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Introduction

The partial credit model (Masters, 1982) can be viewed as a generalization of the

Rasch model for dichotomous items (Rasch, 1960) to the case of polytomous

items. As the Rasch model, the partial credit model has desirable mathematical

properties, which arise from the fact that the model defines an exponential family.

The major advantage of an exponential family IRT model is that there exist

minimal sufficient statistics for both the item and person parameters. Conditioning

on the sufficient statistics for the ability parameters facilitates so-called conditional

maximum likelihood (CML) estimation of item parameters, which has the

advantage that no assumptions about the distribution of ability have to be made

and that, from the point of view of parameter estimation, random sampling of

respondents is not necessary (Rasch, 1960; Andersen, 1972). Also the conditional

likelihood defines an exponential family, which allows for a relatively simple

estimation procedure, where the minimal sufficient statistics are equated with their

expected values. Further, except for certain boundary values of the sufficient

statistics, there exists a unique solution to the estimation equations. Another

consequence of the favorable mathematical structure of the model is the possibility

to develop proper statistical testing procedures (Andersen, 1973; Martin Liif, 1973;

Glas, 1988), that is, testing procedures based on statistics with a proven

(asymptotic) distribution, which are informative with respect to specific model

violations. However, in many instances, the partial credit model (PCM) is too

restrictive to fit the data. Therefore, several generalizations of the PCM have been

proposed. Bock (1972), for instance, introduces discrimination parameters for the

item categories. Therefore, this generalization is comparable to the generalization

of the Rasch model for dichotomous items to the two-parameter model (Bimbaum,
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1968). However, as with the two-parameter model, also Bock's PCM no longer

defines an exponential family, and CML estimation is no longer possible. Marginal

maximum likelihood (MML) estimation (Bock and Aitkin, 1981), where the model is

extended with assumptions concerning an ability distribution, seems to solve

some problems, but with respect to testing procedures based on statistics with

known (asymptotic) distributions, little progress has been made.

Another generalization of the PCM is the One Parameter Logistic Model

(OPLM, Verhelst & Glas, 1995; Verhelst, Glas & Verstralen, 1995). Here, for every

item, a discrimination index is imputed as a known constant and only the item

difficulty parameters are estimated. By imputing and not estimating discrimination

indices, OPLM, unlike the two-parameter logistic model, preserves the powerful

mathematical properties of exponential family models. Further, Glas and Verhelst

(1995) have developed a method where hypothesis concerning the magnitude of

the discrimination indices are iteratively defined and tested until a possible model

fit is obtained.

The version of the PCM by Wilson. and Masters (1993) can be seen as a

further generalization of the OPLM, although was it developed from an entirely

different point of view. This model was first motivated by the problem that item

parameters in the PCM cannot be estimated if certain response categories are

unobserved. The idea is as follows. Suppose that an item has 5 response

categories (0,1,2,3,4), and the third category is not responded to. Then the item

format is transformed to 4 categories with weights (0,1,3,4). If the first category is

unobserved, the category weights will be (1,2,3,4). In this way, the relative

contribution of the various items to the sufficient statistic for ability, that is, the sum

score, is not altered by the presence of unobserved categories. However, the

model can also be seen as a further generalization of the OPLM, where the
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scoring weights associated with the categories account for the differences in

discrimination between the categodes within items. The rest of this chapter will be

devoted to this generalization of the PCM, abbreviated GPCM. First, some

preliminaries will be given: a formal definition of the model and the CML

procedure. Next, two statistical tests for the model will be discussed. These tests

are based on generalized Pearson statistics (Glas and Verhelst, 1989, 1995). The

first is a generalization of some well-known statistics for the Rasch model for

dichotomous items (Martin UM, 1973; Glas, 1988) to the GPCM and has power

against incorrect specification of the form of the item characteristic curves. The

theory of these tests is worked out in Glas and' Verhelst (1995), where CML and

MML estimation and testing are described for a general model that includes the

GPCM as a special case. This test is discussed in this chapter to contrast it with a

new test to be presented here, that has power against local dependence and

multidimensionality. This last test is built on an approach introduced by van den

Wollenberg (1982) and Glas (1988) for testing unidimensionality in the Rasch

model for dichotomous items. This chapter will be concluded with some simulation

studies concerning the power of the tests.

The Model

Let item i have rni 1 response categories indexed h = 0,1,...,mi. The response

to the item will be represented by an (m1+1) -dimensional vector

where xih is defined by

7
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(1)

The probability of a response in category h, h = 0,...,mi as a function of an ability

parameter 0 and a vector of the parameters of item i , pi
is given by

pvih = Ito -
exp(rihe-Eg Pig)

m
Eg eV( rige E\gk Pik)

where the -summation
k = 1

is supposed to have a zero result. As with the

usual PCM, the parameters pth are the values on the 9-scale where

= 116,13 i) and P(Xim_1 =11E0 i) are equal. Although this paramete-

zation of the model entails a nice interpretation of the parameters, for

mathematical reasons it is convenient to introduce the reparametrization

rlih = 1 13 h = 1,...,mi, and write the model as

exp(rm9 -rim)
P(Xih=1 (3)

mi
Eg=o exp(rig0-iig)

(2)

where To has elements rim, for h = 0,...,mi and no is fixed to zero.

Introducing r; = the probability of response xi can be written as

P(x11901 exp(xgrie-ri i)). (4)

As a concluding remark in this section, the following is in order. Notice that in the

parametrization of (2) and (3), it is possible to have an item with, say, mi= 2 and
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score weights (1, 2, 3), that is, the zero score cannot be obtained on this item. For

practical purposes, such as not having to down-code data in case of a missing

zero category, and for communication of results to the practitioner, this may be

quite convenient and all theory to be presented below applies to the general

parametrization (1) and (2). However, it must be stressed that subtracting a weight

equal to rjo from all category weights within the item, such that rio itself will be

transformed to zero, will not alter the likelihood equations. With this alteration the
mi

denominator of (3) will equal 1 + Eg
= 1 exp(rigerii9) while the nominator of

the probability .of scoring in the zero category will equal one.

CML Estimation

For deriving the asymptotic distribution of the statistics to be presented below,

consistency of parameter estimates is essential. However, in the Rasch model, the

number of person parameters goes to infinity if the sample size goes to infinity,

and it is well known that, in general, this results in inconsistency of the maximum

likelihood estimates (Neyman & Scott, 1948). In the psychometric literature, two

ways are suggested to get rid of the person parameters, maximizing a conditional

likelihood which only depends on the item parameters (CML, Rasch, 1960, 1961,

Andersen, 1973, 1977) and maximizing the likelihood function of a model extended

with an ability distribution (MML, Bock & Aitkin, 1981). Both approaches can be

applied to estimating the GPCM. However, since it is based on fewer assumptions,

in general, CML is the preferable estimation method, and therefore only CML will

be worked out here.

In the derivations of the asymptotic distribution of the below statistics, the

9
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general framework of parameterized multinomial models is used. This framework

will also be used for describing the essentials of CML estimation. Let a test

consist of K items and let x be a response pattern, so X = 0.. In
this framework the data are viewed as counts nx, for all XE {X), which is the set

of all possible response patterns. -The number of possible response patterns will be

denoted by M. In a CML framework, the probabilities of the response patterns are

derived as follows. Using (4) and local stochastic independence, the probability of

response pattern x as a function of the ability and item parameters is given by

P(xle,r1) cc exp(x/(A3-11)), (5)

where 11 = and = (ri W).

For all possible outcomes x, a sufficient statistic s is defined by s= Xr and

for every possible s , a set {xl s = x'd is defined. Notice that Us {XIS = X'f) = {X).

he conditional probability of response pattern x given the associated value of s

is given by

exp(e(re -1))

.Efylyr= exp(Y(10-r1))

exp(-Yro

E{ylyr = exP(-Y11)

exp(-Xn)

Ys

where ys is a combinatorial function defined by

(6)
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Ts =E{y1yr = s} exp(41). (7)

Notice that these probabilities are a function of the item parameters only.

Maximizing the likelihood function associated with this model produces the desired

CML estimates.

The model defined by (6) does not yet fit the framework of the multinomial

model: the probabilities of the response patterns resulting in the same value s

sum to one, and as a consequence, the distribution function of the counts of the

response patterns has a product-multinomial form. This problem is easily solved

using a well-known procedure by Birch (1963, see also Haberman, 1974). Let(s)

be the set of all possible values of s . For all se (s), let Ns be the number of

persons in the sample obtaining a score s. Assume that Ns,sE{s}, has a

multinomial distribution, indexed by the sample size N and the parameters cos for

all SE N . Notice that the ML estimate of cos is given by ei)s = ns/N. Using (6),

the probability of response pattern x can now be given by

cosexp(-Yri)
ltX = P(xl(0,11) =

Ys
(8)

with co a vector with elements cos for all SE N. It is easily verified that the

probabilities (8) sum to one, so the model now fits the general multinornial model.

Next, it will be shown that (8) defines an exponential family. A model belongs

to the exponential family if the likelihood function of parameters 4) given an

observation x can be written as

L(I);x) = c(x) exp(4'f(x))/a(0), (9)
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where t(x) is a vector of functions of x , and c(.) and a(.) are functions only of x

and 4) , respectively. The likelihood of the Rasch model, enhanced with a

saturated multinomial model for the score distribution can be written as

exp(E1 iy+Ei öjsino)j)
L(11,o);x)

Ys(E)
(10)

where 8
J.S

is the Kronecker delta, taking the value one if j = s and zero otherwise.

Comparing (9) and (10) it can easily be verified that (10) does indeed define an

exponential family. Notice that the restriction Es cos = 1 implies that there are

i{s} --1 free parameters for the saturated model for the frequency distribution of

the respondent's sum scores. Since also the item parameters need a restriction to

produce a unique solution of the likelihood equations, the total number of free

parameters F is equal to Eirni I{s}i 2. Let T be defined as an Mx(F4-2)

matrix which, for the M different patterns, has the sufficient statistics t(x)' , defined

in (9), as rows. The rows are in an arbitrary but fixed order. The matrix T will be

partitioned (TO T2). The matrix Ti has Ei mi columns, each column

corresponding to an item parameter, the matrix T2 has I{s)I columns, each

column corresponding to a score. An example of the T-matrix for 3 items is given

in Table 1. The items have the score weights {1, 2), {0, 1, 3) and (0, 1, 2, 3),

respectively. For convenience, the scores of the response patterns, the sufficient

statistics, are given in the first column of Table 1. Using (10), the reader can verify

that, for any response pattern x , T1 has a row x and the columns of T2 are

indicator vectors of the scores.

12
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Insert Table 1 about here

It is well-known (see, for instance, Andersen, 1980) that in exponential family

models, ML estimation boils down to equating the realizations of the minimal

sufficient statistics to their expected values. So the likelihood equations can be

written as

Tp= Trc, (11)

where p and It are M-vectors with elements px, the proportion respondents with

response pattern x and the probability Itx defined by (8), respectively. Since T is

related to an over-parameterization of the model, solving (11) will need two

restrictions, one on the item parameters and one to assure that the dummy

parameters cos sum to one. However, in the sequel it will become clear that

considering a matrix T associated with an over-parametrization will prove

convenient for the introduction of the test statistics.

Generalized Pearson Tests

Let ft be the vector it evaluated using a BAN estimate (Best Asymptotically

Normal estimate, say an ML estimate) of it . Further, DE is the diagonal MxM

matrix of the elements of ic , and a vector of deviates b is defined as

13
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(12)

The tests considered here, will be based on a vector

of G linear combinations d = Ub, where the fitlxG matrix U is chosen such that

G M and the linear combinations may show specific model violations. A method

for constructing the so-called the matrix of contrasts U will be discussed below.

Consider the statistic

/Q = Q(U) = b U(U/ 130-1 U b = d/W-d, (13)

where (UDItUr and W- stand for the generalized inverse of (UDIEU) and W,

respectively. In the sequel, the vector d and the matrix W will be called the vector

of deviates and the matrix of weights.

Glas and Verhelst (1989) have derived sufficient conditions for Q to be

asymptotically chi-square distributed with degrees of freedom equal to

column-rank( U) - column-rank( T) - 1, or column-rank( U) F 1. The general

condition and the proof are beyond the scope of the present chapter. Here, only a

method of constructing test statistics for exponential family models will be

presented which guarantees that the conditions are satisfied and the asymptotic

chi-square distribution is established.

Consider a matrix U that can be partitioned U = (T1Y). Here T is a matrix as

defined in the previous section and is the matrix that produces the observed

and expected frequencies of interest. In the example of the previous section, T

was associated with a very specific over-parametrization of the GPCM. For

exponential families in general, the over-parametrization has to be such that an

M-vector with all elements equal to unity belongs to the manithld of T. Obviously,
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this is the case for the over-parametrization for the GPCM, since adding all

columns of T2 produces the desired M-vector.

For the reason for this restriction, one is referred to Glas (1988, 1989), Glas

and Verhelst (1989) and Verhelst and Glas (1995). Some of its background will be

commented upon in the sequel.

Let d = (do' l = (HTIb'r . Using T b = 0, 0(0 can be written as

Q(LJ) = (do' df)

(
TD7cT TDIrY do

YDnT YDrcY d1

(14)
= dr(YDEY Y 'DicT(TDirT)- T

= d1' W1 d1

From (14) it can be seen how the matrix T influences Q(LI): although it has no

contribution to the vector of deviates, it acts as a kind of correction on the matrix of

the quadratic form. Generally speaking, the reason why this correction has to be

carried out lies in the restdctions on the vector of deviates. Although b has M

elements, they can not all vary freely, because there are F restrictions imposed by

the likelihood equations and the elements of b sum to zero. This is also the

background to why an M-vector with all elements equal to one must belong to the

manifold of T: this vector must be present to account for the restriction that the

elements of p and It SUM to one. So the matrix of the quadratic form reflects the

fact that the parameters are estimated from the data. In fact, Glas (1981) has

shown that W is nothing else than the covariance matrix of d, while W1 is the
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covariance matrix of d1 given do.

This section is concluded with a remark on the relation between T and Y and

the appearance of generalized inverses in the (13) and (14). Using an

over-parametrization for T and imposing no restrictions on Y is completely

motivated by mathematical elegance. One could also adopt a full-rank

parametrization of the model and add a unit vector to the associated matrix Y.

Further, one could restrict Y to have columns outside the manifold of T. In that

case U would be of full column:rank and the generalized inverses in (13) and (14)

could be replaced by proper inverses. However, removing columns from U until it

has full column rank neither changes the value of the statistic, nor its degrees of

freedom. Therefore, the more elegant and less involved procedure for constructing

the tests has been adopted here.

Testing the Shape of the Item Characteristic Curves

In the framework of the Rasch model for dichotomous items, van den Wollenberg

(1982) considered two tests: the artest, based on counts of the number of

correct responses to the item in homogeneous score groups, and the 02-test,

based on counts of simultaneous correct responses in homogeneous score

groups. Van den Wollenberg (1982) presented a rationale which suggested that

al has power against violation of the assumption of monotone increasing and

parallel curves of item response functions, while Q2 has power against

multidimensionality. Various simulation studies (van den Wollenberg, 1979, 1982,

Glas, 1981, 1988, 1989) corroborate this hypothesis. Glas (1988) has revised the

Qi- and Q2- to the 131 c- and R2c-test such that they fit the framework of

16
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generalized Pearson tests and their asymptotic distribution could be derived. Glas

and Verhelst (1995) have presented a further development of the Ri o, called the

Si-test, which has the same rationale as R1c, but which focusses on specific

items, hence the subscript i .

In the present section, R1c and Si will be generalized to the GPCM, in the

next section the same will be done for the R2c-test. Further, a specialization of

R2 will be presented which focusses on pairs of items. In both sections a

theoretical framework will be presented for substantiating the claims with respect

to the alternative models which are tested. Since it is a special case of the model

considered here, this framework also applies to the Rasch model for dichotomous

items. Therefore, this framework also provides a foundation for the claims with

respect to the power of the Qi-,Q2-,R1c- and R2c-tests.

The tests considered here will be based on the difference between the counts

of the numbers of persons belonging scoring $ and responding in category h of

item i , Msih, with realization msih, and their CML expected values,

E(Mgihi eb,f1), that is, the expected value given the frequency distribution of the

respondent's values of the minimal sufficient statistic for ability and the CML

estimates of the item parameters. These differences will be denoted

cl;ti = msih- EWsihIthm.

The expected frequencies are computed as

E(Asih I (7) ) = E{x I zit? 1 , y r = s} * '

(15)

(16)

where {xlxth=1,yr= s} is the set of all possible response patterns with xih= 1



Testing the Generalized PCM

16

and sum score s. Using (8), this expectation can be written as

RA4sihI6,fl) = wsEr
YS I xih , y1r=

exp(-A),

(17)

osEihr s-rih

Is
where Cm = exp(iih) and yOs_rjh is a combinatorial function as defined in (7),

only in this case response patterns are considered without the presence of item i ,

resulting in a sum score s-nih.

For any test of reasonable length, the number of deviates eel is quite large,

which results in two problems. Firstly, specific model violations are still hard to

identify, and secondly, for certain combinations of s, i and h the expected

frequencies E(Msitileo,n) may be too low to justify use of asymptotic theory.

Insert Table 2 about here

First, the U-matrix of the test statistic will described using an example.. Next, the

rationale for building this specific matrix will be discussed. Continuing the example

of Table 1, consider the matrix U of Table 2. The example is a test of three items

with two, three and four response categories, respectively. The response patterns

are the sufficient statistics, and, therefore, they are entered in Ti . Further, the

category score weights are given in the third row. The weighted sum score, which

is the sufficient statistic for ability, ranges from one to eight. The sufficient statistics

associated with the dummy score parameters cos, s= 1,...,8, are entered into T2.

8
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The statistic defined by Y will be based on a partition of the score range in

three regions, consisting of the scores 1, 2, 3, and 4, the score 5, and the scores

6, 7 and 8, respectively and will be targeted at item 2. Therefore, Y consists of

three groups of three column-vectors, each group is associated with one of the

score regions, and in each group the rows consist of the possible response

patterns on item 2, as far as the item response produces a response pattern with a

sum score in the relevant the score range. Showing that Nif(p-fc) will produce

the appropriate observed and expected frequencies proceeds as follows. Consider

the last column of Table 1, where the elements of It are listed and the first

column of Y in Table 2. The inner product of these two vectors constitutes a sum

over the probabilities of the response patterns with a sum score in the first region

where the response to item 2 is in the zero category. Applying this principle to all

columns of the Y-matrix of Table 2, it can be verified that all differences dg2h can

be produced by multiplying a column of the matrix V with N(p-fc). Notice, by the

way, that all elements of the seventh column of Y are equal to zero. Therefore,

this column will not produce any deviates and can be stricken without any

consequence. In fact, also the three columns in T1 associated with item 2 can be

removed, because they are contained in the linear manifold of Y.

Next, the rationale for building this specific matrix and the rationale behind the

test will be discussed. Above, T was introduced as a matrix of score functions

related to the exponential family (9). Then this model was specialized to the

GPCM, which serves as a null- hypothesis for the test. After estimation, it holds

that Ti(p-fc) =0. As a model for the alternative hypothesis, consider a model

where the item parameters differ with the score regions, that is, for every score

region a different GPCM holds. This results in an exponential family model with a

matrix T equal to the matrix U of the model test.

19
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If the null-model holds, that is, if the same GPCM holds for all score regions, the

elements of U(p-fc) will be close to zero, that is, the estimation equations for the

alternative model are "almost" solved. However, if U(p-ft) departs significantly

from zero, these equations are far from solved by the parameter estimates ensuing

from the null-model, that is, adopting the alternative model may result in better

model fit. Although from a statistical point of view this is perfectly feasible, in

practice, the search for a better fitting model will not be in the direction of the

alternative model, that is, in the direction of a model where every set of response

patterns resulting a sum score in the same region will have its own GPCM. From

a psychometric point of view the GPCM is far more parsimonious, and one may

attempt to come to a better description of the observed and expected frequencies

in the score regions by adjusting the score weights of the categories.

The final remark of this section concerns generalization of the item oriented

Si-test considered thus far to a global model test R1c that encompasses all

items. This adaptation is almost trivial, for it consists of constructing a matrix Y

that consists of all contrast vectors for all items as defined in Table 2. An

interesting feature of this approach is that if all item contrasts are added to Y,

can be removed from U altogether, because T1 is completely contained in the

manifold of Y. As a result, woldW has a block-diagonal form, and Q(U) can be

computed as a sum of G squares.

Testing Local Independence and Unidimensionality

Van den Wollenberg (1979, 1982) has shown that statistical tests for the Rasch

model for dichotomous items based on comparing the observed and expected

20
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counts of the number of correct scores on items in homogeneous score groups,

such as the Qv and R1 a-test, are, in some instances, insensitive to violation of

the axiom of unidimensionality. For instance, van den Wollenberg (1979) has

proved that if a test is made up of two Rasch-homogeneous subtests that have

equal item parameter vectors and the ability distributions associated with the two

subtests are identical, test statistics based on the number of correct scores in

score groups are insensitive to this model violation, regardless of the strength of

the correlation between the two latent ability dimensions. Therefore, van den

Wollenberg proposed a test statistic which is based on the following line of

reasoning. Suppose unidimensionality is violated. If a subject's position on one

dimension is fixed, the assumption of local stochastic independence requires that

the association between the items vanishes. In the case of more than one

dimefision, however, the subject's position in the latent space is not sufficiently

described by a unidimensional ability parameter and, as a consequence, the

association between the responses to the items given the ability parameter will not

vanish, that is, local independence is violated. Therefore, van den Wollenberg

(1979, 1982) proposed a test, Q2 that focusses on the observed and expected

association between items. However, the asymptotic distribution of this test statistic

has not been derived, though simulation studies (van den Wollenberg, 1979; Glas,

1981) support the conjecture that the test statistic has an approximate chi-square

distribution. Practical application of the test has its limitations, because its

computation requires CML parameter estimates at every possible score level. Glas

(1988) has presented a revision of the test, called R2c, that needs only one CML

parameter estimation for its computation, and proved that the test statistic has an

asymptotic chi-square distribution. In the present section, the above approach is

applied to testing the GPCM. One of the main differences with the older version of R2

21
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(Glas, 1988, 1989) will be that the test can also be computed per item pair.

A main feature that complicates testing local independence and

unidimensionality is that the number of possible alternatives is quite large. Further,

it must be stressed that local independence and unidimensionality are not the

same thing. The models discussed by Kelderman and Rijkes (1994) and Glas

(1992) are both multidimensional in the person parameters, but in their derivation

local independence is definitely used. On the other hand, the model by Jannarone

(1986), some models by Kelderman (1988) and the model by Verhelst and Glas

(1993) lack the assumption of local independence but still are unidimensional.

However, the thing all these models have in common is that analyzing data

following these models using a unidimensional, locally independent Rasch model

results in unexplained association between the items. Therefore, a general global

statistic for testing the association between the items is presented, which is

uninformative with respect to which model might work better. After presentation of

this global test, some remarks will be made on how the testing against more

specific alternatives might continue.

Insert Table 3 about here

Above, it was shown that the 1J-matrix of a generalized Pearson statistic can be

viewed as the T-matrix of an alternative, more general model. The essence of the

test presented here is enhancing the model of the null-hypothesis with parameters

associated with pairs of items, to check to what extent these added parameters

might contribute to explaining the association between items. Consider the
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example of Table 3. This table has the same layout as Table 2, that is, it contains

a matrix U consisting of a matrix T associated with the null-model and a matrix Y

of the relevant contrasts or the score functions of the added parameters,

whichever way one wants to look at it. The example of Table 3 concerns testing

the association between item 1 and 2. The result of the product NY'p must be the

observed number of persons producing the simultaneous response pair

(xlh,x2k), for h = 0,1 and k= 0,1,2. In the same manner NYI must produce its

estimated expected value. Therefore, Y has six rows, which are associated with

the pairs of categories {h,k) = (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), respectively.

For some pair {h,k) the associated column of Y has as entries the product of xlh

and x2k, that is, the entry is one if the response pattern has a response on item 1

in category h and a response in category k on item 2. So essentially, the test is

based on comparing the observed association in a two by six matrix produced by

NY'p with its expected value. If there turns out to be unexplained association,

NY(p-fc) will significantly depart form zero and the model test will also be

significant.

The final question that needs to be answered in this section is how to proceed

if the global test for unidimensionality and local dependence is significant and the

GPCM is rejected. Above, it was already mentioned that there are various

alternatives to the GPCM. An important distinction between the alternative models

is whether or not they can be estimated using CML. For models where CML

applies, the testing procedure can be continued by entering the T-matrix of the

specific alternative of interest as a U-matrix into the Q(0-test. Specific

alternatives may be unidimensional models by Jannarone (1986) and Kelderman

(1984) lacking local independence and the multidimensional model by Kelderman

and Rijkes (1994). A detailed description of this procedure is beyond the scope of
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this chapter. A relevant model where CML is feasible is the multidimensional

model by Glas (1992), where it is assumed that a test consists of a number of

Rasch scales while ability has a multivariate normal distribution. This model can

be estimated using MML. Glas and Verhelst (1995) have shown how the

framework of generalized Pearson statistics can be adopted to IRT models

extended with assumptions concerning the ability distribution. The essential

requirement is that the extended model must have non-trivial, though not

necessarily minimal sufficient statistics for the parameters, where non-trivial means

that the aggregation level of the statistics must transcend the level of the mere

response patterns themselves. Non-trivial sufficient statistics exist for the

multidimensional model by Glas (1992), so the search for a fitting model can also

be expanded into this direction. Also here a detailed description is beyond the

scope of the present chapter.

Some Simulated Examples

This chapter will be concluded with some simulation studies concerning the power

of the tests. These studies do not have the pretention of being exhaustive, the

purpose of this section is to give the reader some assistance in interpreting the

outcomes of an analysis. The simulation studies will be focused on two topics, the

power against improper specification of the score weights and the power against

multi-dimensionality. All simulation studies were carried out with 100 replications.

The sample size was 1000 respondents, augmenting the sample size did not

produce any unexpected results, that is, the power of the tests grew larger.

Therefore, the results for larger sample sizes will not be presented here.
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Insert Table 4 about here

For the first example, concerning detection of improperly specified score weights,

consider Table 4. The example consists of four items with four response

categories each, that is mi = 3, for i = 1,...,4. The item parameters and the score

weights used for generating the data are shown in columns three to five. The

weight oi the zero category is fixed at zero for all studies to be presented. The'

means over 100 replications of the CML parameter estimates using the correct

score weights are shown in column six, the mean estimated standard errors are in

the next column. The estimation equations were solved using a Newton-Raphson

algorithm. It can be seen that the algorithm performed properly: the parameter

estimates all fall in a range of plus and minus two standard deviations around the

true values of the parameters. For the next two studies, the score weights of the

third item were changed from {1, 2, 3} to {2, 3, 4} and {3, 4, 5), respectively. The

resulting parameter estimates are displayed in the ninth and the last column of

Table 4. It can be seen that all parameter estimates suffer from this improper

specification, however the estimates of the parameters of the third item seem to

suffer most. In Table 5 the results of testing model fit in these last two studies are

summarized. The Sj. and Ri c-tests were computed using four score levels, that

is, G = 4. For all reported studies a significance level of 5 % will be used. In the

columns labeled "Si", the mean value of the Si statistic over 100 replications is

given, the columns labeled "Prob" and "%Sign." give the mean of the probability of

the values of Si and the number of times that the test was significant in the 100

replications, respectively. The rows with the entry 'R c" give the same information
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for the computation of Rio. Finally, the rows with the entry " " give the mean

of S,y and the mean of the probability values over all replications and all item

pairs. Therefore, the column-entries under "%Sign." in these two rows refer to the

percentage of significant outcomes in 600 model tests.

Insert Table 5 about here

It can be seen that in both studies item 3 is most often pinpointed as a

misfit and, as expected, the number of significant outcomes of Si grows as the

difference between the true and imputed score weights becomes larger. Imputing

the score weights (4 5 6} for item 3 resulted in a significant result for all the

S_i-tests for this item. However, also the number of significant results for the other

items grows as the model violation for item 3 becomes more profound. The

reasons for this phenomenon are that the estimates of the parameters of all items

are affected by the model violation and that the total score .as a criterium for

forming homogeneous ability groups for computation of the test becomes more or

less invalidated. Notice that the --test is not very sensitive to this model violation,

though also here the number of significant outcomes grows with the importance of

the model violation. The simulation studies reported in Table 6 follow the same

lines as the previous ones, only. here the number of response categories per item

is varied. This time, one of the score weights of item 2 is changed dramatically, the

true values (2, 5) are transformed to (1, 5) in a first study and (3, 5) in a second

study. The parameters estimates using the true score weights are not reported in

Table 6, they did not contain anything unexpected beyond the results already
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shown in Table 4. The imputed score weights and the resulting mean estimates

over 100 replications for the first study are shown in the columns six and seven,

for the second study they are displayed in the columns ten and eleven. As

expected, the model violations produce bias in the estimates. The columns labeled

"Si" give the percentage significant results for the Si-test, at the bottom of the

table the same is count is given for R1 c. It can be seen that item 2 is most often

detected as a misfit. In tIte columns labeled '1 .." the percentage significant

outcomes is reported for all pairs of items i,j where item i is involved. So every

entry in this column refers to 300 tests. It can be seen that Su is far less sensitive

to the model violation as Si, but also here the percentage significant results is

largest for item 2.

Insert Table 6 about here

Apart from supporting detection of misfitting items, Si also provides information on

how to adjust score weights. It is beyond the scope of the present paper to

develop a complete heuristic for this matter, however, an example will be given of

how the information produced by the testing procedure can be applied to

diagnostic purposes. In Table 7 information issuing from two replications of the

simulation studies of Table 6 is presented, the first part of Table 7 relates to a

study where item 2 has score weights (1, 5), the second part of the table relates to

a study where item 2 has score weights (3, 5). So in the first analysis the index of

category 1 is too low, in the second analysis the index of this category is too high.

The Si-test is based on the difference between observed and expected numbers
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of responses on item categories in homogeneous score groups. In the two

examples of Table 7 four score groups are formed, the first group has scores from

1 to 3, the second scores from 4 to 6, the third scores from 7 to 9 and the last

group scores from 10 to 14. The score groups are formed in such a way that the

numbers of respondents in each subgroup are approximately equal. In the table,

the differences between observed and expected frequencies are divided by their

standard deviations to produce so-called scaled deviates, which, approximately,

have a standard normal distribution. The entry for h = 2 in the first score group is

set equal to zero because it is not possible to simultaneously obtain a score less

than or equal to 3 and respond in the second category of item 2. Comparing the

rows of scaled deviates of item 2 in the two studies, it can be seen that, roughly

speaking, the signs of the scaled deviates in both studies oppose. For instance, in

the first study, there are less observations on the first category in the first score

group than expected, while the opposite applies to the second study. Further, in

the first study, there are more observations on the first category in the highest

score group than expected, while in this group there are less responses on the

second category than expected. Again, the opposite holds in the second study. So

one may conclude that item 2 has too low a score weight in the first study and too

high a weight in the second study. This, of course, complies with the manner in

which the data were generated.

Insert Table 7 about here

The second set of simulations was aimed at the power of S11 against
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multidimensionality. First consider the example of Table 8. In this example the

items 1 and 4 related to one latent trait, while the items 2 and 3 related to another

latent trait. Both ability variables had a standard normal distribution, the correlation

between the variables was 0.50. Again 100 replications were made. The results

are summarized in Table 8. Notice that the parameter estimates are systematically

biased, in the sense that they shrink towards zero. For every item i, 100 Si-tests

and 300 Siftests (j = 1,..,4, ij) were computed, the percentages significant

outcomes are summarized in the last two columns of Table 8. The percentage

significant outcomes of R1c is given at the bottom of the table. Notice that all

three statistics are sensitive to the model violation, only Si does a poor job for the

first dichotomous item. With respect to Siij) it must be noticed that it did not

matter whether the items i and j related to the same dimension or not.

Insert Table 8 about here

The final set of simulations of this paper concerns the power of Si against

multidimensionality. Above it was already mentioned that, for the case of

dichotomous items, van den Wollenberg (1979) has proved that if a test is made

up of two Rasch-homogeneous subtests that have identical item parameter vectors

and ability distributions, test statistics based on the number of correct scores in

score groups are insensitive to this model violation, regardless of the height of the

correlation between the two latent ability dimensions. The present simulation study

concerns the question whether the conditions identified by van den Wollenberg

also apply to the case of polytomous items. The topic of this simulation study are
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two subtests of four items each, the item parameters and score weights were the

same as those reported for the four items of Table 8. The correlation between the

two latent dimensions was fixed at 0.25 for the first 100 replications, 0.50 for the

next 100 replications and 0.75 for the last 100 replications. The results are

summarized in Table 9. The fifth, sixth and seventh column relate to the study with

correlation equal to 0.25, the next three columns relate to the study with correlation

0.50 and the last three columns relate to the study with correlation 0.75. First of all

it can be seen that the shrinkage in the parameter estimates lessens as the

correlation becomes higher. Also the number of significant values of

Sij,Si and /31 c reduces as the correlation becomes higher. However, for a

correlation of 0.75, Sij is still significant half of the time, while the sensitivity of

Si and R1c for the model violation has disappeared. Apparently, S11 is far better

suited for detecting multidimensionality than Si and R1 c. Insensitivity to

multidimensionality regardless of the height of the correlation between the two

latent ability dimensions, however, does not hold for polytomous items.

Insert Table 9 about here

As a concluding remark in this section, it must be noticed that simulation studies

unavoidably are to a large degree artificial. When analyzing real data, it will seldom

be the case that one item violates one specific model assumption, while other

items elicit only model conform responses. On the other hand, model violations

may probably not be as profound as the ones studied here. In practical situations,

it is advisable to start with an initial model that already accounts for possible
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differences in discrimination between the items, rather than start with the basic

partial credit model and try to adjust the hypotheses about the score weights by

inspecting differences between observed and expected frequencies. Two possible

initial models can be useful for this purpose: the nominal response model (Bock,

1972) and the OPLM (Verhelst and Glas, 1995). The nominal response model is

equivalent with the GPCM defined in (2), except that in this case the scoring

weights rih are treated as unknown parameters to be estimated. It has already

been mentioned above that the mathematical properties of the nominal response

model are such that little progress has been made with respect to testing

procedures for this model. However, Veldhuijzen (1995) and Verstralen (1995)

have developed several heuristics based on this model to obtain initial values for

the score functions in both the OPLM and the GPCM. The second approach is

based on OPLM itself. In the OPLM a discrimination index is specified for every

item and, therefore, the model can be viewed as a special case of the GPCM. For

the OPLM the methods for adjusting hypothesis concerning discrimination indices

using differences between observed and expected frequencies has been

thoroughly worked out and works well in practice. Items that keep failing the OPLM

can be further analyzed using the GPCM. Since the GPCM is quite flexible in the

possibilities of modeling differences in discrimination between items and item

categories, the main reason for failure of the GPCM might be multidimensionality.

One of the obvious ways to proceed in case of lack of fit is to adopt the Rasch

model with a multivariate distribution of ability (Glas, 1992) and replace the Rasch

model with the GPCM. For this approach, two problems remain to be solved.

Firstly, there must be available a practical heuristic for determining which items

relate to the same latent distribution and, secondly, a testing procedure for the

GPCM with a multivariate distribution of ability must be developed.
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Table 1

An example of the matrix T
item

cat.

weight

score

1

01

12

2

012

013

3

0123

0123

score

12345678 probability

1 10 100 1000 10000000 7(10,100,1000)
2 10 100 0100 01000000 7(10,100,0100)
2 10 010 1000 01000000 7(10,010,1000)
2 01 100 1000 01000000 7401,100,1000)
3 01 010 1000 00100000 7(01,010,1000)
3 10 100 0010 00100000 7(10,100,0010)
3 10 010 0100 00100000 7(10,010,0100)
3 01 100 0100 00100000 7(01,100,0100)
4 10 100 0001 00010000 7(10,100,0001)
4 10 001 1000 00010000 7(10,001,1000)
4 01 010 0100 00010000 7(01,010,0100)
4 10 010 0010 00010000 7(10,010,0010)
4 01 100 0010 00010000 7(01,100,0010)
5 10 010 0001 00001000 7(10,010,0001)
5 10 001 0100 00001000 7(10,001,0100)
5 01 100 0001 00001000 7(01,100,0001)
5 01 001 1000 00001000 7(01,001,1000)
5 01 010 0010 00001000 7(01,010,0010)
6 01 010 0001 00000100 7(01,010,0001)
6 01 001 0100 00000100 7(01,001,0100)
6 10 001 0010 00000100 7(10,001,0010)
7 10 001 0001 00000010 7(10,001,0001)
7 01 001 0010 00000010 7(01,001,0010)
8 01 001 0001 00000001 7(01,001,0001)
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Table 2
An Example of the Matrix U

for Testing the ICC's of Item 2
(the entries left blank are equal to zero)

Ti T2
item
cat.
weight

score

1

01

12

2
012
013

3

0123
0123

score
12345678

1 10 100 1000 10000000 100
2 10 100 0100 01000000 100
2 10 010 1000 01000000 010
2 01 100 1000 01000000 100
3 01 010 1000 00100000 010
3 10 100 0010 00100000 100
3 10 010 0100 00100000 010
3 01 100 0100 00100000 100
4 10 100 0001 00010000 100
4 10 001 1000 00010000 001
4 01 010 0100 00010000 010
4 10 010 0010 00010000 010
5 01 100 0001 00001000 100
5 01 001 1000 00001000 001.
5 01 010 0010 00001000 010
6 01 010 0001 00000100 010
6 01 001 0100 00000100 001
6 10 001 0010 00000100 001

10 001 0001 00000010 001
7 01 001 0010 00000010 001
8 01 001 0001 00000001 001
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Table 3
An Example of the Matrix U

for item 1 and 2
T1 T2

item
cat.
weight

score

1

01
12

2
012
013

3
0123
0123

score
12345678

1 10 100 1000 10000000 100000
2 10 100 0100 01000000 100000
2 10 010 1000 01000000 010000
2 01 100 1000 01000000 000100
3 01 010 1000 00100000 000019
3 10 100 0010 00100000 100000
3 10 010 0100 00100000 010000
3 01 100 0100 00100000 000100
4 10 100 0001 00010000 100000
4 10 001 1000 00010000 001000
4 01 010 0100 00010000 000010
4 10 010 0010 00010000 010000
4 01 100 0010 00010000 000100
5 10 010 0001 00001000 010000
5 10 001 0100 00001000 001000
5 01 100 0001 00001000 000100
5 01 001 1000 00001000 000001
5 01 010 0010 00001000 000010
6 01 010 0001 00000100 000010
6 01 001 0100 00000100 000001
6 10 001 0010 00000100 001000
7 10 001 0001 00000010 001000
7 01 001 0010 00000010 000001
8 01 001 0001 00000001 000001
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Table 4
Parameter Estimates Using Correct and Incorrect

Discrimination Indices.

i h
True Values Study 1

r se(ii)
Study 2
r 1/

Study 3

1 1 -1.50 -1.50 1 -1.424 .114 1 -1.293 1 -1.231
2 .00 -1.50 2 -1.345 .134 2 -1.282 2 -1.225
3 1.50 .00 3 .034 .170 3 .272 3 .060

2 1 -.67 -.67 2 -.594 .134 2 -.558 2 -.371
2 .00 -.67 5 -.430 .237 5 -.486 5 ,.449
3 .67 .00 7 .462 .290 7 -.086 7 .089

3 1 -.67 -.67 1 -.710 .105 2 -1.006 3 -1.387
2 .00 -.67 2 -.758 .126 3 -.717 4 -1.268
3 .67 .00 3 .122 .158 4 -.099 5 -.722

4 1 -1.00 -1.00 1 -1.220 .099 1 -.930 1 -.664
2 .00 -1.00 3 -1.026 .089 3 -.903 3 -.857
3 1.00 .00 4 .000 -- 4 .000 4 .000
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Table 5
Testing Model Fit

Item Weights S DF Prob %Sign.
1 0 1 2 3 10.805 9 .411 12
2 0 2 5 7 8.643 9 .545 8
3 0 2 3 4 16.122 9 .197 39
4 0 1 3 4 11.054 9 .371 10

Ric 46.626 30 .138 57
9.624 9 .501 47

Item Weights S1 DF Prob %Sign.
1 0 1 2 3 14.406 9 .301 33
2 0 2 5 7 12.412 9 .319 25
3 0 3 4 5 30.407 9 .033 87
4 0 1 3 4 16.235 9 .204 38

R1c 73.461 30 .026 93
Sij 12.387 9 .371 33
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Table 6
Parameter Estimates and Model Tests

i h
True Values Study 1

17 S S
Study 2

fi
1 1 1 .00 .00 1 .093 6 12 1 -.020 4 7
2. 1 2 -.67 -.67 1 -.192 3 -.900

2 5 .67 .00 5 .488 74 19 5 -.224 48 7
3 1 1 -.67 -.67 2 -.692 3 -.491

2 2 .67 .00 3 -.111 4 5 4 .147 4 0
4 1 1 -1.00 -1.00 1 -1.020 1 -.970

2 3 .00 -1.00 3 -.997 3 -.911
3 4 1.00 .00 4 .000 2 3 4 .000 2 1

66 52
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Table 7
Patterns of Scaled Deviates

i h r
Group-1

1 to 3
Group-2

4 to 6
Group-3

7 to 9
Group-4
10 to 14 SS Si

1 1 1 .328 -.016 -.578 .463 , 3.385 3.149
2 1 1 -2.569 .448 1.579 1.483 13.783

2 5 .000 .920 .621 -1.114 4.643 17.472
3 1 1 .759 -.296 .140 -.401 3.433

2 2 .085 -.191 -.416 .386 2.971 5.986
4 1 1 .399 -.198 .135 -.564 2.948

2 3 .344 -.139 -.078 -.006 2.633
3 4 .100 -.185 -.422 .319 1.986 7.126

1 1 1 -.462 -.050 .710 -.511 3.706 3.165
2 1 3 1.624 .843 -.086 -1.560 8.497

2 5 .000 -1.282 -1.195 1.446 6.761 13.091
3 1 1 -.561 .735 -.069 -.062 3.010 ,

2 2 -.279 -.255 .558 -.117 3.240 5.414
4 1 1 -.561 .014 -.231 .700 3.222

2 3 -.461 .321 .605 -.320 3.579
3 4 .100 -.269 .292 -.043 1.700 7.186
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Table 8
Parameter Estimates and Model Tests

with Multidimensional Data
h r Dim ,3 ij S Sij

1 1 3 1 .00 .00 -.004 5 84
2 1 2 -.50 -.50 -.193

2 4 2 .50 .00 .014 65 76
3 1 2 -.50 -.50 -.238

2 3 2 .50 .00 .099 14 52
4 1 1 -1.00 -1.00 -.642

2 3 .00 -1.00 -.582
3 4 1 1.00 .00 .000 64 51

Ric 97

4 2
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Table 9
Parameter Estimates and Model tests

for Two Equal Subtests

i h r Dim
Study 1

ij S Sij
Study 2
i S1 S,

Study 3
S1 Sij

1 1 3 1 -.260 13 100 -.090 8 99 -.094 5 63
2 1 2 .007 -.149 -.311

2 4 1 -.065 34 100 -.152 13 99 -.087 5 57
3 1 2 -.231 -.363 -.423

2 3 1 -.087 3 99 .054 15 99 -.107 4 41
4 1 1 -.611 -.625 -.945

2 3 -.680 -.733 -1.144
3 4 1 -.211 17 99 -.192 10 96 -.268 3 41

3 2 .079 13 100 -.128 5 99 -.174 6 58
1 2 -.004 -.312 -.396
2 4 2 .000 35 . 100 -.303 20 97 -.126 9 56

7 1 2 -.088 -.367 -.344
2 3 2 .088 8 99 -.006 7 89 -.116 5 42

8 1 1 -.494 -.494 -.639
2 3 -.430 -.701 -.857
3 4 2 .000 13 99 .000 9 93 .000 5 40

56 32 6
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