
DOCUMENT RESUME

ED 424 729 FL 025 224

AUTHOR Schmitt, Lothar M.; Christianson, Kiel T.
TITLE Combining the Bourne-Shell, sed and awk in the UNIX

Environment for Language Analysis.
PUB DATE 1998-09-21
NOTE 72p.

PUB TYPE Guides Non-Classroom (055)
EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS *Discourse Analysis; Etymology; Grammar; Indexes; *Language

Patterns; *Online Searching; Phonemics; Phonetic
Transcription; Phonetics; *Programming; Search Strategies;
Second Language Learning; Translation

IDENTIFIERS *UNIX Operating System

ABSTRACT
This document describes how to construct tools for language

analysis in research and teaching using the Bourne-shell, sed, and awk, three
search tools, in the UNIX operating system. Applications include: searches
for words, phrases, grammatical patterns, and phonemic patterns in text;
statistical analysis of text in regard to such searches, transformation of
phonetic, phonemic, or typographic transcriptions; comparison of texts in
various respects; lexical-etymological analysis; concordance; assistance in
translating text; assistance in learning languages; assistance in teaching
languages; and text processing and formatting. The latter includes generation
of on-line dictionaries for the Internet from files that were generated with
what-you-see-is-what-you-get editors representing only the linear structure
of the dictionary. All of the above can be achieved with particularly simple
and short code. In that regard, it is shown how sed and awk can be combined
in the pipe mechanism of UNIX to create very powerful processing devices.
Notes include a short introduction to programming the Bourne-shell and brief
but complete descriptions of sed and awk customized for language analysis.
Contains 51 references. (Author/MSE)

**

Reproductions supplied by EDRS are the best that can be made
from the original document.

**

Combining the Bourne-shell, sed and awk in the UNIX
environment for language analysis

LOTHAR M. SCHMITT1 AND KIEL T. CHRISTIANSON2

111-11e University of Aizu, School of Computer Science and Engineering,
Aizu-Wakamatsu City, Fukushima Prefecture, 965-80, Japan. E-mail: lothar@u-aizu.ac. jp
21\lichigan State University, Dept. of Linguistics and Germanic, Slavic, Asian and African Languages,

Lan Shig, Michigan 48824, USA. E-mail: chris118@pi1ot.msu.edu" Both authors are equally main contributors tci this publication. The authors are listed in non-alphabetical
order due to evaluation procedures within The University of Aizu which do not recognize a main contributor
properly unless listed As first author.

Abstract

We show how to construct tools for language analysis in research and teaching using the Bourne-shell, sed

and awk under UNIX. Applications include the following: searches for words, phrases, grammatical patterns

and phonemic patterns in text; statistical evaluation of texts in regard to such searches; transformation of

phonetic, phonemic or typographic transcriptions; comparison of texts in various respects; lexical-etymological

analysis; concordance; assistance in translating text; assistance in learning languages; assistance in teaching

1languages; and text processing and formatting. The latter includes the generation of on-line dictionaries for

the internet from files that were generated with what-you-see-is-what-you-get editors representing only the

linear structure of the dictionary (i.e., the book). All of the above can be achieved with particularly simple

and short code. In that regard, we illustrate how sed and awk can be combined in the pipe mechanism of

UNIX to create very powerful processing devices. Our notes include a short introduction to programming the

Bourne-shell and rather short, but complete descriptions of sed and awk customized in regard to language

analysis.

(-1$

1.7)

r6
Minor changes have been made to
improve reproduction quality.

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CEt hNTaEs beR(EeRn I iCe)

LeThis docum roduced as
received from the person or organization
originating it.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy. 1

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

OLA

-Ork

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

BEST COPY AVAIL LE

Combining the Bourne-shell, sed and awk in the UNIX
environment for language analysis

LOTHAR M. SCHMITT AND KIEL T. CHRISTIANSON

1 Introduction

This paper presents an outline of the rich variety of applications to language analysis that
opens up through the combined use of two simple yet powerful programming languages with
particularly short descriptions: sed and awk.

sed and awk are standard tools under UNIX. Some introductions to their use can be found
:in rather complete introductions to UNIX, e.g., [Kernighan & Pike 1984]. This may create
the false impression that a broad understanding of UNIX is necessary in order to use sed and
awk effectively for language analysis and other purposes. Some introductions are devoted to
just one of the two, e.g., [Aho et al. 1978]. This does not explore the possibilities that open
up through the combined use of sed and awk in the pipe mechanism of UNIX. However,
[Aho et al. 1978] is a very good, compact reference. Some other introductions are rather
long, e.g., [Dougherty 1990]. This may create the false impression that it takes much time
and effort to learn sed and awk.

In order to use sed and awk effectively for language analysis, only a small amount of UNIX
is needed. In the first part of these notes, we give a very short, complete and convenient
introduction to the use of sed and awk for language research and related applications. We
have listed only the minimal number of facts needed to write programs for the Bourne-
shell sh such that sed and awk can be combined in the pipe mechanism of UNIX to create
very powerful processing devices. The examples given are procedures which are particularly
useful for language processing. They are listed ready to use. Introducing sed and awk at the
same time makes it possible to present pattern matching, their main common feature, quite
!effectively. It is only assumed that the reader is familiar with a text editor on a workstation
such as emacs, mule, or vi. emacs and mule are easy to use through their pull down menus,
which are self-explanatory and the built-in tutorial.

Essentially, sed and awk operate on lines of input. A line of input coming from a text file
or the UNIX pipe mechanism is manipulated and, usually, delivered further into the pipe
or to a final output file. It is a simple, convenient and powerful philosophy to let the flow
of data in the pipe be the storage facility for entities in text that have been recognized,
put on different lines and, possibly, marked by appropriately chosen keywords. To illustrate

3

this idea suppose that text in a file can be rearranged by one program in such a way that
every line of output contains exactly one sentence. Such a process of reformatting text
can easily be used in a pipe to achieve many objectives. These include counting words in
sentences (an additional one-line awk program counting the fields, i.e., strings of non-white
characters containing letters in a line) or searching for sentences that contain a specific word
(an additional one-line sed or awk program). Principle tasks for sed are substitution using
the tagged regular expression mechanism 'and pattern matching for the purpose of isolating
certain lines. Principle tasks for awk are pattern matching for the purpose of isolating certain
lines, pattern matching that needs numerical computation, accounting and rearranging fields
within a line. However, it is really the combination of sed and awk that makes many very
simple solutions for complicated tasks possible. For example, it is easy to remove punctuation
marks from text and to map to lower case using sed. On the other hand, counting is simple
in awk. Consequently, combining the two makes it easy to implement a word frequency
count. sed and awk programs should be rather short and well commented. Complicated
tasks should be solved though a combination of filters in a pipe each doing a simple job.

Included in our detailed description ofsed and awk is a collection of ideas and methods that
!should enable people to write short, customized applications for language analysis combining
the simplicity and the potential of the two programming languages. We shall show that by
combining basic components each containing a few lines of code one can generate a flexible
and powerful customized environment. In addition, more elaborate tools such as lex [Lesk

& Schmidt 1978] [Kernighan & Pike 1984] or yacc [Johnson 1978] [Kernighan & Pike 1984],
and programming languages such as C [Kernighan & Ritchie 1988] or prolog [Clocksin &
Mellish 1981] can be used together with the methods presented here. In particular, note
that, e.g., mathematica [Wolfram 1991] can be used to generate graphics from numerical
Idata produced with awk.

The later sections of these notes describe methods of application. Some of these application
have been used in [Schmitt & Christianson 1998] which is a system designed to support the
teaching of English as a second language by computer means. In particular, we have used sed

and awk for analysis of short essays that were submitted as homework by Japanese students
of English composition via e-mail. Implementations that will be deS'cribed in these notes are
a punctuation checker and a program that reformats text in such a Way that whole sentences
are on single lines. A punctuation checker is obviously well-suited for automated evaluation,
F correction and return. The second program is, as already indicated above, well-suited for
all sorts of subsequent selection schemes which, usually, can be implemented with simple
additional means. It can be used to select phrases and sentences that were submitted by
students and contain critical or interesting grammatical patterns for presentation in class.
Another example of application is the analysis of grammatical patterns in students' writings
and their statistical evaluation. We use sed in [Schmitt & Christianson 1998] to implement
various selection and tagging schemes. awk is used in [Schmitt & Christianson 1998] to

2

4

implement set and vector operations (which can be used, e.g., to measure the increase of
vocabulary used by students) and elementary statistical operations. It was important during
the project [Schmitt & Christianson 1998] to have very flexible tools such as sed and awk

available through which a collection of experimental programs could be implemented fast
and altered easily. Components that have proven to be useful are later rewritten in C in
order to shorten execution time.

In addition to the applications just described, we show how to set up a vocabulary training
environment, how to develop tools for statistical evaluation of text, be it in regard to concor-

, dance (cf. [Kennedy 1991] and [Renouf & Sinclair 1991]), in regard to lexical-etymological
analysis (cf. [Gordon 1996]), or in regard to judging the readability of text (cf. [Hoey 1991]).
In [Kennedy 1991], an analysis of collocations occurring with "between" and "through" was
conducted with "The Oxford Concordance Program OCP2" [Hockey & Martin 1988]. We
shall explicitly show how a search for such collocations can be implemented using sed and
awk with a few lines of easy-to-understand and easy-to-costumize code. In [Renouf & Sin-
clair 1991], a corpus search for the strings a. .. of, an...of, be...to, too...to, for...of,

had...of and many...of was conducted. Such a search including the sorting of the results
into separate files can also be implemented with a few lines of code. We shall describe how to
implement a lexical-etymological analysis on a machine as done in [Gordon 1996] by hand.
And, we shall describe how our procedure which counts word frequencies can be used to
roughly judge the readability of text (cf. [Hoey 1991]). Finally, we shall indicate how sed

and awk can be used to implement special parsers that transform a linear source file for a
dictionary (here: [Nelson 1962]) into a multi-dimensional database for the internet. In addi-
tion, our exposition contains many comments in regard to other application using particular
features of sed and awk such as identifying Japanese kanji characters in bilingual text or
' assisting translation.

As outlined above, we present a particularly short and customized introduction to the
use of sed and awk under UNIX in language research including a large variety of applica-
tions. Such an approach is rarely found in the literature even though the two programming
languages are classical tools and have been documented in detail for other audiences (cf.
[Kernighan & Pike 1984], [Dougherty 1990], [Herold 1994]). Scattered reference to sed and
awk can be found in descriptions of literary computing, e.g., [Goldfield 1986], who uses the
tools for literary computing in French. However, we are not aware of any presentation of
sed and awk geared toward linguistic analysis that is as short, detailed and complete as the
following. We shall demonstrate that sed and awk provide easy-to-understand means to use
programming in linguistic research. An alternative such as prolog forces a programming
style which some may find counter-intuitive. In addition, prolog needs a "clean" formatted
source, i.e., a prolog database. Another alternative, using lex and yacc requires formu-
lating actions with C routines. Thus, a detailed understanding of the latter machine-close
programming language and compiling are necessary. However, prolog and yacc are clearly

3

5

better suited for elaborate grammatical analysis than sed and awk. A genuine alternative
to the approach presented in this paper is using perl [Wall & Schwarz 1990].

Some people criticize that there is some overlap in the capabilities of sed and awk while
on the other hand there are discrepancies in the notation for both. For example, there is no
repitor + for regular expressions in sed. Observe that sed and awk were invented at different
times by different people with different objectives and personal tastes. In fact, sed is older
than awk. One should accept both tools as being simple, easy to learn, and extremely useful,
and one should recognize the amount of work that went into creating both rather than critize
small discrepancies.

Finally, note that the tools sh, sed and awk which we have used here as well as the
pipe mechanism are also available for other operating systems. Consequently, the methods
presented here can easily be ported to platforms where these means are available.

2 A word frequency count

Let us show that "combining sed and awk makes it easy to implement a word frequency
count." Essentially, this is done by the following complete program for the Bourne shell:

sed 'y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/

s/ [-A-Za-z] [A-Za-z]*/\

/g' fName I awk n [$0] ++ 1

END { for (word in n) { print word , n [word] } 1'

'The sed command y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/

maps upper case letters to lower case. The sed command s/ [-A-Za-z] [-A-Za-z]*/\

/g substitutes every string of non-letters by a newline character. Consequently, it puts all
strings of letters on separate lines. This procedure is applied to the file fName. The output of
the sed program containing single words on lines is then fed as input into the awk program
using the pipe symbol I . The awk statement { n [$0] ++ } increments a counter variable
n [word] by 1, if word=$0 is found on the line. Every occurring n [word] is automatically
initiated to 0. The awk statement in the last line prints the list of type/token ratios for
'the words which were encountered. All the above will be explained below in greater detail
including some improvements such as sorting the result and handling of words that contain
a hyphen.

4

3 Programming the Bourne-shell

The next section contains a minimal collection of facts needed to use the Bourne-shell sh
on a UNIX workstation. Readers familiar with sh may wish to skip it.

3.1 The manual pages

The most useful command in UNIX is the manual pages command man. If you are sitting
; in front of a UNIX terminal, type man csh+-, (where represents a carriage return). This
will copy a detailed description of the c-shell csh to the terminal. You are most likely using
csh right now in your terminal. Hitting the space-bar on the keyboard advances through the
description. Typing Control-c (interrupt, here: interrupt execution of the man command)
terminates man csh before the end of the description is reached. You do not need to work
through this description in order to understand the remainder of this paper. csh is very well
suited for interacting with the UNIX environment via the terminal. In what follows, we shall
usually not mention typing carriage returns. Consult man man for further details about man.

(Note: The manual pages are divided into several volumes. Usually, man accesses volume 1.
For example, man 3 printf accesses the content about printf in volume 3.)

3.2 Creating a UNIX command using the Bourne-shell

One can activate the Bourne-shell sh by typing in a terminal which uses csh. sh

works with the same UNIX as csh but there are some minor notational differences for the
use of UNIX within this shell. sh presents itself with a $ as prompt. It is very important to
'note that in this state one can test programs for sh interactively line-by-line in the terminal.
Typing Control-d (end-of-file, here: "end of the list of commands" that come from the
terminal) in sh causes sh to terminate. For sh, a list of UNIX commands that it reads from
a file or from a terminal window are indistinguishable. In the remainder of this section, we
shall discuss how to set up programs for sh. Essentially, a sh program is a file containing one
sh command per line as well as multi-line commands. These commands are worked through
by sh from top to bottom in the file. Several (single-line) commands can also be separated
by semicolons ; and listed on one line. In that case, they are executed from left to right in
'the line.

Example: Copy the following four lines into a file aizu with your favorite text editor:

#!/bin/sh

Comment: Aizu Telephone Numbers

echo 'aizu phone +81-242-37-2500'

echo 'aizu fax +81-242-37-2528'

5

7

Save this file as yourLoginName/aizu directly in your home directory and not a subdirectory.
After having done that, type cd ; chmod 700 aizu in your currently used shell. cd sets
your working directory to your home directory. chmod 700 aizu makes aizu executable for
you in addition of being readable and writable. Consult man cd and man chmod for further
details about cd and chmod. aizu is now a UNIX command just like the built-in ones.

V Note that the few simple steps just described are all you need to know in order to make
an executable file of sh commands!

Next, type aizu in your shell to see what the program does. The first line # ! /bin/sh of
aizu tells whatever shell you are using that the command lines are designed for sh which
executes the file. Thus, you do not need to switch to sh in order to execute a command file
for sh. The second line is comment. Comment for sh, sed and awk starts by definition with
a # as first character in a line. Note, that comment usually does not work within, e.g., a
multi-line sed command. The echo command does what its name says: it prints the strings
of characters that follow on the same line (until the end of the line or a semicolon) plus an
appended newline character. Actually, an on-line notebook as aizu at the workplace is quite
convenient. Compare the discussion of cat given below.

3.3 Strings

Strings are framed by single quotes ' and are separated by white space consisting of blanks
or tabs. Strings can be concatenated: echo 'a$">0' produces a$>0. Usually, the framing
pair of single quotes ' can be omitted, if the string consists of letters and digits only. If the
single quote ' is supposed to be included as character in a string, then it has to be represented
as V outside of other framing single quotes. To see that this works, try: echo " 'ECu\

3.4 Pipes

Previously defined UNIX commands can be used in the design of new commands. The
following example shows how to connect the output of aizu with another command (grep)

in the pipe mechanism of UNIX:
! /bin/sh

;

aizu I grep fax

Save these two lines as aizuf ax in your home directory, make the file executable (using cd;

chmod 700 aizufax), and see what it does! grep is a simple filter that isolates the lines in
its input that contain the given pattern (here: fax). The important point in the above sh
program is the single vertical slash I . I tells sh to use the output of aizu as input for grep.
The combination of aizu with grep fax in this way is called a pipe which is seen by sh

as a single UNIX command. One can connect any number of commands through I in a pipe.
The hyphen used above stands for the (virtual) input file of grep in the pipe. In UNIX

6

8

terminology, it is called stdin (standard input). In many cases, it can be omitted. If you are
in doubt, then just include it. Usually, sh interprets reasonable expressions in a reasonable
way.

For better readability of programs, one may wish to spread pipes over several lines. The
following example does exactly the same as aizufax:

V/bin/sh

aizu I\
;grep x

The backslash' character \ with nothing (not even a blank or tab) following tells sh that
the command is continued in the next line. The pattern x is sufficient to identify the second
line of output of aizu, and the hyphen denoting stdin is omitted.

One application of pipes is to use sed and awk in preprocessing a text file which is then
piped into a text formatting program such as the UNIX built-in nroff [Ossanna & Kernighan
1978] or latex [Lamport 1986]. nroff is particularly simple to use and sufficient for many
purposes.

3.5 Arguments to a command

The following example shows how to use three arguments $1, $2 and $3 for a command:
#! /bin/sh

echo $3 $1 $2

Save the above as cab and make it executable (using chmod 700 cab). Invoke this command
with
cab Apes Bees Cacadus Dinos and with
cab 'Apes Bees Cacadus' Dinos.

In cab Apes Bees Cacadus Dinos, the first argument $1 is the string Apes, the second
argument $2 is the string Bees, and the third argument $3 is the string Cacadus. echo

echoes accordingly. In cab 'Apes Bees Cacadus' Dinos, the first argument $1 is the
string Apes Bees Cacadus, the second argument $2 is the string Dinos, and there is no
third argument $3.

Usually, a UNIX command does something with a file. In that case, the name of the
file is one of the arguments that is passed on. Up to nine arguments $1...$9 can be used.
Arguments to a UNIX command are strings separated by white space consisting of blanks
or tabs.

'Actually, the backslash "escapes" the immediately following newline character, i.e., the latter is under-
stood by sh as a character and not as a command-line terminator. For sh, the function of the (literal)
newline character is that of the blank if it is not embedded in a string.

7

9

3.6 Diverting output to a file

Usually, the output of a UNIX command is channeled into a file and not to the terminal.
The following example shows how this is achieved. Type the following four command lines
in a shell (without saving them to a file):

sh

echo 'aizu http://www.u-aizu.ac. jp/' >www

,echo 'yahoo http://www.yahoo.com/' >>www

cat www

>www diverts the output of echo to the file www which is created (or possibly overwritten).
>>www appends the output of echo to the file www. If a file who's name is given does not
exist, then >> creates that file too. cat www copies the file www to the terminal. Moreover,
cat filel file2 ... concatenates given files. The result can, e.g., be delivered into a
UNIX pipe. Consult man cat for more details.
(Note: The UNIX command echo >fname creates an empty file named fname.)

3.7 Never divert output to your source file!

More information about programming sh and the UNIX commands mentioned above can
be obtained using the man command as well as consulting [Kernighan & Pike 1984].

4 sed

4.1 Global substitution

sed is the ideal tool to make replacements in texts. A sed program operates on a file
line-by-line. If nothing is done with a line, then it is simply copied. The following example
shows a sh program that replaces the patterns george and NEWLINE in all instances in a file
$1 by bill and a newline character, respectively:

#!/bin/sh

sed 's/george/bill/g

s/NEWLINEA

/g' $1

The two single quotes ' tell sh where the string that constitutes the sed program starts and
ends. These are delimiters for sh and are not communicated to sed.

The sed command s/george/bill/g consists of four parts:
1) s is the sed command used and stands for "substitute."

8

1 0

2) george is the pattern that is to be substituted.
3) bill is the replacement for the pattern.
4) The g means "global." Without the g only the first occurrence of the pattern would be
replaced in a line.

The second substitution command shows the important technique of how to place newline
characters at specific places. There is nothing following the backslash \ which is part of the
sed program.

The argument $1 is supposed to be the name of the text file the sed program is applied
to.

In order to use the above sh program, save it as pce and make it executable. Then, do
the following in a shell:

echo george noNEWLINE georges >9294 ; pce 9294

Application: With a one-line sed substitution as above, all occurrences of something that
should be maintained only at one place (e.g, OUR_ADDRESS) can automatically be (re)placed
in the source file of a document which is preprocessed with sed.

Application: With a sed program similar to the above, one can reformat text which uses
a non-standard phonetic, phonemic, or typographic transcription. In such a program, one is
not limited to global substitution commands: exceptional cases can also be incorporated into
the program using appropriately chosen pattern matching or addresses (see below). Such a
reformatted text can then be compared to other sources in regard to use of words, phrases
and morpho-phonemic structure. At least in part, this can be also done by machine using
sed and awk. The latter sort of analysis will be outlined 15elow in more detail. With a sed

,program similar to the above, it is also possible to convert phonetic transcription alphabets,
'e.g., 'IPA' to 'SM.'

4.2 Some additional comments

sed commands are terminated by either an immediately following newline character or a
semicolon or the end of the program. If a sed command is terminated by a semicolon, then
the next sed command can follow on the same line. There is one exception to this: the w
command (write) which is explained below. After a w command and some separating white
space, everything that follows on the same line is understood as the filename to which the
command is supposed to write.

One can also store the sed commands listed above without the two single quotes but with
the backslash in a file (say) sedCommands and use sed -f sedCommands instead of or in the
above sh program. Observe that if a sed program is used with a separate file of commands
in a UNIX pipe, then this makes reading an additional file necessary. This may slow down
the overall process.

9

11

One may want to process the single quote ' in sed programs. The following sh program
shows how to replace all single quotes ' in a file $1 by the string QQ. ' \ " can always be
used to include the single quote in a program.
! /bin/sh

sed 's/'\"/QQ/g' $1

The program uses two strings ' s/ ' and '/QQ/g' and concatenates those with \ ' in which
the single quote is delivered to sh as itself using the escape character backslash \ . The
,combined string sP/QQ/g is then communicated by sh to sed. sP/QQ/g is what one would
put in a separate file of sed commands. The representation of the slash / and backslash
characters in sed programs is explained below.

The replacement in a substitution can be empty. This can, e.g., be used to "clean" a tex

file from control sequences.

4.3 The pattern space and the hold space

sed keeps track of two "buffers." The first one is the pattern space. Roughly speaking,
it can be seen as the current, possibly already altered line. More precisely, every line of
input is put into the pattern space and is worked on therein by every command line of the
entire sed program from top to bottom. This is called a cycle. After the cycle is over, the
resulting pattern space is printed. Lines that were never worked on are consequently copied
by sed. Each sed command that is applied to the content of the pattern space may alter
it. In that case, the previous version of the content of the pattern space is lost. Subsequent
sed commands are always applied to the current content of the pattern space and not the
original input line. Using sed with the option "-n" (i.e., using sed -n) switches the final
printing off. There is a separate print command p for printing the pattern space.

The second buffer used by sed is the hold space. The pattern space can be stored in the
hold space for, e.g., printing which depends upon further processing or repeated analysis.
The hold space is not erased if a new cycle is begun. The content of the pattern space can be
overwritten by the content of the hold space. In addition, appending one of the two buffers
to the other is possible.

If pc e is applied to a file, then, first, all strings george in a line are replaced by strings
chill. Second, while the possibly altered line is still in the pattern space, all strings NEWLINE
are replaced by newline characters. These two actions comprise the cycle per line.

4.4 Format of sed commands

The format of a sed command is:
AddressCommand

10

12

Address can be omitted. In that case, Command is then applied to every pattern space. If
an Address is given, then Command is applied to the pattern space only in the case the latter
matches Address.

Example: The following program replaces TX with Texas in all lines that contain the string
USA.

#!/bin/sh

sed '/USA/s/TX/Texas/g' $1

4.5 Patterns (regular expressions)

Patterns which are also called regular expressions can be used in sed for two purposes:
1) As addresses, in order to select the pattern space for processing by sed commands.
2) As patterns in substitution commands that are actually replaced.

Patterns are matched by sed as the longest, non-overlapping strings possible. The pat-
terns that can be used consist of the following elements in between slashes /:

:1) Any non-special character matches itself.
Examples: /thing/ resp. /aZ9/ match the string thing resp. aZ9. /thing/ as an address
would cause the pattern space to be selected, if the latter contained, e.g., anything. If
/thing/ were the pattern in a substitution command, then it would cause a substitution
within, e.g., nothing.
2) Special characters that otherwise have a particular function in sed have to be preceeded
by a backslash \ in order to be understood literallY. As already illustrated above, some of
the sed commands allow the placement of newline characters in the pattern space. Such
newline characters can be matched with \n. However, \n does not match the beginning or
end of the pattern space.
All special characters: \\ \$ \. \[\] * \gc \n

(Note: In the replacement in a substitution command, only \ , / and & have to be preceeded
by a backslash in order to be understood literally, and \n evaluates to n.)

Example: sed 's/CANWUS$/g' changes CAN$ to US$.

3) resp. $ match the beginning resp. the end of the pattern space. and $ should be seen
as markers of length 0 rather than as characters of length 1. They must not be repeated in
the replacement in a substitution command.
Examples: sed 's/-Chicken/Hawks/' replaces Chicken at the beginning of lines with
Hawks.

sed 's/$/0/' appends a zero to the right of every line in a file. /-$/ matches the empty
pattern space.
4) . matches any single character.
Example: sed 's/..//' removes the first two characters in every line of a file containing
more than one character. / . / as an address selects the non-empty pattern space.

11

13

5) [what] matches any character in what where what is a string of characters. The following
five rules must be observed:
R1: The backslash \ is not needed and used to indicate special characters in what. The
backslash only represents itself.
R2: The closing bracket] must be the first character in what in order to be recognized as
itself.
R3: Ranges of the type a-z, A-Z, 0-9 in what are permitted.
R4: The hyphen must be at the beginning or the end of what in order to be recognized as
itself.
R5: The carat must not be the first character in what in order to be recognized as itself.
Examples: / [Tt] urkey/ matches Turkey and turkey. / -K-M-]/ as an address selects
every pattern space which contains] , K, L, M or -.

6) [-what] matches any character not in what. The rules R1-R4 set under 5) also apply
here.
Example: / \ 2-5-] / as an address selects every pattern space which contains something
different from] , , \ , 2, 3, 4, 5 and -.
7) pattern* stands for 0 or any number of copies of pattern where pattern is a specific char-
acter, the period . (meaning any character) or a range [...] as described under 5) or 6).
Examples: / [a-zA-Z] [a-zA-Z] */ matches non-empty strings of letters having maximal pos-
sible length.
/ . .*[A-Z] / matches the longest string possible that contains at least two characters and
ends with a capital letter. Thus, as an address it matches every pattern space which contains
a capital letter not as first character as does / . [A-Z]/.

As indicated in the last two examples, patterns are matched by sed as the longest, non-
,

overlapping strings possible. If one wants to process overlapping pattern, then one can use
the t command described below.

In the next sections, we shall explore the possibilities in using patterns in substitution
commands. This is in our experience the most frequent use of patterns. Patterns as addresses
and other types of addresses will be discussed afterwards.

4.6 Some simple preprocessing devices

The next simple examples show how text can be preprocessed with small, customized sed

programs such that the output can conveniently be used for further processing in a pipe.
Alternatively, the code given below may be included in larger sed programs when needed.
However, dividing processes into small entities as given in the examples below is a very useful
technique to isolate reusable components and to avoid programming mistakes resulting from
over-complexity of single programs.

Example: The following sh program adjusts blanks and tabs in a file $1 in such a way
that it is better suited for certain searches. In what follows, we shall refer to this program

12

14

as addBlanks. All ranges in the sed program contain a blank and a tab.
! /bin/sh

sed 's/[] []*/ /g; []*/ /; s/ []*$/ /; []*$// ' $1

First, all strings consisting only of blanks and tabs are replaced by two blanks. Then, a single
blank is placed at the beginning and the end of the pattern space. Finally, any resulting
white pattern space is cleared from blanks and tabs in the last substitution command.
Application: Suppose that one wants to search in a file for use of the word "liberal." In order
to identify the strings Liberal and liberal in raw text properly, one needs the following
four patterns:
/ [-A-Za-z] [Ll] iberal [-A-Za-z] / /- [Ll] iberal [-A-Za-z] /

/ [-A-Za-z] [Ll] iberal$/ /- [Ll] iberal$/

The string liberal liberal which legally may occur in text shows that the first pattern
must even be repeated, if, e.g., one would want to eliminate liberal from the file using sed.

To identify the first liberal, sed needs the blank in the string which is then not available to
identify the second. Recall that sed matches non-overlapping patterns. Instead of repeating
the first pattern, one could loop over it once. (Looping with sed will be explained below.) If
one preprocesses the source file with addBlanks, only the first pattern is needed once. Thus,
a sed based search program for Liberal and liberal is shortened and faster.

Example: The following program is a variation of addBlanks. It can be used to isolate
words in text in a somewhat crude fashion. In fact, abbreviations and words that contain a
hyphen or an apostrophe are not properly identified. The white ranges in the sed program
contain a blank and a tab each.

! /bin/sh

sed 's/ [-A-Za-z] [-A-Za-z]*/ /g;

s/[]*$/ /;

sr []*/ /
sr []*$// ' $1

First, all strings consisting only of non-letters are replaced by two blanks. Then, a single
blank is placed at the beginning and the end of a line. Finally, any resulting white pattern
space is cleared from blanks and tabs in the last substitution command.

Example: The following sh program which removes obsolete blanks and tabs in a file $1
is somewhat the inverse of addBlanks. In what follows, we shall refer to this program as
adjustBlankTabs. Every range contains a blank and a tab.

#!/bin/sh

sed 'sr []*//; s/ []*$//; s/ [] []*/ /g' $1

All leading and trailing white space (blanks and tabs) is removed by the first two substitution
commands of the sed program. All white strings are replaced by a single blank in the last
substitution command.
Application: adjustBlankTabs standardizes and minimizes phrases (as strings) which may

13

15

automatically be obtained from e-mail messages with inconsistent typing style or text files
that have been justified left and right. This is useful if one wants to analyze sentences and,
e.g., derive statistics over phrases which are processed as unique strings of characters.

4.7 Using what was matched

The character & can be used in the replacement in a substitution command to reproduce
the string that was matched in the pattern in the substitution command. & can be used
repeatedly in order to reproduce the string that was matched.

Example: The following program folds all lines in a text (inserts newline characters) after
the first string of blank or tabs following every string of at least 10 characters. All ranges
contain a blank and a tab.
! /bin/sh

sed 's/]*[] []*/&\

/g' $1

[] * in the pattern represents a string of at least 10 characters which is non-
,

white after the 10th character. [] [] * in the pattern represents a subsequent string of
blank or tabs. A newline character is inserted in the pattern space after every sequence of
characters specified in the combined pattern.
Application: Some editors allow sending files via e-mail from within the editor. At the same
time, they automatically fold lines on the sender's' screen. This leads to particularly long
lines in e-mail messages which, e.g., cannot be printed or may contain "too many fields" for
awk. If one intends to process such e-mail messages automatically, then a customized version
:of the above program that folds after 120 characters can be used to counter this effect.

4.8 Tagged regular expressions

The tagged regular expression mechanism is the most powerful programming device in
sed. It can be used for extending, deviding and rearranging patterns and their parts. Up
to 9 chunks of the pattern in a substitution command can be framed (tagged) with \ (and
\). For example, tagging the integer part in the pattern / [0-9] [0-9]*\ . [0-9] */ which
Imatches numbers such as 90.9 or 4. yields A ([0-9] [0-9]*\) \ . [0-9] */. The recognized
strings can be reused in the pattern and the replacement in the substitution command as
\ 1, \ 2, \ 3 ... counting from left to right. More detail about the usage of tagged regular
expressions is given in the following examples:

Example: The following program shows a first application of the techniques introduced so
far. It marks all determiners in a text file $1. We shall refer to it as markDeterminers.

V/bin/sh

addBlanks $1 I\

14

16

sed 's/\ .\.\./_TRIPLE_PERIODJg

s/\([[{(< \) \ ([Aa] \) \ (01)> " ,?!_] \ \l_DETERMINER_ \2_\3/g

s/\([[{(< \) \ ([Aa] \) \ (\ . [-A-Za-z] \) / \ l_DETERMINER_\2_\3/g
\) \ ([Aa] n\) \ (HD> '",?!_.] \ \LDETERMINER_ \2_\31g

s/\([[{(<
BAUM<
s/\([[{(<
s/_TRIPLE_

"_]\)\([Tt]he\)\(01)> '",?!_.] \)/\1_DETERMINER_\2_\31g

`"_] \) \ ([Tt]hat\) \ (HD> ' ' ",?!_.] \ \l_DETERMINER_ \2_ \31g

`"_] \) \ ([Tt]his\) \ (OD> ' ' ",?!_.] \ \l_DETERMINER_\2_\31g

("_] \) \ ([Tt]h[eo]se\) \ (01)> ' \ ' ",?!_.] \1_DETERMINER_\2_\3/g

PERIOD_/ . ../g' I adjustBlankTabs

Explanation of the central sed program: The first substitution command replaces the triple
period as, e.g., in "Bill bought...a boat and a car." by the marker _TRIPLE_PERIOD_. This
distinguishes the period in front of "a" in the example given above from an abbreviation
such as "a.s.a.p." The character preceeding a determiner is encoded left in every pattern as
[[{(< "_] , tagged and reused as \1 in the replacement in the substitution command. The
determiner which is specified in the middle of every pattern is reused as \2. The non-letter
following a determiner is encoded right in the last five patterns (for "An" through "those")
as })> ' \ ' ' " ,?!_ .] , tagged and reused as \3. The string ' \ " represents a single '. For
the determiner "a" the period is excluded in the letters that follow it in })> ' \ ' ' " ,?!_] .

If a period follows "a," then a non-letter must follow. This is encoded in \ . [-A-Za-z] in
the fifth line of the program. Also the string encoded as \ . [-A-Za-z] is tagged and reused
as \ 3. After the tagging is completed, the triple period is restored. For example, the string
"A liberal?" is replaced by the program with "_DETERMINER_A_ liberal?".

A note on addBlanks: Instead of using addBlanks one may be tempted to work, e.g., with
; the following substitution command

s/\([[{(< "_]*\)\([Aa]n\)\([]})> '\"",?!_.]*\)/\1_DETERMINER_\2_\3/g

in order to deal with the cases when a determiner occurs at the beginning or end of a
line. However, this substitution command causes the string "Another?" to be replaced by
"_DETERMINER_An_other?", i.e., the "empty" non-character string matched by
\ (})> ' \ ' ' " ,?!_.]*\) is properly processed in accordance with the given substitution
command.
Application: A collection of tagging programs such as markDeterminers can be used for ele-
mentary grammatical analysis. If a file contains only whole sentences per line, then a pattern
/ _DETERMINER_ .*_DETERMINERJ finds all sentences that contain at least two determiners.
To include another example, note that the substitution s/_ [A-Za-z_] *_//g eliminates
everything tagged thus far.

Example: The following program shows how one can properly identify words in text. We
shall refer to it as leaveOnlyWords in the sequel. (This is the longest program listing in this
paper.)

15

17

#!/bin/sh

sed 's/ ['A-Za-z.' \ "-] VA-Za-z. ' \ " -] */ /g

s/\ ([A-Za-z] [A-Za-z]*\) \ . \ ([A-Za-z] [A-Za-z]*\) \ ./\1_\2_/g

s/\ ([A-Za-z] [A-Za-z]*_ [A-Za-z] [A-Za-z] *\) \ . / \1_/g

s/Am\ ./Amig; s/Ave \ . /Ave_/g; s/Bart \ . /Bart_/g;

(5) The list of substitution commands continues

s/vols\ ./vols_/g; s/vs \ ./vs_/g; s/wt \ . /wt_/g;

s/\ . / /g; s/_/ ./g

s/' \ "/ /g; s/_/' \ "/g

s/\ ([A-Za-z] \) \-\ ([A-Za-z] \)/ \1_ \ 2/g; s/ \-/ /g; s/_//g' $1

First, all strings which do not contain a letter, a period, an apostrophe or a hyphen are
replaced by a blank (line 1). At this moment, the pattern space does not contain any
underscore character which is subsequently used as marker. Next (lines 2-3), strings of the
type letters . letters . are replaced by letters_letters_. For example, v .p. is replaced by
v_i_p. Following that, strings of the type letters_letters . are replaced by letters_letters_.
For example, v_i_p. is then replaced by v_i_p_. Next (lines 4-6) comes a collection of
substitution commands that replaces the period in standard abbreviations with an underscore
character. Then (line 7), all period characters are replaced by blanks and subsequently all
underscore characters by periods. Next (line 8), every apostrophe which is embedded in
between two letters is replaced by an underscore character. All other apostrophes are then
replaced by blanks, and subsequently all underscore characters are replaced by apostrophes.
Finally (line 9), the hyphen is treated in a similar way as the apostrophe.

Example: The following program finds all words in a file $1 that contain a double letter.
We shall refer to this program as doubleLetterWords.

#!/bin/sh

leaveOnlyWords $1 I addBlanks \

sed 's/\ ([A-Za-z] \) \l/\1_\l/g; s/ r_ l[_]* //g; s/_//g'

In the first substitution command of the sed program, all double letters, which are encoded
as
\([A-Za-z] \) \1, are marked by a middle underscore character via \1_\1: e.g., 11 is re-
placed by 1_1. In the second substitution command, all unmarked words are deleted. To
illustrate this by an example consider the followin&: after being processed by the first sub-
stitution command, the line
Now, I will tell you why.

looks like
Now I wil_l tel_l you why

with a trailing blank. Consequently, the pattern in s/ r_ [_] * //g cannot match
wil_l and tel_l since no underscore character is permitted. Finally, the underscore char-
acters are deleted.

16

18

Exercise: I) Modify doubleLetterWords to search for double vowels as in moon.

2) Modify doubleLetterWords to search for pairs of consecutive vowels as in beach. Use
only one tagged regular expression for the latter.
3) Modify doubleLetterWords to search for words ending in the string ing as in swimming.

In that case, retain also the word that follows the word containing the string ing.

Application: This indicates how to select/mark/isolate not only words but also specific pat-
terns in text.

Example: The following program replaces @ by @@, # by WO, and by ## in a file, i.e., each
;of the single characters @, #, and is replaced by the corresponding pair consisting of el and
only. In what follows, we shall refer to this program as hideUnderscore.

#!/bin/sh

sed 's/@/@@/g; s/#/#@/g; s/_/##/g'

The following program is the inverse of hideUnderscore, if both are seen as maps on files.
In what follows, we shall refer to this inverse program as restoreUnderscore.

#!/bin/sh

,sed 's/##/_/g; s/#@/#/g; s/@@/@/g'

First, s/##/_/g restores all underscores. Observe that sed scannes the pattern space from
left to right. Consequently, the string o###@ is correctly replaced by o_#@. Next, s/#@/#/g

restores #. Finally, s/@@/@/g restores e).
Application: Being able to let a character (here the underscore) "disappear" in text at the
beginning of a pipe is extremely useful. That character can be used to "break" complicated,
general patterns for exceptions. This technique has already been demonstrated above in
leaveOnlyWords and doubleLetterWords. Entities that have been recognized can also be
'marked by keywords of the sort _DETERMINER_. Framed by underscore characters, these
keywords are easily distinguishable from regular words in the text. At the end of the pipe,
all keywords are usually gone and the "missing" character is restored. Another application is
to recognize the ending of sentences in the case of the period character. The period appears
also in numbers and in abbreviations. By first replacing the period in the two latter cases
by an underscore character and then interpreting the period as marker for the ending of
sentences is, with minor additions, one way to generate a file which contains whole sentences
per line.
t(Note: Instead of using the triple (@, #, -) as above, one can use, in particular, (7, 8, 9). In
that case, only the format of numbers changes occasionally. Usually, the format of numbers
in text sources is not checked for the purpose of language analysis.)

4.9 A method for text analysis

At this point in our exposition, we can already formulate a simple method for text analysis.
As outlined at the end of the last section, one has to implement the following steps:

17

19

1) If necessary, encrypt the source in such a way that one character which is unimportant
for the subsequent analysis disappears from the text. This can be achieved by a program
such as hideUnderscore.

2) Mark certain parts of the source that are either exceptional cases to the subsequent
analysis or are cases of particular interest using the "hidden character" from 1) and, possibly,
a collection of keywords. This has to be done in such a way that the pattern matching done
under 3) does not apply to the special cases marked here.
3) Perform the required analysis or processing of the source "in general."
4) If necessary, invert the operation in 2) and, subsequently, the operation in 1).

4.10 Rearrangement of tagged regular expressions

We point out to the reader that the order of \ 1... \ 9 standing for tagged regular expressions
need not be retained. Thus, rearrangement of tagged regular expressions is possible in the
replacement in a substitution command.

Example: The following program acts on short sentences on single lines. For example, the
'sentence "Wilhelm is emperor." is replaced with "Which emperor was Wilhelm?"

#!/bin/sh

sed 's/-\([A-Za-z][A-Za-z]*\) is \([A-Za-z] [A-Za-z]*\)\.$/Which \2 was \1?/' $1

4.11 Line numbers as addresses

Besides the patterns defined above, one can use line numbers (without slashes) as ad-
dresses. Furthermore, the character $ stands for the last line.

Example: The following program copies the first 42 lines of a file $1 by quitting at line 42:
#!/bin/sh

sed '42q' $1

q is the command that causes sed to quit. Line 42 is the last line that is put into the
pattern space and is processed (copied) by quitting. Consult man more and man less for
,alternatives to the above program.

Line numbers are cumulative over several files to which a sed program is applied. For
example, the following two lines are the same:

sed '42q' filel file2

cat file1 file2 I sed '42q'

Example: The following program deletes the first and the last two lines in a file:

18

20

#!/bin/sh

sed '1d' $1 I sed '$d' I sed '$d'

d is the sed command for deleting the current pattern space and starting a new cycle.
Consult man tail and man less for alternatives to the above program.

The addresses 1 resp. $ can be used to insert headers resp. footers in documents using the
commands i resp. a described below.

4.12 Address ranges

An address range has the format
Address 1 , Address2

It can be used in the same way as a single address when legal for a command. Address 1
specifies where (on which line resp. pattern space) actions begin. Address2 specifies where
actions end.

Example: Suppose that code is inserted in a latex' document starting with a line containing
up to white characters only \BC and ending with a line containing up to white characters
only \EC. The following program indents the code by two blanks. In fact, non-empty code
lines are indented only. All white ranges contain a blank and a tab.
#! /bin/sh

sed '/"[]*\\BC[]*$/,/"[]*\\EC[]*$/s/./ 8z/

s/"[]*\\BC[]*$/\\beginfverbatina/

s/"[]*\\EC[]*$/\\endfverbatiml/' $1

:The program uses the address range
/-[]*\\BC[]*$/,/-[]*\\EC[]*$i

starting with the pattern /- []*\\BC[] *$/ and ending with /- []*\\EC[] *$/.
The period in the line addressed by the range matches only the first character in a non-
empty pattern space since there is no g trailing the substitution command. At the end of
the sed program, \BC resp. \EC are replaced by \begin{verbatim} resp. \endfverbatiml.

Example: The source code for this document contains several test programs for the claims
made about sed commands in the next section. These programs are eliminated from the
document through preprocessing with a one-line sed program. This is done in a similar
fashion as above using a begin and an end address and the delete command d addressed by
the range begin, end.

4.13 The list of all sed commands

Next, we include a list of all sed commands. In it, the number at the end of each section
is the number of addresses possible. 2 means that address ranges are allowed. Usually, the

19

21

command labeled by an address range is executed for every line in the range. We shall
mention those commands that behave differently.

The most important commands are b for exclusion from processing, d for elimination of
lines of input, p for additional printing during development of programs, s for global substi-
tution, t for loops, {} for grouping and the not command ! for negation of addresses. They
are marked with two bullets below. The others may be skipped on first reading.

a\
Linel\
Line2\

Last Line
append: This prints Linel through Last Line at the end of the current cycle, i.e., after the
content of the pattern space is processed with the sed program in the current cycle. Every
line in the appended text except the last must end with a backslash \ . What is appended
is not put into the pattern space and not subject to the following sed commands. The
appended text is printed even if the pattern space is deleted afterwards in the cycle or the
quit command is executed. In connection with the last line address $, the a command can
be used to append something to a file. (1)

b whereTo
branch: Branch to the : whereTo command where whereTo is a string of letters. If there
is no whereTo, then branch to the end of the script. b is the classical "go to" command.
The : whereTo may occur before b whereTo in the program creating a loop. In that case,
another b command has to be used to leave the loop. Or, an address in front of the b com-
mand must deactivate the loop eventually. A b command without whereTo means "print
the current pattern space and start processing the next cycle." With a b command without
whereTo at the beginning of a sed program, certain lines that contain, e.g., a codeword
which is matched by an address in front of b can be protected from being processed. (2)
Example: Suppose that one wants to manipulate the word "while" in a text that also con-
tains listings of C code. Suppose, in addition, that the code is framed as in the example
given above by \BC and \EC. In that case, a sed program starting
sed '/-[]*\\BC[]*$/,/-[]*\\EC[]*$/b would skip all code.

c \
Linel\

LastLine
change: This prints Linel through LastLine. The current content of the pattern space is
deleted, and a new cycle is started. Consequently, what is printed is not subject to the
following sed commands. If an address range is given, then printing is done at the end of
the address range. However, the current content of the pattern space is deleted for the full

20

22

address range. Thus, with an address range one can exchange, e.g., a multi-line address or
a paragraph in a document. (2)

delete all: The current content of the pattern space is deleted, and a new cycle is started.
This can be used to remove all sorts of things including white lines via r" [] *$/d. (2)

Delete initial segment: The initial segment of the pattern space through (including) the
first newline character is deleted, and a new cycle is started with the remaining pattern space.
If the pattern space is empty, then a new line of input is processed, i.e., with no newline
character in the pattern space D behaves as d. In that case, the first newline character is
so to speak found and deleted at the end of the pattern space which makes the next line of
input "visible." Something can be appended to the pattern space by the commands G and
N described below. In those cases, a newline character separating old and new is appended
first. (2)
Warning: The following program results in an endless loop:
sed 's/-/X\

The added, initial segment Xnewline is deleted with D, and the original first line of input is
reprocessed.g
get: Replace the contents of the pattern space by the contents of the hold space. If the
hold space is empty, then this results in an empty pattern space. This is useful for repeated
analysis of the original input line which can be stored in the hold space with the command
h. (2)

Get and append: Append the contents of the hcild space to the pattern space. This in-
cludes appending a newline character first separating old and new. (2)

hold: Replace the contents of the hold space by the contents of the pattern space. Storing
the pattern space in the hold space makes it possible to reinvestigate the original line or an
intermediate state of the pattern space. (2)

'Hold and append: Append the contents of the pattern space to the hold space. This
includes appending a newline character first separating old and new. (2)
(Note: Both, G and H add newline characters while appending. Thus, an H-G sequence may
create many empty lines due to double newline characters.)

i\
text
insert: This prints text before the current content of the pattern space is processed and

21

23

possibly printed with the sed program. As above for the a and c commands, every line in
text but the last must end with a backslash \ . What is inserted is not subject to the following
sed commands. In connection with the first line address 1, the i command can be used to
prepend something to a document. (1)

1

list: This lists the pattern space on the output in an unambiguous form. Non-printing char-
acters are spelled in two digit ASCII and long lines are folded. This can be used to identify
Japanese characters [Lunde 1993] in bilingual text. (2)

n

next: This prints the pattern space. In addition, the next line of input is put into the
pattern space. The current line number changes. However, a new cycle is not started from
the top. Instead, the sed program is continued at the current program line for the pattern
space with the new content. If there is no interference by other commands, then the switch
by the n command in the pattern space is done for every second line of input. In the case
of an address range, the addresses will only work; if the pattern space is matched before
the n command is executed. Otherwise, the address is "overlooked." If the stop address

: is properly matched, then the effect of the n command reaches one line beyond the range.
Compare the example given next. If sed is invoked as sed -n, then printing is suppressed,
and only the next line of input is put into the pattern space. (2)
Example: The n command behaves as follows: sed 's/a/b/g; /S/,/E/n; s/x/y/g'
yields from a file containing on separate lines the strings lax 2axS 3ax 4ax 5ax 6axE
7ax 8ax the following sequence of strings (on separate lines): lby 2bxS 3ay 4bx 5ay
6bxE 7ay 8by. The lines 2, 4 and 6 were only subject to the first substitution command.
The lines 3, 5 and 7 were only subject to the final substitution command. Note that 7ay
was obtained after 6bxE. This shows that the n command may have consequences one line
beyond an address range associated with it. The 8by in the output shows that executing
n stopped at 6bxE since both substitution commands were applied to the line containing
8ax. In contrast to that, lax 2axS 3ax 4ax 5axE 6ax 7ax 8ax yields thy 2bxS 3ay
4bx 5ayE 6bx 7ay 8bx. This shows that the terminating address /E/ is missed. In fact,
/5axE/ is put into the pattern space by the n cominand and can never be matched by the
terminating address.

Next is appended: This appends the next line of input to the pattern space with an
embedded newline character separating old and new. The current line number changes. The
newline character can be matched using \n and, e.g., be removed to unite lines. As above,
N has an effect one line beyond a range and can miss an address, if the line matching the
address is appended. If there is an attempt to append something beyond the the end of the
file, then sed quits and misses processing and printing the last pattern space. (2)

p

22

2 4

print all: This prints the pattern space. Thus, in the usual sed mode one gets an additional
line of output if the pattern space is not deleted afterwards. However, the default printing
by sed can be switched off by invoking it as sed -n. p is very useful if one develops sed
programs and prints intermediate stages of what is being processed. (2)

Print initial segment: This prints the initial segment of the pattern space through the
first newline character. (2)
e q

'quit: Print the current pattern space and terminate the sed program. (1)
r filename

render: Copy the file filename to the output at the end of the current cycle. What is copied
is not put into the pattern space. Copying is done even if the current pattern space is deleted
or the q command is executed afterwards in the cycle. If no n or N commands are used, then
the copying is done before processing the next input line. (1)

s/ pattern/ replacement/ flags
substitute: Substitute pattern with replacement. flags is nothing or any intelligent combi-

t nation of
n (1 <n< 512): Substitute only for the nth occurrence of the pattern.
g: Substitute globally for all non-overlapping occurrences of the pattern rather than just the
first one.
p: Print the pattern space, if a substitution was made.
w filename: Append the pattern space to the file filename, if a substitution was made.
A legal s command is s/old/new/512pw tFile writing to file tFile. One can print to at
most 10 different files. In case one has to use more files, one can split the sed program and
use a pipe in which every piece uses up to 10 files. Larger text files that are processed may
contain exceptional cases to patterns that are manipulated. Printing all performed substi-
tutions to a shorter "diagnostic" file gives the user the opportunity for inspection. (2)

t whereTo
test: Branch to the label : whereTo, if any substitution has been made since the most
recent reading of an input line or execution of a t command. If there is no whereTo, then
start a new cycle. The : whereTo may occur before t whereTo in the program creating a
loop. Actually, the t command is the one which is used regularly to create a loop since it
t becomes inactive when "nothing happened" prior to it. Creating loops with the t command
can be used to (re)substitute in overlapping patterns. It can also be used for reprocessing if
the pattern in a particular (preceeding) substitution is possibly generated by a subsequent
substitution. (2)

w filename:
write: Append the pattern space to the file filename. One can print to at most 10 different
files. In case one has to use more files, one can split the sed program and use a pipe in

23

25

which every piece uses up to 10 files. The w command can be used to sort pieces of a file
into several files. Also, one can copy lines that match a certain pattern in a "diagnostic" file
before a substitution is made. After a w command, everything that follows after some white
space on the same line is understood as the filename to which the command is supposed to
write. Thus, after a w command no other command can follow on the same line. (2)

x
x-change: Exchange the pattern and the hold space. A sequence x inspect x may allow an
intermediate inspection of the hold space containing a previous state of the pattern space

; and connected with that, e.g., branching in the program. (2)

yield: y/ string 1/ string2/
Replace all occurrences of characters in string 1 with the corresponding character in string2.
The lengths of string I and string2 must be equal. Ranges are not allowed. A newline char-
acter in string.1 or strings can be represented just by typing i.e., introducing a newline
character into the sed program without a preceeding backslash terminating the previous line.
The slash / cannot occur in string I or string2. A substitution for it can be achieved by an

:additional s command. The y command can, e.g., be used to map lower-case to upper-case
letters, and for elementary cryptography [Koblitz 1994]. (2)

: whereTo
label: Address for the b whereTo and t whereTo commands. whereTo can be up to 7 char-
acters long. (0)

=

this is: Print the current line number of the input file on a separate line. As with the p
command, printing is done immediately. (1)

commands
1

parentheses: Execute commands as a group, if the pattern space is matched by the address
pattern preceeding {. Commands can be on separate lines or be separated by semicolons ; .
Using a framing pair of parentheses, a non-address range command such as i can be applied
to a range. (2)
Example: The following is legal: sed '/S/,/E/tp;s/-/a/;1'. Note the semicolon termi-
nating the s command.

!function
not: Do not execute function if the pattern space matches the address pattern preceeding
!. function can be a single command or a group specified by { and }. An address range is
only allowed if function allows it.
(addresses the same number as for function)

24

26

4.14 Additional comments in regard to commands

Typically, the a, c, i and r commands are used if something should be maintained only
at one place in some file. For example, a header containing an address may be inserted in
a document several times. Or, a certain piece of code such as the declaration of a standard
set of variables is used in many function definitions. The addresses 1 resp. $ can be used
to insert headers resp. footers in documents using the commands i resp. a. This should be
done only if the headers resp. footers are small, and the insertion is not always made. If
a larger header or footer is not always added to a document, then using the r command
together with a separate file is more appropriate. If a header or footer is always added to a
document, then using the UNIX command cat mentioned above together with separate files
that contain the additions is best.

4.15 Additional examples

Example: The following program is another useful variation of addBlanks. It isolates
non-white strings of characters in a text and puts every such string on a separate line. All
ranges contain a blank and a tab. We shall call this oneItemPerLine in the sequel.
#!/bin/sh
sed '/"[]*$/d; st"[]*//;]*$//; s/[] []*/\
/g' $1

First, all white lines are removed by deleting the pattern space which includes terminating
the cycle. For non-white lines, white characters at the beginning and the end of lines are
removed. Finally, all remaining strings of white characters are replaced by newline characters.

Example: The following program finds all four-letter-words in a text. We shall refer to it
as findFourLetterWords in the sequel.

#!/bin/sh
leaveOnlyWords $1 I addBlanks I \

sed 's/ \ ([A-Za-z] [a-z] [a-z] [a-z] \) /_\1/g; s/ [_]* //g;
/-$/d; s/_/ /g; =' I sed 'N; sI\n//'

The first sed program acts as follows: 1) All four-letter-words are marked with a leading
'underscore character. 2) All unmarked words are deleted. 3) Resulting white pattern spaces
(lines) are deleted which also means that the cycle is interrupted and neither the line nor
the corresponding line number are subsequently printed. 4) Underscore characters in the
pattern space are replaced by blanks. 5) The line number is printed before the pattern
space is. This will occur only if a four-letter-word was found on a line. The second sed
program merges corresponding numbers and lines: 1) Every second line coming from the
original source file $1 which contains at least one four-letter-word is appended via N to the

25

27

preceeding line containing solely the corresponding line number. 2) The embedded newline
character is removed and the two united lines are printed as one.

Example: The following program sorts all characters 0 (zero) to the right of a line. This
shows the typical use of the t command.

Wbin/sh
sed ': again; s/O\([-0]\)/\10/g; t again' $1

The first command of the sed program defines the address again. The second command
'exchanges all characters 0 with a neighboring non-zero to the right. Hereby, the non-zero is
encoded as [-O] , tagged, and reused as \ 1 in the replacement in the substitution command.
The last command tests whether or not a substitution happened. If a substitution happened,
then the cycle is continued at : again. Otherwise, the cycle is terminated.
Application: In the course of the investigation in [Abramson et al. 1995], [Abramson et al.
1996a], and [Abramson et al. 1996b], the file containing the source file of [Nelson 1962] (which
was generated with a What-You-See-Is-What-You-Get Editor) was transformed by one of
the authors into a prolog database. This raised the following problems:
i1) The source is "dirty": it contains many control sequences coming from the wysiwyg-editor
which have no meaning but the format and the spacing in the printed book. Such control
sequences had to be removed. This was done using substitution commands with empty re-
placements.
2) The source cannot be "cleaned" in an easy fashion from the control sequences mentioned
in 1). Some of the control sequences in the source are important in regard to the database
which was generated. In [Nelson 1962], Japanese is represented using kanji, KUN pronuncia-
ition and on pronunciation. The on pronunciation of kanji is typeset in italics characters. In
the source file, the associated text is framed by a unique pair of control sequences. Similarly,
the KUN pronunciation of kanji is represented by SMALL CAPS printing.
3) The source was typed by a human with a regular layout on paper (i.e., in the printed
book) in mind. Though quite regular already, it contains a certain collection of describable
irregularities. For example, the ranges of framing pairs of control sequences overlap some-
times.
In order to match KUN pronunciation and on pronunciation in the source file of [Nelson 1962]
properly, a collection of commutation rules for control sequences was implemented to achieve
that the control sequences needed for pattern matching only frame a piece of text and no
other control sequences. These commutation rules were implemented in a similar way as the
last example shows.

Example: Suppose a file $1 has the format of output of leaveOnlyWords I addBlanks,

i.e., words on lines with proper spacing. The following program finds all words in a file $1
that appear as first word and at least four times in a line. We shall refer to this program as
quadrupleWords.

26

28

#!/bin/sh
sed ' : AD

\ ([A-Za-z' \ [A-Za-z' \ "--]\)\ ([.*\) \1 /\1_\2/
t AD

s/-\([-_]*\)_.*$/\1/' $1

The first command of the sed program defines the address AD. In the second command,
a word at the beginning of a line, which occurs at least twice in the pattern space, is
encoded as [A-Za-z' \ "-] [A-Za-z' \ "-]*, tagged and repeated as \1 in the pattern in
the substitution command. In the replacement \1_\ 2 in the the substitution command,
the first copy of the word is retained, a counting underscore character is appended to it,
and the second copy (the first \1) is removed from the pattern space. The third command
tests whether or not a substitution happened. If a substitution happened, then the cycle is
continued at : AD. This is repeated at most three times since /- [-_]*/___/ ! preceeds the
substitution command in the loop. If no substitution happened, then the cycle is continued
in the next line of the program. In the last line, all pattern spaces are deleted that do not
contain a triple underscore character corresponding to a quadruple word in the original line
of input. In the last command of the program, everything after the first word is deleted.
Application: A procedure of identifying multiple patterns in longer sequences of words can
be used to find words or patterns that are "locally" repeated and are (cf. [Hoey 1991, pp.
35-48, pp. 231-235]) very likely to be significant for the understanding of text. This will be
outlined below in greater detail.

Example: The following program sorts all words in a text file $1=fName into several files
depending upon the vowels occurring in the words. For example, all words containing the
Ivowel "a" are put into one file fName . a. We shall refer to it as sortByVowel in the sequel.

Wbin/sh
echo >$1.a; echo >$1.e; echo >$1.i; echo >$1.o; echo >$1.u;

leaveOnlyWords $1 I oneItemPerLine I\

sed -n '/a/w '$1'.a

/e/w '$1'.e

/i/w '$1'.i

/o/w '$1'.o

/u/w '$1'.u'

The second line of this sh-program generates empty files $1 .a...$1.0 in case the program has
been used before on the same file. An alternative is to use the UNIX rm-command. Consult
man rm for more details. Observe the use of the single quotes. If the argument $1 to sh
equals the string fName, then sh passes the following string to sed in regard to the first line
of the sed-program: /a/w fName.a. sed then writes to the file fName. a. Note that output
by the w command is always appended to an existing file. Thus, the files have to be removed

27

29

or empty versions have to be created in case the program has been used before on the same
file. There is no direct output by this UNIX command. It is clear how to generalize this
procedure to a more significant analysis, e.g., searches for specific patterns or searches for
phrases. Recall that everything after a w command and separating white space until the end
of the line is understood as the filename the w command is supposed to write to.

Example: We shall refer to the following program as mapToLowerCase. It does what its
name says.

,#!/bin/sh
sed 'y/ABCDEFGHIJKLMNOPQRSTUVWXYZ/abcdefghijklmnopqrstuvwxyz/' $1

As outlined below, we have implemented a procedure in [Schmitt & Christianson 1998] which
reformats text sources in such a way that whole sentences are on single lines. The latter pro-
cedure was applied to short essays submitted by Japanese students via e-mail as homework.
We were subsequently interested in selecting student-generated example sentences containing
a specific problematical pattern for presentation in class. The next two examples show such
selection procedures. Similar programs can also be used to document the decline/increase
of usage of a certain pattern over time.

Example: In teaching English as a second language, it is a common problem that students
start many sentences with the word "I." If a file $1 contains only sentences per line, then
the following program will search for sentences that start with the word "I." We shall refer
to it as identifyBeginI.

#!/bin/sh
sed '/"[-A-Za-z]*IrA-Za-zind' $1

Note that sed -n '/"[-A-Za-z]*I[-A-Za-z.]/p' would work as well.
Also consult man grep. The grep-family of filters is designed to find lines in a file that
match a certain pattern.

Example: The word "because" is invariably used incorrectly by Japanese learners of En-
glish. Because "because" is often used by Japanese learners of English to begin sentences (or
sentence fragments), it is necessary to not only print sentences containing the string Because
or because, but also to locate and print the immediately preceding sentence as well. The
following program prints all lines in a file that match the pattern / [Bb] ecause/ as well as
the lines that preceed such lines. We shall refer to it as printPredecessorBecause in the
sequel. Also consult man grep in regard to the options -n (n a positive integer), -A, -B, and
-C.

#!/bin/sh
sed -n V[Bb]ecause/fx;p;g;p;b1; h' $1

If the current line matches /EBb]ecause/, then it is exchanged by the x command with
its predecessor which was previously saved in the hold space. Next, the new pattern space

28

3 0

containing the previous line is printed by p. Then, the pattern space is overwritten by g
with the current line which is also printed by p. The b command terminates the cycle. If
the current line does not match / [Bb] ecause/, then it is saved in the hold space through h.

Exercise: Write a sed program that prints a line matching / D313] ecause/ and the two lines
preceeding it. Write an awk program that does the same as the latter program.

Exercise: Implement the awk program double given in [Kernighan & Pike 1984, p. 121]
using sed and the pipe mechanism. Disregard applying the program to multiple files. Print
the filename using echo. Use tagged regular expressions in order to recognize the double
words. Use appending lines with the N command to the pattern space in order to recognize
double words that are spread over the newline character that separates two lines. Be aware
of properly processing the last line in connection with the N command. If you want to make
this exercise difficult, then study [Kernighan & Pike 1984] in regard to for loops with sh
and sh variables and implement processing several files through a for loop in sh over the
filenames using the sed program that was just developed.

4.16 Generating a search program from a file with data

One can use a sed program to create another program from a file containing data in a
convenient format, e.g., a list of words. Such action can preceed the use of the generated
program. I.e., one invokes the two programs separately. Alternatively, the generation of a
program and its subsequent use are part of a single UNIX command. The latter possibility
is outlined next.

Example: Suppose that one has a file that contains a list of words that are "unimportant"
for some reason, and that one wants to eliminate them from a second text file. For example,
' the words the, a, an, if, then, and, or, ... may be unimportant, if one wants to define, e.g.,
"context." See [Butler 1985, pp. 219-220] [Woods 1995] for lists of frequent words. The
following program generates a sed program $1. sed out of a file $1 that is supposed to
contain a list of "unimportant words". The generated script $1 . sed eliminates the words in
$1 from a second file whose name is given to sh as second argument $2. We shall refer to
the following program as eliminateList in the sequel.
#! /bin/sh

leaveOnlyWords $1 I oneItemPerLine I\
sed 's/[./-]/\\&/g;

s/.4c/s\/\\([-A-Za-z]\\)&\\([-A-Za-z]\\)\/\\1\\2\/g/' >$1.sed

addBlanks $2 I sed -f $1.sed I adjustBlankTabs

The second line in the program isolates words in the file $1 and feeds them (one word per
line) into the subsequent first sed program. In the first sed program in lines 3 4 the
following is done: 1) Periods, slashes ("A/C"), or, hyphens are preceeded by a backslash
character. For example, the string built-in is replaced by built\-in. This is done since

29

31

periods and hyphens are special characters in sed. 2) The second substitution command
generates an s command from a given string on a single line. In fact, out of a line containing
solely the string built\-in which is matched by .* and reproduced by & in the second
substitution command listed above the following s command is generated in $1. sed:
s/\ ([-A-Za-z] \)built\-in([-A-Za-z] \)/\1\2/g
Note that all slash and backslash characters occurring in the latter line (except the one in
built\-in) have to be preceeded by an additional backslash in the replacement
s\/\\([-A-Za-z]\\)&\\([-A-Za-z]\\)\/\\1\\2\/g

In the generating second substitution command listed above. The list of so generated s
commands is stored in $1. sed. Using sed -f $1. sed, this file of s commands is then
applied to the file whose name is given to sh as second argument $2.

Example: In [Schmitt & Christianson 1998], we use several filters (i.e., sed programs) that
are generated in the same way as the last example. Characteristic in each case is that we gen-
erate these programs during the setup of the system used in [Schmitt & Christianson 1998].
This gives the user the ability to customize his/her working environment that is generated
by our system. For example, we have implemented a filter hideAbbreviations and its left
:inverse filter. hideAbbreviations has two parts (compare the listing of leaveOnlyWords
given above). The first recognizes abbreviations of the sort v . i .p . and replaces the periods
by underscore characters. The second part is generated from a list of strings containing, e.g.,
Am. Out of those, replacement commands are generated that replace, e.g., Am. by Am_. This
filter is used in the program that reformats essays such that lines contain whole sentences.
The latter procedure will be explained below in greater detail.

4.17 Elementary grammatical analysis and its applications to teaching

Similar to the last example, one can generate programs such as markDeterminers from a
source file containing only a list of words. Different types of words can be tagged or replaced
by their grammatical type by automatically generated sed programs. For example, one could
have a file verbs containing (selected) verbs and generate a program marking those verbs
in text. If one processes larger files, then, possibly, one should generate C programs based
upon lex to perform searching and tagging. Note that a C program P1, in which a list of
words to search for is encoded, is as fast as a C program 132, that has to read a list of words
lit is supposed to identify. Also, tagging can be done in regard to specialized word lists such
as [Orr et al. 1995] or general word lists such as the General Service List [Nation 1990]. A
collection of such search programs can be used for analysis of grammatical patterns in texts
involving selected verbs, nouns and other components.

By tagging a given word list, the foreign language teacher is able to do searches for
grammatical trouble spots. Numerous tagging schemes are currently in use in large-scale
corpora (cf., [Greenbaum 1991], [Leech & Fligelstone 1992], and [Meyer & Tenney 1993]).
Most of these are extremely detailed schemes used to explore corpora consisting of tens of

30

millions of words. Corpus linguists involved in such research require very high accuracy.
However, the average foreign language teacher, working with a word list of probably 1000-
5000 words (likely built up over time) requires a great deal less sophistication. A rough
and very general tagging scheme like the one shown in markDeterminers is enough for most
practical applications in which the human end-user can correct a small number of exceptional
cases.

Armed with a tagged word list and a few simple sed and awk programs, a teacher could
search, for example, for every occurrence of had+[past participle] to check for certain mis-

! takes in past perfect constructions or the quantifiers every/many/some/all/... to check for
mistakes in pluralization.

The programs countFrequencies, which counts the number of occurrences of "items"
and is fully explained below, can be employed in order to gather statistics of patterns used.
Such statistics are useful for a language teacher in determining which patterns students feel
more secure about using (i.e., use more often) and those not used for one reason or another.
Avoidance is a difficult aspect of language use to measure. However, using a program which
analyzes sentence patterns, prints like patterns in files, and keeps statistics regarding fre-
quency of use, patterns which students rarely use would be immediately apparent to the
teacher. Searching for grammatical patterns can also be used to select example sentences
from a database of, e.g., homework that was actually written by students for presentation
by the instructor in class (cf. [Schmitt & Christianson 1998]). Using the set and vector
operations defined below, patterns that are used can be measured against patterns that are
desirable and were introduced in class. The system in [Schmitt & Christianson 1998] is
designed in such a way that search programs of this kind can easily be incorporated.

Also, it is easy to alter the above idea to generate out of a file with lines in the format
'deutsch { englishl english2 }

containing the translations for the (say) 2000 most common German words a C program that
copies sentences on lines as latex comment and delivers an associated local dictionary.

5 awk

awk is a simple programming language based on pattern recognition and operations on
chunks of the input record. Usually, an input record is an input line. The chunks of the
input record are called fields and, usually, are the full strings of non-white characters. In
contrast to sed, awk allows string variables and numerical variables. Consequently, one can
accomplish operations on files such as accounting and keeping statistics of things. Another
typical use of awk is matching and rearranging the fields in a line. Good introductions to
awk are [Aho et al. 1978] and [Aho et al. 1988].

31

3 3

In what follows, we shall sometimes include an awk version of a procedure implemented
above with sed. This allows adaptation of the procedures (such as inclusion into other sed
or awk programs) under different circumstances.

5.1 awk programs

Programs in awk need no compilation. An awk program looks as follows:
awk 'BEGIN { actionB }
patternl actionl
pattern2 action2

END { actionE }'
actionB is executed before the input is processed. actionE is executed after the input is
processed. The lines with BEGIN and END can be omitted. Or an awk program can consist
of, e.g., an END-line only. As shown above, any awk command or awk statement has the
following format:

pattern { action ;

The closing semicolon is optional. If a semicolon follows an awk statement, then another
statement can follow on the same line. The statements with the BEGIN and the END pat-
tern must be on separate lines. One can also store a list of awk commands in a file (say)
awkCommands and use awk -f awkCommands to invoke the program.

patterns can be very similar to address patterns in sed. However, more complicated
address patterns are also possible. Compare the two listings given below.

The input record is put into a pattern space as in sed. However in awk, the pattern space
is divided into an array of the fields of the original input record. Each of these fields can
be manipulated separately. Since the whole input record can be stored as a string in any
variable, awk does not need a hold space.

awk operates on input records (usually lines) in a cycle just like sed. actionl is executed
if pattern1 matches the original input record. After that, action2 is executed if pattern2
matches the current, possibly altered pattern space and the cycle was not terminated by
actionl. And so on. An action is a sequence of statements (commands) that are separated

iby semicolons ; or are on different lines. If pattern is omitted, then the corresponding action
is done all the time provided this program line is reached in the cycle. If { action} is omitted,
then the whole input line is printed by default. Observe that by default an awk program
does not copy an input line (similar to sed -n). Thus, printing has to be triggered by an
address pattern, which selects the pattern space as shown in the next example, or printing
has to be triggered by a separate print statement.

Example: The following program does the same as identifyBeginI. The default action
is used, i.e., to print a line that matches the given address pattern.

32

3 4

#!/bin/sh
awk [-A-Za-z] *I [-A-Za-z .] /' $1

5.2 Patterns I (regular expressions)

Patterns are used in awk as address patterns to select the pattern space for an action. They
can also be used in the if statement of awk to define a conditional. In this section, we shall
discuss those patterns in awk which are called regular expressions. Regular expressions in awk
are very similar to regular expressions in lex and sed. In addition to the list of patterns which
we give next, there is also the possibility to define arithmetic-relational expressions, string-
valued expressions and arbitrary Boolean combinations of all of the above. The patterns
different from regular expressions will be explained later.

A regular expression is framed by a leading and a terminating slash I. The following rules
must be observed:
1) Any non-special character matches itself.
2) Special characters that otherwise have a particular function in awk have to be preceeded
by a backslash \ in order to be understood literally. A newline character in the pattern space
can be matched with \n.
All special characters: \\ \- \$ \. \[\] * \+ \? \(\) \ \n
Example: awk '/\(\?\)/' prints lines that contain the string (7).
(Note: The strings \ (and \) are not used for tagging. There is no tagging in awk. The
ampersand & is not special in awk.)
3) resp. $ match the beginning resp. the end of the pattern space.
lExample: awk '/-/' prints every line of input.
4) . matches any single character.
Example: awk '/./' prints every non-empty line of input.
awk '/ /' prints every line that contains more than 20 characters.
5) [what] matches any character in what where what is a string of characters.
R1: The backslash \ is not needed and used to indicate most special characters in what.
One exception is \] which represents] . The backslash itself should always be represented
as \ \ in what even though sometimes one backslash in the middle of a longer what is enough.
iR2: Ranges of the type a-z, A-Z, 0-9 in what are permitted.
R3: The hyphen must be at the beginning or the end of what in order to be recognized as
itself.

R4: The carat must not be the first character in what in order to be recognized as itself.
6) [- what] matches any character not in what. The rules R1-R3 set under 5) also apply
here.
7) The ordinary parenthesis (and) are used for grouping.
Example: /O. (07) *\$/ matches 0 .$, 0.07$, 0.0707$ etc. but not 0.0$. Observe the radical

33

35

difference from the pattern /0 . 0*7*\ $/.
8) The vertical slash I is used to define alternatives.
Examples: / (new) I (old) democrat/ matches new democrat and old democrat. Observe
that this is very different from /new I old democrat/ which matches newld democrat and
neold democrat.
9) patternrepit or stands for 0 or any number of copies of pattern, if repitor=*. It stands
for any strictly positive number of copies of pattern, if repitor=+. It stands for 0 or 1 copy
of pattern, if repitor=?. pattern is a specific character, the period . meaning any character,
a range [...] as described under 5) or 6) or something in parenthesis.
Examples: awk [a-zA-Z] +$/' prints all non-empty lines that contain solely letters.
awk Vbaka(geta)? desu/' prints all lines containing baka desu or bakageta desu.

5.3 Representation of strings

Strings of characters in awk are framed by double quotes ". The sequences \ ", \t resp.
\n represent the double quote, the tab resp. the newline character in strings. The backslash
can sometimes by included in strings as a single backslash character. However, as a rule one
tshould always use the sequence \ \ to represent the backslash. Otherwise, every character
including the blank just represents itself.
Example: " \ "The Lying King\ " represents the string "The Lying King" including the
double quotes.
(Note: man awk may list "There is no escape sequence that prints a double-quote." as a
bug of awk. However, the string " \ " can be printed without problems using the statements
print or printf described below.)

Strings can be concatenated by just writing them behind each other separated by blanks.
This hold also for variables containing strings.

5.4 Fields and field variables

In the default mode, the fields of an input line are the full strings of non-white characters
separated by blanks and tabs. Thus, in
Errare humanum est .
there are three fields: Errare, humanum and est . (the last field includes the period). They are
'addressed in the pattern space from left to right as ;field variables $1, $2 and $3. Alternatively,
they can be addresses as $ (1), $ (2) and $ (3). One can count beyond 9 in regard to field
variables. $0 and $ (0) stand for the whole pattein space.

5.5 Printing using print

Usually, one uses the print statement for printing as in the next example. The program
! /bin/sh
awk '/rare?/ print $3 $2 , $1 "???" 1' $1

34

36

prints est .humanum Errare??? from the line given above. The print statement prints the
field variables $3...$1 and, finally, the string "???". The comma separating the field variables
$2 and $1 in the print statement causes a blank to be printed. In our example, that is the
blank in humanum Errare.

In general, a print statement has the following structure:

print objectseparat or object... separat or object

object can be either a string of characters framed by double quotes, a number or a variable
name. separator is a string of characters containing solely blanks and at most one comma.
A comma causes an output field separator string OFS (default a blank) to be printed. The
sequence of arguments may either be empty or must end in object. The print statement is
terminated by a greater sign >, a semicolon ; , a closing brace 1, or the end of the line. After
a print statement, an output record separator ORS (default a newline character) is printed.
We shall show below how the variables OFS and ORS can be reset.

The action { print } is as good as { print $0 } for printing the pattern space. If
nothing is done with the pattern space and there is a selecting address, then { print } as
'action can be omitted completely.

Note that print money is interpreted as printing the content of the variable money while
print "money" really prints money. The action f print " 1 prints (the empty string plus)
an output record separator ORS. Finally, note the very different meanings of $1 (first field of
line vs. first argument to shell) inside and outside the awk program in the example.

Example: The following program prints the first five fields in every line separated by one-
blank. It can be used to isolate starting phrases of sentences.

:#!/bin/sh
awk 'f print $1 , $2 , $3 , $4 , $5 I' $1

Example: The following program triple spaces the input file. This can be useful if one
wants to correct printed text by hand and needs space for inserted comments.

#!/bin/sh
awk 'f print $0 "\n\n" I' $1

The print statement prints the input line contained in $0 concatenated with two following
newline characters and a third newline character as ORS.

Example: The following program prepends the second field in a line by a newline character
if there are at least two fields in the line, and then prints the pattern space (possibly printing
two lines).

#!/bin/sh
awk 'f $2="\n" $2 ; print I' $1

35

37

= is the assignment operator in awk working from left to right. In this example, the second
field $2 (left) is assigned the string that results from concatenating a newline character with
the content of $2 (right). This is done only if a second field exists. I.e., a second field $2 is

not initiated to the empty string and then united with the newline character.

5.6 Formatted printing using printf

This section may be skipped, if the reader is not interested in printing tabular output
containing numbers.

The second function for printing in awk is printf. Let us implement another version of
the example which printed est .humanum Errare??? using printf:

#!/bin/sh

awk '/rare?/ { printf "%s%s %s???\n", $3, $2, $1 }' $1

The printf statement prints the field variables $3...$1 which are listed as its arguments
in , $3, $2, $1 at the end. How these variables are printed is specified in the format
string "%s%s %s???\n". It says: Print the first variable listed as argument as a string
(%s) immediately followed by the second variable also understood as string. Then print a
blank followed by the third variable understood as string. Finally, print the string "???\n"
including a newline character.

In general, a printf statement has the following structure:

printf format , expressionl , expression2

format follows the rules for formatting of printf from the programming language C. Basically,
' the format string in a string of characters (some preceeded by the escape character backslash
\) in which specifications starting in °A are embedded. The most important specifications
are:

%c says that the content of a variable is supposed to be an integer n satisfying 32<n<126

and the corresponding ASCII character is printed.
Example: awk '{ for (k=32;k<=126;k++) { printf " (°hd:%c) \n",k,k}}' prints a list
after a The for loop will be explained below.

%nd prints an integer in a field which is n characters wide with leading blanks.
Example: 20 is printed by 7.14d as 20 including 12 leading blanks.

/on . me prints a number in "scientific" format in a field which is n characters wide with
leading blanks using a mantissa which has one digit in front and m digits after the period.
Example: 43 is printed by 7.12.3e as 4.300e+01 including 3 leading blanks.

%n .mf prints a floating point number in a field which is n characters wide with leading
blanks and m digits after the period.
Example: 552 is printed by %10.4f as 552.0000 including 2 leading blanks.

%s says that the content of a variable is supposed to be printed as string. In particular,

36

38

a number from the input record contained in a field variable is printed unchanged.
Numbers can also be printed signed or in octal and hexadecimal representation. In

addition, they can be printed starting left in the field. It can be specified that zeroes
rather than blanks fill a field in which a number is printed. This is described in detail in
man 3 printf and [Kernighan & Ritchie 1988, Appendix B, p. 243].

The printf statement is terminated by a greater sign >, a semicolon ; , a closing brace 1,
or the end of the line. printf does not print a terminating output record separator. Newline
characters have to be explicitly included in format as \n.

Example: The following sh program shows the use of printf:

C/bin/sh
awk 'Iprintf "Field $1:%14d; $2 pl $3:%12.3e; $4 ti $5:%10.4f.\%\"\n",$1,$2+$3,$4*$51'

It produces from a line containing 20 21 22 23 24 the following:
Field $1: 20; $2 pl $3: 4.300e+01; $4 ti $5: 552.0000.V."

Essentially, the text in the format is reproduced. In particular, the starting substring
Field $1: is just reproduced as string and the substring $1 in it is not interpreted as

!field variable. The sum $2+$3 and the product $4*$5 at the end of the line in the program
initiate the corresponding computations whose results are printed. Specifying formats in the
way of the present example is useful to obtain nice tabular output of statistical evidence
and other accounting. For the representation of special characters consult the discussion of
strings in awk given above.

We leave the discussion of printf at this point since it is more important in regard to
numerical computation with awk rather than to text processing. In regard to the latter,
print is mostly sufficient in our experience.

5.7 Printing to files and pipes

>> can be used within an awk program to append output to a possibly existing file whose
name has to be included in the program. An output file is created if it is not in existence.
Using a single > instead overwrites an existing file and only appends output from the currently
running awk program to the file after that.

One can print to at most 10 different files from within an awk program. If one needs to
print to more files, then one can split the program into several pieces and use a pipe.

Application: Printing to different files can be used to sort things or to generate "diagnostic"
files for inspection by the human user of lines that match special patterns.

Example: The following sh program interprets the first field $1 in a line of the input file
as a file name to which a line containing the second field $2 is appended. The second field
is supposed to be a non-zero integer.
! /bin/sh

awk []*[A-Za-z]+[]+ [1-9] [0-9]*[]*$/ { print $2 >> $1 }' $1

37

3 9

We check in the address pattern 1) that there are only two fields, 2) that the first field
consists of letters only, and 3) that the second field is a non-zero integer. The white ranges
contain a blank and a,tab each. Note the + behind the second white range assuring white
space separating $1 and $2. The output of print $2 is appended via >> to the file whose
name is contained in the first field $1.

Example: The following program mimmicks the UNIX command tee. The input file is
once copied line-by-line to the output by the first print statement. In addition, every line
is copied to a separate file $2 whose name is argument to the sh program.

#!/bin/sh

awk '{ print ; print >>"'$2'" }' $1

Observe the use of the single quotes. If the second argument $2 to the sh program is
fname, then sh delivers the substring print ; print >>"fname"} to awk. fname must
be presented to awk within double quotes since otherwise it would be understood as a variable
name. Again, this shows a simple technique to place arguments to sh commands into sed or
awk programs. tee is useful to collect "diagnostic" files of intermediate stages of a file that

1.
'is processed in a pipe. Consult man tee for more details and options on tee.

Example: The following program is another version of sortByVowel.

#!/bin/sh

leaveOnlyWords $1 I oneItemPerLine I\
awk '/a/ { print >"'$1'.a" }; /e/ { print >"'$1'.e" };

/i/ { print >"'$1'.i" }; /0/ { print >"'$1'.o" };

/u/ { print >"'$1'.n"

Since we can use > within awk it is not necessary to erase the files $1.a...$1.0 in a first step.
The strings defining the files are not stored in variables. Thus, they have to be framed by
double quotes ". Otherwise, the sed and awk versions of sortByVowel are very similar.

Instead of appending output to files, one can also feed output into a pipe:

#!/bin/sh

awk VMUSE/ { print I "mail kanda" $1

tThis mails all lines in a file containing the address pattern MUSE to the user kanda (together
in a single mail). Of course, awk 'IMUSE/' $1 I mail kanda is a better version of the
example in the spirit of UNIX. But from within awk one can sort and mail different things
to several recipients at the same time. Consult man mail for more details about mail. It is
useful to know how to mail entire files with /usr/uch/mail.

38

4 0

5.8 Variables

In awk, variables do not need to be declared. They just exist and can be set to (filled
with) strings and numbers of different types (i.e., integer, floating point or scientific format).
Variables are initiated to the empty string automatically. The empty string is interpreted
as 0 if a variable is used in a numerical computation.

Example: The following program exchanges the first two fields in every line of a file.
#!/bin/sh

:awk s=$2; $2=$1; $1=s; print 1' $1

The second field $2 is stored temporarily in the variable s via s=$2. Then, the content of
$2 is overwritten with the content of the first field $1 through $2=$1. Finally, the original
content of $2 is put into $1 via $1=s and the altered pattern space is printed.

Example: The following program is another version of printPredecessorBecause.

#! /bin/sh

awk [Bb]ecause/ { print previous "\n" $0 }; { previous=$0 }' $1

'If the current line matches / [1313] ecause/, then it is printed following its predecessor which
was previously saved in the variable previous. Finally, every line is saved in the variable
previous waiting for the next cycle.

5.9 Arrays (regular format)

Arrays simply exist after first use. Their dimension is 1 (meaning one index consisting of
numbers). Their size, i.e. the number of elements, need not be declared. Any element of
an array that is used is initiated to the empty string which is interpreted as 0 in numerical
computations. An element of an array is denoted as name [index] . name is the name of the
array and index is a number. Elements of arrays can hold everything that ordinary variables
can, i.e., strings and different types of numbers.

5.10 Associative arrays

Associative arrays of the format name [index] are exactly like regular arrays except that
; .index is a string. The empty string is allowed as index.

5.11 Built-in variables

Next, we include the list of built-in variables of awk. All built-in variables can be used in
the same way as other variables in computations, string manipulations and conditionals. In
particular, all built-in variables can be reset. Usually, a built-in variable is reset in the first
group of statements actionB of an awk program addressed by the BEGIN pattern.

39

41

FILENAME

FILENAME contains the name of the current input file. awk can distinguish the standard input
as name of the current input file.
Example: FILENAME=="-" is a legal conditional in an if statement and a legal address
pattern. This will be explained in more detail below.

FS

FS contains the field separator character. The default are sequences of blanks and tabs. This
is slightly beyond a single character but is done for convenience. Note that the assignment

causes the field separator character to be set to sequences of blanks and tabs.
Example: If one processes chunks of texts not words, then one may want to set the field
separator to, e.g., # through FS="#". In that way, one can process phrases and sentences
where words are separated by blanks while the fields are separated by #. One application is
to separate original and translation of phrases by #. If the field separator is set to #, then n
characters # in the line define n + 1 possibly empty fields, i.e., NF= n + 1.

NF

NF contains the number of fields in the current pattern space (input record). This is very
; important in order to loop over all fields. Note that NF can be increased to "make room" for
more fields which can be filled with results of the current computation in the cycle.

NR

NR contains the number of the most recent input record. Usually, this is the line number if
the record separator character RS is not reset or NR itself is not reassigned another value.
Note that NR counts cumulatively over several files to which an awk program is applied. In
that case, one may wish to test the variable FILENAME for change and reset NR=1 at the
beginning of a new file. Consult [Kernighan & Pike 1984, p. 121] for such an example.
i OFMT
OFMT contains the output format for numbers used by print. The default is 70.6g. Consult
the above section on printf and man 3 printf for details about such formats.
Example: The assignment OFMT="%e" causes all numbers to be printed in "scientific format."
(Note: Primarily, a number is considered as a string as long as it was not subject to a
computation. OFMT only becomes active for numbers that were involved in computations. If
numbers are just copied with print, then they reappear unchanged from the input format.
If a number is stored in variable x, then x=x+0 does the trick of activating OFMT. x=x is only
'an assignment of strings.)

OFS

OFS contains the output field separator used in print. OFS is caused to be printed if a
comma , is used in a print statement. The default is a blank character. It can only be one
character long. In particular, it should not be set to the empty string.
Example: OFS=" \n" sets OFS to the newline character.
(Note: OFS stays inactive, if the string $0 was never manipulated in the awk program and

40

4 2

is then printed with the print statement. For example, if a pattern space has just been
selected for printing through an address pattern, then it is printed unchanged provided no
alteration to $0 has been made previously in the cycle. If one uses a dummy statement, e.g.,
$1=$1 which does nothing to the first field $1, then the decomposition of $0 into an array
of field variables becomes active.)
(Note: It seems advisable to exchange field separators and to increase spacing with sed.)

ORS

ORS contains the output record separator string. It is appended to the output after each
;print statement. The default is a newline character.
Examples: ORS can be set to the empty string through ORS=". This can be used to unite
lines of the input file. If one so desires, then it can also be set to two newline tharacters via
ORS="\n\n" double spacing the output.

RS

RS contains the input record separator character. The default is a newline character.
Examples: If one sets FS=" \n" and RS="", then the fields are whole lines and an input record
is a paragraph limited by empty lines.

We shall give some examples for the use of FILENAME later in connection with set operations
on files (the program setIntersection) and in connection with the implementation of a
vocabulary trainer.

The built-in variable NF is mostly used in connection with the for statement. Check the
section describing the for statement for some examples using NF. Other examples will be
given in operations on lists of type/token ratios.

Example: The following sh program counts the number of paragraphs in a text file.
#! /bin/sh

ised []*$//' $1 \

awk 'BEGIN { FS=" \n" ; RS="" }

/1/ NR=NR-1 1

END { print NR

The first sed program sets white lines in the input to empty lines. The idea in the awk

program is to count and print the number of paragraphs which are put as one input records
into the pattern space. As indicated above, the fields in this setting are the individual lines
id text. Two newline characters in a row define an "empty" field which matches RS. In case
there is a triple newline character, the two "empty" fields in a row create an empty pattern
space matched by /-1/ but not a new paragraph. Thus, the number of input records which
is increased by awk automatically has to be decreased by 1 using NR=NR-1 (or NR-=1). The
corrected number of records NR which equals the number of paragraphs is printed at the end.

Examples: The following sh program is another version of oneItemPerLine. The range
contains a blank and a tab.

V/bin/sh

41

4 3

awk 'BEGIN { OFS="\n"
/ 1/ { $1=$1 ; print }' $1

The statement $1=$1 manipulates the pattern space containing $0 for non-white lines. Then,
$0 is printed through print field-wise using OFS=new/ine. Thus, all fields are on separate
lines. The last field is separated from the next line through ORS=newline by default.

5.12 Definition: a list of type/token ratios

In this section, we define a very useful file format. Suppose that one represents frequencies
of use/occurren- ce of particular words or phrases in the following way: First in every line
comes a word or phrase which can contain a number. In addition to that, the final field of
every line contains a number which may, e.g., count how often the preceeding entity occurred
in a text file or may denote the relative probability of the preceeding entity. A file in this
format will be called a list of type/token ratios. An example of an entry is given by
limit 55

The last entry will be called the frequency of the preceeding word or phrase. Mathematically
speaking, such a file of word/phrase frequencies is a vector over the free base of character
strings [Greub 1981, p. 13].

5.13 Operators

awk has built-in operators for numerical computation, Boolean or logical operations, string
manipulation, pattern matching and assignment of values to variables. The following lists all
awk operators in decreasing order of precedence, i.e., operators on top of this list are applied
'before operators that are listed subsequently, if the order of execution is not explicitly set
by parenthesis.

Note that strings other than those that have the format of numbers all have the value 0
in a numerical computations.

++ --
++var increments the variable var by 1 before it is used. var++ increments var by 1 imme-
diately after it was used (in that particular spot of the expression and the program). --var
decrements var by 1 before it is used. var-- decrements var by 1 immediately after it was
used.
(Note: ++ and are very useful for counting. In particular, they are used for counting in
for and while loops.)

* / %
Operations with numbers: multiplication, division, integer division remainder.
Example: The conditional NW/03==1 yields true at record number 1, 4, 7 etc. Consequently,
awk 'NW/03==1' prints every third line in a file.

+ -

42

4 4

Operations with numbers: addition and subtraction.
nothing or better separating blanks

Concatenation of strings.
Examples: Two strings "aa" and "bb" can be concatenated via "aa""bb" to "aabb". The
strings in two variables x and y can be concatenated and assigned to, e.g., a variable z via
z=x y. Here, the blank is needed as a separator.

> >. < <= == != !-
Comparing expressions, in particular comparing numbers: greater, greater or equal, less, less

:or equal, equal, not equal, matches pattern, does not match pattern. The first six operators
are regularly used to compare numbers. They can also be applied to strings. The last four
operators are regularly used to compared strings. If it is not clear what sort of comparison
is meant, then awk uses string comparison instead of numerical comparison.
(Note: In particular, the expression $0, which stands for the whole input record, is seen as a
string. If this string has the format of a number, then $1 picks the number out of the string
so to speak. With the operators (matches) ! (matches not), one can, e.g., test variables
and, in particular, fields against patterns.)

' !

Logical not. The logical not has to preceed an expression. In particular, it has to preceed
an address in order to negate it. (This is different from the notation of the "not" command
! in sed.)

Example: awk ' !/".?(..)?(....)?(........)?(.....)?$/' prints every line with more
than 20 characters.

taz

Logical and.
I I

Logical or. (Note: Keep in mind that the logical or is not exclusive, i.e., truel I true yields
true.)

+- *- /- %-
= is the assignment operator. var=result sets var to (the content of) result. The other
assignment operators exist just for notational convenience. var+=d sets var to var+d. The
statement var+=d is exactly the same as the statement var=var+d var-=d sets var to
var-d. Etc.

The list given above defines the order of precedenee in algebraic expressions. To illustrate,
suppose that x is a variable that holds the number 2. Then y=++x*x sets x to 3 before it is
used because the sequence ++ is to the left of x. Consequently, y is set to 9. On the other
hand, y=x++*x sets x to 3 after the variable is used for the first time because the sequence
++ is to the right of the first x. Since awk scans algebraic expressions from left to right and
multiplication has lower precedence than ++, the variable is increased before the second x
and the product are evaluated. Consequently, y is set to 6. Finally, y=x*x++ sets y to 4. To

43

45

give another example, x++==x always yields false as logical value.
Example: The following program counts the different vowels in a file and displays the

result as list of type/token ratios. We shall refer to it as countVowels in the sequel.
! /bin/sh
sed 's/ [aeiou] //g;
/g' $1 I\

awk 'BEGIN { n["a"]=n["e"]=n["i"]=n["o"]=n["u"]=0; OFS="\n"

{ n[$1]++

:END { print "a " n["a"],"e " n["e"] ,"i " n["i"] ,"o " n["o"] ,"u " n["u"]

The first sed program removes all non-vowels from the source file $1 and isolates vowels
by putting them on separate lines. We use an associative array n to count the number of
occurrences of every vowel. We set the array elements to 0 in the first line of the program
such that 0 and not the empty string is printed in case no corresponding vowel occurred. In
the second line, e.g., n["a"] is increased by one if the line contains the string a. The final
print statement prints the string ablank, then the content of the variable n["a"], then an
output field separator (i.e., a newline character), then the string eblank, then the content of
the variable n ["e"] . Etc.
Note: countVowels shows, in principle, how one can obtain statistics over occurrence
of patterns using awk. Patterns such as phrases that contain a variable (e.g., /In .*,?
foreigners are many!, to search for a common mistake of Japanese students of English
[Webb 1992, p. 82]) can be identified with sed and/or awk and accounting is done in the way
outlined in the preceeding example. Note however, that a probabilistic profile (frequency
analysis) of a text in regard to letters is characteristic for languages. This can be used to
decypher elementary cryptosystems (cf. [Koblitz 1994, p. 57]). We shall give a simpler ver-
sion of the awk program in this example in the section about looping over associative arrays
with a for statement (see the program countFrequencies below).

The precedence of multiplication over addition, polynomial expressions over inequalities,
and inequalities (which can be understood as logical statements) over Boolean operations,
give computational-algebraic expressions the format which is standard in, e.g., computer
science or mathematics. After a computation is finished, a result can be assigned to a new
variable through the assignment operator =. This explains the low precedence of the latter.

; When in doubt, one can use parenthesis to enforce any desired precedence.
Example: The following sh program computes the negative value of the frequencies of

"items" (e.g., words or phrases) in a list of type/token ratios. This is useful in computing
"distances" of a list of type/token ratios, if the latter are seen as vectors. We shall refer to
it as computeNegativeValue in the sequel.

#!/bin/sh
awk '{ $(NF)=-$(NF) ; print 1' $1

44

4 6

The sign of the last field is reversed. After that the pattern space is printed.
The operations listed above allow numerous other applications. Examples are all types of

accounting where the lines from which numbers are extracted are picked by patterns. A file
containing, among other things, lines of the form

GRADES : : student1 gradel grade2 . . .

can be used together with $1, $2, $ (NF) to produce final grades and statistics over
homework, exams etc. In a similar fashion, one can use (multi-line) records to maintain

:any sort of accounts in a spreadsheet-like fashion. Such an approach saves the cost of
buying software, allows the user to define a convenient format and allows the user to define
any sort of operation. Finally, the format and the tables can be checked and maintained by
machine automatically using awk together with cron. (Consult man cron and man crontab.)

This includes automatic notification of due dates for certain entries in files and automatic
generation of textual and graphic display of data. The latter can be achieved by generating
properly formatted source files for, e.g., groff, latex or mathematica.

5.14 Functions

awk has the following built-in functions:
int sqrt exp log

int (expression) is the integer part of expression. sqrt () is the square root function. exp()

is the exponential function to base e and log 0 is its inverse. Consult [Lang 1983] for more
details on these mathematical functions.
Example: In a positive or negative floating point number, everything after the period is
I truncated by int. Consequently, int (-4 . 2) yields ,-4.

length (string)
returns the length of string, i.e., the number of characters in string, length is length ($0) .

Example: awk ' length>20 ' prints all lines that contain more than 20 characters.
index (bigstring , substring)

This produces the position where substring starts in bigstring. If substring is not contained
in bigstring, then the value 0 is returned. This allows analysis of fields beyond matching a
subst ring.

substr (string ,ni n2)
This produces the n to the nh character of string. If n2 >length (string) or if n2 is omitted,
then string is copied from the nti, character to the end. This allows one to cut pieces out of
strings.
Example: awk ' / since / { print substr ($0 , index ($0 , " since ")) ' prints from
lines containing the word "since" the tail of the line starting in that word.

split (string , name , "c")

This splits string at every instance of the separator character c into the array name and

45

47

returns the number of fields encountered.
string = sprintf (format , expri , expr2 ...)

This sets string to what is produced by printf format , expri , expr2
split (string,name,"c")

Example: The following sh program determines the sum, the average and the standard
deviation of the frequencies of items in a list $1 of type/token ratios.
C/bin/sh
sed '/-[]*$/d' $1 I\

4wk s1+4(NF) ; s2+4(NF)4(NF)
END print s1 , sl/NR , sqrt(s2*NR-sl*s1)/NR

The sed program removes white lines in the source file which may occur. s1 and s2 are
initiated automatically to value 0 by awk. sl+=$(NF) adds the last field in every line to s1.
s2+=$(NF)*$(NF) adds the square of the last field in every line to s2. Thus, at the end

c--41nR_of the program we have s1=2_ 1$ (NF),,, and s2=2 1($ (NF))2. In the END-line, the sum
s1, the average sl/NR and the standard deviation (cf. [Gänssler & Stute 1977, p. 81]) are
printed.

Example: Suppose that a source file $1 contains whole sentences per line. Then the
following sh program sorts non-white lines in $1 into files in correspondence to logarithm to
base 2 of the length of the sentences (i.e., number of fields). This yields a crude classification
of sentences. If $1=fName, then, e.g., "We are all equal." is put into fName.logLength2.

C/bin/sh
awk '/[-]/{L=int(log(NF+0.1)/log(2));F="'W.logLength" L;print >F1' $1

is computed as the integer part of the logarithm to base 2 of NF+0.1 in accordance with the
formula log2(x) = loge(x)Iloge(2). The term +0 .1 is used here to avoid round-down errors,
i.e., log2(8) may be computed to be int(2.999)=2 by int (log(NF)/log(2)) if NF=8. F is
the filename which is generated through string concatenation.

Example: Suppose that lines in a file contain two fields separated by the character #. The
first field $1 contains German phrases and the second field $2 contains the corresponding
English translation. One may be interested in comparing the length (in words) of the Ger-
man originals vs. the length of the English translation. The construct
iGermNumb=split($1,GermPhrase," ") would count the number of fields (words) in the Ger-
man original. In addition, the array GermPhrase would be created by awk. GermPhrase [1]
would contain the first word in the German phrase, and GermPhrase[GermNumb] would con-
tain the last word. EnglNumb=split($2,EnglPhrase, " ") would allow the comparison.

46

4 8

5.15 Patterns II (patterns involving algebraic-logical expressions and functions)

Address patterns in awk that select the pattern space can be
1) regular expressions as described above similar to regular expressions in sed,

2) algebraic-computational expressions involving variables and functions, and
3) Boolean combinations of anything listed under 1) or 2).
Essentially, everything can be combined in a sensible way to customize a pattern.

Examples: awk 'NR<43' prints the first 42 lines in a file. This shows the typical way
how to handle line numbers in address patterns.
awk '$1+$2!=$3+$4' prints all lines where the sum of the first two fields does not equal

the sum of the third and fourth field. (Recall that a string which does not represent a number
has numerical value 0.)
awk '$1>$2 ' prints all lines where the first field is greater than the second field. If $1 and
$2 cannot be clearly recognized as numbers, then they are compared as strings.

Such short appropriately designed awk programs can be used effectively to check files for
inconsistencies. For example, whether or not due entries in a file have been made. Or whether
or not a budget documented in a file is balanced. Such checks can be invoked automatically
at specific instances in time using cron.

Example: awk ' /- [-A-Za-z] *I [-A-Za-z .] / tac NF>15 ' prints all lines starting
with the word "I" which contain more than 15 fields.
identifyBeginI fileName I awk 'NF>15' does the same.
Example: The following sh program is another version of adj ustBlankTabs.

#!/bin/sh

awk 'NF>0 { $1=$1; print ; NF==0 { print "" 1' $1

The statement $1=$1 manipulates the pattern space containing $0 for non-white lines. Then,
$0 is printed through print field-wise using OFS=blank by default. Thus, all fields are
separated by exactly one blank. In case of a white line, an empty line is printed.

Example: The following sh program switches lines in a file. Lines 1 and 2 are exchanged,
then lines 3 and 4 are exchanged, etc. We shall refer to it as switchLines in the sequel.

#!/bin/sh

awk 'NR%2==1 { oddLine=$0
;

NR°42==0 { print ; print oddLine }' $1

If the line number is odd, then the line is stored in the variable oddLine. Otherwise, the
current line is printed before the previous line is. Note that for a file with an odd number
of lines, the last line is lost.

Example: The following sh program computes the absolute value of the frequencies of
items (e.g., words or phrases) in a list of type/token ratios. This can be used to compute
e-distances of such lists using
computeNegativeValue introduced above and vectorAddition listed below. It can be used

47

4 9

to generate a distance map of students in a class in regard to vocabulary usage, if the usage
of words by every student is documented in a list of type/token ratios. We shall refer to it
as computeAbsoluteValue in the sequel.

#!/bin/sh

awk l(NF)<0 { $(NF)=-$(NF) 1 ; { print }' $1

If the last field is negative, then its sign is reversed. Next, every line is printed.
Example: The following sh program cuts away low frequencies that are below a limit value

:$2 which is argument to sh if a file $1 is a list of type/token ratios. We shall refer to it as
filterHighFrequencies in the sequel. It can be used to gain files with very common words
that are functional in the grammatical sense but not in regard to the context.

#!/bin/sh

awk l(NF)>=12'+0' $1

$2 stands for the second argument to sh. If this program is invoked with
filterHighFrequencies fname 5, then sh passes $ (NF)>=5+0 as selecting address pattern

!to awk. Consequently, all lines of fname where the last field is larger than or equal to 5 are
printed.

Example: The next example is introduced to show the use of the functions index() and
substr0 in awk. It can be used to generate all possible sequences of consecutive words of
a certain length in a file. In the sequel, we shall refer to it as context. Suppose that a
file $1 is organized in such a way that single words are on individual lines (e.g., the output
of a pipe leaveOnlyWords I oneItemPerLine). context uses two arguments. The first
argument $1 is supposed to be the name of the file that is organized as described above. The
'second argument $2 is supposed to be a positive integer, context then generates "context"
of length $2 out of $1. In fact, all possible sequences of length $2 consisting of words in $1
are concatenated and printed. Note that context can be seen either directed or as symmetric
in the sense that the first word in one of the concatenated strings is in context to other words
in the string.

#!/bin/sh

awk 'BEGIN { range='$2'+0 }

,NR==1 { c=$0 }; NR>1 { c=c " " $0 }

NR>range { c=substr(c,index(c," ")+l) 1; NR>=range { print c }' $1

Suppose $2=11. In the first line of the awk program, the variable range is then set to 11.
In the second statement of the awk program, the context c is set to the first word. In the
third statement, a new word other than the first is appended to c separated by a blank.
The fourth statement works as follows: after 12 words are collected in c, the first is cut
away by using the position of the first blank, i.e.,. index(c," ") and reproducing c from
index (c , " ")+1 until the end. Finally, the context c is printed, if it contains 11 words.

48

5 0

Note that the output of context has, essentially, eleven times the size of the input for
the example just listed. It may be advisable to incorporate any desired, subsequent pattern
matching for the strings that are printed by context into an extended version of this program.

Example: The following program gives an idea how to implement an inverse Polish notation
calculator. It shows the combined use of address patterns and numerical computations.

#!/bin/sh

awk 'BEGIN { x1=x2=x3=x4=0
/-[0-9]+$/ { x4=x3 ; x3=x2 ; x2=x1 ; x1=$0 };
/-\+$/ x1+=x2 ; x2=x3 ; x3=x4 1

/-e$/ { xl=exp(xl) };

{ print xl , x2 , x3 , x4 }'

First, the four register stack (xl,x2,x3 , x4) with bottom x 1 is set to 0 in order to have a nice
print of the stack all the time. If a positive integer is entered (checked by /- [0-9] +$/), then
a shift upwards is made in the stack storing the integer in xl and losing x4. Observe the
.necessary inverse order of the assignments. If + (checked by /- \ +$/) is entered, then xl and
1x2 are added and stored in x1. The stack is shifted downwards retaining x4. If the letter e

(checked by /-e$/) is entered, then the bottom of the stack is exponentiated. Finally, the
stack is printed after every input. It is a good exercise to extend the above to include the
full range of arithmetic operations, more types of signed integer and real numbers including
12.34E5 meaning 12.34 105, more functions, e.g, log2 and trigonometric functions, arbi-
trary long, dynamic stack using an array, programming capability using another array, and
commands to change from computing mode to programming mode. Also, consult man dc.

5.16 Matching fields of the input record

Very important is that fields of the input record can be matched using (matches) and !
(matches not). If fields are matched, then and $ stand for the begin and end of the field.

Example: The following program selects lines whose last field is UK, U.K, UK. or U. K . and
changes it to United Kingdom before printing the line.
#! /bin/sh

awk l(NF)-/-1J\.?K\.?$/ { $(NF)="United Kingdom" ; print }' $1

Observe that $ (NF) -/-UK$/ is as good as $ (NF)=="UK" .

Note the equivalence of the following address patterns and conditionals. /MUSE/ is the
same as $0-/MUSE/. ! /MUSE/ is the same as $0 ! -*MUSE/. This sort of suppression of the
operator for $0 holds in general for address patterns but not in regard to conditionals in the
if, for, resp. while statement. In connections with these, one has to use -.

49

51

5.17 Address ranges

As in sed, one can specify a first address pattern where actions begin and a final pattern
where actions end. These can be complicated conditionals involving all of the components
mentioned in the last section. However, address patterns are usually quite simple.

Example: Suppose that code is inserted in a document starting with a line containing up
to white characters only \BC and ending with a line containing up to white characters only
\EC. Then, the following program prints all code and the framing \BC and \EC lines.
;# ! /bin/sh

awk '/-[]*\\BC[]*$/,/-[]*\\EC[]*$/' $1

The program uses the address range

/-[]*\\BC[]*$/,/-[]*\\EC[]*$/

starting with the address pattern /- []*\ \BC []*$/ and ending with
/- []*\\EC[]*$/.

5.18 Elementary control structures (next exit)

awk has the usual control structures: if, for and while. In addition to these, next and
exit are useful.

next

is a statement that starts processing the next input line immediately from the top of the
awk program. next is the analogue of the b command without address in sed -n or the d

Icommand in sed.

Example: / address/ { next } causes the termination of the current cycle, if the pattern
space matches address. Such a thing is very useful, if one wants to exclude certain lines from
being processed by subsequent actions in the cycle.

Example: The following program is another version of switchLines.
#!/bin/sh

awk 'NW/02=1 { oddLine$0 ; next }; { print ; print oddLine }' $1

If the line number is odd, then the line is stored in the variable oddLine in the first statement.
After that, the cycle is left through next, and the second statement of the awk program is
deliberately missed. If the line number is even, then the address pattern in the first statement
of the awk program is evaluated to false. Consequently, the second statement is reached and
the current line is printed before the previous line cs.

exit

is a statement that causes awk to quit immediately. exit is the analogue of the q command
in sed.

50

5 2

Example: / address/ { quit causes the termination of the awk program, if the pattern
space matches address.

5.19 The if statement

The if statement looks the same as in C [Kernighan & Ritchie 1988, p. 55]:
if (conditional) { actionl }
else { action2 }
conditional can be any of the types of conditionals we defined above for address patterns
involving Boolean combinations of comparison of algebraic expressions including the use of
variables. Note, however, that regular expressions /regExpr/ that are intended to match
resp. not intended to match the whole pattern space $0 have to be used together with the
matching operator -. Thus, one has to use $0- /regExpr/ resp. $0! / regExpr/ . The else

part can be omitted or can follow on the same line. action I and action2 can be spread over
several lines. The corresponding closing braces I can follow on additional lines.

Example: To illustrate the use of if, we list another two versions of switchLines.
'#!/bin/sh

awk '{ if (NR%2==1) { oddLine=$0 } else { print ; print oddLine } 1' $1

This version is identical to the first two up to notation. The next version illustrates the use
of a flag variable (f).

#Vbin/sh

awk '{ if (f==0) { oddLine=$0 ; f=1 }

else { print ; print oddLine ; f=0 1' $1

When the first line of the input is processed, then the variable f is initiated to 0. Thus, the
conditional f==0 yields true and the first part of the if statement is executed. In it, the line
is stored in the variable oddLine, and f is set to 1 making sure that the conditional f==0
fails for the next line (with even line number). If the conditional fails, then the else part of
the if statement is executed. The current line (with even line number) is printed before the
previous line is, and f is set to 0 making sure that f==0 matches while processing the next
line.

5.20 The for statement I (standard form of loops)

The for statement also looks the same as in C [Kernighan & Ritchie 1988, p. 60]:
for (start ; conditional ; expression) { statements

Note the semicolons ; . First, the expression start is executed. Then, conditional is checked.
conditional is exactly as conditional in the if statement. If found to be true, then statements

51

53

and after that expression are executed. Then, the cycle conditional-statements-expression
is repeated until (hopefully) conditional fails, statements and the closing brace I can be
spread over several lines. The individual statements in statements are separated by newlines
or semicolons.

The most typical loop is looping over the fields in the pattern space as follows:

for (f=1;f<=NF;f++) { actions with $(f) };

First, the variable f is set to 1. Then, the actions are executed with the field variable $ (1).
After that f is incremented to 2 by f++. If there was more than one field, then the actions
are executed with $ (2). This cycle (increment of f, actions with $ (f)) is continued until f

is set to NF+1 scanning all fields from left to right.
Note that $(f-1) is the field preceeding $ (f), if f>2. Similarly, $ (f +1) is the field

following $ (f), if f<NF. In contrast to the above, $f-1 is the value of $f minus 1.
One can of course loop backwards from right to left over all fields using

for (f=NF;f>=1;f--) { actions with $(f) };. Or one can loop over every second field
using
for (f=1;f<=NF;f+=2) { actions with $(f) };.

Example: The following example is another version of addBlanks.

#!/bin/sh

awk 'BEGIN { ORS=" }

NF>0 ffor(f=1;f<=NF;f++){ print " " $(f) " " }I; { print "\n" }' $1

In a non-white line, every field is printed with framing blanks in the first awk statement in
the last line. Since ORS is set to the empty string, the print statements do not generate
new lines. As a price for that, a terminating newline character must be printed separately
after the for loop. The latter is done for every line of input in the last awk statement.
Consequently, only a newline character is printed for white lines.

Example: The following program is another version of findFourLetterWords. It shows a
typical use of for and if, i.e., looping over all fields with for and on condition determined
by if taking some action on the fields.

! /bin/sh

leaveOnlyWords $1 \

iawk 'ffor(f=1;f<=NF;f++){ if ($(f) [A-Za-'z] [a-z] [a-z] [a-z]$/){$(f)="} 11

Ir 1/ { print NR , $0 } ' I adjustBlankTabs

If a field $ (f) does not match the pattern / [A-Za-z] [a-z] [a-z] [a-z]$1, then it is set
to the empty string in the for loop. In case the pattern space stays non-white after this
procedure, it is printed with a leading line number. Finally, blanks are properly adjusted by
adjustBlankTabs.

Example: The following program is a better version of context. This version allows the
concatenation of any sort of lines, not only lines that contain single words.

52

5 4

#!/bin/sh

awk 'BEGIN f r='$2'+0; ORS=""

f line[NRU]40

NR>=r for(c=1;c<=r;c++){ print line[(NR+c)%r] " " 1; print "\n" 1' $1

In the first line of the awk program, the range r is set to the integer $2 delivered by sh. The
latest input line is always stored in the array line. The index for array changes cyclically
modulo r. If NR>r, then the elements in line are cyclically overwritten. Thus, there are
at most r elements in line. If NR>r, then the array line is printed by the for loop in
proper order. The latest element read is printed at the end since (NR+r)%r=NRY.r. Since

ORS="", separating blanks have to be listed explicitly, and a trailing newline character has
to be printed separately after the for loop.

5.21 The for statement II (looping over associative arrays)

Let array [index] be an associative array where at least one string index has been used
and thus array [index] has been set at least once in the awk program. The second form of
the for statement is:

for (ind in array) f statements I

Again, statements I can be spread over several lines. If this form is used, then the (hopefully
unused) variable ind is created and loops over the strings that were used as index with array

in an undetermined order (randomly from the observers point of view). However, all strings
for index that were used will be assumed by the variable ind exactly once. For every value

, of ind, statements is executed and ind is available with that particular value in that period
of time.

Example: The next program is very useful for generating statistics. It is a simpler form of
a program in [Kernighan & Pike 1984, pp. 123-124]: If the input is formatted, e.g., in such a
way that every line contains exactly one word, then the output is a list of word frequencies
encountered. The list of type/token ratios which: is produced is arranged alphabetically.
This short program yields the same results as, e.g., the rather long SNOBOL program given
in [Butler 1985, pp. 206-208]. We shall refer to it as countFrequencies in the sequel.

'#!/bin/sh

awk 'NF>0 number[M++
END { for(string in number){ print string ; numberEstring] II' $1 I sort

The first line uses the string $0 as an index. $0 may contain blanks or tabs. Every time
the string $0 occurs, the counter number [$0] is increased by 1. This creates the associative
array number whose indices are the strings $0 on the lines which are counted by the value
number [$0] . The for loop at the end of the program prints the statistics (i.e., number

53

55

of occurrences) of the strings (items) in the type/token format which is then sorted by
sort. The UNIX command sort puts the lines in the resulting list of type/token ratios in
lexicographical order for words and phrases (which are presumably to the left of the final
number in the line). Consult man sort. There exist many options for sort. One can, e.g.,
sort lines depending upon the numerical value of the second field. The next two examples
show the potential of countFrequencies.

Example: The next program implements another, shorter version of countVowels. As in
the previous version, vowels are put on separate lines by the first sed program.

! /bin/sh

sed ' s/ [aeiou] //g; s/ [aeiou] /&\

/g' $1 I countFrequencies

Example: The next program implements a word frequency count in a file $1. We shall
refer to it as
countWordFrequencies in the sequel.

,# ! /bin/sh

leaveOnlyWords $1 I oneItemPerLine I mapToLowerCase I countFrequencies

Application: Let us show how countWordFrequencies can be used to implement a pro-
gram that measures lexical density. [Butler 1985] provides lists of grammatical and am-
biguous words (pp. 219-220) and a 216-line SPITBOL program to calculate lexical den-
sity. Suppose a combined list of grammatical and ambiguous words is kept in a file named
unimportantWords and the text to analyze is kept in a file theTextFile. In addition, sup-
pose that unimportantWords contains only one string of non-white characters per line. Then
one can proceed as follows:

countWordFrequencies theTextFile I \

awk 'FILENAME=="unimportantWords" { n [$1] =1 ; next };

n [$1.] ==0 ' unimportantWords

countWordFrequencies theTextFile performs a word frequency count on the whole of
theTextFile. The result of this is feed as second argument into the final awk program.
As long as this awk program reads its first argument unimportantWords, it only creates an
iassociative array n indexed by the words in unimportantWords with constant value 1 for the
elements of the array. If the final awk program reads the standard input containing the
result of the word frequency count, then only those lines containing the field (word) $1 are
printed where n [$1] is initiated to zero by the conditional n [$1] ==0 which is then found to
be true. For words from unimportantWords, the array element n [$1] already has the value
1 and the conditional n [$1] ==0 evaluates to false which means that the lines containing
them are not printed.

54

56

5.22 The while statement

The while statement also looks the same as in C [Kernighan & Ritchie 1988, P. 60]:
while (conditional) { statements }

Again, statements I can be spread over several lines, statements is executed as long as
conditional stays true.

,5.23 Implementing set and vector operations

In this section, we shall give a few additional examples to illustrate the use of the awk

constructs introduced above and to illustrate the use of pipes.
Set and vector operations have been useful in [Schmitt & Christianson 1998]. We have been

interested in measuring students' progress in the use of global and specialized vocabulary.
The University of Aizu is a "Computer Science University." Thus, we were interested in
measuring the progress of students in regard to certain target lists of words [Orr et al. 1995]
that Japanese students should use and understand in order to communicate in the university's
working language in their field of study. An alternative is to measure progress in regard to
a general word list, such as the General Service List [Nation 1990]. Our procedure used set
intersection. Also, it is useful to have an operation set union (sort -u) to collect, e.g., the
vocabulary that is used by all students. We have used set as well as vector operations to
implement various selection schemes.

Note that by maintaining a small list of words on-line for use in comparison with students'
writings the teacher is afforded maximum flexibility. So, for instance, the teacher can add

, or delete words from the list, depending on the students' needs.
Example: The next program implements vector addition. We shall refer to it as

vectorAddition in the sequel. If aFile and bFile are lists of type/token ratios, then it is
used as cat aFile bFile I vectorAddition. It can be used to measure the cumulative
advance of students in regard to vocabulary use.
#! /bin/sh

adjustBlankTabs $1 I\

awk 'NF>0 { n4(NF); $(NF)="; sum[$0]+=n 1

END { for (string in sum) f print string sum[string] 1' I sort

In the first line of the awk program the last field in the pattern space $0 is first saved in the
variable n before the last field is set to the empty string retaining a trailing blank (*). An
array sum is generated which uses the altered string $0 in the pattern space as index. Its
components sum [$0] are used to add up all corresponding numbers n. Recall that sum [$0]
is initiated to 0 automatically. Finally, the associative array with looping index string is

printed together with the sums and sorted into standard lexicographical order. Note that
there is no comma in the print statement in view of (*).

55

57

Example: The next program implements set intersection. We shall refer to it as
setIntersection in the sequel. A set is, by design or definition, represented as a file where
the lines represent the distinct elements of the set. If aFile and bFile are non-empty sets
in the sense just defined, then it is used as setIntersection aFile bFile. Note that

adjustBlankTabs fName I sort -u converts any file fName into a set. In fact,
sort -u sorts a file and only prints occurring lines at most once.

#!/bin/sh

awk 'FILENAME==" '$1 ' " { n [$0] =1 ; next }; n [$0] ==1 ' $1 $2

Suppose this command is invoked as setIntersection aFile bFile. This means
$1=aFi le and $2=bFile in the above. As long as this awk program reads its first argument
aFile, it only creates an associative array n indexed by the lines $0 in aFile with constant
value 1 for the elements of the array. If the awk program reads the second file bFile, then
only those lines $0 in bFile are printed where the corresponding n [$0] was initiated to 1
while reading aFile. For elements which occur only in bFile, n [$0] is initiated to 0 by the
conditional which is then found to be false. Note that changing the final conditional n[$0]==1

' to n [$0] ==0 implements set complement. If such a procedure is named setComplement, then
setComplement aFile bFile computes all elements from bFile that are not in aFile.

5.24 Implementing a vocabulary trainer

The next sh program shows how to implement a prototype of training software for vocab-
ulary. We shall refer to it as vocabularyTrainer in the sequel.

40/bin/sh

awk 'BEGIN { print "To start, please, type RETURN."

FILENAME=="11"MNF==2 { quest[++c]=$1 ; answer[c]=$2 ; next 1

$0==answer[c] { c-- }

c<1 { exit

{ print "Please, translate the following word: ",quest[c] }' $1

This program is activated as

vocabularyTrainer leSsonFile

in a terminal, where lessonFile is a file containing pairs of words separated by blanks. The
first column represents the question. The second column represents the answer or translation.
A typical entry is as follows:
leader Leiter

First, the string To start, please, type RETURN. is printed. That is what the user sees
in the terminal. Since $1=lessonFile is read first, the second line of the program is active

56

58

first. This is so to speak the learning phase of the program. The counter c indexes questions
and answers which are learned (memorized) by the program from lessonFile. Note that
through the next statement the program never advances further in the cycle for a line from
lessonFile. After reading lessonFile is finished, the input comes from standard input
which is the terminal by default. First, the user hopefully types (RETURN). This empty
line is not matched by $0==answer[c]. c is at the highest possible value first. Thus, the
last word is asked to be translated first by the fifth line of the awk program. If the user
provides a correct answer to a question, then the counter is decremented by 1. If c=0, then

; the program exits at the top of lessonFile. Otherwise, the next query is presented (with*
the preceeding pair in lessonFile).

Possible extensions of this program are to quiz a student on the vocabulary repeatedly
and to keep track of the user's performance in order to asks difficult words more often.
Altogether, this shows that with relative ease one can develop prototype software and a sur-
rounding/supporting file system with the tools presented in this paper. In the development
of education software, it is first more important to have a carefully designed database rather
than a fancy display.

6 Further applications

6.1 Punctuation check and other applications to teaching English as a foreign lan-
guage

This section uses examples specific to teaching English as a foreign language to native
speakers of Japanese. Of course, any language teacher could modify the examples outlined
here to fit a given teaching need.

Some of the first mistakes a teacher of English to Japanese students meets are purely me-
chanical: spelling and punctuation, especially when the students' writing is done on comput-
ers with English keyboards (as is the case at The University of Aizu). Japanese university
students generally have little experience typing (in Japanese or English), and mechanical
mistakes are abundant. Spelling errors can be corrected with the UNIX spell program.
tWe have included in [Schmitt & Christianson 1998] automatic return of an evaluation with
spell of the homework submitted via electronic mail in order to force students to use spell

prior to submitting. We have also included a list of Japanese words that are acceptable
when used in English text. Consult man spell for more details about spell. In [Schmitt
& Christianson 1998], we reformat the result of the spell check which is sent back to the
student using sed and awk.

More difficult to correct and teach is English punctuation, the rules of which, regarding
spacing in particular, are different from Japanese. In fact, written Japanese does not include

57

59

spaces either between words or after (or before) punctuation marks. At first, this problem
may seem trivial. However, hours of class time spent discussing punctuation and yet more
hours of correcting persistent errors manually tend to wear on teachers. Persistent errors
in English punctuation have even been observed by one of the authors in English printing
done by the Japan Bureau of Engraving, the government agency that typesets and prints
the entrance examinations for Japanese universities. Clearly, if English punctuation rules
(i.e., spacing rules) are not taught explicitly, they will not be learned.

A teacher using an automatic punctuation-correcting program such as the one in [Schmitt
;& Christianson 1998] described below is able to correct nearly all of the students' punctuation
problems, thus presenting the spacing rules in an inductive, interactive way. We remark that
a punctuation-correcting program is one of several tools described in [McDonald et al. 1988].

As a database, we have defined an exclusion matrix of forbidden 2-sequences (i.e, ordered
pairs) of characters. During the setup phase of the system used in [Schmitt & Christianson
1998], this matrix is translated into a sed program which scans the essays submitted by
students via electronic mail for mistakes. These mistakes are marked, and the marked essays
are send back to the individual students automatically. The translation into a sed program
.during setup works in the same way as the generation of an elimination program shown
above. The resulting marking program is very similar to markDeterminers. Suffice it to say
that this automated, persistent approach to correcting punctuation has been an immediate
and dramatic success [Schmitt & Christianson 1998].

Finally, let us remark that our procedure to identify mistakes in punctuation can also be
used in analyses of punctuation patterns, frequency, and use, as in [Meyer 1994].

6.2 Isolating sentences

In [Schmitt & Christianson 1998], one of the tools reformats the essays submitted by stu-
dents in such a way that whole sentences are on single lines. In the examples given above,
we have already demonstrated that such a format is very useful in two ways:
Goal 1: To select example sentences which match certain patterns and are actually submit-
ted by students. The teacher can then write any number of programs that search for strings
identified as particularly problematical for a given group of students. Furthermore, once
those strings have been identified, the sentences containing them can be saved in separate
ifiles according to the strings and printed as lists of individual sentences. Such lists can then
be given to students in subsequent lessons dealing with the problem areas for the students to
read and determine whether they are correct or incorrect, and if incorrect, how to fix them.
Goal 2: To analyze example sentences. One example is to measure the complexity of gram-
matical patterns used by students using components such as markDeterminers. This can be
used to show the decrease or increase of certain patterns over time using special sed based
search programs and, e.g., countFrequencies as well as mathematica for display.

Our procedure of identifying sentences achieves a high level of accuracy without relying on

58

60

proper spacing as a cue for sentence division, as does another highly accurate divider [Kaye
1990].

The following shows part of the implementation of sentence identification in [Schmitt &
Christianson 1998]:

Wbin/sh
hideUnderscore $1 I hideAbbreviations I hideNumbers I adjustBlankTabs I\

The implementations of hideUnderscore and hideAbbreviations have been discussed
' above. Compare also the listing of leaveOnlyWords given above. hideNumbers replaces,
e.g., the string $1.000.000 by $1_000_000, thus, "hiding" the decimal points in numbers.
The next sed program listed below defines the ends of sentences. This is the most important
component of the pipe which we show for reference.

sed
\4/g

s/ \ ((-]1) \ " . !?1[]1).!?]*\)\([!?]\)\([]})]*\)$/\1\2\3__\2__/s/\([11),\»,,.,?][]}),\».,.,?]*\.[]}),\,,1*\)\([].1),\,,H.,?]\)/\1____\
1\2/gs/[-]}),\».,.,,101).,\,,H.,?]*\.[]}),\»..]*$/&__._/, I\

In the first two sed commands, the ending of the sentence for "?" and "!" are defined. The
letter ending the sentence is represented by \2. An additional newline character is introduced
and the true ending of a sentence marked with \2L_. The last two substitution rules for
marking sentences that end in the period are different than those for "?" and "!" . In the
awk program that follows, we merge lines that are not, marked as sentence endings by setting
the output record separator to a blank. If a line ending is marked, then an extra newline
character is printed.

awk 'BEGIN { ORS=" " }

{ print }

/__[!?.]__$/ { print "\n" }' I\ ...

Next, we merge all lines which start, e.g., in a lower case word with its predecessor since this
indicates that we have identified a sentence within a sentence. Finally, markers are removed
[and the "hidden" things are restored in the pipe. By convention, we deliberately accept
that an abbreviation does not terminate a sentence. Overall, our procedure creates double
sentences on lines in rare cases. Nevertheless, this program is sufficiently accurate for the
objectives outlined above in (1) and (2). Note that it is easy to scan the output for lines
possibly containing two sentences and subsequently inspect a "diagnostic" file.

Let us conclude this section with an application: The string "and so on" is extremely
common in the writing of Japanese learners of English, and it is objected to by most teachers.
From the examples listed above such as identifyBeginI, printPredecessorBecause and

59

81

sortByVowel, it is clear how to connect the output of the sentence finder with a program
that searches for and so on and prints all sentences containing it in a separate file.

In [Webb 1992], 121 very common mistakes made by Japanese students of English are
documented. We point out to the reader that a full 75 of these can be located in student
writing using the most simple of string-search programs, such as those introduced above.

6.3 Judging the readability of texts

Hoey [Hoey 1991, pp. 35-48, pp. 231-235] points out that the more cohesive a foreign
language text, the easier it is for learners of the language to read. One method Hoey
proposes for judging relative cohesion, and thus readability, is by merely counting the number
of repeated content words in the text (repetition being one of the main cohesive elements
of texts in many languages). Hoey concedes though, that doing this by hand, i.e., a "rough
and ready analysis" [Hoey 1991, p. 235] is tedious work, impractical for texts of more than
25 sentences.

An analysis like this is perfectly suited for the computer, however. In principle, any
on-line text could be analyzed in terms of readability based on repetition. One can use
countWordFrequencies or a similar program to determine word frequencies over an entire
text or "locally." Entities to search through "locally" could be paragraphs or all blocks of,
e.g., 20 lines of text. The latter procedure would define a flow-like concept that could be
called "local context." Words that appear at least once with high local frequency are under-
stood to be important. A possible extension of countWordFrequencies is to use spell -x

to identify derived words such as Japanese from Japan. Such a procedure aids teachers in
deciding which vocabulary items to focus on when assigning students to read the text, i.e.,
the most frequently occurring ones ordered by their appearance in the text.

Example: The next program implements a search for words that are locally repeated in
a text. In fact, we determine the frequencies of words in a file $1 that occur first and are
repeated at least three times within all possible strings of 200 consecutive words. 200 is an
upper bound for the analysis performed in [Hoey 1991, pp. 35-48].

#!/bin/sh

leaveOnlyWords $1 1 oneItemPerLine I context 200 1\
;quadrupleWords I countFrequencies

leaveOnlyWords $1 1 oneItemPerLine 1 context 200 generates all possible strings of
200 consecutive words in the file $1. quadrupleWords picks those words which occur first
and are repeated at least three times within lines. countFrequencies determines the word
frequencies of the so determined words.

Note again that context 200 creates an intermediate file which essentially has 200 times
the size of the input. If one wants to apply the above to larger file, then the subsequent
search in quadrupleWords should be combined with context 200.

60

62

We have applied the above procedure to the source file of this document. Aside from
functions words such as the and a few names, the following were found with high frequency:
UNIX, address, awk, character, command, field, format, liberal, line, pattern, program, sed,
space, string, students, sum, and words.

6.4 Lexical-etymological analysis

In [Gordon 1994 the author determined the percentage of etymologically related words
shared by Serbo-Croatian, Bulgarian, Ukranian, Russian, Czech, and Polish. The author
looked at 1672 words from the above languages to determine what percentage of words each
of the six languages shared with each of the other six languages. He did this sort of analysis
by hand using a single source. This kind of analysis can help in determining the validity of
traditional language family groupings, e.g.:

Is the west-Slavic grouping of Czech, Polish, and Slovak supported by their lexica?
Do any of these have a significant number of non-related words in its lexicon?
Is there any other language not in the traditional grouping worthy of inclusion based on

the number of words it shares with those in the group?
Information of this kind could also be applied to language teaching/learning by making

certain predictions about the "learnability" of languages with more or less similar lexica and
developing language teaching materials targeted at learners from a given related language
(e.g., Polish learners of Serbo-Croatian).

Disregarding a discussion about possible copyright violations, it is easy today to scan a
text source using a European type alphabet into computer obtaining automatically a file
format that can be evaluated with a machine and, finally, do such a lexical analysis of
sorting/counting/intersecting with the means we have described above. The source can be
a text of any length. The search can be for any given (more or less narrowly defined) string
or number thereof. In principle, one could scan in (or find on-line) a dictionary from each
language in question to use as the source-text. Then one could do the following:
1) Write rules using sed to "level" or standardize the orthography to make the text uniform.
2) Write rules using sed to account for historical sound and phonological changes. (Such
rules are almost always systematic and predictable. For example: the German intervocalic
"t" is changed in English to "th." Exceptional cases could be included in the programs

'explicitly. All of these rules already exist, thanks to the efforts of historical linguists over
the last century (cf. [Fox, 1995]).

Finally, there has to be a definition of unique one-to-one relations of lexica for the languages
under consideration. Of course, this has to be done separately for every pair of languages.

61

63

6.5 Corpus exploration and concordance

The following sh program shows how to generate context of words from a file $1. In this
example, two words are related if there are not more that $2-2 other words in between them.
$2 is supposed to be a strictly positive integer and the second argument to the program. If
one so desires, then one could eliminate "unimportant" words from the text first. This sort
of elimination procedure by automatically generated programs has been illustrated above in
eliminateList.

`#!/bin/sh

leaveOnlyWords $1 I oneItemPerLine I mapToLowerCase I context 2 I \

awk '{ for (f=2;f<=NF;f++) { print $1,$(f) 1' I countFrequencies

If a file contained the strings (words) aa, ab, ac, zz and $2=6, then the first line of output
(into the pipe) of the first line in the above program would be aa ab ac ad ae af. The
awk program in the second line would then print aa ab, aa ac, . aa af on separate lines.
The occurrence of such pairs is then counted by countFrequencies. This defines a matrix
Md of directed context between the words in a text. One can obtain a symmetric context
matrix M, using the formula

mdtransp.se

Words word1 and word2 are distant or unrelated, if the frequency of the pair (wordi,word2)
in either Md or M, is low. Such a distance map :can be displayed graphically using the
ListDensityPlot command in mathematica. Note that building concordances, in particular
for the Bible, is a very old endeavor. A search engine for concordance in Bible verses can be

, found on the internet in [Woods 1995].
Applying the procedure listed above to the source file of this document and filtering

out low frequencies using filterilighFrequencies 20 the following were found among a
long list containing otherwise mostly noise: (address pattern), (awk print), (awk program),
(awk sed), (echo echo), (example program), (hold space), (input line), (liberal liberal), (line
number), (newline character), (pattern space), (print print), (program line), (range sed),
(regular expressions), (sed program), (sh awk), (sh bin), (sh program), (sh sed), (string
string), and (substitution command).

Using the simple program listed above or some suitable modification, any language re-
searcher or teacher can conduct basic concordancing and text analysis without having to pur-
chase sometimes expensive and often inflexible concordancing or corpus-exploration software
packages. For example, an analysis of collocations occurring with "between" and "through"
as in [Kennedy 1991], which was conducted with "The Oxford Concordance Program OCP2"
[Hockey & Martin 1988]), could very easily have been done with the following program pro-
viding, of course, that the user has an on-line corpus through which to search.

#!/bin/sh

62

6 4

leaveOnlyWords $1 I oneItemPerLine I mapToLowerCase I context 20 I\
awk '(($1-/-between$MI($(NF)-/-between$/))&&($0-/ through /)'

The second line of the program produces all sequences of consecutive words in the file $1 of
length 20 words. The awk program in the last line prints the sequences that contain between

as first or last field and through.

One may chose not to discard the punctuation marks and to retain upper case letters. In
that case, one can use

#!/bin/sh

oneItemPerLine $1 I context 20 I awk '/[-A-Za-z][Tt]hrough[-A-Za-z]/' I\

awk '($1-/-[-A-Za-z]*[Bb]etween[-A-Za-z]*$/)IIMNF)-/-[-A-Za-z]*[Bb]etween[-A-Za-z]*$/P

We have applied both procedures listed above to the source file of this document but found
nothing which is not immediately related to this example.

In [Renouf & Sinclair 1991], a corpus search for the strings "a [A-Za-z ' -] * of," "an

[A-Za-z'-]* of," "for [A-Za-z'-]* of," "had [A-Za-z'-]* of," "many [A-Za-z ' -]*

of," "be [A-Za-z'-]* to," and "too [A-Za-z ' -]* to" was conducted. Modifying the
above program as follows would allow the user 'to search for these strings and print the
strings themselves and ten words to both the right and left of the patterns in separate files.

#!/bin/sh

leaveOnlyWords $1 I oneItemPerLine I mapToLowerCase I context 23 I \

awk '($(11)-/-((an?)1(for)1(had)1(many))$/)&&($(13)=="of") {

F=" '$1' ." $(11) " . of" ; print>F

($(11)-/-((3e) (too))$/)&&($(13)=="to") F="'$1' ." $(11) " .to"; print>F '

We have applied the above procedure to the source file of this document. Mostly used
are "a list of," "a collection of," and "a string of" for the first type of search. There are
no strings matching the pattern many [A-Za-z '-] * of in the source. Mostly used are "be
used to," " be set to," and "be applied to" for the second type of search. There are no strings
matching the pattern too [A-Za-z '-] * to in the source.

It has been noted in several corpus studies of English collocation aKjellmer 1989J, [Smadja
1989], [Atkins 1992]) that searching for 5 words on either side of a given word will find 95% of

.collocational co-occurrence in a text. After a search has been done for all occurrences of word
word1 and the accompanying 5 words on either side in a large corpus, one can then search
the resulting list of surrounding words for multiple occurrences of word word2 to determine
with what probability word1 co-occurs with word2. The formula in [Collier 1993, p. 291] can
then be used to determine whether an observed frequency of co-occurrence in a given text
is indeed significantly greater than the expected frequency.

In [Christianson 1997], the English double genitive construction, e.g., "a friend of mine"
is compared in terms of function and meaning to the preposed genitive construction "my

63

65

friend." In this situation, a simple search for strings containing of (0 1 0 I . . .) (dative
possessive pronouns) and of . *' s would locate all of the double genitive constructions (and
possibly the occasional contraction, which could be discarded during the subsequent anal-
ysis). In addition, a search for nominative possessive pronouns and of .*'s together with
the ten words that follow every occurrence of these two grammatical patterns would find all
of the preposed genitives (again, with some contractions). Furthermore, a citation for each
located string can be generated that includes document title, approximate page number and
line number. We have already discussed the practical, pedagogical application for this sort
of concordancing programs.

6.6 Producing on-line dictionaries for the internet

In the course of the investigations outlined in [Abramson et al. 1995], [Abramson et al.
1996a], and [Abramson et al. 1996b], one of the authors developed a family of programs
that are able to transform the source file of [Nelson 1962], which was typed with a what-
you-see-is-what-you-get editor into a prolog database. In fact, any machine-readable format

, can now be generated by either slightly altering the programs already developed or by using
prolog from now on.

The source was available in two formats: 1) an RTF format file, and 2) a control sequence
free text file generated from the first file. Both formats have advantages and disadvantages.
As outlined above, the RTF format file distinguishes Japanese on and KUN pronunciation
from ordinary English text using italic and SMALL CAP typesetting, respectively. On the
other hand, the RTF format file contains many control sequences that make the text "dirty"
in regard to machine evaluation. We have already outline above how unwanted control se-
' quences in the RTF format file were eliminated, but valuable information in regard to the
distinction of on pronunciation, KUN pronunciation and English was retained. The second
control sequence free file contains the standard format of kanji which is better suited for
processing in the UNIX environment we used. In addition, this format is somewhat more
regular already, which is useful in regard to pattern matching that identifies the three differ-
ent categories of entry in [Nelson 1962]: radical, kanji and compound. However, very valuable
information is lost in regard to the distinction of on pronunciation, KUN pronunciation and
English.

; We remark that parsers for RTF format files that are selective in the way which was needed
here are not in existence.

Our first objective was to merge both texts line-by-line and to extract from every pair of
lines the relevant information. Merging was achieved through pattern matching, observing
that not all but most lines correspond one-to-one in both sources. Kanji were identified
through use of the sed command 1. As outlined above in the chapter on sed, control
sequences were eliminated from the RTF format file but the information some of them
represent was retained.

64

66

After the source files were properly cleaned by sed and the different pieces from the
two sources identified (tagged), awk was used to generate a format from which all sorts of
applications are now possible. The source file of [Nelson 1962] is typed regularly enough
that, using pattern, matching the three categories of entry radical, kanji and compound can
be identified. In fact, a small grammar was defined for the structure of the source file of
[Nelson 1962] and verified with awk. Simply by counting all units, an index for the dictionary
is generated which is a previously non-existing feature. This is useful in finding compounds
in a search over the database and was previously impossible. In addition, all relevant pieces
of data in the generated format can be picked by awk as fields and framed with, e.g., prolog
syntax. What is now in the process of being completed is to reformat [Nelson 1962] such
that it can be used as an on-line database on the internet with a large range of forward
and backward referencing. It is also easy to generate, e.g., Engfishaanji or English-+KUN
dictionaries from this kanji>on/KuN>English dictionary using sort and rearrangement of
fields. In addition, it is easy to reformat [Nelson 1962] into proper j latex format. This
could be used to re-typeset the dictionary and to keep an updated version of the j latex file

as reference for all other components described in this section.

7 Conclusion

In the previous exposition, we have given a short .but detailed introduction to sed and
awk and their applications. We have shown that developing sophisticated tools with sed

and awk is easy even for the computer novice. In addition, we have demonstrated how to
:write customized filters with particularly short code that can be combined in the UNIX
environment to powerful processing devices particularly useful in language research.

Applications are searches of words, phrases, and sentences that contain interesting or crit-
ical grammatical patterns in any machine readable text for research and teaching purposes.
We have also shown how certain search or tagging programs can be generated automatically
from simple word lists. Part of the search routines outlined above can be used to assist the
instructor of English as a second language through automated management of homework
submitted by students through electronic mail. This management includes partial evalua-
;tion, correction and answering of the homework by machine using programs written in sed

and/or awk. In that regard, we have also shown how to implement a punctuation checker.
Another class of applications is the use of sed and awk in concordancing. A few lines of

code can substitute for a whole commercial programming package. We have shown how to
set up searches that were performed with larger third-party packages in a simple way. Our
examples include concordancing for pairs of words, other more general patterns, and the
judgement of readability of text. The result of such; searches can be sorted and displayed
by machine for subsequent human analysis. Another possibility is to combine the selection

65

67

schemes with elementary statistical operations. We have shown that the latter can easily be
implemented with awk.

A third class of application of sed and awk is lexical-etymological analysis. Using sed

and awk, dictionaries of related languages can be compared and roots of words determined
through rule-based and statistical analysis.

Various selection schemes can easily be formulated and implemented using set and vector
operations on files. We have shown the implementation of set union, set complement, vector
addition, and other such operations.

; Finally, all the above shows that sed and awk are ideally suited for the development of
prototype programs in certain areas of language analysis. One saves time in formatting the
text source into a suitable database for certain types of programming languages such as
prolog. One saves time in compiling and otherwise handling C, which is required if one does
analysis with lex and yacc. In particular, if the developed program runs only a few times
this is quite efficient.

8 Disclaimer

The authors do not accept responsibility for any line of code or any programming method
presented in this paper. There is absolutely no guarantee that these methods are reliable
or even function in any sense. Responsibility for any use of the methods presented in this
paper lies solely in the domain of the applier. The programs listed in this paper are in the
public domain, if not protected by copyright from third party. The terms of the software
;license agreement of the free software foundation'
ftp://prep.ai.mit.edu/pub/gnu/COPYING-2.0 apply.

9 References

ABRAMSON, H., BHALLA, S., CHRISTIANSON, K. T., GOODWIN, J. M., GOODWIN,
J. R. Si SARRAILLE, J. (1995). Towards CD-ROM based Japanese *4 English dic-
tionaries: Justification and some implementation issues. Proceedings of the Third
Natural Language Processing Pacific-Rim Symposium, Seoul, Korea, (Dec. 4-6, 1995)
, 174-179.

ABRAMSON, H., BHALLA, S., CHRISTIANSON, K. T., GOODWIN, J. M., GOODWIN, J.
R., SARRAILLE, J. & SCHMITT, L. M. (1996a). Multimedia, multilingual hyper-
dictionaries: A Japanese *4 English example. Paper presented at the Joint Interna-
tional Conference of the Association for Literary and Linguistic Computing and the

66

68

Association for Computers and the Humanities, Bergen, Norway, (June 25-29, 1996).
http://www.hd.uib.no/allc-ach.abstract.html

ABRAMSON, H., BHALLA, S., CHRISTIANSON, K. T., GOODWIN, J. M., GOODWIN,
J. R., SARRAILLE, J. & SCHMITT, L. M. (1996b). The Logic of Kanji lookup in
a Japanese English hyperdictionary. Paper presented at the Joint International
Conference of the Association for Literary and Linguistic Computing and the As-
sociation for Computers and the Humanities, Bergen, Norway (June 25-29, 1996).
http://www.hd.uib.no/allc-ach.abstract.html

AHO, A. V., KERNIGHAN, B. W. Sz WEINBERGER, P. J. (1978). awk A Pattern
Scanning and Processing Language (Second Edition). IN: B. W. Kernighan Sz M. D.
McIlroy (Eds.) UNIX programmer's manual (7th edition). Murray Hill, NJ: Bell Labs.
On-line troff file: http : //cm . bell-labs . com/7thEdMan/vol2/awk

AHO, A. V., KERNIGHAN, B. W. & WEINBERGER, P. J. (1988). The AWK program-
ming language. Reading, MA: Addison-Wesley Publishing Company.

AIJMER, K. & ALTENBER, B. (Er's.) (1991). English corpus linguistics. New York:
Longman Publishers.

ALLEN, J. R. (1995). The ghost in the machine: Generating error messages in computer
assisted language learning programs. CALICO Journal, 13 (2,3), 87-103.

ATKINS, B. T. S. (1992). Tools for computer-aided corpus lexicography. Acta Linguistica
Hungarica, 41 (1-4), 5-71.

BUTLER, C. (1985). Computers in linguistics. Oxford: Basil Blackwell Inc.

CHRISTIANSON, K. T. (1997). A text analysis of the English double genitive. IRAL
35(2), 99-113.

CLOCKSIN, W. F. & MELLISH, C. S. (1981). Programming in Prolog. Berlin: Springer-
Verlag.

COLLIER, A. (1993). Issues of large-scale collocational analysis. IN: J. Aarts, P. De Haan,
and N. Oostdijk (Eds.), English language corpora: Design, analysis and exploitation,
289-298. Amsterdam: Editions Rodopi, B.V.

DOUGHERTY, D. (1990). sed & awk UNIX power tools. Sebastopol, CA: O'Reilly &
Associates.

Fox, A. (1995). Linguistic Reconstruction: An Introduction to Theory and Method. Ox-
ford: Oxford University Press.

67

69

P. GANSSLER, P. G. & STUTE, W. (1977). Wahrscheinlichkeitstheorie. Berlin: Springer-
Verlag.

GOLDFIELD, J. D. (1986). An Approach to Literary Computing in French. IN: Méthodes
quantitatives et informatiques dans l'étude des textes, 457-465. Geneva: Slatkin-
Champion.

GORDON, M. (1996). What does a language's lexicon say about the company it keeps?: A
slavic case study. Paper presented at the Annual Michigan Linguistics Society Meeting,
Michigan State University, East Lansing, Michigan, October, 1996.

GREENBAUM, S. (1991). The development of the International Corpus of English. IN: K.
Aijmer & B. Altenberg (Eds.) English corpus linguistics, 83-91. New York: Longman
Publishers.

GREUB, W. (1981). Graduate Texts in Mathematics 23: Linear Algebra. Berlin: Springer-
Verlag.

HEROLD, H. (1994). UNIX und seine Werkzeuge awk und sed. Reading, MA: Addison-
Wesley Publishing Company.

HOCKEY, S. & MARTIN, J. (1988). The Oxford concordance program: User's manual
(Version 4. Oxford: Oxford University Computing Service.

HOEY, M. (1991). Patterns of lexis in text. Oxford: Oxford University Press.

HUME, A. G. & MCILROY, M. D. (1990). UNIX programmer's manual (10th edition).
Murray Hill, NJ: Bell Laboratories.

JOHNSON, S. C. (1978). Yacc: Yet another compiler-compiler. IN: B. W. Kernighan &
M. D. McIlroy (Eds.) UNIX programmer's manual (7th edition). Murray Hill, NJ: Bell
Labs.
On-line troff file: http://cm.bell-labs.com/7thEdMan/vol2/yacc .bun

KAYE, G. (1990). A corpus builder and real-time concordance browser for an IBM PC.
IN: J. Aarts and W. Meijs (Eds.), Theory and practice in corpus linguistics, 137-161.
Amsterdam: Editions Rodopi, B.V.,

KENNEDY, G. (1991). between and through: The company they keep and the functions
they serve. IN: K. Aijmer & B. Altenberg (Eds.) English corpus linguistics, 95-110.
New York: Longman Publishers.

KERNIGHAN, B. W. & MCILROY, M. D. (1978). UNIX programmer's manual (7th
edition). Murray Hill, NJ: Bell Laboratories. See: [Hume & McIlroy 1990] for a newer
edition.

68

7 0

KERNIGHAN, B. W. & PIKE, R. (1984). The UNIX programming environment. Engle-
wood Cliffs, NJ: Prentice Hall Inc.,

KERNIGHAN, B. W. & RITCHIE, D. M. (1988). The C programming language. Engle-
wood Cliffs , NJ: Prentice Hall Inc.

KJELLMER, G. (1989). Aspects of English collocation. IN: W. Meijs (Ed.), Corpus
linguistics and beyond, 133-140. Amsterdam: Editions Rodopi, B.V.

KOBLITZ, N. (1994). A course in number theory and cryptography. Graduate texts in
mathematics 114. Berlin: Springer-Verlag.

LAMPORT, L. (1986). Latex A document preparation system. Reading, MA: Addison-
Wesley Publishing Company.

LANG, S. (1983). Undergraduate Analysis Berlin: Springer-Verlag.

LEECH, G. & FLIGELSTONE, S. (1992). Computers and corpus analysis. IN: C. S. Butler
(Ed.), Computers and written texts, Oxford: Basil Blackwell Inc.

LUNDE, K. (1993). Understanding Japanese information processing. Sebastopol, CA:
O'Reilly & Associates.

LESK, M. E. & SCHMIDT, E. (1978). Lex A lexical analyzer generator. IN: B. W.
Kernighan & M. D. McIlroy (Eds.) UNIX programmer's manual (7th edition). Murray
Hill, NJ: Bell Labs.
On-line troff file: http://cm.bell-labs.com/7thEdMan/vol2/1ex

MCDONALD, N. H., FRASE, L. T., GINGRICH, P. Sz KEENAN, S. (1988). The Writer's
Workbench: Computer aids for text analysis. Educational Psychologist 17, 172-179.

MCMAHON, A. M. S. (1983). Understanding Language Change. Cambridge, UK: Cam-
bridge University Press.

MEYER, C. F. (1994). Studying usage in computer corpora. IN: G. D. Little and
M. Montgomery (Eds.), Centennial usage studies, 55-61. Jacksonville, IL: American
Dialect Society.

MEYER, C. F. & TENNEY, R. L. (1993). Tagger: An interactive tagging program. IN:
C. Souter and E.,Atwell (Eds.), Corpus-based computational linguistics. Amsterdam:
Editions Rodopi, B.V.

NATION, I. S. P. (1990). Teaching and learning vocabulary. Boston: Heinle & Heinle
Publishers.

69

71

NELSON, A. N. (1962). The original modern reader's Japanese-English character dictio-
nary (Classic edition). Rutland, VT: Charles E. Tuttle Company.

OSSANNA, J. F. & KERNIGHAN, B. W. (1978). Troff user's manual. IN: B. W.
Kernighan & M. D. McIlroy (Eds.) UNIX programmer's manual (7th edition). Murray
Hill, NJ: Bell Labs.
On-line postscript file: http://cm. bell-labs . com/plan9/doc/troff .ps

ORR, T., CHRISTIANSON, K. T., DEHART, J., Izzo, J., LAMBACHER, S., MOORE,
C. H., MOORE, W., MURAKAWA, H. & WASHBURN, N. (1995). A list of words
and phrases related to computer science. Unpublished manuscript. The Center for
Language Research, The University of Aizu, Aizu-Wakamatsu, Japan.

RENOUF, A. & SINCLAIR, J. M. (1991). Collocational frameworks in English. IN: K.
Aijmer & B. Altenberg (Eds.) English corpus linguistics, 128-143. New York: Longman
Publishers.

SCHMITT, L. M. & CHRISTIANSON, K. T. (1998). Pedagogical Aspects of a UNIX-Based
Network Management System for English Instruction. System 26(4), to appear.

SMADJA, F. A. (1989). Lexical co-occurrence: The missing link. Literary and Linguistic
Computing, 4 (3), 163-168.

WALL, L. & SCHWARZ, R. L. (1990). Programming perl. Sebastopol, CA: O'Reilly &
Associates.

WEBB, J. H. M. (1992). 121 common mistakes of Japanese students of English (Revised
edition). Tokyo: The Japan Times.

WOLFRAM, S. (1991). Mathematica A system for doing mathematics by computer (2nd
edition). Reading, MA: Addison-Wesley Publishing Company.

WOODS, S. (1995). Web chapel Bible concordance.
www-page at http: //web2 . airmail .net/webchap/wcconc . html.

70

7 2

Lo,-S)D4
U.S. Department of Education

Office of Educational Research and Improvement (0ERI)
National Library of Education (NLE)

Educational Resources Information Center (ERIC)

REPRODUCTION RELEASE
(Specific Document)

I. DOCUMENT IDENTIFICATION:

IIL

Title: C 0 pt gININ 71-tE IZOkRge SHELL .gEc 4Jb AU K I M Th (411/k

Ek V 1120-tv 4.A.St-07- cF t_ AN Crtk A c 1 / LY 2LS

Author(s): L-or)-tAQ .ZeH 04(TT- Kt EL T., niR/ST/A-A/
Corporate Source: THE UAL vE-12 S 11-y Publication Date:

N16- /EP/o2,1

II. REPRODUCTION RELEASE:

In order to disseminate as widely as possible timely and significant materials of interest to the educational community, documents announced in the
monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy,
and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if
reproduction release is granted, one of the following notices is affixed to the document.

If permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign at the bottom
of the page.

The sample sticker shown below will be
affixed to all Level 1 documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL HAS

BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 1

Check here for Level 1 release, permitting reproduction
and dissemination in microfiche or other ERIC archival

media (e.g., electronic) and paper copy.

Sign
here,-,
please

The sample sticker shown below will be
affixed to all Level 2A documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE, AND IN ELECTRONIC MEDIA
FOR ERIC COLLECTION SUBSCRIBERS ONLY,

HAS BEEN GRANTED BY

2A

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2A

Check here for Level 2A release, permitting reproduction
and dissemination in microfiche and in electronic media

for ERIC archival collection subscribers only

The sample sticker shown below will be
affixed to all Level 2B documents

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL IN

MICROFICHE ONLY HAS BEEN GRANTED BY

2B

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Level 2B

Check here for Level 2B release, permitting
reproduction and dissemination in microfiche only

Documents will be processed as Indicated provided reproduction quality permits.
If permission to reproduce is granted, but no box Is checked, documents will be processed at Level 1.

I hereby grant to the Educational Resources Information Center (ERIC) nonexclusive permission to reproduce and disseminate this document
as indicated above. Reproductidri from the ERIC microfiche or electronic media by persons other than ERIC employees and its system
contractors requims permission from the copyright holder. Exception is made for non-profit reproduction by libraries and other service agencies
to satisfy information needs of educators in response to discrete inquiries.

Signature: Printed Name/Position/Title:

PRO"C CbPs S CH lu I rr
Organization/Address:

THE kiHVER.% ITV B3; 4i2L MK wArtc,A, u4A.T-SU,
kt(u.SH i4 4- 14.-,Rk-1-1

Telephone: FAX:

33- RI- -11-6I-Ztt 21-2hC
E-Mail Address. DateLenikee :

4j9415 /SEP/.24

(over)

III. DOCUMENT AVAILABILITY INFORMATION (FROM NON-ERIC SOURCE):

If permission to reproduce is not granted to ERIC, or, if you wish ERIC to cite the availability of the document from another source, please
provide the following information regarding the availability of the document. (ERIC will not announce a document unless it is publicly
available, and a dependable source can be specified. Contributors should also be aware that ERIC selection criteria are significantly more
stringent for documents that cannot be made available through EDRS.)

Publisher/Distributor:

Address:

Price:

IV. REFERRAL OF ERIC TO COPYRIGHT/REPRODUCTION RIGHTS HOLDER:

If the right to grant this reproduction release is held by someone other than the addressee, please provide the appropriate name and
address:

Name:

Address:

V. WHERE TO SEND THIS FORM:

Send this form to the following ERIC Clearinghouse:

ERIC CloElnornouse on
Lanampxo Lt:;",U:d03
1111e 22..16 Stoat NW
Washing=, D.C. 20037

However, if solicited by the ERIC Facility, or if making an unsolicited contribution to ERIC, return this form (and the document being
contributed) to:

C Processing and Reference F. ility
1100 West Street, 2nd Flo

L. el, Maryland 2070 598

Telepho
Toll Fr

-497-4080
99-3742

301-953- 3
ad: ericfac@inet.e. v

http://encfac.piccard.csc.

EFF-088 (Rev. 9/97)
PREVIOUS VERSIONS OF THIS FORM ARE OBSOLETE.

