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PREFACE

As we approach the new millennium, it seems appropriate to reflect
on changes in the mathematics we teach, and in how we teach it. The sin-
gle most important influence on the school mathematics of the past
twenty-five years has been the coming of age of personal computing
technology. The 1997 Yearbook of the Pennsylvania Council of Teachers
of Mathematics, Teaching and Learning Mathematics with Technology, focus-
es on the role of technology in school mathematics. Its chapters are
replete with classroom-tested ideas for using technology to teach new
mathematical ideas and to teach familiar mathematical ideas better.

Technology affords teachers and students new mathematical power,
and many times that new power centers on new visual images the tech-
nology affords. The first chapter, "Using the Graphing Calculator in the
Classroom: Helping Students Solve the 'Unsolvable,' " by Eric Milou,
Edward Gambler, and Todd Moyer, discusses the ways in which high
school students approached solving a seemingly unsolvable equation by
using graphing technology. At times, technology can turn problems
which previously had been addressed using only symbolic manipulation
into problems whose graphical representations open new ways of think-
ing about the concepts involved. Such is the case in David Duncan's and
Bonnie Litwiller's chapter, "Graphing Changing Averages," in which the
authors analyze the average number of points per game for a player
given statistics related to his average. The authors use the graphing cal-
culator to help the student visualize the graphs of many related func-
tions simultaneously. John Baker, in his chapter, "Making More of an
Average Lesson: Using Spreadsheets to Teach Preservice Teachers about
Average," demonstrates how the visual representations available on a
spreadsheet can be used to broaden students' concepts of average. He
describes how this use of spreadsheets relates to current research on stu-
dents' learning of the concept of average.

Implementation of the NCTM Standards is a continuing issue for
today's mathematics teachers, and Gina Foletta raises an important issue
about the dilemmas its implementation poses. She reminds us of "the
tension between the recommendation to de-emphasize proof while at the
same time to emphasize mathematical reasoning." She sheds light on the
important role of technology in easing this tension in her chapter, "In the
presence of technology, geometry is alive and well ... but different." The
final chapter focusing on the visual role of technology is "Composing
Functions Graphically on the TI-92," by Linda Iseri. Many high school
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and college mathematics teachers find that students struggle with the
issue of the meaning of domain in composition of functions. The author
of this chapter lends considerable clarity to the issue of domain by illus-
trating the composition graphically on a TI-92 calculator.

Much of the current and past uses of technology in the mathematics
classroom have centered on graphing technology. Some have said that
this emphasis has resulted in a de-emphasis on symbolic representations.
Margaret Kinzel, in "Signifiers and Counterparts: Building a Framework
for Analyzing Students' Use of Symbols," shares her theory about how
we might think about the things that students do with algebraic notation.
This theory takes on increased importance in light of recent develop-
ments in school-based technology. The past few years have seen the
release of the TI-92, a user-friendly handheld computer algebra system
coupled with a dynamic geometry tool. Tom Evitts, in his "Exploring
Continued Fractions: A Technological Approach," illustrates the use of
the symbolic manipulation capabilities of the TI-92 in the study of frac-
tions that students seldom have the opportunity to explore. Karen
Flanagan and Ken Kerr, in "The Isosceles Triangle: Making Connections
with the TI-92," illustrate how tools like the TI-92 might be integrated
into the teaching of geometry.

The final chapter highlights the contributions technology can make to
the development of mathematical models. In his chapter,
"Mathematically Modeling a Traffic Intersection," Jon Wetherbee, a mid-
dle school student, describes how he used spreadsheets and computer
programming in modeling traffic flow for the purpose of simulating the
effects of proposed changes to a road. Jon's chapter, as well as the previ-
ous chapters clearly illustrates the power technology offers to students
and teachers of mathematics.

Glendon W. Blume M. Kathleen Heid
The Pennsylvania State University The Pennsylvania State University
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USING THE GRAPHING CALCULATOR IN
THE CLASSROOM: HELPING STUDENTS

SOLVE THE "UNSOLVABLE"

Eric Milou
Rowan University

Edward D. Gambler
Ephrata Area Senior High School

Todd 0. Moyer
Ephrata Area Senior High School

In the 21st century, technology will play an even bigger role in educa-
tion in particular, and in society in general, than it does today. Educators
must explore ways to use technology to promote more effective instruc-
tion. In mathematics education, the technology that affords the greatest
promise is the hand-held, programmable, graphing calculator. Casio
invented the first graphing calculator in 1985 and started a revolution by
presenting powerful hand-held graphing capabilities to millions of
mathematics students. In the intervening years, graphing calculator
technology has made it possible for students to visualize mathematics
on a regular basis both inside and outside of the classroom. As suggest-
ed in the National Council of Teachers of Mathematics Curriculum and
Evaluation Standards for School Mathematics (1989), these tools have
changed the very nature of the problems important to mathematics and
the methods used to investigate those problems. Furthermore, the avail-
ability of graphing calculators raises questions about what is, what can
be, and what should be taught in the mathematics classroom.

Just as the four-function calculator changed the role of pencil-and-paper
skills in arithmetic and the goals of elementary school mathematics, graph-
ing and programmable calculators are forcing a serious examination of the
secondary school curriculum. (Burrill, 1992, p. 15)
Graphing calculators can enhance the teaching and learning of algebra

by modeling relationships graphically, numerically and symbolically.
Moreover, although many equations can be solved symbolically, adding
the graphing approach allows students to see connections between sym-
bolic solutions and graphical solutions. In fact, many algebraic concepts
(e.g., domain, range, inverse, solutions to equations, inequality) and
their applications can be learned more effectively with a graphing calcu-
lator (Demana & Waits, 1990). Important connections between algebra
and geometry can be demonstrated through tr following problem.



2 Using the Graphing Calculator in the Classroom

Find all points of intersection of y = x4 and y = 3x.

Clearly the algebraic solution would be prohibitively complex for high
school students. However, with a graphing calculator the solution of this
problem is within the reach of all students.

At a large suburban Philadelphia high school, an Algebra III class of
juniors and seniors was assigned this problem. The students in this class
had graphing calculators (Texas Instruments TI-82's) available to them
at all times. Students were placed in eight groups and given two class
periods to work on the problem. One student in each group was chosen
to record the group's work in a journal. Three distinct approaches to the
problem follow.

Approach /: Five of the eight groups approached the problem in a simi-
lar manner. These groups graphed both functions with a standard view-
ing window of (-10, 101 by [-10, 101 (See Figure 1). This can be accom-
plished quickly with the "zoom standard" command (Zstandard) on the
TI-82. Then, using the "intersect" (Calculate 5: intersect) command, stu-
dents were able to find two solutions, one at x = -.802, y = .414 and one
at x = 1.517, y = 5.293. Most of the groups felt satisfied that they had all
possible solutions. However, one of the groups decided to continue by
changing the domain and range of the viewing window. After much
debate on whether they would ever find another point of intersection,
the students, using a viewing window of [5, 10] by [0, 5000], discovered
another point of intersection at x = 7.175, y = 2649.89. The students in
this group were very excited and exclaimed to the class that there were
three solutions. Were there more?

Figure 1. Graphs of y = x4 and y = 3x with viewing window [-10, 10] by [-10, 10].

1 0



Milou/Gambler/Moyer 3

Approach 2: Two groups approached the problem by finding the first
two points of intersection as in Approach 1 and then making a table.
They used the Table Setup command to set the table to begin at x = -2
and the delta table equal to 1 (See Table 1).

x yl = x4 y2 = 3x
-2 16 0.11111

-1 1 0.33333
0 0 1

1 1 3

2 16 9

3 81 27
4 256 81

5 625 243

6 1296 729

7 2401 2187
8 4096 6561
9 6561 19683

10 10000 59049

Table 1. Table of values for y = x4 and y = 3x.

The students made the following observation: At x = -2 and x = -1,
y/ > y2. However, at x = 0, yl < y2. Therefore, there must be a point of
intersection between x = -1 and x = 0. This hypothesis was confirmed by
the point of intersection they had found through the graphing approach.
Similarly, at x = 1, yl < y2, but at x = 2, yl > y2. Thus, there must be a
point of intersection between x = 1 and x = 2. Again, this was confirmed
by the graphs. Finally, from x = 2 to x = 7, y/ > y2. Then, at x = 8, y/ < y2.
Thus, a third elusive point of intersection must occur between x = 7 and
x = 8. [Editors' note: This approach was described in Heid & Kunkle
(1988).] The students did not quit. They continued down the table and
looked for any other "changes". They discovered that y2 continued to
grow much more quickly than yl and concluded that there were no
more points of intersection as x grew larger. Another student checked
for trends at the "negative end of x" (y1 approaches infinity as y2
approaches zero) and also concluded that there were no more points of
intersection.

ii



4 Using the Graphing Calculator in the Classroom

It is worth noting at this point that these students had no prior expo-
sure to the Intermediate Value Theorem. This, then, is an example of the
use of technology freeing students from the tedium of endless calcula-
tions, allowing them instead to analyze and interpret data generated by
the technology. In this case, the calculator freed them to discover an
instance of an extremely important theorem which they might otherwise
have encountered only in a later mathematics course.

Approach 3: One group of students had a different approach. Instead
of finding the intersection points of y = x4 and y = 3x, they decided to
find the zeros of y = x4 3x. They graphed this function using a standard
viewing window (See Figure 2). Immediately, they discovered that three
zeros were present. Using the "root" (Calculate 5: root) command on
their calculator, they found the zeros to be: x = -.802 , x = 1.517, x = 7.175.
They substituted each x back into y = x4 to find the corresponding y val-
ues, y = .414, y = 5.296, and y = 2650.25. They changed the domain and
range of their graph, but concluded that no more zeros existed.

Figure 2. Graph of y = x4 3x with viewing window [-10, 10] by [-10, 10].

Conclusion
When each group presented its approach, the other students were

very excited to see the different methods of attacking this problem.
Furthermore, it was exciting for the instructor to see Approach 2, in
which the students were discovering an instance that illustrated the
Intermediate Value Theorem without prior exposure to the theorem. The
third approach, which tied together terminology such as zeros, roots,
and points of intersection, was also extremely worthwhile.

12



Milou/Gambler/Moyer 5

In summary, the use of the graphing calculator in the algebra class-
room allows for many exciting explorations. It is a tool for connections,
for cooperative work, and for discovery of mathematical principles.
Moreover, this problem, which was virtually unsolvable by traditional
methods, became well within the reach of every algebra student.
Furthermore, the technology, when applied to the solution process,
allowed for an impressive amount of real mathematical thinking and
communication. This type of communication makes the core curriculum,
as envisioned in the Standards, a real possibility. Harvey, Waits, and
Demana (1995) have emphatically stated that, "falling price, easy avail-
ability, and portability of graphing calculators have provided the poten-
tial for a revolutionary impact in the teaching and learning of algebra"
(p.82). This revolution can be accomplished if teachers are willing to use
graphing calculators in exploration activities such as the one presented
herein.
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GRAPHING CHANGING AVERAGES

David R. Duncan and Bonnie H. Litwiller
University of Northern Iowa

Secondary school mathematics teachers often look for ways in which
graphs can be used to represent real world situations. Graphing calcula-
tors expand the types and number of graphs that students can readily
produce. The following problems concerning basketball scoring averages
illustrate this.

Problem I
Suppose that an NBA basketball player, called Q, had a 20 point per

game scoring average after playing in the season's first 10 games.
Suppose also that for each of the remaining 72 games of the season, he
scored exactly 30 points.

Note that Q's scoring average at any time is found as follows:

Number of points scored
Scoring average per game =

Number of games played

After the first 10 games, this formula can be rewritten as
Number of points scored

20 = or 200 = Number of points scored. Conse-
quently, we con10 ctude that Q has scored about 200 points in his first 10 games.

What effect does Q's enhanced performance (scoring 30 points per
game for the next 72 games) have on his overall scoring average? After

30one additional game (11th), Q's scoring average is 200 + while
after two additional games (11th and 12th), his scoring average is

200 (30)200 + 2(30)
= 21.7 . Q's scoring average after n additional games is + n

12 10 + nWe will call this Q's points per game or PPG.

Figure 1 depicts the scoring averages for n = 0, 1, 2, ..., 72, where n is
the number of additional games after the season's first 10. Although a
graph with positive integer-value inputs would be mathematically more
accurate, all points on the graph are connected for ease of reading.

13



8 Graphing Changing Averages

n (number of games after first 10 games)

Figure 1. Scoring average for Problem I as a function of number of games played
after the first 10 games, shown with viewing window: 0 n 72 and
20 PPG 30.

One should note the following three points.
1. Q's overall PPG continues to increase as the season progresses. Its

. 200 + 30(72)largest (final) value is
82

= 28.8 . Use the trace capability

to find this point on the graph.
2. The curve is concave down, meaning that the rate of increase of

PPG is slowing. The decreasing rate of increase can be verified by
making a table and taking differences and second differences, or by
taking the second derivative of PPG and observing its sign.

3. The graph, if continued for larger values of n, would be asymptotic
to PPG = 30. How large must n be for PPG to round to 30.0?
Algebraically, this means solving PPG 29.95.

200 + 30nThus: 29.95
10 + n

200 + 30n = (29.95)(10 + n)

200 + 30n 299.5 + 29.95n

0.05n 99.5, So

n > 99.5 or 1990.
0.05

The season would have to be at least 1990 + 10 or 2000 games long!

1 6



Duncan/Litwiller 9

[Editors' note: Several reviewers suggested that students with access to a
computer algebra system, for example, the Texas Instruments 1I-92 cal-
culator, might use the symbolic manipulation capability to solve the
preceding equation. Figure 2 illustrates what students might produce on
the TI-92.]

`Z. TF31 r" T TAlgebra Calc Other PrgmIO.Clear az...
F6

-ve((200+30n)/(10+n)=29.95,n>

Figure 2. 1I-92 solution using solve command.

Problem II
Suppose that Q's PPG were 30 after playing in each of the first 10 games
of the season. If Q scored 20 points for each of the remaining 72 games,
graph his PPG against the number of games played after the first 10.

300 + 20n
PPG = , where n = 0, 1, 2, ..., 72.

10 + n

Figure 3 depicts this situation.

n (number of games after first 10 games)

Figure 3. Scoring average for Problem II as a function of number of games
played after the first 10 games, shown with viewing window: 0 n 72

and 20 PPG 30. 1 7



10 Graphing Changing Averages

The graph in Figure 3 has "reverse" properties as compared to the
graph in Figure 1. Q's PPG continues to decline for the remainder of the
season, although it decreases at a slower rate as the season progresses. If
the graph were extended, the curve would be asymptotic to PPG = 20.
When would the PPG round to 20.0?

From these graphs students should recognize that early in the basketball
season, scoring performances different from the PPG to date have a sub-
stantial influence on the overall PPG. Later in the season, the overall PPG is
more difficult to change in either direction. When students recognize this,
an opportunity arises to engage them in explaining why this is the case.

Problem III
Let us modify Problem I by considering a series of situations for vary-

ing numbers of initial games in which Q's PPG is 20. What effect does
this have on Q's overall PPG as the season continues? For instance, sup-
pose the initial PPG of 20 extended for 20, 30, 40, 50, 60, or 70 games.

To represent those situations on the same graph, we shall define a new
set of variables. Let m represent the total number of games played at any
point in the season. As in Problem I, PPG is the points per game after m
games. The formulas for PPG for seven such situations are given in Table
1. In these situations Q's PPG is 20 after 10, 20, 30, 40, 50, 60, or 70 games
and he scores 30 points per game thereafter to the end of the season (82
games). Figure 4 displays the graphs for these situations. Only the por-
tion of each graph after Q's scoring increases is displayed. The straight
line portions (PPG = 20) leading to the displayed curves are not shown.

These curves are similar in several ways. Each increases from left to
right, although the rate of increase is slowing. If extended far enough to
the right, one could see that each graph is asymptotic to PPG = 30.

I V

n (number of games after first 10 games)

Figure 4. Scoring averages for Situations as a function of number of games
played, shown with viewing window: 0 m 82 and 20 PPG 30.

18



Duncan/Litwiller 11

Number of games after
which Q's PPG is 20

(he scores 30 points per
game thereafter to the

end of the 82-game season) PPG

Situation I 10
20, if m 10

PPG = 200 + 30(m 10)
10, if m >

m

Situation II 20
20, if m 20

PPG = 400 + 30(m 20) .

20, if m >
m

Situation III 30
20, if m 30

PPG = 600 + 30(m 30),
111

Situation IV 40
20, if m 40

PPG = 800 + 30(m 40),
if 40m >

m

Situation V 50
20, if m 50

PPG = 1000 + 30(m 50),
m

Situation VI 60
20, if m 60

PPG = 1200 + 30(m 60),
if 60ni >

m

Situation VII 70
20, if m 5 70

PPG = 1400 + 30(m 70) .

70, if m >
m

Table 1. Formulas for PPG for seven situations.

There are also differences among these curves. The apparent curva-
tures of the seven graphs differ noticeably. How can this be explained?

Challenges for the Reader and for the Reader's Students
1. Replicate the situations in this article using statistics from women's

professional basketball leagues. Be sure to take note of the number
of games played in a regular season.

2. Find other settings for which graphing illuminates changing
averages.

We have used graphing and algebra to gain insight into a statistical sit-
uation. The calculator is a tool that facilitates the graphing process and
enables one to examine a variety of possible situations.

ABOUT ME AUTHORS
David R. Duncan and Bonnie H. Litwiller are Professors of Mathematics at the University of Northern

Iowa. Their address is Department of Mathematics, The University of Northern Iowa, Cedar Falls, IA
50614-0506.
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The Use of Technology in the Learning and
Teaching of Mathematics

A Position Statement of the National Council of
Teachers of Mathematics

Technology is changing the ways in which mathematics is used and is dri-
ving the creation of new fields of mathematical study. Consequently, the con-
tent of mathematics programs and the methods by which mathematics is
taught and learning assessed are changing. The ability of teachers to use the
tools of technology to develop, enhance, and expand students' understanding
of mathematics is crucial. These tools include computers, appropriate calcula-
tors (scientific, graphing, programmable, etc.), videodisks, CD-ROM, telecom-
munications networks by which to access and share real-time data, and other
emerging educational technologies. Exploration of the perspectives these
tools provide on a wide variety of topics is required by teachers.

It is the position of the National Council of Teachers of Mathematics that
the use of the tools of technology is integral to the learning and teaching of
mathematics. Continual improvement is needed in mathematics curricula,
instructional and assessment methods, access to hardware and software, and
teacher education.

Although the nature of mathematics and societal needs are forces that
drive the curriculum, the opportunities that technology presents must be
reflected in the content of school mathematics. Curricular revisions allow
for the de-emphasis of topics that are no longer important, the addition
of topics that have acquired new importance, and the retention of topics
that remain important. In the implementation of revised curricula, time
and emphasis are to be allocated to the topics according to their impor-
tance in an age of increased access to technology. Instructional materials
that capitalize on the power of technology must be given a high priority
in their development and implementation. The thoughtful and creative
use of technology can greatly improve both the quality of the curriculum
and the quality of students' learning.
Teachers should plan for students' use of technology in both learning
and doing mathematics. A development of ideas is to be made with the
transition from concrete experiences to abstract mathematical ideas,
focusing on the exploration and discovery of new mathematical concepts
and problem-solving processes. Students are to learn how to use technol-
ogy as a tool for processing information, visualizing and solving prob-
lems, exploring and testing conjectures, accessing data, and verifying
their solutions. Students' ability to recognize when and how to use tech-
nology effectively is dependent on their continued study of appropriate
mathematics content. In a mathematics setting, technology must be an
instructional tool that is integrated into daily teaching practices, includ-
ing the assessment of what students know and are able to do. In a mathe-
matics class, technology ought not be the object of instruction.

(continued on page 42)
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MAKING MORE OF AN AVERAGE LESSON:
USING SPREADSHEETS TO TEACH

PRESERVICE TEACHERS ABOUT AVERAGE

John D. Baker
Indiana University of Pennsylvania

One of the many mathematics topics preservice elementary teachers
encounter in their mathematics coursework is the statistical concept of
average. In my experience, many students start the semester with a fear
of mathematics that leads them to hold firmly to procedures they have
learned previously. The conceptual basis for their algorithms has long
ago been forgotten or has been overridden by a series of steps that lack
much meaning. When reintroducing my students to statistical concepts
of central tendency, I find that most students understand average as
"add up all the numbers and divide by how many numbers you have"
and that they are not likely to evidence an understanding of the mean
beyond this procedural notion. It is my job to challenge their previous
learning with other ways to look at the mean and to provide a context
for learning that relates to current research.

Since new teachers tend to teach as their teachers have taught them,
aspiring educators need role models who, in the spirit of The National
Council of Teachers of Mathematics (NCTM) Curriculum and Evaluation
Standards for School Mathematics (NCTM, 1989), can also incorporate tech-
nology into their mathematics teaching in meaningful ways. I integrate a
spreadsheet into a larger lesson on learning about the concept of aver-
age, and additionally, on the different ways that elementary students
show their understanding of average. Thiough this lesson, I challenge
my students to relearn the mathematics of average in ways that are con-
crete, meaningful, and pedagogically sound. Further, my lesson includes
practical instructional ideas that teachers can use with their students.

Background for the Spreadsheet Lesson

Related Research

Mokros and Russell (1992) reported that elementary students make
sense of average using five approaches:

Approach #1: Average as Mode;
Approach #2: Average as Algorithm;
Approach #3: Average as Reasonable;
Approach #4: Average as Midpoint; and
Approach #5: Average as a Mathematical Point of Balance.
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Elementary students who see average as a modal value want data to
exhibit one predominant value. Interpreting average as algorithm, stu-
dents depend upon the school-taught algorithm for their understanding,
but their grasp of the concept does not go beyond procedures. In a later
report, Russell and Mokros (1996) suggested that the approaches of
"average as reasonable" and "average as midpoint" are similar and
reflect common sense approaches. In either case, individuals who under-
stand average this way are comfortable with, if not insistent upon, a
symmetrical distribution. In the most sophisticated approach, average as
mathematical point of balance, students understand and are able to find
the average as mean in a variety of real world contexts and with a vari-
ety of types of data sets.

College students whom I have observed show a definite preference for
understanding average as an algorithm, but they often have flexibility to
apply situation-based estimates that are reasonable. When my students
are forced to choose values that have a given mean, they most typically
select data that are symmetrical. Many college students seem to have
achieved a level of understanding beyond that of average as mode, algo-
rithm, and median, but do not fully understand the mean as a balance
point. With a view of average as a balance point, students can manipu-
late many visual representations of the same mean. I have designed the
following lesson to elevate students' understandings so that they view
average as a balance point.

Rationale for using a Spreadsheet
Spreadsheets offer a convenient tool for developing applications that

help students focus their attention on concepts, so I decided to design a
spreadsheet for my lesson on average as balance point. In general terms,
I developed my spreadsheet to address the following goals:

1. To relieve students of computational burdens involved in calculat-
ing the mean so that the concept receives the central focus;

2. To make quick and accurate drawings so graphs can be accurately
interpreted and inaccurate drawings can be avoided;

3. To show multiple representations (via tables, calculations, and
graphs) that help students build connections; and

4. To provide interactive mechanisms for student exploration so that
mistakes, as revealed by the calculation of average in the spread-
sheet, can easily be corrected by making changes to it.

I addressed the first goal, automatic calculation of the mean, by pro-
gramming spreadsheet table entries to perform the needed computation
so that only the result of the formula was displayed. The other three
goals are addressed by tables and graphs that are linked to the numeri-
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cal spreadsheet. Each table is accompanied by a graph, and, with each
new value entered into a table, the graph and mean are instantly updat-
ed. The user can use the spreadsheet to assess the impact of incremental
changes in data on the value of the mean and on the graph.

Activities to Develop the Concept of Average
Before I introduce the spreadsheet, my classes learn about average

from three activities designed for exploring the concept of average and
for developing a broader perspective of how average works in different
situations. In the first activity, small groups are challenged to find their
mean height without paper and pencil. College students use a variety of
strategies: some groups try to use the formula with mental arithmetic,
others use nonstandard measures and then indicate what is reasonable,
and others total the heights as one long measurement and then divide
by the number of people. This latter strategy affords me the opportunity
to help students make a connection between the paper and pencil algo-
rithm and their conceptual understanding of average. With this initial
activity, students take their first step in ceasing to rely on the paper and
pencil algorithm.

For the second activity, I give students written problems to solve. A
sample problem is:

What must the fifth person weigh if the average weight of 5 people is 156
pounds, one person weighs 140 pounds, and the average weight of the 3
others is 180 pounds?

Problem-solving situations like these force students to work back-
wards in finding the mean. That is, the average is given and values must
be found that fit. In this way, students are challenged to think beyond
the "add up all the numbers and divide by how many numbers there
are" strategy.

The third activity involves using a meter stick and weights to explore
average. First I balance a meter stick at 50 centimeters. Then I place sev-
eral large paper clips at various strategically selected centimeter mark-
ings on the meter stick to throw it off balance. Then, students discuss
placements of one additional paper clip, usually with trial and error, to
restrike a balance. After a solution is found, I use the centimeter mea-
surements of the paper clips and the computational algorithm for the
mean to show that the balance point is again 50 centimeters. My stu-
dents are amazed to find that mathematics can model the real world.

2 3
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The Spreadsheet Lesson
The spreadsheet lesson reinforces knowledge gained from the activi-

ties just described while providing the opportunity to discuss two other
ideas: a) the five approaches that elementary students use to show their
understanding of average and b) the advantages of using technology.
Typically, my lesson format is teacher demonstration and class discus-
sion. The class discussion allows me to provide visual representations of
the mean while focusing students' attention on the connections to
research and the advantages of using computer tools. Since the context
employed in this spreadsheet is familiar to school children, it could easi-
ly be adapted for use in the future classrooms of my college students.
Elementary or middle school students could first be introduced to the
basic spreadsheet as a demonstration and then they could be allowed to
explore on their own. I envision a teacher assessing elementary students'
concepts of average from spreadsheet printouts the students have
produced.

To introduce my lesson, I describe the following problem situation to
the class: I am trying to find sets of 10 families so that the mean number
of children is 3. Their task is to determine how many children (up to 8)
are in each family. We tackle the following scenarios, one scenario at a
time:

Scenario #1: How many children are in each family if all of the fami-
lies have the same number of children? The mean must
be 3.

Scenario #2: If 3 of the 10 families each have 2 children and 3 other
families each have 4 children, how many children will
each of the remaining 4 families have so that the mean
number of children is 3? Figure 2 shows what this sce-
nario initially looks like on the spreadsheet before a
solution is foi.md.

Scenario #3: If none of the families has exactly 3 children, how many
children could each of the families have?

Scenario #4: Only one family has 3 children. How many children do
the other 9 families have? Figure 3 shows what this sce-
nario and Scenario #5 initially looks like on the spread-
sheet before solutions are found.

Scenario #5: Two families have 8 children. How many children do
each of the rest of the 8 families have?

The scenarios listed above relate directly to the five approaches to
understanding average found in research (Russell & Mokros, 1996;
Mokros & Russell, 1992). Scenario #1 has only one answer and is easily
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answered and understood by all approaches to average. Figure 1 shows
the table and spreadsheet after they have been filled in. With this first
scenario, I usually ask students what they see as advantages to using
technology and then, talk about the advantages related to research I dis-
cussed earlier in this article.

Make 3 be the mean number of children in 10 families

Number of children in a family:

1 2 3 4 5 6 7 8 Average

10 I I I I I I
3

Scenario #1: Ten Families,
Each with the same number of Children

10

8

6

4

2

0
2 3 4 5 6 7

Figure 1. Spreadsheet scenario understood by all approaches.

After the first scenario, the class is shown Scenario #2 as pictured in
Figure 2. The answer is easily completed by those who approach aver-
age as a mode and as a median. In the former approach, the table is
filled in with 4 families with 3 children and in the latter, a symmetrical
table and graph are created. This affords an opportunity to identify my
students' approaches to average. Scenario #3 is similar to the second sce-
nario, except that no families can have 3 children and no family sizes are
prescribed. Students who approach average as mode will have trouble
with this scenario, but can be put in a position to explore distributions,
checking their work by looking at the calculated average. I like to call on
a student who answered the second scenario with an average as mode
approach to see if they can stretch their understanding to an approach as
median.
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Number of children M a family:

1 2 3 4

Teaching About Average Using Spreadsheets

5 6 7 8 Average

131 131
I I I

3

Scenario #2: 3 Families with 2 Children &
3 Families with 4 Children

Figure 2. Spreadsheet scenario for average as mode and average as median.

Scenarios #4 and #5 are predicted to be difficult for students who do
not approach average as a balance point. These students are able to find
combinations of children in families that average 3, and even if they
make mistakes, they can easily make changes to the table to fit the sce-
nario. I find that with a guess-and-check strategy, college students can
learn to fill in the table correctly (See Figure 3.). When students are able
to explore this spreadsheet, they find different answers and consult with
one another to aid in their appreciation and understanding of the ques-
tions posed.

As a follow-up to the last two scenarios, I help students understand
the approach to average as a balance point by introducing them to
unpacking (Russell & Mokros, 1996). This is done by students starting
with the answer for Scenario #1 and, family by family, redistributing the
children in the 10 families to maintain an average of 3. The final redistri-
bution is the solution found for Scenario #4 and Scenario #5. At this
point, I also like to relate the different scenarios to the algorithm by
showing the students the calculations with the different scenarios that
have been created. In this way, I can reinforce the notion that a total of
30 children must be accounted for in each of the scenarios.
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Number of children in a family:
1 2 3 4

19

5 6 7 8 Average
1 3

2 8

Scenario #4: One Family
with 3 Children

10

8

6

4

2

0
2 3 4 6 7 8

Scenario #5: 2 Families
with 8 Children

10-'

8-

6-

4-

2-

47. .
1 2 3 4 5 6 7 8

Figure 3. Spreadsheet scenarios for average as balance point.

The grand finale of the lesson is to show all 5 graphical representa-
tions of different distributions on the same screen. One way that the five
graphs could look is depicted in Figure 4. After prompting students for
their impressions of the graphs, the final activity is to ask students to
reflect on what they have learned about their personal approach to aver-
age and their understanding of how technology can enhance a lesson to
make it more than average.

Conclusion
I observe informally and on class tests that my students have success

in increasing their understandings of average and their flexibility with
problem-solving tasks. One student's test answer illustrates the emer-
gence of understandings that I observe. The test required students to
find one value that, when combined with other given values, produces a
given average. One student successfully answered and drew pictures of
a balance made from the number line. This student found the correct
solution by drawing the distances from the given values to the given
mean. The value required to balance the distances was the solution.
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10

0

#2

1 2 3 4 5 6 7 8

10

5

0
1 2 3 4 5 6 7 8

#5

Figure 4. Multiple instances of a graphical representation displayed at the same
time.

REFERENCES
Mokros, J., & Russell, S. (1992). Children's concepts of average and representativeness. Working paper 4-92.

Cambridge, MA: TERC.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathe-

matics. Reston, Virginia: Author.
Russell, S., & Mokros, J. (1996). What do children understand about average? Teaching Children

Mathematics, 2 (6), 360-364.

ABOUT THE AUTHOR
John D. Baker is Assistant Professor in the Department of Mathematics at Indiana University of

Pennsylvania. His address is Department of Mathematics, Indiana University of Pennsylvania, Indiana,
PA 15705.

2 8



IN THE PRESENCE OF TECHNOLOGY,
GEOMETRY IS ALIVE AND WELL ...

BUT DIFFERENT

Gina M. Foletta
University of Northern Kentucky

As the National Council of Teachers of Mathematics (NCTM)
Standards (NCTM, 1989,1991,1995) come under scrutiny, those of us
involved in teacher education or the teaching of mathematics may reflect
upon our own courses and the impact the Standards have had over the
years. I am reminded of the tension between the recommendation to de-
emphasize proof while at the same time to emphasize mathematical rea-
soning. I have seen courses in geometry move from including formal,
axiomatic proof to abandoning proof under the guise of informal geome-
try to incorporating informal investigations in the hopes of moving
toward some type of justification. Has the increased role of experimental
activities and conjectures in school mathematics diminished the need for
or value of careful reasoning and justification?

Voices of Concern
Cuoco (1995) voices grave concern about the current direction of

reform in mathematics education. He expresses concern over essential
features of mathematics missing in many of the reform curricula
designed for secondary mathematics. In particular, Cuoco sees an
absence in the manipulation of symbols as tools for thinking as well as
establishing logical connections through proof and explanation. Jones
(1995) claims that few teachers have experienced mathematics as investi-
gating, patterning, abstracting, and generalizing. Fey's (1993) summary
of several reports at ICME-7 indicates that dynamic geometric construc-
tion tools seem to help students focus and understand invariant proper-
ties. In addition, these tools may also help students analyze complex
problems not easily accessible with only paper and pencil.

Foletta (1994) and Zbiek (1992) document that secondary students and
preservice secondary teachers tend to generalize based on one comput-
er-generated image. Martin and Harel (1989) report that preservice ele-
mentary teachers view proof as "what convinces me." Mathematicians
arrive at truth by methods that are intuitive or empirical in nature
(Lakatos, 1976). One value for students to engage in logical reasoning or
establishing proofs is the potential for making logical connections to
other mathematical concepts and developing new insights.

2
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The Setting
The next section presents one example of some prospective middle-

grades teachers' thinking and justifications while investigating and rea-
soning about geometric ideas with the aid of The Geometer's Sketchpad
(Jackiw, 1995). This example comes from my geometry course for
prospective middle-grades teachers (hereinafter referred to as "stu-
dents") that is the first experience these students have using a dynamic
geometry tool in a college mathematics course. For many of the elemen-
tary education majors pursuing an endorsement in middle-grades math-
ematics, this is the last mathematics course they take prior to student
teaching.

I have several purposes for integrating technology in this course. The
use of an electronic construction tool like The Geometer's Sketchpad can
facilitate the exploration of geometric ideas. The tool permits students to
generate data accurately and quickly in a relatively short period of time.
This has the potential to allow students to focus on the inductive reason-
ing process of looking for patterns, conjecturing, and verifying or refut-
ing their conjectures. The experience presents the computer as one of
several tools for doing mathematics. In addition, using technology in a
laboratory environment encourages communication about mathematical
ideas and the making of mathematical connections.

Midpoint Polygons
The open-ended problem consists of several parts. Students are to

construct regular and non-regular polygons (triangle, quadrilateral, pen-
tagon, and hexagon) and their respective midpoint polygons by connect-
ing the midpoints of the segments of the original polygon. Then after
examining several examples, they compare each polygon with its mid-
point polygon. From numerical and visual data, the students attempt to
determine what relationships, if any, exist between the original polygon
and its midpoint polygon. Thiek (1996) has developed this problem for
the pentagon, and this chapter extends the problem to other polygons.
Figure 1 displays a summary of typical students' conjectures. For exam-
ple, most students observe that in a regular triangle the midpoint trian-
gle is congruent to the three outer triangles (the sides of the midpoint tri-
angle partition the interior of the original triangle into four triangular
regions). This is usually the foundation for their argument in support of
their conjecture that the area of the midpoint triangle of a regular (i.e.,
equilateral) triangle is one-fourth the area of the regular triangle (denot-
ed by "MP = 1/4 P" in Figure 1). Students also conjecture that the mid-
point polygon of a regular polygon is similar to the original polygon and
that the midpoint polygon of a non-regular triangle is similar to the orig-
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inal triangle. Most students are able to give logical arguments for the
area relationships of non-regular triangles and regular polygons (except
for regular pentagons) by subdividing the polygon into congruent trian-
gles. Few students are successful with non-regular quadrilaterals. A
closer look at one group's unexpected conclusions and reasoning about
non-regular triangles and pentagons gives important insights into the
nature of justification and proof in this technological environment.

n Regular Polygon Non-regular Polygon
3 MP = 1/4 P MP = 1/4 P
4 MP = 1 /2 P MP = 1/2 P
5 MP .65P No Pattern
6 MP .75P No Pattern
MP signifies the area of the midpoint polygon and P signifies the area of the
original polygon.

Figure 1. Students' conjectures about the ratio of the area of a midpoint polygon
to the area of its original polygon.

Non-regular Triangles
The group's conjectures about non-regular triangles drew on reason-

ing about geometric transformations rather than on algebraic reasoning
to justify the area relationships. They used results from the first conjec-
ture as part of their justification for the second conjecture.

Conjecture 1: Since the midpoint triangle of any triangle is "one half of a
parallelogram" [sic], the outer triangle can be rotated to exactly cover the
midpoint triangle.

Justification: A parallelogram has no lines of reflection, but it does have
one non-trivial rotation symmetry. The turn center is at the midpoint of
the segment which forms the diagonal of the parallelogram. (For exam-
ple, parallelogram SVXW in Figure 2 can be rotated 1800 about point L in
ASVW.) Therefore, each outer triangle can be rotated 180° to cover the
midpoint triangle exactly.

The students then used their Conjecture 1 as part of the justification
for their next conjecture.

Conjecture 2: The midpoint triangle formed by joining the midpoints of the
segments of a non-regular triangle will always cover exactly 1/4 the "area"
[sic] of the original triangle.
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Justification: Since each midpoint segment is parallel to and 1/2 the
length of the third original side, the midpoint triangle will always be 1/2
of a parallelogram. Any of the outer triangles can be rotated 180° to
exactly cover the midpoint triangle. Since the resulting stack of triangles
is exactly 4 deep of the midpoint triangle, we can say with certainty that
the area of the midpoint triangle is always equal to 1/4 the area of the
original triangle.

The students were describing how each outer triangle rotated about the
midpoint of one side fit exactly upon the midpoint triangle; for example,
in Figure 2 AWSV is congruent to AVXW.

V

Area (Polygon VWX) /Area (Polygon STU)

Area(Polygon STU)
Area(Polygon VW X)

Area STU = 13.02 cm 2

Area VW X = 3.25 cm 2

Area VWX
Area STU 0.25

0.25 0.25 0.25 0.25 0.25

7.41 9.29 10.80 12.75 13.02

1.85 2.32 2.70 3.19 3.25

Figure 2. Measurements for ASTU and its midpoint .6.XVW generated by mov-
ing vertices of ASTU.

Non-regular Pentagons
This group of students went beyond the conclusion that for non-regu-

lar pentagons no pattern exists for the ratio of the area of the midpoint
pentagon to the area of the original pentagon. They conjectured and
then argued that the ratio of the areas must be greater than one-half.
Their justification was based on reflecting each of the five outer triangles
in each respective side of the midpoint pentagon. For example, Figure 3b
shows AXYW reflected in side XY. The group's conclusion was based on
the observation that the midpoint pentagon is not completely covered
after all five outer triangles were reflected in a similar manner. The stu-
dents examined several instances by dragging vertices of the pentagon
and they observed that there always exists a pentagonal "hole" ABCDE
in the interior of the original pentagon. However, they overlooked the
fact that the reflected triangles may sometimes overlap.
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In spite of the group's summary that as the number of sides of the
original polygon increases the ratio of the areas also increases, they
seemed to ignore the pattern that the ratio of the area of the midpoint
pentagon to the area of its original pentagon must then be greater than
that of the preceding quadrilateral case; that is, greater than one-half. In
a similar activity, Zbiek (1996) discusses multiple approaches and the
importance of reasoning within and beyond technology in a pentagon
investigation.

T

Area(LNXYZ)/Area(STUV W )
Area(LNXYZ)
Area(STUVW )

(3b)

Area( STUVW ) 3.857 cm2

Area (LNXYZ) =22.052 cm2

Area (LNXYZ)

Area (STUVW ) 0.651

0.648 0.651 0.665 0.644 0.650

23.481 20.726 14.222 28.230 37.387

36.253 31.845 21.397 43.867 57.480

W Y V

Figure 3. Lopsided five-pointed star produced by reflecting each outer triangle
of pentagon STUVW.
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Conclusions
As my students work on open-ended investigations with The

Geometer's Sketchpad, they tend to view geometric sketches in complex
ways. They analyze polygons as the union of parallelograms and paral-
lelograms as the union of two congruent triangles. The students
approach the investigation using the notions of rotation and reflection as
rigid motions and elementary ideas of compactness in their efforts to
determine a covering for the original pentagon. These examples present
some evidence that technology can aid students in their exploration of
mathematics and that reasoning is an important part of investigations.
As inductive and deductive reasoning becomes a regular part of their
mathematics experience, I hear positive statements about justification
rather than the once frequently asked question, "How many conjectures
should I have?"
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COMPOSING FUNCTIONS GRAPHICALLY
ON THE TI-92

Linda Iseri
The Pennsylvania State University

A typical approach to teaching composition of functions is primarily
symbolic in nature. Students see exercises such as:

Define f(x) = x3 + 2x2 x and g(x) = x2 / and evaluate each of the
following: f(g(2)) g(f(2)) f(g(x)) g of (x) .

We would probably expect students to produce something like:

f(2) = 23 +2*22 2 = 14 so g (f(2)) = g(14) = 142 1 = 195 .

For a composed function rule, we would want students to evaluate the
outside function at the inside function and then manipulate the symbols
to some appropriate form. Students might write:

g(f(x))= g (x3 + 2x2 x) = (x3 + 2x2 x)2 /

and end up with something like

= x6 + 4x5 + 2x4 4x 3 + x2 1 .

The notation g(f(x)) is read "g of f of x" or, perhaps more transparent-
ly, "g after f of x." Frequently the function g in g(f(x)) is referred to as
the "second" function because it is not evaluated at any value until after
f , the "first" function, has been evaluated for a given x-value. However,
referring to this ordering may be troublesome for students since when
reading from left to right the first function appears to be g . "Inside"
function and "outside" function work when describing the symbolic
form, but are not as meaningful from a graphical view.

In a traditional approach, students must recognize the potential limita-
tions of the composition by identifying symbolically the domain and
range of the first function and then determining whether or not that
range is a subset of the domain of the second function. Often the process
is presented in a diagram similar to that in Figure 1.

This model is very abstract and most likely not very meaningful to
high school students. The TI-92 offers a visual way to explore composi-
tion of functions by tracing the path of a domain element through the
functions being composed. The activity presented here provides students
an opportunity to take advantage of the graphical representation of the
process of composition in addition to a more traditional symbolic
approach to the topic. The activity is intended to give the students an
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Figure 1. Diagram depicting the composed function, g(f) .

experience with composing functions so that the requirement of
Range(f ) c Domain(g) is concrete for them. The use of the TI-92 to
explore many examples may also help students to appreciate the distor-
tion of the domain of the second function by the first.

The mathematical content of this activity is most likely no different
from that of a traditionally taught high school advanced algebra course.
However, the understandings that students can gain from this experi-
ence will be quite different. The meanings students associate with com-
position of functions will include taking the range of the first function
and rotating it back to the x-axis to be re-evaluated.

This activity may require some introduction by the teacher, either at
the overhead or on the board. Much would depend upon the students'
familiarity with the function concept as well as with the TI-92. The
notion of composing functions can be introduced through a realistic
problem setting. An example of this regards the Tilapia, a versatile fish
raised inexpensively for food in aquacultures. The population of Tilapia
is a function of water quality as measured by the growth of algae. The
quantity of algae in the pond is a function of temperature (among other
things). Here I will focus on the more abstract setting of two continuous
functions, devoid of context.

An Example
In this example, two functions, f and g, are defined in the home

screen of the TI-92 calculator as is their composite (as displayed in
Figure 2), with f going first. In this case, the Range(f)=Domain(g) so there
is no concern about limitations placed on the composition. Two methods
of exploring are discussed.

The two functions are graphed (see Figure 3a) using the displayed
window settings (see Figure 3b). The purpose of this activity is to trace



Iseri 29

lgebra Calc Other PrgmIOTClear a-z...T "- T F" T F5
1-.167 FZY F6

f(x)

g(x)

Define h(x)=g(f (>))

Figure 2. Definition of functions f , g , and h.
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Figure 3. (a) Graph of functions f and g ; (b) Window settings for graph in (a).

on the graph through the composition for a specific x-value. After the
first function is evaluated, it will be important to locate that function
value on the x-axis in order to evaluate the second function there. A
diagonal move of the cursor from the y-axis to the x-axis signifies the
change from the range of the first function to the domain of the second.
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Method 1
The purpose of this method of exploration is to trace an x-value from

the domain of f (the first function) all the way through to the function
value for the composition using the Line option (F7, 3) from the graph
screen of the TI-92. The following path will be illustrated:

Locate an arbitrary x-value from the domain of f, call it xo, (on the
x-axis start at the point (xo, 0). Note that approximations must be
tolerated.).
Draw a line from (xo, 0) to the point (x0,f(x0)) on the graph off.
Draw a line from (x0, f(x0)) to (0, f(x0)), moving horizontally to the
domain off.
Draw a line from (0, f(x0)) on the y-axis to the point (f(x0), 0) on the
x-axis (this will most likely require an approximation of the
values).
Draw a vertical line to the point (f(x0), g(f(x0))) on the graph of g.
Draw a horizontal line to meet the original vertical at the point
(xo, g(f(x0))).

To illustrate this method, I have arbitrarily chosen -0.686... from the
domain off to be the value of xo, and will illustrate the method by show-
ing how it applies to g(f(-0.686...). Figure 4a shows the cursor at this ini-
tial point and the prompt "1st point?" This indicates that the Line func-
tion has been chosen from the F7 menu. In response to Enter, the calcula-
tor prompts for "2nd point." Note that this command remains activated
until the user hits Escape or invokes another command. Figure 4b shows
where the cursor is in a general composition diagram.

After responding to the calculator prompt, the cursor is moved to the
second point of this line segment, the point (-0.686..., f(-0.686...)) as
shown in Figure 5a.

Next, a line is drawn horizontally from the curve to the function
value, f(-0.686...), on the y-axis as shown in Figure 6a. (This requires
marking (-0.686..., f(-0.686...)) as the first point and (0, f(-0.686...)) as the
second point.) This reinforces the notion that the input for the second
function is attained from the range (y-values) of the first function (see
Figure 6b).

Figure 7 shows the switch from the range of the first function to the
domain of the second depicted by a line from (0, f(-0.686...)) to the func-
tion value, f(-0.686...), on the x-axis (the point (f(-0.686...),0), see Figure
7a).

Drawing a line vertically to g, we find the function value under g for
this intermediate x-value (f(x)), which is shown in Figure 8a.

3 8
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(a)

(b)

Figure 4. Starting from the domain of f with the domain element x = -0.686...
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Figure 5. Moving from (-0.686..., 0) to (-0.686..., f(-0.686...)) where f(-0.686...) = 1.333....
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(b)
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Figure 6. Locating the ftmction value for f on the y-axis.
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(b)

Figure 7. Graphically converting f(x) to a domain element for the function g, here
f(-0.686...) is thought of as 1.333... .
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(a)

(b)

Figure 8. Locating the function value g(f(x)), here g(f(-0.686...))=g(1.333...).
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x=-.686...

g(f(-.686...)
= g(1.3...)
= .794...

By drawing a horizontal line (left or right), we can see our line inter-
sect the y-axis. This is the composite function value for our beginning
x-value. The point of intersection of the original vertical (where xo =
-0.686...) and the last horizontal segment is a point on the curve of the
composite function, shown in Figure 9.

There is no way on the TI-92 to save this point without it being identi-
fied as the intersection of the lines. Although there is an eraser function,
it is very easy to erase more than just the auxiliary lines. One way for
students to collect several points before graphing the composed function
is to use a small piece of overhead transparency, cut to fit the TI-92
screen, and record the points with a felt pen or overhead pen (to pre-
serve the screen). After recording each point on the transparency, the
lines can be erased with the command F6, 1: OrDraw. This way students
can plot several points before graphing h(x) to see how they did.

It may be helpful in this activity to have the x-axis and y-axis set at the
same scale. The standard window settings on the TI-92 do not accom-
plish this. Note that setting the scale to square allows for the diagonal
move from the y-axis back to the x-axis. The resulting diagonal line may
help students to think of the intermediate step as a rotation of the y-axis
down to the x-axis.
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(a)

(b)
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An element of the composed
function: (-.686..., .794...)

Figure 9. Associating the value of g(f(x)) with the input x.

Once the students are familiar with this idea, they can try another
method of locating some points in the composite function. The purpose
of this method is to get students to think about the effect of the first func-
tion as sort of folding or distorting the domain of the second function.

Method 2
From the same starting graph and window (Figure 3), we observe that

if we were to think of projecting f, the first function, onto the y-axis, we
can name the range of f (in this case, all real numbers). Another thing we
notice is that some parts of the graph of f map to the same subset of the
range of f (see Figure 10), that is, to the subset of the range for which f is
not one-to-one.

This method entails starting with a value from the domain of f such as
x1 from Figure 10. We will locate y=f(x1) and place a horizontal line
through the point (xi, f(x1)), thereby locating other domain elements
which map to y=f(x1). We will follow this path:

Locate an arbitrary x-value, call it xo, from the subset of the
domain of the function f for which f is not one-to-one.
Move vertically to locate the point (x0, f(x0)).
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(a)

(b)

Figure 10. (a The portion of the range of function f which is not one-to-one. (b) A
diagram of the mapping in the region.
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Draw a horizontal line through the point (xo, f(x0)) and notice
where the line intersects the graph of f. We will see that each x
which maps to f(x0) will map to the same g(f(x0)).
Locate the point (f(x0), 0) on the x-axis.
Move vertically to the graph of g, namely, to the point (f(x0),
Ox0))).
Record the value of g(f(x0)). Move the cursor to a different intersec-
tion of the horizontal line with the graph of the functionf
Place small circles at each of the points (x, g(f(x0))) for which
f(x)= f(x0).

This method begins similarly to Method 1 without drawing a line on
every move. Figure 11a shows the cursor on the x-axis at x0E Domain(f),
where x0=0.882... ; Figure 11b shows that the cursor has been moved
vertically to the graph of functionf

Using F7, 5: Horizontal, a horizontal line is placed through the point
(x0, f(x0))=(0.882..., 1.382...) and then the cursor is moved horizontally to
the point (0,f(0.882...)) on the y-axis as shown in Figure 12.
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Figure 11. (a) The cursor at the beginning x-value, here x0=0.882... . (b) The cursor
moved vertically to f(x0), the point (0.882_, f(0.882...)).

We move the cursor from the point (0, f(x0)) to (f(x0), 0) on the x-axis
(see Figure 13).

By moving the cursor straight up to the second function we locate the
point (f(x0), g(f(x0)). Figure 14 shows the result of this move and the
final function value g(f(0.882...))=0.843... .

However, x = 0.882... was not the only x-value for which f(x)=1.38... .

By moving the cursor to an intersection of the graph of f and the hori-
zontal line, other such x-values are discovered. While maintaining that
x-coordinate shown at the bottom of the graph screen, the cursor is
moved vertically to where y = g(f(0.882...)) (see Figure 15).

A small circle is made to mark each of the composed points
(xi, g(f(0.882...)), (with f(xj)4(0.882...)) by using F7, 4: Circle. In order to
do this, with the cursor at the point (xi, g(f(0.882...))), hitting Enter marks
the center of the circle; pushing the cursor out one click produces a circle
of very small radius and hitting Enter again fixes the position of the cir-
cle. Figure 16 shows each of the three points marked with circles.

After returning to the Home Screen and graphing h(x), the composite
function appears on the screen and hits the predicted points (Figure 17).
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Figure 12. (a) A horizontal line has been placed through the point
(0.882..., f(0.882...)). (b) The cursor has been moved horizontally to the
y-axis, depicting the function f domain element, f(0.882...) = 1.382...).

This method can be thought of as starting with an arbitrary x-value
from the domain of the first function and identifying its function value.
The second function is then evaluated at that function value. We may
wonder if there are any other x-values which will be mapped to the
same composed value. By looking at the intermediate value and work-
ing backwards, the answer can be found. In other words, which values
of x make f(x) = f(0.882...)? Figure 18 shows how the CAS in the TI-92 can
be used to easily answer this question.

The composition of these functions can also be studied symbolically
on the 1I-92 by substituting the rule for f(x) in for the argument of g, or
by evaluating g at f(x), or by replacing the x in x2-1 by the rule for f(x).
Each of these methods is shown on the screen in Figure 19. It can be easi-
ly observed that all are equivalent.

One of the important issues in composition of functions is the concern
that the range (image) of the first function must be a subset of the domain
of the second function. To remedy this situation, the domain of the first
function can be restricted to that subset which maps to the domain of the
second. For instance, in the first problem of the sample exercises shown
in Figure 20, consider the composition C(K(x)).4
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Figure 13. The cursor sits at the point (f(xo), 0).
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Figure 14. The cursor sits on the point (f((x0), g(f(x0)).

The image of K is [-5, and the domain of C is [0, 0.). Looking at
graphs of the two functions helps make the issue more obvious. Figure
21a shows how these functions appear and (b) shows an unsuccessful
graphical approach. In this case, the domain of the composition will be
limited to values of x for which K(x)e [0,

ANL HTO 001
2 L 2 )

Another case deserving of consideration is one in which the composed
function actually extends the domain of the first function. Using the
same two functions, C and K, the composition in the reverse order is
K0C(x)=2x-5. The resulting function must be accompanied by the origi-
nal restriction on the domain of C: x E [0,

Students should explore this concept with many different functibn
combinations. They should be prompted to consider commutativity in
composition and challenged to reason about why it does not always
hold. Students can reason about why the composition of two linear
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Figure 15. (a) An x-value which yields the desired composed value is identified. (b)
The cursor is moved to the point (xl, g(f(0.882...)).
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Figure 16. Circles marking the three points (xi, g(f(0.882...)) where f(x)=f(0.882...).

functions is linear, but the composition of two other types of functions is
not usually of the same type. These types of explorations can naturally
motivate the fact that not all functions have inverses. Students can be
helped to begin to think of functions as compositions of simpler func-
tions. These types of activities can contribute to the development of their
ability to reason symbolically.

4
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Figure 17. Graph of h = g(f) showing that h hits three points with the same func-
tion value.
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Figure 18. Solving for function values which map to the same composed function
value.
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Figure 19. Using the CAS to show equivalent ways to compose functions.
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1. K(x) = 2x2 - 5 C(x) =

2. w(x) = sin(x) v(x) = sin(x)

3. fl(x) - xx f2(x) - x3x

4. Consider the function: h(x)=

x2 3

How might you think of this as a composition of functions?
Explain.

Figure 20. Sample explorations.
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Figure 21. An example of a case in which the domain of the composed function,
C0K, is not the same as the domain of K.
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The Use of Technology in the Learning and Teaching of Mathematics
(continued from page 12)

Every student is to have access to a calculator appropriate to his or her
level. Every classroom where mathematics is taught should have at least
one computer for demonstrations, data acquisition, and other student
use at all times. Every school mathematics program should provide addi-
tional computers and other types of technology for individual, small-
group, and whole-class use. The involvement of teachers by school sys-
tems to develop a comprehensive plan for the ongoing acquisition, main-
tenance, and upgrading of computers and other emerging technology for
use at all grade levels is imperative. As new technology develops, school
systems must be ready to adapt to the changes and constantly upgrade
the hardware, software, and curriculum to ensure that the mathematics
program remains relevant and current.

All professional development programs for teachers of mathematics are
to include opportunities for prospective and practicing teachers to learn
mathematics in technology-rich environments and to study the use of
current and emerging technologies. The preparation of teachers of math-
ematics requires the ability to design technology-integrated classroom
and laboratory lessons that promote interaction among the students,
technology, and the teacher. The selection, evaluation, and use of tech-
nology for a variety of activities such as simulation, the generation and
analysis of data, problem solving, graphical analysis, and geometric con-
structions depends on the teacher. Therefore, the availability of ongoing
in-service programs is necessary to help teachers take full advantage of
the unique power of technology as a tool for mathematics classrooms.

The National Council of Teachers of Mathematics recommends the appro-
priate use of technology to enhance mathematics programs at all levels.
Keeping pace with the advances in technology is a necessity for the entire
mathematics community, particularly teachers who are responsible for
designing day-to-day instructional experiences for students.

National Council of Teachers of Mathematics (February, 1994)
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SIGNIFIERS AND COUNTERPARTS: BUILDING
A FRAMEWORK FOR ANALYZING

STUDENTS' USE OF SYMBOLS

Margaret Kinzel
The Pennsylvania State University

That high school students have difficulty with algebra has been well
documented (Kieran, 1992). Much has been done to identify and classify
students' "errors" in algebra; that is, the ways in which students' use of
algebraic symbols does not match "correct" procedures. This approach
has served to articulate the differences between students' incomplete
conceptions and more desirable conceptions, but it only addresses part
of the problem. The other part involves finding ways to help students
construct more appropriate understandings. Saying the same things
louder and slower may result in more appropriate applications of memo-
rized procedures, but this approach fails to address the difficulties
encountered from the students' perspectives. It is pessimistic to believe
that a major activity of algebra students is randomly writing meaningless
marks on paper. A more generous (and reasonable) perspective is that
students are involved in genuine efforts to make sense of an abstract
notation system. From this perspective, the student's actions have rea-
sons that at least attempt to mirror actions modeled by others, and that,
to the student, make sense. Our task as teachers then becomes one of
understanding the reasons that underlie students' actions. Only with that
understanding can we create activities that we hypothesize will engage
the student in examining and refining his or her own conceptions. To
illustrate this approach, consider the fairly routine task of finding the
equation of a line that passes through two given points. Take a minute to
think through how you would approach this task, then read on.

One possible solution strategy involves using the x- and y-coordinates
of the given points to find the slope, which is then substituted in to the
y=mx+b form of a linear equation. One point is chosen and its coordi-
nates substituted for x and y to determine the value of b. Once the value
of b is found and substituted into the equation, x and y reappear as vari-
ables and we have the "answer."

Now consider it from a potential student perspective. At times, the let-
ters x and y stand for general coordinates of any point that satisfy the
given conditions, while at others, x and y are replaced by specific values;
the student is left to determine if x and y are variables (quantities that
vary and are related by a linear rule in this case) or unknowns (letters
that stand for specific numbers). The parameters m and b are waiting to
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have values substituted for them (unknowns), but when x and y have
been "plugged in," b becomes the "variable" to be solved for. We shift
from one interpretation of the symbols to another and back without
explicitly discussing how or why (Usiskin, 1988). Fluent users of alge-
braic symbols often do not attend to these implicit shifts in meaning
within a particular task. Small wonder, then, that students have difficul-
ty following as we flip back and forth seemingly at random.

Mathematics educators have long pointed out the inherent duality in
mathematical symbols (Gray and Tall, 1994; Kaput, 1987; Mason, 1987;
Sfard, 1991; Skemp, 1976). In order to develop fluency with algebraic
symbols, one must develop an awareness of what to attend to and when.
As in the example above, attention often shifts between general and spe-
cific interpretations of the symbols within a single task. Those already
fluent with symbols may barely attend to these shifts. In contrast, those
struggling to follow a process may remain unaware that a shift has
occurred and thus lose sight of the overall approach to the task. Tall's
"proceptual thinking," for example, involves being able to see an expres-
sion as both a process and a productthe ability to interpret 2x-3 as the
process of multiplying a value by two and subtracting three as well as a
representation of the result of that process. The expression is then seen
as both a computation that can be carried out and a quantity that may be
operated on. Proceptual thinking implies the awareness of both possibil-
ities and the ability to choose and shift between them. Pimm (1995),
building on Schmidt (1986), uses signifier and counterpart to capture the
dual nature of mathematical symbols. These terms can be applied more
specifically to algebraic symbols and provide the basis for a framework
for analyzing students' use of symbols.

Signifiers and Counterparts in Algebra
As signifier, a symbol points to the object being considered; it names

or calls the object into being. A signifier leads one's attention away from
the symbol itself, towards the thing being named. Using symbols to label
the quantities in a problem or to record the actions taken are examples of
attending to the signifier aspect of symbols. Referring to the equation of
a line task, the signifier aspect of an expression is evident in the formula
for the slope. The expression is waiting for values to be substituted in,
and the attention is drawn towards the potential result, not to the
expression itself. If a symbol is interpreted only as a label or record, it is
not seen as an object in its own right, and thus is not available as an
input for manipulation or for reasothng. The notation is simply a record
of an operation that has been, or could be, carried out, given values for
the letters within the expression.
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The counterpart aspect of a symbol draws one's attention towards
itself, as something to operate on or with. Counterparts can be Manipu-
lated as if they are the objects in question; that is, the symbol "holds" the
meaning, freeing the student from having to focus on the meaning, and
thus allows the student's focus to shift to the operations. For example,
the Arabic numerals "hold" the abstract numeric quantities, allowing
manipulation with the symbols to reflect potential actions on those quan-
tities. This shift to a focus on the symbol allows for efficient manipulation;
"setting aside" a tight connection to the referent to allow for fluid opera-
tions. The flexibility to see an expression as a representation of the result
of an operation shifts attention to the counterpart aspect of the expres-
sion as a symbol. If the expression for the slope had been substituted into
the y=mx+b form of the equation in the above example, this could be evi-
dence of a shift in attention to the counterpart aspect of the expression.
This is perhaps a trivial example of such a shift since the signifier aspect
is dominant: the expression is seen as an entity that may be substituted
into another expression (counterpart), but it is still a process waiting to
be carried out (signifier).

Traditional algebra instruction has focused on the rules governing
operations on symbols, emphasizing the counterpart aspect. Students
often come away with sets of memorized rules with little or no under-
standing of how or why the rules are applied in various situations. The
ability to see both aspects of algebraic symbols and to shift between them
as required by a task is a crucial component of symbolic reasoning.

In addition to shifting between the signifier and counterpart aspects of
a symbol, there can be shifts in the meaning or referent for the symbol. In
the preceding equation of a line task, the referents for x and y shift within
the solution, from general labels for the coordinates of any point on the
line to specific labels for the coordinates of a particular point. This shift
from general to specific feels trivial to those fluent in the interpretation
and manipulation of algebraic symbols, however this shift may not be
obvious to novice algebra students. It is possible for students to follow
the steps in the procedure without being aware of the implicit shifts of
focus between meanings and aspects of the symbols. The task of manag-
ing (or even following) these shifts of attention can seem overwhelming.

The framework I propose involves assuming that students have rea-
sonable motivations guiding their operations with algebraic symbols.
Under this assumption, focusing on that to which the student is attend-
ing provides insight into these motivations. The language of signifiers
and counterparts provides a structure for organizing observations of stu-
dents' work.
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Signifiers and Counterparts in Action: Exploring Students' Work
To investigate the usefulness of the signifier/counterpart language in

discussing students' use of algebraic symbols, task-based interviews
were conducted (and videotaped) with twelve undergraduate college
students enrolled in the first of three courses focused on the teaching
and learning of secondary mathematics. Each of these students hadcom-
pleted at least three semesters of calculus along with an introduction to
proofs course. Participants were asked to work on two to four tasks (one
at a time) and to share their thinking as they worked. The tasks were
selected for their potential to provide opportunities for the students to
struggle with the symbols; that is, the tasks did not lend themselves to
the application of memorized procedures. A discussion of one task and
the work of two students on that task is presented here.

Treasure Hunt Task
A treasure is located at a point along a straight road with towns A, B, C,
and D on it in that order. A map gives the following instructions for locat-
ing the treasure:

i. Start at town A and go 1/ 2 of the way to C.
ii. Then go 1 / 3 of the way to D.

Then go 1/ 4 of the way to B, and dig for the treasure.
If AB=6 miles, BC=8 miles, and the treasure is buried midway between A
and D, find the distance from C to D.

Charosh, M. (1965). Mathematical Challenges, Washington, DC: NCTM.

Before proceeding to read the remainder of this chapter, the reader
would do well to spend time investigating ways to solve the Treasure
Hunt Task.

The Treasure Hunt Task has proven to be a rich context for observing
students' use of symbols in this study. The mathematics involved is well
within the range of secondary mathematics education majors. However
the complexity of the symbolization required makes it a non-trivial exer-
cise. Part of this complexity comes from the multiple steps in the prob-
lem; the expression resulting from each step is used as an input for the
next step, compounding the expression and increasing the level of
abstraction away from the concrete components of the problem. In addi-
tion, as one works on the task, it is necessary to interpret expressions in
terms of both distances and locations. As a distance, an expression can
be added or subtracted to produce expressions for other distances. Yet it
is also necessary to locate the result of traveling the distance on the line
in order to determine subsequent distances.

In this paragraph and the one that follows it, I will describe a typical
solution to the Treasure Hunt Task, a composite of the solutions I have
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seen or used in work on this problem. Initially, symbols are used as
signifiers to represent the situation posed in the task. A line segment is
drawn to signify the road, with dots or marks to indicate the towns and
the given distances labeled with numerals. Already, a shift in focus can
be identified in the use of the line segment in that it both represents the
stretch of road (signifier) and is also available for manipulation (counter-
part), as it is divided into sections between towns. In addition, the labels
for distances AB and BC are almost trivially treated as counterparts to
produce a combined distance for AC, which is then operated on to deter-
mine the result of the first instruction (Start at town A and go halfway to
C.). At this point, the signifier and counterpart aspects of the symbols are
closely linked; it is not necessary to step too far away from the referent in
order to carry out these initial manipulations.

Beginning with the second instruction, however, the symbols take on
more complexity. Part (ii) asks for one-third the distance to town D, but

1part of that distance (CD) is unknown. An expression similar to -5- (7+x)
is easily generated, but can prove difficult to interpret. Seen only as a
record of the process that would produce the actual distance traveled if
CD were known, the expression is not viewed as an entity that can be
used to continue work on the task. A shift from this signifier aspect to the
counterpart aspect (a quantifiable distance) is needed in order to combine
with the 7 miles traveled in part (i) and produce an expression for the
total distance traveled. The resultMg expression represents the total dis-
tance traveled, but also names the location, on an imagined coordinatized
number line, reached by traveling that distance. Both interpretations need
to be available in order to proceed with part Adding this third step
makes the task complex enough to be a non-routine exercise in symbol-
ization. To solve the problem, the sum of distances traveled in parts (i) to
(iii) is equated with the distance traveled straight to the treasure (half the
distance from A to D), again requiring a flexible interpretation of expres-
sions both as distances traveled and locations reached.

In this task students are asked to make multiple shifts between aspects
of the symbols, in the interpretations of those symbols, and to manage
these shifts through several levels of abstraction (further away from con-
crete values). The following section summarizes the work of two stu-
dents on this task. Although each of these students' work is intended to
be accurately represented in the descriptions that follow, the reader
should not assume that the names or the genders of these two students
are revealed in those descriptions.

Pat
Pat's work on the Treasure Hunt Task illustrates effective management

of the symbols within the context. Throughout her interview, Pat is able
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to articulate what her symbols represent and frequently stops to inter-
pret her expressions in terms of the context. Having first labeled dis-
tances on the line segment representing the road, she soon changes to
thinking in terms of coordinates to facilitate her symbolization. With the
exception of one instance, Pat consistently shifts focus between distance
and location to appropriately generate a new expression.

Pat's work Pat's words Interpretation

x-7

Let's see, so I'm at 7, definitely.
I want to go one-third of the
way to D, so D min---or x, why
don't I just name it D, then I'll
know. x minus 7 [Pat writes x-
7.] will give me the distance
between where I am[Pat
places * above 7 on drawing]

7 is signifier (distance traveled in
part (i)) and counterpart (used to
find next distance)
The line segment is both signifier
(label for context) and counter-
part (symbol being manipulated
to reflect further actions).

A B c
I

6
1 I

8
1 I \

7 [D]

x - 7

3

---and D [Pat points to vertical
mark which is not yet labeled
as D]. So I want one-third of
that [Pat puts x-7 over 3].
That'll give me this. That'll
give me where I should be at
that point [after part (ii)] with
relation to this.

x-7 is a label for the remaining
distance to D; it is seen as a
quantity that can be divided by 3
to find one-third of that distance.
Pat interprets expressions as dis-
tances and locations; the flaw
seems to center on her assuming

7that x is the treasure-hunter's

location
3

after part (ii).

7

And the quarter of the way
back to B. B is at 6. Hmm. Oh
Hmm. Okay, I kind of have an
idea. It should all this, these
three things [steps in the prob-
lem] should, if I can fit them
into some sort of equation that
says, tells me where to go and
like, puts it where it should be,
then it should be equal to
halfway, okay. It should be
halfway between A and D, and
the Ds will probably cancel
out, it'll look real nice, and
All right, I'm not sure if I like
what I have done now.

As a result of this reasoning, Pat
shifts to thinking in terms of
coordinates on the line; changes
labels on line to reflect coordi-
nates
Pat coordinates interpretations of
distances and locations to
hypothesize a solution strategy

Table 1. Pat's work on the Treasure Hunt Task.

Pat's approach to this task is to symbolize the distances (both known
and unknown) and to manipulate those symbolic representations in a
manner that is consistent with the nature of the context. Distances can be
interpreted as both the actual distance traveled as well as a means of
locating the result of traveling that distance. Initially, Pat shifts easily
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and implicitly between these interpretations, operating with 6 and 8 to
produce 7 as both the distance traveled in part (i) and the location
reached as a result of traveling that distance. At this point, the symbols
are fairly transparent; their connection to the context is very close to the
surface. As the expressions become more opaque (their interpretation in
terms of the context is more abstract), Pat shifts more consciously
between aspects of the symbols. Pat returns to the signifier aspect of the
expressions to reattach contextual meaning in order to support her
manipulations of the expressions. In doing this, Pat also shifts between
thinking in terms of distances and locations. This shift is accompanied
by adjusting her diagram to reflect the coordinate interpretation. That
Pat is aware of these shifts and uses them to support her reasoning is
clear in the next excerpt: Pat focuses on the signifier aspect to assure her-
self of the appropriateness of her equation, then consciously releases
that focus to "just simplify."

Pat's work Pat's words Interpretation

x Okay, if it's less than 25All
right. So now what? If I add 6
to this, then it'll be in terms of
the entire line, I think. It
should be.

Expressions are counterparts: Pat
does not attend to their referents
in the process of simplifying.

Pat changes from D to d; possibly
indicative of a shift to the coun

[til

74D--6
terpart.

3

3

413- 28 4d-100
24

Pat shifts attention to the signifi-
er aspect: she reasons from con-
text for the next step.

3 3

3 3

4d-100

4d 94 =-d

4d minus 94 is equal to d over
2 [Pat writes 4d-94=d/2],
which is half of the distance

Pat consciously shifts to counter-
part aspect; she knows she can
"just simplify."

2 between there. Between my
things. Okay, so I just have to
simplify.

4d -. 94 = -d [Inaudible; Pat is solving the Expressions are counterparts as
2 equation] D equals 2, 26. D is

located at 26, the answer is [Pat
Pat solves the equation; she
returns to the signifier aspect to

8d-188=d writes 14 under 26; 12 under- interpret the result.
7d=188 neath] 12. The distance from C
d=26 to D is 12.

14

CD.,12

Table 2. Pat's work on the Treasure Hunt Task.
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This analysis of Pat's work illustrates the use of the signifier/counter-
part language as a window into students' symbolic reasoning. By
attending to where Pat's attention seemed to be focused, we see how
shifting between aspects of symbols can support reasoning processes.
Pat's conscious awareness of the shift to counterpart to facilitate manip-
ulation suggests the benefits that might be gained through making these
shifts a more explicit focus of classroom discourse. A final thought from
Pat's work is more subtle. As she shifts to simplifying the expression in
the first section of the above table, she changes the symbol "D" to "d."
While this may be nothing more than notational convenience, the fact
that it accompanies a shift in her thinking raises a question. Does "D"
embody the signifier aspect (a label for the town) while "d" more closely
implies the counterpart aspect (a component of an expression)? It is
unclear from the available data if this shift was significant for Pat, or if
she even was aware of the change in notation.

Janis
In contrast, Jards finds it difficult to maintain the connection between

her symbols and their referents. She initially has trouble interpreting het
expression for part (ii) 1(7 + x) as an entity that would allow her to

3 7 + xprogress to part (iii). Rewriting this expression as seems to facili-
tate shifting to the counterpart aspect, and Janis3is

able to proceed,
although she is unclear as to what this fraction represents. In moving
ahead, she first approximates the location this would indicate on the
line, but then struggles with an interpretation and a potential next step.

Janis' approach, like Pat's, begins with symbolizing the distances
within the problem. However, Janis encounters difficulty much sooner
than Pat, and her difficulty can be discussed in terms of signifiers and
counterparts. Janis easily symbolizes the distance traveled in part (ii) as
1 (7 + x) but continues to focus on the signifier aspect of this expression.
3
As evidenced in the last comment in the above excerpt, Janis is uncom-
fortable with interpreting this (or its equivalent fraction representation)
as the product that would result from the process of computing the dis-
tance traveled. Rewriting her expression in fraction form seemed to sup-

7port a tentative step towards interpreting + x as representing a value.
3

It is possible that the consolidated fraction form is more easily interpret-

ed as a value (as opposed to the more process-oriented j-(7+ x)).
3
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Janis' work Janis' words Interpretation
B'7mi 7+x

I I I

A 6m1 B 8mi C xmiD
a) AC=6+8=14 mi

14

2

If just approximating, I guess
you would be somewhere
about here. [Janis divides seg-
ment from heavy dot to D into
thirds and puts small dot on
the first third]

Line segment is counterpart;
Janis is able to perform actions on
it as if it were a stretch of road.
She interprets 7 + x as the trea-

3
sure-hunter's location after part
(ii); it is more appropriately
interpreted as the distance trav-
eled in part (ii).

b) 1/3(7+x).

3

7 + x

3

My problem is in deciding
how I can get this [(7+x)/ 3] to
equal where I am between C
and D. For some reason I think
this [Janis writes =7 next to
(7+x)/3] should equal 7.

Oh, this would be---[Janis
writes 7+x beside (7+x)/ 3=]
No. Uanis scribbles out.] I was
thinking it would equal 7+x
because this is the total dis-
tance between B prime and D.
But we're not really setting up
equation to equal something.

Janis seems confused over what
represents; she wants it to equal
something in order to proceed:
she appears to want to shift to the
counterpart aspect but she is
unable to generate an appropriate
equation.

07+x I =7+x
3 12

I want to say for part c, all you
do is multiply one-fourth times

7+x
all this 3 ' but I don't think
that's right either.
[Interviewer: Talk about that.]
I don't think it would work
because it's looking at the dis-
tance between B prime toIt's
comparing the distance from B
prime to D and not the dis-
tance between this new point
[second dot] and C. And I
don't think that's the same
thing, but I don't know. [Janis
writes for part (iii): [(7+x)/3]
I/ 4=(7+x)/12] But see, then
how do you solve for x?
Because you don't know
what's over here. That's where
I'm confused. That's why up
here I think it should equal
something, so we have a value
of how far you went.

Janis shifts to the counterpart
aspect but in so doing loses con-
nection to referent.

Janis attempts to interpret in
terms of the line.

Janis carries out manipulations
without clear connection to the
referent.

Janis is still uneasy with the
7 + x

counterpart aspect of
3

Table 3. Jarvis' work on the Treasure Hunt Task.
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With her tentative shift to the fraction form, Janis is able to pursue sym-
bolic manipulations. This shift in manipulation is not accompanied by a
corresponding shift in interpretation, and Janis quickly loses contact with
the referents for her symbols. Sensing that further manipulation is need-
ed, Janis pushes ahead with part (iii) but is clearly at a loss for a suitable
interpretation for the result of her operations. In an effort to simplify the
task, Janis draws a smaller segment of her original diagram and focuses
on this.

7 + x

B 3

Figure 1. Janis' diagram of smaller segment.

This seems to help Janis focus on the remaining steps of the task, but in
so doing, essentially prevents her from finding an appropriate solution.
This limited focus severs the remaining connection to the context; ignor-
ing the whole line detaches Janis' expressions from their appropriate ref-
erents. Janis is unaware of this and she continues to work on symboliz-
ing the remaining steps, interpreting her expressions in terms of her lim-
ited diagram. Janis has confidence in her manipulative skills and appears
more comfortable as she uses her smaller diagram to support further
manipulations of her symbols and eventually arrives at a final expres-

sion, 11 + 5x . Clearly pleased with this reasonable looking result, Janis
12

boxes this expression and declares it the answer. However, she has no
clear interpretation for this expression in terms of the context and seems
unaware that she has not answered the question posed by the task (Find
the distance from C to D.).

In Janis' case, we see the result of not maintaining clear connections to
the referents for the symbols. Janis remained unaware of the implicit
shifts in her own work as well as the missed opportunities where shifting
focus may have supported her reasoning about the task. Her manipula-
tions lead her to a result so far removed from the context that she was
unable to trace back through the symbols for an interpretation. As with
Pat, Janis' work indicates that making shifts in the focus of attention an
explicit part of the problem-solving process could support students'
development of symbolic reasoning.
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Discussion
The Treasure Hunt Task interviews provide a context for observing

students' use of symbols in a problem-solving context. Throughout their
work we see the interaction between the dual aspects of symbols: a sym-
bol is introduced as a signifier, attention is shifted to the symbol as coun-
terpart to different degrees within the task, and attention must be
returned to the signifier aspect within the problem-solving process and
at the conclusion of the task. In addition, the task requires flexible inter-
pretations of the expressions generated within the task: shifting between
distances and locations as referents for the expressions. Focusing on the
dual nature of mathematical symbols through the signifier/counterpart
language provides a means for attending to what the student attends to,
and thus serves the investigation of the student's symbolic reasoning.
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Calculators and the Education of Youth
A Position Statement of the National Council of

Teachers of Mathematics

Calculators are widely used at home and in the workplace. Increased use of
calculators in school will ensure that students' experiences in mathematics
will match the realities of everyday life, develop their reasoning skills, and
promote the understanding and application of mathematics. The National
Council of Teachers of Mathematics therefore recommends the integration of
the calculator into the school mathematics program at all grade levels in
classwork, homework, and evaluation.

Instruction with calculators will extend the understanding of mathematics
and will allow all students access to rich, problem-solving experiences. This
instruction must develop students' ability to know how and when to use a
calculator. Skill in estimation and the ability to decide if the solution to a
problem is reasonable and essential adjuncts to the effective use of the calcu-
lator.

Evaluation must be in alignment with normal, everyday use of calculators in
the classroom. Testing instruments that measure students' understanding of
mathematics and its applications must include calculator use. As the avail-
ability of calculators increases and the technology improves, testing instru-
ments and evaluation practices must be continually upgraded to reflect these
changes.

The National Council of Teachers of Mathematics recommends that all stu-
dents use calculators to

explore and experiment with mathematical ideas such as patterns,
numerical and algebraic properties, and functions;

develop and reinforce skills such as estimation, computation, graphing,
and analyzing data;

focus on problem-solving processes rather than the computations associ-
ated with problems;

perform the tedious computations that often develop when working
with real data in problem situations;

gain access to mathematical ideas and experiences that go beyond those
levels limited by traditional paper-and-pencil computation.

(continued on page 74)
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EXPLORING CONTINUED FRACTIONS:
A TECHNOLOGICAL APPROACH

Thomas A. Evitts
South Western High School

Continued fractions are "multiple-decked fractions" (Olds, 1963, p. 7)
that have forms similar to those shown in Figure 1. When every fraction
in the expression has a numerator of 1, the fraction is called a simple con-
tinued fraction (See Figure 1(b).). In addition, continued fractions may be
infinite in naturean endless stack of numerators and denominators,
often showing a repetitive sequence (See Figure 1(c).).

(a) finite continued fraction
3

1 +
2 + 3

7

(b) finite simple continued fraction
1

2 +
1

4 +
4

(c) infinite simple continued fraction

1
2 +

4 +
1

1
4 +

4 + ...

Figure 1. Examples of finite continued fraction, finite simple continued fraction,
and infinite simple continued fraction.

Continued fractions have a rich history in the development of mathe-
matical ideas. The use of continued fractions to solve indeterminatel
equations can be traced to sixth century India (National Council of
Teachers of Mathematics (NCTM), 1989; Olds, 1963). It is also possible
that rational approximations for irrational numbers that appear in early
Greek writings may be derived from continued fractions (NCTM, 1989,
pp. 100, 267). Olds (1963) cites Rafael Bombelli (16th century) as the origi-
nator of the modern theory of these fractions. Other mathematicians
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56 Exploring Continued Fractions: A Technological Approach

prominent in the investigation of continued fractions are Cataldi,
Huygens, Euler, Lambert, Lagrange, and Stieltjes (NCTM, 1989; Olds,
1963).

In addition to their appeal as classroom exercises in rational number
computation, continued fractions provide opportunities for students to
explore sequences of real numbers and make connections across several
topics in secondary mathematics. These topics (including the real number
line, convergence of sequences, interpretation of graphs of functions (See
Bevis & Boal, 1982.), inductive reasoning, and iterative processes) consti-
tute a mathematical core often encountered by students and teachers
willing to extend their exploration beyond simple algebraic manipulation.
That calculations related to continued fractions can be performed on a
computer or calculator affords deeper and richer possibilities for the
inclusion of this typical "enrichment topic" in the curriculum.

Students need to be or become familiar with the following concepts
and skills to engage successfully in the explorations suggested in this
chapter:

notation and meaning of proper and improper fractions;
notation and meaning of a reciprocal, including, preferably, the use
of -1 as an exponent;
understanding of the meaning of infinite, as used in the sense of an
infinite continued fraction and in repeating decimals and transcen-
dental numbers;
ability to perform an iterative process and record appropriate
results as they occur; and
knowledge of solving quadratic equations and finding irrational
roots.

The proposed activity may actually lend itself to introducing these ideas.
Each of these is likely to be introduced, encountered, and reinforced in

a meaningful way as part of a larger mathematical context.

Using the Texas Instruments TI-92 Calculator2
In particular, the TI-92 seems well-suited to handle a number of explo-

rations focused on the renaming of continued fractions as real numbers
and vice versa. While students may choose to tackle the expression in
Figure 1(a) "by hand," the TI-92 can be used, as illustrated in Figure 2.
The student may enter the expression using nested parentheses:
1 + (31(2 + (3/7))); when the "pretty print" mode is engaged, the history
area of the screen displays the full representation of the continued frac-
tion. In addition, students might opt for a more step-by-step approach,
using an exponent of -1 for the reciprocal. This is illustrated in Figure 3.
Clearly, as in the case of the continued fraction in Figure 1(b), when all
numerators are equal to one, these repeated steps illustrate an iterative
process. 6 4
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1-9 1 "' 1 " Tf Algebra Calc Other " F6
PrgnIOTclear az...

3
38/1

2 + 4/1

1 +
2 + 3/7

propFrac(38/17)
propFrac<ans(1))
MAIN RAD AIM FUNC /30

Figure 2. TI-92 "pretty print" display after the following expression is entered:
1 + (3/(2 + (3/7))). The propFrac operator then transforms the improper
fraction into a mixed number.

.11:4-.u1AloralCr taYclOr,i-;r IPrrg'ri I 0 1C1 earl.° az...

2 + 3/7 17/7
(17/7) -1 7/17
7/17.3 21/17
21/17 + 1 38/17

ans(1)+11

Figure 3. The use of a step-by-step approach on the TI-92 to evaluate the expres-
sion, 1 + (3/(2 + (3/7))).

An attempt to reverse this process and write a mixed fraction as a con-
tinued fraction requires the students' attention to the concepts employed
to evaluate a continued fraction. A student may attempt to "undo" the
steps described above. To produce the continued fraction values for the

mixed number , the sequence of TI-92 steps shown in Figure 4 may
7

be used. Note the use of an iterative process: subtract the largest whole
number that allows for the difference to remain above zero, take the reci-
procal of the remaining fraction, repeat until the resulting fraction has a
numerator of 1. The students will have to record, as they work, the sig-
nificant numbers necessary to make the continued fraction, namely the
three subtracted whole numbers and the remaining fraction. Taking the
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reciprocal one last time results in 2, the final denominator. Continued
fractions are often written in terms of these whole numbers; thus,

5
8, could be denoted as [8,1,2,2] (or [8;1,2,2]).

7

Fenn 9 z+
AlgebralCa1clOtherIPrgnIOIC1ear

i T3+ T F.P., y
a-z...+I

8 + 5/7 61/7
61/7 8 5/7

m(5/7)-1 7/5
7/5 1 2/5

(2/5)-1 5/2
5/2 2 1/2

-1

IN aan atirn r11161/ 7 J'til

The answer is:

Figure 4. Illustration of the sequence of TI-92 steps that may be used to produce

continued fraction values for 8-5 .

7

Mathematical Connections
This notation and its iterative derivation are noteworthy for several

reasons. First, the appearance of the same sequence in the Euclidean
algorithm, useful for finding greatest common divisors, presents an
opportunity for mathematical inquiry into the apparent connection (See
Figure 5.) between continued fractions and the Euclidean algorithm.
Kimberling (1983) elaborates on this and suggests ways for students to
utilize computer programs centering on the algorithm. Through the use
of a program that generates the continued fraction notation, students
can examine patterns and properties of continued fractions (p. 511).
While not included in this article, a programming approach using the
TI-92 may be an appropriate and appealing direction to consider.

6 6
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61 = 8 x 7 + 5

7 = 1 x 5 + 2

5 =2 x 2 + 1

2=2 x 1 + 0

Figure 5. The Euclidean Algorithm carried out with 61 and 7.

Second, exploration of the Euclidean algorithm invites student conjec-
turing and theorizing. The possibility exists for students and teachers to
raise and discuss a number of important mathematical questions. Do all
rational numbers have a finite representation? Are finite simple contin-
ued representations unique? How would one evaluate or approximate
irrational numbers using continued fractions?

One of the dilemmas that students will face in encountering the infi-
nite continued fraction (e.g., Figure 1(c)) is its lack of closure; the strategy
of the finite continued fraction, starting with the "bottom" denominator
and working up through the expression, fails here. An approach which
generates a list of successive convergent values seems appropriate. [1, 1,
1, 1, . . .1 denotes a continued fraction useful for illustrating the iterative
derivation of convergents on the TI-92 (See Figure 6(a).). The calculator
not only prints the entered expression in the continued fraction form but
allows continued expansion through the user's insertion of an additional
"1+1/ (" in front of and ")" in back of each expression, thereby reinforc-
ing the concepts of a continued fraction and the iterative process. Figure
6(b) illustrates the power of the TI-92 in this endeavor.

Students can explore the potential of the TI-92 to utilize more efficient
iterative processes and produce successive approximations for the value
of the fraction. Two possible approaches are illustrated in Figure 7. Both
require students to think of variable as more than an unknown and, in the
second case (Figure 7(b)), a different notion (and notation) for function
are encountered. Students with more robust images of both variable and
function should have little trouble devising and using these strategies.

The TI-92's capability to express numerical values in both fraction and
decimal forms is particularly useful. The fractions obtained are interest-
ing and instructive because of the appearance of the Fibonacci numbers,
but they do not offer the student a sense of convergence of the successive
approximations. Changing the mode or using the approximation key is
useful for illustrating that this sequence of values seems to converge (See
Figure 8.).
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a

11119ZraleaTclotr.171-erlPrginIOICleaPa-z...

1

1

1

+ 1/1
1

2

3/2

5/3

+ 1 + 1/1
1+

1
1 + 1 + 1/1

1-1-1/(1+1/(1-1(1/1)))1

1 Algebra Calc Other PrgrflIO.Clear a-z...1T `" " F6

1 +
1

1

1 +
1 +

1 +
1 +

1

1

55/3
b 1+1/(1+1/(1+1/(1+1/(11/(1+1/1

MAIN RAD NM FUNC 6/30

Figure 6. Illustration of the continued expansion of an expression through the
user's insertion of "1 + 1/(" in front of and ")" in back of each expression.

Emphasizing Algebra
Creating simplified and algebraically useful forms, namely,

1

x = 1+ 2and the equivalent x x 1 = 0 , from these iterative

processes can be accomplished rather easily, depending on the capabili-
ties of the student. These equations and the embedded relationship of a
number and its reciprocal having a difference of one contain appropriate
algebraic content and concepts for students. The TI-92 is useful in solv-
ing the above equations and can generate both the exact answer and a
familiar decimal approximation. Figure 9 illustrates these solutions,
obtained by first placing the calculator in EXACT mode and then in
APPROXIMATE mode. The rich connections of the Fibonacci numbers to
the Golden Ratio may also not be apparent or familiar to students. The
teacher is likely to play a significant role at this stage in the activity,
through a variety of meansfor example, questioning individuals and
small groups about the relationships they see or bringing the class
together to discuss findings and entertain conjectures.
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a

1AliA1e1;raVaj1clOtTjeriPrrginI0IC1eat az... I
.1

1

1

1

1

+ 1/1
+ 1/2

1

1

2
3/2
5/3

8/5

+ /32
1

+ 5/3
14-1/ans(1)

T "- T"-T "- T " F6
Ca1c Other Prraagc lear a-z...1(-- Algebra

1 -> a
1

1 4 a

11 + 4 aa
11 + -> aa

11-1/a->a
MAIN RAI) AUTO FDIC V30

Figure 7. Two approaches to producing successive approximations for the value of
the continued fraction, [1, 1, 1, 1, ...].
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1 + 1/1
1

1 +

1
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1.

1.6666

2.
11 +
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1

ml + 1.6666666666667
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1.61803
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1.6180555555556
1

1.6180257510729
1

1.6180371352785
1

1.6180327868853

4ROMMWAgg_ __ ....__ ......_ .., ... _

Figure 8. Producing successive decimal approximations for the value of the contin-
ued fraction, [1, 1, 1, 1, ...1. 69
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solve(x = 1 +1, x)x
5 + 1 -(5 1x -

2 or x =
2

solvek = 1 +1x , x)
x = 1.61803 or x = -.618034

so1ve(x=1+1/x x)
MAN RAD 011111 FUN( 2/10

Figure 9. Exact and approximate solutions to the equation x = 1 + I obtained by

first placing the TI-92 calculator in EXACT mode and then in APPROXI-
MATE mode.

Exploring complex forms allows students to extend their understand-
ing of iterative processes. For example, the continued fraction
[2; 4, 4, 4, . . .1 produces a series of easily found convergents on the 1I-92
using symbolic iteration, as shown in Figure 10(a). The iterative function
approach to produce the same sequence of convergents is slightly more
sophisticated. One method is illustrated in figure 10(b). The motivation
for a programming alternative to this task is present again.

This process leads to the question of finding an equation from which a
radical form for this number can be obtained. The equation will be a
quadratic equation with integral coefficients (Stevenson, 1992, p. 134). In

1 1
a manner similar to that for x = 1 + , the equation, x 2 =

4 + (x 2)
can be rewritten to produce x 2 5 = 0; thus x = . A host of conjec-

tures and questions regarding the continued fraction form for
arise and make for interesting explorations. Figure 11 illustrates how
substitution creates an equation from which algebraic roots can be
found.

In turn, the search for the continued fraction form of any square root
offers yet another perspective on iteration and additional patterns to
explore (See Stevenson, 1992; Masunaga & Findall, 1993). Students can
easily begin with an equation of the form x 2 = n and begin by finding
the greatest integer 471 as the first numeral in the continued fraction
expansion. The process employs several algebraic skills and continues in
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Figure 10. Sequence of convergents produced (a) by symbolic iteration and (b) by
the iterative function approach.

X = 1 + 1 -0 x = 1 + 1
1 + 1

1 +1
1 +

x = 2 + 1 1-+ x 2 = +
4 + 1 4 + (x 2)

4 + 1
4 +

Figure 11. Illustration of how substitution in a continued fraction can create an
equation from which algebraic roots can be found.
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a manner shown in Figure 12. The final result, obtained after repeating
the algebraic steps until a recurring pattern is evident, yields the expan-
sion [3; 1, 1, 1, 1, 6, 1, 1, 1, 1, 6, . . .] for v 13 . This periodic form can be
written as [3; 1,1,1,1,6]. Olds (1963) generalizes about all square roots of
non-perfect square integers when he remarks: "the continued fraction
expansion of any quadratic irrational is periodic after a certain stage" (p.
56). This is known as Lagrange's theorem, first proved in 1770 (Olds,
1963, pp. 56, 110-111).

x= 3 +(V 13 3)

x= 3 + 1

1

(V 13 3)

x= 3 + 1

1

x= 3 + 1

(.,/ 13 + 3)

(4 13 + 3)

4 + J 13 1)

4

x=3 + 1

+ 13 1

4

x=3 + 1

1 + 1

4

13 - 1

Figure 12. Illustration of finding a continued fraction form for 4 13

Considering that other irrational numbers must therefore have non-
terminating, non-periodic expansions raises some interesting parallels to
the decimal expansion of fractions and introduces the idea of limit.
Students may enjoy expanding, through successive approximations,
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several continued fractions of historical interest. As shown in Figure 13,
Euler's expansion (1737) of e 1, for example, is [I; 1, 2, 1, 1, 4, 1, 1, 6, 1,
1, 8, . . .1 ; Lambert's expansion (1770) of n is [3; 7, 15, 1, 292, 1, 1, 1, 2, 1,
3, 1, 14, 2, 1, 1, 2, 2, 2, 2, 1, 84, 2,. . .1 (Olds, 1963, pp. 135-136). These
should intrigue students and may test the limits of their calculators!
Gullberg (1997) states that "continued fractions converge more rapidly
than power series expansions" (p. 144) and are thus very useful in
approximating irrational numbers. Both Olds (1963) and NCTM (1989)
provide additional examples and historical connections.

1e -1=1+
1

1+
1

2+
1

1+
1

1+
4+...

7c=3+
7+

1
15+

1
1+

292+...

Figure 13. (a) Euler's expansion (1737) of e - 1 and (b) Lambert's expansion
(1770) of It.

Pedagogical Implications
Access to the 1I-92 eliminates much paper and pencil calculation and

allows deeper exploration of the iterative process without errors. As illus-
trated above, the emphasis on iteration and the variety of ways to engage
the calculator makes this a rich classroom exercise. The infinite fraction
[1; 1, 1, I, . . .1 and its golden value is situated nicely at a variety of levels
in the study of algebra, and technology allows students to encounter this
number frequently in their mathematical work. Arguably, this number
should be as visible as rc and e in the secondary curriculum.

The algebraic idea of reciprocal plays a critical role, especially in the
1 or a-1 form. Both familiar symbolic notations have meaning in this
a
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exploration. The use of the calculator in efficiently performing repeated,
identical calculations suggest both the obvious computational benefit
and the necessity for students to carefully reason and explore their strat-
egy as results appear.

As alluded to earlier, these explorations have definite mathematical
goals undergirding them. Students are not completely led to "what they
should do" and can approach these tasks in several ways. Essential to
success are student interaction and teacher facilitation. Thoughtful,
open-ended questions, brief interviews, and careful probing can be use-
ful in assessing student (both individual and class) progress and in guid-
ing without telling. Because of this topic's many connections, the teacher
must be knowledgeable not only about the calculator but about the
mathematics involved. It is likely that the teacher and students will be
co-learners in this exploration; this presents a powerful image to stu-
dents, .one not usually encountered in secondary mathematics class-
rooms, about learning and listening. It places a heavy responsibility on
the teacher to be genuine in his or her inquiry stance while also knowl-
edgeable enough about the mathematics encountered to be credible to
students. This is no doubt one of the most important aspects of teaching
with technology.

It is likely that, without the TI-92, this topic would be reserved for an
enrichment activity or rainy day distraction for upper level students. The
TI-92 turns the seemingly novel idea of continued fractions into an
exploration of some fundamental algebraic principles. Preparing teach-
ers and encouraging students to cultivate broader and richer under-
standings of mathematics are essential if activity such as this is to yield
its fullest resultsserving as a springboard for further and deeper mathe-
matical adventures.
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FOOTNOTES
I An indeterminate equation is one that has an unlimited number of solutions. For example, x + 5y = 10
is indeterminate.
2 One of the tools embedded in the11-92 is a symbolic manipulation program. Other symbolic manipula-
tion (like Derive, Mathematica, or Maple) could serve the same purpose.
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THE ISOSCELES TRIANGLE:
MAKING CONNECTIONS WITH THE TI-92

Karen A. Flanagan
The Pennsylvania State University

Ken Kerr
Glenbrook South High School

One of the recurring themes in the National Council of Teachers of
Mathematics (NCTM) Standards (1989) is the idea of mathematical
connections:

Students who are able to apply and translate among different repre-
sentations of the same problem situation or of the same mathemati-
cal concept will have at once a powerful, flexible set of tools for
solving problems and a deeper appreciation of the consistency and
beauty of mathematics. (p. 146)

Geometry from Multiple Perspectives (NCTM, 1991) suggests that these
connections can be made in geometry through the blending of transfor-
mational, coordinate and synthetic approaches.

The concept of function is one of the most important concepts for stu-
dents to understand, and much of this development now takes place in
the context of algebra courses. Geometry can be one more place where
this understanding can be developed. Goldenberg (1995) talks about a
curriculum that teaches students to "think about theorems as functions"
(p. 205). A theorem does not refer to a single static case, rather the theo-
rem deals with a whole class of objects. Technology (such as the dynam-
ic geometry tool') is now available to help students think about theo-
rems as statements referring to whole classes of objects. The Texas
Instruments TI-92 calculator links a dynamic geometry system, a com-
puter algebra system, a graphing utility and a table in one machine. This
allows students to move easily between applications. Dynamic geometry
makes it possible for students to generate classes of objects, collect data
and examine what changes and what remains invariant. Data collection
activities can allow students to create models and relate them to graphs.
Using the curve-fitting capabilities of the calculator, students can obtain
a symbolic form for the correspondence. These symbols can then be
interpreted within the context of the original geometric object. With the
TI-92's multiple linked representations it is quite easy to capitalize on
those connections between geometry and algebra. An example of this
using isosceles triangles follows.
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Students can begin by exploring different relationships between
angles and sides in a triangle using the measurement tools present in the
1I-92. After examining several triangles they can characterize the rela-
tionship between the location of the longest side and largest angle. This
can be done by first measuring the three sides and the three angles, and
then dragging the various vertices to generate multiple sets of these
measures with a goal of generating a conjecture about the longest side
and largest angle. Relationships for the shortest side and smallest angle
should also be examined. Students may discover relationships such as
"the longest side of a triangle is opposite the largest angle, and the short-
est side is opposite the smallest angle." Figure 1 shows one instance of
this conjecture.

A
Largest: CB is opposite vertex of L. CAB

B Medium: AB is opposite vertex of L ACB

Smallest: AC is opposite vertex of L ABC

Figure 1. Illustration of the "longest (shortest) side / largest (smallest) angle"
conjecture.

One can then ask students to determine what relationships occur
between two of the sides. Students should be able to list the three possi-
bilities: AC < AB or AC > AB or AC = AB. They can then use the calcula-
tor measurement utility to generate data from which they can conjecture
relationships between the sides and the opposite angles. In the case of
the isosceles triangle, data collection may result in the development of a
symbolic rule for the measure of a base angle as a function of the mea-
sure of the vertex angle, or the inverse of that function rule which will
output the measure of the vertex angle if the measure of the base angle is
the input.

Students will begin by constructing an isosceles triangle. This drawing
will not remain static. Therefore, to guarantee that if a vertex is dragged
the triangle remains isosceles, either of the following methods may be
used.

Create a segment, AB, (Figure 2, left) and let the endpoints
become two of the vertices of the triangle. Construct the perpen-
dicular bisector of the segment, and the third vertex, C, can be
placed anywhere along the perpendicular bisector.
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Another possible construction (Figure 2, right) involves creating a
circle. Let the center of the circle, D, be one vertex and two points
on the circle, E and F, be the other two vertices. The radii of the
circle which contain the points E and F will become the sides of
the triangle.

With the 1I-92 you can hide the perpendicular bisector and circle so that
all you see is the triangle.

611101102111ISSEI 7 A rin
two ways to create an isosceles
triangle

11aiN DEG AUTO FUNC

Figure 2. Two ways to create an isosceles triangle.

One of the greatest advantages of the TI-92 is the ability to bring dia-
grams to life. Once the isosceles triangle is constructed (See Figure 3.),
the vertex can be dragged, changing the lengths of the sides of the trian-
gle and the measures of the angles. Using the "Collect data" option in
the TI-92 Geometry Application, data can be collected about the mea-
sures of the angles as the figure is altered through dragging (See Figure
4.). As students look at these measurements they can be asked to
describe a relationship between the measure of the vertex angle and the
measure of the base angle. Students can continue to alter the figure
through dragging. As the figure changes the measurements change, and
students can test their conjectures at each new position of the vertex.

These different sets of measurements can be stored in a table. The split
screen option on the 1I-92 allows one to view the geometrical object and
view the collected data in a table at the same time. In this example the
measures of the base angles were placed in the first and second columns,
cl and c2, and the measure of the vertex angle was placed in the third
column, c3.

The data in the table can then be displayed in a scatterplot. Several
questions about the process of creating a data display should arise natu-
rally. When setting the viewing window, what should the maximum
and minimum values be for the x- and y-v,ajues? Will the measure of the
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DEG AUTO FUNC

Figure 3. An isosceles triangle and its angle measures.
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DATA N1 N2 N3

CA 77.470 cl c2 c3
5 48.2 48.2 83.7
6 48.8 48.8 82.4
7 49.5 49.5 81.1
8 50.1 50.1 79.9

A B 9 50.7 50.7 78.6
51.27° 51. 27 10 51.3 51.3 77.5

DEG AUTO FUNC

Figure 4. The split screen mode on the 11-92 shows the geometrical figure and
the table of data values gathered through dynamic manipulation of
that figure.

base angle ever exceed 90? Why? These questions can be used to foster
discussion about some of the properties of an isosceles triangle. Students
can also relate back to the ideas in algebra of choosing an appropriate
domain and range. By using the fact that the sum of the measures of the
angles of a triangle is 180, students may realize that the measure of the
base angle should be between 0 and 90 and the measure of the vertex
angle should be between 0 and 180. For the graph in Figure 5 of column
3 versus column 1, limits (xmin = -5, xmax = 100, ymin = -5, and ymax =
200) were chosen so that the axes are visible.

After viewing the data a decision can be made about what would be
an appropriate function to fit to the data. The data appear to be linear. Is
there anything from the context of the problem, the geometrical figure,
that would indicate that the relationship might be linear? Again this can
fuel some interesting discussions.

The graph of the regression equation appears on the screen (See
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Figure 5. Split screen view of scatter plot and table.

Figure 6.) and appears to be a "good fit." We can now discuss the sym-
bols that are attached to the graph (See Figure 7.). The vertex angle was
recorded in x and the base angle in y; the equation is y = -2x + 180.

59.7 59.7 60.5
64.8
67. 8
71. 3
74. 9
76. 7

64.8
67.8
71.3
74.9
76.7

50.4
44.5
37. 4
30.1
26.6

HS RAD EXACT FUNC

Figure 6. The graph of the regression equation relating base angle to vertex
angle and the scatterplot.
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y=a x+b
a = -2.
b =180.
corr = -1.
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(Enter=0K )

rHS
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N3
c3
60.5
50.4
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Figure 7. The regression equation relating base angle to vertex angle.
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Discussion items could be: What does this tell us? How can we relate the
symbols back to the context?

The domain and range issues for the fitted function can now be dis-
cussed. The line contains points which are not in the first quadrant. Is
this legitimate for the isosceles triangle? Students may go back to the
geometric figure and drag it to see if they can find an example of a base
angle larger than 900 or the vertex angle larger than 180°. Students
should try to explain the limits of the domain and range in terms of the
changing shape of the triangle when it is dragged.

If students are allowed to decide what to choose as the dependent and
independent variables, then there are three possible sets of input-output
pairs from which to choose. One is base angle as a function of base
angle, the second is base angle as a function of vertex angle, and the
third is vertex angle as a function of base angle. A line which is fit to the
base angle vs. base angle data plot will have rule y = x. It is important
that students understand what is meant by these symbols. Students
should realize this means the two angles of an isosceles triangle have the
same measure.

The second possible combination of angles is one base angle and the
vertex angle. If the base angle is graphed on the horizontal axis then the
line fit to the data plot will be y = 180 2x. This function also must be
interpreted with respect to the triangle involved. The subtraction of 2x
suggests that there are two quantities that have the same value. To
which two things are we referring? Since y was assigned to the measure
of the vertex angle then 2x must represent the sum of the measures of
the other angles. Since one of those base angles has measure x the
remaining base angle must also have measure x.

An extension could be: What would happen if the columns were
switched? For instance, if the vertex angle were placed in x instead of y
what would the equation be? This is the third possibility: the measure of
the vertex angle as a function of the measure of the base angle. Students
should be challenged to decide for themselves whether the last two
functions (i.e., the measure of the vertex angle as a function of the mea-
sure of the base angle and the measure of the base angle as a function of
the measure of the vertex angle) are equivalent. This offers a nice oppor-
tunity to emphasize the role of input and output values in each of the
function rules. The students could also be asked to reason about the
meaning of the slopes in each case.

Whenever a data collection and curve fit has been done, the resulting
mathematical model should be corroborated by some other means if
possible. This can be accomplished by returning to our conjecture and
the relationships that developed. The question can be raised, "What if
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none of the sides of the triangle are congruent?" What is true about the
angles? How does this relate to the regression equations that were found
in the isosceles triangle situation?

Another interesting property of the isosceles triangle is related to the
altitude. Construct the altitude from the vertex angle of an isosceles tri-
angle and label the point where it intersects the base. Measure the base
and one of the segments that is formed on the base. The ratio of the mea-
sures is 2:1 (or 1:2 if the measurements were taken in the opposite
order). What does this tell us about the altitude? Does this relationship
hold for other triangles? Students can investigate these questions, test
them, and explain why these relationships are true.

Often students spend the entire year in a geometry class wondering
what it has to do with algebra. With the use of the TI-92 students can
collect data from geometrical objects, graph the data, and relate the data
to symbols. A dynamic geometry tool provides students with an oppor-
tunity to reason about a situation in a somewhat different manner.

A number of important points arise from this "functions" use of
dynamic geometry. At almost every phase of these investigations stu-
dents have been asked to justify their conclusions in some way. In par-
ticular, they should verify the conjectures that arise from their empirical
investigations in developing functional relationships from data. This is
the kind of mathematical behavior that we want to encourageboth to
explore and to justify. Another important possibility is having students
connect parts of the model to the geometry of the context. The use of
functional relationships in geometry is much easier with technology and
we now have the added benefit of making algebra visible to the students
at the same time. This is critical, because if we want students to think in
terms of functions then functions must not be absent from the curricu-
lum for a year. It is somewhat like small doses of radiation. Over time it
produces effects.
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Calculators and the Education of Youth
(continued from page 54)

The National Council of Teachers of Mathematics also recommends that
every mathematics teacher at every level promote the use of calculators to
enhance mathematics instruction by

modeling the use of calculators in a variety of situations;

using calculators in computation, problem solving, concept develop-
ment, pattern recognition, data analysis, and graphing;

incorporating the use of calculators in testing mathematical skills and
concepts;

keeping current with the state-of-the-art technology appropriate for the
grade level being taught;

exploring and developing new ways to use calculators to support
instruction and assessment.

The National Council of Teachers of Mathematics further recommends that

school districts conduct staff development programs that enhance teach-
ers' understanding of the use of appropriate state-of-the-art calculators in
the classroom;

teacher preparation institutions develop preservice and in-service pro-
grams that use a variety of calculators, including graphing calculators, at
all levels of the curriculum;

educators responsible for selecting curriculum materials make choices
that reflect and support the use of calculators in the classroom;

publishers, authors, and test and competition writers integrate the use of
calculators at all levels of mathematics;

mathematics educators inform students, parents, administrators, and
school boards about the research that shows the advantages of including
calculators as an everyday tool for the student of mathematics.

Research and experience have clearly demonstrated the potential of calcula-
tors to enhance students' learning in mathematics. The cognitive gain in
number sense, conceptual development, and visualization can empower and
motivate students to engage in true mathematical problem solving at a level
previously denied to all but the most talented. The calculator is an essential
tool for all students of mathematics.

National Council of Teachers of Mathematics (February, 1991)
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MATHEMATICALLY MODELING
A TRAFFIC INTERSECTION

Jon Wetherbee
Unami Middle School'

The project presented in this chapter entails the development of a mathemati-
cal model for traffic flow through an intersection controlled by a traffic light. It
involves field study, namely, data collection at an intersection, followed by the
use of spreadsheets and computer programming for the development of a math-
ematical model for traffic flow.

Purpose
This project simulates traffic flow at an intersection's traffic light. The simu-

lation can be used to predict what traffic flow would be if changes were made to
the intersection. For example, one might want to know how traffic flow would
change if another lane were to be put in or if a new road were to be built to
divert some of the traffic that passes through the intersection.

Procedures
The procedures used to build a mathematical model that simulates traffic

flow included observation of a particular traffic intersection (steps 1, 2, and 5
that follow), analysis of the data from that observation (steps 3, 4, 6, and 7), use
of the results from the data analysis to build a spreadsheet-based simulation of
traffic flow through the intersection (steps 8 through 11), and then modification
of the simulation to examine changes in traffic flow as a result of proposed
changes in the road (steps 12 and 13). The details for each of these steps are
given next.2

Observation and Data Analysis
1. Time the traffic light from beginning of green to the next beginning of

green (the cycle of the light). Take several readings and find their aver-
age to ensure accuracy. For example, suppose the average cycle time

were 26-seconds. Then in one hour there would be just over 135 cycles.
3

2. Over a one hour time period count how many cars approach the light
(within some reasonable distance of sight) during each cycle of the light
(the time determined in step 1). Since the more days during which one
collects data the more accurate the results will be, it is suggested that
data be collected on at least three days. Be sure to observe the same
intersection at the same time on each day.

3. From the observed data (number of cycles in one hour during which vari-
ous numbers of cars approached the intersection) find the occurrence per-
centage for each number of cars (percent of the total number of cycles in
one hour during which that number of cars approached the intersection).
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See Table 1 for sample data. Since five cars approached during two of
2

the 135 cycles in the hour, the occurrence percentage for five is 135 , or
1.48 percent. Note that the table is only a partial table of observed results
showing only the number of cycles during which five cars approached the
intersection and the number of cycles during which six cars approached
the intersection and the occurrence percentages for each of those values.

Number of Cars
Approaching the
Intersection

Frequency of Occurrence (Number of Cycles
in One Hour During which This

Number of Cars Was Approaching)

Occurrence
Percentage

...

4 ... ...

5 2 1.48%

6 5 3.70%

7

... ...

Table 1. Frequency and occurrence percentage for numbers of cycles in one hour
during which various numbers of cars approached the intersection.

a This is only a partial example. The complete table would include more values.

4. Use the range of integers 0-9999 (the integers in the interval [0,9999])
and let a portion of that range represent each potential number of cars
according to the occurrence percentages for the numbers. For example,
since the occurrence percentage for five cars is 1.48 percent, use 1.48
percent of the range 0-9999, say 0-147, to correspond to the frequency
with which five cars approached the intersection. Similarly, since the
occurrence percentage for six cars is 3.7 percent, use 3.7 percent of the
range 0-9999, say 148-517, to represent the frequency with which six
cars approached the intersection (see Table 2).

5. Using the cycle time in step 1, count how many cars pass through the
light during each cycle in one hour. Observe on the same number of days
as in step 2.

6. From the observed data (number of cycles in one hour during which vari-
ous numbers of cars passed through the intersection) find the occurrence
percentage for each number of cars (percent of the total number of cycles
in one hour during which that number of cars passed through the inter-
section) (see Table 3).

7. As done in step 4, assign a portion of the range 0-9999 to each potential
number of cars according to the occurrence percentages for the numbers
(see Table 4).
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Number of Cars
Approaching the

Intersection

Frequency of Occurrence
(Number of Cycles in One
Hour During which This

Number of Cars Was
Approaching)

Occurrence
Percentage

Portion of
Range 0-9999

Corresponding to
this Number of

Cars Approaching
... a ... ... ...

4 ... ... ...

5 2 1.48% 0-147

6 5 3.70% 148-517

7 ... ... ...

... ...

Table 2. Frequency, occurrence percentage, and portion of the range 0-9999 rep-
resenting numbers of cycles in one hour during which various numbers
of cars approached the intersection.

a This is only a partial example. The complete table would include more values.

Number of Cars
Passing through
the Intersection

Frequency of Occurrence (Number of Cycles
in One Hour During which This
Number of Cars Passed through)

Occurrence
Percentage

a ...

5 ...

6 2 1.48%

7 2 1.48%

8 ... ...

Table 3. Frequency and occurrence percentage for numbers of cycles in one hour
during which various numbers of cars passed through the intersection.

a This is only a partial example. The complete table would include more values.

Number of Cars
Passing through
the Intersection

Frequency of Occurrence
(Number of Cycles in One
Hour During which This

Number of Cars
Passed through)

Occurrence
Percentage

Portion of
Range 0-9999

Corresponding to
this Number of Cars
Passing through

... a ... ... ...

5

6 2 1.48% 0-147

7 2 1.48% 148-295

8 ... ... ...

Table 4. Frequency, occurrence percentage, and portion of the range 0-9999 rep-
resenting numbers of cycles in one hour during which various numbers
of cars passed through the intersection.

a This is only a partial example. The complete table would include more values. 8 6
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Building a Spreadsheet-based Simulation
8. Using a spreadsheet, have a computer generate random numbers from the

range 0-9999 that can be used to simulate the number of cars approach-
ing the intersection during cycles of the traffic light.

9. Program the computer (this can be done in the spreadsheet Microsoft
Excel using If...Then statements) to report that if the random number
falls into a particular range of integers then the number of cars approach-
ing the intersection represented by that range would be used for that
cycle. (In Microsoft Excel this can be done using If...Then statements.)
Note that some spreadsheets have limitations on the number of If...Then
statements per cell and that you may need to test whether a random num-
ber falls, for example, into one of 15 or more ranges. To avoid this prob-
lem it is possible to use several cells for successive If...Then tests. One
can run through seven (or as many as your program will allow) If...Then
statements in one cell and tell the computer to report that if none of them
are true, then put in -1 (or some other illogical value). Then have the
If...Then statements in the next cell refer back to the first cell, saying that
if the first cell does not equal -1, then the value in the second cell equals
the value in the first cell, and if the first cell does equal -1 then go on to
the next set of If...Then statements in the second cell. If all of the
If...Then tests in the third cell are not true, then the value in the third cell
is -1 and the final result would be the value corresponding to that part of
the 0-9999 range not included in any of the If...Then statements. The
results of random number generation and such successive If...Then tests
on those numbers are illustrated in Table 5. In a given row of Table 5 the
cells of columns three through five display the results of three such sets
of If...Then tests. Note that the final result of nine for cycle eight corre-
sponds to the portion of the 0-9999 range not included in the three sets of
If...Then statements.

10. Repeat step 9, generating another set of random numbers used to simu-
late the number of cars passing through, rather than approaching, the
intersection during each cycle. If necessary, use sets of If.:.Then state-
ments to find the appropriate portion of the range 0-9999 for each
random number generated.

11. For each cycle use the final value for the number of cars passing through
the intersection and the final value for the number of cars approaching
the intersection to produce the number of cars remaining at the intersec-
tion (subtract the number of cars passing through the intersection from
the number of cars approaching the intersection and add to the previous
number of cars remaining) (see Table 6).

8 6
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Cycle

Random Number
Generated to

Simulate Number of
Cars Approaching

the Intersection

Result of
Set of If...
Then tests

Result of
Set of If...
Then tests

Result of
Set of If...
Then tests

Final Result
for Number

of Cars
Approaching

1 7532 -1 19 19 19

2 6413 -1 18 18 18

3 2726 -1 -1 13 13

4 2370 -1 -1 13 13

5 9162 22 22 22 22

6 6633 -1 18 18 18

9027 22 22 22 22

8 508 -1 -1 -1 9

Table 5. Random numbers and results of If. .Then tests determining the number of cars
approaching the intersection.

a This is only a partial example. The complete table would include more cycles.

Cycle

Random Number
Generated to

Simulate Number of
Cars Approaching

the Intersection

Random
Number

Generated
to Simulate

Number
of Cars
Passing

through the
Intersection

Number
of Cars

Approaching

Number
of Cars
Passing
through

Number
of Cars

Remaining

91 7532 1609 19 . 10

2 6413 196 18 7 20

3 2726 872 13 10 23

4 2370 734 13 9 27

5 9162 6249 22 14 35

6 6633 2232 18 11 42

7 9027 6363 22 14 50

8 508 272 9 7 52

9 1650 2321 12 11 53

10 1505 947 11 10 54

11 3916 9288 15 18 51

12 7809 3298 19 12 58

13 8877 8445 22 16 64

...

Table 6. Model, built from an actual study during rush hour traffic, predicting number of
cars remaining at an intersection.

a This is only a portion of the simulation for demoStrrtion purposes. A complete hour
would include more cycles.
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Modifications of the Simulation
After simulating traffic flow on one lane of a two-lane road (one in each

direction), one might want to know what the traffic conditions would be like if
another lane were built or if another road were built and some of the traffic used
the new road.

12. Find the number of cars that would not be in the current lane if another
lane were built. To do this, divide the number of cars approaching during
each cycle of the simulation by two. If a decimal value results for the
number of cars approaching the intersection, the number should be
rounded to a whole number. Table 7 displays modification of the results
from Table 6 reflecting the building of a second lane.

Cycle

Random
Number
Used to
Simulate
Number
of Cars

Approaching
the

Intersection

Random
Number
Used to
Simulate
Number
of Cars
Passing
through

the
Intersection

Number
of Cars

Approaching
Intersection

as
Determined
by Random
Number in
Column 2

(Number
of Cars

Approaching
Intersection)

±

2

Number
of Cars
Passing
Through

Intersection
as

Determined
by Random
Number in
Column 3

Cars
Remaining

Traffic
Light

(Column 5
minus

Column 6)

1 7532 1609 19 10a 10 0

2 6413 196 18 9 7 2

3 2726 872 13 7 10 0

4 2370 734 13 7 9 0

5 9162 6249 22 11 14 0

6 6633 2232 18 9 11 0

7 9027 6363 22 11 14 0

508 272 9 5 7 0

9 1650 2321 12 6 11 0

10 1505 947 11 6 10 0

11 3916 9288 15 8 18 0

12 7809 3298 19 10 12 0

13 8877 8445 22 11 16 0

... b ... ... ... ...

Table 7. Modified simulation predicting traffic flow if an additional lane were built.

a Values in this column are rounded.
b This is only a partial example. A complete table would include more cycles.
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13. To simulate traffic conditions on the current road if another road were
built, estimate what percent of the cars on the current road would use the
new road. Then use that percent to decrease the number of cars
approaching the intersection. Table 8 shows the traffic conditions with
another lane added to the road, assuming that 18 percent of the cars on
the current road would use the new road.

Cycle

Random
Number
Used to
Simulate
Number
of Cars

Approaching
the

Intersection

Random
Number
Used to
Simulate
Number
of Cars
Passing
through

the
Intersection

Number
of Cars

Approaching
Intersection

as
Determined
by Random
Number in
Column 2

Number
of Cars

Approaching
Intersection

if Bypass
Were Built
(Column 4
minus 18%

of Column 4,
of 82% of
Column 4)

Number
of Cars
Passing

Through
Intersection

as
Determined
by Random
Number in
Column 3

Cars
Remaining

Traffic
Light

(Column 5
minus

Column 6)

1 7532 1609 19 16 a 10 6

2 6413 196 18 15 7 14

3 2726 872 13 11 10 15

4 2370 734 13 11 9 17

5 9162 6249 22 18 14 21

6 6633 2232 18 15 11 25

7 9027 6363 22 18 14 29

8 508 272 9 7 7 29

9 1650 2321 12 10 11 28

10 1505 947 11 9 10 27

11 3916 9288 15 12 18 21

12 7809 3298 19 16 12 25

13 8877 8445 22 18 16 27

b

Table 8. Modified simulation predicting traffic flow if a new road were built causing an
18 percent decrease in traffic on the original road.

a Values in this column are rounded.
b This is only a partial example. A complete table would include more cycles.

8 9
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Results from the original simulation and the two modifications also can be
graphed. A sample graph is given in Figure 1. For comparison one might choose
to graph the average number of cars remaining for several simulations of each
condition on the same axes.

120

100

80

60

40

20

Traffic Flow for Three Simulated Conditionsa

3 $ 7 9 11 13 15 17 19 21 23 25 27 31 33 3$ 37

Time (each unit is an 8-second interval)b

39 41 43 45

IIPresent
Conditions

15W1111 2n0 Lane

"WIth Bypass

Figure 1. Predicted traffic flow for current road, current road with second lane, and
current road with bypass.

a Values represent averages over several simulations.

Each 80-second time interval represents 3 cycles.

FOOTNOTES
lAt the time he submitted this article, Jon Wetherbee was a ninth-grade student attending Unami Middle School,
Chalfont, Pennsylvania, in the Central Bucks School District. This project was his entry into the Benjamin
Banneker Science Fair. Jon worked with two teachers, Mr. William Rissinger, a science teacher, and Mr. Lee
Ellmaker, a mathematics teacher.

2 [Editors' Note: Jon Wetherbee's account of his project provides a look, through the eyes of a student, at a middle
school project that technology makes possible. This project illustrates one type of mathematical modeling activi-
ty in which teachers might engage their students. It is left to the reader to envision the format in which a project
such as this might be assigned, the particular questions a teacher might raise while students are collecting and
analyzing data and building models, and the desired mathematical outcomes from students' completion of such a
project.]
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