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An Evaluation of a Markov Chain Monte Carlo
Method for the Two-Parameter Logistic Model

Abstract

The accuracy of the Markov chain Monte Carlo (MCMC) procedure Gibbs sampling was

considered for estimation of item parameters of the two-parameter logistic model. Data

for the Law School Admission Test Section 6 were analyzed to illustrate the MCMC

procedure. In addition, simulated data sets were analyzed using the MCMC, marginal

Bayesian estimation, and marginal maximum likelihood estimation methods. Two different

priors, informative and uninformative, were employed in the MCMC procedure. Marginal

Bayesian estimation yielded consistently smaller root mean square differences and mean

Euclidean distances than the other estimation methods.

Key words: BaYesian inference, Gibbs sampling, item response theory, Markov chain Monte

Carlo, marginal maximum likelihood estimation, prior, posterior.
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Introduction

Some problems in statistical inference require integration over possibly high-dimensional

probability distributions in order to estimate model parameters of interest or to obtain

characteristics of model parameters. One such problem is estimation of item and ability

parameters in the context of item response theory (IRT). Except for certain rather simple

problems with highly structured frameworks (e.g., an exponential family together with

conjugate priors in Bayesian inference), the required integrations may not be analytically

feasible. In this paper, we examine the accuracy of a set of strategies known as Markov

Chain Monte Carlo (MCMC) methods for estimation of IRT item parameters. We focus on

the accuracy of one particular MCMC procedure, Gibbs sampling (Geman & Geman, 1984),

for estimation of item parameters for the two-parameter logistic (2PL) model.

A number of ways exist for implementing the MCMC method. [For a review, refer to

Bernardo and Smith (1994), Carlin and Louis (1996), and Gelman, Carlin, Stern, and Rubin

(1995).] Metropolis and Ulam (1949), Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller

(1953), and Hasting (1970) present a general framework within which the Gibbs sampling

(Geman & Geman, 1984) can be considered as a special case. In this regard, Gelfand

and Smith (1990) discuss several different Monte Carlo-based approaches, including Gibbs

sampling, for calculating marginal densities. [See Gilks, Richardson, and Spiegelhalter (1996)

for a recent survey of applications.] Basically Gibbs sampling is applicable for obtaining

parameter estimates for the complicated joint posterior distribution in Bayesian estimation

under IRT (e.g., Mislevy, 1986; Swaminathan & Gifford, 1985; Tsutakawa & Lin, 1986).

Albert (1992) applied Gibbs sampling in the context of IRT to estimate item parameters

for the two-parameter normal ogive model and compared these estimates with those obtained

using maximum likelihood estimation. Baker (in press) has also investigated item parameter

recovery characteristics of Albert's Gibbs sampling method for item parameter estimation

via a simulation study. Patz and Junker (1997) developed a MCMC method based on the

Metropolis-Hasting algorithm and presented an illustration using the 2PL model.

MCMC computer programs in the context of IRT have been developed largely only

for specific applications. For example, Albert (1992) used a computer program written

in MATLAB (The Math Works, Inc., 1996). Baker (in press) developed a specialized

FORTRAN version of Albert's Gibbs sampling program to estimate item parameters of

the two paraMeter normal ogive model. Patz and Junker (1997) developed an S-PLUS code



(Math Soft, Inc., 1995). Spiegelhalter, Thomas, Best, and Gilks (1997) have also developed a

general Gibbs sampling computer program BUGS for Bayesian estimation, using the adaptive

rejection sampling algorithm (Gilks & Wild, 1992). The computer program BUGS requires

specification of the complete conditional distributions.

Marginal maximum likelihood estimation (MIVILE) using the expectation and maximiza-

tion (EM) algorithm, as implemented in the computer program BILOG (Mislevy & Bock,

1990), has become the standard estimation technique for obtaining item parameter estimates

under IRT. The Gibbs sampling procedure approaches the estimation of item parameters us-

ing the joint posterior distribution rather than the marginal distribution. Even so, both

methods should yield comparable item parameter estimates, when comparable priors are

used and when ignorance or locally uniform priors are used. This paper was designed to

evaluate this issue using the 2PL model. Specifically, estimation methods based on the two

computer programs, BUGS and BILOG, were examined and compared.

Theoretical Framework

Marginalized Solutions

Consider binary responses to a test with n items by each of N examinees. A response of

examinee i to item j is represented by a random variable where i = 1(1)N and j = 1(1)n.

The probability of a correct response of examinee i to item j is given by P (11j = 110i, ej) = Piz

and the probability of an incorrect response is given by P(Yii = 010i, Ci) = 1 Pik = Qii,

where Oi is ability and ei is the vector of item parameters.

For examinee i, there is an observed vector of dichotomously scored item responses

of length n, Y = (Yii, , Yin)'. Under the assumption of conditional independence, the

probability of Yi given 9i and the vector of all item parameters, = (el, , a)', is
n

P(Yi I C) = H (1)
j.1

The marginal probability of obtaining the response vector Yi for examinee i sampled from a

given population is

p(1I) = f P(Yilei,e)P(ei)dt9i, (2)

where p(0i) is the population distribution of Oi. Without loss of generality, we can assume

that the Oi are independent and identically distributed as standard normal, Oi ,-- N(0,1). This

assumption may be relaxed as the ability distribution can also be empirically characterized
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(Bock & Aitkin, 1981). The marginal probability of Y can be approximated with any

specified degree of precision by Gaussian quadrature formulas (Stroud Sc Secrest, 1966).

The marginal probability of obtaining the N x n response matrix Y is given by

N

p(Y le) = P(Yi = 1(6IY), (3)
i=1

where /(6IY) can be regarded as a function of 6 given the data Y. In MMLE, the marginal

likelihood is maximized to obtain maximum likelihood estimates of item parameters (see

Bock & Aitkin, 1980).

Bayes' theorem tells us that the marginal posterior probability distribution for 6 given

the data, Y, is proportional to the product of the marginal likelihood for 6 given Y and the

prior distribution of 6. That is,

p(6IY) =
P(YPO')ie)P(e)

461 Y)P(6), (4)

where a denotes proportionality. The marginal likelihood function represents the informa-

tion obtained about 6 'from the data. In this way, the data modify our prior knowledge

of 6. A prior distribution represents what is known about unknown parameters before the

data are obtained. Prior knowledge or even relative ignorance can be represented by such

a distribution. In marginal Bayesian estimation (MBE) of item parameters, the marginal

posterior is maximized to obtain Bayes modal estimates of item parameters (see Mislevy,

1986).

Joint Estimation Procedures

Birnbaum (1968) and Lord (1980) describe the estimation of the 8 and 6 by joint
maximization of the likelihood function

N n
P(111(11 6) = II = 1(0761Y), (5)

i=1 j=1

where 0 = (01,...,ON)' . In implementation of joint maximum likelihood estimation (JMLE)

(see Lord, 1986 for a comparison of marginalized and joint estimation methods), the item

parameter estimation part for maximizing /(6IY, O) and the ability parameter estimation part

for maximizing /(0IY, 6) are iterated until a stable set of maximum likelihood estimates of

item and ability parameters is obtained.



Extending the idea of joint maximization, Swaminathan and Gifford (1982, 1985, 1986)

suggested that 9 and e can be estimated by joint maximization with respect to the parameters

of the posterior density

P(0, eV) =
p(Y19,e)p(e, e)

c 49, eiY)P(9, (6)
P(Y)

where p(9, Z;) is the prior density of the parameters 9 and e. This procedure is called joint

Bayesian estimation (JBE). Under the assumption that priors of 9 and e are independently

distributed with probability density functions p(9) and p(e), the item parameter estimation

part maximizing /(elY, isi)p(e), and the ability parameter estimation part maximizing

/(01Y, .)23(0) are iterated to obtain stable Bayes modal estimates of item and ability

parameters.

Gibbs Sampling

The main feature of MCMC methods is to obtain a sample of parameter values from the

posterior density (Tanner, 1996). The sample of parameter values then can be used to

estimate some functions or moments (e.g., mean and variance) of the posterior density of

the parameter of interest. In comparison, in the above IRT estimation procedures via MMLE,

MBE, JMLE, or JBE, the task is to obtain modes of the likelihood function or of the posterior

distribution.

The Gibbs sampling algorithm is as follows (Gelfand & Smith, 1990; Tanner, 1996).

First, instead of using 9 and e, let w be a vector of parameters with k elements. Suppose

that the full or complete conditional distributions, p(wilwi, Y), where i = 1(1)k and j i,

are available for sampling. That is, samples may be generated by some method given values

of the appropriate conditioning random variables. Then given an arbitrary set of starting

values, 4), , 4), the algorithm proceeds as follows:

Draw w111 from p(wilwV), , wiT), Y),

Draw u411 from p(w2 w(:),
Y),

Draw wi(c1) from p(wk twill, (.44121, Y),

Draw w12) from p(w1lb.41), , w11), Y),
(

Draw 4) from p(w21w1(2), W3(1)7 ' Wk
1)

11'

5

7



Draw wk 2) f rom p dk ( l2) ,
(2)

Y),,

(t+1)
Y),Draw w1 from

(t+1) (t+1) (t) (t)Draw we t +1)
p(w2lwi , , Y),

Draw w(t+1) from (t+1) (t+ v \
PkWk1W1 Wk-1

1)
7 A

The vectors w(°), , w(t), . .. are a realization of a Markov chain with a transition probability

from w(t) to U(t+1) given by

k
pp(t), Ld(t+1)) llpmt+1,14), Y).

1=1
(7)

The joint distribution of w(t) converges geometrically to the posterior distribution p(w I Y)

as t -4 oo (Geman & Geman, 1984, Bernardo & Smith, 1994). In particular, (At) tends to

be distributed as a random quantity whose density is p(wilY). Now suppose that there exist

m replications of the t iterations. For large t, the replicates wlit), , 4t) are approximately

a random sample from p(wilY). If we make m reasonably large, then an estimate, i3(wi IY),

can be obtained either as a kernel density estimate derived from the replicates or as

in
15(wi I Y) =

1 E 14),j Y).m (8)

In the context of IRT, Gibbs sampling tries to obtain or sample sets of parameters from

the joint posterior density p(9, DIY). Inferences with regard to parameters can then be made

using the sampled parameters. Note that inference for both 9 and e can be made from the

Gibbs sampling procedure. In this paper, as in the marginalized solutions, we are particularly

interested in the accuracy of the MCMC procedure for estimating item parameters.

An Example

Steps for Gibbs Sampling

The following example is presented using the familiar Law School Admission Test Section

6 (LSAT6) data from Bock and Lieberman (1970) (see also Bock & Aitkin, 1981).

Model parameters were estimated by Gibbs sampling using the computer program BUGS

6
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(Spiegelhalter et al., 1997). These same LSAT6 data have been analyzed under the Rasch

model and under the two-parameter normal ogive (i.e., probit) model in Spiegelhalter,

Thomas, Best, and Gilks (1996). Spiegelhalter, Thomas, et al. (1996) also compared the

BUGS results with those from Bock and Aitkin (1981).

Gibbs sampling uses the following four basic steps (cf. Spiegelhalter, Best, et al., 1996):

1. Full conditional distributions and sampling methods for unobserved parameters must

be specified.

2. Starting values must be provided.

3. Output must be monitored.

4. Summary statistics (e.g., estimates and standard errors) for quantities of interest must

be calculated.

Discussion of the four steps involved are presented in detail below. In addition,
comparisons with the results from MBE and MMLE as implemented in the computer program

BILOG (Mislevy & Bock, 1990) are presented.

Model Specifications

The model specifications are used as input to the BUGS computer program. In the LSAT6
data set, the item responses Y2i are independent, conditional on their parameters Pu .

For examinee i and item j, each /323 is a function of the ability parameter Oi, the item

discrimination parameter ay, and the item difficulty parameter by under the 2PL. The 9,

are assumed to be independently drawn from a standard normal distribution for scaling

purposes. Figure 1 shows a directed acyclic graph (see Lauritzen, Dawid, Larsen, & Leimer,

1990; Whittaker, 1990; Spiegelhalter, Dawid, Lauritzen, & Cowell, 1993) based on these
assumptions. (It can be noted that Aj and (( are used in Figure 1 instead of aj and by.) The

model can be seen as directed because each link between nodes is represented as an arrow.

The model can also be seen as acyclic because it is impossible to return to a node after leaving.

It is only possible to proceed by following the directions of the arrows. Each variable or

quantity in the model appears as a node in the graph, and directed links correspond to direct

dependencies as specified above. The solid arrow denotes the probabilistic dependency, while

dashed arrows indicate functional or deterministic relationships. The rectangle designates

observed data, and circles represent unknown quantities.
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Insert Figure 1 about here

It may be helpful to use the following definitions: Let v be a node in the graph, and V

be the set of all nodes. A parent of v is defined as any node with an arrow extending from it

and pointing to v, and a descendant of v is defined as any node on a direct path beginning

from v. For identifying parents and descendants, deterministic links should be combined so

that, for example, the parent of is P. It is assumed in Figure 1 that, for any node v,

if we know the value of its parents, then no other nodes would be informative concerning v

except descendants of v.

Lauritzen et al. (1990) indicated that, in a full probability model, the directed acyclic

graph model is equivalent to assuming that the joint distribution of all the random quantities

is fully specified in terms of the conditional distribution of each node given its parents. That

is,

P(V) = H P(v 1parents[v]) , (9)
vE V

where PO denotes a probability distribution. This factorization not only allows extremely

complex models to be built up from local components, but also provides an efficient basis

for the implementation of MCMC methods (Spiegelhalter, Best, et al., 1996).

Gibbs sampling via the BUGS computer program works by iteratively drawing samples

from the full conditional distributions of unobserved nodes in Figure 1 using the adaptive

rejection sampling algorithm (Gilks, 1996; Gilks & Wild, 1992). For any node v, the

remaining nodes are denoted by V v. It follows that the full conditional distribution,

P(v I V v), has the form

P(vIV v) a P(v, V v)

a P (v jparent[v]) fJ P (w I parents[w]). (10)
wEchildren[v]

The proportionality constant, which is a function of the remaining nodes, ensures that the

distribution is a probability function that integrates to unity.

To analyze the LSAT6 data, we begin by specifying the forms of the parent and child

relationships in Figure 1. Under the 2PL model, the probability that examinee i responds

correctly to item j is assumed to follow a logistic function parameterized by the examinee's

latent ability Gi, the item discrimination parameter, ai, and the item difficulty parameter, bi.

8
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For estimation purposes, we use the form aj(8i b3) = Ay Oi+ Cy, where the slope parameter

Aj = aj and the intercept parameter (j = ayby. Hence,

1 1
= (11)Pil

1 + exp[aj(9i by)] 1+ exp[(A jOi + (j)]

Since Yij are Bernoulli with parameter Pij, we can define

and

Yij ti Bernoulli(Pij) (12)

logit(Pij) = Aj Oi + (j. (13)

To complete the specification of a full probability model in for the BUGS computer

program, prior distributions of the nodes without parents (i.e., 9i, Aj, and (3) also need to

be specified. We can define these priors in several different ways. We can impose priors on

A3 and (j using a hierarchical Bayes approach (e.g., Swaminathan & Gifford, 1985; Kim;

Cohen, Baker, Subkoviak, & Leonard, 1994). If it is preferred that the priors not be too

influential, uninformative priors could be imposed. Alternatively, it may also be useful to

include external information in the form of fairly informative prior distributions. According

to Spiegelhalter, Best, et al. (1996), it is important to avoid causal use of standard improper

priors in MCMC modeling, since these may result in improper posterior distributions.

Following Spiegelhalter, Thomas, et al. (1996), two prior distributions were chosen for the

LSAT6 analyses: (1) Aj ti N(0, 1) with A3 > 0 and (j N(0, 1002) and (2) Aj ti N(0, 1002)

with Aj > 0 and (j N(0, 1002). An example input file for BUGS is given in the Appendix.

Starting Values

The choice of starting values (e.g., w(°)) is not generally that critical as the Gibbs sampler

(and most other MCMC algorithms as well) should be run long enough to be sufficiently

updated from its initial states. It is useful, however, to perform a number of runs using

different starting values to verify that the final results are not sensitive to the choice of

starting values (Gelman, 1996). Raftery (1996) indicated that extreme starting values could

lead to a very long burn-in or stabilization process.

In this example, three runs were performed using the LSAT6 data with three sets of

starting values for Aj and (j, j = 1(1)5. The first run started at values considered plausible

in the light of the usual range of item parameters (A = 1 and (j = 0). The second run at

9
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Aj = 10 and (7 = 5 and the third at A3 = .1 and ( = 5 represented substantial deviations

in initial values. In particular, the second run was intended to represent a situation in which

there was a possibility that items were highly discriminating, and the third run represented

an opposite assumption. The priors used were A3 N(0, 1) with Aj > 0 and (7 --, N(0, 1002).

The three runs consisted of 10,000 iterations. Partial results for Al and (1 are presented

in Figure 2. The computer program CODA (Best, Cowles, & Vines, 1997) was used to obtain

these graphs. The top two plots in Figure 2 contain the graphical summaries of the Gibbs

sampler for Al. The top left plot shows the trace of the sampled values of Al for the three

runs. In the legend, 1NO indicates the initial values for A3 and ( were 1 and 0, respectively;

10NO indicates the initial values were 10 and 0, respectively; and, P1N-5 indicates initial

values were .1 and 5, respectively. Results for all three runs show that the Al generated

by the Gibbs sampler quickly settled down regardless of the starting values. The top right

graph shows the kernel density plot of the three pooled runs of 30,000 values for A1. The

variability among the Al values generated by the Gibbs sampler seems not to be too great.

The distribution looks like a truncated normal form due to the positive constraints on A3.

Insert Figure 2 about here

The bottom two plots contain graphical summaries of the Gibbs sampler for The

bottom left plot shows the trace of the sampled values of (i for all three runs. The (I
generated by the Gibbs sampler quickly settled down regardless of the starting values. The

bottom right graph shows the kernel density plot of the three pooled runs of 30,000 values

for (1. The variability of the Al values seems not too great. The sampled values seem to be

concentrated around 3, and the sample values seem to follow a normal distribution.

The results for other item parameter estimates were very similar to those from Al and

(1. Overall, the starting values appear to were not have affected the final results. Useful

starting values for IRT problems can be found from the noniterative minimum logit chi-square

estimation solution (Baker, 1987) or from values based on Jensema (1976) and Urry (1974)

as employed in BILOG. Use of "good" starting values, such as from the above methods, can

avoid the time delay required by a lengthy burn in. Our experience with these starting values

indicates A, = 1 and ( = 0 will work sufficiently well for applications under the 2PL. In

subsequent analyses, therefore, the values, Aj = 1 and (7 = 0, were used as starting values.

10



Output Monitoring

A critical issue for MCMC methods is how to determine when one can safely stop sampling

and use the results to estimate characteristics of the distributions of the parameters of

interest. In this regard, the values for the unknown quantities generated by the Gibbs

sampler can be graphically and statistically summarized to check mixing and convergence.

The method proposed by Gelman and Rubin (1992) is one of the most popular for monitoring

Gibbs sampling. [Cowles and Carlin (1996) presented a comparative review of convergence

diagnostics for MCMC algorithms.]

We illustrate, here, the use of Gelman and Rubin (1992) statistics on two 10,000 iteration

runs. Details of the Gelman and Rubin method are given by Gelman (1996). Each 10,000

iteration run required about 160 minutes on a Pentium 90 megahertz computer. Monitoring

was done using the suite of S-functions called CODA (Best et al., 1997). Figure 3 shows the

trace lines of the sampled values of Al and (i for the two runs. The plots in Figure 3 indicate

that the two runs settled down quickly. Gelman-Rubin statistics (i.e., shrink factors) are

also plotted on the right side of Figure 3 for Al and respectively. For both parameters,

the medians were stabilized after about 3,000 iterations.

Insert Figure 3 about here

For each parameter, the Gelman-Rubin statistics estimate the reduction in the pooled

estimate of variance if the runs were continued indefinitely. The Gelman-Rubin statistics

should be near 1 in order to be reasonably assured that convergence has occurred. The

median for Al in the example was 1.01 and the 97.5 percentage point was 1.03. The median

for (1 was 1.00 and the 97.5 percentage point was 1.02. These values were very close to 1.0,

indicating that reasonable convergence was realized for all parameters.

The Gelman-Rubin statistics can be calculated sequentially as the runs proceed, and

plotted as in Figure 3. These plots as well as other plots for Ai and (, suggest the first 3,000

iterations of each run be discarded and the remaining samples be pooled. We used 5,000

iterations as burn-in and the subsequent 5,000 iterations for estimating.

BUGS and BILOG Parameter Estimates

The posterior mean of the Gibbs sampler was obtained for each item parameter. Two

different sets of prior distributions were employed in the BUGS runs. The first set employed



an informative prior on Ai N N(0, 1) and an uninformative prior on ci N(0, 1002).

In addition, a constraint was imposed on the ranges of A3 to allow only positive values

(i.e., A3 > 0). The prior distribution for A3 limits possible values. MCMCI indicates this

informative prior for A3 where I indicates the prior is informative. The second set employed

two uninformative prior distributions, Ai N(0, 1002) with the constraint A3 > 0 and

(i N(0, 1002). This second set of priors is labeled MCMCU, where U indicates the priors

are uninformative.

For BILOG runs, two procedures were used, MBE and MMLE. The default prior

in BILOG for the 2PL is only on the item discrimination parameter as p(log ai) =

ai 6120gad) = N(0, .52). Default options of BILOG yield MBE. For MMLE, no prior

distributions were used.

Insert Table 1 about here

The information in Table 1 indicates that all estimation methods yielded similar results.

Differences among estimates were relatively small, indicating the estimates from the four

methods were comparable. MBE yielded smaller standard errors for all parameter estimates

and MCMCU yielded somewhat larger standard errors.

Empirical Comparison
Simulation Conditions

Data were simulated under the following conditions: number of examinees (N = 100, 300),

and number of items (n = 15, 45). The following estimation conditions were used: algorithm

(MCMC, marginalized), and prior condition (informative, uninformative/none). The sample

sizes and the test lengths were selected to emulate a situation in which estimation procedures

and priors might have some impact upon item parameter estimates (e.g., Harwell & Janosky,

1991). Sample size and test length were completely crossed to yield four conditions.

Two estimation procedures were used, the MCMC method and the marginalized

estimation method. For the MCMC method, an informative (MCMCI) and an uninformative

(MCMCU) prior were used. For MCMCI, A3 N(0, 1) with the constraint A3 > 0

and (3 N N(0, 1002). For MCMCU, Ps., N(0, 1002) with the constraint A3 > 0 and

N(0, 1002). For marginalized estimation via BILOG, two conditions were used, a

prior on item discrimination (MBE) and no prior (MMLE).
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Data Generation

The data sets used in this study were the same as those used in Kim et al. (1994). Item

response vectors were generated via the computer program GENIRV (Baker, 1982) for the

2PL model. The generating parameters for item discrimination were distributed with mean

1.046 and variance .103 (i.e., standard deviation .321), and the underlying item difficulty

parameters were distributed normal with mean 0 and variance 1. Item discrimination and

item difficulty parameters for the 15-item test were set to have three different values (the

number of items is given in parentheses): Item discrimination parameters were .66 (4), 1.0

(7), and 1.51 (4), and item difficulty parameters were -1.38 (4), .0 (7), and 1.38 (4). For

the 45-item test, each of the item parameters was set to have five different values: Item

discrimination parameters were .57 (4), .76 (9), 1 (19), 1.32 (9), and 1.77 (4), and item

difficulty parameters were -1.9 (4), -.95 (9), 0 (19), .95 (9), and 1.9 (4). There was no

correlation between item discrimination and difficulty parameters. The underlying ability

parameters distribution was normal (0, 1) meaning that the underlying parameters were

matched to the item difficulty distribution.

Four replications were generated for each of the sample size and test length conditions.

Sixteen GENIRV runs were needed to obtain the data sets for the study.

Item Parameter Estimation

Each of the generated data sets was analyzed via the computer program BILOG (Mislevy

& Bock, 1990) for MBE and MMLE, and via the computer program BUGS (Spiegelhalter

et al., 1997) for MCMCI and MCMCU. In each estimation method, two prior conditions

were employed. For example, the generated item response data set for the first replication

of sample size 100 and test length 15 was analyzed by four computer runs.

For MBE, a lognormal prior on item discrimination with mean 0 and variance .25 [i.e.,

log a; - N(0, .52)] was used. This is the default prior specification in BILOG for estimation

of item parameters of the 2PL model. MMLE, as implemented in BILOG, does not use

any priors for item parameters. All defaults in BILOG for the 2PL model were used in the

calibration except for the NOSlope option which was used for the MMLE condition.

Priors in the MCMCU condition for both item parameters, Ai and were uninformative

distributions. The prior distribution for Al was set to have a normal distribution with mean

0 and variance 10,000 [i.e., Ai r- N(0,1002)] with range restricted to yield positive values



of A (i.e., A > 0). The prior distribution for (3 was also set to have a normal distribution

with mean 0 and variance 10,000. These prior distributions were similar to uninformative

uniform distributions defined on the positive real number line for A3 and on the entire real

range for (3.

In the MCMCI condition, an informative prior was used for A but an uninformative

prior was used for (3. The prior distribution for A3 was set to have a normal distribution

with mean 0 and variance 1 [i.e., A3 ti N(0, 1)] with range restricted to yield positive values

of A3 (i.e., A3 > 0). The prior distribution for (3 was N(0, 100'). The prior distribution

for A3 can be seen as a half normal distribution or the singly truncated normal distribution

(Johnson, Kotz, & Balakrishnan, 1994). Since A3, without the range restriction, was sampled

from a unit normal distribution, then E(A3) = .798 and Var(A3) = .363 (standard deviation

.603). The prior distribution for (3, however, was similar to the uniform distribution defined

on the entire real line.

In the example, we assumed different prior distributions for item discrimination and

difficulty via BUGS and BILOG, respectively. Consequently, the priors for MBE and MCMCI

were not the same. Likewise, the specifications used in MMLE were not the same as the

prior specifications employed in MCMCU.

Metric Transformation

In parameter recovery studies, such as the present one, comparisons between estimates and

the underlying parameters require that the item parameter estimates obtained from different

calibration runs be placed on a common metric with their underlying parameters (Baker &

Al-Karni, 1991; Yen, 1987). Parameter estimation procedures under IRT yield metrics which

are unique up to a linear transformation. To link both sets of estimates and parameters, it

is necessary to determine the slope and intercept of the equating coefficients required for the

transformation.

The estimates of the item parameters for each of the estimation procedures were placed on

the scale of the true parameters before comparisons were made. The test characteristic curve

method by Stocking and Lord (1983) as implemented in the computer program EQUATE

(Baker, 1993) was used.
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Evaluation Criteria

The empirical evaluation in this study involved four criteria: root mean square difference

(RMSD), correlation, mean euclidean distance (MED), and bias. The RMSD is the square

root of the average of the squared differences between estimated and true values. For item

discrimination, for example, RMSD is 1(1/n) E.7.=1(ai

Since it is possible that an estimation procedure may function better at recovery of one

type of item parameter than at recovery of another, it is sometimes useful to consider a single

index which can simultaneously describe the quality of recovery for both item parameters.

MED, which is the average of the square roots of the sum of the squared differences

between the discrimination and difficulty parameter estimates and their generating values,
1/2

provides such an index (Rudin, 1976). IVIED is defined as (1/n) E.7,..1 {(3 si)/(; ei)
)

where = (a3, b3)' and = (a3, bi)'. One caveat in using MED, of course, is that item

discrimination and difficulty parameters are not expressed in comparable and interchangeable

metrics. Even so, MED does provide a potentially useful descriptive index.

It is also useful to examine the bias, B, between the expected value of the estimates and

the corresponding parameter. The bias of the item discrimination estimates, for example, is

given as Ba, = a3. This estimate of bias was obtained for both parameters in the

model across the four replications.

Results

RMSD and Correlation Results

Average RMSDs for item discriminations over-four replications are reported in Table 2. As

sample size increased, RMSDs decreased; marginal RMSD means were .328 and .228 for

sample sizes 100 and 300, respectively.

Insert Table 2 about here

MBE consistently yielded the smallest RMDSs followed by MCMCI. For sample size 100,

increasing the number of items decreased RMSD for MMLE but did not change RMSDs for

the other cases. Increasing the number of items reduced the size of RMSDs for sample size

300. MCMCU tended to yield larger values of RMSD than the other estimation procedures

in the 100-examinee by 15-item condition.

15 7



The average correlations between true and estimated values of item discriminations across

four replications are also given in Table 2. Only very minor differences occurred between

estimation methods. Generally, the larger the sample size and the longer the test, the higher

the correlation, although these differences were small.

Table 3 contains the average RMSDs for item difficulty over four replications. An increase

in sample size appears to be associated with a decrease in the size of RMSDs. RMSDs from

MBE were consistently smaller than from the other estimation procedures. MCMCI yielded

slightly smaller RMSDs than either MCMCU or MMLE.

Insert Table 3 about here

For each data set, all estimation procedures yielded very high correlations between

estimates and underlying parameters (see Table 3). The larger sample size yielded slightly

higher correlations. Increasing the number of items did not appear to affect the magnitude

of the correlations for either sample size. MBE yielded consistently higher correlations than

did other procedures.

MED Results

Average MEDs between item parameter estimates and underlying item parameters over four

replications are reported in Table 4. MBE consistently yielded the smallest MEDs followed

by MCMCI. MEDs decreased as the sample size increased, although this effect was quite

small.

Insert Table 4 about here

Bias Results

The bias results for item discrimination, presented in both Table 5 and Figure 4, appear to

reflect the influence of a number of factors. Each bias statistic was obtained by combining

results from all four replications.

Insert Table 5 and Figure 4 about here
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For the 15-item test, increasing sample size resulted in a decrease in bias values. When

Bayes estimation procedures were used, it was expected that positive bias would be observed

for the smaller item discrimination parameters (i.e., ai = .66 for the 15-item test, and

a3 = .57 and .76 for the 45-item test) and negative bias for the larger item discrimination

parameters (i.e., a3 = 1.51 for the 15-item test, and ai = 1.32 and 1.77 for the 45-item test).

This shrinkage effect was observed only for MBE for sample size 100 and for MCMCI in the

sample size 100 and the test length 15 condition.

MBE yielded different patterns of bias than did the other procedures. These differences

were more evident for the 100-examinee condition, and diminished as the sample size

increased 300. MCMCI yielded bias patterns somewhat closer to those for MBE. The

patterns of bias for MCMCU and MMLE were similar.

The bias results for item difficulty are reported in Table 6 and Figure 5. The pattern

of results was somewhat different from that for item discrimination. For the both 15- and

45-item tests, all estimation procedures yielded nearly the same pattern of essentially no

bias. For the 100-examinee condition, MMLE yielded slightly larger bias. The 300-examinee

condition yielded somewhat more stable bias results than did sample size 100.

Insert Table 6 and Figure 5 about here

Discussion

Previous work with the MCMC method using Gibbs sampling suggests this method may

provide a useful alternative method for estimation when small sample sizes and small

numbers of items are used. Even though implementation of the Gibbs sampling method

in IRT is available in several computer programs, the accuracy of the resulting estimates

have not been thoroughly studied.

The computer programs BUGS (Spiegelhalter et al., 1997) and CODA (Best et al., 1997)

as well as the accompanying manuals are freely available over the Web. The uniform resource

locator (URL) is:

http: //www .rarc-bsu. cam . ac .uk/bugs/

The simulation results of this study indicate that MBE via BILOG yielded better item

parameter estimates than other methods. A similar conclusion can be found in Baker (in

press).
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The Gibbs sampling and general MCMC methods are likely to be more useful for

situations where complicated models are employed. For example, Gibbs sampling can be

applicable to the estimation of item and ability parameters in the hierarchical Bayes approach

(Mislevy, 1986; Swaminathan & Gifford, 1982, 1985, 1986). In this study the priors were

imposed directly on the parameters. Accuracy of the Gibbs sampling method with different

kinds of priors has not been investigated. This kind of research may be particularly valuable

for small samples and short tests.

The focus in this paper was estimation of item parameters. One of the possible advantages

of using Gibbs sampling or general MCMC methods, and something to consider in future

research on these methods, is incorporation of uncertainly in item parameter estimates into

estimation of ability parameters (cf. Patz & Junker, 1997).
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Table 1
LSAT6 Item Parameter Estimates and Standard Errors (s.e.)

BUGS BILOG
MCMCI MCMCU

Parameter Item Estimate (s.e.) Estimate
A3 1 .79 (.26) .85

2 .72 (.19) .73
3 .88 (.23) .97
4 .69 (.19) .66
5 .66 (.21) .65

(3 1 2.78 (.21) 2.82
2 .99 (.09) 1.00
3 .25 (.08) .26
4 1.30 (.10) 1.28
5 2.07 (.14) 2.07

(s.e.)
(.29)
(.23)
(.51)
(.19)
(.22)
(.23)
(.10)
(.09)
(.10)
(.14)

24 26

MBE MMLE
Estimate (s.e.) Estimate (s.e.)

.85 (.21) .83 (.25)

.76 (.16) .72 (.19)

.87 (.19) .89 (.23)

.74 (.16) .69 (.19)

.73 (.17) .66 (.20)
2.79 (.18) 2.77 (.20)
1.00 (.09) .99 (.09)
.25 (.08) .25 (.08)

1.30 (.10) 1.30 (.10)
2.09 (.13) 2.05 (.13)



Table 2
Root Mean Square Differences (RMSD) and Correlations for Item Discrimination

Averaged Over Four Replications

BUGS BILOG
Sample Item MCMCI MCMCU MBE MMLE

RMSD 100 15 .304
100 45 .302
300 15 .224
300 45 .199

Correlation 100 15 .668
100 45 .677
300 15 .823
300 45 .864

27
25

.372 .255 .412

.372 .255 .348

.271 .205 .254

.221 .181 .216

.668 .667 .657
.667 .679 .676
.811 .819 .815
.861 .863 .860



Table 3
Root Mean Square Differences (RMSD) and Correlation for Item Difficulty

Averaged Over Four Replications

BUGS BILOG
Sample Item MCMCI MCMCU MBE MMLE

RMSD 100 15 .329 .322 .315 .334
100 45 .345 .355 .298 .352
300 15 .200 .210 .174 .207
300 45 .219 .223 .197 .224

Correlation 100 15 .951 .953 .955 .950
100 45 .946 .944 .958 .942
300 15 .983 .981 .987 .981
300 45 .977 .976 .981 .975



Table 4
Mean Euclidean Distances (MED) Averaged Over Four Replications

Sample Item
BUGS BILOG

MCMCI MCMCU MBE MMLE
100 15 .398 .436 .359 .451
100 45 .400 .440 .344 .423
300 15 .255 .277 .234 .268
300 45 .252 .266 .230 .262
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Table 5
Bias Results for Item Discrimination

Sample Item Disc.
BUGS BILOG

MCMCI MCMCU MBE MMLE
100 15 .66 .160 .158 .19 .14

1.00 -.001 .016 -.02 .00
1.51 .044 .182 -.07 .23

100 45 .57 .104 .085 .16 .07
.76 .052 .044 .08 .04

1.00 .071 .095 .03 .08
1.32 .050 .146 -.04 .12
1.77 -.120 .037 -.25 -.01

300 15 .66 -.056 .047 .08 .05
1.00 -.004 -.004 -.02 -.01
1.51 .046 .141 -.02 .11

300 45 .57 -.036 -.042 .02 -.04
.76 .066 .062 .07 .06

1.00 .020 .024 .01 .02
1.32 .002 .023 -.04 .01
1.77 .143 .235 .07 .20



Table 6
Bias Results for Item Difficulty

Sample Item Diff.
BUGS BILOG

MCMCI MCMCU MBE MMLE
100 15 -1.38 .05 .05 .03 .07

.00 -.00 -.01 .00 .00
1.38 -.04 -.04 -.01 .05

100 45 -1.90 .03 .04 .05 .11

-.95 -.08 -.10 -.06 -.08
.00 .03 .03 .02 .03
.95 .07 .04 .05 .09

1.90 -.15 -.16 -.15 -.22
300 15 -1.38 -.02 -.03 -.01 -.01

.00 .01 .01 .01 .01
1.38 .06 .07 .04 .06

300 45 -1.90 .08 .07 .07 .11

-.95 -.08 -.09 -.07 -.09
.00 .03 .03 .03 .03
.95 -.05 -.04 -.05 -.05

1.90 .01 .01 .00 -.01

31
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Figure Captions

Figure I. A directed acyclic graph for LSAT6 data.

Figure 2. Convergence with starting values for LSAT6 item 1 (A1 and (i)

Figure 3. Traces plus Gelman and Rubin shrink factors for LSAT6 item 1 (A1 and (1).

Figure 4. Bias plots for item discrimination.

Figure 5. Bias plots for item difficulty.
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Appendix

model lsat6;

const

I = 1000,

J = 5;

var

y[I,J], theta[I], lambda[J], zeta[J], b[J];

data in "lsat6-s.dat";

inits in "lsat6.in";

{

for (i in 1:I) {

for (j in 1:J) {

logit(p[i,j]) <- lambda[j] *theta[i] + zeta[j];

y[i,j] dbern(p[i,j]');

}
theta[i] dnorm(0,1);

}

for (j in 1:J) {

lambda[j] 7 4norm(0,1) I(0,);

zeta[j] dnorm(0,0.0001);

b[j] <- zeta[j]/lambda[j]
}
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