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Abstract

In this paper a mathematical programming approach is presented for the assembly of

ability tests measuring multiple traits. The values of the variance functions of the estimators of

the traits are minimized, while test specifications are met. The approach is based on Lagrangian

relaxation techniques and provides good results for the two dimensional case in a small amount

of time. Empirical examples of a test assembly problem from a two dimensional mathematics

item pool illustrate the method. Keywords: Lagrangian relaxation, mathematical programming,

multidimensional IRE test assembly, test design. In the area of ability measurement Item

Response Theory (IRT) is generally used as a psychometric theory underlying the test assembly

process. In this process three steps can be distinguished. First an IRT-model has to be chosen

and the items in the itembank have to be calibrated. From this itembank many different tests can

be assembled. Therefore, the second step consists of specifying the properties of the desired

test. One could specify for example the testlength, the desired amount of information or the

administration time of the test. The third step of the test assembly process is to formulate a model

that selects items from the itembank so that the test specifications are met. A mathematical

programming approach is often used for this step.
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Multidimensional lest Assembly based on Lagrangian Relaxation Rchniques

In the area of ability measurement Item Response Theory (IRT) is generally used as

a psychometric theory underlying the test assembly process. In this process three steps can be

distinguished. First an IRT-model has to be chosen and the items in the itembank have to be

calibrated. Form this itembank many different tests can be assembled. Therefore, the second

step consists of specifying the properties of the desired test. One could specify for example the

testlength, the desired amount of information or the administration time of the test. The third

step of the test assembly process is to formulate a model that selects items from the itembank

so that the test specifications are met. A mathematical programming approach is often used for

this step.

The idea of using a mathematical programming approach was first suggested by Yen

(1983). Ever since, a number of researchers have shown various LP algorithms and heuristics

to solve test assembly problems. Still much research is done in this field of interest. Recently

van der Linden (1996) published a paper on the subject of assembling tests measuring multiple

traits. Although an algorithm to solve the assembling problem was provided, manual correction

was needed to find the optimal solution. Therefore, the purpose of this study was to find a

heuristic to solve the problem of assembling tests measuring multiple traits. An approach based

on Lagrangian relaxation was used.

A Linear Logistic Multidimensional IRT Model

The IRT model

The model considered in this paper is a generalization of the two-parameter logistic

model Lord (1980) to the multidimensional case and can be formulated in the following manner:

P1(0 ;) P(Ui; = 1 1 (ai, di, j)) (1)
e(avoj)

1 + 'O j +di)

where Uji represents the response of person j = 1 . . . N to item i = 1 . n, ai is the vector

of discrimination parameters of item i along the abilities Gil ... m is the dimensionality

of the ability space, and di is the parameter representing the difficulty of the item. P(Uji =

11(ai, di, ;)) is the probability of a correct response (score of 1) for person j on test item i, and

5
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ai 02 is the inner product of the vector of discrimination parameters of item i and the ability

vector 0, for person j. The item parameters are supposed to be known and the model is used

to estimate the ability vectors 0, from a realization of the response variables U = u for

i= 1 n and j = 1 . . . N .

This multidimensional IKT model was also described by Reckase (1997). In this

article several assumptions underlying this model were presented. First of all, the monotonicity

assumption implies that, with an increase in the ability of the examinee, the probability of

obtaining a correct response to a test item is non-decreasing. Second, the probability of

obtaining a vector of responses is equal to the product of the probabilities of obtaining these

responses. This assumption is called the local independence assumption. The third and last

assumption deals with the derivatives of the function describing the model. These derivatives

have to be properly defined.

Variance functions

Fisher's information matrix is defined as:

02 In L

1(0) E[
02 In L

80,1701.

02 In L
&him

7

02 In L

were the likelihood equation L for the model in Equation 1 is given by:

L = H P(uoI(ai, di, 0)).

(2)

(3)

According to van der Linden (1996) and using the notation Pia-Pi (0) and Qi -.a 1 Pi, Fisher's

information matrix for this model can be formulated as:

E7-1 aLPic2i Ein---1 aliamiPiQi
/(0) =

Ein_I aPai
(4)

Because Fisher's information function is a matrix instead of a scalar in the

multiparameter case, the (asymptotic) variances of the MLEs of the ability parameters 01,

are not given by the reciprocals of the diagonal elements of the information matrix, but by

the diagonal elements of the variance-covariance matrix. This matrix is the inverse of Fisher's

information matrix. For notational simplicity we consider the case that m = 2. In this case the

6
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inverse matrix is of the following form:

v(ble) = 1 [
Ein-i

1/(0)I Ejn=1
(5)

wherel/(0)1 is the determinant of the matrix in Equation 4. It should be noted that the

variance of "ei not only depends on 01 but also on the values of 02. The variance functions

var(bkle) = ai,P1c2,/ 11(e)1 simplify to:

-1

Var(b1 19) = (E alPiC 2 i) E E E alia2iPai)
21i=1 i=1 i=1

(6)

Var(b210) = (E 4Pai) E 2i) aLPiQi) aliaziPai)
i=i i=i i=i i=1

(7)

The objective of test assembly problems is to minimize the values of these variance functions.

Therefore a multidimensional maximin model was formulated.

A Multidimensional Maximin Model

Introducing a decision variable xi, i = 1, . . . , I ,where xi = 1 if item i is in the test,

xi = 0 if item i is not in the test and I is the number of items in the itembank, Equation 6 and

Equation 7 can be rewritten such that:

and

1
-1

V ar = E E , (8)
i=1

2

Va7(219) = [E 2aiiPiQixi E aiia2iPiQixi / ] .(E ..2i" 'a.,,2 no. Q .
--

(9)

Objective function

The objective of the test assembling problem is to minimize the values of both variance
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functions. This problem is in the class of multi objective decision problems. Problems in this

class can be solved in several ways, see also Hwang and Masud (1979). In this article an

approach based on combining both functions into one objective function was chosen. To find

a good combination of both variance functions the effect of the sums on the variance functions

was investigated. About the variance functions the following observations can be made. From

Equation 8 it can be derived that the value of Var(0110) for a given 0 decreases when

increases in value,

decreases in value ind

E( 1=1

(10)

(12)

increases in value.

It should also be noticed that the value of Var(0210) for a given 0 decreases when

increases in value,

decreases in value and

EaP1Q1x2

1=1

E
1=1

(13)

(14)

(15)

increases in value. So, both variance functions show the same behaviour for these sums.
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Therefore, it seems reasonable to choose the function

(v./
L-di=1 alia21PiQix1)2

al-1 4131Q tx. + a31P1Q tx

which shows the same behaviour, as an objective function.

(16)

The model

The objective function defined in Equation 16 is a continuous function of the variables

(01, 02). However, in the test assembling process it suffices to optimize this objective function

for a grid of points. Therefore, the following mathematical programming problem has been

chosen, which minimizes the maximum value of a combination of the variance functions for a

set of O-points (Olp, 02q), p = 1, . . . , P and q = 1, . . . , Q:

2

ai1a2,P1(915, 02t)Qi(018, 02t)xi)
min max

1.-:1:4 (ELI aiiP1(018, 02)Qi (01s, 02t)zi) (Ei1-1 aLPi 02t)Qi(01s, 02t)xi)

subject to

(17)

(18)

xi E {0,1} , i = 1... /, (19)

where c in Equation 17 is a weighting factor. By varying this weighting factor one can influence

the relative importance of the two sums in the denominator. Equation 18 specifies the testlength,

but, of course, other constraints can be added to this problem. Unfortunately, the objective

function, Equation 17, is a complicated function of the variables xi. By creating three new

variables y , K1 and K2 the problem can be restated as:

Y
2

+ K2'

9

(20)



subject to

E92t)Qi(01.,02t)x2 y 0,

Eavicois,02j)Q0,8,02oxi > K1,

E02t)Qi(Ols, 02t)Xi c1(27
i=1

Multidimensional Test Assembly - 8

s = 1...S,t = 1...T, (21)

s = 1 . . . S, t = 1 . . . T, (22)

s = 1 . . . S,t = 1 . . .T, (23)

(24)

E {0, 1} , i = 1 n, (25)

, K2 > 0. (26)

The constraints, Equations 21, 22 and 23, must be satisfied as equalities at optimality.

Other models

The following multidimensional maximin model to solve this problem, was described

in van der Linden (1996):

subject to

min y (27)

Eal2a2iPi(013, 92t)Qi(Oi3, O2i)xi y < 0, s = 1 . . . S,t = 1 . . .T, (28)
i=1
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E(Ois, 02t)Qi(Ois, 020zi K1, s = 1. . . S,t = 1 . . .T, (29)
i=1

E020cii(018, 02oxi > IC27
i=1

s = 1. . . S,t = 1. . .T, (30)

(31)

E {0, 1} , i = 1 . . . I, (32)

y > O. (33)

The basic idea is to run this model, while the variables K1 and K2 are systematically varied, until

the optimal solution is found. The main difference between this model and the model described

by Equations 20 until 26 is that the objective function, Equation 20, is linearized and that this

problem has to be solved many times for many combinations of (K1, K2). Furthermore, the

factor c is not necessary, because the ratio of K1 and K2 can be used as a weighting factor.

Several more models can be formulated that solve the same problem. However, the

purpose of this study is to find a heuristic which provides good results in a small amount of

time. Therefore it might be better not to eliminate the variables and to look for a different way

to handle this problem. In this study an approach based on Lagrangian Relaxation was chosen.

Application of Lagrangian Relaxation to this Problem

The problem stated above is in the class of non-linear mixed integer programming

problems. The problem is NP-hard, which means that it can not be solved in polynomial time.

In Armstrong, Jones and Wang (1995) an approach, based on Lagrangian Relaxation techniques,

is described to solve various test assembly problems.

Lagrangian Relaxation techniques are based on the idea that a good lower or upper

ii
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bound to the solution of a mathematical programming problem can be obtained by relaxing

some constraints. These constraints are not just thrown away, but are brought into the objective

function by a correction term. This correction term is a linear combination of the constraints.

The remaining relaxed problem is solved several times using various linear combinations of the

constraints to obtain a good approximate solution to the original problem. The main difficulty

in this technique is the calculation of the correction term.

Notational simplification

Before we try to use this approach for our problem we introduce the following

definitions for notational simplicity:

921.0Q13(Onj, 021j)

alia2iPii(Oisi,02Tj)C21j(01,Sj,02Tj)
411-1(6111,021.Nljoll;,021.0

a? Pij (01s; , 027;)Qij(Olsj, Ozrj)
C/31P13(0113, 021j)Q1j(011j, 021j)

a31P13(Olsj, 02TAQ1j(01Sj>02T2)

were j = 1, .., 3ST and i = 1, n, and

aina2nPn; (Om, 921.0Cin; (Ow, 021j)

alna2nPnj(01.5j,02TX2nj(01.9j,02Tj)
aLP(01u, 021.)Qni(On), 921j)

a?Pnj(Oisj, 027j)Qn,;(01si, 02T;)
0,3nPnj(011j, 021j)C2nj(011j, 021j)

aLPnj(01.9j,02Tj)Qnj(01S3,02T.j)
(34)

by,K1 ,K2 [Y, , y, , K1, cK2 , , clf21 (35)

So, the constraint Ax > by,K1,K2 is equivalent to the constraints defined in Equations 28 until

30. Using this notation, the maximin model simplifies to:

subject to

,2
min

Ki + K2

Ax by,K1,K2,

1 2

(36)

(37)

(38)
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x, E {0, 1} , i 1 ... n, (39)

K1, K2,y > 0. (40)

Lagrangian Relaxation

A Lagrangian Relaxation of this problem can be obtained by relaxing Equation 37,

i.e. by relaxing the constraints due to a rewriting of the objective function. Other constraints,

e.g. the constraint specifying the test length, may not be relaxed. Otherwise, the test would no

longer meet its specifications. The resulting Lagrangian Relaxation problem can be stated as:

subject to

Y2min
K1 + K2

+ 1-1T(by,KI,K2 AX)

Exi = 71,
i=--1

(41)

(42)

x, E 10, , i = 1 . . . I, (43)

ui , K1, K2,y > 0, j = 1 . . . 3ST. (44)

The elements of u are called Lagrangian multipliers.

Some remarks can be made about this mathematical programming problem. Looking

closer at Equation 41, it can be observed that the objective function can be split in two

independent parts. Consider Equation 41:

2
YmM + uT(b Ax)
+ K2

1 3

(45)
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where the values of vector b depends on y, K1 and K2. Equation 41 can be rewritten:

.4=>.

<=>.

Y2min
K1 + K2

+ 11Tb laTAX

min ( Y2
2

+ uTb) (uTAx)
+ K

(46)

(47)

min fu (y, K2) (30 (48)

where y, K1, K2 > 0, and the conditions defined by Equation 42 and Equation 43 have to be

met. So, the functions fu and gu can be minimized separately. The result of this separation

is that the problem is split in a continuous non-linear optimization part and a zero-one linear

programming part. The remaining problem is to find a good u vector.

Subgradient optimization

A general approach to the problem of finding a good u-vector is subgradient

optimization. This technique is based on two observations concerning the Lagrangian relaxation

of a mathematical programming problem. If the following problem has to be solved:

subject to

Zp = min cTx (49)

Dx < e,
Fx < g,

(50)

where Dx < e defines a set of constraints and Fx < g defines a set of constraints, a Lagrangian

relaxation of this problem is:

zp(u) = min{ cTx + uT(Dx e)} (51)

1 4
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Fx < g,
u > 03 -
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(52)

If the equation Fx < g defines a finite set of points the Lagrangian relaxation can be written

as:

zp(u) = min {cTxt + uT(Dxt e)} (53)

and the following observations can be made. Notice that zD(u) minimizes a finite number of

linear, therefore concave functions of u. Because of this, there exists a subgradient of zD(u) for

every u, see also Definition 1. Further, there exists at least one le which maximizes zD(u). For

a more detailed description of these observations see also Dirickx, Baas and Dorhout (1987).

Definition 1 A vector r E Rm is a subgradient of a concave function f(u) in U E Rm, i f for
every u E Rm

f(u) < 1(11) + rT(u T).

Application of subgradient optimization

Applying this technique to the problem stated in Equation 36 until Equation 40,

equation

Ax > bv,x1,x2

can be seen as Dx < e and the equations

(54)

(55)

xi E {0,1}, i = 1... I (56)

I 5
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u; , K1, K2,y > 0, j = 1 . . . 3ST (57)

can be seen as Fx < g.

To check if the subgradient optimization technique can be applied to the problem

described in Equations 41 until 44 we have to ensure that all conditions are met. First, the

objective function of the relaxation has to be a linear function of the variable u. From Equation

41, it can be derived that the vector u is only involved in an inner product, so this condition is

met. Second, the feasible region has to be a finite set of points. The feasible region is defined

by Equations 42 until 44. Unfortunately, K1, K2 and y are continuous variables. However, as a

result of splitting the optimization problem, the optimal values of y, Kland K2 can be computed

separately and these variables can be fixed at their optimal values, so the feasible region is a

finite set of points. Now all conditions are met and a description of the procedure can be given.

The following procedure outlines the search for a good u-vector:

Step 0. Set k = 0, let Ibe an upper bound to zp(u), and create an initial vector uo.

Step 1. Calculate the subgradient rk by solving the mathematical programming problem

min {
2

K1 + K2
+ 11T (b AX) E xi = n, y > 0, K1 > 0, K 2 > 0Y

i=1
(58)

If y, K1, K2, Fc is the optimal solution to this problem, define rk = AYek b(V,K1, K2).
Step 2. tk

k
where 0 _< 2.

I xz kn ubi

tep 3. uk1 = uk + tk rk.

Step 4. k := k +1.

Step 5. If k < 75 go to step 1, else go to step 6.

Step 6. End of the u-search, set u = u75.

The reason for terminating this procedure when k > 75 is that the values of the

elements of the correction vector u strongly depend on the parameter ilk, which, in turn, depends

on the stopping criterium k = 75. The larger the stopping criterium the more elements of u equal

to zero and the higher the values of the remaining elements. In general, the value of the stopping

criterium should be in the interval [40..125], and k = 75 seems a good choice. For a detailed

description and validation of this subgradient procedure see Dirickx, Baas and Dorhout (1987)

and Held, Wolfe and Crowder (1974).

1 6
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Empirical Examples

Tkvo examples are presented. First, the LR-problem stated in Equation 41 till Equation

44 was solved for data from an ACT Assessment Program Mathematics Item Pool. Second, the

same problem was solved for the same data, but with an additional set of constraints.

The item pool consisted of 176 items, to which an acceptable fit was shown by a two

dimensional version of the model in Equation 1. The items were classified according to content

specification and skill.

The above described method was used to solve the models on a PC with a Pentium

processor (130 mHz). Heuristic seven of the program Contest was used to solve the zero-one

linear programming parts of the second example.

Example 1

It was attempted to assemble a test for both ability estimators over the complete grid

of points defined by 01,02 = -1,0, 1. The test should contain 25 items. The upper bound to

the Lagrangian relaxation zD(u) was set equal to I = 3 and the weighting factor Pk in Step

2. of the above described algorithm was set equal to 0.2 and halved every ( stoPP'70fiterium) - 7

iterations. The values of the upper bound and the weighting factor depend on the problem and

should be found empirically. The resulting variance functions are shown in Figure 1.

To test the robustness of the above described method attempts were made to assemble

tests for several initial vectors uo. The mean values (Ai /12) and the standard deviations (al, (72)

of the values of both variance functions over nine points of the grid were used as a measure to

compare the results. Table 1 shows the results and the CPU-time for several starting values.u0.

Table 1

Results for starting values u0 and k = 75

10 Ai 112 01 0.2 L a Ii+a time (s)
0.05 1.081 0.889 0.153 0.188 0.985 0.341 1.326 4.73
0.10 1.089 0.858 0.146 0.182 0.974 0.328 1.302 4.89
0.15 1.135 0.876 0.157 0.180 0.989 0.337 1.326 4.94
0.20 1.157 0.888 0.147 0.187 1.023 0.334 1.357 4.89
0.25 1.234 0.846 0.163 0.177 1.040 0.340 1.380 5.05
0.30 1.275 0.845 0.184 0.179 1.060 0.363 1.423 4.94

The CPU-time needed to find a solution is only five seconds, which shows that this

method is rather quick. Because of small differences in the resulting it + a, the method seems

rather robust to small modifications of the starting values uo. The method performs best when

0.05 < 110 < 0.15. To examine the stopping criterium (k = 75) the mean values and standard

17



Multidimensional Test Assembly - 16

deviations of the values of both variance functions were compared for several values of k. The

results are shown in Table 2.

Table 2

Results for several values of k and starting values uo = 0.15

ti a II + cr
k = 50 1.020 0.365 1.385
k = 75 0.989 0.337 1.326
k = 75 0.992 0.375 1.367

It can be concluded that the value of it + a does not change much for k > 50, although

k = 75 performs best. On the other hand, if attention is paid to the values of the correction

vector u, it can be seen that many violations of the relaxed constraints are corrected by a small

term if k = 50. On the other hand, if k = 100, a few violations are corrected by a big term.

Therefore it seems reasonable to choose k = 75, which is somewhere in between, as a stopping

criterium.

Example 2

Both content and skill constraints were added to the LR-problem described in Equation

41 till Equation 44:

(1) The test should contain at least 2 plane geometry, 2 pre-algebra, 2 elementary

algebra, 2 coordinate geometry, 2 trigonometry, and 2 intermediate algebra items.

(2) At least 7 basic skill items, 7 application items, and 2 analysis items should be

included in the test.

This results in the following-additional constraints:

E xi > (59)
iE Vpa

E > 2,
iEvPA

E xi 2,
iEvEA

E > 2,
iEvcc

E xi > 2,
iE VTG

E xi > 2,
iE VIA
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E xi > 7,
iEVBA

E > 7,
iEvAp

E xi > 2,
iEvAN

where for example VIDG is the set indices of the items with content classification plane

geometry (PG). The same specifications as in example 1 were used. The resulting variance

functions are shown in Figure 2. To compare the results a description of the results of this

example is given in Table 3.

Table 3

Results for starting values uo and k= 75

110 th t12 al az t a il+o- time (s)
0.05 1.099 1.283 0.154 0.208 1.191 0.362 1.553 23.12
0.10 1.094 1.415 0.150 0.230 1.254 0.380 1.634 23.56
0.15 1.094 1.415 0.150 0.230 1.254 0.380 1.634 23.57
0.20 1.158 1.337 0.168 0.214 1.248 0.382 1.630 23.89
0.25 1.158 1.337 0.168 0.214 1.248 0.382 1.630 22.52
0.30 1.158 1.337 0.168 0.214 1.248 0.382 1.630 22.63

As can be seen, the values of p, + a increase in comparison to the values of + a in

example 1. This is because of the additional constraints. Because only small differences in the

values of p, + a occur, the method is rather robust to a little modification of the initial values uo

even if there are additional constraints. The CPU-time to find a solution is about twenty three

seconds. Most of this time is needed to switch to Contest for solving the linear programming

part of the problem. However, twenty three seconds is still pretty fast for assembling a test

measuring multiple traits. To examine the stopping criterium (k = 75), the results for several

stopping criteria are showed in Table 4.

Table 4

Results for several values of k and starting values up = 0.15

IL a A + a
k = 50 1.302 0.438 1.740
k= 75 1.255 0.373 1.628
k= 100 1.256 0.379 1.635

As can be seen, for this example the best results were obtained for k = 75. And

choosing k= 75 as an stopping criterium seems a good choice.

1 9
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In both examples no attention was paid to the differences in the shapes of the resulting

variance functions. However, if it is important that both resulting variance functions are of

the same shape one could use the parameter c in Equation 23 as a stabilizing factor. For the

problem stated in Example 1, the results for various values of the factor c are shown in Table

5. The shapes of both variance functions are represented by the values of pi + o and 112 + (72

The value of pi + alidecreases when the value of c decreases and the value of /22 + 02 increases

when the value of c decreases. The difference between both shapes will be minimal for c P..- 0.98.

However, it has to be emphasized that the optimal value of c is conditional on both the problem

and the itembank.

Table 5

Effect of the stabilizing value c

112 al a2 + al /12 +
1.25 1.623 0.742 0.227 0.167 1.850 0.909
1.10 1.218 0.799 0.160 0.196 1.378 0.995
1.05 1.135 0.876 0.156 0.220 1.291 1.096
1.00 1.135 0.876 0.156 0.220 1.291 1.096
0.95 0.977 1.045 0.129 0.276 1.106 1.321
0.90 0.918 1.181 0.116 0.337 1.034 1.518
0.75 0.918 1.181 0.116 0.337 1.034 1.518

Conclusion

Although it seems quite obvious to use the variance functions as a base for assembling

tests measuring multiple traits, the remaining mathematical programming problems is hard to

solve. In this paper a method is presented which offers the possibility of computing a good

upper bound to this problem. Especially the opportunity of splitting the nonlinear programming

problem in two problems which are easy to solve, simplifies the calculation process.

Therefore, it can be concluded that an approach based on Lagrangian relaxation is a

good method for solving the problem of assembling tests measuring multiple traits. On the other

hand a rather general approach to find a good u vector was used and a more specific algorithm

might further reduce the CPU-time and improve the test assembling process.

2 0



Multidimensional Test Assembly - 19

References

Armstrong, R.D., Jones, D.H., & Wang, Z. (1995). Network optimization in constrained

standardized test construction Applications of Management Science, 8, 189-212.

Dirickx, YM.I., Baas, S.M., & Dorhout, B. (1987), Operationele Researrh. Den Haag,

The Netherlands: Academic Service.

Held, H., Wolfe, P, & Crowder, H.P.(1974), lalidation of subgradient optimization.

Mathematical Programming, 6, 62-88.

Hwang, C-L and Masud, A.S.Md. (1979), Multiple Objective Decision Making -

Methods and Applications. Heidelberg: Springer Wag.

van der Linden, W.I. (1996). Assembling Tests for the Measurement of Multiple Abilities.

Applied Psychological Measurement, 20, 373-388.

Lord, EM. (1980). Applications of item response theory to practical testing problems

(13th ed.). Hillsdale, NJ: Erlbaum Associates.

Reckase, M.D. (1997). A linear logistic multidimensional model for dichotomous item

response data. In WJ. van der Linden & R.K. Hambleton (Eds.), Handbook of modern item

response theory (pp. 271-286). New York, NY. Springer-Ntrlag.

Wagner, H.M. (1969). Principles of Operations Research. Englewood Cliffs, NJ:

Prentice-Hall Inc.

Yen, WM. (1983). Use of the three-parameter model in the development of standardized

achievement tests. In R. K. Hambleton (Ed.), Applications of item response theory (pp. 123-

141). Vancouver: Educational Research Institute of British Columbia.



Multidimensional Test Assembly 20

Acknowledgements

The author is indebted to Terry A. Ackerman for the dataset used in the empirical

examples and to Wim J. van der Linden for his valuable comments.

2 2



Multidimensional Test Assembly - 21

Figure Captions

Figure 1. Variance functions of the MLEs of the ability parameters for the tests assembled in

Example 1, when the stopping criterium was set equal to k = 50 (at the top), k = 75

(in the middle) and k = 100 (at the bottom) and the starting values of the correction

vector were set equal to uo = 0.15.

Figure 2. Variance functions of the MLEs of the ability parameters for the tests assembled in

Example 2, when the stopping criterium was set equal to k = 50 (at the top), k = 75

(in the middle) and k = 100 (at the bottom) and the starting values of the correction

vector were set equal to uo = 0.15.
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