to successive testings). For

example, in an experiment to teach 10 vocabulary words using two instructional methods,

once subjects learn some or all of the words in their first experimental condition, they

will carry this knowledge into their second experimental exposure, and this carryover in

this example would distort posttest scores in the second condition by inflating estimated

intervention effects. Girden (1992) also noted that latency effects might occur, which

involve a delayed effect of treatment that is not evident until a second treatment is

introduced. She stated that often these order effects can be controlled through

counterbalancing; however, whereas increasing the time between treatments can

minimize carryover effects, latency effects are more difficult to control.

Counterbalancing is a procedure of presenting the different levels of treatment so

that each level a) occurs equally often at each stage of practice (i.e., each is presented

first, then second, etc.) and b) precedes equally as many times as it follows each level

(Girden, 1992). She provided the following strategy to achieve counterbalancing:

With an even number of levels and a number of individuals that is some

multiple of it, these two requirements can be met applying the following

guideline: 1, 2, n, 3, n-1, 4, n-2, etc. Each number refers to a treatment level.

If four levels are to be tested, then the guideline reduces to 1, 2, 4, 3, the

first order of the levels. Each subsequent order is derived by adding "1" to

the numbers of the preceding order. The second order would be 2 (1 + 1), 3

(2 + 1), 1 (4 + 1 does not apply), 4 (3 + 1).... Each fixed ratio occurs once at

7
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each stage of practice, and each precedes and follows every other ratio the

same number of times. (Girden, 1992, pp. 3-4)

An example of this procedure is provided in Table 1. Counterbalancing, while important

and necessary in conducting repeated measures designs, does not remedy all the problems

experienced in these analyses (Kieffer, 1998). Carryover effects, even when

counterbalancing techniques are implemented, may raise issues involving external

validity (Minke, 1997).

Insert Table 1 About Here

Univariate Approaches to Repeated Measures Analyses

A heuristic example is presented to illustrate the different statistical and

conceptual properties of univariate and multivariate approaches when using repeated

measures designs. Suppose a pharmaceutical company has developed a new supplemental

vitamin that it believes increases restful sleep patterns for insomniacs. The vitamin was

tested in each of four dosage levels (0 mg, 15 mg, 30 mg, and 50 mg) with each of four

clinically diagnosed insomniacs. The differing levels of vitamin dosage were

counterbalanced across the participants, and between each change in dosage a three-day

no vitamin condition was imposed to allow any traces of the previous vitamin to exit the

subject's system. After each vitamin dosage level had taken effect, the researchers

collected data from the participants to determine how much REM sleep (i.e., the

dependent variable) had increased in minutes. Once the final vitamin dosage treatment

was concluded, a single within-factor (vitamin treatment) repeated measures analysis was

conducted. The data for this hypothetical example are presented in Table 2.

8
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Insert Table 2 About Here

Repeated Measures ANOVA

Table 3 indicates that the repeated measures ANOVA results in this hypothetical

example are quite favorable. The various vitamin dosages (treatment conditions)

accounted for 69.94% of the total variation on the increased REM sleep for the

insomniacs. These results were statistically significant at the alpha = .05 level. Based on

these results (large effect size and statistical significance), the pharmaceutical company

can report that different vitamin dosages produced an increase in the REM sleep of

clinically diagnosed insomniacs.

Insert Table 3 About Here

Table 4 indicates that the between-subjects ANOVA results in this example are

not as favorable. In using a between-subjects ANOVA design with this data, each

individual would be randomly assigned to only one treatment condition, as opposed to

being measured on all four treatment conditions. Between-subjects ANOVA examines

the effects between subjects, therefore, 16 subjects would be required to complete this

same study (Keiffer, 1998). In the between-subjects ANOVA design it is only possible to

study the differences between the vitamin dosages (levels of treatments) and not the

differences between the subjects. This means that this ANOVA partitions the variance on

the dependent variable into one less component than the repeated measures design.

Insert Table 4 About Here
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As Tables 3 and 4 indicate, partitioning the variance into one more component in

the repeated measures design proved beneficial in this example. The sum of squares (SS)

residual was smaller in the repeated measures design than in the between-subjects

ANOVA since there was one more partition. In this example 734.75 SS units were

accounted for by the inclusion of this "person individual differences" (i.e., the differences

across people as individuals) source of variation in the repeated measures analysis. Thus,

utilizing the repeated measures design in this example proved beneficial to the outcome

of the study in terms of statistical significance (Keiffer, 1988). While both results were

statistically significant at the alpha = .05 level, the Fcalc value was larger in the repeated

measures analysis. If the researcher were interested in statistically significant results, a

larger Fcalc would prove beneficial.

While comparing the two analyses, notice that the variance accounted for by the

treatment component (69.94%) in the present example remained identical. Keiffer (1998)

stated that in a real-world setting with actual data, the distinctions between these two

approaches would be more pronounced, and the power of employing a repeated measures

design could be illustrated more convincingly. Keep in mind that similar results were

observed in both analyses, even with the repeated measures design requiring only four

subjects compared to the 16 required in the between-subjects ANOVA design.

Repeated Measures Analysis Using Regression

Another univariate approach that could be employed to examine the repeated

measures data is multiple regression analysis. The first step in utilizing this approach is to

define Ic contrast variables where lc depicts the number of treatment levels. In this

1 0
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example there are 4 treatment levels, so three mutually orthogonal (i.e., uncorrelated)

contrast variables can be created. Each contrast variable illustrates a separate effect. Here

the three contrast variables represent linear, quadratic, and cubic trends in the data,

respectively; any orthogonal trends could be employed, but polynomial trends have been

arbitrarily chosen in this example (Kieffer, 1998). In repeated measures regression a

fourth orthogonal (i.e., uncorrelated) contrast variable is created as a sum vector that adds

the responses of each subject over all four treatment conditions. Table 5 illustrates the

resulting matrix. For example, person one had scores in the four dosages of 0, 18, 20, and

22, so that person's sum vector score was 60 (0 + 18 + 20 + 22).

Insert Table 5 About Here

The Pearson rxy equals COVxy/ (SDx * SDy). The covariance, COVxy, equals (I

(Xi Mx) (Y1 My)) / n-1; the numerator of this expression is called "the sum of the cross

products (of the deviations from the mean)." If the cross products sum to zero, both the

covariance and r will equal zero. Table 5 also presents two sets of cross products (CV1

with CV2, and CV3 with CV4), to illustrate that these contrast variables are uncorrelated

(i.e., "orthogonal"), since the cross products both sum to zero. The same is true for all the

pairwise combinations of the four contrast variables presented in Table 5.

After this matrix is generated, each contrast variable is entered into the multiple

regression equation. The sequence in which the contrast variables are entered into the

equation will not affect the variance accounted for by each contrast variable, since both

the contrast variables and the variance they explain are uncorrelated. The results of the

multiple regression repeated measures analysis are presented in Table 6. Table 7 shows

1 1
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how the Table 6 results from the regression analysis are converted into a conventional

repeated measures ANOVA format. Notice from Table 6 that the SS for the subtotal of

the three contrasts testing linear, quadratic, and cubic trends in the dependent variable

scores across the four dosages sum to the same value (SS = 2045.25) presented in Table

3; the cumulative eta2 value (69.9%) is also the same across the two analytic approaches.

Finally, note that the within effect due to variations in individual differences in drug

reactions across the four people were the same (SS = 734.75, eta2 = 13.7%) across these

analyses.

Insert Tables 6 and 7 About Here

These comparisons illustrate that both ANOVA and regression analyses of the same data

yield identical results. (However, the regression approach does facilitate further

partitioning the dosage effects into three different trend effects.) The comparability of the

results across the two analyses illustrates that all analyses are correlational, and that all

analyses are part of a single general linear model family (cf. Cohen, 1968; Thompson;

1991, 1998).

Assumptions of Univariate Repeated Measures Analyses

Sphericity (or Circularity)

In conducting a repeated measures design, certain assumptions have to be met in

order for the test statistics to be accurate. Sphericity (which subsumes the compound

symmetry assumption as a special case) is deemed a necessary and sufficient condition

for employing a repeated measures analysis (Huynh & Feldt, 1970). Sphericity is met if

12
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all the differences between pairs of treatment condition scores are equally variable. If a

variance-covariance matrix was constructed, it should demonstrate equal variances

between these pairs of scores (Girden, 1992). Girden (1992) offered a formula to check

for sphericity:

2 j_...2 2
zA.A
n_

C5 (y-y) t, 1 -I- a 2 1 2

where 021 is the variance of one set of scores, 022 is the variance of the paired set of

scores, and 012 is the covariance of the two sets of scores. She further stated that

sphericity requires that variances of differences for all treatment combinations are

homogenous. This indicates that the variance of level 1 and 2 has to equal the variance of

level 2 and 3, and so forth.

Violations of the sphericity assumption

Violating the sphericity assumption can create incorrect statistical decisions. The

resulting Fcalc will be too small (by some epsilon value) and the Fcrit value will be too

high, when the variances of the differences in levels of the treatments are not equal.

Stevens (1996) wrote that if sphericity is not examined, the unwary researcher will be

inclined to reject the null hypothesis more often than it should be rejected which leads to

higher Type I error rates.

However, there are methods created to correct for violations of the sphericity

violation, which use a statistical correction factor called "epsilon." Epsilon is multiplied

times the degrees of freedom to obtain corrected degrees of freedom. Box (1954) found

the upper limit of epsilon to be 1.0, when the sphericity assumption is perfectly met in the

data (i.e., no correction is invoked). When this occurs, the researcher may use the same

degrees of freedom as calculated when constructing the summary table. However, the

13
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sphericity assumption is not always met perfectly. (Geisser & Greenhouse, 1958) found

the lower limit of epsilon is 1/ (k-1), where k is the number of treatment conditions in the

study. Thus, the specific Geisser-Greenhouse correction that is computed by SPSS and

other statistics packages ranges bewteen1/(k-1) and 1.0, but the exact value takes into

account the degree to which the sphericity assumption is violated in a particular data set,

and adjusts accordingly. However, the Greenhouse-Geisser epsilon produces a very

conservative estimate for the degrees of freedom employed to test for statistical

significance (i.e., the Fcrit value will tend to be too large which may result in the

researcher not rejecting the null hypothesis as often as the data indicates).

Huynh and Feldt (1970) developed an epsilon correction index that is not as

conservative. The Huynh-Feldt epsilon produces an overestimation of the true epsilon

value. This may result in a Fcrit value that is too small, which may lead to Type I errors.

Keiffer (1998) stated that since these two epsilon correction indices may produce biased

results, several authors recommend averaging the two indices to produce a more accurate

epsilon estimate (Barcikowski & Robey, 1983; Girden, 1992; Stevens, 1996). If the

researcher is to choose one over the other, the Greenhouse-Geisser epsilon should be

chosen because it is a more conservative estimate.

Multivariate Approach to Repeated Measures Analysis

Thus far the paper has discussed univariate designs to repeated measures analyses.

Now a multivariate approach for a single factor repeated measures design will be

considered as yet another analytic alternative. Multivariate Analysis of Variance

(MANOVA) requires a conceptual shift. Lewis (1993) wrote that instead of thinking of

the design (univariate) having subjects as a random factor crossed with the fixed repeated

14
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measures factor, responses to different levels of the repeated measures factor are viewed

as different dependent variables, and subjects are considered to provide replications in a

single-cell design. He stated that unlike most multivariate approaches, for repeated

measures all dependent variables are measured on the same scale, and the primary

interest is in differences among the means of the different variables or levels. To achieve

this a new set of dependent variables, based on the original ones, needs to be defined. For

our heuristic data set, the multivariate approach would conceptually treat the outcome

scores for the four drug dosages as separate dependent variables.

There are two approaches that can be utilized to define the new dependent

variable set. Minke (1997) stated that the most common approach is to transform the lc

dependent variables into k-1 linearly independent pairwise difference scores and then

perform the analysis on these new dependent variables. In this analysis the null

hypothesis usually tested is that the difference scores have population means of zero. The

analysis is then tested by transforming an F transformation of Hotelling's 12 (Stevens,

1996). The second approach creates a matrix of orthonormal coefficients, weights each

score by the corresponding coefficient, and then analyzes the new matrix. Keiffer (1998)

stated that either of the two approaches will generate exactly the same results (Girden,

1992; Stevens, 1996) and there is no advantage to utilizing either approach.

However, as with many statistical designs, there are both advantages and

disadvantages to utilizing a univariate repeated measures analysis within a multivariate

framework. One advantage to the multivariate approach is the sphericity assumption does

not have to be met (Keiffer, 1998). Keiffer argued that this may more closely honor a

researcher's reality, provided that the researcher believes measurements are correlated in

15
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a real world situation. Whereas in the multivariate design, sphericity is not an issue since

each measurement is considered a separate and unique variable (Keiffer, 1998).

The present paper discussed the advantages and disadvantages of utilizing

univariate and multivariate analyses within univariate repeated measures designs. When

the sphericity assumption is met, the repeated measures ANOVA would prove the most

effective design, because that analysis has the most statistical power against Type II error

(Keiffer, 1998). However, when the sphericity assumption is severely violated a

multivariate approach would be more beneficial. Therefore, the choice to use univariate

or multivariate analyses within repeated measures designs depends largely on the

characteristics of the data.

16
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Table 1

18

Counterbalancing Order for Design with Four Treatment Conditions

Trial Number

Person One Two Three Four

1 1 2 4 3

2 2 3 1 4
3 3 4 2 1

4 4 1 3 2

Table 2

Heuristic Data for Vitamin Dosage Study

Subject

Treatment Level

Sum Mean (Yi)Omg 15mg 30mg 50mg

1 0 18 20 22 60 15.0
2 3 15 24 26 68 17.0
3 7 25 38 40 110 27.5
4 3 36 40 45 125 31.0

EY 13 94 122 133 362
Mean (yi) 3.25 23.5 30.5 33.25 22.63

19
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Summary Table for Repeated Measures ANOVA with Table 2 Data

Source SS df MS Fcalc eta2

Subjects 734.75 n-1 = 3 244.92 10.36 13.70%

TIME 2204.25 k-1 = 3 734.75 31.08 69.94%

Res 212.75 (n-1)(k-1) = 9 23.64

Total 3151.75 (n)(k)-1 = 15

Note. n = number of subjects=4. k = number of treatment conditions. Here
"subjects" represents the influence of the individual differences in the people
as individuals.

Table 4

Summary Table for Classical ANOVA (Four Level One-way) with Table 2 Data

Source SS df MS Fcalc eta2

Between 2204.25 k-1=3 734.75 9.31 69.94%

Residual 947.50 (n-1)(k-1)=12 78.96

Total 3151.75 n-1=15

Note. n=16. This result is statistically significant, since Fcrit (3, 12) = 3.49 at the
alpha = .05 level.

0 0
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Table 5

Orthogonal Contrasts for Regression Analysis with Table 2 Data

Subject

Contrasts

DV CPI x2 CP3 x4CV1 CV2 CV3 CV4

1 -3 1 -1 60 0 -3 -60
2 -3 1 -1 68 3 -3 -68
3 -3 1 -1 110 7 -3 -110
4 -3 1 -1 124 3 -3 -124

1 -1 -1 3 60 18 1 180
2 -1 -1 3 68 15 1 204
3 -1 -1 3 110 25 1 330
4 -1 -1 3 124 36 1 372

1 1 -1 -3 60 20 -1 -180
2 1 -1 -3 68 24 -1 -204
3 1 -1 -3 110 38 -1 -330
4 1 -1 -3 124 40 -1 -372

1 3 1 1 60 22 3 60
2 3 1 1 68 26 3 68
3 3 1 1 110 40 3 110
4 3 1 1 124 45 3 124

Sum 0 0 0 1148 0 0
Mean 0 0 0 90.5 0 0

Note. CV1 = contrast variable 1 (linear trend), CV2 = contrast
variable 2 (quadratic trend), CV3 = contrast variable 3 (cubic
trend), CV4 = sum vector, and DV = the dependent variable score.



Table 6

Results of Multiple Regression Analysis with Table 2 Data

Source SS df MS Fcalc

CV3 16.20 1 16.20 .072 .51%
Residual 3135.55 14 3135.55

CV2 322.45 2 161.23 .741 10.23%
Residual 2829.30 13 217.64

CV1 2204.25 3 734.75 9.306 69.94%
Residual 947.50 12 78.96

SUM 2939.00 4 734.75 37.989 93.25%
Residual 212.75 11 19.34

Note. In the regression analysis, the contrast variables were arbitrarily entered in
The order CV3, CV2, CV1, and CV4 (i.e., the sum of given individuals' four DV
Scores).

12 2
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Table 7

Re-expression of the Table 6 Results in an ANOVA Format

Source SS df MS Fcalc eta2

Between
Cubic

DV trend (CV3) 16.20 - 0.00 = 16.20 1 16.20 0.69 0.3%
Quadratic

DV trend (CV2) 322.45 - 16.20 = 306.25 1 306.25 12.96 5.7%
Linear

DV trend (CV1) 2204.25 - 322.45 = 1881.80 1 1881.80 79.61 35.1%

(Subtotal 2204.25 3 734.75 31.08 41.2%)
Within

Individual
differences (CV4)

2939.00 - 2204.25 = 734.75 3 244.92 10.36 13.7%

Residual 212.75 9 23.64

Total 5356.00 15

Note. The Table 6 results present cumulative SS values associated with the use of one
(CV3), two (CV3 and CV2), three (CV3, CV2, and CV1), and four (CV3, CV2, CV1,
and CV4) contrast variables, respectively. The unique SS due to each contrast variable or
hypothesis is computed by subtracting the cumulative value for a given prior cumulative
total from the current cumulative total (e.g., 322.45 16.20 = 306.25).
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TITLE 'EPSY 690W repeated measures#1'.
comENT ***************************************************.

COMMENT ROBERT D. WELLS
COMMENT 9/8/1997.
commENT ****** ***** ********************************* *******

SET BLANKS=SYSMIS UNDEFINED=WARN printback=listing.
subtitle 'One-way Repeated ANOVA & Multivariate ###########'.
DATA LIST

File='a:repeated.DAT' FIXED RECORDS=4 TABLE
/1 id 1 dvl 9-10
/2 dv2 9-10
/3 dv3 9-10
/4 dv4 9-10 .

list variables=all/cases=99/format=numbered .
manova dvl to dv4/

wsfactors=time(4)/
contrast(time)=polynomial/
rename=cons, linear, quad, cubic/
print=transform param(estim) signif(averf hf gg)/
wsdesign=time .

SUBTITLE 'ANOVA THRU REGRESSION USING ORTHO CONTRASTS
execute .
DATA LIST

File='a:repeated.DAT' FIXED RECORDS=1 TABLE
/1 id 1 time 3 sum 5-7 dv 9-10.

EXECUTE.
list variables=all/cases=99/format=numbered .
IF (TIME EQ 1) CV1=-3.
IF (TIME EQ 2) CV1=-1.
IF (TIME EQ 3) CV1=1.
IF (TIME EQ 4) CV1=3.
IF (TIME EQ 1) CV2=1.
IF (TIME EQ 2) CV2=-1.
IF (TIME EQ 3) CV2=-1.
IF (TIME EQ 4) CV2=1.
IF (TIME EQ 1) CV3=-1.
IF (TIME EQ 2) CV3=3.
IF (TIME EQ 3) CV3=-3.
IF (TIME EQ 4) CV3=1.
REGRESSION VARIABLES=DV CV1 TO CV3 sum/DESCRIPTIVES=ALL/

CRITERIA=PIN(.95)POUT(.999)TOLERANCE(.00001)/DEPENDENT=DV/
ENTER CV3/ENTER CV2/ENTER CV1/ENTER sum/.

2 4



24

Appendix B

SPRR natR

repeated.lst 9/8/98

- > TITLE 'EPSY 690W repeated measures/1'.
- > commENT ******************************************** ***** **,

- > COMMENT ROBERT D. WELLS
- > COMMENT 9/8/1997.
- > commENT ************************ ***** **********************,

- > SET BLANKS=SYSMIS UNDEFINED=WARN printback=listing.
-> subtitle 'One-way Repeated ANOVA & Multivariate ###########'.
-> DATA LIST
- > File='a:repeated.DAT' FIXED RECORDS=4 TABLE
- > /1 id 1 dvl 9-10
-> /2 dv2 9-10
- > /3 dv3 9-10
- > /4 dv4 9-10 .
- > list variables=all/cases=99/format=numbered .

ID DVI DV2 DV3 DV4
1 1 0 18 20 22
2 2 3 15 24 26
3 3 7 25 38 40
4 4 3 36 40 45

Number of cases read: 4 Number of cases listed: 4

- > manova dvl to dv4/
- > wafactors=time(4)/
- > contrast(time)=polynomial/
- > rename=cons, linear, quad, cubic/
- > print=transform param(estim) signif(averf hf gg)/
-> wsdesign=time .

The default error term in MANOVA has been changed from WITHIN ("ELLS to
WITHIN+RESIDUAL. Note that these are the same for all full factorial
designs.

* * * * * *Analysis of Variance* * * * * *

4 cases accepted.
O cases rejected because of out-of-range factor values.
O cases rejected because of missing data.
1 non-empty cell.

1 design will be processed.
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* * * * * *Analysis of Variance-- design 1* * * * * *

Orthonormalized Transformation Matrix (Transposed)

CONS LINEAR QUAD CUBIC

DV1 .500 -.671 .500 -.224
DV2 .500 -.224 -.500 .671

DV3 .500 .224 -.500 -.671
DV4 .500 .671 .500 .224

* * * * * *Analysis of Variance-- design 1 * * * * * *

Order of Variables for Analysis

Variates Covariates

CONS

1 Dependent Variable
0 COvariates

Note.. TRANSFORMED variables are in the variates column.
These TRANSFORMED variables correspond to the
Between-subject effects.

* * * * * *Analysis of Variance-- design 1 * * * * * *

Tests of Between-Subjects Effects.

Tests of Significance for CONS using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL
CONSTANT

734.75 3 244.92
8190.25 1 8190.25 33.44 .010

Estimates for CONS
--- Individual univariate .9500 confidence intervals

CONSTANT

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 45.2500000 7.82491 5.78282 .01028 20.34765 70.15235

2 6
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* * * * * *Analysis of Variance-- design 1* * * * * *

Order of Variables for Analysis

Variates Covariates

LINEAR
QUAD
CUBIC

3 Dependent Variables
0 Covariates

Note.. TRANSFORMED variables are in the variates column.
These TRANSFORMED variables correspond to the
'TIME' WITHIN-SUBJECT effect.

* * * * * *Analysis of Variance-- design 1 * * * * * *

Tests involving 'TIME' Within-Subject Effect.

Mauchly sphericity test, W = .00687
Chi-square approx. = 8.57765 with 5 D. F.
Significance = .127

Greenhouse-Geisser Epsilon = .50054
Huyhh-Feldt Epsilon = .89129
Lower-bound Epsilon = .33333

AVERAGED Tests of Significance that follow multivariate tests are equivalent to
univariate or split-plot or mixed-model approach to repeated measures.
Epsilons may be used to adjust d.f. for the AVERAGED results.

* * * * * *Analysis of Variance-- design 1 * * * * * *

EFFECT .. TIME
Multivariate Tests of Significance (S = 1, M = 1/2, N = -1/2)

Test Name Value Exact F Hypoth. DF Error DF Sig. of F

Pillais .94556 5.78972 3.00 1.00 .294
Hotellings 17.36915 5.78972 3.00 1.00 .294
Wilks .05444 5.78972 3.00 1.00 .294
Rays .94556
Note.. F statistics are exact.
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* * * * * *Analysis of Variance-- design 1* * * * * *

Tests involving 'TIME' Within-SUbject Effect.

AVERAGED Tests of Significance for DV using UNIQUE sums of squares
Source of Variation SS DF MS F Sig of F

WITHIN+RESIDUAL 212.75 9 23.64
(Greenhouse-Geisser) 4.50
(Huynh-Feldt) 8.02
(Lower bound) 3.00

TIME 2204.25 3 734.75 31.08 .000

(Greenhouse-Geisser) 1.50 31.08 .003

(Huynh-Feldt) 2.67 31.08 .000

(Lower bound) 1.00 31.08 .011

Estimates for LINEAR
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--- Individual univariate .9500 confidence intewvals

TIME

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 21.6898594 3.23780 6.69895 .00679 11.38574 31.99398

Estimates for WAD
--- Individual univariate .9500 confidence intervals

TIME

Parameter COeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 -8.7500000 1.88746 -4.63586 .01891 -14.75674 -2.74326

Estimates for CUBIC
--- Individual univariate .9500 confidence intervals

TIME

Parameter Coeff. Std. Err. t-Value Sig. t Lower -95% CL- Upper

1 2.01246118 1.91920 1.04859 .37139 -4.09529 8.12022

- >

- >

- > SUBTITLE 'ANOVA THRU REGRESSION with ORTHO PCLY CONTRASTS
- > execute .
- > DATA LIST
- > File='a:repeated.DAT' FIXED RECORDS=1 TABLE
- > /1 id 1 time 3 sum 5-7 dv 9-10.
- > EXECUTE.
- > list variables=all/cases=99/format=numbered .



ID TIME SUM DV
1 1 1 60 0

2 1 2 60 18
3 1 3 60 20
4 1 4 60 22
5 2 1 68 3

6 2 2 68 15
7 2 3 68 24
8 2 4 68 26
9 3 1 110 7

10 3 2 110 25
11 3 3 110 38
12 3 4 110 40
13 4 1 124 3

14 4 2 124 36
15 4 3 124 40
16 4 4 124 45

Number of cases read: 16 Number of cases listed: 16

- > IF (TIME EQ 1) CV1=-3.
- > IF (TIME EQ 2) CV1=-1.
- > IF (TIME EQ 3) CV1=1.
- > IF (TIME EQ 4) CV1=3.
- > IF (TIME BQ 1) CV2=1.
- > IF (TIME EQ 2) CV2=-1.
- > IF (TIME EQ 3) CV2=-1.
- > IF (TIME EQ 4) CV2=1.
- > IF (TIME EQ 1) CV3=-1.
- > IF (TIME EQ 2) CV3=3.
- > IF (TIME EQ 3) CV3=-3.
- > IF (TIME EQ 4) CV3=1.
- > REGRESSION liARIABLES=DV CV1 TO CV3 sum/DESCRIPTIVES=ALL/
- > CRITERIA=PIN(.95)POUT(.999)TOLERANCE(.00001)/DEPENDENT=DV/
- > ENTER CV3/ENTER CV2/ENTER CV1/ENTER sum/.

* * * * MULTIPLE REGRESSION

Listwise Deletion of Missing Data

Mean Std Dev Variance Label

DV 22.625 14.495 210.117
CV1 .000 2.309 5.333
CV2 .000 1.033 1.067

CV3 .000 2.309 5.333
SUM 90.500 27.995 783.733

N of Cases = 16
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Correlation, Covariance, 1-tailed Sig, Cross-ProdUct:

DV

CV1

CV2

DV CV1 CV2 CV3 SUM

1.000 .773 -.312 .072 .483

210.117 25.867 -4.667 2.400 195.933
.000 .120 .396 .029

3151.750 388.000 -70.000 36.000 2939.000

.773 1.000 .000 .000 .000

25.867 5.333 .000 .000 .000

. 000 .500 .500 .500

388.000 80.000 .000 .000 .000

-.312 .000 1.000 .000 .000

-4.667 .000 1.067 .000 .000

.120 .500 . .500 .500

-70.000 .000 16.000 .000 .000

CV3 .072 .000 .000 1.000 .000

2.400 .000 .000 5.333 .000

. 396 .500 .500 .500

36.000 .000 .000 80.000 .000

SUM . 483 .000 .000 .000 1.000
195.933 .000 .000 .000 783.733

.029 .500 .500 .500

2939.000 .000 .000 .000 11756.000

* * * * MULTIPLE REGRESSION * * * *

Equation NUmber 1 Dependent Variable.. DV

Descriptive Statistics are printed on Page 34

Block Number 1. Method: Enter CV3

Variable(s) Entered on Step Number 1.. CV3

Multiple R .07169
R Square .00514
Mean Square
Adjusted R Square -.06592
16.20000
Standard Error 14.96556
223.96786

Analysis of Variance

Regression

Residual

29

DF Sum of Squares

1 16.20000

14 3135.55000

F = .07233 Signif F = .7919

Variables in the Equation

Variable B SE B Beta T Sig T

CV3 .450000 1.673200 .071694 .269 .7919

(Constant) 22.625000 3.741389 6.047 .0000
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Variables not in the Equation

Variable Beta In Partial Min Toler T Sig T

CV1 .772700 .774693 1.000000 4.417 .0007
CV2 -.311718 -.312522 1.000000 -1.186 .2568
SUM .482830 .484075 1.000000 1.995 .0675

End Block Number 1 A11 requested variables entered.

* * * * MULTIPLE REGRESSION * * * *

Equation NUmber 1 Dependent Variable.. DV

Block Number 2. Method: Enter CV2

Variable(s) Entered on Step Number 2.. CV2

Multiple R .31986
R Square .10231
Mean Square
Adjusted R Square -.03580
161.22500
Standard Error 14.75257
217.63846

Analysis of Variance

Regression

Residual

F =

Variables in the Equation

30

DF Sum of Squares

2 322.45000

13 2829.30000

.74079 Signif F = .4958

Variable B SE B Beta T Sig T

CV2 -4.375000 3.688144 -.311718 -1.186 .2568

CV3 .450000 1.649388 .071694 .273 .7893

(Constant) 22.625000 3.688144 6.135 .0000

Variables not in the Equation

Variable Beta In Partial Min Toler T Sig T

CV1 .772700 .815544 1.000000 4.882 .0004
SUM .482830 .509601 1.000000 2.052 .0627

End Block Number 2 All requested variables entered.
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MULTIPLE REGRESSION
Equation Number 1 Dependent Variable.. DV

Block Number 3. Method: Enter CV1

Variable(s) Entered on Step NUmber 3.. CV1

Multiple R .83629
R Square .69937
Mean Square
Adjusted R Square .62422
734.75000
Standard Error 8.88585
78.95833

Variable

Analysis of Variance

Regression

Residual

F =

Variables in the Equation

SE B Beta

31

DF Sum of Squares

3 2204.25000

12 947.50000

9.30554 Signif F = .0019

T Sig T

CV1 4.850000 .993468 .772700 4.882 .0004
CV2 -4.375000 2.221463 -.311718 -1.969 .0724
CV3 .450000 .993468 .071694 .453 .6587

(Constant) 22.625000 2.221463 10.185 .0000

Variables not in the Equation

Variable Beta In Partial Min Toler T Sig T

SUM .482830 .880603 1.000000 6.164 .0001

End Block Number 3 All requested variables entered.

MULTIPLE REGRESSION
Equation Number 1 Dependent Variable.. DV

Block Number 4. Method: Enter SUM

Variable(s) Entered on Step NUmber 4.. SUM

Multiple R .96566
R Square .93250
Mean Square
Adjusted R Square .90795
734.75000
Standard Error 4.39783
19.34091

Analysis of Variance

Regression

Residual

F =

32

DF Sum of Squares

4 2939.00000

11 212.75000

37.98942 Signif F = .0000
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Variables in the Equation

Variable B SE B Beta T Sig T

CV1 4.850000 .491692 .772700 9.864 .0000

CV2 -4.375000 1.099458 -.311718 -3.979 .0022

CV3 .450000 .491692 .071694 .915 .3797

SUM .250000 .040561 .482830 6.164 .0001

(Constant) .000000 3.831888 .000 1.0000

End Block Number 4 All requested variables entered.
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