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Abstract
Though common structural equation modeling (SEM) methods are predicated upon the

assumption of multivariate normality, applied researchers often find themselves with data clearly

violating this assumption and without sufficient sample size to utilize distribution-free estimation

methods. Fortunately, promising alternatives are being integrated into popular software

packages. For estimating model x2 values and parameter standard errors, EQS (Bentler, 1996)

combats the effects of nonnormality by rescaling these statistics. AMOS (Arbuckle, 1997), on

the other hand, offers bootstrap resampling approaches to accurate model )(2 and standard error

estimation. The current study is an investigation of these two methods under varied conditions

of nonnormality, sample size, and model misspecification. Accuracy of the x2 statistic is

evaluated in terms of model rejection rates, while accuracy of standard error estimates takes the

form of bias and variability of the estimates themselves.
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Introduction

Normal theory estimation methods, specifically maximum likelihood (ML), are widely

employed in structural equation modeling (SEM). These methods rest upon the assumption of

multivariate normality and are based on large sample theory. In practice, however, data often

violate the normality assumption (Micceri, 1989) and relatively small sample sizes are not

uncommon in applied research. Thus, there has been considerable interest in evaluating the

robustness of ML estimators and other estimation methods with respect to violation of the

distributional assumption (Anderson & Gerbing, 1984; Boomsma, 1983; Browne, 1982, 1984;

Chou, Bentler, & Satorra, 1991; Finch, West, & MacKinnon, 1997; Harlow, 1985; Hu, Bentler,

& Kano, 1992; Muth& & Kaplan, 1985, 1992; Tanaka, 1984). Model parameters estimated via

ML have been shown to be relatively unaffected by (i.e., remain unbiased under) particular

departures from normality. However, research has also evidenced that the x2 test statistic and

parameter standard errors under ML are substantially affected when the data are nonnormal.

Specifically, under nonnormal conditions the x2 test statistic tends to be inflated while parameter

standard errors become attenuated (see Chou & Bentler, 1995, and West, Finch, & Curran,

1995).

West et al. (1995) note three different approaches that are used to address the problems

associated with ML estimation under nonnormal conditions. The first approach is an

asymptotically distribution free (ADF) estimation method developed by Browne (1982, 1984).

This method has the same desirable properties as ML but relaxes distributional assumptions.

Unfortunately, ADF has the disadvantage of being computationally intensive and is thus limited

to relatively simple models (Bentler, 1996), as well as requiring extremely large samples to

obtain stable estimates (Joreskog & Sorbom, 1992).
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The second approach reviewed by West et al. (1995) is to adjust the ML x2 and standard

errors to account for the presence of nonzero kurtosis. The adjustment is a rescaling of the x2

statistic to yield a test statistic that more closely approximates the referenced x2 distribution

(Browne, 1982, 1984). Satorra and Bentler (1988, 1994) developed a modification of this

rescaled test statistic, the robust Satorra-Bentler (SB) x2 test statistic, that has been incorporated

into the EQS program (Bentler, 1996). Research has demonstrated that this rescaled test statistic

tends to be less affected by model complexity and sample size as compared to the ADF estimator

(Chou et al., 1991; Chou & Bentler, 1995; Hu et al., 1992). Similar to the SB x2 test statistic, a

correction to ML standard errors has also been developed by Browne (1982, 1984) and a variant

of this correction procedure (Bentler & Dijkstra, 1985) is currently available in EQS. The

correction involves generating a robust covariance matrix of the parameter estimates from which

robust standard error estimates are computed.

A third approach to obtaining robust statistics in SEM, as discussed by West et al. (1995),

is bootstrap resampling. Bollen and Stine (1992), in work similar to that of Beran and Srivastava

(1985), proposed a bootstrap method for p-value adjustment of the model x2 statistic. In general,

to obtain adjusted p-values under the bootstrap resampling approach the MLx2 statistic is

referred to an empirical sampling distribution of the test statistic generated via bootstrap samples

drawn from the original sample data. As noted by Bollen and Stine (1992), naïve bootstrapping

of the model x2 statistic (i.e., resampling from the original sample data) for SEM models is

inaccurate. To adjust for this inaccuracy, Bollen and Stine (1992) developed a transformation of

the original data:

I I

Z = Y -2±

5
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in which Y is the original It by p data matrix, S is the sample covariance matrix and ± is the

estimated model-implied covariance matrix. Bollen and Stine (1992) showed that bootstrap

samples drawn from the transformed data matrix, Z, yield reasonably accurate bootstrappingti
results for the model x2 statistic.

With respect to parameter standard errors, bootstrap values are obtained by generating

parameter estimates from bootstrap samples. A bootstrap standard error is then computed as the

standard deviations of the bootstrap parameter estimates. Bootstrap standard errors and the

Bollen and Stine method for bootstrap model p-value adjustment are both available in the AMOS

SEM program (Arbuckle; 1997).

Of the three robust approaches mentioned, only the latter two appear viable for more

realistic sample sizes. While the rescaling approach has been subjected to considerable

investigation, West et al. (1995) note that there have been no studies investigating the

performance of the bootstrapping approach under varied experimental conditions. As a

consequence, little is currently known about the performance of the bootstrapping approach, or

of the comparative performance of the rescaling and resampling approaches to model x2 and

parameter standard error estimation. It is the purpose of this study to provide such an

investigation. Specifically, a Monte Carlo simulation is used to investigate these two methods'

performance under varying data distributions, sample sizes, and model specifications.

Methods

Model specifications

Figure 1 presents the base underlying population model in this study, an oblique

confirmatory factor analysis (CFA) model with three factors, each factor having three indicator

6
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variables. This model is the same population model as previously examined by Curran, West,

and Finch (1996). Population parameter values, as seen in Figure 1, are such that all factor

variances are set to 1.0, all inter-factor covariances (correlations) are set to 0.30, all factor

loadings are set to 0.70, and all error variances are set to 0.51 (thereby yielding unit variance for

the variables).

Insert Figure 1 about here

Four model specifications as previously explored by Curran et al. (1996) were considered

here. Model 1 is a properly specified model as shown in Figure 1. Model 2 has

misspecifications of inclusion, cross-loadings in the sample model for V8 on F2 and V5 on F3

that were not in the base population model. Model 3 has misspecifications of exclusion. For this

model specification, the base population model was modified to include cross-loadings of V7 on

F2 and V6 on F3 (both variable-factor population cross-loadings are set to 0.35). These variable-

factor cross-loadings in the modified base population model were then excluded in the sample

model for Model 3. Model 4, which is a combination of Models 2 and 3, has misspecifications

of both inclusion and exclusion. The modified base population model employed in Model 3 was

used as the population model, while the sample model included the cross loadings found in

Model 2.

For all sample models, model identification was established by estimating the 3 factor

variances and fixing one factor loading to 1.0 for each factor (V1 for F1, V4 for F2, V9 for F3).

This approach to model identification was chosen (rather than fixing the factor variances to 1.0

and estimating all factor loadings) to ensure stability of the parameter estimates in the bootstrap

resamplings. As noted by Arbuckle (1997), if model identification is achieved by fixing the

factor variances, then the criterion for minimizing the model fit function may yield parameter

7
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estimates that are unique only up to a sign change. While the choice ofapproach to model

identification is irrelevant in most applied settings, it has great importance with respect to

bootstrap resampling. In bootstrapping, if the signs of some of the parameter estimates are

arbitrary, these estimates will vary (some positive and some negative) from bootstrap sample to

bootstrap sample thereby causing the resulting bootstrap standard errors to become artificially

inflated. To avoid this inflation of standard errors in the bootstrapping methods, we fixed a

factor loading and estimated factor variances to establish model identification.

Distributional forms and data generation

Three multivariate distributions were established through the manipulation of univariate

skew and kurtosis. All manifest variables were drawn from the same univariate distribution for

each data condition. Distribution 1 is multivariate normal with univariate skew and kurtosis both

equal to 0. Note that we define normality, as is commonly done in practice, by using a shifted

kurtosis value of 0 rather than a value of 3. Distribution 2 represents a moderate departure from

normality with univariate skew of 2.0 and kurtosis of 7.0. Distribution 3 is severely nonnormal

with univariate skew of 3.0 and kurtosis 21.0. Curran et al. (1996) report these levels of

nonnormality to be reflective of real data distributions found in applied research.

Simulated data matrices consisting of n cases by nine variables were generated in

GAUSS (Aptech Systems, 1996) to achieve the desired levels of univariate skew, kurtosis, and

covariance structure. Multivariate normal and nonnormal data were generated via the algorithm

developed by Vale and Maurelli (1983), which is a multivariate extension of the method for

simulating nonnormal univariate data proposed by Fleishman (1978). Each simulated data

matrix was obtained by first generating nine vectors of random deviates (of size a each vector

8
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having a univariate standard normal distribution. The nine vectors of random normal deviates

were concatenated to form an n by nine matrix of random normal deviates. This matrix was then

pre-multiplied against the Cholesky factorization of an intermediate correlation matrix (described

below) to yield a data matrix of multivariate normal random deviates with a correlational

structure.

The intermediate correlation matrix mentioned above, based on the population correlation

matrix drawn from the population model-implied covariance matrix, was generated using

Equation 11 of Vale and Maurelli (1983, p. 467) and requires finding the roots of a third-degree

polynomial. The purpose of this intermediate correlation matrix is to counteract the shift in the

correlational structure of the multivariate normal data matrix that occurs when the univariate

normal marginal distributions are transformed to nonnormal distributions via the transformation

of Fleishman (Equation 1 of Vale & Maurelli, 1983). For the multivariate normal conditions in

the study, the constructed intermediate correlation matrix is simply the original population

correlation matrix.

After generating a simulated multivariate normal data matrix, Fleishman's transformation

was applied to achieve the desired distributional form for each of the nine vectors in the data

matrix. For a given population condition, all nine vectors in the simulated data matrix were

transformed to the same degree of skew and kurtosis. As seen in Equation 1 of Vale and

Maurelli (1983), the transformation to a nonnormal distribution is of the form:

Y = a + bX + cX2 + dX3-

in which X represents a matrix of multivariate normal deviates, and superscripts indicate raising

each individual element in X to the specified power. The scalar constants a, b, and d are

chosen to yield transformed data with the desired univariate marginal skew and kurtosis.

9
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Fleishman (1978) provides a table of these constants corresponding to varying combinations of

skew and kurtosis.

For our investigation, we wished to investigate combinations of skew and kurtosis that

were not provided in Fleishman's tables. Therefore, we developed an algorithm to yield the

constants in the Fleishman transformation formula. This algorithm was based on a modified

Newton-Raphson approach that solves for the Fleishman transformation constants found in

Equations 2, 3, and 4 of Vale and Maurelli (1983). Using this algorithm, we were able to

reproduce the constants from Fleishman's table (to 14 decimals) for a variety of skew and

kurtosis combinations. Additionally, we generated the appropriate constants for the

combinations of skew and kurtosis that are of primary interest in this investigation.

After applying the Fleishman transformation to the matrix of multivariate normal

deviates, the resulting simulated data matrix conformed to the desired marginal distributional

form with the desired correlational structure. The final step in the data generation process was to

impose the model-implied covariance structure upon the simulated data matrix. This last step

was accomplished by multiplying the n-by-nine data matrix by a nine-by-nine diagonal matrix of

standard deviations taken from the population model-implied covariance matrix.

As a verification of our data generation mechanism, test data for the nine variables were

simulated from the base population model. For each of the three distributional forms

investigated in this study an n by nine data matrix was generated with n=100,000. From these

simulated data matrices, sample estimates of skew and kurtosis were obtained for each of the

nine vectors within each data matrix. Estimates of skew and kurtosis were computed using the

Fisher g statistics (see, e.g., DeCarlo, 1997, p. 301). The sample covariance matrix was also

obtained for each of the large sample data matrices.

10
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Results for the large sample simulated data matrices suggest our data generation

mechanism is effective for simulating data that conform to a specified covariance structure and

distributional form. Inspection of the large sample covariance matrices shows only slight

deviation from the population model-implied covariance matrix. For each distributional form,

the average sample estimates of skew and kurtosis across the nine vectors in the data matrices

were computed. Skew and kurtosis estimates for the three distributional forms are as follows:

multivariate normal (skevv=0, kurtosis =0) yielded -0.004, and 0.0025; moderately nonnormal

(skew=2, kurtosis=7) yielded 2.0215, and 7.3211; severely nonnormal (skew=3, kurtosis=21)

yielded 3.0140, and 21.8440. From these results, we are confident that our data generation

mechanism yields simulated data that conform to both the target covariance structure and the

target distributional form.

For each simulated data matrix replicated in our investigation (described below), we

obtained from EQS a normalized estimate of multivariate kurtosisbased on Mardia's (1970,

1974) coefficient. The average normalized estimate was computed for each of the distributional

forms, at each level of sample size (described below). These values, whichwere averaged across

the 800 data matrices (described below) for each distribution and sample size are as follows (for

the multivariate normal, moderately nonnormal, and severely nonnormal distributions

respectively): -0.6802, 17.7627, 35.9899 for n=100; -0.4787, 34.5262, 75.7690 for n=200;

-0.3406, 67.4760, 166.0844 for n=500; -0.2319, 104.7899, 272.1365 for )2=1000.

Design

Three conditions were manipulated in the current investigation: model specification (four

models), distributional form of the simulated data (three types), and sample size (n=100, 200,
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500, and 1000). The three manipulated conditions were completely crossed to yield 48

population conditions. Two-hundred random samples (i.e., data matrices) were analyzed in each

of the 48 population conditions.

Model fittings and data collection

Both the EQS and AMOS programs require raw data (rather than sample covariance

matrices) to obtain robust model x2 statistics and robust standard errors. For each simulated data

matrix, models were fit in both EQS and AMOS to obtain the ML model x2 and parameter

standard errors as well as the respective robust equivalents from each SEM program. The

number of iterations to convergence for each model fitting was set to 200. This maximum was

established for modeling each simulated data set in both EQS and AMOS, and was also

established for bootstrap samples for the resampling estimators. Bootstrap samples drawn from

each simulated data matrix were sampled with replacement and were of the same size as the

original simulated data matrix.

From EQS the following information was collected: ML model x2 statistic and associated

p-value, SB resealed model x2 statistic and associated p-value, ML standard errors, and robust

standard errors. From AMOS the information collected includes: ML model z2 statistic and

associated p-value, Bollen and Stine bootstrapped model p-values from 250, 500, 1000, and 2000

bootstrap resamplings, ML standard errors, and bootstrap standard errors from 250, 500, 1000,

and 2000 bootstrap resamplings. As we had found no guidelines regarding a sufficient number

of bootstrap resamplings, we collected bootstrapped model p-values and standard errors from

varying numbers of bootstrap resamplings to investigate the relative accuracy of these

resampling estimators.

12
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Sarni= Zanfailirg5

In the first part of our study, the ML model x2 test statistic and its robust alternatives are

evaluated in terms of their model rejection rates (i.e., percentage of replications in which the

target model is rejected at the x=0.05 level of significance). Model rejection rates were

computed only under null conditions (Models 1 and 2) for which the expected value of the model

x2 statistic equals the model degrees of freedom under multivariate normality (df=24 for Model 1

and df22 for Model 2), and thus the desired rejection rate is 5%. Because Models 3 and 4

reflect model specifications in which factor loadings that truly existed in the population model

were excluded in the sample, the percentage of model rejections is not a meaningful measure by

which to judge the behavior of the x2 statistic.

In the second part of our study, parameter standard error estimates are assessed in terms

of bias and variance. Bias is an assessment of standard errors relative to a true standard error. In

this case, the true standard error value for each parameter of interest under each population

condition was approximated empirically as the standard deviation of 2000parameter estimates

parametrically bootstrapped from the original population covariance matrix under a given

population condition. Bias associated with each standard error estimate was computed as the

observed standard error minus the approximate "true" standard error. The average of such bias

measures for a given estimation method across each condition's 200 replications represents an

overall estimate of that method's bias. Table 1 presents the approximate true standard errors

under Model 1 for the inter-factor covariance for F2 and Fl, and for the variable-factor loading

of V2 on Fl. Our decision to present results for only these parameters under Model 1 is

described in the Results section below.

1 3
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Insert Table 1 about here

The variance associated with a method's standard error under each population condition

was used to assess standard error stability. The mean squared error (MSE), which considers both

estimator bias and variability simultaneously, was not employed in our investigation as this

measure tends to mask estimator bias when estimator variability is large and vice versa. This

was the case for the results in our investigation. Additionally, Chou and Bent ler (1995) note that

the MSE is not commonly used as a criterion for the comparison of standard errors. Thus our

assessment of standard error behavior in this investigation is through standard error bias and

standard error variance.

NQn-convergonce_EQS-AMQS discrmancies. and unusable bootstrap samples

The percentage of non-convergent model fittings was minimal across the 48 conditions of

the study with overall convergence rates of about 99%. The lowest convergence rate was 97%

for the case of n=100 drawn from the severely nonnormal distribution under Model 4.

Attempted fittings that failed to converge within 200 iterations or yielded improper solutions in

either EQS or AMOS were discarded and replaced with convergent runs.

Within a given simulated data matrix the ML model x2 statistics from EQS and AMOS

were closely monitored for discrepancies. A discrepancy criterion of 0.1 between the model x2

from EQS and AMOS was established to identify, remove, and replace replications that did not

converge to the same solution. For the 9600 total replications in the study (200 replications in

each of 48 conditions), 144 yielded such discrepancies between EQS and AMOS model x2

values, most of which were from theia=100 sample size.
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For the bootstrap resampling methods, bootstrap samples that did not converge to a

solution within 200 iterations were considered unusable and were discarded by the AMOS

program. The AMOS program draws bootstrap samples from the original data matrix until the

specified number of usable bootstrap samples have been reached. For diagnostic purposes, the

number of unusable bootstrap samples was monitored for the 2000 bootstrap sample standard

error estimator. The frequency of unusable bootstrap samples was a function of sample size,

distributional form, and model specification. For the larger sample sizes that we investigated

(n=500 and n =1000) there were no bootstrap samples that were unusable. The most extreme

levels of unusable bootstrap samples were found in the n=100, nonnormal, and misspecified

model conditions. The largest percentage of unusable bootstrap samples under these conditions

was 8.3%. Again, all such unusable samples were replaced.

Results

Model rejection rates

For evaluating the performance of the model x2 test statistics under null conditions, a

quantitative measure of robustness as suggested by Bradley (1978) was utilized. Using

Bradley's liberal criterion, an estimator is considered robust if it yields an empirical model

rejection rate within the interval [0.52, 1.52]. Using 2=0.05, this interval for robustness of

rejection rates is [2.5%, 7.5%]. Note that this interval is actually narrower than an expected 95%

confidence interval , which evaluates to [1.98%, 8.02 %] given the 200 replications per condition

in this investigation and a=0.05 (i.e., 0.05 ±1.96[(0.05)(0.95) / 200]3/2).

It is important to note that estimator performance in this study is based on the a-value

associated with the model xz statistic, not on the test statistic itself. Unlike Curranet al. (1996),

15
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bias in the model X2 statistic could not be considered in this study because the Bollen and Stine

(1992) bootstrapping method only provides an adjusted p-value for assessing overall model fit.

Thus our assessment of estimator performance is based on the rates of model rejection for the

various test statistics under our investigation.

Table 2 presents the model rejection rates under Models 1 and 2 for the ML estimators,

the SB rescaled x2 statistic, and the Bollen and Stine bootstrapped p-values. Percentages of

model rejections that fall outside the boundaries of our robustness interval are shown in boldface

type. Results in Table 2 for the ML estimators are consistent with findings in previous research

(Chou & Bentler, 1995; Curran et al., 1996). Under the normal distribution and Model 1,

rejection rates even at the smallest sample sizes for the ML estimators are within our criterion for

robustness. With departures from multivariate normality, the ML estimators are not robust even

under the largest sample sizes, with percentages of model rejections ranging from about 20% to

about 40%.

Insert Table 2 about here

Results in Table 2 for the SB rescaled estimator are also consistent with findings in

previous research (Chou & Bentler, 1995; Curran et al., 1996). Under perfect multivariate

normality, the SB rescaled estimator simplifies to the ML estimator and thus we expect the SB to

perform much like the ML estimators in the samples drawn from a multivariate normal

population. This similarity of performance between the SB estimator and the ML estimators

holds with sufficiently large sample sizes as seen in Table 2 under the multivariate normal

conditions. Notice that for the smallest sample size of n=100 under multivariate normality, the

SB rescaled estimator exceeds the upper bound of our robustness criterion (unlike the ML

16
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estimators which show robustness under these conditions) with model rejection rates of 8% and

9.5% for Models 1 and 2, respectively.

With departures from multivariate normality, the SB estimator remains robust again,

given adequate sample sizes. Under Model 1, for the moderately nonnormal distributions, the

SB estimator remains robust until the n=100 sample size, at which point the associated

percentage of model rejections becomes intolerably high (10.5%). Under Model 1 with the

severely nonnormal distribution, the SB rescaled estimator only remains robust down through the

n=500 sample size. Beyond this sample size, model rejection rates again exceed the upper

boundary of our robustness criterion with rejection rates of 12% and 11% for the n=100 and 200

sample sizes, respectively. Similar results for the SB rescaled estimator are evidenced under

Model 2; however, the estimator shows robustness down to the smallest sample sizes under this

model specification.

With respect to the Bollen and Stine bootstrap adjusted p-values, Table 2 shows these

estimators to be robust under nearly every condition in Models 1 and 2 even under the

combination of extreme departures from multivariate normality and the smallest sample sizes.

These bootstrap estimators tend toward low model rejection rates with smaller sample sizes

yielding generally lower percentages of model rejections. In Table 2, one finds three instances in

which a bootstrapped model rejection rate falls beyond our interval of robustness. In each

instance, the observed model rejection rate falls below the lower bound of 2.5% (2.0% for all

three instances). Inspection of the results for the bootstrap estimators in Table 2 shows several

instances of model rejection rates that fall right at our lower bound of robustness.

It is interesting to note from the results for the Bollen and Stine bootstrap estimators in

Table 2, that there are very little differences in the model rejection rates for the varying number
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of model resamplings. Comparing the performance of the Bollen and Stine estimators for 250,

500, 1000, and 2000 resamplings, one does not note any particular advantage for using more than

250 resamplings. This pattern of consistency in the performance across the resampling

estimators is seen under most of the combinations of model specification, distributional form,

and sample size in Table 2.

Factor covariance standard errors

We collected data from a variety of parameters in the population model. When

considering the standard errors associated with factor variances and error variances in the model,

we do not assign a great degree of practical importance to their analysis. In applied settings,

neither parameter value estimation nor significance testing of factor variances and error

variances are usually of substantive interest. For this reason, analysis of the standard errors

associated with these parameters will not be reported here.

Data were collected for two of the three factor covariances in the population model;

Cov(F2,F1) and Cov(F3,F2). Inspection of biases and variances associated with the standard

errors for these covariances show very similar patterns of results across the four model

specifications. Additionally, the patterns of results are strikingly similar for both of the

covariances investigated. Because the results are quite consistent across models and covariances,

the results for Cov(F2,F1) under Model 1 are presented here to characterize the general behavior

of the covariances in the four models. In Figure 2 each of the three charts corresponds to a

distributional form investigated in our study. Bar groupings in each chart correspond to the four

levels of sample size investigated. The numbers upon which this and all figures are based appear

in the Appendix.

1 8
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Insert Figure 2 about here

Notice from the bias results in Figure 2 that under all conditions, decreasing sample size

yields increased levels of bias. Under the multivariate normal condition, bias levels are

reasonably low and similar across standard error estimators under the n=500 and 1000 sample

sizes. Under the smaller sample sizes, a pattern of small (tending toward negative) bias in the

ML and resealed standard errors, and larger positive bias in the bootstrapped standard errors

begins to emerge. Under the nonnormal conditions (with the exception of the bootstrapped

standard errors under the moderately nonnormal distribution and largest sample size) all

estimators yield negative bias in the Cov(F2,F1) standard error. For the ML estimators,

specifically, these results are consistent with previous research that has demonstrated that

standard errors become attenuated with departures from multivariate normality (see West et al.,

1995, for a review).

While all estimators of standard errors show negative bias under the nonnormal

distributions, notice in Figure 2 the robust methods both the resealed and the bootstrap

resampled yield standard errors that exhibit less bias than those using ML estimation. For the

robust standard errors under departures from normality, the bootstrap standard errors yield

smaller bias than the resealed standard error. This comparison becomes more dramatic with

decreasing sample size. Finally, comparing the bootstrap standard errors against one another,

one finds very little difference in bias across the four resampling estimators. Thus, from the

perspective of bias, there appears to be no real advantage to drawing greater numbers of

bootstrap samples.

Figure 3 presents the analysis of standard errors for the Cov(F2,F1) parameter in terms of

variance. From inspection of these results, one sees the variability in the standard errors

in
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increases with decreasing sample size under normal and nonnormal conditions. Under severely

nonnormal conditions, however, variability in the standard errors for the robust methods is

highest at the n=200 sample size rather than with n=100, a seemingly anomalous outcome.

Insert Figure 3 about here

From the charts in Figure 3, notice also that the ML estimators yield the smallest standard

error variability. This pattern of results holds across all distributional forms and is most

pronounced under the smaller sample sizes. Comparing the rescaled standard error to the

bootstrap resampled standard errors shows the rescaled estimator yields only marginally smaller

standard error variability than that of the bootstrap standard errors. As previously seen in the

analysis of standard error bias, comparing the bootstrap standard errors against one another

shows little difference in the variability of the standard errors with varying numbers.of bootstrap

samples.

Variable-factor loading standard errors

Data were collected for the variable-factor loadings of V2 on F 1 , V5 on F2, and V6 on

F2. As with the factor covariances, patterns of results across models for each of the factor

loadings were reasonably similar. Also, the patterns of results from one factor loading to another

were also quite comparable. Thus, for simplicity, only the results for the loading standard errors

of V2 on Fl (V2,F1) within Model 1 are presented here.

Figure 4 presents bias in the standard errors for the V2,F1 factor loading. As seen

previously in the standard errors for the factor covariances, bias in the factor loading standard

errors increases with decreasing sample size. This pattern exists across all three distributional

forms. From the charts in Figure 4, notice again that increasing departures from multivariate

20
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normality lead to increased negative bias in the ML standard errors. Decreasing sample size also

exacerbates this increase in negative bias associated with the ML estimators.

Insert Figure 4 about here

In Figure 4, we also see very different behavior between the robust approaches to

estimating loading standard errors. The resealed standard errors exhibit some degree of negative

bias. However, it is substantially less than that exhibited in the ML standard errors, especially

under the nonnormal conditions. As for the bootstrap standard errors for the loadings, these

exhibit relatively small bias given sufficient sample size. Under all distributional forms for the

n=1000, 500, and 200 sample sizes, the bootstrap standard errors yield very small bias as

compared to the other estimators often exhibiting the smallest bias ofany of the standard errors

examined. Under the smallest sample size, however, all bootstrapped standard errors yield large

positive bias substantially larger in absolute magnitude than the bias associated with any other

estimator.

Variances associated with the V2,F1 standard errors are presented in Figure 5. Generally,

variances in the factor loading standard errors for all estimators increased with decreasing

sample size. With respect to the three distributional forms, a pattern of increased standard error

variance with increasing departure from multivariate normality is evidenced, with the exception

of the bootstrap standard errors under the smallest sample size. For these resampled standard

errors under the n=100 sample size, standard error variances are larger under the moderately

nonnormal condition than under the severely nonnormal condition. This anomaly is not readily

interpretable or explained.

Insert Figure 5 about here
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Comparing the standard error estimators against each other, the variances in the standard

errors for the ML estimators tend to be the smallest, while the variances for the bootstrap

resampling methods are the largest. This pattern exists across the three distributional forms and

appears to be exacerbated by decreasing sample size. For the robust standard errors, the resealed

standard error variances are only slightly larger than the variances associated with the ML

estimators. Considering the resealed and resampled standard error variances, Figure 5 shows the

robust estimators are comparable with respect to standard error variance (with the resealed

standard errors showing only marginally smaller variance) down to the smallest sample size. At

the n=100 sample size and under all three distributional forms, the resampled standard error

variances are considerably larger than the variances for the resealed standard errors.

Comparing the bootstrap standard error variances against each other, one again sees very

little difference in the behavior of the resampled standard errors with varying numbers of

bootstrap samples. An exception to this pattern is under the n=100 sample size and nonnormal

conditions. Under these conditions, larger variances tend to be associated with larger numbers of

bootstrap samples drawn. Thus, from the perspective of standard error variability, there again

appears to be no real advantage to drawing greater numbers of bootstrap samples.

Discussion

The results of this investigation replicate previous findings as well as expand our

understanding of robust estimation procedures. As expected based on the literature (e.g., Bentler

& Chou, 1987), the current study shows that under violations of multivariate normality the

normal theory ML estimation procedures yield inflated model x2 values for correctly specified

models as well as attenuated parameter standard errors. Also, the previous finding that the SB

22
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rescaled statistic is robust under departures from multivariate normality given sufficient

sample sizes (West et al., 1995) has been corroborated.

New findings from the current study center around the relative performance of the various

robust procedures for parameter standard error and model x2 estimation, and will be discussed in

terms of behavior under nonnormal conditions (as these methods would not likely be selected if

one's data met standard distributional assumptions). Regarding standard errors, we first note that

there were virtually identical results for all bootstrapping methods. That is, increasing the

number of bootstrapped samples beyond 250 (the smallest number examined herein) did not

appear to afford any change in quality of the bootstrapped standard error estimator; even fewer

bootstrapped samples may work as well. Compared to other methods, under all but the smallest

sample size the bootstrapped standard errors for both factor covariances and factor loadings

tended to exhibit the least amount of bias - less than both the ML standard errors and the rescaled

standard errors. For these sample sizes of n 200 the magnitude of the bootstrap superiority

over the rescaled approach decreased as sample size got larger. Under the smallest sample size

of n=100, the bootstrapped standard errors yielded relatively small negative bias for the factor

covariances, while the rescaled standard errors tended to exhibit over twice as much negative

bias. However, when estimating factor loadings with n=100, bootstrapping methods showed a

large amount of positive bias while the rescaled statistic had considerably smaller negative bias.

These patterns of results were quite consistent across all models, those that were correct as well

as those including specification errors.

Thus far, findings seem to indicate that using resealing or bootstrapping methods is unwise

with the smallest sample size of n=100, while for n 200 results behave systematically for

estimating covariance or loading standard errors. For these larger sample sizes both robust
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methods tend toward negative bias in standard error estimation, which means that a z statistic for

parameter testing would often be slightly inflated. Again, bootstrapping's edge over the resealed

statistic is largest for the smaller sample sizes, but virtually disappearing as the sample size

reaches n=1000.

Before championing the resampling approach, however, one much also consider the

variability in the resampled statistics: small bias in the long run is of little use if individual

results behave erratically. Consider first the estimation of a covariance parameter standard error,

using a worst case scenario of n=200 under severe nonnormality as an example. The empirical

true standard error is approximately .0734, while bootstrap methods (and the resealed method as

well) yielded a mean standard error variance near .008. Taking the square root yields an

expected standard deviation for standard error estimates around .09, a value larger than the

standard error itself. Under moderate nonnormality things look somewhat better, with a standard

deviation determined to be near .02 when estimating a true standard error of .0628. This pattern

improves slightly as sample size increases. The best case scenario of n=1000 under moderate

nonnormality is estimating a true covariance standard error near .0264; the standard deviation of

the standard error estimates is approximately .0045.

As for the estimation of a loading parameter standard error using the resampling based

methods, the worst case of n=200 under severe nonnormality is estimating a true loading

standard error near .2902; the standard deviation of the standard error estimates is approximately

.14, roughly half the parameter standard error itself. The best case, on the other hand, with

n=1000 under moderate nonnormality is estimating a true loading standard errornear .0927; the

standard deviation of the standard error estimates is approximately .015. In short, then, the

stability of any given bootstrap standard error estimate seems to be better for loadings than for
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covariances, and improves with sample size and decreasing nonnormality as expected; for

smaller sample sizes and/or greater nonnormality, and in particular forcovariance standard

errors, instability reaches levels that may well be considered intolerable .

Turning now toward assessing the overall fit of the model, the current study did not attempt

to determine bias in estimates of the model x2 as has been done elsewhere (e.g., Curran et al.,

1996); this is because the Bollen and Stine resampling approach yields a p-value rather than a X2

statistic. For this reason the quality of a method for assessing model fit was gauged by the Type

I error rate when fitting a correct model. Given that the prior discussion regarding parameter

standard error estimation recommended against the n=100 case, the results for nonnormal

conditions with n 200 suggest both the resealing and resampling approaches to assessing

overall model fit are preferable to ML estimation under violations of the normality assumption,

and are quite comparable to each other. Generally, though not without exceptions, the

bootstrapping approaches' model rejection rate seem to be slightly lower within the robustness

interval (.025 to .075) than the SB rescaled method. On one occasion with n 200 the

resampling method even yields an error rate below the interval. Further, although the case of

n=100 has been discounted here, it remains interesting that the SB scaled statistic yields

unilaterally liberal error rates under all nonnormal (and even normal) conditions.

Practically speaking, all the attention to the x2 values' ability to control Type I error rates

may seem at odds with the current practice of utilizing fit indices rather than a model x2 to gauge

model acceptability. However, because many fit indices are constructed from model (and null

model) x2 values, their behavior relative to distributional expectations is entirely relevant. Given

the model rejection rate comparability of the SB and resampling approaches to assessing model

fit, an immediate advantage to the former is that its rescaled X2 statistic can easily be

25
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incorporated into common fit indices (along with a rescaled null model :42 for incremental fit

indices such as the CFI, as provided automatically in recent versions of EQS). Still, similar

robust fit indices could be derived from the information provided by Bollen and Stine's approach.

Specifically, the resulting p-value could be used to obtain the corresponding normal theory x2

statistic from the distribution with the proper number of degrees of freedom. This

"bootstrapped" x2 statistic could then be incorporated into fit measures, along with a similarly

derived statistic for the null model when required, just as with the SB rescaled statistics. To

ensure sufficient precision in bootstrapped p-values, and hence in the corresponding x2 and the

derived robust fit indices, a relatively large number of bootstrapped samples may be required

even though 250 resamplings was seen to be perfectly adequate for standard error estimation.

Given resampling methods' promise as shown in the current study, the theoretical development

and empirical evaluation of such robust fit indices may be of great interest to the SEM

community.
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Table 1. Empirically Based True Standard Errors
for Properly Specified Model

Sample Factor Loading
Distribution Size Cov(F2,F1) for V2 on Fl

Normal 100 0.07389620 0.21719432
200 0.05064775 0.15377571
500 0.03171152 0.08980573

1000 0.02250867 0.06471447

Modately Nonnormal 100 0.09346542 0.31654237
200 0.06278746 0.21547391
500 0.03845778 0.13104480
1000 0.02640384 0.09266848

Severely Nonnormal 100 0.10235749 0.41877029
200 0.07340406 0.29015204
500 0.04436619 0.19171851
1000 0.03175627 0.13169042

31



Rescaling and Resampling Approaches in SEM 31

Table 2. Model Rejection Rates for ML and Robust Estimators
Property Specified and Inclusion Error Models

Model Distribution
Sample

Size
EQS

ML
AMOS

ML
Satorra
Bent ler

BS
250

BS
500

BS
1000

BS
2000

1 1 100 5.5 5.5 8.0 3.5 3.5 3.5 3.0
1 1 200 7.0 7.0 7.0 3.0 4.0 4.0 4.0
1 1 500 6.0 5.5 6.5 5.0 5.0 5.0 5.0
1 1 1000 7.5 7.0 7.0 5.5 6.0 6.5 7.0

1 2 100 23.5 23.0 10.5 3.5 3.5 4.0 3.5
1 2 200 20.5 20.0 5.5 4.0 4.5 3.0 4.0
1 2 500 20.0 20.0 6.5 4.5 4.0 4.0 3.5
1 2 1000 22.0 22.0 4.0 4.5 4.5 4.0 4.0

1 3 100 30.0 29.5 12.0 2.5 2.5 3.0 3.5
1 3 200 40.0 40.0 11.0 6.5 5.5 5.5 5.5
1 3 500 37.0 37.0 4.0 2.5 2.0 2.5 3.0
1 3 1000 36.5 36.5 3.5 2.5 3.0 3.5 3.5

2 1 100 7.5 7.5 9.5 2.5 2.0 3.0 2.5
2 1 200 5.5 5.5 6.5 3.5 3.5 4.0 3.5
2 1 500 8.5 8.5 7.5 6.0 6.0 6.5 6.5
2 1 1000 8.5 8.5 8.0 5.5 5.5 5.0 6.0

2 2 100 22.0 22.0 8.5 2.0 2.5 2.5 2.5
2 2 200 19.5 19.5 7.5 6.0 6.0 6.0 6.0
2 2 500 20.0 20.0 7.0 6.0 7.5 6.5 6.5
2 2 1000 20.5 20.5 5.0 4.0 3.5 3.5 4.0

2 3 100 27.5 27.5 11.5 2.5 2.5 2.5 2.5
2 3 200 30.5 30.5 5.5 2.5 3.0 3.0 2.5
2 3 500 38.5 38.5 5.5 2.5 3.0 2.5 2.5
2 3 1000 42.0 42.0 6.5 4.0 4.5 4.5 4.5

Note: Model 1 = properly specified model. Model 2 = inclusion error. Distribution 1 = Multivariate Normal.
Distribution 2 = Moderately Nonnormal. Distribution 3 = Severely Nonnormal.
BS250 = Bollen and Stine Bootstrapped p-value, 250 resamplings
BS500 = Bollen and Stine Bootstrapped p-value, 500 resamplings
BS1000 = Bollen and Stine Bootstrapped p-value, 1000 resamplings
BS2000 = Bollen and Stine Bootstrapped p-value, 2000 resamplings
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Figure 1. Base Population Model
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Figure 2. Bias in Cov(F2,F1) Standard Errors
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Figure 3. Variance in Cov(F2,F1) Standard Errors
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Figure 4. Bias in Standard Errors for Variable-Factor Loading of V2 on Fl
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Figure 5. Variance in Standard Errors for Variable-Factor Loading of V2 on Fl

0.8 00 0

0.5000

0.4 00 0

;" 0 3 00 0

0.2 00 0

0.1 000

0.0000

0.0 0 0 0

0.5 00 0

0 .4 000

0 .3 00 0

0 .2 000

0.10 0 0

0.0000

0 .13 000

0.5000

0.4000

0.3000

0.2 00 0

0 .10 0 0

0.0000

N orm al D Istrlb

100

100

2 0 0 800

M o d e r a t e l y N oo r m a l D Istrib ution

1000

2 0 0 800

S e v e r l y N o o o o r m I D Istrtb o lion

1000

100 200 800 1000

Note: Bar ordering within each cluster (from left to right): ML EQS, ML AMOS, rescaled, bootstrap:250, boostrap:500,
bootstrap:1000, bootstrap:2000

37



Resealing and Resampling Approaches in SEM 37

Appendix

Data for Figures

Bias in Standard Errors for Cov(F2,F1)

Model
Sample

Distribution Size
EQS
ML

AMOS
ML rescaled

bootstrap
250

bootstrap
500

bootstrap
1000

bootstrap
2000

1 1 100 -0.00096215 -0.00172600 -0.00204793 0.00630900 0.00570400 0.00557400 0.00564400
1 1 200 0.00058373 0.00031700 -0.00004655 0.00188700 0.00202200 0.00203700 0.00193700
1 1 500 0.00070359 0.00060300 0.00077003 0.00119300 0.00133800 0.00134800 0.00123800
1 1 1000 0.00009617 0.00005600 0.00003354 0.00016100 0.00023100 0.00017600 0.00016600

1 2 100 -0.02382435 -0.02453000 -0.01606580 -0.00630500 -0.00669500 -0.00686000 -0.00659000
1 2 200 -0.01178749 -0.01205200 -0.00692223 -0.00450700 -0.00431700 -0.00424700 -0.00416700
1 2 500 -0.00672598 -0.00677300 -0.00177072 -0.00088300 -0.00091800 -0.00084800 -0.00089300
1 2 1000 -0.00350643 -0.00352900 0.00079721 0.00113600 0.00110600 0.00108600 0.00104600

1 3 100 -0.03330533 -0.03405200 -0.02020035 -0.00986200 -0.00965700 -0.00953700 -0.00926200
1 3 200 -0.02393200 -0.02415400 -0.00998588 -0.00590400 -0.00606900 -0.00626400 -0.00624900
1 3 500 -0.01255375 -0.01261100 -0.00256341 -0.00170600 -0.00154100 -0.00154600 -0.00146100
1 3 1000 -0.00920604 -0.00923600 -0.00171175 -0.00134600 -0.00134100 -0.00130600 -0.00129100

Variance in Standard Errors for Cov(F2,F1)

Model
Sample

Distribution Size
EQS
ML

AMOS
ML rescaled

bootstrap
250

bootstrap
500

bootstrap
1000

bootstrap
2000

1 1 100 0.00019201 0.00018850 0.00023599 0.00031069 0.00030046 0.00029382 0.00029536
1 1 200 0.00005469 0.00005420 0.00006549 0.00008049 0.00008119 0.00008082 0.00007948
1 1 500 0.00000727 0.00000747 0.00001072 0.00001348 0.00001219 0.00001177 0.00001136
1 1 1000 0.00000224 0.00000235 0.00000293 0.00000464 0.00000454 0.00000409 0.00000342

1 2 100 0.00048020 0.00047046 0.00199199 0.00239668 0.00238504 0.00237080 0.00241051
1 2 200 0.00009937 0.00009784 0.00033965 0.00040968 0.00043437 0.00043779 0.00045864
1 2 500 0.00001730 0.00001729 0.00007947 0.00009065 0.00008560 0.00008613 0.00008743
1 2 1000 0.00000392 0.00000393 0.00002012 0.00002045 0.00002059 0.00002142 0.00002170

1 3 100 0.00070263 0.00069011 0.00339243 0.00416641 0.00419348 0.00417472 0.00423503
1 3 200 0.00026886 0.00026649 0.00758154 0.00784907 0.00805091 0.00783766 0.00790403
1 3 500 0.00003655 0.00003627 0.00058634 0.00070624 0.00068324 0.00069699 0.00068925
1 3 1000 0.00001009 0.00000988 0.00006769 0.00007658 0.00007496 0.00007439 0.00007413

Note: Model 1 = properly specified model. Distribution 1 = Multivariate Normal.
Distribution 2 = Moderately Nonnormal. Distribution 3 = Severely Nonnormal.
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Appendix (continued)

Data for Figures

Bias in Standard Errors for Factor Loading of V2 on F1

Model
Sample

Distribution Size
EQS
ML

AMOS
ML rescaled

bootstrap
250

bootstrap
500

bootstrap
1000

bootstrap
2000

1 1 100 -0.01265215 -0.01199400 -0.01747716 0.11758100 0.12234100 0.12268600 0.13069100
1 1 200 -0.01252441 -0.01250600 -0.01523267 -0.00153100 -0.00143100 -0.00125600 -0.00129100
1 1 500 -0.00055298 -0.00050600 -0.00108783 0.00178900 0.00197900 0.00193400 0.00187400
1 1 1000 -0.00072149 -0.00072900 -0.00083724 0.00007600 -0.00008400 -0.00002900 0.00000600

1 2 100 -0.09349429 -0.09342200 -0.04756999 0.24904300 0.27969300 0.29544300 0.29510300
1 2 200 -0.06977493 -0.06978900 -0.02174037 0.00712600 0.00838100 0.00828100 0.00992600
1 2 500 -0.04037575 -0.04036500 -0.00541728 -0.00122500 -0.00077500 -0.00083500 -0.00112000
1 2 1000 -0.02864266 -0.02865800 -0.00254852 -0.00115300 -0.00110800 -0.00096800 -0.00096800

1 3 100 -0.19344861 -0.19296500 -0.10122301 0.19106000 0.20389000 0.23676000 0.23727500
1 3 200 -0.14320653 -0.14317700 -0.06195104 -0.00882200 -0.00866700 -0.00906200 -0.00973700
1 3 500 -0.10070715 -0.10068900 -0.03052504 -0.02304400 -0.02249900 -0.02286400 -0.02282400
1 3 1000 -0.06749721 -0.06748000 -0.00959810 -0.00780000 -0.00763500 -0.00741500 -0.00719500

Variance in Standard Errors for Factor Loading of V2 on Fl

Model
Sample

Distribution Size
EQS
ML

AMOS
ML rescaled

bootstrap
250

bootstrap
500

bootstrap
1000

bootstrap
2000

1 1 100 0.00422598 0.00419741 0.00474683 0.11458234 0.11670930 0.10229007 0.09709874
1 1 200 0.00066588 0.00066763 0.00074157 0.00130829 0.00126159 0.00123686 0.00120367
1 1 500 0.00012641 0.00012601 0.00013353 0.00019758 0.00018310 0.00017339 0.00017208
1 1 1000 0.00003563 0.00003556 0.00003958 0.00005429 0.00005051 0.00004663 0.00004674

1 2 100 0.01261960 0.01270140 0.01995371 0.47906006 0.58104858 0.57607383 0.56010433
1 2 200 0.00154965 0.00154701 0.00325130 0.00600427 0.00604097 0.00595211 0.00679440
1 2 500 0.00020045 0.00020075 0.00067193 0.00074593 0.00073917 0.00072553 0.00070755
1 2 1000 0.00005881 0.00005922 0.00020382 0.00023683 0.00022426 0.00021958 0.00021985

1 3 100 0.01704205 0.01709042 0.03751906 0.33241595 0.33525167 0.44857189 0.43593636
1 3 200 0.00253971 0.00254571 0.00952510 0.02109303 0.02100801 0.02043223 0.01974029
1 3 500 0.00044802 0.00044688 0.00483715 0.00472887 0.00485844 0.00471300 0.00480366
1 3 1000 0.00010132 0.00010231 0.00109147 0.00115449 0.00114919 0.00112388 0.00113148

Note: Model 1 = properly specified model. Distribution 1 = Multivariate Normal.
Distribution 2 = Moderately Nonnormal. Distribution 3 = Severely Nonnormal.
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