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Introduction

The assumption of normality underlies much of the standard statistical methodology employed for several

reasons. First, many test statistics are assumed to be asymptotically normally distributed due to the applicability of

large sample theorems such as the Central Limit Theorem. Second, the normal distribution is often assumed to be

the appropriate mathematical model for underlying phenomena that the researcher may be investigating. That is,

scores on many measures in the behavioral and social sciences are normally distributed so that the bell curve shape

of the normal distribution provides a reasonable good fit to the frequency distributions of the scores. When using

inferential statistics, this knowledge becomes useful as one can think of the distribution of the true magnitudes of a

trait as being normally distributed in a population. Third, the normal curve provides a good approximation of other

theoretical distributions that are more difficult to work with when determining probabilities. (D'Agostino, 1986;

Glass & Hopkins, 1984; Shavelson, 1988).

With the assumption of normality yielding a rich set of mathematical consequences, it is no surprise that

the normal distribution is the most widely used distribution in statistics. Therefore, knowing how to determine

whether a sample of measurements is from a normally distributed population is crucial both in the development of

statistical theory and in practice. As a result, much effort has been exerted in developing techniques solely for the

purpose of detecting departures from normality. This effort began as early as the late 19th century with Pearson's

(1895) work on moments, particularly the third and fourth moments which are commonly referred to as the

skewness and kurtosis coefficients, respectively. However, while many tests currently exist, there is no gold

standard among them as there is no one test which is both sensitive to a wide range of alternative distributions and
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easy to compute. The variability in normality tests used is further evident by noting that even the major statistical

packages such as SAS, SPSS, STATA, SYSTAT, and BMDP have implemented different normality tests

(D'Agostino, Belanger, & D'Agostino, 1990; Hopkins & Weeks, 1990; Ware & Ferron, 1995).

Many would argue that Shapiro-Wilk (1965) W test is the most sensitive test to a wide range of alternative

distributions. In fact, W was the first test for normality that was able to detect departures due to either skewness or

kurtosis, or both. However, because of the complodty of this test, no statistical package has implemented W it its

true form for sample sizes larger than 50. Rather large sample approximations (e.g., Royston, 1982) for W have

been developed for use in statistical packages. Yet, it was the omnibus feature of the W test that motivated a new

category of tests based on moments. For this new category of tests, the skewness and kurtosis coefficients are

combined to provide an omnibus test for departures from normality. The most popular of these tests is the

D'Agostino-Pearson (1973) K2 test which is the sum of the squared normal approximations of the skewness and

kurtosis coefficients. Being the sum of two normally distributed variables, K2is naturally distributed as x2 with 2

degrees of freedom. However, use of the x2distribution requires that skewness and kurtosis be independent. Yet,

studies have shown that they are related (Ware and Ferron, 1995; MacGillivray and Balanda, 1988).

In addition to vast number of tests available, Ware and Ferron (1995) also noted that the statistical

packages report different estimates for skewness and kurtosis based on whether they are using Pearson or Fisher

(1973) g estimates. Given these discrepancies, Ware and Ferron recommended an alternative test statistic, g2, in

which skewness and kurtosis coefficients from any of the leading statistical packages are combined to create an

omnibus test for detecting departures from normality. Ware and Ferron developed this new test statistic, which was

modeled after K2, and estimated the critical values for sample sizes up to 100. However, a more extensive

derivation and validation of the critical values is needed. In addition, the power of g2 against a wide range of

alternative distributions is currently unknown and must be determined. Both of theseserve as the purpose of this

study.

Motivation for Testing for Normality

In introductory statistics courses, one usually learns to test for normality by examining the distribution of

the variables in question, comparing the mean, median, and mode of the distribution, and by examining outlier

values. The importance of normality-testing is stressed, yet formal tests are rarely introduced (Hopkins & Weeks,
2
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1990).

Visually inspecting the data through the use of histograms, stem and leaf plots, and descriptive information

is useful, yet it can only tell the researcher if the distribution is "close" to normal. Formal tests of the null

hypothesis that the distribution is normal would provide one with a more precise indication of normality Hopkins

and Weeks (1990) noted that both descriptive and inferential measures of non-normality should be routine parts of

reporting research. They noted a large number of robustness studies in the 1950s and 1960s that were designed to

assess the consequences of non-normality. Glass, Peckbam, and Sanders (1972) found that even though the

assumption of normality is made in the derivation and use of parametric tests such as ANOVA, non-normality did

not appear to have any serious consequences on the accuracy of the significance levels and the inferences made

about the population mean. That is, it is frequently stated that ANOVA is robust to the assumption of normality

(Tabachnick & Fiddell, 1996). However, Bradley (1978) questioned the generalization that inferential tests, such as

ANOVA and the t-test, are robust to the violation of assumptions of normality since these generalizations sometimes

neglect to mention qualifying conditions.

Hopkins and Weeks (1990) noted that because robustness is sometimes assumed, an unfortunate side effect

resulted normality is no longer considered or reported in research studies. Yet, there are still many statistical

techniques in which the assumption of normality is crucial as some procedures are not robust to violations of the

normality assumption (Hopkins & Weeks, 1990). For example, Breckler (1990) reviewed 72 articles that used

structural equation modeling and less than 10% of the articles considered the crucial assumption of normality. In

fact, with the increased use of structural equation modeling over the past decade, the issue of normality has become

even more important as this statistical routine is not robust to the normality assumption (Bonen, 1989; Chou &

Bentler, 1995; Hayduk, 1987; West, Finch, & Curran, 1995).

When using structural equation modeling potential problems occur when nonnormal data are encountered

when estimation techniques such as maximum likelihood or generalized least squares are used, as these estimation

routines assume an underlying assumption of normality (West, Finch, & Curran, 1995). Therefore, statistical

routines relying on these types of estimates will be affected by nonnormal data. In fact, when using structural

equation modeling it is important to test for both univariate and multivariate normality. Bollen (1989) cautioned

that with nonnormal data, the chi-square estimate for assessing the fit of a structural equation model should be used

with caution. This is particularly true for leptokurtic distributions that result in the rejection of too many true
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models. Bonen also noted that for skewed distributions, the chi-squared estimates were also high. However, it is

not clear whether these high values are due to skewness or to the naturally occurring kurtosis that tends to

accompany skewness. Although estimation-based remedies do exist, it is important to know when your data are

nonnormal so that the appropriate estimator can be used.

In addition to structural equation modeling. there are more common situations in which normality is

required (e.g., regression, tests of variances, and mem-analysis. For example, in regession, it is necessary to assume

that the residuals are normally distributed (Pedhazur, 1982). Tests of variance are also not robust to the violation of

the normality assumption (Box, 1953). In meta-analysis, the homogeneity of effect sizes is crucial. That is, the

estimates of effect sizes from a series of studies should be equal. However, the interpretation of the effect sizes

depends on the assumption that the distribution follows a normal distribution (Glass, McGaw, & Smith, 1981;

Hedges & Olkins, 1985; Wolf, 1986). For example, Greenhouse and Iyengar (1994) noted that for random effect

models, when the distribution of effect sizes is skewed, the mean effect size might be positive while more than half

of all the effect sizes are negative.

Given the information above on the importance of testing for the assumption of normality, it is important to

have tests for normality. In fact, Tabachnick and Fiddell (1996) noted that normality is an important issue in data

screening regardless of the inferential test being used. Currently, not all statistical packages have implemented

procedures to test for normality, and, as mentioned earlier, the packages also differ in which test(s) they have

implemented. Also, many of the tests for normality are not easy to implement, discouraging the average researcher

from using them. The ideal test for normality would be easily computable from the output of any of the major

statistical packages. Ware and Ferron's (1995) g2 test statistic has these desirable properties. However, before it

can be used an extensive derivation of the critical values and an analysis of its power must be conducted.

Statement of Purpose

This study was designed with two purposes. The first purpose was to extend the work of Ware and

Ferron's (1995) empirical derivation of the critical values with a more extensive computer simulation. The second

purpose was to determine the power of g2 and compare it against the following test statistics: K2, the standardized

third moment test ('Ibi ), the standardized fourth moment test (b2), and a large sample approximation of the W test

(Royston, 1992). The first three competing tests were chosen as they are closely related to g2. The test statistic
4



K2 was the basis for developing g2. The skewness and kurtosis tests are historically used in power studies for

comparisons, particularly if the test statistic is derived as a combination of the two measures. The Shapiro-Wilk W

approximation was chosen because it is currently regarded as being the most powerful test for a number of

alternative distributions.

Ware and Ferron (1995) defined g2 as

Defming e

[Z(g1)12 + [Z(g2)12 (Formula 1)

Z(g1)= / SE(g1) and Z(g2)= g2 / SE(g2).

While Ware and Ferron chose to express this statistic in terms of the Fisher estimates, g2can easily be computed

with either the Pearson or Fisher estimates as long as the standard error of the estimates are available. Fisher

estimates were used instead of Pearson estimates as most computer packages use the Fisher estimates when

reporting skewness and kurtosis. For those using packages reporting Pearson estimates rather than Fisher, it can be

shown that

gi / SE(g, ) = 4b1/SE(4) and g21 SE(g2) = (b2-E(b2))/SE(b2). (Formula 2)

Therefore for packages providing the Fisher estimates and standard errors, the g2value can be easily computed by

using Formula 1. If the Pearson estimates are provided, then g2 value can be computed applying Formula 2. Ware

and Ferron (1995) provide examples of computing g2 from five statistical packages. Once the value of g2 is

obtained, the next step is to determine if this value is significant indicating a departure from normality. To

determine the significance of g2, we generated the empirical distributionso that critical values for sample sizes up to

n=5000.

Determining tbe Empirical Distribution of g2
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To obtain the critical values for g2a Monte Carlo simulation was conducted. Random samples were

generated from the standard normal distribution using the SAS RANNOR function within PROC 1ML (SAS, 1995).

Using 500,000 replications for sample sizes, n=10(1)100(25)500(50)1000(250)5000, g2 was calculated. For each of

the 143 sample sizes, the empirical critical values at the .10, .05, and .01 significance levels were estimated by using

PROC UNIVARIATE to determine the point which was exceeded by 10%, 5%, and 1% of the g2 values,

respectively.

For example, consider a sample of size 10. To derive the estimated critical values at the above significance

levels, a sample size of 10 was randomly generated from a normal population, and g2 was calculated for this sample.

This procedure was repeated for a total of 500,000 samples of size 10. Next, the 90th, 95th, and 99th percentiles for

the 500,000 g2 values were determined. These values were the estimated critical values for g2 the .10, .05, and .01

significance levels, respectively.

Once the estimated critical values of g2 were empirically derived for each n, these values were plotted as a

function of sample size as can be seen in Figure 1.

8



20

18

16

14

Ti io
'E-0

6

8

-111111"

400000010
4

2

0

0 1000 2000 3000 4000 5000 6000

Sample Size

Figure 1: Plots of the Estimated Critical Values of g2 at the Three Levels

of Significance as a Function of Sample Size

.01 Level

.05 Level

.10 Level

Examination of the above plots indicated that a nonlinear relationship existed between the sample sizes and

the critical values. Linear, inverse, natural logarithm, cubic, quadratic, exponential, and gamma functions were used

in several regression combinations to determine the model of best fit. These best fit models were then used to

determine the empirical distribution of g`. The resulting regression equations, based on the 143 critical value

estimates at each significance level, are given below:

7
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These models accounted for 99.9%, 99.6°/o, and 99.7% of the variance in the three sets of estimated critical

values. Using these regression equations, the estimated critical values of g2 at the .10, .05, and.01 levels of

significance were estimated and are provided in Table 1. The critical values for sample sizes not listed in this table

can be obtained by substituting the sample size for n in the regression equations critical values above.

While it is expected that the critical values decrease as the sample size increase, deviations from this

pattern were found in the set of critical values for g2, particularly at the .10 level, necessitating further examination

of these values. The additional investigation of the critical values suggested that the distribution of g2 approached

the X2 distribution with 2 degrees of freedom indicating that the distribution of g2 was asymptotic to the this

particular x2 distribution. Intuitively, we expect this relationship to occur since as n gets larger, the standardized

skewness and kurtosis values used to compute g2 become normally distributed making g2 the sum of two normally

distributed variables. To verify this relationship, separate Monte Carlo simulations were conducted for n=10, 100,

500, 1000, and 5000. In each of these simulations, 10,000 random samples were generated from the standard

normal distribution and g2 was calculated for each of the samples. The distribution of these g2 values were plotted

and compared to the distribution of 10,000 random X2 variates of the same sample size. As the sample size

increased, the g2 distribution began to converge to the chi-squared distribution with 2 df. Therefore, for large

sample sizes one can use the critical values for the X2 with 2 degrees of freedom.
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2
Table 1: Listing of Critical Values for g (alpha = .01, 05, & .10)
Sample Size a = .01 a = .05 a = .10

10 18.3835 7.4592 4.1816
11 18.6186 7.3548 4.1312
12 18.7667 7.2741 4.0923
13 18.8534 7.2094 4.0621
14 18.8959 7.1559 4.0385
15 18.9062 7.1104 4.0200
16 18.8929 7.0709 4.0054
17 18.8619 7.0359 3.9939
18 18.8177 7.0046 3.9849
19 18.7638 6.9760 3.9779
20 18.7026 6.9498 3.9724
30 17.9562 6.7612 3.9627
40 17.2452 6.6392 3.9812
50 16.6432 6.5504 4.0053
60 16.1370 6.4822 4.0298
70 15.7069 6.4280 4.0535
80 15.3367 6.3839 4.0760
90 15.0141 6.3472 4.0972
100 14.7299 6.3164 4.1171
125 14.1454 6.2570 4.1621
150 13.6890 6.2147 4.2011
175 13.3202 6.1830 4.2352
200 13.0141 6.1586 4.2650
225 12.7549 6.1394 4.2911
250 12.5319 6.1238 4.3142
275 12.3375 6.1110 4.3346
300 12.1661 6.1004 4.3526
325 12.0137 6.0914 4.3686
350 11.8769 6.0838 4.3828
375 11.7535 6.0773 4.3955
400 11.6413 6.0717 4.4067
425 11.5389 6.0668 4.4168
450 11.4449 6.0625 4.4258
475 11.3584 6.0587 4.4339
500 11.2783 6.0553 4.4411
550 11.1349 6.0497 4.4536
600 11.0099 6.0451 4.4639
650 10.9000 6.0415 4.4726
700 10.8024 6.0384 4.4799
750 10.7151 6.0359 4.4862
800 10.6366 6.0337 4.4916
850 10.5656 6.0319 4.4965
900 10.5011 6.0304 4.5008
950 10.4421 6.0290 4.5047

1000 10.3880 6.0278 4.5082
1500 10.0228 6.0211 4.5325
2000 9.8271 6.0175 4.5479
2500 9.7090 6.0146 4.5595
3000 9.6333 6.0116 4.5689
3500 9.5830 6.0086 4.5768
4000 9.5493 6.0054 4.5836
4500 9.5268 6.0022 4.5896
5000 9.5123 5.9989 4.5949

2
X2 9.2104 5.9915 4.6052
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Validation of g2 and K2

Even though the variance accounted for in the three sets of observed critical values was high, the set of

critical values for g2 generated by the regression equations was further validated by conducting a smaller Monte

Carlo simulation. This validation provided an estimate of the Type I error rate for g2. In addition to validating the

critical values of g2, the D'Agostino-Pearson K2 test was also validated K2 was validated in order to help determine

whether the relationship between skewness and kurtosis had an adverse impact on the accuracy of the critical values

for the K2 test. While there have been numerous power studies conducted on K2, no studies were found that

provided an empirical investigation of the violation of independence or an examination of its Type I error rate. In

addition, since g2 was developed as a modification of K2, it seemed appropriate to validate K2 along with the new

test statistic.

To perform the validation, 10,000 random samples were generated from a normal population for the

following 45 sample sizes, n=10(1)15(5)25(1)30(10)100(50)650(25)1000. In addition to wanting a representative

range of sample sizes from 10 to 1000, these sample sizes were selected to include sample sizes where the potential

problem of the increasing critical values occurred At each significance level and for each sample size, the

proportion of times that the calculated g2 value exceeded the critical values obtained from the regression was

determined In addition, the propottion of times that the calculated K2 exceeded the critical values based on the chi-

squared distribution was recorded The proportions for each sample size for both g2 and K2 are provided in Table 2.
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Table 2: Validation of g2 and K2 - Proportion of Times Departures from Normality Detected

.10

g2 K2

.05
K2 g2

.01
K2

10 .098 .093 .049 .057 .009 .021
11 .100 .089 .050 .057 .010 .022
12 .101 .093 .054 .061 .010 .025
13 .097 .090 .050 .057 .011 .024
14 .103 .094 .051 .057 .010 .023
15 .097 .091 .048 .055 .010 .021
20 .098 .093 .049 .056 .011 .021
25 .096 .092 .047 .053 .010 .020
26 .097 .094 .048 .055 .009 .020
27 .101 .097 .051 .060 .011 .020
28 .100 .095 .051 .059 .011 .021
29 .098 .096 .050 .057 .010 .019
30 .098 .094 .048 .056 .009 .019
40 .095 .094 .048 .055 .008 .018
50 .103 .101 .052 .059 .008 .017
60 .102 .101 .049 .057 .009 .018
70 .101 .100 .049 .057 .011 .018
80 .098 .101 .048 .055 .010 .019
90 .104 .102 .052 .058 .011 .018
100 .097 .097 .047 .054 .011 .018
150 .103 .102 .051 .053 .011 .016
200 .101 .099 .050 .053 .010 .016
250 .097 .095 .050 .053 .011 .016
300 .098 .098 .051 .053 .011 .016
350 .101 .100 .050 .052 .009 .013
400 .099 .097 .051 .051 .010 .012
450 .095 .097 .050 .051 .010 .013
500 .099 .099 .049 .052 .011 .014
550 .104 .103 .052 .052 .012 .015
600 .099 .095 .048 .047 .010 .012
650 .102 .102 .051 .053 .010 .013
675 .099 .099 .050 .050 .009 .011
700 .104 .103 .052 .054 .011 .013
725 .102 .100 .045 .048 .009 .010
750 .097 .098 .048 .050 .010 .012
775 .104 .103 .053 .053 .010 .012
800 .099 .100 .050 .049 .010 .012
825 .100 .100 .050 .051 .010 .012
850 .101 .102 .050 .053 .010 .013
875 .106 .106 .055 .057 .010 .012
900 .102 .100 .050 .053 .010 .013
925 .099 .099 .049 .052 .010 .011
950 .102 .100 .050 .054 .009 .012
975 .093 .094 .044 .048 .008 .010
1000 .100 .098 .047 .049 .011 .013

Mean .09972 .09766 .04971 .05384 .00993 .01604
sd .00284 .00401 .00202 .00332 .00094 .00418

z-score -.65516 -3.9142 -.9593 7.7647 -.50669 9.6960
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The proportions of the g2 statistics, averaged over the 45 sample sizes, falling above the criticalvalues at the

.10, .05, and .01 significance levels were .0997 (s4.0028), .0497 (s&.0020), and .0099 (m1=.0001), respectively..

Converting these proportions to z-scores, we found that these values were not significantly different from the

expected proportions .10, .05, and .01 (z=-.6552, -.9593, and -.5067, respectively) indicating that the Type I error

rates were as expected for each level of significance.

Similarly, the mean proportion of K2 statistics falling above the critical values at the .10, .05., and .01

significance levels were .0977 (s&.0040), .0538 (s&.0033), .0160 (s&.0042). As with the g2 test, these proportions

were converted to z-scores. Each of the mean proportions was found to differ significantly from the expected

proportions .10, .05, and .10 (r= -3.9142, 7.7647, and 9.9690, respectively). Specifically, at the .10 level, the Type I

error rate was significantly lower than the expected value of .10. At the .05 Ind .01 levels, K2 had an inflated Type I

error rate indicating that it may detect departures from normality when a sample is actually normally distributed

Since the proportions validated for g2 were based on the mean of all the sample sizes, it is possible that

significant differences at specific sample sizes were present but were undetected with the balancing of underestimates

and overestimates. In order to determine if the 45 sample sizes and the frequencies above and below the critical

values at each of these sample sizes were statistically independent of each other, a chi-squared test was conducted.

That is, the frequencies above and below the critical values were compared to the expected frequencies, stratifying by

sample size. For each of the significance levels (.10, .05, .01), the resulting x2 statistic with 44 degrees of freedom

was not statistically significant at the .05 level (p<.658, p<.725, p<.658, respectively) indicating statistical

independence. This follow up le test was not conducted for K2 since a significant difference was found for the

aggregate proportion values.

The above efforts demonstrated that the g2 test statistic did validate and had the expected Type I error rate.

However, given that K2 did not validate, we were prompted to run a smaller validation study to see what pattexns

emerged for the other three test statistics. As with K2, we found no studies reporting the Type I error rates for these

tests. In order to directly compare the validation information of g2 and K2 with the other three test statistics, g2 and

K2 were included in this second validation step.

14
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Analysis of Type I Error Rates

In this simulation, 10,000 samples were generated from the standard normal population for the following

twelve sample sizes, n=10, 25, 50, 75, 100, 150, 200, 300, 400, 400, 750, and 1000. The five test statistics were

calculated for each sample. At each significance level and for each sample size, the proportion of times that each

statistics exceeded their defined critical values was determined. The proportions for each sample size for each test

statistic are provided in Table 3.

The proportions for g2 were similar to the theoretical proportions for each significance level, once again,

validating the use of the regression equations and indicating no problems with Type I error rates. As seen earlier, for K2,

there was a slight, yet consistent, inflation of Type I error rates at the .01 and .05 levels of significance, particularly for

small sample sizes. The Type I error rates for Jbl and b2 were fairly close to their expected values. However, most

troublesome were the Type I error rates for W approximation which were largely inflated at all significance levels. As

the sample size increased, these Type I error rates were more exaggerated. Overall, W was the most liberal of the six

tests.

Once the Type I error rates were examined, the next step was to evaluate the powers of g2 to determine how well

it would detect departures from normality and to see how its power compared to those of the competing test statistics.

However, given the inflated Type I error rates for K2 and W, we entered this next phase suspecting that the power of K2

and W would be somewhat inflated, making them appear more powerful.
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Table 3: Comparison of Type I Error Rates for Five Competing Test Statistics

Level of Significance n g2 K2 Ib b2

a.=.10 10 .105 .096 .102 .090 .098
25 .103 .099 .102 .100 .119
50 .097 .098 .101 .102 .124
75 .103 .103 .104 .102 .125
100 .100 .097 .099 .104 .129
150 .097 .096 .097 .105 .132
200 .102 .102 .101 .102 .141
250 .099 .097 .099 .099 .144
300 .098 .099 .099 .098 .140
400 .099 .096 .099 .103 .153
500 .099 .102 .103 .109 .157
750 .101 .102 .099 .105 .160
1000 .099 .100 .100 .097 .170

Mean Type I Error Rate at cc=.10 .1002 .0990 .1004 .1012 .1378

10 .051 .061 .054 .044 .053
25 .050 .060 .052 .053 .063
50 .049 .057 .051 .054 .066
75 .052 .059 .052 .056 .073
100 .049 .054 .047 .055 .072
150 .049 .054 .047 .055 .074
200 .053 .055 .051 .054 .084
250 .049 .051 .047 .051 .084
300 .048 .052 .048 .050 .087
400 .050 .051 .049 .052 .093
500 .051 .053 .049 .056 .097
750 .051 .053 .051 .054 .104
1000 .050 .051 .053 .051 .113

Mean Type I Error Rate at cf.=.05 .0502 .0547 .0501 .0527 .0818

a=.01 10 .012 .025 .013 .007 .013
25 .011 .022 .011 .011 .016
50 .009 .018 .009 .011 .014
75 .011 .019 .011 .014 .021
100 .012 .019 .010 .015 .020
150 .009 .016 .010 .012 .022
200 .010 .014 .010 .012 .025
250 .011 .014 .010 .012 .025
300 .010 .013 .008 .013 .027
400 .010 .014 .010 .012 .034
500 .009 .014 .011 .012 .032
750 .013 .014 .011 .012 .040
1000 .011 .013 .010 .012 .045

Mean Type I Error Rate at cc=.01 .1016 .0165 .0103 .0119 .0257
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The Power Study

Choosing the Alternative Distributions

The first step in any power study is to determine the alternative distributions against which the desired test

statistic will be evaluated. Lists of alternative distributions with their skewness andkurtosis population values have

been provided by many authors who have conducted previouspower studies (Albajar, Moreno, & Martin, 1992;

Pearson, D'Agostino, & Bowman, 1977; Shapiro, Wilk, & Chen, 1968; Saniga & Miles, 1979; Stephens, 1974).

These lists were used in determining the subset of alternative distributions used for this study. The main intent was

to select a varied set of distributions so that the power of g2 could be examined against many different types of

departures from normality. The final set of alternative distributions chosen included symmetricand skewed

distributions with low (flat) and high (peaked) kurtosis values, as well as, distributions close to the normal

distribution. With the exception of near normal distributions, which considered both continuous and discrete

distributions, all the alternative distributions considered were continuous. These choices were reflective of the types

of distributions utilized in previous power studies.

Two distributions were selected for each of the following six categories of distributions: near normal

discrete, near normal continuous, symmetric/flat, symmetric/peaked, skewed/flat, and skewed/peaked. The resulting

twelve distributions, along with their population skewness (i131) and kurtosis (N) values, are presented in Table 4.

The skewness and kurtosis values shown in the table indicate the degree of departure from normality, where fp,A)

and f32 = 3. SAS 6.11 was used for the power study and the coding of the alternative distributions.
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Table 4. Categorization of the Alternative Distributions Used in the Power Study

Distribution Category
Alternative Distributions (parameters) 113i

Near Normal Discrete Binomial (20, .5) 0 2.90
Poisson (10) .32 3.10

Near Normal Continuous Tukey (1, 5) 0 2.90
Johnson S Bounded (1, 2) .28 2.77

Symmetric/flat Johnson S Bounded (0, .5) 1.63
Tukey (1, 1.5) 0 1.75

Symmetric/peaked Johnson S Unbounded (0, 2) 0 4.71
Johnson S Unbounded (0, .9) 0 82.08

Skewed/flat Johnson S Bounded (.533, .5) .65 2.13
Beta (2, 1) -.57 2.40

Skewed/peaked Johnson S Unbounded (1, 1) -5.30 93.40
Lognormal (0, 1, 0) 6.18 113.94

Computing the Power of g2

To determine the power of g2 and compare it to the powers of 01, 132, K2, and W, another Monte Carlo

empirical sampling study was conducted. The 12 alternative distributions listed in Table 4 were considered for each

of the following sample sizes (n=10, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000) at the .10, .05, and .01

significance levels. For each alternative distribution, 10,000 iterations of samples were generated for each sample

size. The test statistics were calculated for each of the 10,000 samples. The number of times a test statistic detected

a deviation from normality was tracked and converted to a percentage value, providing the estimated power of the

test.

Factorial Analysis of the Power Results

In order to determine the various effects, particularly interaction effects, on the power of the test statistics,

the obtained power results were evaluated using a four-way (3 x 5 x 6 x 13) factorial analysis (level of significance,

test statistic, distribution category, and sample size). The independent variables used and their possible values are

defined in Table 5. The dependent variable was the power of the test statistic.
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Table 5: Independent Variables used in the Four-Way Factorial Analysis of the Power Results

Independent Variables Possible Values

Level of Significance

Type of Test Statistic

Category of Distribution

.10, .05, .01

g2, K2, b2, W

Near Normal Discrete, Near Normal Continuous,
Symmetric/Flat, Symmetric/Peaked,
Skewed/Flat, Skewed/Peaked

Sample Size 10, 25, 50, 75, 100, 150, 200, 250, 300, 400, 500, 750, 1000

The summary of the results of the ANOVA is presented in Table 6. The highest order significant interaction

effect was a 3-way interaction which indicated an there was an effect on power due to the interaction of the type of

test statistic, the distribution category, and sample size. The significant three-way interaction implied that the

interaction of two of the independent variables depended on the specific level of the third independent variable. To

examine this effect, the interaction between two of the independent variables at each level of the third independent

variable was analyzed graphically. More specifically, the interaction effect between the test statistic andsample size

was graphed for each of the six types of distribution categories. For each distribution category, the two power values

were averaged across the three significance levels yielding a mean power estimate for each test statistic for each of

the 13 sample sizes.
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Table 6: Four-Way ANOVA Summary Table with Effect Sizes for Investigating the Relationships
between Significance Levels, Distribution Category, Sample Size, Test Statistic, and Power

Source of Variations Sum of
Squares

df Mean
Squares

,n2

Main Effects
Alpha 56469.19 2 28234.60 66.42* .01
Dist 1434601.66 5 286920.33 674.93* .35
Size 828641.33 12 69053.44 162.44* .21
Test 315051.03 4 78762.76 185.28* .08

2-Way Interactions
Alpha Dist 7093.91 10 709.39 1.67 .00
Alpha Size 12080.02 24 503.33 1.18 .00
Alpha Test 3956.49 8 494.56 1.16 .00
Dist Size 165297.90 60 2754.97 6.48* .04
Dist Test 506180.15 20 25309.01 5954* .12
Size Test 42833.43 48 892.36 2.10* .01

3-Way Interactions
Alpha Dist Size 21038.01 120 447.94 .41 .00
Alpha Dist Test 6563.19 40 175.32 .39 .00
Alpha Size Test 9228.02 96 164.08 .23 .00
Dist Size Test 185349.07 240 96.13 1.82* .04

4-Way Interactions
Alpha Dist Size Test 37151.14 480 77.40 7.31 .01

Error 497382.86 1170 425

Total 4128917.41 2339

* p < .01

Results

Near Normal Discrete Distributions

The near normal discrete distributions consisted of the binomial (20, .5) distribution and the Poisson (10)

distribution. Each of these distributions had a low to zero skewness value and a kurtosis value close to three. The mean

power of each test statistic for each sample size is presented in Table 7 and displayed graphically in Figure 2.
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Table 7: Near Normal Discrete Distributions - Estimated Mean Power for Test Statistics by Sample Size

Sample Size g2 4 b2 K2 W
10 5.28 5.52 4.43 5.82 9.02
25 5.82 6.42 5.60 6.55 15.50
50 7.28 8.48 6.60 8.27 28.83
75 8.27 10.62 6.72 9.48 45.60
100 9.65 12.75 7.07 11.03 62.92
150 12.60 17.17 7.28 14.15 86.32
200 15.38 20.95 7.75 17.40 95.93
250 18.55 25.20 7.77 20.62 99.12
300 22.18 28.98 8.33 24.42 99.92
400 27.90 35.23 8.47 30.53 100
500 32.95 40.07 8.92 35.85 100
750 43.10 47.28 10.52 45.33 100
1000 48.60 50.40 11.40 50.52 100

The test statistic g2 did not perform as well as W for near normal discrete distributions. However, the power of g2 was

greater than the power of the kurtosis test which exhibited the lowest power for this set. In addition, g2 had similar power

to K2 and 4. The Royston approximation for W was clearly the most powerful test.

120

100

80

40

20

0

tC' 4,

Sam ple Size

. - .0... g-square

-x-- Skew ness-a- Kurtosis

-1:1- K-square
-0- W

Figure 2: Mean Powers for the Near Normal Discrete Distributions as a Function of Sample Size and Test Statistic
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Near Normal Continuous Distributions

The near normal continuous distributions consisted of the Tukey (1,5) distribution and the Johnson S Bounded

(1, 2) distribution. As Aith the above discrete functions, each of these distributions had a low to zero skewness value and

a kurtosis value close to three. The mean power of each test statistic for each sample size is given in Table 8 and

presented graphically in Figure 3.

As with the discrete near normal distributions, g2 did not perform as well as W for this set. In fact, g2 had lower

power for all sample sizes. The test statistics K2, 4, and b2 had equally low power as g2. The Royston approximation

for W once again demonstrates the highest power, particularly for larger sample sizes.

Table 8: Near Normal Continuous Distributions - Estimated Mean Power for Test Statistics by Sample Size

Sample Size g2 4 b2 1(2 W
10 5.83 5.72 4.83 6.10 6.25
25 4.15 4.40 4.20 4.35 8.70
50 3.63 5.08 4.58 4.75 14.67
75 4.10 6.68 4.72 5.67 23.55
100 5.08 8.40 5.20 7.05 34.02
150 7.87 12.33 6.02 1.48 53.83
200 11.37 16.62 6.80 14.68 68.75
250 15.33 20.43 7.62 19.18 78.18
300 19.25 24.05 8.27 23.63 84.07
400 26.50 30.87 9.93 31.85 91.55
500 33.20 36.72 11.42 38.42 96.05
750 44.43 44.97 15.05 47.20 99.45
1000 48.92 48.47 19.35 49.97 99.97
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Figure 3: Mean Powers for the Near Normal Continuous Distributions as a Function of Sample Size and Test Statistic

Symmetric/Flat Distributions

The set of distributions included the Johnson S Bounded (0, .5) and the Tukey (1, 1.5) distributions. Both of

these distributions have skewness values equal to zero and less than three. The mean powers for this set of distribution

are provided in Table 9 and Figure 4.

The test statistic g2 did not appear as powerful as either W or K2 for this set until the sample size reached over

250. For large sample sizes, g2 was as good as the leading tests. The test statistic b2 had the highest power with W and

K2equally close behind The skewness test had the weakest power.

While g2 is weak for this set, its power is higher for this group than for the two near normal sets. One notable

difference in this graph and the graphs for the near normal distributions is the rate at which the power increases. The

slopes of the functions for the symmetric/flat distributions, with the exception of the skewness test, were steeper than the .
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slopes of the normal distributions, particularly for sample sizes less than 75. That is, the test statistics gained power at a

much quicker rate for symmetric/flat distributions than near normal distribution, making g2 an option for large sample

sizes.

Table 9: Symmetric/Flat Distributions - Estimated Mean Power for Test Statistics by Sample Size

Sample Size g2 413] b2 K2 w
10 1.67 2.67 10.57 4.57 13.32
25 .63 .90 54.52 39.45 47.37
50 18.68 .57 92.97 88.77 88.42
75 43.00 .48 99.18 98.58 98.57
100 60.95 .35 99.95 99.87 99.88
150 69.57 .37 100 100 100
200 93.18 .32 100 100 100
250 99.77 .30 100 100 100
300 100 .30 100 104) 100
400 100 .33 100 100 100
500 100 .32 100 100 100
750 100 .27 100 100 100
1000 100 .28 100 100 100

120

100

0

4) ,t,

Sample Size
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Figure 4: Mean Powers for the Symmetric/Flat Distributions as a Function of Sample Size and Test Statistic
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Symmetric/Peaked Distributions

The symmetric/peaked set consisted of Johnson S Unbounded (0, 2) and the Johnson S Unbounded (0, .9)

distributions. Both of these distributions had kurtosis values over three. The mean powers for this set of distributions are

presented in Table 10 and Figure 5.

The test statistic g2was as powerful or more powerful than all other test statistics for all sample sizes. The power

of g2 was very similar to K2, b2, and W. As with the symmetric/flat distributions, 4131 provided the weakest power. Also,

the mean powers for g2, K2, b2, and 4b1 were notably higher from what they were in the previous sets of distributions. W

had more power for smaller sample sizes and less power for larger sample sizes than it did with near normal distributions.

However, in comparison to the symmetric/flat distributions, the mean power of W was consistently lower for this set of

distribution.

Table 10: Symmetric/Peaked Distributions - Estimated Mean Power for Test Statistics by Sample Size

Sample Size g2 4 b2 1(7 W
10 19.80 19.33 15.85 20.95 17.43
25 38.83 32.33 33.52 37.93 36.50
50 55.32 41.13 50.72 53.05 53.87
75 64.32 45.80 60.33 61.50 62.48
100 69.32 48.75 66.12 66.50 67.67
150 75.72 52.30 73.03 72.92 73.97
200 80.35 53.95 78.05 77.28 78.83
250 84.60 55.87 82.75 81.58 83.43
300 87.22 56.62 85.75 84.30 86.33
400 91.77 58.47 91.18 89.40 91.42
500 94.85 59.13 94.58 92.97 94.88
750 98.62 61.78 98.55 97.82 98.77
1000 99.67 63.12 99.65 99.43 99.75
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Figure 5: Mean Powers for the Symmetric/Peaked Distributions as a Function of Sample Size and Test Statistic

Skewed/Flat Distributions

This set of distributions included the Johnson S Bounded (.533, .5) and the Beta (2, 1) distribufions which are

positively and negatively skewed, respectively. In addition, both these distributions have a kurtosis value less than three.

The mean powers for this set are presented in Table 11 and Figure 6.

As with the earlier flat shaped distnbutions, W is clearly the most powerful, particularly for sample sizes up to

200. For larger sample sizes, g2, K2, 4b1, and W had equivalent power. The kurtosis test statistic b2, was the weakest test,

especially for sample sizes less than 500. The powers of g2 were higher for this set than the reported powers for the near

normal and symmetric/flat distributions. However, they were lower than the powers found for the symmetric/peaked

distributions. For small sample sizes, g2 had the weakest power.

26 24



Table 11: Skewed/Flat Distributions - Estimated Mean Power for Test Statistics by Sample Size

Sample Size g2 libl b2 K2 W
10 7.22 10.48 9.25 9.58 21.98
25 10.13 18.53 19.75 21.88 61.52
50 30.78 36.50 33.17 53.75 91.02
75 52.28 54.75 43.32 79.25 98.55
100 62.95 69.12 52.22 89.02 99.85
150 83.02 88.05 65.17 98.77 100
200 94.50 96.17 74.93 99.95 100
250 99.50 98.87 81.70 100 100
300 99.98 99.73 86.80 100 100
400 100 100 92.87 100 100
500 100 100 96.18 100 100
750 100 100 99.28 100 100
1000 100 100 99.88 100 100
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Figure 6: Mean Powers for the Skewed/Flat Distributions as a Function of Sample Size and Test Statistic
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Skewed/Peaked Distributions

This category included the Johnson S Unbounded (1, 1) and the lognormal (0, 1, 0) distributions which are

positively and negatively skewed, respectively. In addition, both these distributions have a kurtosis value larger than 3.

The mean powers for this set are presented in Table 12 and Figure 7.

Table 12: Skewed/Peaked Distributions - Estimated Mean Power for Test Statistics by Sample Size

Sample Size g2 4131 b2 K2 W
10 38.57 43.83 30.35 42.10 47.83
25 77.60 84.07 62.10 80.85 88.80
50 96.00 97.62 86.02 97.25 98.83
75 99.32 99.43 95.17 99.60 99.85
100 99.90 99.80 98.52 99.93 100
150 100 99.93 99.80 100 100
200 100 99.98 99.98 100 100
250 100 100 100 100 100
300 100 100 100 100 100
400 100 100 100 100 100
500 100 100 100 100 100
750 100 100 100 100 100
1000 100 100 100 100 100

The test statistic g2 seemed equivalent to K2, 4131 and W for sample sizes greater than 50. For sample size less

than 50, W seemed to be the most powerful. Once again , for the skewed distributions, b2, had the lowest power up until

sample size 100 where it became nearly equivalent in power to the other four statistics. All of the test statistics

demonstrated higher power for skewed/peaked distributions than any of the other distribution categories considered

earlier. In fact, nearly full power was demonstrated at sample sizes greater than 100 for all test statistics.
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Figure 7: Mean Powers for the Skewed/Peaked Distributions as a Function of Sample Size and Test Statistic

Summary of Power Results

The results showed that the Type I error rate for g2, ibi, and b2were as expected. However, the Type I error rate

for K2was erratic, with inflated Type I error rates at the .05 and .01 level and lower than expected Type I error rates at the

.10 level. The Type I error rate for W was consistently inflated indicating that W may be erroneously detecting

departures from normality when the distribution is normal. This inflated power is best seen when the power of W for

near normal disUibutions is considered For large sample sizes, W bad absolute power, yet for large sample sizes these

distributions approximate the normal distribution. Therefore, low power in these cases is acceptable. The two moment

tests, ibi, and b2, while having high power for some distributions, do not provide an omnibus test for normality. That is,

they only do well when the departure is due to skewness or kurtosis, respectively.
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The power estimates showed that, overall, g2 was sensitive to departures from normality for leptokurtic (peaked)

distributions. In fact, its power estimates for these distributions equaled or surpassed the estimates of the competingtests.

However, g2 did not perform as well for platykurtic (flat) distributions or distributions close to normal. For large sample

sizes, g2 also performed well for all distributions except for those that were close in shape to the normal distribution.

Conclusion

The main advantage or strength of g2 is its conceptual and computational simplicity Given the formulas and

spreadsheet package, the list of critical values could easily be computed Then, using the output of most any statistical

package, g2 can be computed by hand. Currently, the g2 value is most easily computed using the SPSS output as SPSS

provides both the Fisher estimates for skewness and kurtosis and their respective standard errors. Also, with only minor

changes to the reported skewness and kurtosis estimates and with the manual calculation of the standard errors if not

provided, g2 can also be computed using the output of the other major statistical package& The computed value would

then be compared to a table of critical values to determine whether the null hypothesis of normality should be rejected

The relative ease of computing g2 allows for its use as a supplement to other formal tests of significance whichare

provided by statistical packages. For example, knowing that W may have inflated Type I error rates, researchers may still

request the provided statistic when using SAS or SPSS, but they can also easily compute g2 as another measure.

Also, the derivation of g2 does not depend on any distributional assumptions as does K2 That is, since g2 is not

based on an existing distribution theory, it is empirically derived maldng it free from restrictive assumptions specific to

particular distributions. In addition, as found in the power study, g2 is sensitive to a wide range of alternative

distributions, particularly peaked *distributions, having absolute power for many distributions with large n. Therefore, g2

would be valuable in testing for univariate normality in statistical routines, such as structural equation modeling, where

sample sizes are large and where large kurtosis values are problematic. Furthermore, g2 is unbiased and protects against

Type I errors making it the preferred test for normality if the chance of committing a Type I error is the main concern.

The test statistic g2, however, also has some weaknesses. One of its main disadvantages is its low power with

small sample size except for peaked distributions. In addition, for flatdistributions, g2 is not as powerful as the other

competing tests, regardless of sample &me. Also g2 appears to be more sensitive to departures due to kurtosis rather than

skewness. Furthermore, while it is easy to compute by hand, the determination of the significance of g2 is currently

dependent upon a table of critical values. Therefore, if researchers wish to use g2, they must have a table of critical values
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available.

As with other formal tests of significance, g2 is not meant to be a replacement to the qualitative information

obtained by these graphical representations. While g2 can tell you that you have a departure from normality, it can not tell

you that this departure is due to a single outlier. Therefore, it is recommended that when testing for departures from

normality, g2 should be used as a supplemental quantitative measure of normality to the information obtained by

histograms, box plots, stem and leaf diagrams, and normality plots.

Ware and Ferron (1995) noted that g2 "holds promise as an easily computed and readily available measure of

normality." At the onset of this study, it was hoped that g2 would provide the gold standard for testing for departures for

normality. Unfortunately, g2 did lack power in detecting departures from normality for flatdistributions. While

traditionally it is peaked distributions that cause problems when the normality assumption is violated, we can not

overlook the lack of power this new test showed for non-peaked distributions.

However, regardless of the performance of g2, the findings in this study cast a doubt on the validity of using W

and K2 as measures of detecting normality. More importantly, the results of this study indicate that g2 has merit as a test

for normality as it is unbiased, easy to compute, readily available, powerful for large sample sizes, and powerful for

peaked distributions.
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