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It is unrealistic to suppose that standard item response (MT) models will be

..appropriate for all the new and currently considered computer-based tests . In addition to

developing new models, we also need to give some attention to the possibility of

constructing and analyzing new tests without the aid of strong models. Computerized

adaptive testing currently relies heavily on item response theory. Alternative, empirically

based, non-parametric adaptive testing algorithms exist, but their properties are little

known.

Introduction

Wainer et al. (1991) and Wainer et al. (1992) introduced a testlet-based algebra

exam and compared a hierarchically constructed (adaptive) 4-item testlet with a linear

(fixed format) testlet under various conditions. They compared an adaptive test using an

optimal 4-item tree and a best fixed 4-item test (both defined in terms of maximum

differentiation) through cross-validation, and found that overall the adaptive testlet

dominates the best fixed testlet, but the superiority (at a considerable cost for adaptive

testlet over fixed testlet) is modest. They also found that the adaptive test outperforms the

fixed test for the groups with extreme observed scores. They concluded that, for

circumstances similar to their cases, "a fixed format testlet that uses the best items in the

pool can do almost as well as the optimal adaptive testlet of equal length from that same

pool."

Paper presented at the annual meeting of the National Council on Measurement in
Education, San Diego, CA, April 1998.
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Schnipke and Green (1995) compared an item selection algorithm based on

maximum differentiation among test takers with one using item response theory and based

on maximum information. Overall, adaptive tests based on maximum information provided

the most information over the widest range of ability values and, in general, differentiated

among test takers slightly better than the other tests. Although the maximum

differentiation technique may be adequate in some circumstances, adaptive tests based on

maximum information were clearly superior in their study.

This paper introduces an adaptive testing algorithm that balances maximum

differentiation among test takers with stable estimation at each stage of testing, and

compares this algorithm with a traditional one using item response theory and maximum

information.

Method

In this paper, we consider adaptive testing as a prediction system. Specifically, we

use adaptive testing to predict the observed scores that test takers would have received if

they had taken every item in a reference test or a pool. (We restrict our attention to binary

items, scored correct or incorrect.) This is a non-parametric approach in the sense that we

do not introduce latent traits or true scores. We are only considering the observed

number-correct scores test takers would have received if they had taken every item we

could have given. In other words, our criterion is the total observed score for a pool or

reference test. The adaptive testing algorithm we introduce in this paper is based on the

classification and regression tree approach described in Breiman, Friedman, Olshen and

Stone (1984) and in Chambers and Hastie (1992).

In order to construct an adaptive test as a prediction system, we need to have a

calibration sample. Specifically, we need a sample of test takers who take every item in
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the pool that will be used for adaptive testing. (For operational use, incomplete

calibration designs would obviously be necessary.) We can then compute the criterion

(total observed score) for these test takers. This is analogous to the calibration sample

one needs when using IRT to do adaptive testing. However, the purpose of the IRT

calibration sample is to calibrate items. Our purpose is not to calibrate items individually,

but to generate a regression tree.

Figure 1 is an example of such a regression tree. The vertical axis represents the

stage of testing and the horizontal axis identifies the prediction of the total score at each

stage. In this example, there are 9 stages (i.e., each test taker would be administered 9

items). The nodes of the tree are plotted as octagons with item numbers inside. The

branches represent the paths test takers could follow in the test, taking the right branch

after answering the item in the octagon correctly and the left branch after answering

incorrectly. At the end, the locations of the terminal nodes, or leaf nodes, give the final

predictions of test takers' total scores.

Once the regression tree has been constructed (and validated -- see below), it may

be used to administer an adaptive test. Thus, based on Figure 1, all test takers would first

be administered item 31. Test takers answering correctly would receive item 27. Those

answering incorrectly would get item 28. Test takers continue through the tree to the

terminal nodes and receive the corresponding final predicted total score as their score on

the test. For instance, test takers who receive item 5 as the last item, and answer it

correctly, would have a predicted total score of 32.5.

Returning to the construction of the tree, suppose we have a calibration sample of

test takers who answered every item in a pool of items. The total number of correct

responses for each test taker is the criterion we will use. Our regression tree begins with

the item (in Figure 1, item 31) that best predicts the observed score in a least squares
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sense for these test takers. It splits the calibration sample into two subsamples: those test

takers who answered the item incorrectly and those who answered correctly. They are

represented as nodes in Figure 1: the left node with number 28 inside and right node with

number 27 inside. These two subsamples have maximum differentiation between them

(i.e., maximum sum of squares between subsamples). The horizontal locations of the

nodes are the mean total scores for these two sub-samples.

The construction of the tree continues by finding the best predicting item for those

test takers responding correctly to the first item (in Figure 1, item 27), as well as the best

item for those with an incorrect response to the first item (in Figure 1, item 28). At each

stage, the total calibration sample is split into subsamples and an optimal item is chosen for

each subsample. At each stage, it is also the case that subsamples with similar average

criterion scores are combined as the tree progresses to keep the total number of such

subsamples within reasonable limits. In Figure 1, the nodes with test takers who correctly

answered item 28 and test takers who incorrectly answered item 27 are combined, and the

combined subsamples are administered item 16. At the end of the process, the adaptive

test score given to each test taker is the average criterion score for the final subsample to

which the test taker has been classified (in Figure 1, the combined leaf nodes).

A portion of the prediction for the calibration sample capitalizes on chance. To

evaluate the procedure, we construct the regression tree in a calibration sample and apply

the predictions from the calibration sample to compare with the observed scores in an

application sample. This application sample has the same structure as the calibration

sample. In other words, every test taker answers every item, so a criterion observed score

can be computed. The precision of estimation using the regression tree as an adaptive test

may be measured using the mean of the squared discrepancies (or residuals) between

predicted and observed scores in the application sample. For purposes of interpretation,
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this quantity may be compared to the variance of the observed scores in the application

sample. In particular, we will consider the proportion of variance accounted for by the

tree-based predictions.

Results

We compared simulation results from the regression tree approach with

simulations using 3PL IRT and maximum information for the same situations. For our

first set of simulations, we constructed our calibration sample using the 3PL IRT model to

generate item responses for a sample of 500 simulated test takers to 494 items in an

actual item pool for an operational computer adaptive test assessing quantitative

reasoning. (Specifically, we used the 3PL IRT model with item parameters set equal to the

estimates from the operational pool.)

We constructed a regression tree as described in the method section for a 19-item

adaptive test for this calibration sample. The mean of the squared residuals between

predictions and total observed scores for the calibration sample is 11.7. This quantity may

be compared to the variance of the total observed scores for the sample, or 6,586.0. Thus

99.8% of the total observed score variance is accounted for in the calibration sample using

the predictions from the regression tree.

Next, we used the regression tree predictions based on the calibration sample to

compare with the total (MT-based) true scores (rather than total observed scores) in an

application sample of size 10,000, constructed in the same way as the calibration sample.

The mean squared residual in the application sample, based on the calibration predictions

at the end of the 19-item test is 1223.7 (with original true score variance of 6,457.5),

which means the predictions account for 81.0% of the total true score variance. From this

result, we see that there was substantial capitalization on chance in the calibration sample.
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From the same calibration sample we used to construct the regression tree, we also

obtained 3PL item parameter estimates using PARSCALE (Muraki & Bock, 1993). We

then carried out an IRT-based (maximum information) adaptive testing simulation on the

application sample using these estimated item parameters. As estimates of total true

score, we used maximum likelihood estimates of the latent trait, transformed using the test

characteristic curve for the entire pool. The mean squared residual between these

'estimates and the total true scores in the application sample is 514.5. Comparing this with

the total true score variance for the application sample, we see that the IRT-based

estimates account for 92.0% of that variance, substantially more than when using the tree-

based predictions. Figure 2 provides a more detailed comparison of the regression tree

and IRT-based CATs as a function of test length.

For our second set of simulations, we considered what would happen if the 3PL

IRT assumptions were violated. We used the same pool, but split it into two equal parts

such that half of the items were considered to measure one latent trait and the other half

measured a second, uncorrelated, latent trait. The parameters for all items were left

unchanged. A calibration sample consisting the responses to all items in the pool for a

sample of 500 simulated test takers was generated, based on the two dimensional latent

trait model just described. Specifically, for each simulated test taker, two latent trait

values were sampled. One of these was used as the basis for response generation for items

in the first half of the pool, while the other was used to generate responses to items in the

second half of the pool. We used the resulting data as our calibration sample for both the

tree-based approach and the one-dimensional IRT model, as before. (Note that the 3PL

model was fit simultaneously to all items in the pool, ignoring which half they were in.)

We also generated responses to all items in the pool for a new sample of 10,000

simulated test takers in the manner just described for use as our application sample. We
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used the tree-based predictions from the calibration sample in the application sample for

the regression tree approach. We also carried out a (one-dimensional) IRT adaptive

testing simulation for this application sample, using the item parameters obtained from the

calibration sample. The two-dimensional, IRT-based total true scores for the pool served

as the evaluation criterion for both procedures. Specifically, we compared the mean

squared residuals obtained for the two methods.

Fitting a regression tree to the data for the calibration sample produced a mean

squared residual of 20.8, compared with a total observed score variance of 3,025.9. In

other words, 99.3% of the observed score variance can be accounted for in this calibration

sample using the predictions from the regression tree. (Note that the total observed score

variance in this sample is much smaller than that obtained in the calibration sample based

on the one dimensional IRT model: 3,025.9 compared to 6,586.0. This is a result of the

fact that the between-set item correlations in our second design are all zero.)

In the application sample, using the tree-based predictions from the calibration

sample to predict the total true scores gave a mean squared residual of 1,187.0. The total

true score variance in the application sample is 3,180.0, so 62.7% of this variance is

accounted for by the tree-based predictions. (Here we see an even more substantial

chance capitalization than in the one-dimensional case.) True score estimates based on a

3PL IRT CAT produced a mean squared residual of 1,960.0 in the application sample, so

that only 38.4% of the total true score variance is accounted for by these estimates.

Figure 3 provides a more detailed comparison of the regression tree and IRT-based CATs

as a function of test length.

Discussion
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For our one-dimensional example, Figure 2 shows that, once the adaptive test is

long enough, the IRTTbased CAT produces consistently better estimates of true scores

than does the tree-based approach, However, it is worth noting that, in the early stages of

testing, the maximum,likelihood estimates from the IRT-based CAT are very poor

compared to those from the regression tree. This suggests a possible hybrid algorithm,

using a regression tree to select the first few items on an adaptive test, and then switching

to a maximum information rRT-based algorithm. This leaves open the question of how

best to make the transition from regression tree to maximum likelihood estimates.

In our two-dimensional example, we see from Figure 3 that the regression tree

clearly provides better prediction than the IRT-based CAT at all test lengths. However, it

should be noted that our example is based on an extreme version of a two-dimensional

model in which every item measures either one or the other dimension (but not both), and

the two uncorrelated dimensions are taken to be equally important.

One of the limitations of the tree-based approach described in this paper is that

there is no control of item exposure rates. (For instance, our algorithm now has everyone

take the same first item.) Another limitation is that no attempt is made to control the

content of the adaptive tests. A third limitation is that all test takers in the calibration and

application samples were assumed to have answered all items in the pool. (All these

limitations also apply to the IRT-based algorithm we used for comparison purposes in this

study. It should be noted, however, that operational MT CATs have none of these

limitations.) Future research will address these and related issues.

9



CAT without IRT

Page 9

Conclusions

We have developed a non-parametric, tree-based approach to adaptive testing and

shown that it may be superior to conventional, IRT-based adaptive testing in cases where

the TRT assumptions are not satisfied. In particular, we showed that the tree-based

approach clearly out-performed (one-dimensional) IRT when the pool was strongly two-

dimensional.

Educational Importance

With new types of computer-based tests being considered, it is important to have

new psychometric tools available to be used with these tests. The non-parametric, tree-

based approach to adaptive testing described here is one such tool. We expect it to be

particularly useful when items test more complex domains than is currently the case with

IRT-based adaptive testing.

1 0



CAT without IRT

Page 10

Technical Appendix - Description of algorithm

Our regression trees are constructed as follows. For each node, we select an

unused item that gives the maximum differentiation (in a least squares sense) on the

criterion score for splitting the current node into two nodes. For each stage, we compare

all the nodes at that stage by computing the pairwise t-statistics and effect size measures,

using the criterion score. If, for some pair of nodes, the absolute value of the t-statistic is

less then some pre-set critical value, or the absolute value of the effect size measure is less

than some pre-set critical value, then we combine the two nodes. (If there is more than

one pair of nodes that meets either of these criteria, we start by combining the pair with

the smallest t-statistic (or smallest effect size if no t-statistic is less than the critical value).

We then recompute all t-statistics and effect sizes for this new node with the others and

repeat the process until all pairs of nodes are distinct in terms of their t-statistics and effect

sizes.

We continue constructing the regression tree stage by stage in this manner until a

specified fixed test length is reached. At the final stage, each test taker in a sample is

classified to one of the leaf nodes based on matching their response pattern with the

regression tree structure. The prediction of that individual's criterion score is the average

score of the leaf node in the regression tree to which the individual is classified.

Exhibit A reproduces an edited version of a portion of the output from the

program we use to construct regression trees. Specifically, it is the output describing the

construction of the tree illustrated in Figure 1. The information given in line 007 describes

the complete calibration sample (node 0) as having 250 (simulated) test takers, a mean

criterion score of 34.7360 and a sum of squared deviations of individual scores around this

mean (Deviance) of 28608.5760. Line 012 repeats some of this information, and notes
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that item 31 has been selected as the first item in the tree. The remaining output in lines

015 - 023 will be of more interest at later stages.

Lines 027 and 028 describe nodes 1 and 2, defined as those test takers who answer

item 31 incorrectly or correctly, respectively. Specifically, there are 71 of the former and

179 of the latter, with mean criterion scores of 25.3521 and 38.4581, respectively. Lines

029 and 030 give the t-statistic and effect size measure used to compare nodes 1 and 2.

Both values exceed their respective criteria, so no combining of nodes occurs at this stage.

Lines 035 and 036 indicate that items 28 and 27 have been chosen for nodes 1 and 2,

respectively. Line 039 gives the total within-node sum of squares at stage 1 as

19876.6329. Note that this is the sum of the sums of squares for each of the two nodes at

this stage. Line 041 gives the proportion of variance accounted for at this stage, obtained

by subtracting the ratio of the deviance at this stage to the deviance at stage 0 from unity.

Lines 047 and 048 report the standard deviations for nodes 1 and 2.

Lines 052 - 055 describe the four nodes at stage 2 defined by incorrect and correct

answers to items 28 and 27. Lines 056 - 062 give all pairwise comparisons for the nodes

at this stage, as well as the comparison with the smallest t-statistic (obtained for nodes 4

and 5). Since this value (-1.2691) is less in absolute value than our critical value of 2.0,

these two nodes are combined. The new nodes are described in lines 068 - 070, and the

comparisons are given in lines 073-076. No further combination is indicated, so items are

chosen for each of these nodes (2, 16, and 33, respectively), and the final description is

given in lines 078 - 095. The actual output continues in this fashion until the specified

number of stages (test length) has been reached.
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Figure 2

Comparison of Tree-based and IRT CATs in One-dimensional Application Sample
(referring to true scores)

I = IRT, T = Tree
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Figure 3

Comparison of Tree-based and IRT CATs in Two-dimensional Application Sample
(referring to true scores)

I = IRT, T = Tree
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