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History and Aims of the PME Group

PME came into existence at the Third International Congress
on Mathematical Education (ICME 3) held in Karlsruhe, Germany,
in 1976. It is affiliated with the International Commission for
Mathematical Instruction.

The major goals of the International Group and of the North
American Chapter (PME-NA) are:

1. To promote international contacts and the exchange of

scientific information in the psychology of mathematics
education;

2. To promote and stimulate interdisciplinary research in the
aforesaid area with the cooperation of psychologists,
mathematicians and mathematics teachers;

3. To further a deeper and better understanding of the psycho-
logical aspects of teaching and learning mathematics and
the implications thereof.
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Preface

This program began with a meeting of interested volunteers
in October 1996 at Panama City, Florida during the 18th PME-NA
meeting. The results of the ideas discussed and suggestions made
were taken to a meeting of the local program committee at Illinois
State University where the theme of the psychological underpinnings
of mathematics education was selected. This theme became the fo-
cus of two of the plenary sessions. Perspectives from cognitive psy-
chology about the foundations of learning mathematics are presented
in a paper by James Greeno. Children’s intuitions about numbers are
discussed from the perspective of developmental psychology in a
paper by Robbie Case. A special memorial lecture in honor of Alba
Thompson given by Suzanne Wilson is also planned, but the paper
dealing with reform and issues surrounding it was not available at
the time these proceedings went to press. Alba was both an active
member of PME and a former faculty member at [llinois State Uni-
versity. Hence, the local program committee decided to include this
memorial to her in the program of the PME meeting held in her former
city of residence.

Included in the Proceedings are 68 research reports, 9 dis-
cussion groups, 40 oral reports, and 41 poster presentation entries.
The research reports and the one-page synopses of discussion groups,
oral reports, and poster presentations are organized by topics follow-
ing the pattern begun with the Proceedings of the 1994 PME-NA
meeting. Additionally, an alphabetical index by author is provided
in both volumes. Initially 238 proposals were received with 218 for
research reports, 11 oral reports, and 9 discussion groups. Proposals
for all categories were blind reviewed by three reviewers with exper-
tise in the topic of submission. Cases of disagreement among re-
viewers were refereed by a subcommittee of the Program Committee
at Illinois State University. The process resulted in the acceptance
without reassignment of about 33% of the research report proposals

with an overall acceptance rate across all categofics of about 58%.
Submissions for the Proceedings were made on disk and read
by the editors. The format of the papers was adjusted to make them




uniform but substantive editing was not undertaken. Papers are
grouped by topic area for the table of contents and cross referenced
alphabetically in the index to both volumes by the first author.

The editors wish to express thanks to all those who submitted
proposals, the reviewers, the 1997 Program Committee, and the PME-
NA Steering Committee for making the program an excellent contri-
bution to the growing body of research and discussions about psy-
chology and mathematics education. The Program Chairs would like
to extend our special appreciation to the mathematics education fac-
ulty at Illinois State University for their support and generous contri-
butions to the preparations for the conference.

Jane O. Swafford
John A. Dossey
October 1997
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EQUITY, TEACHING PRACTICES, AND REFORM:
MATHEMATICS TEACHERS DISCUSS THE
IMPACT OF THE SAN JOSE MATHEMATICS
LEADERSHIP PROJECT
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This paper reports on an interview with four high school mathematics teachers in-
volved for three years in an intensive staff development project. We identified changes
in beliefs and concomitant classroom practices, as well as requisites and deterrents to
change.

Introduction

During the 1993-1994 school year, two of the auihors commenced an ex-
tensive staff development project with high school mathematics teachers in the
South San Francisco Bay area. Three broad goals guided the National Science
Foundation (NSF) funded San José Mathematics Leadership Project' (hence-
forth referred to as *‘the project™): 1) To facilitate the on-going professional
development of mathematics teachers as recommended by the National Coun-
cil of Teachers of Mathematics (MCTM, 1991); 2) To enkunce the content knowl-
edge of mathematics teachers; and 3) To update and enhance the pedagogical
knowledge of mathematics teachers to enable them to meet the challenges of
proposed curricular innovations (see Becker & Pence, 1996).

The NCTM reform documents (1989, 1991, 1995) have called for changes
in K-12 mathematics curriculum, instruction, and assessment. Inaddition, gov-
emmental agencies (see The Task Force on Women, Minorities, and the Handi-
capped in Science and Technology, 1988) and business and industry leaders in
the United States (see Johnston & Packer, 1987) have advocated such reforms.
In response to these calls for change the project was begun as a multi-year
extension to the one-year Equity 2000 staff development project, a nationwide
program initiated in six cities in 1991,

In this paper, we report our findings from an interview conducted with four
teachers who had been involved with the project from its inception. The main
interest of the authors was 1o ascertain whether the project had impacted teach-
ers’ beliefs and classrcom practices. Various researchers have highlighted the

"The project discussed i this paper was supported by grant #TPE 9155282 from the

National Science Foundation Teacher Enhancement Program, 1993-1997. The opin-

ions expressed in this paper are those of the authors and do not necessarily reflect those
of the National Science Foundation.




importance of teacher beliefs to change teacher behavior. (Cooney & Jones,
1988: Emest, 1991). Though connections between teachers’ beliefs about math-
ematics and their classroom practices have been made (Ernest, 1991; Carpen-
ter & Fennema, 1992), beliefs are also influenced by other factors in the con-
text of the school and classroom (Peluso, Becker, Pence. 1996). In this study,
we asked the teachers a series of questions to learn about school- and class-
room-level factors that influenced their beliefs and practices.

Participants

Four European American high school mathematics teachers, two women
and two men, were interviewed in the Spring of 1996. All four interviewees
had participated for three years in the project. Ms. Gray had 18 years of expe-
rience teaching high school mathematics at various schools. Ms. Ruth had
taught for 10 years at a large urban high school in which the composite minor-
ity population were in the majority. Mr. Davis had 34 years of teaching expe-
rience while Mr. Sims had spent 28 years teaching mathematics at the high
school level. Both worked in the same suburban school district, though at
different schools. The teachers’ schools ranged in size from 1200 to 4000 stu-
dents, with a representation of students of color ranging from 20% to 75%.

Methodology

The approach to voice scholarship chosen in this study was narrative in-
quiry. This research methodology allowed the research participants to define
the important issues in their own terms (Riessman, 1993). In the spirit of a
narrative inquiry 2approach to qualitative research, we asked the research par-
ticipants seven broad gquestions to motivate discussion, supplemented by four
probe questions to illuminate various aspects of the respondents’ responses.
While our principal goal was to learn about how the teachers’ involvement in
the project had impacted their beliefs and practices, other issues came to the
fore during conversations that ensued.

Research Findings

We classified the themes that emerged from the interview with the four,
third-year project participants into the following four categories: the teachers’
classroom practices, issues related to equity. requisites identified for classroom
reform, and deterrents to change.

Classroom Teaching Practices

Throughout the interview, the teachers discussed their practices as aligned
with the “reform movement™ as opposed to more traditional mathematics in-
struction. To highlight’tpis difference. sample narratives that the teachers pro-
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vided are presented to illustrate how their practices differed from their *“tradi-
tional” colleagues.

Mr. Sims described one of his typical lessons:

A typical class for me to answer your question is ten minutes of expla-
nation of what the activity, no not even ten, five minutes perhaps at the
maximum at the beginning to talk about, to set the overview for today's
lesson. The students move into their teams and then interact with teams,
and I have team rules that are on the front board that have been estab-
lished since September. Essentially, it (my class) is very student-cen-
tered. We use computers on roughly 40% of the time because we have
a wonderful computer lab that we got from an Apple grant.

Ms. Gray explained that in her classes she requires her students to write:

My students are doing portfolios, especially in Algebra I ... Some
(say) . .. that they did more writing in math (in her classes) than they
do in English as they formulate their ideas.

Mr. Davis reflected upon his practices in the context of his use of the Col-

lege Preparatory Mathematics: Major Change from Within (CPM) textbook
series (Sallee & Kysh, 1990):

Three years ago, four years ago, { was doing the usual routine; We
had a textbook and you would cover, either cover the new material first
and then answer questions on the old material or vice versa. It was
pretty teacher-oriented, and very rarely did they (the students) have
any time in class to work on anything. With CPM, it’s very difficult to
do anything but student-centered because the texthook doesn't have
any examples.

Though these quotes provide only small insights into the teachers” prac-
tices. they give a sense of how the teachers viewed their teaching as distinct
from many of their colleagues’. Among these mathematics teachers who con-
sidered themselves “reform” teachers, large differences were present in their
beliefs and corresponding practices. Certatnly, many discrepancies also exist
among teachers who may classify themselves as “traditional.” Putt ng these
variations among iike-minded teachers aside, the critical point is that all four of
the participants in this interview considered themselves adherents to the reform
agenda in mathematics education. This ascribed allegiance differentiated them
from many of their colleagues who they frequently referred to as “traditional™
teachers.




Equity Issues

A variety of issues related to equity emerged during the interview session.
The teachers defended the reform agenda as a means to more appropriately
teach mathematics to the majority of students. Here there was evidence that
the project had substantially changed teachers’ expectations for students which
translated into changes in curriculum and instruction. Mr. Sims stated:

When she (a speaker) said all kids take Algebra One/Geometry/Alge-
bra Two in that booming voice of hers ... and then she described the
population . . . these are not sons and daughters of Stanford professors.
... [That] made a huge impact on myself and two others in our group.
We never would be where we are because we thought we were doing
the right things for our kids [by tracking].

In Ms. Ruth’s district, all 9th graders were enrolled in Algebra as part of the
Equity 2000 program. In light of this fact, Ms. Ruth argued that it was inappro-
priate to teach many of her students college preparatory mathematics, demon-
strating her less than full acceptance of Equity 2000 gouls. However. she pointed
out that in order for students to be successful, instruction must change:

But we cannot teach math in the same traditional way. If you have
Algebra for All students coming at the 9th grade, what kind of algebra
can you teach these kids?... I'm sorry to say, we are still basically
following the traditional Algebra-Geometry-Algebra type of curricu-
lum and our failure rate is extremely high because of that.

Ms. Gray asserted that reforms in mathematics education were positively
impacting the majority of students who were not college bound:

You see kids who are blossoming also and changing direction paths. 1
gave this young lady who is struggling to get a D the problem abour
car racing. . . . She did research into newspapers and it was a door
opening {experience) for her, an encouragement.

An overriding goal of the teachers was that all of their students have access
to a powerful mathematics curriculum. At the time of the interview, approxi-
mately 70% of the students at Mr. Sims’ school. who in the past would have
been placed in the lower-tracked Math A/Math B sequence, were passing Alge-
bra One. In reference to these students” grades in Algebra One, Mr. Sims said:

Nenvawe're nottalking about As and By, we 're talking abowt Cs and Dy,

But stdl we look at this and said, “What would have happened 1o these
kids otherwise?’




Throughout these conversations, all of the teachers raised issues pertinent
to equity. In particular, the teachers believed that all students need to study
algebra.

Requisites for Classroom Change

Aside from the obvious requirement to learn about the reform, the teachers
identified a number of important necessities to assist their change efforts, in-
cluding: networking, a critical mass of support within school, and availability
of reformed textbooks.

Ms. Ruth and Mr. Sims agreed that the greatest benefit of the project was
having the opportunity to meet other people. Mr. Sims stated:

I think that one of the things that has been the most valuable for me is
to meet the teachers from other schools and other school districts and
to share ideas with them and find out what is going on at the different
schools.

This networking, while not an explicit goal of the project, emerged as a
recurrent theme in this and other research with project participants (Becker &
Pence, 1996).

Discussions that occurred throughout the interview generally reiterated the
importance of having a majority or a critical mass of the mathematics faculty
committed to change for the reform effort to be successful at the school-level.
Because five out of the eight mathematics teachers on Mr. Sims’ faculty had
been actively involved in the project, “tremendous change has happened at my
school as a result of this (project).”

The acquisition of innovative textbooks played an important role in chang-
ing the mathematics curricufum at several schools. While explaining their typical
lessons, both Mr. Davis and Mr. Sims discussed the importance of the text to
create a student-centered classroom. Furthermore, certain texibooks allowed
for the incorporation of technology more than others. Mr. Sims discussed the
benefits of the direct inclusion of technology in textbooks in the context of his
work load:

In Geometry, [ love Sketchpad. It works for me again because I have a
program in place - Serra [1989]. Serra has the program Sketchpad
directly tied to the course. You don’t have to stuy up until midnight to
Sigure out what you are going to do the next dav. It's there, it's ready,
and it’s wonderful.

An issue that also emerged was dependence on the text to implement re-
form. Given the teachers’ heavy workload. perhaps it is not surprising that
these teachers wanted reformed curriculum materials to fucilitate their efforts
to change how they taught mathematics.
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Deterrents to Change

The teachers identified two major obstacles that they faced in their efforts
to change how they taught mathematics: fack of peer support and the insuffi-
cient alignment of assessment to reform. Mr. Davis who had 34 years of teach-
ing experience said:

A lot of people have been around . . . and they saw. I've seen what
happened to SMSG (it fuiled). They're saving mavbe this is just an-
other fad like that SMSG . . . and so we'll wait and see if it catches on.

A barrier to reform that cannot be overlooked is the lack of support from,
and even the resistance of, one’s peers. Ms. Ruth expressed her frustration:

I know that at Chavez High School when I suggested something it was
like talking to a brick wall. . . . They don’t want to change.

The teachers also discussed their classroom assessment practices, as well
as standardized, large-scale examinations. Ms. Gray would have liked to have
learmed more about assessment through her participation in the project:

This curriculum change has taken us three vears to do and to change
your assessment takes research, it tukes other people to support vou, it
takes too much. [ think that's part of the project that needs, that didn’t
ger touched enough. We changed the curriculum, but no one has
changed how they grude.

Mr. Sims characterized how assessment should also reflect his efforts to
engage his students in mathematical discovery. Furthermore. changing one’s
assessment practices was critical to implement reform:

[ agree with Ms. Gray, assessment hus to drive the curriculum, espe-
cially if vou want to have change and we haven't done enough with it.
I want to change but again it's a time issue. Gee, do I have time to
really sit down and think about what 1'd like to have done in the cluss-
room? We are already (working) 10-12 hour davs and to change into
something as important as this, vou've got to have something ready.

The teachers were concerned about the failure of large-scale examinations
such as the SAT to reflect the goals of the reform movement. Ms. Gray indi-
cated that this lack of alignment made her nervous. **Yeah,” said Mr. Sims, “we
have to care about our kids!™ These two experienced, caring mathematics teach-
ers were obviously conflicted between teaching mathematics in a less tradi-
tional manner and preparing their students for high-stakes. large-scale exami-
nations.




Conclusion

The teachers’ narratives demonstrated that their involvement in the project
had impacted their beliefs about issues related to equity. The teachers dis-
cussed the importance of access to algebra for all students and the concurrent
need to change instruction. The value of networking, the value of a “critical
mass” of support from colleagues from the same school, and the availability of
reformed textbooks were identified by the teachers as requirements for class-
room change. In contrast, the teachers described how a lack of peer support,
and inadequate alignment of their classroom assessment practices and stan-
dardized examinations to reform goals as the primary barriers to change.
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This is an account of a sixth-grade teacher’s (Ivy) practice as she responds to the chal-
lenges of reforming the content and process of her mathematics teaching. We analyzed
two sets of classroom observations and interviews to understand how Ivy teaches new
mathematics material to her students. Ivy creates a trajectory for student participation
consisting of steps of mathematical knowing and activities to move students from onc
step to the next. vy monitors students’ progress along this unchanging trajectory. The
understanding of Ivy's practice provided by the account can contribute to understand-
ing the nature of teachers’ solutions to the problems posed by the reform movement
and the processes by which mathematics teacher development can oceur.

Background

The current mathematics reform agenda (cf. National Council of Teachers
of Mathematics, 1989, 1991, 1995) places significant demands on teachers to
change the content and process of their mathematics teaching. Teachers re-
spond to this challenge in a variety of ways that reflect their knowledge, be-
liefs, motivations, and the meanings that they give to their teaching and profes-
sional development experiences. Through investigating teachers® participation
in the reform, rescarchers can construct knowledge of teacher development
from traditional towards reform practices. This paper presents a theoretical ac-
count of the teaching practice that Ivy has developed as she participates in
mathematics education reform. By using “practice™ we refer to the whole of
what the teacher does in the classroom which includes planning, assessing, and
interacting with students. as well as everything she knows, believes, and thinks
about what she does.

Ivy is a participant in the Mathematics Teacher Development Project (MTD),
a4.5-year rescarch project studying elementary mathematics teacher develop-
ment. The MTD Project brings together practicing and prospective teachers in
an intensive 3-ycar instructional program designed to promote the develop-
ment of both groups. Our research includes case studies of practicing teachers.
The analysis discussed in this paper is based on data collected prior to the
beginning of the MTD instructional program. and reflects Ivy's adaptation to
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her experiences teaching mathematics and to her prior professional develop-
ment opportunities, both situated in communities committed to mathematics
education reform.

Theoretical Framework

The MTD Project uses a teacher development experiment methodology
(Simon, in press) that combines whole class teaching experiments (Cobb, in
press) in teacher education classes with case studies of teachers. The teacher
development interventions of the project contribute to and are dependent upon
understanding teachers’ thoughts, feelings, beliefs, motivations, and actions
related to their teaching practice. We organize our understandings of teachers’
practices by generating theoretical accounts of that practice. These accounts
represent our commitment to articulate how the teacher organizes her experi-
ential realitics with respect to teaching. In other words, we strive to create a
coherent story of the teacher's practice by explaining the teacher's perspective
Sfrom the researcher’s perspective (Simon & Tzur, 1997).

This lust phrase distinguishes our work from both deficit studies of teach-
ers and from work in which the teachers articulate their own perspectives (cf.
Schifter. 1996). Thinking about “'the teacher’s perspective from the researcher’s
perspective” involves a subtle, but important distinction. The researchers at-
tempt to understand and articulate the teacher’s approach to the problems of
practice: how and what the teacher perceives and how she makes sense of,
thinks about, and responds to the situations as she perceives them. However,
the result may be very different from what the teacher would say about her own
practice. We structure our accounts of the teacher’s practice using particular
conceptual lenses, often not shared by the teacher. that define our focus and
guide our interpretations.

Particular conceptual enses that we bring to thinking about mathematics
teaching are described by Simon (1995). This work characterizes mathematics
teaching as including a process of generating and constantly modifying hypo-
thetical learning trajectories (HLT) for students™ learning based on the teacher’s
current (evolving) understandings, particularly of the mathematical terrain and
of the students’ mathematics. The paradox that we work within is that generat-
ing theoretical accounts of teachers’ practice involves setting aside our current
view of practice in order to conceptualize the teachers’ practice. Yet, our cur-
rent view of practice structures our perception of the teachers” practice and is
thus fundamental to what we notice (pay attention to).

Methodology

We generated our inttial account of Ivy's practice based on two sets of data
{videotaped classroom observations and audiotaped interviews) collected prior
to the beginning of the instructional program. One set of data consists of two
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consecutive, related (in terms of subject matter) mathematics lessons and - ter-
views before, between, and after the lessons.

The central question that guided our line-by-line analysis of the data was:
“How does Ivy endeavor to teach her students mathematics that is beyond what
the students already know?”” We watched and listened to tapes with accompa-
nying transcripts. Each section of the data that seemed to pertain directly or
indirectly to the central research question was discussed, resulting in either
tentative inferences about what it revealed or questions about how those data
might be interpreted. As the analyses proceeded, we generated hypotheses to
explain larger chunks of data, and revised these hypotheses as indicated by
subsequent data.

Ivy’s Practice

Ivy is a sixth-grade teacher in a district that promotes reform principles.
The district provides a list of grade-level outcomes pertaining to specific con-
tent areas, giving teachers the freedom and responsibility to create learmning
activities and materials for their students.

vy views her experiences as a student in traditional mathematics classes as
having failed to foster understanding. In the context of her teacher preparation
program and her classroom teaching, Ivy has developed her ability to under-
stand mathematics and has used this ability to improve her understanding of
particular mathematics. Based on her experience both as a teacher and learner
of mathematics, Ivy believes that students learn better through active participa-
tion and “seeing” for themselves. Her preference is to avoid telling students
what they should know. As an alternative, Ivy structures her lessons so that her
students work in small groups, use manipulatives, and share their ideas during
whole class discussions. While analyzing the data. we noted the role of particu-
lar sequences of activities in Ivy’s lessons and her responses to students’ contri-
butions. Following is an articulation of our account of Ivy's practice.

Ivy’s goal is to make the mathematics meaningful for her students. For Ivy,
particular mathematics is meaningful when one sees how that mathematics has
come about. Towards this end, Ivy devises a trajectory intended to build some
aspect of mathematics through a set of intermediate steps of knowing. These
intermediate steps, or “landmarks”, are connected by activities designed to move
the students from one landmark to the next. Thus, Ivy’s lessons are organized
by a trujectory that represents her ideas on how the mathematics comes to have
meaning. Students’ understanding of the muthematics is a result of their navi-
gating successfully each step in that trajectory.

Ivy's primary commitment is to maintain student progress along the trujec-
tory. Our analyses of the choices she makes throughout her lessons suggest that
she uses this trajectory as a lens through which she considers students’ contri-
butions. She highlights and supports contributions that have the potential to

367




advance most of the students along her trajectory. In contrast, when students
contribute ideas that are deviations from the trajectory, Ivy uses a variety of
techniques tc direct them back to the trajectory, i.e., towards the next landmark.
Below, we present data that illustrate a teaching trajectory devised by Ivy, and
how the trajectory influences her responses to students’ contributions.

Ivy’s goal for this particular lesson was for the students to figure out the
formula for the area of a triangle. Ivy created a learning trajectory based on her
sense of what makes the formula meaningful, selecting some activities from
resource materials. Ivy explained, “We are building off those right triangle ideas
because that is where the formula builds from which is actually from rect-
angles. So | am trying to take them from rectangles to right triangles to non-
right triangles.”

Her trajectory proceeded through the following steps: (a) Children use the
geoboard to discover a way to determine the area of a right triangle. vy in-
tended that they would find the area of the circumscribed rectangle and divide
it by two. (b) Children compute the area of as many different right triangles as
they can produce on the geoboard. (c) Ivy creates a chart to record the base.
height, and area of the triangles for which the students determined the area. (d)
Ivy presents the children with the problem of finding a pattern, a formula, to
compute the area of a triangle given its base and height. (¢) Students determine
the area of non-right (oblique) triangler to determine if the formula holds for
non-right triangles.

For us, a key aspect of Ivy's teaching was reflected in her responses to two
students, Dave and Jim. When participating in the activity for step (a) above.
many of the students initially found the area of the triangle by estimating how
many squares the triangle contained. Ivy responded by challenging the stu-
dents to search for an exact method. Next, Dave doubled the triangle to form a
rectangle and divided the area of the rectangle by two. This time, Ivy responded
by paraphrasing Dave and emphasizing aspects of his method that were impor-
tant with respect to the trajectory. She then asked. “How many people like
[Dave’s solution]?” This is typical of how Ivy responds to contributions that
serve to move the students along her trajectory. In contrast, lvy’s response to
Jim illustrates how she handles deviations from her trajectory. Jim announced
his disagreement with Dave’s solution. [vy encouraged Jim to explain his ob-
jection. Jim attempted to explain his conflicting result which was based on an
estimation of partial squares. After telling Jim that he could not be sure that his
estimations were accurate, Ivy led Jim step-by-step through Dave's method by
asking a series of leading questions to which Jim replied with the anticipated
onc-word answers. Here we see Ivy concentrating on getting Jim to accept
Dave's solution and thus to see it as appropriate for use in the next step of the
trajectory (step (b) above).




Later in the lesson, Ivy asked the students to find the area of a non-right
(and acute) triangle. She expected them to find its area by dividing the triangle
into two right triangles. Some of the students took an approach that Ivy did not
anticipate: they circumscribed a rectangle around the non-right triangle. In the
interview following the class, Ivy talked about her assessment of the students’
understanding: “They haven’t seen that there are two right triangles created
inside . . . and we have got to find the area of the two right triangles.” As the
interview continued, Ivy explained what she would do if none of the children
saw the two right triangles.

Ivy: Make . .. some sort of obscure rule like . . . *“You have a rubber
band and it is only big enough to go around four pegs.” . . . usually, that
makes it so there is no choice but the choice that I am looking for. I
mean I feel that I could eventually tell them too. “Look at this. What
just happens if I do this?”

In summary, Ivy listens to her students to assess their progress along the
trajectory, not to explore their mathematics. For Ivy, learning is a result of trav-
eling the trajectory. When she perceives that the students are deviating from the
trajectory, she shepherds them back. She prefers to have students figure things
out for themselves, but if necessary, she would ask leading questions, impose
constraints, and tell the students what she wants them to know.

Discussion

Teachers participating in the mathematics education reform are struggling
to create useful alternatives to traditional teaching. This reform is not about
implementation of a monolithic model. Theoretical accounts of teachers’ prac-
tice, such as the one presented here, contribute to understanding teachers’ inter-
pretations of the reform, the meanings th.t they give to their teaching and pro-
fessional development experience, and the types of practice that they generate.

Our account of Ivy’s practice suggests that she has a particular orientation
toward teaching and leaming. Ivy provides her students with opportunities to
use their current knowledge to solve non-routine problems, to share their solu-
tions, and to make connections between different mathematical procedures and
concepts. However, Ivy views leaming as the result of successful movement
through a well-designed trajectory. Her role as a teacher then, is to design the
trajectory, listen to students’ ideas to determine the students’ progress along the
trajectory (the nature of their ideas does not influence the trajectory), and redi-
rect students’ attention back to the trajectory as needed.

Using our conceptual framework for thinking about lvy's ongoing profes-
sional development, we see the opportunity for her to modify her practice to
consider and build on the concepts of her students. However, an intervention
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that would precipitate and facilitate such a change would have to be compre-
hensive in nature. Gur account suggests that Ivy has a coherent practice, one
that is likely to structure how she interprets and assimilates professional devel-
opment opportunities. For example. she may interpret opportunities for her to
learn mathematics in a reform-oriented situation as providing trajectories that
her students could follow. Opportunities to focus on students’ thinking may be
seen as ways to know how students are progressing along an envisioned trajec-
tory. Thus, a successful professional development program would have to
af Accounts, such as this account of Ivy’s practice. can make an important con-
tribution to understanding teacher development. First. these accounts have the
potential to enhance understanding of the role of the teacher’s knowledge in
her practice and of the processes involved in the growth of interrelated areas of
teacher knowledge. Second, accounts that characterize the thinking, feeling,
acting teacher are needed in order to understand the impact of particular pro-
fessional development opportunities on teachers’ practice. Third. effective
teacher education efforts require useful understandings of teachers’ current prac-
tice. In other words, to create a hypothetical fearning trajectory (Simon, 1995)
for teacher education, we need accounts of teachers™ practice as well as in-
formed visions of where these teacher education efforts might lead.
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CURRICULUM TO ENCOURAGE STUDENT
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This paper describes two high school teachers’ interpretations of and classroom expe-
riences with a reform-oriented mathematics curriculum. The focus is on the teachers’
conceptions of cooperative explorations of mathematical situations. The results elabo-
rate how the curriculum materials presented a challenging vision of instructional prac-
tice for one teacher, and a constraint to the fulfillment of a personal vision for another
teacher.

Growing consensus in the mathematics educatior community embraces
the notion that if students are to construct meaningful mathematical under-
standings. their classroom experiences. and therefore the instruction that en-
ables and supports those experiences, must change. In demanding changes in
both the content and activity of the mathematics classrcom, reform recom-
mendations challenge a lasting tradition of mathematics curriculuin and in-
struction (Gregg, 1995; Richards, 1991; Romberg & Carpenter, 1986). The
impressive durability of traditional teacher-centered, procedure-oriented in-
struction in the mathematics classroom raises the question of how veteran
teachers make sense of and deal with calls for reform. This paper describes the
conceptions and experiences of two high school tzachers attempting to imple-
ment a reform-oriented mathematics curriculum that explicitly supports the
goals of the Standards (National Council of Teachers of Mathematics, 1989).
In particular, we focus on the teachers’ beliefs about the meaning and impor-
tance of cooperation and exploratory problem-solving. How do teachers’ be-
liefs about these issues relate to their interpretations of innovative curricula?

Participants, Site, And Design

An interpretive case study design (Stake, 1995) was followed to investi-
gate the conceptions and classroom practices of two veteran high school math-
ematics teachers. Participating teachers were chosen from a public school dis-
trict in the Northeast U. S. where the curriculum materials of the Core-Plus
Mathematics Project [CPMP] were being field-tested. Each teacher joined the
project during his or her first year of CPMP implementation. The CPMP ma-
terials encourage and support teachers in organizing the classroom so students
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can work cooperatively to explore mathematical concepts and problems (Hirsch,
Coxford, Fey, & Schoen, 1995).

Primary data sources were teacher interviews and classroom observations
conducted between September 1994 and January 1997. Because the teachers
were participants in a larer ongoing project, the number of interviews and
observations (and the time of those activities) varied for the two teachers dis-
cussed in this paper. Over a 3-year period. Mr. Allen participated in more than
20 interviews and 100 observations (57 of which were video taped). Ms. Fay
was interviewed four times and observed ten times during year 3 of the study
(her first year of CPMP implementation). Individual interviews invited teach-
ers to reflect on recent classroom events, and several group interviews ailowed
teachers to discuss and compare their experiences. Interviews were audio-re-
corded and transcribed. ficldnotes were taken during classroom observations.
and all observations were audio-recorded and approximately half were video-
recorded.

Results

The Challenges of Curriculum Implementation:
The Case of Mr. Allen

Before he began teaching with the CPMP materials, Mr. Allen expressed
enthusiasm about the innovative activities and instructional formats: "It sounded
neat to me. the idea that it was hands-on. that it was more group work. that the
teacher wasn’t going to be the focus anymore.” Throughout his first three years
implementing the curriculum, Mr. Allen repeatedly communicated his overall
satisfaction with the CPMP materials and positively differentiated the activi-
tics from those found in traditional textbooks. For instance. he indicated that
the CPMP activities require students to engage in more “scnse-making” by
“attacking a problem, reading it. and struggling with it.” He was pleased that
the activities center on “realistic situations rather than having a bunch of made-
up bock type problems.” Mr. Allen’s described how, for example, “The kids
come up with the objective or understand a little bit more about what a variable
can represent based on some practical situations where things are related.”™ His
valuation of the "mwore investigative™ approach of CPMP was evidenced on
numerous oecasions in the classroom when he suggested ways that students
could use their “different”™ approaches and solutions to yield discussion and
further learning in the group setting. Mr. Allen believed the cooperative group
work in the CPMP program would enhance students™ experiences thinking about
the problems and give students “more ownership™ of the mathematics under
consideration. In contrast, he pointed out how “traditional exercises are some-
thing that you can do by vourself. There's not a lot of discussion asked or de-
scribing asked. It's more or less just get an answer or do some task and get it
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done. . .. It's not like you can sit in a group and let one person do this part and
one person do the other part.” His alteration of several CPMP activities to more
effectively “split up the work” among group members further evidences the
importance to Mr. Allen of cooperative activities requiring explicit collabora-
tion among group members.

Although Mr. Allen repeatedly expressed his appreciation for cooperation
and exploration components of the CPMP curriculum, there were numerous
occasions when he struggled with enacting these components in his classroom.
Mr. Allen reported that while working on CPMP problems, students repeatedly
asked him questions about “what they need to do.” Mr. Allen suggested, “They
want to mull over these questions like they 're right and wrong rather than think-
ing about them and giving a basis as to why they answer a question one way or
another.” Due to his concemns, Mr. Allen often felt compelled to provide more
direction than the curriculum materials recommend: “To keep the flow of the
class going I want to get in there and help them a little bit.” During Mr. Allen’s
first year, a typical class session involved him circulating among the groups
offering directive hints :ind instructions. In his second and third years, Mr. Allen
aimed to help students acquire “a decent sense of what they're doing” by con-
ducting extensive whole-class discussions. Although Mr. Allen believed that
students should discuss and learn important ideas in their small groups, he
claimed that teacher-directed instruction (particularly in whole-class formats)
was necessary to insure that students considered all of the important material.
He commented, “Even though {"m giving them more direction, it’s giving the
students more incentive to keep going and make the attempt on the problems.”
Mr. Allen also recognized that his concerns about keeping students “on task™
and “'moving through the materials™ caused him “to be the opposite of what
[CPMP is] really trying to emphasize™ and he expressed a continued desire to
“balance it and not go overboard and start doing every problem for them.”

For Mr. Allen, the CPMP materials offered a powerful vision of instruc-
tional practice that helped him to frame his classroom goals and struggles. Over
his three years of implementation of the materials, he maintained a favorable
view of the curriculum’s philosophy and repeatedly expressed the hope that he
would eventually develop a practice more consistent with the “CPMP way.”
Providing an interesting and informative contrast to Mr. Allen’s case, the fol-
lowing section discusses another teacher’s experience implementing the CPMP
curriculum.

The Constraints of Curriculum Implementation:
The Case of Ms. Fay

When describing her vision of mathemuatics teaching and learning, Ms. Fay
expressed an interest in “giving a really rich problem and letting the students
decide how they want to solve it Problem exploration would involve exten-




sive collaboration among students as they determine the “strategies and tools
that we have to solve these problems.” In contrast to teacher-directed instruc-
tion in which students “are only going to hear it one way,” with cooperative
work “they hear it from the kids, they hear it from other groups, and it becomes
a classroom of everybody teaching and everybody learning.” Ms. Fay wished
for the CPMP materials to support her in developing her practice to include
more student exploration and cooperation. As Ms. Fay began to implement the
.CPMP materials, she communicated her recognition of many of the things that
had originally attracted her to the curriculum, including the students “working
together” on “really great problems” with “interesting real-fife applications.”
She expressed that, in contrast to the traditional curriculum’s focus on *drill-
and-kill” with decontextualized skills and procedures, the CPMP program has
“really rich problems and the kids are working their way through them and
doing a good job.™

Despite the many positive aspects of CPMP, what she encountered as she
implemented the curriculum did not coincide as well with her vision as she had
hoped. In particular, she communicated disappointment with the opportunities
for student exploration and student collaboration within the CPMP materials.
Ms. Fay’s concern with the limited opportunities for student exploration re-
lated primarily to the structure of the activities: ' think the kids are really led
through the problem in Core-Plus. . . . Even though they are really good prob-
lems, it's handed to them how to solve it.” She believed the structured nature of
the typical CPMP problem limits students’ ability to develop “creative™ strate-
gies, solutions, and explanations, and therefore reduces the quality of the coop-
erative group work that can be based on them. This concemn relates to Ms.
Fay’s view that cooperative work allows students to articulate and extend their
understandings through “give-and-take”™ among group members who have “dif-
ferent ideas.” Because the guided problems often left ittle room for students to
“take responsibility for organizing and solving problems in their own vays.”
the full potential for cooperation to contribute to student exploration, uiscus-
sion, and understanding was difficult to achieve. In addition, Ms. Say felt that
the CPMP activities do not always require students to work in ways that she
considerad to he “collaborative.” She indicated, “Tt is hard to give group work
that can be done individually™ and suggested, “There is not a lot of work in
these books [CPMP] that require a shared interest like a jigsaw puzzle where
cach person takes a piece and we will work together—Each person can work
alone.™

Given the comments just presented. it is not surprising that Ms. Fay (like
Mr. Allen) expressed some concern und experienced some discomfort imple-
menting the group work aspects of the curriculum. She reported not observing
very much “give-and-take and discussing of ideas.”™ During several observa-
tions, Ms. Fay attempted to compensate for the lack of cooperation among
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students. For example, at the end of one lesson she engaged her class in a “domi-
noes” game (not part of the CPMP curriculum) in which the students could
“see that if they work together then they will have a better chance of winning
than if we do it individually.” Ms. Fay felt constrained in her ability to create
and implement open-ended problem situations that students could explore more
extensively than the suggested CPMP activities. She sensed that she lacked the
mathematical background necessary to develop contextualized problems and
relevant projects: “I don’t know this material. . . . I am learning right along with
them so I feel a little more boxed in by it.”” In addition, she felt that, as a mem-
ber of her mathematics department “where everybody tries to be at the same
place at the same time,” she needed to adhere to a particular timeline and activ-
ity sequence with the CPMP materials. Her colleagues desire to maintain a
uniform time frame and sequence through the materials was most problematic
to Ms. Fay because she greatly valued giving students ample time to explore
and “interact with each other—not just taking notes and trying to figure out
what the teacher wants.” Feeling “rushed” and “behind some of the other teach-
ers” contributed to her decisions at times to skip more in-depth or lengthy ac-
tivities and projects. Ms. Fay indicated that “if everybody did their own thing
then [she] would be teaching probably very differently.”

Discussion

The results of this study illustrate the striking differences in how reform-
oriented curriculum materials “look™ to teachers with different perspectives,
goals. and experiences. For both teachers, the structure of problems and activi-
ties was a critical feature in their interpretations of different curricula. How-
ever. as they described types of mathematics problems, there was remarkable
similarity between the comments Mr. Allen made about the traditional curricu-
lum and the comments Ms. Fay made about the CPMP curriculum. For ex-
ample, Mr. Allen’s comment that students in traditional courses can have the
attitude “Just tell me the steps I need to do and I'll do those,” resembles some-
thing Ms. Fay might say about many of the CPMP activities where she fears
students are simply “led through the problem.” Similar comparisons can be
made regarding both teachers” view that cooperative activities should require
cooperation among participants. This belief contributed to Mr. Allen’s disap-
pointment with the “too individual” problems of the school’s traditional cur-
riculum and Ms. Fay's disappointment with those of the CPMP curriculum.

Although Mr. Allen never criticized the cooperative nature of the CPMP
problems, he did occasionally adapt the activities to involve more “division of
the work so students would all have a part.” Mr. Allen’s more frequent concern
regarding group work, which was also voiced by Ms. Fay to a lesser extent,
involved difficultics with student behavior during group activities. Both teach-
ers frequently turned to having students work in pairs (rather than groups of
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four as recommended by the materials). Although the curriculum was designed
with the intention of supporting student collaboration and the teachers were
motivated to create student-centered classrooms, doing so was not always pos-
sible. The teachers’ comiments and classroom experiences indicate that the CPMP
materials do not always provide tiie types of mathematical activities that can be
used by teachers who are committed to requiring or encourage extensive coop-
eration among students. Whereas teachers’ struggles or failures to implement
the curriculum “as designed’” are frequently attributed to teachers’™ misunder-
standing of. disbelief in, or lack of appreciation for the philosophies anderlying
the curriculum’s proposed activities, these results suggest that teachers may
also struggle at least in part due to characteristics of the curriculum itself. These
results illustrate how the dynamic relation between teachers® conceptions and
particular curricular features (i.e., the cooperative nature of problems) shapes
teachers” experiences implementing novel materials in their classrooms.

The ways the two teachers in this study dealt with the cooperation and
exploration themes of the CPMP curriculum provides detailed information about
what is involved as teachers make sense of reform recommendations and vi-
sions. Ms. Fay and Mr. Allen’s experiences illustrate the importance to teachers
of certain curricular details (e.g.. styles of mathematical problems and activi-
ties), the types of concerns about students and learning that teachers have as
they use new materials, and ways that curriculum implementation provides a
context for teacher learning. As we study other teachers’ experiences with the
same curriculum, we gain even richer insights into how reform-oriented cur-
ricula appear to teachers and what implementation of such materials means to
them.
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A FOURTH-GRADE TEACHER IMPLEMENTS THE
“SPIRIT” OF THE NCTM STANDARDS

Diana F. Steele
Northern Illinois University
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What happens when an elementary teacher interprets and implements the “spirit” of
the NCTM Standards? The teaching and learning advocated in The Standards (NCTM,
1989, 1991} is based on a constructivist approach. Reshaping mathesnatics teaching
based on a constructivist view of learning presents a considerable challenge to an cl-
ementary teacher. This paper describes one teacher’s approach to this theory in prac-
tice. The researcher, as a participate observer in this classroom, used ethnographic
rescarch methods to collect data during cach mathematics class for 4 172 months. Data
analysis revealed 10 instructional strategies the fourth-grade teacher simultancously
used. While four of these strategies will be presented at the oral research report, one
specific teaching strategy during a classroom vignette is detailed in this written paper.

Mathematics teachers, teacher educators, and researchers involved in the
current reform movement in mathematics education suggest major changes in
the teaching of mathematics. They recommend that students become actively
involved in constructing their own knowledge and developing mathematical
concepts as they explore, explain. and justify solution strategies to mathemati-
cal tasks. Through engaging students in communicating about the processes
they use to reach solutions, teachers help them construct powerful mathemati-
cal knowledge by teaching in contexts of problem solving and reasoning about
mathematics. For many teachers, this “constructivist approach™ to mathemat-
ics teaching requires a change in their conceptions about mathematics and about
what it means to teach and learn mathematics (Steele & Widman, 1997). An
important step toward changing mathematics teaching is for teachers to see or
to read about alternative approaches to tcaching.

Theoretical Framework: Constructivist Learning Theory

The perspective of this researcher is a view of constructivism that com-
bines both cognitive and sociological components of constructivist learning
theory. According to the cognitive component of constructivism, students do
not passively receive knowledge but actively construct new knowledge based
on prior knowledge (Cobb, Yackel, & Wood, 1992). Piaget (1973) suggested
that individuals actively construct knowledge interally through their actions
on ebjects in the world and their reflections on these actions. The sociological
component of constructivism suggests that the teacher guides the students in
communicating their understandings through discourse and interaction (Cobb,
1994), Vygotshy (1978) stated that individuals construct knowledge in the zone
of proximal development through social interactions with more knowledgeable
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persons. During interactions with others, individuals come to understand their
thinking and initiate changes in their knowledge.

Methodology

To find a teacher who was implementing a constructivist approach to math-
ematics teaching and leamning in the classroom, this author began by asking
administrators, teachers, and parents in several school districts to suggest el-
ementary mathematics teachers who they believed taught mathematics effec-
tively. For a semester, 20 different elementary classrooms were observed and
20 teachers were interviewed. Finally, a fourth-grade teacher, Mrs. Clark, was
selected and asked to complete the Mathematics Beliefs Scales questionnaire
(Fennema, Carpenter, & Peterson, 1987) in order to assess her beliefs about
how children learn mathematics, about how mathematics should be taught, and
about the relationship between learning concepts and procedures. Her score on
the questionnaire confirmed previous observations that this teacher guided stu-
dents in constructing their own knowledge of mathematics. This teacher agreed
to participate in the rescarch.

After Mrs. Clark was identified, data collection was implemented through
an ethnographic research approach of participant observation, conducting in-
terviews, and artifact collection. The researcher observed. videotaped, and
audiotaped this teacher’s mathematics class for 4 1/2 months. Informal and
formal interviews were conducted with Mrs. Clark. Her plan book and resource
materials, and the children’s work were also examined.

Data analysis followed procedures described by Spradley (1980) as the
Developmental Rescarch Sequence. This ethnographic research model of data
analysis was a cyclic process of questioning, collecting data, recording data,
and analyzing data. During the research, this sequence was continually re-
peated. More than 1000 pages of data were transcribed. Through observations
and analyses of the data, ten instructional strategies were identified by the re-
searcher as being consistent with the reform movement in mathematics teach-
ing and learning. Mrs. Clark was not aware that her teaching practice coin-
cided with constructivist learning theory. In order to understand and to appre-
ciate the whole quality of Mrs. Clark’s teaching, all the strategies must be inte-
grated. However, in order to analyze Mrs. Clark’s teaching more subtlely, the
strategies need to be separated. While four of these strategies will be presented
at the oral research report, one specific teaching strategy during a classroom
vignette is detailed in this written paper.

An Instructional Strategy: Vulues Students’ Thinking

The following vignette provides insight into how Mrs. Clark creates a learn-
ing cnvironment that allows students to gain the confidence to construct math-
cmatical knowledge that 18 powerful and correct. In the vignette, Mrs. Clark
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calls students by name to get them involved and keep them involved. She
listens closely, thus providing a model for students when interacting with one
. another. She affirms her students’ thinking by remembering what they say and
A using their dialogue to build the lesson. She shows that she values the students’
. approaches to problems by recognizing their approaches and speaking about
R them. Notice in the lesson that Mrs. Clark often repeats the students’ answers.
Sometimes she repeats them verbatim. Other times she paraphrases their an-
swers. She gives credit to students’ ideas as she uses their contributions to
connect the different ideas. Note there is no judgment of students’ verbalized
: solutions or strategies. Mrs. Clark explains her reasons for the way she re-
e sponds to students’ contributions:

. Sometimes I paraphrase [an answer] because I want the other students
e in the class to understand it. But I also want the child to know that I am
‘ understanding and really listening to what he or she says. If they don’t
o agree that I've done it correctly, they will respond back. I want the
R other children to hear the idea and value each other’s thinking.

The lesson begins:

Mrs. Clark:  Can more than one circle have the same center? Raise your
hand if you think that more than one circle can have the same
center. It looks like we have about half and half.

t Hal: Mrs. Clark. can I ask you one thing?
. Mrs. Clark:  Yes.
— Hal: If it’s like a circle that goes around and has a point in the
B middle—Can every one that goes around have the same
. i middle of the circle? (Hal attempts to demonstrate with his
= fingers what he means.)
. .':_};. Mrs. Clark:  That’s an excellent question and I didn’t think that anybody
O was going to ask that. Ithink what he is basically asking—
I wish I had something to show it with-—I think what
Hal is asking is if he has a circle like this.

-t The teacher draws a figure (see Figure 1.
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Figure 1 Drawing of circles in two planes
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Mrs. Clark has allowed a student to ask a question of her. She has listened
closely to Hal. By validating Hal's thinking, she has helped him believe that
his thinking has value. She has valued his thinking so highly that she helps him
model and explain his thinking to other students.

But Mrs. Clark does not stop here. She gets two rubber bands and loops
one around two fingers and another around two different fingers. She overlaps
the rubber bands (see Figure 2), and continues the lesson.

Figure 2 Overlapping circles using rubber bands
Mrs. Clark:  Right, Hal? And the center is in the middle of it. What he is
wanting to know is what if I have a circle that goes like this.
Is that right?
Hal: Yes.

Hal's idea concerns two circles with the same center that are not in the same
plane. Some students disagree with his idea, but Mrs. Clark says she did not
say that the circles had to be in the same plane.

Mrs. Clark:  So Hal has thought of un example of two [circles] that do
have the same center. One circle is headed in this direction
in one plane and one in this direction in a different planc.

Hal: I came up with a good one.

Hal shows confidence in his thinking. He has recognized that his thinking is
valuable and powerful. According to McLeod (1991), students must believe in
their own success in order to lead to greater understanding in their mathemati-
cal thinking.

Mrs. Clark:  Can anybody think ot another way that is possible for more
than one circle to have the same center. No one? |saw some
diagrams in some people’s muath logs. Don’t be afraid to
share your answer. Ann. I saw yours. Come up here and
show us your answer.

With this statement, the teacher shows she has been closely observing her stu-
dents” work. She supports Ann in presenting her idea. Ann draws her represen-
tation on the chalkbourd (see Figure 3).
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Figure 3 Ann’s drawing
Mrs. Clark:  These are called concentric circles. Concentric circles.

The teacher wants others to understand Ann’s answer so she asks several
students to come up to the front of the classroom. One student becomes the
center and others hold hands to form several different circles around the center
student. After this demonstration, Missy has a new idea and shows it on the
chalkboard (see Figure 4).

Figure 4 Missy's drawing
Mrs. Clark:  Missy 1s kind of expanding Hal's idea. She is saying they
don’t have to be in perpendicular planes, like Hal's. She is
saying that | could turn this direction at a slant. move over a
little and make another one and so on. Right? Is that still
okay?

The teacher has remembered Hal's idea and has shown how it connects to Missy's
idea. Mrs. Clark gets out a sphere and puts several rubber bands around it (see
Figure 5).

Mrs. Clark: I could have the circle here. (She puts another rubber band
around the sphere.) One here. One here. . .. How about
that. Isn’t that neat”? All the wiys that I could turn the circle
would all have that same. . . .
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Figure 5 Connecting Missy and Hal's ideas
Students: Center.
Gerry: There's umpteen times that you could turn that.
Mrs. Clark: What is another word we could use besides umpteen?
Some students: Infinite.

Mrs. Clark: Infinite. Very good. Cood job on that. So those of you
who said, “no. that circles could not have the sarne cen-
ters,” do you now see that there are possible ways that
circles could share the same centers?

By listening carefully to her students’ ideas and having other students do
the same, Mrs. Clark validates the power of their thinking. She seeks to engage

every student to contribute toward the thinking of the class. She does not just
provide general praise of the students’ thinking. she names, listens, repeats,
paraphrases, and models. She demonstrates that she believes their answers are
importint. and she values them. As a result, her students eagerly share their
answers und are excited about their ideas and their solutions. Several different
examples of how more than one circle could have the same center have been
presented. Notice that none of the examples came from the teacher. The teacher
simply posed the initial problem. The students presented the solutions.

Conclusions

By tuking the students” ideas and thinking seriously. Mrs. Clark has shown
students that their ideas and thinking are worthwhile. By allowing them to
explore the problem without making judgments. she has shown them it is ac-
ceptable to take risks in rhis classroom. The students learned that when they
voice their ideas, their ideas will be heard and valued. The students have leamed
that asking questions is significant in learning mathematics. According to
McLeod (1989), if students regularly have positive experiences with mathemat-
ics, they will develop attitudes of curiosity and enthusiasm. McLeod noted that
two major goals of teaching should be helping students understand the value of
their mathematical thinking and helping students develop confidence.

Mrs. Clark created a nonthreatening learning environment in which the
students were supported as they communicated their thinking and discovered




knowledge for themselves. The teacher verified that cach student’s thinking is
important. She modeled and required students to respect each other’s thinking.
She affirmed their thinking by repeating their answers and remembering their
contributions. Students did not ridicule other students” answers. Students were
motivated to learn and showed a positive attitude toward mathematics. They
dernonstrated confidence in and a willingness to express their thinking.

The “spirit” of the reform movement in mathematics education implies
that individuals actively construct knowledge. We need research that shows us
what happens when a “real-life” elementary teacher’s classroom practice coin-
cides with the reforms in mathematics teaching and learning advocated in The
Standards. This paper helps contribute to that picture.
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Donna F. Berlin Arthur L. White
The Ohio State University The Ohio State University
beriin.] @osu.edu white.32@osu.edu

The ability to understand. refate, and translate patterns presented in different represen-
tational modes plays a prominent role in the development of scientific and mathemati-
cal literacy. The Spatial-Symbolic Pattern Instrument was designed to measure student’s
understanding of patterns. defined qualitatively or quantitatively. A principal compo-
nents analysis of 186 fourth and fifth graders’ responses to a 57- item instrument re-
vealed four factors labeled as Figural Pattern (13 items), Monotonic Numeric Pattern
(9 items). Word Pattern (5 itemns), and Nonmonotonic Numeric Pattern (6 itcins).
Reliabilitics computed for cach of the four subscales, administered as a pretest and as a
posttest after pattern instruction, range from 0.81 10 0.95. Statistical analyses suggest
asignificant interaction effect of grade by gender for the posttest Figural Pattern subscale
and a significant grade level effect for the pretest Figural Pattern subscale. Results
indicate that the Spatial-Symbolic Pattern Instrument is a reliable and valid instrument
to explore student understanding of patterns as presented through different representa-
tional modes.

Introduction

The purpose of this study was to construct and validate an instrument to
measure spatial and symbolic processing of patterns by elementary school stu-
dents. The ability to understand, relate, and translate patterns presented in dif-
ferent representational modes plays a prominent role in the development of
scientific and mathematical literacy. The Spatial-Symbolic Pattern Instrument
was designed to measure students’ recognition, understanding, and application
of patterns.

Theoretical Framework

Two related constructs, pattern and spatial ability, provide the theoretical
underpinnings for the development of the Spatial-Symbolic Pattern Instrument.
Each will be described and discussed in the context of mathematics and seience
cducation curricula,

Current reform literature in both science and mathematics have recognized
“patterns” as an essential and fundamental curriculum theme (i.e., one of the
“hig ideas™ American Association for the Advancement of Science [AAAS],
[989; Steen, 1990). Science has been defined as the search for patterns or
regularities in naturil and man-made environments (AAAS, 1989) and math-
ematics as both the language of science and a science of patterns (National
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Research Council, 1990).

What humans do with the language of mathematics is to describe pat-
terns. Mathematics is an exploratory science that seeks to understand
every kind of pattern—patterns that occur in nature, patterns invented
by the human mind. »nd even patterns created by other patterns. To
grow mathematically, children must be exposed to a rich variety of
patterns approgriate to their own lives through which they can see va-
riety, regularity, and interconnections. {(Steen, 1990, p. 8)

The study of patterns, hypothesizing rules, and predicting are essential skills
that pervade mathematics and science curricula.

According to McGee (19793, spatial ability is composed of two main fac-
tors: spatial visualization and spatial orientation. Spatial visualization involves
the ability to manipulate and transform mentaily two- and three-dimensional
objects. Spatial orientation involves the ability to perceive the elements in a
pattern, compare patterns, grasp changing orientation in space, and determine
the position of one’s body in space. The relationship between spatial ability or
spatial sense and imagery has been noted by Battista and Clements (1996),
Liedtke (1995), Piaget and Inhelder (1967), von Glasersfeld (1982), and
Wheatley (1990). The reconstruction of shapes as visual images is not just a
matter of isolating perceptual qualities, but involves an active coordination pro-
cess. This process cembines perceptual and proprioceptive elements into rela-
tively stable patterns (Battista & Clements. 1996). It is the mental manipula-
tion of objects, nct the perception or retentien of visual images, that defines
spatial ability. '

Students nced manipulative and exploratory activities to develop and im-
prove the spatial skills of visualization and crientation (Bruni & Seidenstein,
1990; Wheatley, 1991). These include experiences that focus on relationships;
direction, orientation, and perspective of objects in space; the relative shapes
and sizes of figures and objects; and how a change in shape relates to a change
in size (NCTM, 1989). Spatial reasoning and visualization are linked to the
development of mathematics and science concepts and processes (Small &
Morton, 1983; Wheatley, 1991).

Method

The Spatial-Symbolic Pattern Instrument, a S7-item instrument, was de-
signed to measure understanding of pattern presented in figural, numerical, and
textual form. Pattern is operationatly defined as an arrangement of clements
related by a qualitative rule (e.g., organizational, structural, spatial) or a quan-
titative rule (e.g., numericai, temporal, ordinal). The total sample consisted of
186 students in a small town rura! school. Subjects included students in fourth
grade (43 boys, 50 girls) and fifth grade (41 beys, 52 girls). Students were
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randomly assigned to three treatment groups based on pattern instruction using
manipulatives, computer simulations, or acombination of these. Students’ scores
were the total number of correct responses.

Principal components and factor analytical procedures were used to iden-
tify constructs underlying students’ responses. The Scree method and the per-
cent of explained variance were used to identify four factors. Items with load-
ings of 0.40 or greater were grouped to comprise the factors. The items in-
cluded within each of the four factors were combined to comprise four subscales.
Group by gender by grade relationships were computed using multivariate analy-
sis of variance, with the four subscales as the dependent variables.

Findings

The four factors, resulting from the factor analysis, were labeled as: Fig-
ural Pattern (FP), Monotonic Numeric Pattern (MNP), Word Pattern (WP), and
Nonmonotonic Numeric Pattern (NMNP). The Figural Pattern factor presents
the student with incomplete patterns consisting of shapes. The student circles
the correct choice to indicate “What comes next?” The Monotonic Numeric
Pattern factor presents the student with an incomplete number pattern in as-
cending or descending order. The student fills in the boxes with the missing
numbers. The Word Pattern factor presents the student with a random arrange-
ment of three words representing concepts which the student must order by
size. The student writes the words from smallest to largest. The Nonmonotonic
Numeric Pattern factor presents the student with an incomplete pattern of num-
bers in a combination of ascending and descending order. The student fills in
the boxes with the missing numbers. Figure 1 displays examples of items for
each of the four factors.

The items within each of the factors were combined to comprise four
subscales. Cronbach’s Alpha estimate of reliability was computed for each of
the four subscales for both pretest and posttest data. The reliabilities range
from 0.81 to 0.95. Descriptive statistics for each of the subscales and the total
instrument appear in Table 1.

Table 2 presents the means and standard deviations for each of the subscales
and the total instrument by grade by gender. This information is given for the
pretest and posttest responses after pattern instruction. Analyses of variance
indicates no significant treatment group by grade level by gender interaction
effects.

The only significant two-way cffect 15 a grade by gender interaction on the
posttest for the Figural Pattern subscale, £ (1, 174) =4.01, MSE =742, p< .0S.
The fourth grade boys (M = 11.49) scored higher than the fifth grade boys (M =
9.88). The fourth grad. girls (M = 10.80) and the fifth grade girls (M = 11.04)
were nearly equivalent although the fifth grade girls scored slightly higher than
the fourth grade girls. The sample of fourth grade boys in this study was par-
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Factor 1: Figural Pattern (FP)
FPO3 What comes next?

Lo =0~}

(A)

Factor 2: Monotonic Numeric Pattern (MNP)
MNPO! Fill in the boxes with missing numbers.
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Factor 3: Word Pattern (WP)
WPO4 Order from smallest to largest.

minute, second. hour

Factor 4: Nonmonotonic Numeric Pattern (NMNP)

NMNPOS & NMNPO6 Fill in the boxes with the missing numbers.

P L 21L 240 200 25,0 19, 26
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ticularly adept on the posttest Figural Pattern tasks.

On the pretest Figural Pattern subscale, the pattern of scores for the boys is
similar to that of the posttest. The fourth grade bovs (M = 11.40) outperformed
the fifth grade boys (M = 8.85).

The girls exhibit the same pretest pattern as the boys. The fourth grade
girls (M = 10.90) outperformed the fifth grade girls (A = 9.67). It appears that
the fourth grade students initially outperformed the fifth grade students. Whereas
this pattern continues on the posttest for the boys, a change in pattern occurs for
the girls. After instruction. the fifth grade girls (M = 11.04) slightly outper-
formed the fourth grade girls (M = 10.80) on the posttest.

Analyses of variance for Grade effect revealed significant multivanate, F
(8.342) =7.83. p< .00 and univariate, E (2, 174)= 1917, MSE =7.67, p< .00,
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Table 1 Descriprive Siatistics for the Spatial-Symbolic Pattern Instrument

__Subscale Name

Monotonic Nonmonotonic
Figural Numeric Word Numeric
Pattern Pattern Pattern Pattern
(FP) (MNP) (WP (NMNP) Total
Instrument
# of [tems 13 9 ) 6 33
Maximum 13 9 15 6 43
Pretest
Reliabilities 0.81 0.83 0.95 0.83 0.89
% Variance 16.03 6.70 4.86 4.43 32.02
M 10.24 4.74 12.94 3.07 30.98
SD 2.88 272 4.33 2.05 8.36
Posttest
Reliabiliiies 0.84 0.84 0.94 0.82 0.89
% Variance 16.98 7.42 5.18 4.11 33.69
M 10.82 5.16 13.69 3.51 33.10
SD 2.73 2.77 3156 2.06 7.28

Table 2 Means and Standard Deviations for the Spatial-Svinbolic Pattern In-
strument by Grade by Gender

) Pretest _ _ Posttest
4th Sth 4th Sth
Boys  Girls Boys  Girls Boys  Girls Boys  Girls
FP
M 11.40 1090 8.85 9.67 11.49 1080 9.88 11.04
SD 1.51 2.67 316 319 Lot 289 341 254
MNP
M 470 4.60 4.61 494 479  5.00 502 571
SD 234 273 293 289 266 287 287 270
wp
M 1281 13.94 11.98 12.77 1149 11.22 14,10 14.00
SD 478 296 S5 445 402 410 1Y 303
NMNP
M 309 316 2.88 312 R SURR I Bt/ 342 373
SD 74 210 216 218 .78 219 216 211
Total
M 32.00 3260 28.32 30.50 1319 3244 3242 3448
SD 7.33  71.77 9.39  8.58 6.71 7.80 791  6.70
391

\,\'




differences for the pretest Figural Pattern subscale. The fourth grade boys and
girls combined (M = 11.13) scored significantly higher than the fifth grade
boys and girls combined (M =9.31). The fourth grade pretest scores were close
to the maximum possible score of 13. As such. there was little room for im-
provement after instruction as measured by the postiest. The fifth grade pretest
scores were nearly two points lower. Consequently. after instruction their scores
increased bringing the pretest and posttest scores closer together which may
explain the lack of a significant grade level effect for the posttest Figural Pat-
tern subscale.

Conclusions and Implications

Previous analyses of the instrument (N=165) revealed no grade by gender
and no gender differences for any of the subscales (Berlin & White, 1992). In
the current study. grade by gender differences were found for the postiest Fig-
ural Pattern subscale. Consistent across the two studies is the significant grade
level effect for the Figural Pattern subscale, but in the current study the fourth
graders unexpectedly outperformed the fifth graders on the pretest Figural Pat-
tern subscale. In Berlin and White (1992), significant effects for grade level
were found for two of the three subscales: Figural Pattern and Numeric Pattern.
These grade level differences were not unexpected. Student’s scores for the
Figural Pattern subscale indicated significant differences between the third grade
students (M = 11.7) and both the fourth (M = 13.0) and fifth grade (M = 13.5)
students. For the Numeric Pattern subscale. students scores significantly in-
creased with advancement from third (M = 6.8) to fourth (M = 8.7) to fifth
grade (M =11.2).

Based on the two analyses of the Spatial-Symbolic Pattern Instrument, we
conclude that:

. The original 57 items of the Spatial-Symbolic Pattern Instrument can
be factored into four ncarly independent factors, i.c.. Figural Pattern,
Monotonic Numeric Pattern, Word Pattern, and Nonmonotonic Numeric
Pattern, accounting for approximately 33% of the original variance.
Four reliable subscales of the Spatial-Symbohe Pattern Instrument, and
in particular. the Figural Pattern subscale. detect differences in indi-
vidual and group ability to recognize and extend patterns. The four
subscales can also reflect changes in performance after instruction.

In the present study. reasons for fourth graders outperforming fifth grad-
ers on the pretest Figural Pattern subscale are not evident. Perhaps the
current fourth grade teacher provided more pattern activities than the
current fifth grade teacher or the previous fourth grade teacher.

Further refinement of the Spatial-Symbolic Pattern Instrument might
include more items of a similar nature to increase the reliability and
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items of higher difficulty to improve the discrimination at the higher
ability levels.

Further validation of the Spatial-Symbolic Pattern Instrument across
grades one through six to represent a broader range of pattern recogni-
tion and extension abilities is needed.
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VIEWS ABOUT MATHEMATICS SURVEY: DESIGN |
AND RESULTS
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The mathematical views of two populations of university students are reported. The
Views About Mathematics Survey (VAMS), an instrument to assess and characterize
student views about knowing and Icarning mathematics, was designed and adminis-
tered to both precaleulus and third semester caleulus students. Student views are por-
trayed for both populations and are compared across course, gender, and course grade.
Results reveal that: (a) undergraduate students hold views about knowing and learning
mathematics that often diverge from the views of mathematicians and educators; (b)
precaleulus students’ views are not noticeably affected by moderately reformed math-
cmatics instruction, but (¢) they do affect how students perform during the course; (d)
gender differences were observed with male students reporting greater persistence and
confidence than female students; and finally, (¢) confidence correlates significantly
with achicvement and aspects of expert mathematical beliefs.

Introduction

Most teachers would agree that a student’s ability to respond to a problem
situation involves much mare than mathematical knowledge. A student who is
unwilling to persist, has little confidence, and makes poor decisions regarding
his/her solution approach is less likely to successfully complete a solution to a
complex problem than a confident student who persistently invests time in a
meaningful way (Schoenfeld, 1989; Lester et. al, 1989), Even though different
students may have the same mathematical knowledge. their differing views
appear to have a tremendous impact on students’ success continued study of
mathematics (Carlson, in press). These observations support the view that stu-
dents’ beliefs are an impoertant aspect of students” mathematical development,
yet research on affect in mathematies education continues to reside on the pe-
riphery of the field (McLeod, 1995). Even though current reform documents
place increased emphasis on the role of affect. educational rescarchers con-
tinue to observe that students at all levels hold views about mathematics that
are opposced to the views they are expected to develop ina mathematics courses

(McLeod, 1995).
Rescarch reports:
o Consistent trends in the correlation hetween achievement and confi-
dence i learning and doing mathematics (Fennema and Sherman, 1977,
Mever and Kochler: 1990; Reyes, 1984: Schoenfeld, 1989: Lester et.
al., 1989, Fartre and Fennema, 1995y,
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Positive correlation between achievement, and perceived usefulness,
motvation and perceived personal control (Fennema & Sherman, 1976).
Persistence is a valuable trait, but only if accompanied by appropriate
monitoring behaviors (Schoenfeld, 1989; Lester et. al., 1989);
Students believe mathematics involves mainly memorization (Dossey
ct. al.. 1988; Schoenfeld, 1989).
These studies suggest aspects of student beliefs worthy of investigation.
To broadly characterize and quantify student views about the methods,
learnability. and relevance of mathematics, an instrument was needed that could
be widely administered to large populations. The Views About Mathematics
Survey (VAMS) was developed for this purpose.
The Taxonomy and Instrument
VAMS was designed to assess students’ views about knowing and learning
mathematics. Its design followed that of the widely used VASS (Views About
Science Survey) developed by Halloun & Hestenes (1996) and was developed
cooperatively with the developers of this instrument. More specifically, VAMS
was designed to:
* Discern significant differences among the views of mathematics stu-
dents, mathematics teachers, and mathematicians.
Identify patterns in student views and classify them in general profiles.
Compare student views/profiles at various grade levels (8-16).

Assess the relationship between student views/profiles and achieve-
ment.

Measure the effectiveness of instruction in changing student views and
profiles.

»  Compare student views/profiles across various demographic strata.

A taxonomy of six major epistemological and pedagogical principles pro-
vides the theoretical model for the instrument’s design. The development of
this taxonomy emerged concurrently with the development of individual VAMS
items, invoiving repeated refinement of the six dimensions, utilizing peer re-
views, preliminary data analysis of early student responses to VAMS items and
subsequent student interviews regarding students’ interpretations of VAMS items.
As aresult, individual items were validated and three epistemological and three
pedagogical taxonomy dimensions emerged. The epistemological dimensions
pertain to: the structure of mathematical knowledge: the validity of mathemati-
cal knowledge; and the methods of mathematics. Pedagogical dimensions per-
tain to: learnability of mathematics: the role of critical thinking; and personal
relevance of mathematics.

b




Each of the six dimensions is presented below in the form of a set of con-
trasting views about knowing and learning mathematics. The primary view or
expert view corresponds to the views most commonly held among mathemati-
ctans. This view was established by administering the survey to a collection of
mathematicians. The secondary view or folk view is the contrasting view often
attributed to the lay community and naive student of mathematics.

VAMS Taxonomy

Structure: Mathematics is a coherent body of knowledge about rela-
tionships and patterns contrived by careful investigation-rather than a
collection of isolated facts and algorithms.

Methodology: The methods of mathematics are systematic and ge-
neric-rather than idiosyncratic and situation specific.
Mathematical modeling for problem solving involves more-than se-
lecting formutas for number crunching.
Mathematicians use technology more to enhance their ways of solving
problems-than to allow them to get quick easy solutions.
Validity: Mathematical knowledge is validated by logical proofs-rather
than by correspondence to the real world.
Mathematical knowledge is tentative and refutable-rather than abso-
lute and final.
Learnability: Mathematics is learnable by anyone willing to make
the effort-rather than by a few talented people.
Achievement depends more on persistent effort-than on the influence
of teacher or textbook.
Critical Thinking: For meaningful understanding of mathematics,
onc necds to:
a) concentrate more on the systematic use of general thought pro-
cesses-than on memorizing isolated facts and algorithms,

b) examine situations in many ways, and not feel intimidated by

committing mistakes-rather than follow asingle approach from an
authoritative source,

¢) look for discrepancics in one’s own knowledge-mstead of just
accumulating new information;

d) reconstruct new knowledge inone's own way -instead of memo-
Tizing stas given,




6. Personal relevance: Mathematics and related technology are relevant
to everyone's life-rather than being of exclusive concern to mathemati-
cians.

Mathematics should be studied more for personal benefit-than for just
fulfilling curriculum requirements.

Individual survey items consist of a statement followed by two contrasting
alternatives which respondents are asked to balance on an eight-point scale
(Table 1). Respondents can select either a weighted combination of the two
alternatives (opticns 2, 3.4, 5 or 6), either alternative (options | or 7), or neither
of the two alternatives (option 8). By providing two clearly stated benchmarks,
ambiguity among student responses is reduced and reliability for specific items
is increased. This design, know as the Contrasting Alternative Design (CAD)
produces instruments which are more valid, reliable and applicable to large
populations (Halloun and Hestenes, 1996).

VAMS items measure students’ views conceming the taxonomy items: struc-
ture of mathematics: methods of mathematics (Example |, Example 2);
learnability of mathematics (Example 3); role of critical thinking in doing math-
ematics (Example 4); relevance of mathematics (Example 5); and validity of
mathematics. A response choice diagram and five VAMS items are presented in
Figure |.

The survey was revised based on peer reviews and student interviews. In-
terviews were conducted with approximately twenty-five students, securing a
sufficient sampling from each of low, average and superior class performers.
Each interviewee was asked to verbally respond to select survey items without
looking at her/his earlier provided written response. Consistent responses were
noted when comparing students’ written and verbal responses. Instrument va-
lidity was assessed by asking students to justify selected responses. Consis-
tency between the interviewees’ responses and the design intent was analyzed.
Where inconsistencies occurred, items were rewritten. This process of instru-
ment refinement continues.

VAMS was administered to a broad community of mathematicians and
college instructors in order to: (a) establish baseline data for experts, and (b)
compare students’ views with those of the experts. As a result of analyzing the
expert and student data, students were classified to four broad groups of dis-
tinct profiles (expert, high transitional, low transitional and folk) using the fol-
lowing criteria:

* A student =hould belong to exactly one profile.

* A profile should consist of relatively coherent views, (e.g.. A student
with an expert profile  should express more expert views than stu-
dents having cither an upper transitional, lower transitional or folk pro-
file.)

Lo




Table 1 A Response Choice Diagram

1. For me, making unsuccessful attempts when solving a mathematics
problem is:

(a) a natural part of my pursuit of a solution to the problem.
. (b) an indication of my incompetence in mathematics.

9

! In solving mathematics problems. graphing calculators or computers
- help me:
S (a) understand the underlying mathzmatical ideas.
= (b) obtain numerical answers to problems.
- 3. When I experience a difficulty while studying mathematics:
(a) Timmediately seek help, or give up trying.
{b) Ttry hard to figure it out on my own.
4. My score on a mathematics exam is a measure of how well:
- (a) [ understand the covered material.

IR {b) I can do things the way they are done by the teacher or in
course materials.

'h

[ study mathematics:

(a) to satisfy course requirements.

. (b) to learn useful knowledge.

»  The threshold for the expert profile should be such that no student can
be classified as expert if he/she expresses expert views on less items, or
folk views on more items. than a mathematician does.

B The Subjects, Procedures and Data Analysis

The subjects for this study were selected trom two difterent levels of math-
ematical preparation, precalculus and third semester caleulus. The precaleulus

A students were taught in small sections of class sizes ranging from 30 to 40
S students. The curriculum included an early introduction to functions with em-
o phasis on applied problems and full integration of graphing calculators in both

the class presentation and student activities. The third semester caleulus stu-

o dents were taught in class sizes ranging from 35 to 50, using a reform text with
C lecture the primary mode of instruction and some integration of technology.
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Equaly Neither

W& ®) (8) nor (b)

1 For me. making unsuccessful attempts when solving a mathematics prob-
lem s

(@) A natural part of my pursuit of a solution to the problem.
(b Anndication of my incompetence in mathematics.

2 Insobhang mathematics problems, graphing calculators or computers help
me:

) Understand the underlying mathematical ideas.
{by Obtain numerical answers to problems.

1 When [ experience a difficulty while studying mathematies:
(a) Timmediately seck help, or give up trying.
by Ttry Rard to figure it out on my own.

4. My score on a mathematics exam is a measure of how well:

ta) Tunderstand the covered material.

tby T can do things the way they are done by the teachers or in course
materials

I \tudy mathematies:
ta) To satisfy course requirements.

by To learn usetul knowledge.

Figure 1 A response choice diagram

There were approximately 550 precaleulus students who completed the
survey carly in the semester and agaun during the last week of the semester.
Also, there were 73 third semester caleulus students who completed the survey
once. at the beginning of the semester. Students responded to survey items on a
bubble answer sheet after receiving brief instructions for completing the demo-
praphic tems and a sample survey item.



Results

The analysis of VAMS data included comparisons of: views across gender:
student views with course performance, pre- and postVAMS responses; and
cofidence with performance profile. The following conclusions resulted from
these analyses.

Precalculus and third semester calculus students hold views about know-
ing and learning mathematics that are incompatible with views com-
monly held in the mathematical and educational communities. 72% of
precalculus and S1% of calculus students were classified with either a
folk or lower transitional profile.

Student views regarding the learnability and methods of mathematics
correlate positively with mathematics achievement. “A” students tended
more toward the expert view and *D” and “F" students tended more
toward the folk view on the majority of VAMS items. Of those students
possessing an expert profile, 88% received either an “A” or “B”. The
higher performing students (i.e., A and B) report believing that: mean-
ingful understanding of mathematics requires reconstruction of knowl-
edge instead of memorizing it as given; the methods of mathematics
are more systematic and generic than situation specific; and mathematics
should be studied more for personal benefit than fulfilling curriculum
requirements.

Consistent with the results of Fennema and Sherman (1978), math-
ematical confidence was found to correlate positively with mathemati-
cal achievement. Additionally, those students reporting greater confi-
dence were more likely to be male; receive higher grades; continue
their study of mathematics: persist when confronting a difficulty while
studying mathematics: view unsuccessful attempts as a natural part of
the pursuit of a problem’s solution: and understand that methods for
problem solving are more generic and systematic as opposed to situa-
tion specific.

Differences in the views of males and females were observed. Among
the most notable was the way males and females approach challenging
mathematics problems. For the 355 female and 265 male surveyed
participants, we observed a higher proportion of females reporting frus-
tration when solving challenging problems and a higher proportion of
males reporting greater confidence, enjoyment and persistence when
confronting a challenging problem.

College students’ views do not appear to change over the course of one
semester., ¢ cn with modest attempts to deliver reform instruction. Very
little difference exists in the response patterns between the pre and post
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VAMS results on the 27 VAMS items. A very high proportion of pre-
calculus students report non-persistence when pursuing a problem’s
solution and believe that successful performance 1s more dependent on
imitating others’ solutions rather than applying general problem solv-
ing approaches.

Differences exist in the distribution of profiles for precalculus and third
semester calculus students. Precalculus students have proportionately
higher categorization into the folk or lower transitional profiles while
calculus students have fairly equal distributions into each of the four -
profiles. This difference in distribution could suggest that students’
views do change gradually with continued mathematical instruction.
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COLLEGE STUDENTS’ SELF-MOTIVATION AND
MATHEMATICAL BELIEF STRUCTURE

Martin Risnes
Molde College, Norway
martin.risnes @himolde.no

The purpose of this study was to examine and describe student beliefs about
oneself as learners of mathematics and beliefs about mathematics and to relate
these beliefs to prior exposure to mathematics and to achievement. Based on
data in a self-report questionnaire from 266 students starting a study program
in economics and business administraiion, we identified eight belief factors
with a total of 25 indicators relating to the variables: self-efficacy for self-regu-
lated learning, self-efficacy as part of motivational beliefs, student self-concep-
tion, mathematics as an interesting subject, mathematics anxiety, understand-
ing concepts, mathematics as a useful subject. To study the relationships be-
tween our constructs, we applied a structural equation model approach with
latent variables. A confirmatory factor analysis based on a measurement model
with the belief factors as latent variables, indicated that the given set of indica-
tors gave an adequate description of students beliefs. Following social cogni-

tive theories we investigated a structural model with self-efficacy beliefs play-
ing a mediating role in the influence of prior exposure in mathematics on stu-
dents later beliefs and achievement. We found that the variables for self-effi-
cacy, self-concept and interest correlated strongly with prior exposure to math-
ematics and the achievement test result correlated moderately with the belief
factors. Our study indicate self-efficacy, self-concept, interest and anxiety as
important variables related to student learning in mathematics.
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CARICATURES VERSUS CASE STUDIES:
A DISCUSSION OF TWO METHODS
OF RESEARCH REPORTING

Ronald V. Preston Diana V. Lambdin
East Carolina University Indiana University
mapresto@ecuvm.cis.ecu.edu lambdin@indiana.edu

Attempts to relate qualitative research should constantly undergo scrutiny
as researchers try to most effectively communicate findings and analyses. Re-
search reporting needs to be cogent, clear, concise, compelling, and complete.
At times, these characteristics seem to be at cross-purposes from each other.
For example, completeness often works against conciseness. Apparently com-
pleteness is winning the battle with conciseness — witness the recent trend in
increased length of research reports (30% over five years) submitted to JRME
{Lester & Sowder, 1996). One way to achieve conciseness in research reports
is through the use of caricatures.

We use caricatures in our title because we have used this term in our re-
search reporting (Lambdin & Preston, 1995). Hcwever, perhaps even our so-
called caricatures are more like composite profiles, where we took traits and
tales from teachers and funneled them into a single portrait. This funneling is
typically used for one of three reasons: confidentiality, data compression, or to
provide distinct ideal types. Pitfalls to watch for with caricatures include loss
of the idiosyncratic voice, danger of stereotyping, and difficulty in obtaining
trustworthiness through a member check. For the sake of brevity, we assume
that participants are aware of pros and cons in reporting cases, a technique we
also use (e.g., Preston & Lambdin, in press).

The purpose of this discussion is to elicit the opinions of participants in
using caricatures or cases to report research and to tie this discussion to issues
such as length of articles, confidentiality, theme unification, loss of idiosyn-
cratic voice, trustworthiness, and stereotyping. Participants may pick up a pa-
per at PME-NA giving more detailed background on caricatures and cases in
advance of the session. This paper also contains questions for discussion.
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CHANGES IN TEACHERS’ BELIEFS AND
ASSESSMENTS OF STUDENTS’ THINKING ACROSS
TEE FIRST YEAR OF IMPLEMENTATION OF
COGNITIVELY GUIDED INSTRUCTION

Anita H, Bowman, George W. Bright, & Nancy N. Vacc
The University of North Carolina at Greensboro
abowman @acme.highpoint.edu, brightg @steffi.uncg.edu, and
vaccnn@dewey.uncg.edu

At the beginning of May 1995 and June 1996 workshops. 21 female teachers in grades
K-35, who were in their first year of a five-year CGI project, completed (2) a Transcript
Analysis of a dialogue between a firsi-grade teacher and three students and (b) a 48-
item Beliefs Scale. Prior to cach workshop, participants had responded to two General
Items concerning how teachers know what students understand. Responses to the Gen-
cral Items and the Transcript Analysis were categorized and analyzed within and across
instruments. Pre/post responses for the General Items and the Transcript Analysis were
contrasted with changes noted in subscales of the Beliefs Scale. Teachers beliefs changed
significantly in ways that were consistent with the major tenets of CGI. Similarly. the
cvidence they cited to support their assessment of students’ thinking also changed in
ways consistent with the implementation of CGI. However. complex relationships
appear to exist between these two kinds of changes.

The data for this study were gathered at the beginning and end of the first
year of a five-year teacher enhancement project (NSF Grant ES1-09450518) in
which elementary teachers are being given opportunities to learn to use
cognitively guided instruction (CGI) as a basis of mathematics instruction. A
variety of longitudinal data are being gathered on teachers’ beliefs, interpreta-
tions of children’s solutions to mathematics problems. and instructional deci-
sion making. This paperis a report of teachers’ beliefs and their interpretations
of children’s problem solving performance.

CGI is an approach to teaching mathematics in which knowledge of
children’s thinking is central to instructional decision making. Teachers use
research-based knowledge about children’s mathematical thinking to help them
learn specifics about individual students and then to adjust iustruction (e.g.,
sequencing of problems. kinds of numbers used in problems) to match stu-
dents’ performance. In implementing CGI, teachers learn to assess students’
thinking (primarily through listening to students explain solutions to mathematics
problems) and then use that knowledge to plan instruction (Carpenter., Fennema,
Peterson, Chiang., & Loef. 1989).




i Method

Subjects were 21 female elementary teachers for whom there were com-
plete baseline and end-of-first-year data. The Transcript Analysis and Beliefs
Scale were administered on the first day of the initial three-day workshop in
May 1995 and the summer workshop in June 1996. Subjects completed the
_ General Items individually prior to each workshop.
= General Items. Subjects responded in writing to two items.

- 1. What do you look for as you watch children solving mathematics prob-
lems? Why are those things important to you?

2. How do you know whether students understand mathematical ideas?

Transcript Analysis. The instrument contains a transcript of three teacher-

and-student dialogues (Mac, Tom, and Sue) that occurred while a group of 23

I first-grade students worked individually on 5 written problems. The teacher

EN interacted with Mac after he had completed the problem: If frog's sandwiches

e cost 10 cents, and he had 15 sendwiches. how much did frog's sandwiches cost

altogether? As the teacher moved to Tom's desk, Tom was working on the

same problem. The teacher’s interaction with Sue occurred as she was working

on a different problem: Frog had 15 sandwiches. If each sandwich cost 5
cents, how much do all the sandwiches cost altogether?

After reading the transcript. subjects were asked to state their conclusions
about the three children’s (a) levels of thinking and (b) mathematical under-
standing. Subjects were also asked to identify specific evidence from the tran-
g script that was important to them in reaching those conclusions. No definition
= ) for the phrases “levels of thinking™ or “mathematical understanding™ were re-
: quested or provided during the administration of this instrument. Earlier we
reported subjects’ initial interpretations of the transcript (Bowman, Bright, &
Vace, 1996).

Beliefs Scale. The Beliefs Scale (Peterson. Fennema. Carpenter & Loef,
;4 1989) has four subscales: Role of the Learner. Relationship Between Skills
[t and Understanding, Sequencing of Topics, and Role of the Teacher. Each
subscale contains 12 items, each of which is rated on a five-point Likert scale.
Higher scores indicate beliefs that are more consistent with constructivism.
Internal consistency estimates for the total score have been reported as 93,
while estimates for each subscale range from .57 to .86 (Peterson, et al., 1989).

Analvsis of Responses. Content analysis on verbatim written responses for
cach open-ended item was completed manually. Responses were dissected.
e fragments were grouped by content, and category labels were identified for
Y clusters of comments. Then evidence for cach category was discussed by the
authors, until agreement was reached on the nature of evidence that would be
accepted for categorizing responses according to these frameworks. Finally
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Category

I. General perception of
understanding

. Use of problem
solving processes

. Multiple or unique
solutions to problems

. Explanation or
demonstration by
students

. Correctness of an-
SWETS

. Use of prerequisite
skills or knowledge

. Application of knowl-
edge to other situa-
tions

. Time spent on prob-
lem

. Student involvement,
affect

. Mcthods of assess-
ment

Representative Responses

T ask [students] ... to check for understanding
and reasoning skills.

Orderly sequence of steps

I ask them to solve the problem another way

(after they show one way).

[ also look to see if the child is developing a

strategy of his/her own to solve the problem.
I get the children to talk so I can clear up any
confusion.

Listening to their reasoning processes.

I look to see ... if the answer is correct.
Do they know number facts?

I'look to see if students are applying what has
been taught.

If students ... solve problems quickly.

I look for their willingness to try. T watch for
frustration.

By providing many opportunities for the chil-

dren to demonstrate his/her mathematical
thinking.

Figure 1 Cutegaries of evidence cited by subjects in their responses to the
General ltems
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data were coded independently by the authors, and codings were compared and
negotiated whenever necessary.

For the General Items, ten categories were identified; for the Transcript
Analysis, seven categories were identified. These categories. along with brief
illustrative quotes from subjects’ responses. are presented in Figures 1 and 2.
Data from the Beliefs Scale were summarized with descriptive statistics and
repeated measures analysis.

Results

General {tems. For the first General Item, the categories appearing most
often in the analysis (per cent of subjects for first administration/per cent of
subjects for second administration) were “general perception of understand-
ing” (ST%/S79), “use of problem solving processes”™ (67%/71%). and “expla-
nation or demonstration of solutions by students”™ (33%/57%). For the second
General Item, the categories appearing most often were “use of problem solv-
ing processes” (19%/38%). “explanation or demonstration of solutions by stu-
dents”™ (71%/86%). and “application of knowledge to other situations™ (48%/
19%: 1 =-2.09, p <.05).

Transcript Analysis. The categories appearing most often were “use of

. manipulatives, computation, tools™ (95%/100% ). “'use of place value, money

concepts and notation™ (90%/95%), ““teacher guidance™ (71%/38%:1=-2.28.p
<.05). "multiple solutions to problems™ (43%/33%). and “explanation of solu-
tion by student™ (33%/24%).

Beliefs Scale Responses changed significantly toward a more constructivist
perspective on all four subscales (maximum score of 60 on each subscale):
Role of the Learner (42.8/48.8: F(1.20) = 23.7. p < .0001). Relationship Be-
tween Skills and Understanding (45.8/50.4: F(1.20) = 22.8, p < .0001). Se-
quencing of Topics (46.1/52.1: F(1.20) = 33.0. p < (001). and Role of the
Teacher (45.6/52.9; F(1.20) = 44.8. p < .0001).

Comparison across instruments. Categories from Figures 1 and 2 were
compared to the four subscales of the Beliefs Scale. Categories 1, 3, and 4
seemed directly related to the subscales, Role of the Learner and Role of the
Teacher. For the General Items and the Transcript Analysis, each teacher's
responses were coded as illustrating (1) or not illustrating (0) that category.
Thus, for each category there were four groups: 0/0, 1/0, 0/1, and 1/1, with each
pair of symbols representing categorization of responses for the two adminis-
trations.  For the subjects within cach category, an average change score was
computed for cach of the two relevant subscales of the Beliefs Scale. These
data are presented in Figure 3.
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Category

Representative Response

1. General perception Tom has ... solved the problem.... Sue does not
of understanding understand the problem.

Use of Mac ... use[d] a number chart.
manipulatives,
computation, tools

Multiple solutions [Mac] ... solved the problem in more than one
to problems way.

Explanation of Mac 15 also able to explain.
solution by student

Use of place value, They were able to use knowledge of money.
money concepts and
notation

Teacher guidance Even with assistance from the teacher [Sue]
needs several attempts.

Student involve- [Sue 15] very unsure of her answers.
ment, affect

Figure 2 Categories of evidence cited by subjects in their responses to
the Transcript Analysis

Discussion

General Irems. Teachers’ responses to the first item indicate a focus on
“general pereeption of understanding.” “use of problem solving processes.” and
“explanation or demonstration of solutions by students.” Increases in the latter
two categories suggest that the emphasis placed on more specific evidence of
student understanding was greater in the second administration. For the sec-
ond item the same trend toward increased focus on “use of problem solving
processes”™ and “explanations or demonstrations of solutions by students™ oc-
curs. Decreased emphasis on “application of knowledge to other situations™
may reflect more speeific focus by teachers on attending to students as they
work onassigned problems and less focus on general evidence of application.

Transeripr Analvsis. Across administrations there was an increased focus
on more specific content related to the particular problem solving task (e.g..
“use of manipulatives, computation, tools,” “use of place value, money con-
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Group 0/0 Group 1/0 Group (/1 Group 1/1

General Item! 6 7.7 90 3 30 30 3 00 27 9 80 9.2
Category |
General Item 1 15
Category 3
General Item 1
Category 4
General Item 2 17
Category 1
General Item 2 19
Category 3
General Item2 0 —
Category 4
Transcript
Category 1

Transcriptl3

Category 3

Transcript3

Category 4

5.3 3

55 7.1 3 8.0 93 77 0 —

6 73 88 3 9397 6 80.92 6 12

65 77 0 — — 4 43 58 0 —

64 74 1 20201 70110 0 —

377 80 6 67 7512 53 171

60— — 0 — — 1 110 9020 58 73

69 73 6 50 58 1 -1011.0 1 8.0 13.0

2377 10 74 65 3 47 53 5 64 10.0

N=number of subjects; Avg.L=average change in Role of Learner;
Avg.T=average change in Role of Teacher

Figure 3. Comparison of data across instruments

cepts and notation”) and a decreased focus on general attributes of student per-
formance (e.g.. “teacher guidance.” “multiple solutions to problems,” “expla-
nation of solution by student”). This result suggests that teachers can learn to
focus on more specific information in their assessment of students’ understand-
ing: this trend is consistent with results of Fennema, Carpenter, Franke, Levi,
Jacobs and Empson (1996).
Belief Scale. While all shifts in scores are toward a more constructivist
approach, the shifts on Role of the Learner and Role of the Teacher may be
particularly interesting, given the focus of teachers on “explanation or demon-
stration of solutions™ for both the General Items and the Transcript Analysis
and “multiple solutions to problems” for the Transcript Analysis. Shifts in
these two subscales seem particularly consistent with a CGI approach — an
approach that stresses the teacher’s role in attending to both students’ problem
solving processes and their demonstration and explanation of solutions.
Comparisons of data. For all but three cells in Figure 3, the average change
score for the Role of the Teacher is equal to or greater than the average change
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score for Role of the Student. These three exceptions are for subjects whose
responses were categorized differently across time (i.e.. the 1/0 or 0/1 group).

Because there arc 12 cells (out of 36 total cells) in Figure 2 which contain
data for cither 1 or 0 subjects, it is difficult to see clear patterns by comparing
corresponding cells. There are, however, some patterns in the data for category
4:1n this category there is only one empty cell.

For category 4. for both subscales and for all three items, the change scores
for the 1/0 subjects were greater than the change scores for the 0/1 subjects.
Further, the change scores on Role of the Leamer were greater for the 1/0 sub- .
jects than for all other subgroups. This is consistent with the notion that there
might be a “threshold™ of change, especially for Role of the Learner, such that
if teachers exceed this threshoeld the focus on student explanation may become
“routine” and “not worth nmientioning” in a discussion of students’ understand-
ing of mathematics.

In category 4, for the 1/1 cells, the change scores for each subscale in-
creased across items, while for all other cells, the change scores for each subscale
decreased across items. That is, the beliefs of subjects in the 171 group for the
Transcript Analysis changed more toward a constructivist perspective than the
beliefs of subjects in the 1/1 group for the first General Item. In contrast, the
beliefs of subjects in the other three subgroups for the Transcript Analysis
changed less toward a constructivist perspective that the beliefs of subjects in
similar subgroups for the first General Item. This suggests that what appears
on the surface to be a similar way of categorizing subjects in fact identifies
different kinds of people. There should be further investigation of how the
different items may “trigger” different kinds of responses across the items, with
those responses in turn being categorized differently.

Within category 4 for the General ltems, the change scores for both subscales
were greater for the 1/0 and (/1 subjects than for the 0/0 and 1/1 subjects, while
tor the Transcript Analysis the change scores seemied marginally higher for the
010 and /1 subjects than for the 1/0 and 071 subjects. This <hift in ranking of
the change scores across items further suggests that there 1oay be important
differences i the ways that the items elicit information from teachers. For
istance, there might be an interaction between the wording of the iScms and
the amount oi change in beliefs about Role of the Student and Role of the
Teacher. Different levels of change toward constructivism may sensitize teach-
ers to different use of language in their responses to the items.

In conclusion, across the first year of this project. teachers” beliefs changed
and the evidence they cited to explam students” mathematical underdtanding
ithso seemed to change. However, the relationships between these two kinds of
Changes appear to be quite comiplex.
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This study investigated the fong-term impact of four teachers’ participation in a dia-
logic community. Changes in mathematics instruction as well as on-going profcs-
sional experiences were investigated both for the individual impact on the teachers and
their classroom mathemuatics instruction and for the influence of the dialogic commu-
nity on the larger school culture. It was clear the influence of the dialogic community
rcached three of the four teachers’ personal and professional lives and significantly
affected how they valued and developed classroom climates reflective of practices within
the dialogic community and maintained professional working relationships with one
another. On-going support and resources for sustaining community and affecting cul-
tural change within a school seem necessary for collective change to occur.

There has been much written about and a great deal of money allocated for
programs engaging teachers in systemic reform efforts. Over half of the states
in the United States have received millions of dollars of federal money for
state-wide systemic initiatives for mathematics and science reform while state
Title I Eisenhower monies have targeted mathematics and science education
reform efforts. Within this political and economic climate, where expectations
and visions of the future along with beliefs that students are not learning the
mathematics and science they need to be successful in the 21st century, there
has been increased interest in professional development of teachers. How do
existing school structures encourage or undermine attempts to change approaches
to teaching that are more facilitative of meaningful mathematics fearning?

Hargreaves (1994) discusses cultures of teaching which traditionally have
emphasized individualism, isolation, and privatism.  He defines the teaching
culture to he:

[the] beliefs, values, habits and assumed ways of doing things among

communities of teachers who have had to deal with similar demands
and constraints over many years. . . . | The teaching culture] forms a
framework tor occupational learning. . . . Cultures of teaching help
give meaning, support and identity to teachers and their work. ... What
goes on inside the teacher’s classroom cannot be divoreed from the
relaions that are forged outside it. (p. 165)

417

oy




Important for developing a culiure of change is teacher reflectivity and
commitment to transformative education (Frankenstein, 1987). There has been
much in the literature pertaining to teacher reflection although recent critiques
(Smyth, 1992) have suggested that “reflective teaching is entering a phase . . .
where it has become co-opted and institutionalized. Like most educational
reform before it. it is being cast in the mold of the technological mind set and
thus support(s) standard practice rather than challenge(s) it” (p. 275). Much
effort to support teacher reflection has failed to consider the teaching culture in
which the teacher works and the impact of teachers working within communi-
ties. How can we help teacher communities confront and reconstruct their own
teaching to promote evolution of teaching cultures conducive to responsive and
constructive mathematics teaching?

Previous Research

During the 1995-1996 school vear, we worked intensely with four elemen-
tary school teachers participating in a professional dialogic community. These
teachers met biweekly during the Fall semester as well as participated in weekly
individual interviews immediately foliowing classroom observations of math-
ematics instruction. The investigation examined the complex interplay among
the dialogic process and classroom practices and norms (Pourdavood & Fleener,
1996), the dialectic relationship between the evolution of the dialogic commu-
nity and changes in sociocultural norms in the classroom to include more hu-
manistic classroom practices (Pourdavood & Fleener, in press a), and individual
teacher’s changing beliefs and ability to engage in critical and narrative reflec-
tive activity as the dialogic community evolved (Pourdavood & Fleener, in press
b). These different perspectives of the depth of the relationship between their
experiences in the dialogic community and the impact their participation in the
project seemed to have on their teaching suggest the importnce of the dialogic
process for critical action and change. The question remains, however, whether
these changes were sustained, especially given the central role the researcher-
facilitator played in their dialogic experiences.

This study was a follow-up study of the previous one. one year later. The
primary question of this investigation was: How have mathematics instruction
and professional relationships been influenced, in the long run, by tcachers’
expericnces participating in a dialogic community?

Theoretical Assumptions

The theoretical and philosophical bases of this investigation include the

belicfs that ‘reality’ is a social and political construction (Berger & Luckmann,

1966), that our universe is participatory (Capra. 1983) implying that there is a
biological basis for our interactions with and position in co-creating the uni-
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verse (Bateson, 1972; Maturana & Varela, 1982), that there is a moral impera-
tive for teachers to engage in liberatory education (Freire, 1970, 1973; Greene,
1988), that meaning and context are dialectically constructed through patterns
of relationships, actions, and language (Lemke, 1995), and that teacher cul-
tures are vital to teacher change and educational reform (Hargreaves, 1994).
An important component of educational reform, in our mind, is Freire’s notion
of conscientization (Freire, 1970/1996) as a transfi.rmative process involving
“moving from being uncritical to critical, from being ahistorical to . . . histori-
cal” (Grundy, 1987, p. 190). The question remains how to facilitate the emer-
gence of eacher culture centered on dialogic communication and critical and
reconstructive reflection for liberatory education and reform.

Methods

There were four tcachers who participated in the original investigation dur-
ing the fall semester, 1995. Macy taught first grade and had been teaching for
two years at the time of the original study. Julie had been teaching second
grade for 18 years. Lucinda had been teaching elementary and junior high for
25 years, the last three in third grade. Elizabeth had been teaching 20 years, the
last five teaching gifted and talented for grades one through four.

The second year follow-up included two scheduled meetings with each of
the researchers, classroom observations, and e-mail correspondence. Three of
the four teachers met with one of the researchers on a Saturday in December,
1996, for approximately three hours. An additional one-hour interview session
and classroom observations occurred toward the end of the second year in early
May, 1997. All sessions with the teachers were audiotaped and partially tran-
scribed. Detailed notes of classroom cbservations were made and e-mail dis-
cussions were included as an additional data source. Prolonged engagement,
persistent observation. peer debriefing, and member checks (Guba & Lincoln,
1989) were used to ensure credibility of the study. Dependability and
confirmability were ensured both by triangulation of data sources and by hav-
ing each of the two researchers conduct separate group interviews.

Findings

Facilitating Dialogic Teaching Cultures

Each of the three teachers who participated in the follow-up interviews
during the second ycar felt their experience participating in the dialogic com-
munity was rejuvenating and propelled them toward more connected and mean-
ingful professional development. Elizabeth, for example, during the time of
the original study, noted the value of having the researcher-facilitator provide
them with up to date professional readings. Since then, she has become more
active in her professional education fraternity, has been elected president of
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that organization, and has been developing her own professional library of read-
ings. Lucinda and Julie (who could not participate in the follow-up interviews),
also increased their level of commitment in this organization and continue to
share with Elizabeth while participating in that organization. Similarly, Lucinda
and Elizabeth have both participated in a summer program with one of us, and
both continue to communicate with us via the internet.

Each of these teachers. during the follow-up interviews, expressed the value
they placed on continued professional growth, maintaining professional con-
tacts and renewing their own teaching and energy. *“You should constantly be
working to improve, . . . looking at different things” (Macy, May. 1997) was a
. value each of the teachers expressed. They did critique. however, the difficulty
with current school structures for facilitating meaningful dialogue and critical
growth. Macy commented:

The facilitator role, though, is so important because this year it's been
extremely difficult for us to say, ok, let's set up a meeting and talk. . . .
So it’s like you have to have a person. I think, to set the meetings and
have some purposes and give some direction so it’s not just a gab ses-
sion (Macy. May, 1997)

Even with a supportive administration such as theirs, it is difficult. they
felt, to maintain the intensity and focus they had had while participating in the
dialogic community the previous year. These teachers became more autono-
mous in seeking out opportunities for professional growth and utilized the
internet to explore and maintain relationships facilitative of their continued
conscientization of their own teaching.

Influence on Mathematics Instruction

Each of the three teachers participating in the follow-up indicated increased
emphasis on student opportunities to discuss in their classes. Elizabeth, for
example, felt she had learned to listen to her students ahd is aware this year of
continuing to develop her questioning and listening sKills in her mathematics
instruction. Al} three teachers had continued to includlj opportunities for their
students to work in cooperative groups. Lucinda felt that this year she contin-
ued to explore and make sense of her own teaching in a much more deliberate
way than she had in the past. Classroom observations supported the teachers’
expressed valug of student discussion, active listening, and probing question-
ing of student thinking. For example, during Lucinda’s meeting time. students
wrestled for half an hour trying to solve a student generated problem - one
billion ninus what is one? Lucinda orchestrated this lively and meaningful
conversation,




Implications and Discussion

[t seems the teaching culture of these three teachers wus both receptive to
and influenced by our dialogic community. The teachers’ participation in the
original study was voluntary, their school administrators were supportive, and
the parents in their community were, if not supportive. not antagonistic. Par-
ticipation in the dialogic community provided the teachers with an experi-
ence of community, openness, and trust which they came to value. To the ex-
tent that they reflected on the importance of the dialogic community for their
own growth, the, secame more aware of and interested in nurturing that kind
of environment in their own classrooms.

The resistance of the existing schoo! structure to nurture relationships among
teachers was apparent, however, when the teachers were asked whether their
continued discussions had expanded to include others within the school. While
the continued influence of the dialogic community on their relationships was
apparent, broadening of the community to influence the culture of the school
toward more teacher dialogue and teacher initiated professional development
was not. Sustaining teacher cultures of dialogue and growth seems to require
continued and structural commitments to the provision of resources and facili-
tators willing to organize and initiate opportunities for teachers to share and
grow together.
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This paper reports the experiences of one preservice secondary mathematics teacher
who participated in a study that was designed to clicit preservice teachers’ belicfs about
mathematics and its teaching and to provide opportunitics for preservice teachers to
cxamine their beliefs. The preservice teachers were asked to discuss their responses to
a list of similes for lcarning mathematics and being a mathematics teacher, to work
together in a problem-solving context to solve routine and nonroutine calculus prob-
lems, and to reflect on their beliefs and actions. In this paper, I discuss how these
activities encouraged one preservice teacher to examine and clucidate her beliefs about
mathematics, its learning. and its teaching.

Background and Purpose

The current mathematics education reform movement calls for fundamen-
tal changes in the teaching and learning of mathematics (NCTM, 1989; 1991).
Teachers are key agents in implementing these changes. Research indicates
that teachers’ beliefs about mathematics and its teaching influence their in-
structional decisions and practices (Thompson, 1992). However, many
preservice and inservice teachers hold beliefs that conflict with the aims of the
reform movement (Ball, 1990; Cooney, 1996; Gregg. 1995). Thus, one goal of
teacher education is to help preservice and inservice teachers examine their
existing beliefs as they experience altemmative approaches to leaming and teaching
mathematics.

In this study, we examined two preservice secondary mathematics teach-
ers’ beliefs about learning and teaching mathematics. The partidipants were
involved in several different activities that were designed to elicit the partici-
pants” beliefs. These activities included an interview in which the participants
responded to a list of similes' about learning mathematics and being a math-
ematics teacher, a problem-solving session in which the participants were asked
to solve routine and nonroutine calculus problems, and a final interviéw in which
the participants were asked to retlect on their beliefs and actions. As we gath-
ered information about the participants” beliefs and observed their problem-
solving strategies, we were interested in the educational benefits of the research

IThese similes were adapted trom asurvey [rom the RADIATE project (DULL9254475),
University of Georgia
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project for the participants themselves. One purpose of our study was to inves-
tigate the effectiveness of the activities in encouraging the participants to ex-
amine their existing beliefs and learning behaviors. This paper reports the re-
sults for one preservice secondary mathematics teacher who participated in our
study.’

Theoretical Perspective

Shaw and Jakubowski (1991) identified six cognitive requisites for the
change of teachers’ beliefs and practices. According to Shaw and Jakubowski,
teachers must: (a) experience a perturbation, (b) make a commitment to change,
(c) construct a vision of what the classroom could be, (d) project themselves
into that vision, (e) decide to make a change within a given context, and (f)
compare their practice with their vision through reflection. These requisites for
change are also relevant to the professional development of preservice teach-
ers. Preservice teachers often have a traditional image of mathematics teaching
that was constructed from their experiences as students (Ball, 1990). Teacher
educators may intervene to help preservice teachers examine their existing im-
age of mathematics and its teaching. As a result, preservice teachers may begin
to change their existing beliefs and behaviors. The six requisites identified by
Shaw and Jakubowski provide a framework to help us identify and understand
important aspects of teacher change and development.

Methods

Jill was one of two preservice secondary mathematics teachers who agreed
to participate in our study. Data were collected from an initial interview, a prob-
lem-solving session, and a post hoc interview. At the time of the initial inter-
view, the participants were enrolled in their first mathematics education course,
which promoted views of mathematics learning and teaching congruous with
the NCTM Standards. In this interview, we asked each participant to consider a
list of similes for learning mathematics and for being a mathematics teacher.
Each participant was interviewed separately and asked to choose the similes
that best described learning mathematics and being a mathematics teacher. The
participants were then asked to discuss the reasons for their choices. These
questions were “designed to gather information on beliefs about mathematics
and its teaching” (Cooney, Shealy, & Arvold, in press).

Following the initial interview, we devised a problem-solving session to
investigate the relationship between the participants® beliefs (as expressed by
their responses to the similes) and their approaches to solving routine and

2A complete report of this study by Herbst, Mesa, and Gober is forthcoming. Other
aspecets are discussed in Mesa & Herbst (in press) and Herbst (in press).
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nonroutine problems. For the problem-solving session, we chose two calculus
problems. The first problem was similar to the types of problems seen by stu-
dents in traditional calculus courses. The second problem did not have a clearly
foreseeable right or wrong answer and was designed to encourage alternative
methods of solution. We conducted the problem-solving session during the suni-
mer following the participants’ completion of their first mathernatics education
course. During the problem-solving session, the participants worked together
to solve the two problems. Immediately following this session, we conducted
individual interviews in which participants were asked to reflect on their ac-
tions in the problem-solving session and to discuss how their actions were re-
lated to their beliefs (as expressed by their responses to the similes) about math-
ematics and its teaching.

Results

Jill compared learning mathematics to working a jigsaw puzzle. In her words,
learning mathematics is like working a jigsaw puzzle because “you don't know
what's going to go where and [you] just kinda have to play with it and figure it
out. A lot of math problems, you have to play with them to try to figure them
out.” In Jill's view, learning mathematics is an activeprocess, unlike watching a

movie. She explains, “I'm always playing around with different stuff to see
what I can come up with or what I can figure out on my own. But watching a
movie, you're just sitting there. I mean you don’t do anything.”

As Jill considered the similes for a mathematics teacher, she faced a pertur-
bation: "none of these match.” However, Jill was committed to the task of find-
ing an answer, and she defined her image of a good mathematics teacher by
reinterpreting her past experiences. Jill's image of a good mathematics teacher
stood in contrast to the characteristics of her own mathematics teachers. When
Jill was first asked to think about what a mathematics teacher is like, she re-
sponded, “Okay, like you want me to think about what a mathematics teacher
should be or like my experiences?” She compared her mathematics teachers to
broadcasters: “They stood up there and told you what to do and left it at that.”
Jill went on to say that she did not see mathematics teachers as doctors or
gardeners. However, after further consideration, these similes brought to mind
some characteristics that Jill ascribed to a good mathematics teacher.

A doctor to me is just somebody to, ooh, I can kinda see them as a
doctor. . .. Because a doctor is always trying to help and a math teacher
should be somebody that's trying to help you understand mathematies.,
.. Idon'tseeatas a gardener . . A gardener. Maybe Lean. 1 ean, I ean.
Beeause a gardener is trying . . . to make plants grow, and be pretty, and
blossont and all that. A mathematics teacher should be that, should be
trying to nurture their students and help them understand mathematics
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and grow and learn and live mathematics.

As Jill considered each of the other similes, she further defined her image
of a good mathematics teachers: being open to different ideas (unlike a mis-
sionary). caring about students (unlike an entertainer), and sharing leadership
roles with students (unlike a conductor or a coach). Thus, our discussion of the
similes provided an opportunity for Jill to expound on her beliefs about math-
ematics, its learning. and its teaching.

Jill also faced a perturbation during the problem-solving session. In ap-
proaching the first problem (a routine calculus problem), Jill and Jack (the sec-
ond participant in our study) decided to apply a standard algorithm. Jill lacked
confidence in her ability to solve the problem in this way: “I cannot remember.
... I don’t remember any of this. I don’t remember any math.” Jill's lack of
recall led her to try a different strategy on the second problem (a nonroutine
problem involving the comparison of areas under curves). When Jack asked
what she was doing, she replied, “Just playing.” However, Jill's strategy even-
tually led to a solution to the problem and Jill’s confidence increased. This new
sense of confidence was revealed in statements such as, “I'm telling you Jack.
I've got it figured out” and “My way worked!” Thus, Jill's initial perturbation
and commitment to solving the problems led her to construct a different ap-
proach to the second problem. As Jill indicated in the final interview. she came
to see the value of her own approach for the teaching of mathematics.

Following the problem-solving session, Jill reflected on what she had lcarned
from her participation in the study. She had an opportunity to project herself
into her vision of what a good mathematics teacher should be. Jill stressed that
she needed to review her mathematics. However, Jill aiso recognized the valu~
of her own “simpler” or “visual” approach to problem solving. Jill indicated
that as a teacher, she would adapt to the different leaming styles of her students
by using different approaches to problem solving (e.g., the approaches that she
and Jack used). She reaffirmed her belief that mathematics teachers should be
open to different ideas. As Jill noted in the first interview. students “may come
up with something totally different and it could be a good way of looking at it.”
This willingness to adapt to different learning styles and consider students’
ideas reflects a desire to help and nurture students in their understanding of
mathematics. .

Our rescarch study benefited Jill by providing oppertunities for her to ¢x-
amine and expound on her beliefs about mathematics, its learning. and its teach-
ing. The activities in which Jill was involved sceemed to stimulate perturba-
tions, foster her construction of an image of a4 good mathematics teacher, and
provide opportunities for reflection that helped Jill to project herself into her
image of a good mathematics teacher. As Shuw and Jakubowski suggest, these
may be intportant factors in promoting teacher change and development.
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Conclusions

This report shows how one preservice teacher’s participation in a research
study provided opportunities for her to examine and expound on her beliefs
about mathematics, its learning, and its teaching. Shaw and Jakubowski’s frame-
work helped us to identify the preservice teacher’s cognitive levels as she re-
sponded to the similes, solved mathematical problems, and reflected on her
beliefs and actions. By providing opportunities for preservice teachers to ex-
amine their beliefs and actions, we may create environments in which preservice
teachers can experience the cognitive requisites identifi-d by Shaw and
Jakubowski (1991). In this way, we may stimulate changes in preservice teach-
ers’ beliefs about mathematics and its teaching.
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The purpose of the study was to identify preservice teachers’ perspectives on gender
equity and to explore how they process the information they receive about gender is-
sues. Data were collected through written sprveys administered to approximately 250
preservice teachers enrolled in mathematics and science education {methods) courses
at the university. Data were analyzed using Paine’s (1990) categories of orientations to
diversity: individual difference, categorical difference, contextual difference, and peda-
gogical difference. The study suggests that most preservice teachers have an indi-
vidual difference view of gender equity in which they strive to treat all students the
same to avoid discrimination. Some students hold a categorical view of gender equity
in which they strive to overcome stercotypes about boys and girls. A smali number of
students actively denicd that gender issues have any relevance to education.

It is unnecessary, year after year, to graduate new classroom teachers
who. because they don’t know any better, unintentionally diminish the
educational, and therefore career, and therefore economic prospects of
the female half of the population and thus of the nation. We can and
must do better. (Campbell & Sanders, 1997)

Integrating Gender Equity and Reform (In GEAR') is a three year collibo-
rative project being conducted by Clark-Atlanta University, the Georgia Insti-
tute of Technology. Georgia Southern University. Georgia State University, and
the University of Georgia. Each institution has a team of mathematics educa-
tors, science educators, mathematicians, scientists, and others working on the
project on its campus. The American Association of University Women of
Georgia and the Georgia Initiative in Mathematics and Science (a statewide
systemic initiative, also funded by the National Science Foundation) are also
collaborating on the project. The purpose of the project is to change the ways
in which preservice elementary, middle, and high school teachers learp to teach
science and mathematics. The project has two main objectiver: To injtiate and
implement the redesign of teacher preparation programs, including instruction

"This material 1s based upon work supported by the National Science Foundation under
Grant No. HRD-9453106. Any opinions. findings. and conclusions or recommenda-
tions expressed in this publication are those of the authors and do not necessarily re-
flect the views of the National Science Foundation.
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in science, engineering, and mathematics courses, so that teachers entering K-
12 classrooms are able to address issues that discourage girls and women from
participating in scientific and technological fields; and to provide professional
development opportunities for faculty and teaching assistants that will equip
them with positive support and intervention strategies.

To achieve the project goals, the project has four strands: an institutional
self-evaluation; professional development of faculty and teaching assistants; a
toolkit? of materials for teacher preparation courses; and a framework for teacher
education. The collaboration was designed so that each educational institution
in the partnership would take a leadership role for one strand, but all campuses
would implement each strand.

The study that is reported in this paper was conducted as part of the institu-
tional self-evaluation. The purpose of the study was to identify the perspectives
about gender equity that preservice teachers bring with them to their methods
classes. We were also interested in knowing how preservice teachers process
the information they receive about gender issues. Specifically, we were inter-
ested in knowing what teaching strategies these teachers thought they might
employ in their own classrooms to create a gender equitable learning environ-
ment. Knowing how preservice teachers think about gender issues as they en-
ter their teacher education program and as they are exposed to information
about gender issues can provide the mathematics teacher education community
with information about what aspects of gender equity might be addressed and
how they might be addressed in ways that are most meaningful to teacher edu-
cation students.

Theoretical Framework

Data were analyzed using Paine’s (1990) categories of orientations to di-
versity. Paine’s categories were developed to analyze prospective teachers’
views of cultural diversity, but the categories seem relevant for the specific
diversity issue of gender as well. Paine’s framework consists of four layers of
meaning for diversity: individual difference, categorical difference, contextual
difference, ..nd pedagogical difference. From an individual difference perspec-
tive, people are seen as different in all dimensions. Preservice teachers holding
this orientation toward diversity try to respond to students on an individual
basis. The source and solation of a problem will depend on the individuals
concerned.

In a categorical view of diversity, preservice teachers associate specific
characteristics and patterns of difference with people in various, categories. These
categories include social class, race, and gender. However, the social construc-
tion of these categories is not examined. so the categories themselves remain

IThe toolkit can be found on the world wide web at http://fwww.coe.uga.cdu/ingear.

3




unchallenged. Forexample, in the category of gender, this means that efforts to
address gender differences focus on removing barriers to females’ participation
or on changing females. In this view, the problem is with the females and the
ways in which they have been socialized.

The third orientation, contextual difference, connects patterns of differ-
ences to a social situation. For example, gender differences are not fixed but
constructed through social interaction. This approach takes into account the
causes of difference, unlike the individual or categorical orientation. Teachers
with a pedagogical orientation understand that differences have implications
for teaching and learning. An understanding of differences is combined with
knowledge of equitable teaching strategies.

Paine (1990) used these four categories to analyze preservice teachers’ ori-
entations toward diversity. In a survey of elementary and secondary preservice
teachers, Paine found that preservice teachers relied heavily on an individual
difference orientation to teaching. They indicated the importance of fairness
and equality for all students, but rejected certain differences (e.g., gender) as
having important implications for teaching. When asked about specific teach-
ing practices that would address diversity in the classroom, these preservice
teachers generally responded with vague or confusing answers.

Data Collection

Written surveys were administered to approximately 250 preservice teach-
ers enrolled in mathematics and science education (methods) courses at the
University of Georgia. Approximately half of the preservice teachers surveyed
were early childhood education majors, one-fourth were middle school educa-
tion majors with a primary or secondary concentration in mathematics or sci-
ence, and one-fourth were secondary mathematics majors. The preservice teach-
ers were at various phases of their teacher education program, ranging from
their second quarter of professional education coursework to a post-student
teaching seminar.

Data were analyzed using a coding scheine developed by Campbell (1995)
as part of the Teacher Education Equity Project. The coding scheme involves
reading participants’ responses and rating whether their response reflects lack
of awareness of gender issues, some awareness of gender issues, or action with
respect to gender issues. Those responses coded as “awareness™ are further
coded as to whether they show neutral or negative awareness. Responses coded
as “action” are further coded as 10 whether they show non-specific action, iso-
lated action, or integrated 1ction.  These codings were then used to identify
which of Paine’s categories of orientation toward diversity best described the
participant.




Results

The data suggest that most preservice teachers have an individual or cat-
egorical difference perspective on gender. Approximately 10% of the students
surveyed couild not be categorized according to Paine’s scheme. These stu-
dents actively denied the existence of gender equity issues in the classroom.
They made statements such as, “There really is no need to be concerned with
gender, just the quality of the instructor and their teaching practices.” or *Per-
sonally, [ believe it is an issue that is irrelevant to successful education.” or “1
do not have a problem with feeling suppressed or discriminated against in my
science classes. Ido not sec a problem [because 1] have not experienced this in
my classes.” Several other students noted that they had not ever considered the
issue of gender equity, and therefore they did not complete the survey.

Approximately two-thirds of the students’ responses were classified as re-
flecting an individual difference perspective. Students with an individual dif-
ference perspective noted that they would treat all students the same in order to
avoid discrimination. They used words such as “equal,” “the same,” or “fair” to
describe a gender equitable teacher. These students seemed to believe that by
ignoring gender their classrooms would be equitable. Representative student
comments include “[A gender equitable teacher] doesn’t prefer one gender over
the other.” or “{A gender equitable teacher} doesn’t call on one gender more
than the other.” or “Students in a classroom are treated equally no matter what
gender they are.” When asked what strategies they would employ in their own
classrooms to ensure that their students were receiving gender equitable in-
struction, these students tended to suggest strategies such as alternating calling
on boys and girls and using tally systems to ensure that both genders were
being called on equally.

Approximately one-fourth of the preservice teachers’ responses reflected a
categorical orientation toward gender. Students with a categorical difference
perspective saw gender as defining how students perform and react to math-
ematics instruction. One student said that a gender equitable teacher is one
who can “discuss the differences between girls and boys and recognize them.”
Another student said that 4 gender equitable teacher is one who “informs chil-
dren that they can do anything that the opposite gender can do.” Yet another
student said that a gender equitable teacher “acknowledges that femnales are
capable of achicvements in math and science” and “females are given an ap-
propriate amount of time/attention in the classroom.” When asked what they
would do in their own classrooms to ensure that their students were receiving
gender equitable instruction, these students tended to suggest strategies that
debunked gender stercotypes. For example, students suggested using literature
and guest speakers to portray women in typically masculine roles. One student
noted the importance of avoiding word problems about bascball or dolls.
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Students enrolled in a section of an early childhood mathematics methods
class where the instructor had devoted one class period to discussion of gender
issues account ror nearly 50% of the students classified as holding a categorical
view. The remaining 509 of students who held a categorical view came from
two other classes in which the instructors had explicitly addressed gender eq-
uity in class, although to a lesser extent than the first instructor.

Implications for Teacher Education

The data suggest that most of the preservice teachers in this study are likely
to unintentionally diminish the educational opportunities of female students
because they do not know any better, as Campbell and Sanders (1997) wam.
Preservice teachers need opportunities to examine their views of gender equity
and to read literature that poses other views. Further, because most of the par-
ticipants in this study were unaware of specific strategies they might employ in
their own classrooms, preservice teachers also need to learn about and try vari-
ous instructional strategies that have been shown to produce an equitable class-
room environment.

Indeed, most of the preservice teachers in this study indicated that their
professional education classes had seldom or never addressed gender cquity
issues. It is important for teacher education faculty to address gender equity
issues (as well as multicultural issues) in a systematic manner. It is interesting
to note that even the students who had some exposure to instruction about gen-
der equity reflected individual and categorical orientations toward gender eq-
uity. Obviously, a one or two hour lecture on the topic is not sufficient.

As with most topics in teacher education, reading about a topic and taking
lecture notes is insufficient for students to operationalize the ideas in the class-
room. Therefore, an important component of teacher education experiences
should be the analysis of and reflection upon classroom practice-their own
classroom practice and that of peers and mentor teachers. By reflecting on
classroom practices, preservice teachers may be able to identify gender equity
issues and strategies that are most salient in their own teaching.
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There is a profusion of discussion and literature about the use of mathematics and
language arts together in the elementary classroom. This research examines the per-
ceptions of clementary preservice teachers about the desirability and ease of integrat-
ing mathematics and reading. In this pilot study, 54 subjects gave responses to 12
Likert-type statements. These subjects were in three methods classes: mathematics
methods, rcading methods, and integrated reading and mathematics methods. The re-
sponses of the three classes on pre and post surveys are given. There was a significant
difference in perceptions on one of the questions, concerning the ease of actually inte-
grating the two subjects in the classroom. In addition, on the post surveys there were
significant differences between the three classes on the post survey concerning confi-
dence in ability to tcach integratively and concerning the relationship of problem solv-
ing abilitics and rcading.

Purpose

Attempts to integrate mathematics and reading instruction can be seen in
curriculum materials and textbooks suggesting how reading instruction can
contribute to achievement in mathematics (e.g.. Ferguson & Fairburn, 1985;
Kresse, 1984: Shell, 1982; Singer & Donlan, 1980). However, most of the
cfforts to integrate mathematics and reading have not yet succeeded in fully
exploiting the potential for an educational agenda aimed at using reading as a
way of promoting mathematical reasoning skills among public school students
and teachers. Further, some might argue that teacher education has, for the
most part, neglected curriculum and instructional integration.. The purpose of
this study was to investigate the perceptions of preservice clementary teachers
about integrating the teaching of reading and mathematics. Of particular inter-
est was the difference in perceptions about integrating the teaching of rcading
and mathematics between those preservice teachers enrolled in a course that
stressed integrating instruction and those enrolled in courses that did not stiess
integrating such instruction. The perceptions that these prospective teachers
have will determine whether or not they will use integration techniques in their
classrooms.
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Theoretical Framework

There is a call for a new synthesis of mathematics and reading. That is,
there are efforts to recognize reading is a mode of learning that can be utilized
to give readers connections and strategies in the mathematics curriculum (Siegel,
Borasi, & Smith, 1989). In recent years, there has been a significant shift in the
ways that the disciplines of mathematics and reading have been conceived. In
both fields, the shift from transmission to transactional or constructivist views
of learning has been well documented. Reading and language arts educators
have developed curricula which use activities that promote increased learning
through reflection and problem solving. Examples of such activities include
using children’s literature to learn mathematics (e.g., Whittin & Wilde, 1992),
exploring writing as a way to learn content areas and to promote critical think-
ing skills (e.g., King, 1982), and authoring curricula which are based on the
idea that meaningful learning occurs when students use multiple communica-
tion systems in context (e.g., Harste, Woodward, & Burke, 1984; Rowe &
Harste, 1986).

Reading plays a role analogous to the one which writing has recently be-
gun to play in mathematics instruction. Arguing that writing is a mode of thinking
and not simply a maiter of transcribing thoughts into words, mathematics edu-
cators have proposed that writing experiences can support mathematics learn-
ing (King, 1982; Stempien & Borasi, 1985).

Methods

The participants in this pilot study were 54 preservice elementary teachers
at Oklahoma State University. They were enrolled in three sections of curricu-
lum and instructional methods classes: a math methods section (n = 21), a
reading methods section (n = 13), and a special reading methods section where
. subjects received training in teaching reading and math integratively (n = 20).
Each subject tutored an elementary school-age child in both math and reading
in partial fulfillment of the course requirements. Subjects in the math-reading
section used math-reading integration strategies learned for their tutoring as-
signment. Subjects in the other two classes followed a regular math or reading
methods curriculum where they learned to teach math or reading independently.

All of the preservice teachers completed a survey, which was prepared spe-
cifically for this exploratory study, at the beginning and at the end of the Fall
semester, 1996. The survey was designed to determine perceptions about inte-
grating the teaching of math and reading at the elementary/middle school level.
The survey instrument consisted of statements that solicited the subjects’ re-
sponses on a Likert-type scale, ranging from 1 (Strongly Disagree) to § (Strongly
Agree). Statements about the effectiveness of integrating math and reading in
the classroom, using math to teach reading, and using reading to teach math
were included.
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To ensure that the statements included in the survey were appropriate and
valid, a number of steps were taken. First, available research studies, which
tap teachers attitudes and perceptions about reading and math in general, were
examine. Second, we took into consideration extensive feedback solicited from
discussions with colleagues and students concerning the clarity and appropri-
ateness of the statements. Third, we piloted an earlier version of the survey
with a small sample of preservice and inservice teachers. All these steps re-
sulted in refinements to the survey as a whole. The survey instrument had an
internal consistency reliability of .89 for the statements suggesting that the scales
were measuring the same construct. The survey questions, along with the
results obtained, may be found in Table 1.

Results And Discussion

The data obtained were analyzed using repeated measures ANOVAs with
group (Reading, Math, Reading-Math) as independent variables, and the time
factor as a repeated measures variable (each subject completed the survey twice:
at the beginning of semester and at the end). We were interested in finding out
whether a group of preservice teachers’ perceptions about several aspects of
the integration of language arts and mathematics changed as a result of com-
pleting a methods course where they learned to teach math and reading
integratively.

The results, presented in Table 1 below, revealed two important findings.
First, when the subjects were asked to report their feelings toward the integra-
tion of the language arts and mathematics, it was found that there was a rela-
tively high degree of agreement among the subjects in all three groups—at the
beginning and at the ¢nd of the semester—about the interdependence of the
language arts and mathematics ((= .86) as indicated by the mean ratings re-
ported for each of the dependent variables. The subjects’” agreement seems to
indicate their feelings that reading, writing and math naturally support each
other, and that they should be learned «1d taught together.

Second, while we anticipated that the group which underwent training in
the integration of reading and math to indicate higher ratings towards the inte-
gration of the two subjects than the other two groups, we found no statistically
significant differences among any of the three groups with respect to 11 of the
12 dependent variables. We attribute tiie lack of significance in this case, at
least in part, to a ceiling effect due to the fact that nearly all of the subjects,
regardless of group membership, had relatively high mean ratings of their feel-
ings towards the integration of reading and mathematics. The only significant
differenee noted was between the reading/math group and the reading group,
[F(2,51)=6.17, p =.004] with respect to their feelings about whether or not
language orts and mathematics can be casily combined in the classroom (State-
ment # 7),
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Furthermore, it was found that the subjects in the reading/math methods
course felt somewhat less confident about teaching math and reading together
at the end of the semester (M = 3.55: SD = 1.05) than did the subjects who
learned how to teach reading only (M = 4.69: SD = 48). This finding, while
intriguing in light of the fact that the subjects in the math/reading group were
“trained” to teach math and reading, can be explained by the fact that these
preservice teachers realized that the more they knew about why and how to
integrate reading and math as well as about the challenges involved in the pro-
cess-information gained during the course of an entire semester through read-
ings, class discussions, tutoring experiences, and interviews with practicing
teachers—the less confident they felt about their personal abilities to teach
language arts and mathematics together. This particular issue has raised sev-
eral related questions regarding the potential for as well as the difficulties in-
herent in any attempt to integrate curricula. These questions are currently be-
ing addressed in a follow-up study.

Finally, an analysis of the group responses for the post survey only showed
a significant difference between the subjects in the math group and the math/
reading group with respect to the relationship between writing math problems
and problem solving [(F(2,51) = 4.70; p = .01]. Specifically, in their response
to staternent #7, the subjects’ the reading/math group felt more confident (M =
4.80; SD = .41) about the usefulness of teaching children about solving as well
as writing or creating math problems than did the subjects in the math group
(M =4.23:SD .70). This difference was evident in the subjects’ lesson plans as
well as the reflective journals they kept while tutoring an clementary school
child.

The findings in this pilot study have important implications for curriculum
leaders, language arts and mathematics researchers and practitioners. First, the
results do lend some support to those researchers who have advocated the teach-
ing and learning of reading and mathematics integratively. These results sug-
gest that teacher educators ought to begin to design programs in support of
interdisciplinary reading and mathematics curricula.

Second, it is clear from the literature available in this relatively “new’ area
of research that our goal as language arts and mathematics teachers should be
to increase our understanding of the instructional, assessment, administrative,
and psychological aspects of integrating curricula particularly with respect to
reading and mathematics. As classroom teachers begin to explore the potential
for using reading and writing as means of enhancing mathematics learning and
problem solving, the value of the integration of reading and math will become
more and more evident. Similarly, as educators recognize the importance of
enhancing children’s leaming and achicvement, the need for designing sup-
portive curricula becomes more obvious.
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The findings of this study are encouraging, especially to those teachers
who are concemned about their students’ reading, writing and math skills. Inte-
grating reading and writing with math may be used as a way of motivating
students to read and write and have enjoy doing it. However, since the study
was conducted with a small intact group of preservice teachers, its
generalizability is limited. More in-depth research with a higher number of
preservice and inservice teachers is strongly suggested.
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THE IMPACT OF MATH APATHY STUDENTS ON ONE
HIGH SCHOOL TEACHER
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Mrs. Well- an Algebra I teacher, struggles to instill a desire of learning in all her stu-
dents while at the same time dealing with students who do not care. On the one hand,
she "hates™ having students with math apathy in her class, because they do not want to
learn and many times they are a disruption to students who do want to learn. On the
other hand, Mrs. Wells sincerely takes a personal interest in cach student and wants
every student to be successful. A case study was done to better understand Mrs. Wells’
struggles. The results show that the rigid mathematics curriculum and her own atti-
tudes and beliefs about learning and teaching shaped what she did in the classroom.
The most surprising of the findings for her was the realization that her methods and
attitudes directly contributed to the students” apathy. As a result of this realizauon, she
made significant changes in her teaching.

One of the greatest challenges mathematics teachers face is to create a cul-
ture for learning that is both mathematically challenging yet inviting to all stu-
dents. The Professional Standards for Teaching Mathematics (NCTM, 1991)
advocates the proper use of four main areas that help make up the classroom
culture: mathematical tasks. discourse, environment, and analysis. How does a
teacher implement these when faced with students who are apathetic toward
mathematics? How do students with math apathy affect the classroom culture?
How do they impact the teacher's beliefs and teaching methods? How do the
textbook and its underlying philosophy affect the culture. the students’ beliefs
and attitudes, and the teacher’s beliefs, attitudes and actions? During the 1996-
1997 school year, we set out to better understand these questions in Mrs. Wells™!
Algebra I class,

Theoretical Perspective

Our views of knowing. culture. beliefs, and teacher change partly shape
how we view and analyze the data. We believe that knowledge is constructed
individually (von Glasersfeld, 1987, 1989) and shaped largely by prior experi-
ences and the culture in which it is learned (Davis, Shaw, & McCarty. 1993).
Rossman, Corbett, and Firestone (1988) explicate three cultural change pro-
cesses, one of which seems relevant to this study. The process, known as “ad-
ditive,” refers to beliefs that are modified quite suddenly and spread to entire

Mrs. Wells 1s the second author of this paper.
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belief systems. To understand this cultural change, it was important to under-
stand Mrs. Wells’ beliefs at the beginning of the study and as she modified them
throughout the year. We utilized our understanding that beliefs are often clus-
tered (Green, 1971), sometimes being interrelated with other clusters and some-
times being isolated from others. We also realized that these clusters of beliefs
can be very contextually and culturally dependent (Ashley, 1996).

Methods

We conducted the study in Mrs. Wells’ natural environment, as learners,
not ones that know all the answers, with the understanding that human instru-
ments are involved and therefore qualitative methods are optimal, and by un-
derstanding the importance of one’s own tacit knowledge to make inferences
(Guba & Lincoln, 1989). The method used to investigate Mrs. Wells’ struggles
was the case study. Data collection tools were: interviews, journals, and obser-
vations. The interviews (10-12) took place in Mrs. Wells’ classroom, in the
office of the first author, or on e-mail. A journal (22 entries) was kept by Mrs.
Wells. She reflected on what was occurring in her classroom as it related to her
own teaching and the learning of her students. Fieldnotes were taken immedi-
ately following observations (5) made during the class. The data sources were
used collectively to better understand the struggles Mrs. Wells was having.

Mrs. Wells is 40 years old and has taught high school mathematics for three
years. She completed her master’s degree in mathematics education in the
spring of 1997. She was selected for this project because of her desire to learn
more about the teaching methods and their impact on math apathy students.

Results

You don't care, I don’t care. Mrs. Wells writes in her journal that God has
given her “an incredible love for students and teaching” and that she is blessed
to have an opportunity to practice what she loves to do. Her love for teaching is
evident during the observations of her in the classroom. She is energetic. She
presents her subject matter in a clear and direct manner. She talks to each
student several times in class and she.demonstrates genuine care for each stu-
dent. Even with all of these qualities, she has become discouraged with several
of her 18 students in Algebra [. “I don’t want to give up hope on these students,
but I've started to believe if they don’t care, why should 1? All I really wunt is
for the student to care. They don’t have to be brilliant, but I want them to at
least care.” She addressed this concern in her journal,

I am very tired of those three or four students whose seemingly life’s
purpose is to see what they can get away with. These “3 or 4™ students
affect most everything I do or don’t do for that matter. 1don’t have an
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answer, in fact, I feel completely drained of ideas, and that is the most
frustrating part about it. (Dec 11, 1996)

The frustration was heightened by her belief that all she does should be of
excellent quality and that students should have this same goal of excellence.

Striving for excellence is sometimes my weakness. Mrs. Wells, by her very
nature, strives for excellence in all she does. She believes it is a “calling.” She
elaborates, “I know that this attitude in me can sometimes become one of my
weaknesses. In other words, since I expect a lot of myself, I expect my stu-
dents to be of ‘like mind.”" It was evident that Mrs. Wells has difficulty having
empathy for her math apathy students. She does not understand students who
are not striving for excellence. One day, Mrs. Wells told her students who
needed to make up a test that they must come after school next Tuesday to take
it or they would get a zero. She reminded them several times including the day
of the test. Tuesday afternoon, she posts these reflections, “It’s now 3:30 and
I'have not had any of my students come to take their make-up test. I relinquish
all responsibility and will write down a O in the grade book with no pangs of
guilt.” She goes on to say that it saddens her to realize the irresponsibility of
these 16 year old students. As aresult of conducting this research, she became
aware of her apathy towards the apathetic students. She wanted to changze, but
felt confined by the curriculum.

Do 30 problems every night/Understanding will come. The mathematics
textbooks heavily influenced Mrs. Wells' teaching and her view of how stu-
dents learned. Some of the publisher’s comments about using the textbooks
were,

Don’t try to teach students to think by playing Socrates and asking
questions so that they will invent the math they need to know. You did
not learn math this way and neither will they. In-depth discussions
and cute questions should be considered only after a leng period of
time. ... The teacher’s primary job is finding a way to get each student
to work all the problems.

Even though philosophically she did not agree with this, she felt thot to be
successful in using the textbooks, she must adhere to the publisher's recom-
mendations. After attending a 2-day seminar sponsored by the publishers fast
summer, Mrs. Wells vas told to be very rigid in what she did as a teacher each
day. The daily routine was to: check homework (5 minutes), teach the lesson
(10 minutes), do homework in class (40 minutes).

Mrs. Wells believes that if students do 30 problems a night, they will do
well in algebra and subsequent courses. After the 2-day summer seminar, she




was convinced that her past problems “must have been because I was not ad-
hering strictly to that particular philosophy of teaching math.” In trying to
understand why, Mrs. Wells responded, “That is what you are supposed to do
when you use these books.” She validated this by talking to a past Algebra I
student who had the same opinion.

However, she began to question the approach of covering one lesson per
day when teaching the topic of the rectangular coordinate system. She wrote in
her journal how she thought it would be best to stay on a topic for several days
until all her students understand, especially those “less gifted (and motivated)”
students. But she knew to be “successful” meant teaching a new lesson every
day no matter how different the topic. The rigidity of the textbook became a
recurring struggle.

Teacher as Motivator. Mrs. Wells loves to teach and loves being around
young people, but she feels inadequate to deal with those who are apathetic.
She tried to motivate them one day by talking about her feelings. Summarizing
this talk, she said she could no longer continue teaching this way and feeling
the way she does. She told the class she was going to change the way she
taught the class. She admitted to them that the main reason she did not enjoy
teaching Algebra [ was because she felt more like a baby-sitter than their teacher.

Transition

Mrs. Wells realized that the textbook reinforced her role as baby-sitter. She
noticed that the rigid approach prescribed by the textbook publishers took away
from her professionalism and her high calling of being a teacher. Throughout
the semester she had wrestled much with her style of teaching and began mak-
ing changes. In December 1996, Mrs. Wells realized her apathy and negative
attitudes toward her math apathy students. She became more positive and be-
gan rewarding her students. During January 1997, she began to take a personal
interest in those students who were often overlooked. On January 27, Mrs.
Wells rearranged her room and partnered the students. She changed how she
taught the lessons by extending the time spent teaching; she no longer followed
the rigid schedule. On March 24, Mrs. Wells no longer strictly followed the
textbook. She spent an entire week on graphing. In April Mrs. Wells chose the
topics which she thought students needed to leam. She selected 10-15 prob-
lems from specific problem sets in the book for her students to complete for
homework. Near the end of the study, she summarized her changes,

[ cannot and will not teach the [publisher’s] way anymore. I did not
enjoy it; in fact, I was miserable teaching that way which affected my
classroom negatively. 1do not begin to claim to know what the right
way is; [ just know the [publisher’s] way is not it. I also no longer feel
torn or hopeless as to what I should do as a teacher of algebra. In fact,
[ am excited about the challenges that lie ahead, no matter what text-
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book we choose. For me, I now know that my success in the classroom
is not found in trying to imitate others’ ways, but in being myself and
confident in my own style of teaching.

There was also a transition in her students. Initially, the students were
frustrated because they were unable to really understand what they were learn-
ing which led to difficulties completing the 30 problems/day. Due to Mrs.
Wells’ changes, her students began to talk about their algebraic learning and
understanding to Mrs. Wells and with one another. As a result, of her 18 stu-
dents, 8 made D’s or F’s for the first semester and very few made As, but during
second semester, half of her students had As for both the 3rd and 4th nine
weeks with only one failing.

Conclusions

Mrs. Wells was greatly impacted by the textbook and its philosophy, the
students” apathy, and her apathy toward her students’ apathy. Upon better un-
derstanding how these factors impacted her beliefs and actions, Mrs. Wells
was able to make empowering decisions to reduce the rigidity of the curricu-
lum, reduce her apathy toward her apathetic students, and raise the importance
of the teacher in establishing a conducive and positive culture for learning.

Mrs. Wells still struggles with appropriate ways in which to deal with math
apathy students. In fact, she probably always will. But she no longer struggles
with her own apathy towards those students. She has relearned a valuable les-
son—"real change always begins within oneself!” She realizes that students
are not like her and may never have a high commitment to learn. She no longer
views math apathy students in the same light: “If you don’t care, I don’t care.”
Instead, she has realized that many students need to be invited to learn. She
seeks now to make her classroom and algebra more inviting.
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DISTRICT-WIDE REFLECTIVE TEACHING IN
MATHEMATICS: FROM CHANGING THE
STORY TO STORING THE CHANGE

Christine D. Thomas Karen A. Schultz
Georgia State University Georgia State University
mstcdt@panther.gsu.edu kschultz@gsu.edu

The focus of this report is mathematics teaching in the context of implementing the
Reflective Teaching Model (RTM), where pairs of teachers conducted systematic
monthly planning for O to 4 ycars of at least one mathematics lesson with each other,
observed each other teaching, and then followed up with a non-evaluative debricfing.
The theoretical framework of the RTM is based on constructivism and metacognition,
and a conceptual framework of the eight Levels of Use (LoU) of an innovation was
used to study teacher luminal knowledge, which exists between the time teachers start
letting go of previous knowledge and practice and before they reconstruct their knowl-
edge and practice. Storytelling was used to describe knowledge and practice. Searches,
merges, and reports assisted by NUD.IST software found patterns across groups of
teachers according to the extent of time they have been working toward change and
their position in the Levels of Use of the RTM.

This study is a survey of teacher knowledge in a district-wide elemen-
tary mathematics and science education project (CAMP) designed to facilitate
teacher change in response to the national mathematics (NCTM, 1989, 1991)
and science standards (NRC, 1996; Project 2061, AAAS, 1993). During the
time frame of CAMP, from 1992 to 1996, a progressive teacher enhancement
program implemented a process of restructuring teaching. The process, which
is embodied in the Reflective Teaching Model (Hart, Schultz, Najee-ullah, &
Nash, 1992; Schultz, Hart, Najee-ullah, Nash, & Jones, 1993; Keys & Golley,
1996; Wagner, 1994; Thomas, 1993), is continuing in this district beyond the
funding period. For each new cohort of teachers (in combination with the pre-
vious year's cohort and teacher leaders), implementation occurs after a theory-
based inservice on pedagogy and its association with national standards. The
RTM process includes monthly planning of at least one mathematics or science
lesson with a “reflective”™ partner who then observes the live or videotaped
lesson and follows up with a non-evaluative debriefing.

Objective

The objective of this study was to examine the knowledge about teaching
mathematics acquired by clementary school teachers at the four-year mark of
their district’s participation in CAMP. The perspective of this rescarch is the
impact of the RTM on teachers in their mathematies teaching practice. We asked

447 it




“What do teachers know?" and “How is teucher knowledge shaped by the
professional knowledge context in which teachers work?” Fenstermacher (1994)
and Clandinin and Connelly (1996). The context of this study is the shifting
landscape of professional knowledge in mathematics education, where the RTM
was the teacher-driven means of changing that landscape.

Framework

The theoretical framework is built on constructivism (Bauersfeld, 1992;
Confrey, 1986, 1992; Schifter & Fosnot, 1993: von Glasersfeld, 1984, 1990),
metacognition (Flavell, 1979; Schoenfeld, 1987, 1992), and negotiation of
sociomathematical norms (Yackel & Cobb, 1996). The paradigm of mathematics
instruction that is supported by this theoretical framework presents a great chal-
lenge which is aptly put by Schifter and Fosnot (1993) when they wrote that no
matter how lucidly and patiently teachers explain to their students, they cannot
understand for them (p.9).

The LoU, or Levels of Use of an innovation (Loucks, 1983) was the frame-
work to study teacher’s luminal knowledge. These levels are O: Non-Use of
innovation, I: Orientation to innovation, I1: Preparation to use, lII: Mechanical
use, IV-A: Routine use, IV-B: Refinement, V: Integration with others, and VI:
Renewal toward more effective alternatives.

Mode of Inquiry

We used story telling (Feldman, 1990; Clandinin & Connelly, 1996;
Isenberg, 1995) to cxamine luminality (Feldman, 1990), which in this study
means teacher knowledge after teachers start letting go of previous thinking
and practice but before they’ve reconstructed it. It is the “betwixt and between
position which develops when previous structural arrangements have termi-
nated. but new ones have not yet been established™ (pp. 809-810). Teachers;
stories were their perceptions of the changing landscape of their world of teach-
ing; our analysis of the stories found patterns across groups of teachers accord-
ing to the extent of time they have been working toward change and their posi-
tion in the Levels of Use of the RTM.

Data Source

Stories were collected from 12 pairs of teachers in 12 elementary schools
in a metro-Atlanta school district. At the request of the school district, all par-
ticipating schools and tcachers have been coded to maintain anonymity. All
demographics, stories, and follow-up questions were recorded on one audio-
tape per teacher. Training for the data collection process was conducted by the
Instructional Lead Teacher from cach school, who previously was trained by
us. All Instructional Lead Teachers have been facilitators of the RTM and have
a unique relationship with those teachers in the context of the RTM which be-
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gan first in mathematics, then science, and now in the other disciplines. Two
teachers per each of the 12 elementary schools were selected by the district’s
Elementary Mathematics Coordinator to provide demographics, stories, and
responses to follow-up questions on their story. The Elementary Mathematics
Coordinator was instrumental in district-wide implementation of the RTM which
began over five years ago at the time of this writing. The Coordinator selected
teachers in order to have a distribution of teachers according to the length of
time that they practiced the essentials of the RTM.

The actual data collection process was a modified version of an exercise
called “Writing Your History (or Herstory),” traditionally used with teachers
learning how to implement the RTM. The exercise has been successfully used
for awareness of themselves as “mathematics™ teachers (as contrasted to view-
ing themselves exclusively as “elementary teachers™), for getting more ac-
quainted with one another as colleagues, and as an exercise in empathic listen-
ing (an essential in changing one’s teaching, for example, from teacher-focused
to student-focused). Each pair of teachers took tums in one story telling ses-
sion, using a script we provided, asking each other a set of demographic ques-
tions and then inviting his or her partner to tell a story about mathematics teach-
ing. Stories could be real or made up but had to have a hero, a villain, a turning
_point, and a moral. After one teacher told his or her story, the other teacher
asked follow-up questions to identify and explain the “hero,” “villain,” “turn-
ing point,” and *moral” of the story. Heroes and villains could be people, events,
or things: and the moral could be the lesson learned. for example.

Data Analysis

Transcriptions of the teachers’ stories were segmented into text units and
entered on NUD.IST' software for qualitative data management. The text units
were analyzed and coded in two categories professional teacher knowledge and
the Levels of Use of the RTM. The professional knowledge found in the teach-
ers’ stories addressed knowledge of the teaching process and themselves as
mathematics teachers. knowledge of the learning process and of the learner,
knowledge and attention to rmathematics in the teaching practice, pedagogy
and classroom management, affect (beliefs, attitudes, feelings related to math-
ematics teaching or leamming). and specific reference to the RTM. Searches,
merges, and reports are relevant evidence to our assertions and claims. A de-
tailed report of the data analysis will be given in the research presentation,

Discussion and Results

Within cach of these text units were found evidence or implications of how
teacher professional knowledge was shaped. Luminal knowledge was found

I'Non-Numerical Unstructured Data Indexing Scarching and Theorizing
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between the Routine and Refinement Levels of Use. Knowledge at the routine
level is defined as knowing both short and long-term requirements for use of
the RTM and how to use the RTM with minimum effort. At the refinement
level of use, knowledge is defined as knowing the cognitive and affective af-
fects of the RTM on students and knowing ways for increasing impact on stu-
dents.

Teachers’ stories at the routine or refinement level of use of the RTM tended
to emphasize the leaner and leamning processes. Further analysis of text units
within the luminal state of routine and refinement levels of use revealed a focus
on the impact of pedagogical strategies which gave more authority to the stu-
dents as opposed to a focus on teacher-centered strategies. We found teacher
V-1, a second grade teacher who has been involved in the project for four
years, to display a preponderance of these findings in the following text unit.

1 was able to really show enthusiasm for their [students’] thinking be-
cause I didn’t have the answer. That made me more accepting of them.
And by always asking another way for having gotten the answer that
made my kids better thinkers because then they not only would try to
figure out the answer but were able to do it differently so the they could
come up and explain. Just knowing how much kids learn from each
other, for somebody to come up and see it really happen when a kid
explains something and another one says, oh. It was a wonderful expe-
rience for me that year and leamning so much with the kids and just
having see them so generally so enthusiastic about math class.

We contrast her, who is not necessarily female. with data from another
teacher J-2 who is a fourth grade teacher and has been in the project for one
year.

If you are planned well enough, if you can go right through the steps,
you can getexcited, you don't lose your enthusiasm. and seeing that all
come together gave me a renewed sense of the way things can be done.

Teacher J-2 has not reached the luminal state and is found to be at a me-
chanical level of use of the RTM. At the mechanical level the teacher knows on
a day-to-day basis the requirements for using the RTM and is more knowl-
edgeable of the short-term activities and effects than long-range activities and
effects of the RTM.

The text units cited above from the stories of teacheis V-1 and J-2 depicted
patterns that were found acrot. the data sources. We found that stories from
teachers who have been engaged in RTM practice over an extended period of
time were focused on the learner and the leaming process, the pedagogy, and
the affective impact of RTM practice on the leamer and the classroom environ-
ment. Teachers’ stories, given by teachers with less than two years in the project,
were most often teacher-centered as portrayed in the text unit of teacher J-2.
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Conclusions

This study used storytelling as a vehicle for understanding, “What teachers
know™ and “How teacher knowledge is shaped by the professional knowledge
context in which teachers work.” Storytelling enabled the teachers to describe
their changing roles and the impact of the RTM in the process. This study
contributes to the growing body of research in mathematics education on the
teacher’s role in reform where the direction of the reform is teacher driven.
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TEACHERS’ BELIEFS ABOUT MATHEMATICS
AS ASSESSED WITH REPERTORY GRID

METHODOLOGY
Steven R. Williams Miriam Pack Lena Licon Khisty
Brigham Young Brigham Young University of Illinois -
University University Chicago
williams@math.byu.edu llkhisty @uic.edu

Scventeen teachers enrolled in a summer class for teachers in bilingual settings were
asked to provide descriptions of “typical things a person does when he or she does
mathematics.” From their responses we selected items for use in repertory grids. A
sample of three teachers were then given these items and constructs were elicited.
Representative constructs were chosen from those obtained, and each of the 17 teach-
ers completed a repertory grid designed to illuminate their conceptions of what it means
to do mathematics. Grids were analyzed using fuzzy implications, and the resulting
implication structures were then classified according to their structural sophistication.
The classifications related strongly to self-reported experience with mathematics. and
give insight into the relationship betwecen teaching and vicws of mathematics.

Background

It has been pointed out repeatedly that teaching mathematics is based on
beliefs about what mathematics is (Thompson, 1992; Hersh, 1986). Recent
works in the philosophy of mathematics point out changing conceptions of
mathematics and how these conceptions relate to reform efforts in mathematics
education (Ernst, 1991; Tymoczko, 1986; Restivo, Van Bendegem, & Fischer,
1993). Although Thompson’s (1992) review of the literature finds varying de-
grees of consistency between professed beliefs and classroom instruction, it
seems clear that beliefs about mathematics will affect decisions teachers make
as they attempt to alter their classroom practice. As Hersh (1986) points out,
“One’s conceptions of what m.thematics is affects one’s conceptions of how it
should be presented. One’s manner of presenting it is an indication of what one
believes to be most essential in it” (p. 13). This seems particularly important as
teachers make changes in their practice to accommodate students whose pri-
mary language is not the majority language of the cluss. How teachers adapt
instruction will depend in part on what they see as being fundamental to the
mathematics they teach. It thus becomes critical to help identify teachers’ be-
liefs about mathematics.

Thompson's (1992) review makes it ¢lear that most work on teachers' be-
liefs about mathematics has been based on individual interviews or question-
naires. The repertory grid methodology employed in this study has been used
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in the past to assess teachers’ beliefs in varicus domains, but only recently have
knowledge of mathematics or beliefs about mathematics been addressed in this
way (Lehrer & Franke, 1992; Middleton, 1995).

Repertory grid methodology was introduced as a psychological assessment
tool by George Kelly in the mid-1950’s. Originally. subjects were asked to
produce a list of people who filled various roles in their lives (e.g., a trusted
friend). Having produced the list. they were given items from this list three at
atime and asked to describe how two were alike and how they differed from the
third. The categories arising from this task were called constructs and were
thought to be the organizing templates used by subjects to give meaning to their
interpersonal world. These constructs were bipolar so that every construct (e.g.
honest) had an opposing conrrast (e.g. dishonesr). Thus there is always a con-
tinuum defined between a construct and its opposing contrast. In this study,
the constructs used by subjects to organize items dealing with mathematics are
considered to be the organizational templates used to make sense of mathematical
activity, and to reflect subjects’ beliefs about what mathematical activity is.

Data Collection

Subjects for this study were 17 public school teachers enrolled at a major
northwestern university in a summer course designed to help them teach math-
ematics in a bilingual setting. Some of the teachers were themselves bilingual;
many were not. Each member of the class was asked to provide a list of “typi-
cal things a person does when he or she does mathematics.” From these lists,
eighteen of the most representative answers were chosen as items for eliciting
repertory grids. This list of 18 items included, “ask or answer questions; com-
pute or calculate; discover, explore or experiment: find patterns: get frustrated;
solve problems; think or reason; talk to others; visualize; work alone.” With
these 18 items, constructs were elicited frorn three volunteers from the class.
These volunteers met with a member of the research team and were given items
from the list three at a time, and asked to describe how two were the same and
therefore different from the third. In this way, constructs and contrasts were
elicited. The thirteen most common and representative constructs were chosen
from among those elicited, and each class member was then asked to rate every
item on a three-point scale as being more like the construct or its contrast. The
thirteen construct/contrast pairs were:

* Process/Outcome
Concrete/Abstract
Looks at Whole/Looks at Parts
Creative/Constrained

Higher Level/Rote
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Easy/Difficult
+ Students’ Acts/Teachers’ Acts

* Inviting/Threatening

* Discovering/Following Rules

* Interacting/Working Alone

* Rewarded/Unrewarded

* Physically Active/Physically Passive

+ Emotionally Involved/Emotionally Detached

The result for each class member was a matrix of ratings of each item on
each construct/contrast pair. If each construct is seen as describing a class of
items, the ratings can be seen as giving the degree to which each item is a
member of that class. More formally, if these classes are viewed as fuzzy sets,
then the rows of the matrix provide the degree of membership of each item in
the fuzzy set named by the construct. On this basis Gaines and Shaw (1986)
demonstrated how implications can be defined between the predicates which
define these fuzzy sets (in this case, the constructs). Forexample, if the rankings
for all items on the construct “abstract” are as strong or stronger than for the
construct “‘rote,” it indicates that whenever an item is seen as rote it is also seen
as abstract. Thus, an item’s being rote implies its being abstract, and we con-
clude that rote implies abstract (rote ¢ abstract) in general. Gaines and Shaw
describe a process for establishing such implications which guards against the
inclusion of “trivial” implications and which also finds bi-implications where,
for example, rote ¢ abstract, and abstract g rote.

Results

On the basis of the complexity of the implication structures, class members
were divided into two major groups. Each is described briefly here. The first
group consisted of five teachers with scant and simple implication structures.
Of these, one teacher had no implications, and the others had no more than two
implications. Examples of typical implications are “rote ¢ constrained™ and
“rote ¢ following rules.” Both of these implications make sense and demon-
strate an observed tendency for implications to deal more with aspects of math-
ematics which might be perceived as negatively oriented toward reform. All
five teachers in this group identified themselves as having a relatively weak
math background.

The second group consisted of teachers who displayed more than two simple
implications or who displayed more complicated chains of implications, such
as “physically active g discovering ¢ higher level” Seven of these teachers had
either several implications or implication chains of this type. Also within this
group were five teachers who had much more complex patterns. Of these five,
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four reported having relatively strong mathematics backgrounds. Typical of
this subgroup were teachers who produced interrelated implications involving
the majority of the 13 constructs, as well as bi-implications. These more com-
plicated structures give some insights into individual teachers’ beliefs about
mathematics. We provide two brief examples here.
The implication structure produced by one of our teachers was as follows:

* Process ¢ Students’ Acts g Following Rules ¢ Working Alone

* Process ¢ Students’ Acts ¢ Threatening ¢ Difficult

* Process ¢ Students’ Acts ¢ Emotionally Detached ¢ Threatening ¢ Dif-

ficult

* Process g Students’ Acts ¢ Working alone

* Higher Level g Abstract ¢ Threatening g Difficult

» Higher Level ¢ Looks at whole ¢ Threatening o Difficult

» Higher Level ¢ Threatening ¢ Difficult

Here, all but two of the implication chains end with the implication threatening
¢ difficuit. For this teacher. it seems that a great deal of mathematics is both
threatening and difficult, including that which involves students acting (a. op-
posed to teachers being the major actors), that which is higher level (as op-
posed to rote). and that which involves a focus on process rather than on prod-
uct. This teacher reported having a relatively strong background in mathemat-
ics, but the beliefs about mathematics which are exhibited here have some
troublesome implications for instruction. For example, to avoid making math-
ematics threatening or difficult for students, this teacher may well choose to
focus largely on tasks which focus on products rather than processes, and which
are rote, concrete, and narrow.
By contrast, a second teacher, who also reported having a strong back-

ground in mathematics, had the following implication structure:

* Outcome ¢ Difficult ¢ Following Rules ¢ Threatening ¢ Abstract

* Outcome ¢ Difficult ¢ Following Rules ¢ Abstract

* Outcome ¢ Difficult g Physically Passive ¢ Abstract

* Outcome ¢ Difficult ¢ Threatening ¢ Abstract
Outcome ¢ Difficult ¢ Working Alone ¢ Abstract
* Outcome ¢ Difficult g Abstract
* Outcome ¢ Following Rules ¢ Threatening ¢ Abstract
* Qutcome ¢ Following Rules ¢ Abstract

* Outcome ¢ Emotionally Detached ¢ Threatening ¢ Abstract
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Outcome ¢ Emotionally Detached ¢ Abstract
Unrewarded g Discovering ¢ Emotionally Involved
Physically Active g Discovering ¢ Emotionally Involved
Physically Active ¢ Emotionally Involved

Physically Active g Process

In addition, bi-implications indicated that for this teacher, seven construcis were
very closely related: Working Alone, Following Rules, Threatening, Physically
Passive, Rewarded, Emotionally Detached, and Difficult. Together with the
implications above, this seems to indicate that instruction based on outcomes,
as opposed to processes, is seen as rule-based, solitary, emotionally detached,
passive, difficult, and (regretizbiy) rewarded in traditional schooling. In addi-
tion, all of this is associated with “abstract” mathematics. On the other hand,
another cluster of implications, and their contrapositives (which involve the
contrasts rather than the constructs) seem to indicate that for this teacher, physi-
cally active tasks are seen as inviting, focused on process, involving in discov-
ery, and less difficult. This cluster indicates the teacher’s acceptance of an
alternative to the traditional instruction which is viewed in such a negative way.

Conclusions

One of the major goals of the course in which these teachers were
enrolled was to suggest that good mathematics instruction for all students can
be richly contextual, activity-based, and engaging, and that this approach sup-
ports students whose primary language is not the language of instruction. In
light of this goal, and in light of the general efforts toward reform, the beliefs
exhibited by some of the teachers were somewhat troubling. Although we do
not suggest that either of the two teachers we discuss here have wholly positive
or negative perceptions of mathematics, it is clear that they point to some areas
of concern.

The repertory grid methodology employed exhibited some specific
strengths and weaknesses.  For those teachers whose implication structures
were relatively complex, the method provided easily interpretable, meaningful
information about beliefs. Moreover, it allowed for aspects of mathematical
practice to emerge from the class itself, rather than being imposed by us as
researchers. However, for some teachers it gave very little information. 1t is
probable that refinements in the methodology could somewhat improve results,
but it also seems likely that this methodology should be supplemented by other
data sources.
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THE GECMETRY CLASSROOM: THE INFLUENCE OF
TEACHERS’ BELIEFS

Kay A. Wohlhuter
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This paper presents partial results of a study that investigated seccondary geometry teach-
ers’ decision making in a mathematics curricular reform context. The study examined
teachers’ planning and interactive decisions and identified factors that influenced the
decisions that these tecachers made. Results reported include the description of the
geometry courses generated by teachers’ planning and interactive decisions and the
discussion of one of the identified factors—teachers’ beliefs.

Teachers’ planning and interactive decisions as well as the identification of
factors influencing teachers’ decision making have been recognized an impor-
tant componerts for understanding teaching (Borko & Livingston, 1989; Brown
& Borko, 1992; Clark & Peterson, 1986; Hsieh & Spodek, 1995; Putnam, 1984;
Westerman, 1991). To better understand geometry teaching, this exploratory
investigation focused on secondary geometry teachers’ planning and interac-
tive decisions and the context in which these decisions were made. The contex-
tual factor that is the focus of this paper is teachers’ beliefs about the nature of
geometry as a discipline and about their view of their own teaching.

Design and Method

The sample consisted of five mathematics teachers. three females and two
males, from five high schools (grades 9 through 12) located in the Northwest-
ern United States. The subjects’ geometry teaching experience ranged from 8
years to 23 years (M = 15.2). Prior to the start of the school year, data were
collected through a pre-questionnaire and pre-interview. Beginning with the
start of the school year and continuing for three months, weekly audiotaped
and videotaped classroom observations and audiotaped teacher interviews were
conducted. In addition, written documents such as weekly lesson plans, lesson
plans for observed lessons, textbooks, and assessment instruments were col-
lected. At the conclusion of the observation process, a final interview was
conducted with each teacher.

The data were collected and analyzed in three phases using the ongoing,
inductive process described by Bogdan and Biklen (1992). This general induc-
tive process involved reading the data, organizing it, breaking it into manage-
able units such as codes or categorices, scarching the data for patterns, refining
categories as needed. and identifying themes that were prevalent in the deci-
sion making data. The first phase focused on the analysis of the pre-academic-
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year questionnaire responses and interview transcripts. The results of this analy-
sis guided the data collection and analysis occurring in the second phase. The
second phase of analysis began with the first observation of each teacher and
continued through each teacher’s final interview. After eachteacher’s observed
lesson, the videotape of the lesson was viewed and notes were added to the
field notes for that lesson. Following each observed lesson, the interview notes,
the field notes that contained information from the videotapes, and written docu-
ments were analyzed.

During the third phase of analysis, the audiotape transcripts were merged
with the field notes of each lesson in order to make the transcript for each
lesson complete. A preliminary profile consisting of the teacher’s decisions
and influential factors was prepared. To complete the analysis, each teacher’s
data were re-examined. The focus of the re-examination was on identifying
situations that did not support existing categories. When this circumstance
occurred, the category was refined. Based on the analyses, individual teacher
profiles were written. Teacher profiles were then examined collectively in search
of similarities and differences across the sample, generating a cross-case pro-
file.

Results and Discussion

Teachers™ beliefs about the nature of geometry were related to the facets of
geometry promoted in their classrooms. One facet that was valued by all teach-.
ers was geometry as a content knowledge base. This knowledge base included
zeometry concepts (e.g.. points, lines, planes, angles. polygons. three-dimen-
sional figures) and relationships between these concepts. Teachers also pro-
moted geometry as an example of a mathematical system. This facet included
both the logical development of geometry and the process of how mathemati-
cians derive mathematics. One teacher promoted the logical development of a
proof-oriented geometry course through the use of lectures. In contrast, the
other four teachers’ interpretation of the mathematical system view indicated
that the development of deductive reasoning skills would be one expected out-
come of geometry, not the primary focus of their course. For three of the four
teachers, proofs via deductive reasoning were one component of the process of
developing mathemnatical concepts and relationships through e .ploring, con-
jecturing, and verifying geometric ideas. The systern aspect of gecometry pro-
moted by these three teachers was in agreement with the Curriculien and Evalu-
ation Standurds for School Mathematics (1989, hereafter referred to as the
Curriculum Stundards) idea that the deductive perspective of geometry needed
to receive less emphasis than in the past and the interplay of inductive and
deductive reasoning needed to be fostered more in present and future geometry
classes. Based on her encouragement of student development of inductive and
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informal deductive reasoning skills, the remaining teacher appeared to be mov-
ing toward this same interpretation of the system aspect of geometry.

Another facet of geometry addressed by the teachers included geometry as
a setting for developing communication and problem solving skills. For the
proof-oriented teacher, students had some opportunity to communicate geo-
metric ideas as they volunteered to write their proofs on the board and explain
their work to their classmates. For the other four teachers, geometry as a set-
ting for developing communication skills was evident as their students were
encouraged to read, write, and talk about geometry concepts and relationships.
In agreement with the Curriculum Standards’ (1989) description of communi-
cation, the focus of these communication processes was on student understand-
ing of geometric ideas. The geometry courses of these four teachers were also
seen as a setting for developing problem solving skills such as looking for pat-
terns, drawing and interpreting diagrams, performing and applying construc-
tions, and exploring concepts and relationships through investigations. These
mathematical skills which advocated students’ active involvement in *“doing
mathematics™ supported teachers’ efforts toward integrating a problem solving
approach for learning mathematics as described by the Curriculum Standards.
The fourth theme of the Curriculum Standards, promoting mathematical con-
nections, was hinted at as teachers used real-world representations for vocabu-
lary or when they used cartoons to explore a topic.

Teachers’ beliefs about the nature of geometry were characterized by the
different emphases given to the facets of geometry. One teacher emphasized
geometry as an example of a mathematical system as well as addressed geom-
etry as a base of specific content knowledge via a lecture approach. This teacher
appeared to belicve that geometry was a static and structured body of knowl-
edge and procedures that students must master. The other four teachers empha-
sized geometry as a knowledge base, an exumple of a mathematical system,
and as a setting for developing communication and problem solving skills while
students actively participated in their learning of geometry. These four teach-
ers also incidentally addressed the connection between geometry and the real
world. For these four teachers, their views suggested that they believed that
geometry was a multifaceted body of knowledge that needed to be examined,
explored, and constructed by students.

The depiction of geometry by four of the five teachers was similar to ge-
ometry researchers’ previous descriptions of geometry. Burger and Culpepper
(1993) described geometry as an abstraction of visual and spatial experiences,
as a provision of approaches for problem solving, and as an environment for
studying mathematical structure. Usiskin (1987) characterized geometry as
the visualization, construction, and measurement of figures, as the study of the
real, physical world, as a vehicle for representing other mathematical coneepts,
and as an example of a mathematical system,
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Teachers’ beliefs about their view of their own teaching also influenced
teachers’ decision making. One aspect of this belief was whether teachers saw
the process of becoming an effective mathematics teacher as a life-long pro-
cess. In self-descriptions of their past and present teaching, three teachers im-
plied that their teaching had changed since they first started teaching. In addi-
tion, their comments indicated they continued to explore ways to provide their
students with better opportunities for learning geometry. These three teachers
appeared to view the process of becoming an effective geometry teacher as a
life-long process. A fourth teacher’s description of his teaching suggested that
his teaching had also changed since his first teaching position. His comments
also indicated that he was open to seeking out new ways to teach geometry, but
at the same time he was satisfied with his course’s format. His openness to
future change indicated he probably viewed the process of becoming an effec-
tive geometry teacher as a life-long process. The fifth teacher’s description of
his teaching implied that he had found an instructional approach early in his
career with which he was comfortable, and he continued to use that approach.
Thus, it appeared that this teacher might not view the process of becoming an
effective geometry teacher a life-long process. This study’s finding of whether
teachers view themselves as life-long leamers supported Hsieh and Spodek’s
(1995) finding that teachers’ decision making was influenced by teachers’ vi-
sion of themselves as teacher.

Teachers’ beliefs about their view of their own teaching also involved
whether teachers appeared to think of themselves as curriculum builders. As
curriculum builders, teachers defined their own geometry courses rather than
implemented courses defined by others. Teachers in studies conducted by
Putnam (1984) and Westerman (1991) took an active role in making decisicns
that transformed their curriculum into their desired course. For the teachers in
this study, the role assumed by them in the process of defining their geometry
course was influenced by whether they chose their textbook and whether their
textbook matched their beliefs about the teaching and leaming of geometry.
Two of the teachers relied heavily on the textbook for content selection and
sequencing. For both of these teachers, the reliance on their textbook was at-
tributed to the fact that they helped select a textbook that matched their philoso-
phies for teaching geometry. Even though a third teacher also used a textbook
that she helped select and that supported her approach for teaching geometry,
the textbook did not completely define the her desired geometry course. This
teacher supplemented her course with activities and projects that supported an
integrated mathematics class and her school’s restructuring plan. The remain-
ing two teachers used the textbook as a guide and made decisions about their
course based on their wish to present a view of geometry that was broader than
the proof-oricnted scope and sequence emphasized in their textbooks. Both
teachers participated in the book sclection process at their respective schools.
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Their agreement to select a textbook that did not match their philosophies for
teaching geometry appeared to be related to their beliefs that their geometry
course was not defined by the textbook.
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CHANGE IN TEACHING PRACTICE DURING AN
ACTION RESEARCH COLLABORATIVE

Thomas G. Edwards & Sarah Hensien
Wayne State University
tedward@cms.cc.wayne.edu

Miller and Pine (1990) define action research as a procedure by which
teachers examine the process of teaching and learning in their own classrooms.
Clift and others (1988) charactenize collaborative action research as focusing
on practical problems of individual teachers as they interact with university
staff. While clearly providing a context for collaboration and support as teachers
attempt to change teaching practices, such collaboratives are also rich in their
potential for inducing a reflective teaching practice (Raymond, 1996).

The authors, a middle scheol mathematics teacher and a teacher educator,
have engaged in a two-year action rescarch collaborative. Throughout this
collaboration, they have acted on an equal footing as colleagues, rather than as
university professor and middle school teacher. The collaboration has included
a narrative, written by the teacher, desenbing her work and the changes she
has made, or attempted to make, in her practice of teaching mathematics. While
the formal writing of a narrative description of one’s own work provides a
context for reflection on that work. this activity may also provide a context for
engoing support of the teacher’s efforts to change (Schifter, 1996).

The narrative provides a small window through which we might view,
from her perspective, the process of change in once middle school teacher’s
mathernatics teaching practice. Doing so may help us understand more clearly
her process of change, and how that process might unfold in others.
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PRE-SERVICE K-12 TEACHERS OF MATHEMATICS:
CHANGE IN BELIEFS

David R. Erickson Georgia A. Cobbs
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Piaget characterizes learning as a continual process of assimilation and
accommodation (Wadsworth, 1984). Attitudes and beliefs about mathematics
and mathematics content knowledge of teachers are important in the prepara-
tion of teachers of mathematics (Thompson 1992).

This paper describes some of the changes that pre-service K-8 or 7-12 teach-
ers experience during the teacher preparation program. The research focused
on students’ understanding and beliefs about “What is mathematics?” and “What
does it take to be a successful teacher of mathematics?” Initial responses were
e-mailed to the methods instructor on the first day of class before any discus-
sion of the course philosophy or objectives. A final interview of purposefully
selected students occurred at the end of the course. Analysis of data from the
initial e-mail survey, reflective journals submitted throughout the course, and
the final interview indicate students’ beliefs about teaching and learning math-
ematics changed as a result of a combination of course work and maturation.

Results indicated content courses “‘take off the blinders to mathematics”
(Tim, #2); the hands-on approach helped students make mathematical connec-
tions. Students indicated they had a reason to learn the mathematics: They
wanted to be able to teach it. “They need a strong understanding of the subject
matter, . . . the teacher needs to be willing to learn and change as time goes by,
... [and] be very flexible” (SS#3.1).

As pre-service teachers proceed through the course of study to become
certified teachers, they continually refine and create new understandings of what
it means to be a teacher of mathematics and the nature of mathematics itself.
This study documents those beliefs and changes in beliefs of students at one
university.
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MATHEMATICS PROFICIENCY AS VIEWED
THROUGH A NOVICE TEACHER’S GOALS,
BELIEFS, AND ORIENTATIONS

Bridget Arvold
University of Hlinois
barvold@uiuc.edu

A two year case study of novice teacher Monica’s goals, beliefs, and orien-
tations revealed that a positive sense of mathematics proficiency and a strong
display of content knowledge can negatively influence the professional devel-
opment of a mathematics teacher. Within constructivist and interactionist frame-
works, Monica and I collaboratively researched how she was coming to know
herself as a mathematics teacher. She entered a secondary mathematices teacher
education program with strong credentials and a commitment to mathematics
teaching. Midway in her first year of teaching, she considered leaving the
profession. By year's end she had found her place and had dismissed as unre-
alistic, the methodologies promoted in her university program.

The interview, observation, and focus survey data and the constant cons-
parative and retrospective analyses provided insights tnto Monica’s sense of
mathematics proficiency. She evidenced a combination of authoritative, utili-
tarian, and mathematics-centered belief systems (BErnest. 1991). Mathematies
was a structured collection of definitions and algorithims that were useful in
real life situations. Mathematics was absolute, certain, and God-given. The
teacher's responsibility was to present clear definitions and step by step ex-
amples. Teaching a group of disinterested students was problematic for Monica,
but mathematics teaching was unproblematic,

Monica’s experienees with investigative learning environments during her
teacher education program failed to connect with her view of mathematics, her
needs as a reeeived knower, and ber performance goal orientation. She be-
lieved that an inquiring disposition distracted one from doing mathematies.
Mathematics proficiency was evidenced by answering questions asked of a
teacher. The rescarch findings support the recommendation that mathematics
teacher educators strive to help novice teachers build from the novice's per-
sonal theories and in so doing ascertain not only what mathematics they know
but fiow they come to know it. '
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DEVELOPING SELF CONFIDENCE IN
MATHEMATICS: AN EXPERIMENT WITH
PRESERVICE ELEMENTARY SCHOOL
TEACHERS

Sunday A. Ajose
East Carolina University
ajoses@mail.ecu
One of the current goals of mathematics education is.to have students
develop confidence in their ability to do mathematics (NCTM, 1989). How-
ever, many elementary school teachers fear mathematics and lack self confi-
dence in the subject. This situation raises questions about whether teachers,
with little or no confidence in their own abilities, can facilitate students’ devel-
opment of self confidence in mathematics. This paper reports on a teaching
experiment designed to help preservice teachers develop self confidence as they
acquire content and pedagogical knowledge of mathematics.

Theoretical Background

Hilton (1980a,b) suggests that mathematics anxiety is caused by the lack
of adequate knowledge of mathematics. He recommends giving students proper
grounding in mathematics and engaging mathophobic adults in mathematical
reasoning tasks. Bloom (1972} argues that most students can be helped to achieve
at a high level by using mastery leamning strategies in teaching. These ideas
guided the teaching cxperiment described in the paper.

Procedures and Results

The study involved 22 elementary education majors enrolled in a math-
ematics “methods™ course. While leamning mathematics pedagogy. the students
worked on filling gaps in their content knowledge. They explored non-routine
problems every week and gave written solutions and reflections on their work.
Twenty one students reached a mastery level of at least 80% on a comprehen-
sive elementary mathematics test. They showed greater self confidence by their
willingness to take on tough math problems and persist in their search for
solutions.
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THUS ON LEARNING
Anita N. Kitchens Jeannie Hollar
Appalachian State University Lenoir-Rhyne College
- kitchnsan@appstate.math.edu hollar@ prophet.bluenet.ne.

Affective factors, referring to a wide range of feelings and moods differing
from pure cognition (McLeod, 1989) are an indispensable part of mathematical
learning. The affective emphasis of this discussion will be students’ beliefs
about themselves as learners. Silver (1987) contends that students could po-
tentially gain more from instructors’ attention to the curriculum of beliefs
than from any improvement of mathematical facts.

The basis for this discussion will be the theory of axiom change (McEntire
& Kitchens, 1984) which states that experiences lead to the formation of be-
liefs (axioms) and thus affect behavior. Several examples from the mathemat-
ics classroom will illustrate that beliefs can dictate behavior and can mask math-
ematical ability . Therefore, teachers must shift focus from informally deter-
mining students’ ability based on their performance to exploring students’ be-

liefs.

To explore the effects of self-beliefs on performance, we propose to dis-
cuss the following issues:

1.

2.

4.

Participants will be encouraged to relate the theory of axiom change and its
implications for the teaching of mathematics to examples both from their own
classroom and from their own lives. Each individual teacher should leave this
discussion with new ideas for becoming actively involved in helping students
tounderstand the effect of self-beliefs on learning and with a model from which
to operate in helping students.

McEntire, A.. & Kitchens, A. N. (1984). A new focus for educutional improve-
ment through cognitive and other structuring of subconscious personal axi-
oms. Education, 105(2). 139-146.

THE INFLUENCE OF BELIEFS ON BEHAVIOR AND

The relationship among students’ experiences, beliefs, and behaviors.

The facilitation of students’ exploration of self-beliefs by math instruc-
tors, untrained in psychology.

The impact of instructor beliefs, especially the one “all students in the
class can leam”.

The relationship between the instructor’s high cognitive expectations
and students’ development of positive beliefs.
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MATHEMATICS STUDENT TEACHERS’
DEVELOPMENT OF TEACHER
KNOWLEDGE AND REFLECTION

Maria L. Fernandez
University of Arizona
mfernandez@mail.ed.arizona.edu

Prospective mathematics teachers’ perceptions of student teaching in their develop-
ment as teachers including their development of teacher knowledge and reflection were
investigated. Data collection included written documents from student teaching and
in-depth interviews. Four areas of perceived knowledge development surfaced through
the data analysis: general teaching knowledge, mathematics teaching knowledge, knowl-
edge about students, and knowledge of the context. Van Manen’s (1977) levels of
reflectivity (i.c., technical, practical, and critical) were evidenced in the teachers’ oral
and written reflections. Their level of reflectivity was influenced by the ability to
experiment and the support received for reflection. Connections between reflection,
teaching, and knowledge development were sought.

Teacher knowledge is unquestionably one of the most important influences
on what mathematics teachers do in classrooms and consequently on what stu-
dents learn. In recent years, researchers have called attention to the need for
research on preservice teachers’ development of knowledge during teacher edu-
cation (Grossman, 1990; Lanier & Little, 1986). Concurrently, researchers
have sought the identification and characterization of domains of knowledge
that comprise a professional knowledge base for teaching (Fennema & Franke,
1992; Reynolds, 1989; Shulman, 1987). Reports of the Holmes Group (1986)
and the Carnegie Task Force on Teaching as a Profession (1986) advocate the
importance of a knowledge base in framing teacher education and practice. In
addition to developing domains of teacher knowledge, learning to teach neces-
sitates the development of cognitive processes for teaching (Brown & Borko,
1992). In particular, the development of reflective teachers has become a promi-
nent issue in discussions of teacher education.

Empirical research is needed to support and guide teacher education pro-
grams seeking to promote the development of teacher knowledge and reflec-
tion among prospective mathematics teachers. The purpose of this study was
to research prospective mathematics teachers’ perceptions of their develop-
ment of teacher knowledge and reflection duririg their mathematics teacher
education program. Expericnces prior to and during student teaching that pro-
spective teachers identified as sources influencing their development were in-
vestigated in order to better understand the transition from mathematics stu-
dent to mathematics teacher. In particular, this study revealed important con-
nections among reflection, teaching, and supervision in prospective teachers’
development of teacher knowledge during student waching.
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Theoretical Perspective

The study reported here investigated the development of teacher knowl-
edge and reflection given the following perspective. Knowledge construction
was assumed to be dynaric and active process (von Glasersfeld, 1984). Al-
though learners make sense individually, this process is influenced by the expe-
riences in which they are engaged including interactions with others. The con-
struction of knowledge involves the interaction of past knowledge with the ex-
perience of the moment. Reflection is a deliberate act in the process of making
sense of one’s experiences. Given the assumption that learners construct knowl-
edge while making sense of their experiences. reflection is important in the
process of learning (Baird, 1992). Products of this process in the form of writ-
ten or oral reflections reveal differences in individuals’ reflections. Van Manen’s
(1977) conception of “levels of reflectivity” addresses differences in reflection.
Van Manen outlined three levels of reflection: technical, practical, and critical.
The technical level is concerned with the efficient application of educational
knowledge to attain given ends. The practical level is concerned with assessing
the educational consequences toward which an action leads. The critical level
is concerned with the application of ethical and moral criteria to the assessment
of those consequences.

Design of the Study

A case study methodology was used in this investigation in an attempt to
gather in-depth data about a specific phenomena (Merriam, 1988): mathemat-
ics student teachers’ knowledge and reflection. The design of this study con-
sisted of two case studies of prospective teachers enrolled in the same upper
division mathematics teacher education program. Data collection for each case
included documents developed during the 10 weeks of student teaching and
three 2 hour interviews conducted at the end of student teaching, during a 2
month period. The data analysis began with the documents: student teaching
journals, student teaching summative reflection papers, classroom observation
field notes, and notes from school visits and other interactions with the student
teachers. Part of the first interview addressed questions and issues that arose
from the documents. Subsequent interviews were guided by the ongoing analy-
sis. FEach case provided a unit of analysis through which themes and patterns
were identified that were used in the cross-case analysis.

Prospective Teachers

Ginger and Maryanne each excelled in their mathematics and education
coursework and were regarded highly by the mathematics education faculty.
Prior to student teaching, they were enrolled in the same two-quarter sequence
of core courses concerned with curriculum and instruction for teaching second-
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ary school mathematics. During their student teaching, I was their university
supervisor. Both taught students in traditionally college bound and non-col-
lege bound mathematics courses.

Student teaching gave Ginger “a taste of teaching;” however, she felt it had
been “an endurance test.” She struggled to develop as a teacher within the set
routines of her cooperating teacher, Ms. Spice. Ms. Spice typically relied on
teacher-centered instruction devoid of varied materials or tools for discourse.
Ms. Spice was not supportive of Ginger’s experimentation and did not help
Ginger reflect on her teaching.

Ginger’s reflections during student teaching were mainly at the technical
level. She often focused on classroom management strategies without ac-
knowledging the educational conséquences for students’ learning of the math-
ematics or considering the social conditions and worthwhileness of that knowl-
edge. For example, she let students work together on class work “because
when they worked alone they got bored” and she prepared class notes on trans-
parencies because “it made me more mobile, it helped with classroom manage-
ment some, and um I could see if they were having problems.” Ginger’s reflec-
tion at the practical and critical levels occurred when she felt comfortable ex-
perimenting and felt supervisory support. She experimented on days I observed
and reached higher levels of reflection through our discussions. For example,
on one of those occasions, she wrote that lesson *“would have been more condu-
cive to learning & mathematical discussion if I'd grouped the conics that were
the same together, then students could have compared.”

Given the lack of feedback, Ginger began to rely heavily on students’ com-
ments without critically reflecting on reasons for those comments. Some stu-
dents told her they preferred lecture over group work and a few said they did
not like to use calculators. These preferences cinched for Ginger that she needed
to use a variety of teaching strategies to accommodate student preferences. In
a final evaluation, her students indicated that she needed to work on classroom
management. Ginger felt her most important learning from student teaching
was that “students need to be in a classroom with effective classroom manage-
ment.” That means she needs to keep students busy because “there are less
problems with classroom management {when] the students are not allowed idle
time or idle minds.”

Student teaching gave Maryanne an opportunity “to try out everything or .
.. some of the things you've been learmning about.” Maryanne’s cooperating
teacher, Mrs. Gilligan, used a variety of strategics and materials for teaching
mathematics. Her teaching was aligned to some extent with that promoted in
the teacher education program. Mrs. Gilligan was very supportive of Maryanne,
giving her frcedom and support to explore varied teaching strategies.

Maryanne’s reflections during student teaching were primarily at the prac-
tical level. She often focused on the educational consequences of her actions
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(i.e, students’ learning of mathematics and leaming to work in groups). For
example. she commented in her journal, “Their group skills are a little weak.
I'm trying to make suggestions and adjustments as I put them in groups.” Mrs.
Gilligan and Maryanne engaged regularly in reflective discussions of their teach-
ing. According to Maryanne, Mrs. Gilligan helped her learn “how to self-evalu-
ate”” During my post-observation discussions with Maryanne, I was able to
help her reflect at the critical level, considering ethical outcomes of her actions.
After adiscussion of a videotape of her teaching, she wrote, “I would like there
to be even more student talking (to each othe). . . . I will be working on them
not just looking to me for the answers.” Maryanne’s technical level reflections
were typically associated with her teaching of trigonometry. In the trigonom-
etry classes, Maryanne felt less freedom to experiment ** maybe she [Mrs.
Gilligan] wanted to keep an eye on what was going on in her trig.” However,
Maryanne also felt less familiar with the mathematics in that course.

Maryanne felt her most important leaming from student teaching was that
“students can work through things that are difficult for them and eventually
‘get it".” Also important to her was learning *what things I need to consider
when | am thinking about a [mathematics] lesson.” For Maryanne, continued
learning of how to teach mathematics was very important: “I see myself as
trying a lot, you know, not just saying, ‘Oh, okay, that didn’t work, I think I'll
lecture . . . but saying, “It didn’t work. Why didn’t it work? Let’s try again or
let’s try something ¢lse and see if this works better.”

Findings

The cases of Maryanne and Ginger provide much insight into the develop-
ment of mathematics teachers including factors influencing that development.
They suggest that in order for student teaching to enhance prospective teachers’
development as cognizing and reflective practitioners, the experier = needs to
be perceived by student teachers as an opportunity to experiment with knowl-
edge they have been developing in their teacher education pr gram and as an
opportunity to reflect on that experimentation with support from supervisors.

Maryanne and Ginger felt that through student teaching they expanded the
knowledge they had developed in their prior teacher education coursework.
Both perceived their development of knowledge in four areas: general teach-
ing knowledge, mathematics teaching knowledge, knowledge about students,
and knowledge of the context. However, the extent of knowledge developed in
each of these arcas was mitigated by their ability to experiment and reflect on
their teaching and the support they received in these areas from their supervi-
sors. For Ginger, her experience precipitated the centrality of classroom man-
agement and accommodating students’ preferences as the most important fac-
tors to consider in her teaching of mathematics. Maryanne's experience fo-
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cused her attention on thinking about the mathematics teaching and students’
learning as central factors to consider in her teaching.

This study revealed that prospective teachers generate oral and written re-
flections on student teaching experiences at all three levels of reflectivity out-
lined by van Manen (1977): technical, practical, and critical. The extent of the
student teachers’ reflection at each level was influenced by their experimenta-
tion beyond covering the prescribed curriculum and the guidance they received
during their reflection. Ginger’s reflections on student teaching experiences
were mainly at the technical level, secondly at the practical level, and to a much
lesser extent at the critical level. On the other hand, Maryanne’s reflections on
student teaching experiences were mainly at the practical level and secondly at
the critical and technical levels. ’

The cases of Maryanne and Ginger reveal the centrality of reflection in
prospective mathematics teachers’ development during student teaching. Math-
ematics student teachers’ reflection interacts with their teacher knowledge, teach-
ing, and supervision in the expansion of their teacher knowledge. As student
teachers plan their lessons, they reason about their teaching, drawing on their
teacher knowledge and enhancing it in relation to their level of reflectivity. As
they implement their plans during teaching, they experiment with knowledge
that supports their plans and expand that knowledge based on the implementa-
tion. Teaching provides an opportunity for them to reflect and develop their
knowledge as they evaluate their lessons. Supervision, including support for
experimentation, helps facilitate reflection beyond the technical level in both
the planning and evaluation stages. When student teachers are restricted in
their ability to experiment by external factors such as their supervising teacher
or internal factors such as their understanding of the mathematics, the knowl-
edge they draw on during planning is restricted and their level of reflectivity is
hindered. Consequently, their teaching, reflection on teaching, and thus their
development of knowledge is compromised.

Implications of this Study

This study provides implications for the education of prospective math-
ematics teachers and for continued research in the areas of teacher knowledge
and reflection. The cases of Maryanne and Ginger accentuate the need to seek
contexts that provide prospective mathematics teachers the opportunity to ex-
periment with the knowledge and implement the cognitive processes (i.e., re-
flection) they are developing in their teacher education coursework. The cases
reveal the need for prospective teachers to reflect beyond a technical level (with
guidance as needed) in order to develop and understand the importance of teacher
knowledge about students as learners of mathematics and about the teaching of
mathematics that addresses the needs of these students.
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A natural extension to this study would be a longitudinal study examining
the development of teacher knowledge and reflection as teachers complete their
teacher education program and then proceed in their teaching career. It would
also be valuable to explore the role of reflection in field experiences other than
student teaching and means for promoting reflection at the practical and criti-
cal levels within teacher education programs.
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USING VIDEOS TO PROVIDE “CASE-LIKE”
EXPERIENCES IN AN ELEMENTARY
MATHEMATICS METHODS COURSE

Susan N. Friel
UNC-Chapel Hill
sfriel@email.unc.edu

This study was conducted to assess the impact of using videos to provide “case-like™
experiences as part of the professional development program for prospective elemen-
tary teachers. Elementary teacher candidates in a Mathematics Methods course ex-
plored teaching and learning mathematics through the use of a number of different
video tapes. The vidco tapes were selected to help postray what it means to teach and
learn mathematics within the context of a standards-based reform environment. The
videos were used to represent reality, to stimulate thought and debate, and, as teaching
instruments, for study, examination, and discussion. One of the findings suggests that
teacher candidates appeared to have evolved from didactic ideas about the teaching of
mathematics toward a more student-centered philosophy by the end of the course. This
paper discusses teacher candidates’ responses to a “case-like” video analysis as these
responscs relate to this finding.

Introduction

It is becoming increasingly apparent that learning to teach is a develop-
mental process focused on understanding the dilemmas of teaching (Harrington,
1995). Preservice teacher preparation programs seek to provide experiences
that support this process primarily through the clinical and field components.
Many of the professional courses that precede the clinical and field compo-
nents now also include field-based experiences. In addition, interest in and use
of cases has been introduced as part of preservice programs to help prospective
teachers focus on the dilemmas of teaching throughout their preparation
{Harrington, 1995).

Merseth (1996) defines a case viewed from a teacher education perspective
as:

a descriptive research document based on a real-life situation or event.
It attempts to convey a balanced, multidimensional representation of
the context, participants, and reality of the situation. It is created ex-
plicitly for discussion and secks to include sufficient detail and infor-
mation to elicit active analysis and interpretation by users. (Merseth,
1996, p. 726)

Cases are developed to represent reality, to stimulate thought and debate, and,
as teaching instruments, for study, examination, and discussion.

Lo
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More recently, narrative case materials have become available that address
dilemmas in teaching elementary and middie grades mathematics (Barnett et
al., 1994 Schifter, 1996a,b). In addition, videos, as *“‘case-like” maternials, are
now available for supporting reasoning about mathematics instruction and about
students’ thinking about mathemaiics (e.g., Kamii, 1990; Richardson, 1990;
TERC, forthcoming; CGI; WGBH, 1995). While some research on the use of
case-based pedagogy in general teacher education courses has been completed
(e.g., Levine, 1995; Harrington, 1995), limited research has been conducted on
what happens when cases are used as part of the professional development of
prospective teachers with respect to teaching mathematics. In addition, little
empirical evidence has been developed concemning the effects of video-based
case pedagogy in teacher education (Copeland & Decker, 1966) and, by de-
fault, in mathematics teacher education.

Purpose of the Study

The major question for this study was: What is the impact of using videos
to provide “‘case-like™ experiences in a mathematics methods course as part of
the professional development program for prospective elementary teachers?
The use of video tapes was not the only instructional strategy employed but
was seen as central to accomplishing the goals of the course.

The use of a variety of video tapes was integrated into a course called Meth-
ods for Teaching Elementary School Mathematics (Mathematics Methods
Course) using variations of the case methodology. The theoretical perspectives
were developed through the use of readings (primarily from Van De Walle,
1994), explorations of the developmental sequenceé of the mathematics content
over the K-6 curriculum, and a variety hands-on activities linked to teaching
specific mathematics content.

The teacher candidates were in weekly field placements, that is. the class-
rooms in which they would student teach during the spring. However, it was
not possible to rely on their encountering examples of topics and issues that
were being addressed in the course in their placements. For this reason, video
tapes were used to provide exemplars of communities (some better than others)
in which making sense of mathematics was supported and developed so teacher
candidates might practice analysis and contemplate action with respect to teach-
ing mathematics. In addition, from mathematical autobiographies written at
the beginning of the course, there was evidence that most of the teacher candi-
dates viewed mathematics learning as “teaching by telling,” and that several
did not like and/or had had mixed experiences with mathematics. Consequently,
the video tapes showing classroom lessons and student interviews also served
as stimulants to persunal reflection.




Research Context

The Mathematics Methods course is part of a “methods block™ taken by
teacher candidates during the fall semester of their senior year. The section
discussed had 19 teacher candidates (17 traditional age; 2 non-traditional age;
17 female/2 male; none with a second major in mathematics). The teacher can-
didates began the program during their junior year and completed courses fo-
cused on child development as well as a foundations/social studies methods
cecurse (each with a field-based component). With respect to mathematics, the
teacher candidates met the general college requirement by selecting from a
number of choices, several of which may not be relevant (e.g., Symbolic Logic)
to teaching mathematics in the elementary grades.

As part of the classwork in the Mathematics Methods course, a number of
different strategies were used to probe for responses to video “case-like’™ work.
Initially, some of the WGBH (1995) tapes were used to focus teacher candi-
dates’ attention on the design and implementation of mathematics lessons, with
the acknowledgment that, at this stage, their concerns were on management
and classroom structure.

The next set of tapes was selected to accompany a section of the course that
considered children’s development of concepts related to number. These tapes
(CGI: Richardson, 1990)were used as exemplars of the developmental issues
and approaches to teaching about which teacher candidates were reading (Van
de Walle, 1996} and of how to conduct interviews in preparation for their own
assignment to interview students as part of the course requirements.

The third set of tapes (Kamii, 1990. TERC, forthcoming) accompanied a
section of the course that considered the development of students’ computa-
tional knowledge. The intent was to provide experiences in which teacher can-
didates saw a variety of children’s reasoning strategies occurring in the context
of whole class lessons.

The fourth set of tapes accompanied a section of the course that considered
the development of concepts related to fractions. Each of two tapes was used as
a “first lesson” that provided a particular interpretation of fractions and used a
particular manipulative model.

A variety of data were collected. These included all course written work,
Journal writing tasks, and transcriptions of two sets of interviews conducted
with teacher candidates during the course. Additional data were collected ei-
ther during or immediately after the teacher candidates® field placements in
spring, 1997 through interviews about the curriculum units they prepared as
part of the Mathematics Methods course and the instructional sequences that
occurred during the teaching of the units in the spring. As part of these inter-
views, the impact and value of the videos was discussed.




Selected Findings

An initial analysis of the impact of using videos as part of the Mathematics
Methods course has been reported elsewhere (Friel & Carboni, 1997). In this
paper, teacher candidates’ responses to a final examination task that involved
an analysis of the video Arrays and Fractions (WGBH, 1995) are examined in-
light of one of the key findings included in the earlier report, that is, that teacher
candidates appeared to have evolved from didactic ideas about the teaching of
mathematics toward a more student-centered philosophy (Friel & Carboni,
1997).

As part of the final examination, teacher candidates were permitted to watch
the video together and to brainstorm responses to a set of focus questions (See
Figure 1); individuals each wrote their own responses to these questions. Since
many of their prior experiences had been with videos that were used to discuss
what was good about teaching, the use of this video tape was included to assess
how teacher candidates might evaluate a lesson that involved more obvious
dilemmas of instructional practice. Teacher candidates’ responses to this video
analysis provide further insights into their thinking with respect to moving to-
ward a more student-centered philosophy.

The initial question in the set of focus questions involved clarifying the
mathematical task addressed in the video. One teacher candidate briefly sum-

marized the main points; the reader is encouraged to view this tape as only
limited discussion of the content of the video is possible here.

For this lesson (after an initial introduction and discussion of fractions
and arrays). the children (grades 1-2) are given index cards with num-
bers and fractions on them. They are first to make an array showing the
particular number using tiles and then show the fractional part of that
number. For example, with the number 15" and the fraction *“1/3”, the
child could first make a 3 by 5 array with tiles and draw it on grid
paper. They could then circle or shade in five of the fifteen blocks of
the array, illustrating that five is one third of fifteen.

Responses to two of the focus questions from the video analysis are dis-
cussed in this paper - teacher candidates reflections on the value of the task
(part a) and their reflections about their continuing concerns with respect to
teaching (part d).

While the majority of teacher candidates considered this as a poten-
tially worthwhile mathematical task, 95% of the candidates raised concerns
about the implementation of the task. For some (32%), their cancerns focused
on the nature of the task itself, including the apparent confusions about arrays
and about fractions and the lack of connection built between the model (arrays)
and the concept of fractions. Others (329%) felt that the students did not have
cnough background or were not developmentally ready to handle the concepts
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Respond to the questions below. Provide justification and/or evidence
for your responses, referencing resources used during the course.

a. Describe the mathematical task — the content of the lesson. Is it a
worthwhile mathematical task? Explain your reasoning.

b. Describe the nature of the discourse that is taking place, consider-
ing the teacher’s role and students’ roles.

c. From your view from the “back of the room”, comment on the
overall lesson.

* Were there any “missed or misjudged opportunities” (o engage
students or nurture student’s mathematical thinking? If so, given
an example and discuss.

* What would you do for the next lesson based on what you ob-
served in this lesson? Why?

* Describe one way you might assess students’ understanding of
the content based on what you have observed. What is the pur-
pose of this assessment?

d. What question(s) does this experience raise about teaching and
learning mathematics?

Figure 1 Final examination video viewing question

as presented in this lesson. Still others (36%) thought the potential for the over-
all lesson was “good;” its lack of success was tied to teacher behaviors that
included limited wait time and limited attention to student responses in terms
of understanding, developing, and building instruction based on student think-
ing.

The questions and concerns raised about teaching and learning mathemat-
ics from viewing this lesson provide evidence of a number of tensions that
teacher candidates were experiencing by the end of the course. These include
concemns about the role of the teacher and the place for explicit teaching of a
concept, pacing of lessons and knowing when to “move on,” which mathemat-
ics coneepts and models are developmentally appropriate for children, design-
ing lessons that are child-led and still accomplish the teacher’s leaming goals,
judging when planned activities are too much “stuft™ and not enough substance,
and developing expectations about what students are capable of understanding.
A few teacher candidates comments highlight some of these concerns.
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As I catch myself time and again stressing the importance of hav-
ing students share their thinking and letting them explore rather than
being the one to impart knowledge, I, too, wonder if there are certain
learners who need more guidance.

There are many ways to do things and show concepts. Which one
is best? Which one helps the students most? How do you know if they
are ready for a task? . . . I worry that I will not be able to develop
interesting and stimulating lessons in mathematics. . . . I will not al-
ways be able to watch hundreds of videos to gain an idea for a few
lessons. My hope is that one day I will be the one on the videos, help-
ing other teachers-to-be leamn. . . . Sometimes I wish I had a map and
directions.

As one student noted, based on viewing this video, she now has a set of ques-
tions she will ask when preparing a lesson: what do students have to already
know to succeed at the given lesson; do the activities in the lesson give every-
one a fair chance to succeed; are the manipulatives or models selected appro-
priate to the task; and are the students familiar enough with the manipulatives
or models to be able to construct their understandings of the topic at hand?

Conclusion

The goal of the Mathematics Methods course was to consider what it means
for elementary students to learn (and teachers to teach) mathematics through
the use of challenging problems which may be explored collaboratively and
through class discussion of students’ solutions. Video tapes in case-like prob-
'em situations were used as a vehicle to promote such understanding. It was
;ound that teacher candidates appeared to evolve from didactic ideas about the
teaching of mathematics toward a more student-centered philosophy. Responses
to questions that focused teacher candidates’ discussion of the Arrays to Frac-
tions video (WGBH, 1995) provide additional insights into what it means for
these teacher candidates to move to a more student-centered philosophy. In
discussing the lesson, teacher candidates identified dilemmas and associated
tensions that focused on the purposes of the task, the presentation of the task.,
and the task as carried out by students that provide further evidence for this
shift in thinking about teaching.
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MATHEMATICS CULTURE CLASH: NEGOTIATING
NEW CLASSRCOM NORMS WITH PROSPECTIVE
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As part of a 3-year study of their mathematical and pedagogical development, the sec-
ond author taught a mathematics course for prospective clementary teachers. His at-
tempts to engage these traditionally-cducated undergraduates in inquiry mathematics
brought about what we came to regard as a culture clash. Our analysis suggests that by
the latter stages of the course, a classroom microculture characterized by inquiry math-
ematics had evolved. We examine the processes by which the participants in this class-
room community negotiated norms and practices that supported their mathematical
activity. We identify four categories of interaction central to the ongoing negotiation,
and ilustrate how each contributed to the negotiation of new norms and practices and
the mediation of the culture clash.

The practice of elementary mathematics teaching is deeply interconnected
with teachers’ theories of teaching, leaming, and mathematics. For prospective
teachers, opportunities to reconstruct these personal theories can resuit from
their participation in a mathematics classroom community that is characterized
by the mathematical and social practices of inquiry mathematics (Richards,
1991). Mathematics classes in teacher preparation programs therefore have
great potential to after prospective teachers’ relationships to mathematics as
well as to mathematics learning and teaching (Simon, 1994).

There are several examples of mathematics classrooms characterized by
inquiry in which students and teacher engage in new (to school mathematics)
forms of activity. Cobb, Yackel, and Wood (1989) focus particularly on how
one teacher and her students renegotiated their clussroom practices in response
to situations in their sccond grade mathematics class. We build on and extend
this work to examine the process by which new norms and practices are nego-
tiated in & mathematics course for prospective elementary teachers in which the
instructor endeavored to engage traditionally-educated undergraduates in in-
quiry mathematics. We highlight the tension between the mathematics enltures
of teacher and students (in this case, proapective elementary teachers) and chus
the negotiative nature of the constitution of a classroom mathematics culture.,
We identify particular kinds of interaction through which this negotiation pro-
cess took place. The longer paper provides a more detailed discussion,
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Theoretical Perspectives

Drawing on the work of Bauersfeld, Krummbheuer, and Voigt (1985), we
see human interaction as a process of ongoing and evolving interpretations of
each other’s actions and responses to those actions, and use Voigt’s (1985) term
negotiation to describe these processes. Negotiation of meaning in this sense
occurs implicitly through the subtle adaptation of participants’ actions to fit
with their ongoing interpretations of each other’s words and actions. This ne-
gotiation can also be explicit and easily observable.

A classroom microculture is therefore neither static nor created by the teacher
(Bauersfeld, 1996), but is continually reconstituted through the mutual adapta-
tion of its participants’ interpretations of activity. As they gradually come to
understand each other, participants’ interpretations become coordinated into
routine responses, and patterns of interaction emerge. Individual sense-mak-
ing and the classroom microculture are thus reflexively related; individuals
contribute to shaping the microculture, while the microculture enables and con-
strains the mathematical activity of the individual participants (Cobb &
Bauersfeld, 1995). Thus, changes in a classrooin microculture occur through
evolution rather than rearrangement (Voigt, 1995).

Where teacher and students bring compatible expectations and interpreta-
tions to classroom events, the microculture is constituted and reconstituted
smoothly. It might appear to participants, as well as to the casual observer, that
no negotiation occurs at all. However, where classroom participants bring dif-
ferent expectations and interpretations, there are instances of misunderstand-
ing and miscommunication, and moments where previously implicit understand-
ings must be made explicit. Such “cultural” differences are inherent in classes
in which a teacher educator representing inquiry mathematics works with a
group of prospective teachers who are steeped in the culture of school math-
ematics. [t is this situation that we characterize as a culture clash.

Data and Analytic Technique

This study focuses on the first course of the Construction of Elementary
Mathematics Project. a 3-year investigation of the mathematical and pedagogi-
cal development of clementary teachers. Simon, the second author, taught this
mathematics course. focusing on multiplicative structures, to a group of pro-
spective teachers in the context of a whole-class teaching experiment (Simon &
Blume, 1994). Our primary sources of data were videotapes and transcriptions
of the 25 cluss meetings of this semester-long course, We also examined copices
of the students’ weekly journal reflections and written work. Because students”
self-report data could have been biased by what they pereeived to be the “party-
line,” we considered students’ written and oral assertions significant to the analy-
sis only when their assertions conflicted with teacher intentions. Thus, we




inferred the students’ points of view primarily from their participation in class
activities.

Using analytic techniques of Bauersfeld, Krummheuer & Voigt (1985). we
examined the class-room transcripts line by line for meanings the participants
seemed to attribute to each other’s words and actions. We worked our way
through the transcripts of the entire semester (Classes #1-25) documenting the
community’s mathematical and social practices at each point in time. We tried
to discern the community’s definitions of teacher and student roles by compar-
ing our understanding of the students” perceptions of their role to the teacher’s
expectations of students and, reciprocally, we compared our understanding of
the students’ expectations of the teacher to his expectations of himself. We also
analyzed the community’s definitions of legitimate mathematical activity and
what constituted acceptable justifications and explanations. Following Cobb,
Wood, Yackel, & McNeal (1992), we consider an explanation to be a statement
intended to clarify a communication, and a justification to be a statement in-
tended to convince someone of the validity of an idea.

Our initial analysis of videotapes for the entire semester showed students
engaging in discussions that were remarkable for their mathematical substance
and for the non-traditional teacher and student roles as early as Class #15. We
thus took this to be indicative of changes that had occurred since the first class,
and examined the specific norms and practices that were evident in Class #15.
We then reexamined Classes #1-15 exploring how this group learned to interact
in such a way as to produce the discussions exemplified in Class #15. We
looked across transcripts for categories of events and interactions that appeared
to have contributed to the development of the observed social and mathemati-
cal practices. We also examined events that uncovered participants” differing
assumptions, such as instances of overt disagreement or miscommunication
and used these discrepant events to elaborate on our interpretations of students’
points of view. The resulting analysis attempts to explain both apparent pat-
terns and discrepancics (Erickson, 1986).

Negotiating Classroom Norms

New classroom norms and roles for teacher and students were negotiated
through interactions involving new experiences, the journal, paradigm cases,
and discrepant cvents. -

Interactions Involving New Experiences for Students

In Class #2, teacher and students began trying to communicate across their
different mathematical cultures. The process of negotiating new practices and
new understandings of old practices began with some explicit comments from
the teacher about what he wanted them to be doing during group work and
whole class discussions (e.g.. explaining their thinking, trying to understand
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each other’s thinking) and what he would be doing (e.g., asking for a para-
phrase, monitoring wait time). Such explicit statements seemed necessary given
the teacher’s anticipation that his expectations would differ significantly from
the students’ prior experiences, but they were not sufficient to establish such
practices as normative.

Traditionally-educated students are not in the habit of offering justifica-
tions. So, in order to engage his students in mathematical inquiry, the teacher
tried to promote an atmosphere in which both teacher and students ask “Why,”
and students expect to justify their claims. For example, when students said
they had multiplied to find the number of copies of a cardboard rectangle that
would cover a table, the teacher asked them why this was a good way of going
about the problem.

De: Because. in previous math classes, you learned the formula for
area is length times width so probably everybody has the idea.

T:  And all those evil math teachers you were talking about before
(laughter) and you're gonna now take their word for it?

Mo: They showed us that.

T:  How do we know if they are right?

Mo: Because they showed us. (laughter)

T:  Blind faith?

Mo: The teachers, you know, they showed us how it worked.

Although they did not speak directly about it. Class #2 began the negotia-
tion of the practice of justification. Rather than simply telling students that he
would only accept statements that they could justify, the teacher attempted to
have the students experience a need for mathematical justification and subse-
quently a need for more sophisticated forms of justification. Over time, they
grew accustomed to this practice and offered increasingly sophisticated justifi-
cations. Simon & Blume (1996) discuss the evolution of different levels of
justification in this classroom community.

Through such interactions, students seemed to form the impression that the
teacher might indeed ask “why” in response to any statement made in class.
Some of the students’ journal responses reflected frustration with their inability
to satisfy the teacher, as perceived from his continued questioning. At this
time, students probably did not feel a nced to convince themselves, rather they
perceived a need to figure out what the teacher wanted. We saw the events in
Class #2 as the meeting of different mathematics cultures. Such new experi-
ences provided students with an opportunity to re-interpret their assumptions
about student and teacher roles in mathematics class.




Interactions Involving the Journal

After each class, the teacher read and wrote comments on students’ journal
responses to that class. He routinely began the next class with comments to the
group about issues arising in the journals that he considered relevant to the
whole group. We came to view this teacher talk about journal themes as a part
of the process of negotiating mathematical and social practices appropriate for
competent participation in this community: Students participate in an activity
in class; students write a journal entry; the teacher responds individually and to
the group; students adapt their classroom activities and journal writing in re-
sponse to his comments; the teacher comments again in response to students’
activities and writings,

Interactions involving the journal contributed to the negotiation process by
raising issues of affect, uncovering differing interpretations of class activities,
and clarifying the purpose of the journal. Specifically, the teacher’s public
responses addressed students’ feelings about this mathematics class, students’
and teacher’s roles, the goals of the course, student understanding of the math-
ematical content, and the importance and meaning of articulating mathematical
ideas. There were also occasions on which the teacher responded to journal
entries with action rather than words. for example. by posing a problem or
initiating a discussion.

Interactions Involving a Paradigm Case

In Class #4, the students spontaneously initiated a mathematical explora-
tion for the first time. The fortuitous emergence of the kind of mathematical
activity that he was seeking to engender offered the teacher an opportunity to
make his expectations concrete by pointing to a shared experience. In Class
#5, he framed the events of Class #4 as a paradigm case (Cobb, Yackel, &
Wood. 1989) of appropriate mathematical activity by highlighting specific be-
haviors. In this way. he prompted and guided conscious reflection on and inter-
pretation of their prior activity and his response to their activity. Although
experience itself has a notable effect on community members, explicit high-
lighting of a paradigm case can be an even more powerful means of affecting
classroom norms and practices because it brings together implicit understand-
ings with officially approved interpretations.

Interactions Involving a Discrepar vent

As long as interaction proceeds smoothly, participants tend to assume shared
meanings, norms, and practices. Periodically, however, an event occurs in the
life of a classroom microculture that exposes a lack of fit among the perspec-
tives of the participants. Announcement of the first exam was such an event.
The resulting discussion demonstrated that although community members” un-
derstandings of teacher and student roles had become more compatible, signifi-
cant differences in their pereeptions of these roles remained.
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Having experienced non-judgmental responses to their classroom contri-
butions, students seemed to have constructed a belief that effective participa-
tion consisted of honest expression of ideas and their rationale. Thus, they did
not see the particular mathematical content of their ideas as a key factor in
effective participation. The notion of an exam that would be used to evaluate
and grade their understandings was seen as counter to the evolving microcul-
ture of this mathematics class. One student asked how the teacher could grade
their understanding, “‘that’s kind of like our opinion.” Another student asked if
a good argument was good enough to be judged correct, or in reverse, if a good
argument with an incorrect conclusion was going to be marked wrong. The
students” notions of teacher had shifted from a view of teacher as “one who
imparts knowledge and determines validity” toward teacher as “‘one who poses
problems and facilitates discussion without evaluative judgment.”

Conclusions

The analogy of a culture clash illuminated the mutually adaptive process
by which this group constructed norms and practices that supported mathematical
inquiry. By viewing the teacher’s and students’ differing perspectives (includ-
ing expectations of each other) as “culturally”-based, we have been able to
understand how deeply ingrained these perspectives and roles are. and how
slow and complex the process of change. This analogy also served to highlight
the interconnection between mathematical and social understandings: challeng-
ing students’ mathematical ideas and justifications not only provoked cognitive
reorganization in many students. but also reinterpretation of their role in math-
cmatics class. As teacher educators attempt to engage their students in new
forms of mathematical activity, there is increased potential for such culture
clashes. Because we believe that the negotiation of new norms and practices
for school math will play a key role in the ultimate success of reform efforts,
we advocate continued study of these culture clashes.
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A GROWTH OF KNOWLEDGE OF A MIDDLE
'SCHOOL TEACHER

Pi-Jen Lin, University of Minnesota, Hsinchu Teachers College
1inx0042@gold.tc.umn.edu; linpj@nhctc.edu.tw

Thomas Post, Kathleen Cramer, Marlene Pinzka,
Susan Haller, & Joel Burgeson
University of Minnesota

Evidence suggests that middle-grade teachers do not have the required
mathematical, pedagogical content, and psychological knowledge. This research
describes a case study focusing on the changes made by one teacher in these
three areas.

The teacher is one of thirty-five middle school teachers who are participat-
ing in a two-year NSF teacher enhancement program. Teachers were required
to commit to a day-long, four-week inservice during the summers of 1996 and
1997, and attend five inservice meetings during the two intervening academic
years. The summer institutes reflected the integration of mathematical, peda-
gogical content, and psychological knowledge and its role in effective teach-
ing. The underlying theoretical orientation of the program and the way it was
conducted reflected a social constructivist view which assisted teachers in con-
structing their own knowledge. A sixth- through eighth- grade teacher, Wendy,
who participated in this program is the subject of this rescarch. The longitudi-
nal case study was developed in a period of one year from seven primary sources:
field notes on observations of the teachers during summer institute and five
one-day workshops; journal reflections documenting her learning of specific
mathematics and mathematical connections she made; pre- and post-instruc-
tional assessments on her knowledge of algebra, number. probability, geom-
etry, measurement, and statistics; interview with the teacher about specific
mathematical connections she made; teachers’ belief scale about the nature of
mathematics learning and teaching; and classroom observations of the teacher
teaching (27 lessons) over four months.

Wendy had a less thun adequate mathematical prerequisite and was anx-
ious about her mathematics understanding. She developed in her mathematics
knowledge through group activities and discussion and became more confident
and more comfortable with solving mathematical problems. Wendy willingly
considered the philosophy and metheds that were being discussed and sug-
gested in the enhancement program, and cffectively implemented them in her
classroom. For cxample, she emphasized students’ conceptual rather than pro-
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cedural understanding during her fraction lessons over one month (Cramer et
al. 1997). Her questions demonstrated her view of the importance of students’
reflecting on their own thinking, reasoning, and communication. Her level and
sophisticated progressed over the course of this study while she continued to
believe in the utility of mathematics. This session will discuss the types of
growth which Wendy expressed.
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COGNITIVE AND AFFECTIVE PREDICTORS OF
PRESERVICE TEACHER EFFECTIVENESS IN
ELEMENTARY MATHEMATICS PEDAGOGY

Oakley D. Hadfield
New Mexico State University
hadfield@nmsu.edu

The purpose of the typical college level elementary mathematics methods
course is to combine mathematical content and instructional strategies into a
resultant collection of “pedagogical content knowledge” specific to the teach-
ing of mathematics to elementary school children, while at the same time set-
ting them at ease with respect to their attitudes towards mathematics, and also
possibly improving their spatial skills. University courses designed with this
intent range from those with a textbook orientation, to those with a hands-on
laboratory approach, some including field practicums. There is a continuing
debate among mathematics educators as to which of these areas should be
stressed in the preparation of elementary teachers (content and concept knowl-
edge, methodology, field experiences, attitude, spatial skills, etc.). The present
study was designed to link some of these variables together in an attempt to
build a theoretical model for the prediction of effective preparation of prospec-
tive teachers of elementary school mathematics.

All individuals in two classes of preservice elementary teachers (N = 48)
were video taped as they taught three different self-designed teaching episodes
to their peers on three different occasions. The three episodes were focused on
subtraction with regrouping. multiplication of fractions, and area/volume, and
were designed to be delivered to elementary school children. The 144 tapes
were independently evaluated by three experienced elementary mathematics
methods instructors, according to established criteria, and were assigned nu-
merical ratings in three areas: evidence of content knowledge, appropriate-
ness of methodology, and effectiveness of delivery. These video tapes were
devised as a plan to capture the actual effectiveness of the students when they
synthesized and applied what they had acquired from the course. The other
four variables of quiz average, mathematics skills score (5J item inventory),
mathematics anxiety score (Revised Mathematics Anxiety Rating Scale
[RMARSY]), and spatial ability (spatial scction of the Differential Aptitudes Test
[DAT]) were then investigated as potential predictors of teacher effectiveness.
Tables of correlations and multiple regressions were computed. wath data analy-
ses carried out for total video rating scores. and also for individual content,
methodology. and delivery ratings.




Of the four potential predictor variables, quiz score was the only signifi-
cant predictor of preservice teacher performance on the video tapes of teaching
episodes. [t accounted for approximately 16% of the variance in preservice
teacher performance. The other three variables of basic math skills, math anxi-
ety, and spatial skills were significantly correlated with each other, but were not
correlated to quiz scores or teacher performance. However, when added to the
regression, both basic skills score and math anxiety increased the variance ac-
counted for in teacher performance to approximately 25%. This indicates that
there is common variance shared between each of these two variables and the

. predictor variable “‘quiz score” which is irrelevant to the prediction of video

taped teaching performance, and thus when these factors are partialed out, the
prediction model is improved.

The implication of this study is that pure mathematics skills (content knowl-
edge), the affective aspects of mathematics leaming (mathematics anxiety), and
spatial skills do not impact preservice pedagogical effectiveness (as measured
by video taped performance assigned in a methodology course) as compared to
course quiz grades designed as measures of acquisition of specific teaching
skills for mathematics (pedagogical content knowledge). This implies that
mathematics methodology courses for preservice elementary teachers can be
successful for most students, regardless of their prior levels of basic math skills,
spatial skills, or fears concerning mathematics. This is perhaps a somewhat
positive finding for instructors of elementary mathematics methods courses.
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GOALS FOR UNDERSTANDING MATHEMATICS IN
CONTENT COURSES FOR PROSPECTIVE
ELEMENTARY SCHOOL TEACHERS

Virginia L. Keen
Bowling Green State University

Historically, investigations into understanding have focused on student
understanding and, more recently, teacher understanding of student understand-
ing. My purpose is to push this further, asking us to consider what we can learn
from the study of university teachers’ understanding of mathematics and its
study. In presenting this report, I provide an analysis of research results around
which thoughtful mathematics educators can discuss goals and the means to
those goals in the mathematical preparation of teachers, particularly elemen-
tary school teachers. I consider how the thoughts and actions of teacher educa-
tors affect the kind of mathematics taught and students’ opportunities to learn
mathematics.

The study from which this report arose focused on the roles mathematics
instructors saw as important for mathematics content courses to play in el-
ementary teacher preparation programs. A deeper analysis of the most valued
role, that of ““leaming mathematical content,” focused on beliefs about knowl-
edge and understanding from the perspectives of the teacher educators. My
analysis led to the articulation of two distinctive goals for understanding of the
mathematics content. The goals are supported by particular patterns of thought
and action on the part of mathematics instructors. 1 will lay out the character-
istics of the two goals for understanding and consider the implications of each
goal on teacher decision-making and the potential of each goal for enhancing
student learning.




EXAMINING ELEMENTARY TEACHER BELIEFS
ABOUT MATHEMATICS, MATHEMATICS
TEACHING, AND TECHNOLOGY

Melissa B. Hanzsek-Brill
St. Cloud State University
mhanzs @coe.uga.edu

This study describes the beliefs of two elementary teachers who were par-
ticipants in a five year teacher-enhancement project focused on technology.
Survey data were collected at both the beginning and end of the five year pe-
riod; interview data were collected at the end of the project. The purpose of
this study was to describe teachers’ beliefs about mathematics, mathematics
teaching, and technology. Little research on teacher beliefs about technology
use in the elementary mathematics classroom has been conducted. This study
builds a theoretical framework for categorizing elementary teacher beliefs about
technology use in instruction with regard to their beliefs about mathematics
and mathematics teaching.

Participants were described as having empiricist, trivial constructivist, or
social constructivist beliefs about mathematics. Their beliefs about teaching
were described by four dominant views of how mathematics should be taught
(Kuhs & Ball, 1986). Studies describing technology use in mathematics (Fleener,
1994; Lampert, 1988) so far have provided data that suggest two categories of
beliefs. Teachers with Mastery beliefs hold that technology should not be used
until mathematical concepts are mastered. Teachers who possess Exploratory
beliefs use technology to introduce concepts. One case fell in neither of these
categories. Therefore a third category, which falls between the first two, is
proposed. Teachers in the Pre-Mastery catcgory. believe that students should
be introduced to a mathematical concept without technology. but can begin to
use technology even if the concept has not yet been mastered. Technology
provides a tool for students to further explore concepts and reinforee ideas they
have already encountered. The table below summarizes expected patterns of
mathematics, teaching, and technology beliefs.
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AWARENESS OF THE STANDARDS, MATHEMATICS
BELIEFS, AND CLASSROOM PRACTICES OF
MATHEMATICS FACULTY AT THE

COLLEGIATE LEVEL
Victoria Boller LaBerge Alan Zollman
Northem Illinois University Northern Illinois University
laberge @math.niu.edu zollman@math.niu.edu

Beginning with the 1989 publication of the Curriculum and Evaluation Stan-
dards for School Mathematics (National Council of Teachers of Mathematics
[NCTM]), there have been many calls for change in how mathematics is taught
{e.g., National Research Council, 1989; Steen, 1989). The three goals of this
investigation of mathematics teaching at the collegiate level were: 1) to gather
information from collegiate mathematics facuity on their beliefs related to math-
cmmatics, mathematics leaming, and mathematics teaching; 2) to determine the
extent of their knowledge or awareness of ongoing reform efforts, in particular
their awareness of the NCTM Standards documents (1989, 1991, 1995); and 3)
to investigate the classroom teaching practices they used. Twenty-six collegiate
mathematics faculty at seven institutions were interviewed. Results indi-
cate that the faculty had low levels of awareness of current reform efforts gener-
ally, and of the NCTM Standards specifically. To the extent that they were aware
of the Standards, many had favorable impressions of the recommendations in-
cluded in these documents. Moreover, many of their stated mathematics related
beliefs coincided with the underlying assumptions of the Standards. However,
this appeared not to have transferred to their teaching practices; the data col-
lected relative to classroom teaching practices indicate that the traditional mode
of instruction—students taking notes while the teacher lectures—was still the
most frequently used method at the collegiate level.
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INCREASING PROSPECTIVE SECONDARY £ CHOOL
MATHEMATICS TEACHERS’ UNDERSTANDING OF -
THE COMPLEXITY OF TEACHING

Laura R. Van Zoest
Western Michigan University
laura.vanzoest @wmich.edu

Current reforms in mathematics education have increased the demands
placed on classroom teachers by shifting the definition of good teaching from
“well-planned and executed presentations™ to “carefully chosen tasks and ap-
propriate questioning.” To prepare secondary school mathematics teachers to
be successful in a reform environinent, mathematics methods courses must ad-
dress the complexity of teaching. This study investigated secondary mathemat-
ics methods students’ responses to the complexity of a classroom situation as
described in a written case.

Reseurch based on Cognitive Flexibility Theory (e.g.. Spiro. Coulson,
Feltovich, & Anderson, 1988) suggests that the best way to encourage transfer
of knowledge in an ill-structured domain, such as teaching, is to consider the
domain as a landscape to be “criss-crossed.” Cases were used as a pedagogical
appreach in the methods course because of their ability to “criss-cross™ the
domain of mathematics teaching. The particular case focused on in this study

“involved an algebra experiment designed to strengthen student understanding

of linear functions. The case describes segments of what went on in the high
school algebra class and the teacher’s reactions.

The methods students’ written responses to case questions, the video-taped
case discussion, and follow-up via an electronic conference were analyzed to
assess the students’ awareness of the complexity of teaching. Three areas were
specifically looked at in this study: 1) questioning techniques, 2) placement of
investigative activities in the curriculum, and 3) assessing student understand-
ing. Some students grasped the complexity of classroom mathematics instruc-
tion from reading the case. Others required the case discussion to see that even
seemingly minor actions by the teacher could have significant impact on the
nature of learning that occurred in the classroom. The presentation will look at
the nature of the prospective teachers’ understandings.
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PRE-SERVICE TEACHERS’ VALIDATIONS OF
MATHEMATICAL SOLUTIONS

Sharon B. Walen Dianne S. Anderson
Boise State University Boise State University
walen@math.idbsu.edu dianderson@claven.idbsu.edu

Informal observation in previous classes convinced us that many of the
students who entered our mathematics content course for preservice elemen-
tary teachers held a view of mathematics that was rigid and algorithmic. They
lacked feelings of autonomy and confidence in their own mathematical ability
and required external validation of their mathematical processes. We felt that
teachers who held a rigid, non-autonomous view of mathematics could not be
expected to support the reform effort that we consider critical to improve math-
ematics education. This project allowed us to attempt to begin to examine pre-
service teachers’ views and confidence in their mathematical ability.

Perspectives(s) or Theoretical Framework

Our classes are designed to fit closely with Dewey’s and Piaget's ideas that

learning mathematics is a constructive process and to reflect our philosophy
that learning is neither wholly subjective nor totally framed in social interac-
tions. Lave (1991) elegantly provides us with words upon which we cannot
improve:

Learning is recognized as a social phenomenon constituted in the ex-
perienced, lived-in world, through legitimate peripheral participation
in ongoing social practice; the process of changing knowledgeable skill
1s subsumed in processes of changing identity in and through member-
ship in a community of practitioners; and mastery is an organizational.
relational characteristic of communities of practice. (p. 64)

The problem we chose to examine was situated in a context that was famil-
iar to our students-taking brownies to a school bake sale. During the cight
interviews, students discussed their problem solving process and their feelings
of confidence about the accuracy of their solutions.

Evidence and Results

A critical result of this study was evidence that preservice teachers did not
use mathematics to justify their processes. Previously we had thought the learn-
ing of maihematics served to justify or explain the real world. and the real
world allowed students to 1hake the mathematics that they learned meaningful.
However, for these students, truth was not in the accuracy of the mathematical
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model but was in the real world context. We had thought that the connection to
the real world meant that students could validate the mathematics in the sense
that the mathematics became useful or valid. However, we didn’t understand
that students used the real world to validate mathematics in the sense that the
accuracy of the mathematics was being judged through the real world setting.
These students did not feel confident when they based their justifications in
their mathematical model. Students who relied upon their choice of math-
ematical model to validate their solution were, in general, not confident of that
solution but instead reiterated that they didn’t think that their solution was cor-
rect.

We found that truth is not in the axiomatic structure of the mathematical
system, but rather the validity of the mathematical process is located in the real
world. Reform in mathematics education depends on change occurring at the
carliest level of a child’s formal schooling. As we gain insight into how
preservice elementary teachers view and use mathematics, we are better able to
construct learning activities which broaden their conceptual basis.
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USING HISTORY TO FURTHER THE
UNDERSTANDING OF
MATHEMATICAL CONCEPTS

Libby Krussel
University of Montana
krussel@selway.umt.edu

This study addresses the following question: In what ways are students
better able to understand a difficult mathematics concept or idea by studying
the historical development of the concept or idea?

Sfard (1994) compared the historical development of algebra with indi-
vidual students’ development of algebraic ideas. I investigated this with stu-
dents in a History of Math class. After writing a short essay identifying some
mathematical concept that had caused them difficulty, and discussing the his-
torical roots of this concept, students were then asked to develop a major 10-12
page paper focusing on the historical development of the topic, which identi-
ficd problems encountered historically, such as the resistance of the mathemat-
ics community to accept the idea, and identifying ways in which such difficul-
ties were overcome. In conclusion, they were asked to discuss whether their
understanding of the concept had improved as a result of the investigation.

Students selected a wide range of mathematical topics to write on, from the
idea of what constitutes a mathematical proof and different proof techniques,
to the development of the concept of limit, continuity, miathematical proof, in-
finite sum, derivative and integral. All students reported learning much from
following the historical development of their chosen concept.

Conclusions

1. Students reported a firmer grasp of the concept through the study of its
historical development. It was encouraging for them to realize that
many well-known mathematicians (Gauss, Cauchy, Fermat, Newton to
name a few) had struggled with the very ideas that had given them
trouble.

2. They were surprised to note that many concepts, integral and differen-
tial calculus for example, had taken many hundreds of years to develop
fully. Forexample, one student wrote about the different definitions of
continuity in use before the mathematics community settled on one.

3. Students discussed the “wider perspective™ gained from writing such a
paper, and wrote that they now felt it was more acceptable to them to
have difficulty with a mathematical concept. They understood that it
was aceeptable to have a gradual or partial understanding of a concept,
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realizing that it takes time to solidify a deep understanding of such
topics.

4. Students reported that they now understood the changing nature of math-
ematics and the nature of the presentation of ideas. This helped them
realize that mathematics is an ongoing field of study, rather than a static
one. For example, several students wrote on the nature of mathemati-
cal proof, and were surprised to learn that this idea changed over time.

It seems clear that students have much to gain in researching the historical

development of a mathematical concept, particularly one which has given them
difficulty. This assignment focused the students and the resulting papers showed

a depth not usually seen in math history papers, which often tend to be solely
biographical and/or chronological.
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REPLICATING COMBINATORICS RESEARCH :
THE EXPERIENCE OF PRESERVICE
TEACHER “RESEARCHERS”

Janet Shroyer, Michelle McKinley & Norma Shunta
Grand Valley State University
shroyerj@gvsu.edu

Replicating tasks from appropriate rasearch projects is an effective way to
provide preservice teachers with a quality field experience within the time con-
straints of a mathematics education course. After their own investigations with
combinatoric tasks and reading English’s study (1992, 1996), students in the
Statistics and Probability for Elementary Teachers course of Fall, 1996, repli-
cuted English’s study with a class of 4th graders. Conditions in which these
preservice teachers had to collect their data were far from ideal, but reasonable
given the circumstances. As in the English study. fourth graders try to find all
the different outfits for a bear by placing concrete objects on bear images as
preservice “researchers” recorded their choices in order. Later, students give
written responses to three paralle]l questions.

On the basis of the order and nature of combipations for cach task, a child’s
strategy is coded as one of English’s stages: nonplanning, transitional or odom-
eter. The experience of collecting this data, identitving the strategices, and writ-
ing analyses of students is clearly a valuable learning experience for preservice
teachers. The same is true for their experience with student diversity—differ-
ences across students and tasks—as it helps to highlight the importance of an-
ticipating and handling diversity in the classroom. Diversity is also apparent
in the way these future teachers pose the tasks to the children, code their com-
binations and strategies, and think about the mathematics and the children’s
performance. While such variations are interesting and useful in assessing
knowledge and potential of these potential teachers, they also have the poten-
tial for introducing some distortion to the duta and the findings of the authors,

McKinley, Shunta. and Shroyer analysed the data provided by the class
The storv of what they find and learn reveals the benefit of going beyond data
collecting and reporting levels to assume the more extensive and responsible
role of researcher. Findings based on the dth grade students include:

1. McKinley and Shunta believe that English's transitional stage. the one
at which most students seem to function, does not reflect the qualita-
tive differences evident within this stage. As a consequence they intro-
duce two subcategories and use them to recode the student data.

t2

Appropriate display of data ailows for tracing the progress of individu-
als from item to item and across parallel items. Some interesting pat-
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terns emerge, but to be significant, they need further verification and
support.

3. Learning experiences for McKinley and Shunta, the preservice mem-
bers of the team; demonstrate movement to higher levels of understand-
ing.

Details on all of these findings are contained in the poster presentation.
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CHALLENGES OF REFORM IN TEACHER
PREPARATION: ESTABLISHING AN AGENDA
FOR DOCUMENTING MEANINGFUL CHANGE

THROUGH RESEARCH

David R. Erickson Georgia A. Cobbs Libby Krussel
The University of The University of The University of
Montana Montana Montana

erickson@selwayumtedu  gcobbs@selway.umtedu  knissel @selway.umt.edu

The recent Third Intemmational Mathematics and Science Study (TIMSS)
reflects a curriculum in the United States that is **a mile wide and an inch deep”
(Schmidt. 1996). A change is necessary; this discussion session focuses on
establishing an agenda for research on the criticul components of the reform
ideas in teacher preparation.

At the university level, the fearning of and about mathematics oceurs in
two distinet sets of courses, content courses and methods courses. Clearly, a
continuing dialogue between mathematicians and mathematics educators is
needed to encourage collaboration and cooperation in the process of the teach-
ing and learning of mathematics. The courses required for pre-service teachers
must help instill the vision reflected in recent National Council of Teachers of
Mathematics (NCTM) documents.  Fisher and Lettzel (1996) provide guide-
lines for reform specific to teacher preparation. These guidelines suggest di-

rections for needed reseurch.

Participants will contribute through a) an introductory brainstorming activ-
ity to collect an extensive list of research questions and/or topics that connect
reform issues in mathematics education and the psychology of mathematics
education within teacher preparation, b) a sharing tinie by both presenters and
participants of current in-progress research projects, ¢) establishing an active
network of rescarchers, and d) a commitment to collaborating and disseminat-

mg future rescarch, Through a concerted effort. we will develop a meaningful
rescarch agenda that both supports the goals of PME-NA and provides for a
strengthened research foundation on reform issues i mathematices education.
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PRACTICING TEACHERS BECOMING TEACHER
EDUCATORS: WHAT ISSUES ARISE AS TEACHERS
CONDUCT SEMINARS FOR THEIR PEERS?

Virginia Bastable Deborah Schifter
Summer Math for Teachers Education Development Center, Inc.
vbastabl@ mhc.mtholyoke.edu dschifter @edc.org

This session will be centered around a set of issues presented by teachers
who have been conducting staff development seminars for their colleagues as
part of a four-year Teacher Enhancement Project funded by NSF. The teacher-
leaders were all working from the same curriculum for teacher learning which
uses teacher-written and video cases to track the development of particular
mathematical themes from grades K~6. The curriculum also includes activities
that promote participants’ explorations of mathematics for themselves, assign-
ments to analyze the mathematical thinking of their own students, opportuni-
ties to examine lessons from innovative curriculum, and essays reporting re-
search on related topics.

As teachers became facilitators of this demanding program, they encoun-
tered issues which caused them to analyze their responsibilities as teacher edu-
cators in conducting staff development. At this session, eight teacher-leaders
and two project staff members will present the following issues:

*  How do teacher-leaders maintain their goals for the seminar while still

responding to the expectations and emotional responses of the partici-
pants?

¢ How can teacher-leaders ensure that negative voices don't take over
discussions, while still guaranteeing that genuine confusions and con-
cerns get aired?

*  What are the nisks/rewards involved as teacher-leaders respond in writ-
ing to their peers” work?

*  What does it mean to be a primary-grade teacher taking responsibility
for challenging the mathematical ideas of upper -grade colleagues?
The session will be interactive and will include opportunities for small
group discussion. We will conclude by addressing the following general ques-
tions:

What ideas about the process of teacher change do teacher-leaders de-
velop?

What kinds of support do teachers need to tihe on the role of a teacher
leader?




PRINCIPLES FOR MIDDLE GRADES TEACHER
ENANCEMENT: A PARTICIPATORY SESSION
FOR TEACHER EDUCATORS

Presenters:

Kathleen Cramer University of Wisconsin - River Falls - Middle Grades TE -
Model Program Development. (NSF)

William Bush University of Kentucky - Discussant

Richard Lesh University of Massachusetts - Dartmouth - Middle Grades TE -
Model Program Development. (NSF)

Thomas R. Post University of Minnesota - Ocganizer - Middle Grades TE -
Model Program Development. (NSF)

Sid Rachlin University of North Carolina - Greenville - Middle Math Project
(NSF)

Barbara Reys University of Missoun - Columbia - Middle Grades TE Project
(NSF)

Robert Reys University of Missouri - Columbia - Middle Grades TE Project
(NSF)

As new elementary and middle school NSF curricula become available
(1995 -1997) and additional demands are made upon classroom teachers to
teach different mathematics differently. members of the mathematics educa-
tion community will be called upon to provide appropriate staff development
activities designed to enable teachers to effectively meet these new and com-
plex demands. The need for continuing professional development for teachers
will be especially apparent in these new curricula as different assumptions are
made about the nature of mathematics, problem solving and learning.

Are there (should there be?) guiding principles to help in the
conceptualization and implementation of these new teacher enhuncement ef-
forts? What has been learned during the course of our ongoing work with
middle grades teachers that would prove useful to other teacher educators with
similar goals? How does teachers’ specific mathematical knowledge relate to
their performance in the mathematics classroom and to the mathematical integ-
tity of the lessons conducted with students?

Euach of the participants has been involved in one or more NSF teacher
enhancement grants. There will be a good deal of practical wisdom repre-
sented.




Cramer, Lesh and Post are concerned with the design of an exportable
teacher enhancement program which focuses on the importance of teacher’s
integrated mathematical, psychological and pedagogical knowledge. Itis also
designing and testing an evaluation program. Samples of newly developed
teacher enhancement and assessment materials will be provided and discussed.

Reys and Reys began a three year teacher enhancement effort in the sum-
mer of 1995. Teachers in their project begaa to use new NSF curricula in the
fall of ’95. What is the nature of the most successful experiences provided?
What are the pitfalls to be aware of? They will share experiences and insights
gained from the first and second years of their project.

Rachlin has had a three year grant (Middle Math Project) to work with
teacher educators responsible for providing mathematics courses to prospec-
tive and in-service middle grades teachers. Each of the participants was re-
quired to ‘'re-do’ and teach one such course. His comments will focus on the
problems and successes encountered with this effort and will provide an impor-
tant contrast to other session foci which will center on work conducted directly
with classroom teachers.

Bush has been involved in a variety of NSF projects related to teacher en-
hancement and is a frequent panel reviewer in Washington DC. He will at-
tempt to place this discussion in the larger context of general middle grades
teacher enhancement needs and concerns.




UNDERGRADUATE MATHEMATICS FOR
ELEMENTARY TEACHERS

Jean McGehee David Molina Marilyn Carlson
Northern Arizona University of Texas Arizona State
University dmolina@tnet.edu University

Jean. carlson@math.la.asu.edu
McGehee @ nau.edu

One of the main challenges in implementing mathematics education re-
form is teacher preparation. The elementary preservice teachers are a particu-
lar challenge because of their weak knowledge base. beliefs about mathematics
and mathematics teaching. and often anxious attitudes toward mathematics.

Just as theoretical frameworks in constructivism have influenced how we
study student learning in mathematics, they have changed the directions in re-
search on teaching.

This growing body of research now includes Shulman’s (1986, 1987) gen-
eral framework of teacher knowledge and Ball's (1990) knowledge structure of
mathematics teachers in particular. There has been a mass of studies ranging
from Leinhardt and Smith (1985) to Zakis and Campbell (1996). In addition to
the studies on teacher knowledge. there also has been a focus on teachers’ per-
sonal beliefs and attitudes about mathematics (Thompson, 1986, 1992; Lubinski,
1994).

While educators continue to study teacher knowledge. attitudes, and be-
liefs, we are applying what we have learned to teacher education programs.
However. what we advocate based on our theory, our programs, or even the
reform documents such as the NCTM books is in a precarious position in the
swing of the pendulum that represents mathematics education history. As Ball
(1996, p. 504) describes. the theory and documents of reform “[are] long on
promise and images. However, considerable work lies ahead if the reform ideas
are to permeate daily practice in the schools.” That work includes studies that
demonstrate the efficacy of our theory and programs so that the pendulum will
not take another drastic swing.

This discussion session will contribute to the coordination of this work.
The leaders of the session are involved with statewide reform efforts. They will
present the working details and studies of elementary teacher preparation pro-
grams with a particular focus on the mathematics content courses. They are
inviting particular participants representing regions ranging from the South-
west to the Northeast to add to this discussion with research findings and pro-
gram results,

This panel represents a cross-section of the mass of ongoing research on
teacher knowledge and teacher preparation. It is hoped that the invited partici-
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pants will begin a discussion that other participants in the session can use as a
springboard for presentations of their current related work. The result of this
discussion group will be an exchange of ideas and research information that
will establish contacts to promote and stimulate collaborative research in teacher
preparation and development. The teacher education community needs to es-
tablish organized reporting of the efficacy of its theories and programs.
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A MODEL FOR STUDYING THE RELATIONSHIP
BETWEEN TEACHERS’ COGNITIONS AND THEIR
INSTRUCTIONAL PRACTICE IN MATHEMATICS

Alice F. Artzt
Eleanor Armour-Thomas
Queens College of the City University of New York
alagc@qcvaxa.qc.edu

The purpose of this exploratory study was to develop a model that uses a cognitive
perspective within a problem-solving framework to examine the instructional practice
and underlying cognitions of teachers of secondary school mathematics. To exarnine
instructional practice, a Phasc-Dimension Framework for the Assessment of Mathematics
Teaching was developed. To examine the related thoughts of teachers before, during
and after lesson enactments a Teacher Cognitions Framework was developed. The
value of the model resides in the interrelationship of the two frameworks which can
yield information about the role of teacher cognition in instructional practice. The
model shows promise as an assessment tool for researchers, teacher educators, and
supervisors who wish to better understand and thereby influence the quality of instruc-
tional practice in mathematics.

Objectives

The purpose of this exploratory study was to design a model for assessing
teachers’ instructional practices in mathematics and the cognitions associated
with these practices. The model we developed comprises two frameworks. One
framework allows for the systematic assessment of instructional practice in
mathematics using dimensions of lessons (tasks, leamning environment, dis-
course) as articulated in the Professional Standards for Teaching Mathematics
(NCTM, 1991) and supported by research on the structural components of teach-
ing (Jones, Palincsar, Ogle, & Carr, 1987). Using this framework we examined
the three phases of each lesson (initiation, development, closure). The other
framework allows for the assessment of the full range of teacher cognitions
including teacher knowled e, beliefs, and goals across three stages of teaching:
preactive (planning), interactive (monitoring and regulating), and postactive
(evaluating and revising). The:model formed a basis for the systematic study of
the relationship between teacher cognitions and their instructional practice and
showed promise as a framework for evaluating mathematics teaching within
the current reform movement.

Theoretical Framework

Within the last two decades, researchers have broadened their lens of in-
quiry by moving beyond the mere examination of teacher behaviors to study-
ing teacher cognitions (Ernest, 1988; Shavelson, 1986; Shulman, 1986). Re-
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searchers have found consistent findings on the differences in the cognitions
and instructional practices of expert and novice teachers (Borko & Livingston,
1989; Leinhardt, 1989; Livingston & Borko, 1990). Using a conception of
teaching as problem solving, researchers have shed further light on the rela-
tionships between cognitions and instructional practice in mathematics (Car-
penter, 1989; Fennema, Carpenter & Peterson, 1989). Researchers have identi-
fied some of the critical components of teacher cognitions as teacher knowi-
edge, beliefs, goals, and thought processes (Ball, 1991; Cobb, Yackel & Wood,
1991; Fogarty, Wang & Creek, 1983; Peterson, Fennema, Carpenter & Loef,
1989). Although previous investigations have called attention to the impor-
tance of cognitions and behavior in the study of teachers, more needs to be
done to examine teacher cognitions as an integrated whole. Furthermore, there
has been an absence of priori criteria against which to judge the quality of
instructional practice. Kagan (1990) and Leinhardt (1990) have identified this
issue as the “ecological validity” or “performance verification” problem in re-
search on teaching from a cognitive perspective. Koehler and Grouws (1992),
in their recent review of the literature on mathematics teaching practices and
their effects, observed that instructional quality was a topic that researchers
have avoided, and recommended that it should be more adequately addressed
in research on mathematics teaching. We have tried to be responsive to these
previously unaddressed issues by systematically assessing teacher cognitions
and their instructional practice in mathematics.

Methods

The authors and a research assistant observed and videotaped fourteen sec-
ondary school teachers teaching a mathematics lesson of their own design. At
the conclusion of their lesson each teacher participated in: a) a postlesson struc-
tured interview, followed by (b) a stimulated-recall interview as they viewed
the videotape of their lesson, followed by (c) a debriefing interview. Audio-
tapes were made of all interviews. Audiotapes and the audio part of the video-
tapes were transcribed for analysis.

The instructional practice was assessed based on the application of the Phase-
Dimension Framework for the Assessment of Instructional Practice in Math-
ematics (PDF). The framework consisted of 9 elements describing the three
major dimensions of instruction: Tasks (modes of representation, motivational
strategies, sequencing/difticulty level); Learning Environment (social/intellec-
tual climate, modes of instruction/pacing, administrative routines); and Dis-
course (teacher-student interaction, student-student interaction, questioning)
Each lesson received three dimension scores for each of the three phases of the
lesson. The average of the sum of the nine scores and the respective standard
deviations resulted in the categorization of the lessons as either Student Cen-
tered, Teacher Centered, or Mixed.
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s Dimensions

.Table 1 Lesson Dimensions and Dimension Indicators

Description of Dimension Indicators

. Tasks

L Modes of Representation

Motivational Strategies

Sequencing/Difficulty Level

Learning Environment

Social/Intellectual Climate

Modes of Instruction/Pacing

Provides such representations as symbols,
diagrams, manipulatives, computer or calcu-
lator representations accurately to facilitate
content clarity. Provides multiple representa-
tions that enable students to connect their prior
knowledge and skills to the new mathemati-
cal situation.

Provides tasks that capture students’ curios-
ity and inspires them to speculate and to pur-
sue their conjectures. The diversity of student
interests and experiences must be taken into
account. The substance of the motivation is
aligned with the goals and purposes of instruc-
tion

Sequences tasks such that students can
progress in their cumulative understanding of
a particular content area and can make con-
nections among ideas learned in the past to
those they will learn in the future. Uses tasks
that are suitable to what the students already
know and can do and what they need to leamn
or improve on.

Establishes and maintains a positive 1apport
with and among students by showing respect
for and valuing students’ ideas and ways of
thinking. Enforces classroom rules and pro-
cedures to ensure appropriate classroom be-
havior.

Uses instructional strategics that encourage
and support student invoivement as well as
facilitate goal attainment. Provides and strue-
tures the time necessary for students to express
theimselves and explore mathematical ideas
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Discourse

Teacher-Student Interaction

Student - Student Interaction

Questioning

and problems.AdministrativeRoutinesUses
effective procedures for organization and man-
agement of the classroom so that time is maxi-
mized for students’ active involvement in the
discourse and tasks.

Communicates with students in a non-judg-
mental manner and encourages the participa-
tion of each student. Requires students to give
full explanations and justifications or demon-
strations orally and/or in writing. Listens care-
fully to students’ ideas and makes appropriate
decisions regarding when to offer information,
when to provide clarification, when to model.
when to lead and when to let students grapple
with difficulties.

Encourages students to listen to. respond to,
and question each other so that they can evalu-
ate and, if necessary, discard or revise ideas
and take full responsibility for arriving at math-
ematical conjectures and/or conclusions.

Poses variety of levels and types of questions
using appropriate wait times that elicit, engage

and challenge students’ thinking.

The Teacher Cognitions Framework (TCF) was used to assess teachers’
thoughts through an analysis of the interviews and the lesson plans. For each
teacher: (a) preactive cognitions (lesson planning) were assessed from the les-
son plan and the transcription of the postlesson interview: (b) interactive cogni-
tions (monitoring and regulating) were assessced from the transcription of the
stimulated-recall interview: and (c) postactive cognitions (evaluating and re-
vising) were assessed from the transcriptions of the debricfing interview. The
overarching cognitions (knowledge, beliefs, goals) were assessed through the
lesson plans and the transcriptions of all three interviews.
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Table 2 Components of Teacher Cognitions and Description of Indicators

Cognitions

Description of Indicators of Cognition

OVERARCHING
Goals

Knowledge

Pupils

Content

Pedagogy

Beliefs
Pupils

Content

Pedagogy

To help students construct their own meaning
so that they will develop conceptual, as well
as procedural understanding and will value the
mathematics and feel confident in their abili-
ties.

Description of Indicators of Cognition

Haus specific knowledge of pupils’ prior knowl-
edge and experiences, abilities, attitudes and
interests.

Has conceptual and procedural understandings
of the content and is aware of and appreciates
the connections among it and past and future
areas of study.

Has understanding of how students learn math-
ernatics that guides them in developing suit-
able teaching strategies and anticipating and
preparing for areas of difficulty.

Views the role of students as active partici-
pants in their own learning. They should make
conjectures, propose approaches and solutions
to problems, debate the validity of one
another’s claims, and verify. revise and dis-
card ideas on the basis of their own and other
students” mathematical reasoning.

Views mathematics as a “dynamic and ex-
panding system of connected principles and
ideas constructed through exploration and in-
vestigation.” (NCTM., 1991, p. 133)

Views teacher’s role as one of a facilitator of
student learning through selections of prob-
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PREACTIVE

Planning

INTERACTIVE

Monitoring

Regulating

POSTACTIVE

Evaluating

Revising

lem-solving tasks and the leading and orches-
tration of communication in which students
are challenged to think for themselves through
mathematical reasoning.

The focus of the lesson is on building concep-
tual understanding based on what the students
already know, and focusing on mathematical
processes underlying the procedures to be de-
veloped as well as the skill development re-
quired by the content specifications.

Tasks are logically sequenced to build on pre-
vious student understanding and are appropri-
ate for clarifying new concepts and arousing
students’ interest and curiosity.

Observes, listens to. and elicits participation”
of students on an ongoing basis in order to
assess student learning and disposition toward
mathematics.

Adapts or changes plans while teaching based
on the information received through monitor-
ing student learning and interest.

Describes and comments on students’ under-
standing of concepts and procedures and dis-
positions toward mathematics as well as the
cffects of their instruction on these outcomes.

Uses information from their evaluation of stu-
dent leaming and instructional practices to
revise and adapt their subsequent plans for
instruction.

%

For each category of lesson quality determined by the PDE, we exam-
ined the data from the TCF to see if any patterns emerged. We then described
the patterns of cognitions associated with each category of lesson.

522




Data Sources

The subjects for this study included seven beginning and seven experi-
enced teachers of secondary school mathematics. All but one of the teachers
taught in urban schools. All taught at grade levels ranging from 9 to 11 and
were observed teaching one lesson. Data were obtained from observation nar-
ratives, videotapes of the lessons, audiotapes of interviews and lesson plans of
the teachers.

Results

Through the use of the model we were able to assess the instructionai prac-
tice and the related cognitions of fourteen teachers of secondary school math-
ematics. Using the PDF we were able to assess and evaluate the lessons. Five
lessons were categorized as Student Centered (four taught by experienced teach-
ers, one taught by a beginner); four of the lessons were categorized as Teacher
Centered (all four taught by beginners); and five lessons were categorized as
Mixed (three taught by experienced teachers, two taught by beginners). Stu-
dent Centered lessons received high ratings in all nine phase-dimension scores.
Mixed lessons received inconsistent ratings on the nine scores and Teacher
Centered lessons received low ratings in all nine scores.

Through the use of the TCF we were able to describe the 14 teachers’ cog-
nitions during three stages of instruction: preactive, interactive and postactive.
Patterns of cognitions were found when the TCF results were organized ac-
cording to the PDF ratings.

For the Student Centered lessons the instructional practice was character-
ized by a consistent interplay of tasks, learning environments and discourse
which contributed towards students’ active involvement in mathematical ex-
plorations throughout all phases of the lessons. A similar consistency of re-
sults was noticed in the cognitions revealed by these teachers. That is, their
knowledge, beliefs and goals all centered around student learning with under-
standing, as did their thought processes before. during and after the lesson.

For the Teacher Centered lessons the instructional practice was character-
ized by a consistent interplay of tasks and leaming environments which con-
tributed towards students’ passive role in the classroom where minimal dis-
course between teacher and students and between students and students was
evident. The descriptive analysis revealed that the teacher expressed cognitions
that primarily focused on their own practices rather than on student learning.
Their knowledge, beliets and goals centered around content coverage, skill
development and classroom management, as were their thought processes be-
fore, during and after the lesson.

For the Mixed lessons there was a large range of scores, indicating an in-
consistent pattern of Jesson quality. A similar inconsistency in the focus of the




expressed cognitions of these teachers was revealed in the descriptive analysis.
Two teachers introduced tasks that were either too difficult or confusing during
the developmental phase of their lessons. At this point the discourse tumed
from one that had been centered around student input to one that could be char-
acterized as teacher telling alone. Each teacher admitted inadequate knowledge
of the content or student readiness for the content. For the other three teachers.
unlike the well designed tasks and positive learning environment, the discourse
was fast paced and teacher dominated throughout all phases of the lesson. Each
of these teachers revealed beliefs that teacher-dominated discourse fostered
more efficient content coverage and student understanding.

Conclusions and Implications for Future Study

Through the use of our model. we were able to assess the teaching of math-
ematics as an integrated whole and obtain a better understanding of instruc-
tional practice and associated teacher cognitions. With further refinement the
Phase-Dimension Framework for the Assessment of Instructional Practice and
the Teacher Cognitions Framework may prove useful to rescarchers and teacher
educators in their preservice and inservice mathematics programs and to super-
visors in their assessment of teachers and their instructional practice. We be-
Heve that the model can facilitate better understanding of the psychelogical
aspects of teaching mathematics and it should lead to implications for teacher
education.

This research was partly supported by a PSC-CUNY Research award under
grant No. 668416.
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MEDIATING PEDAGOGICAL CONTENT
KNOWLEDGE THROUGH SOCIAL
INTERACTIONS: A PROSPECTIVE

TEACHER’S EMERGING PRACTICE

Maria L. Blanton Sarah B. Berenson
North Carolina State University North Carolina State University
miblanto@unity.ncsu.edu berenson@unity.ncsu.edu

This is a preliminary investigation of one of three case studies conducted in prospective
middle school teachers’ mathematics classrooms. A Vygotskian perspective was adopted
to understand the prospective teacher’s construction of pedagogical content knowledge
during the student teaching practicum. In particular, we considered how her knowl-
edge about teaching mathematics was mediated through interactions with various so-
cial agents. Our attempts to help the prospective teacher bridge her zone of proximal
development suggested that guidance by a more knowing other has a central influence
on the prospective teacher’s emerging practice.

Introduction

In recent years, the preeminence of constructivism as an epistemological
orientation in mathematics education has directed research toward understand-
ing students’ constrnuctions of mathematical knowledge (e.g., Cobb, Yackel, &
Wood, 1992; Steffe & Tzur, 1994). Pursuant to this are ongoing national re-
form efforts for teaching K-12 mathematics that reflect our understanding of
students’ thinking about mathematics. According to Simon (in press), the suc-
cess of such reforms hinges on the preparation of a professional cadre of math-
ematics teachers in accordance with a strong reform-minded research base on
teacher development. However, our understanding of how prospective teachers
construct their knowledge about teaching mathematics in <itu is currently un-
derdeveloped. Cobb, Yackel, and Wood (1991), recognizing the importance of
the classroom as a learning environment for teachers, speculate that “teachers
should be helped to develop their pedagogical content knowledge and beliefs
in the context of the classroom practice™ (p. 90). Until the student teaching
practicum, prospective teachers’ understanding of how to teach mathematics is
almost necessarily academic. They are primarily confined to university settings
which may offer only decontextualized opportunities for developing their craft.
The professional semester suggests the optimal context in which knowledge of
mathematics and mathematics teaching and learning coalesce into an emerging
practice for the ncophyte teacher.




A Yygotskian Perspective for Teacher Development

To understand how prospective teachers construct their pedagogical con-
tent knowledge, we appeal to the theoretical lens of social constructivisim as
articulated by Vygotsky. Vygotsky's belief in the social origins of higher men-
tal functioning embeds human consciousness “in the external processes of so-
cial life, in the social and historical forms of human existence™ (Luria, 1981, as
cited in Wertsch & Tulviste, 1996, p. 54). This belief, coupled with his empha-
sis on semiotic mediation, underlies Vygotsky's argument that social interac-
tions are the basis for an individual's development. According to Minick (1996),
Vygotsky maintained that “higher voluntary forms of human behavior have
their roots in social interaction, in the individual's participation in social behav-
1ors that are mediated by speech™ (p. 33). Indeed, Vygotsky's (1986) assertion
that higher mental functions are directly mediated through social interactions
invites specific contexts for investigating the prospective teacher’s transition
from mathematics student to mathematices teacher during the professional se-
mester. Such contexts include the mathematics classroom assigned to the pro-
spective teacher, meetings between the prospective teacher and professional
support personnel, as well as opportunities for retlection by the prospective
teacher. Viewing mind metaphorically as social and conversational, Emnest (1994)
posits that people are “formed through their interactions with cach other (as
well as by their internal processes) in social contexts”™ (p. 69). This is no less
true for prospective teachers during the student teaching practicum. Conse-
quently, we have considered how one prospective teacher’s pedagogical con-
tent knowledge is mediated during the professional semester through meaning-
ful social interactions with her students, university supervisor, and self.

For our nvestigation, Vygotsky's (1978) construct of the zone of proximal
development lends theoretical support to guiding the prospective teacher as her
practice emerges. In particular, it upholds the use of intentional instruction dur-
ing the supervisory process to effect further mediation of the prospective
teacher’s pedagogical content knowledge. According to Manning and Payne
(1993). ““the mechanism for growth m the zone 1s the actual verbal interaction
with a more experienced member of society. In the teacher education context,
this more experienced person is likely te be a supervising teacher, college su-
pervisor, teacher educator, or @ peer who is at a more advanced level in the
teacher education program™ (as cited in Jones, Rua, & Carter, 1997, p. 6). Jones
and colleagues suggest that such assistance by a more experienced person can
be piven through “prompting, modeting, explaining. asking leading questions,
discussing ideas, [and] providing encouragement”™ (p. 4). One of Vygotsky's
central propositions, the zone of proximal development is unique in that it “con-
nects a general psychological perspective on..development with a pedagogical
perspective on instruction”™ (Hedegaard, 1996, p. 171). As such, it has powerful
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implications for changing higher mental functioning on both the
interpsychological and intrapsychological planes (Wertsch & Tulviste, 1996).

The Nature of Inquiry

Our socio-cultural perspective led us to the dynamics of Mary Ann’s sev-
enth grade mathematics classroom for a case study of this prospective teacher.
From our first meeting in which we invited her participation in this study and
explained the obligations of one of the researchers as her university supervisor,
Mary Ann’s enthusiasm promised a partnership from which we all could learn.
While her academic journey in a four-year teacher preparation program
chronicled a multitude of diverse experiences for one who had chosen a dual
concentration in mathematics and science, her anticipation of student teaching
signaled a readiness to move beyond the safety of academe.

Mary Ann agreed to let us visit her classroom weekly during the student
teaching practicum. We conceptualized the nature of these visits as an exten-
sion of Steffe’s (1991) constructivist teaching experiment. That is, rather than
eliciting models of children’s constructions of mathematical knowledge, we
used the teaching experiment to investigate a prospective teacher’s construc-
tion of pedagogical content knowledge. Each visit was an audio- and video-
taped three-hour sequence which began with observing Mary Ann teach her
first period general mathematics class. The observation focused on episodes of
discourse in the classroom that prompted her to rethink how she taught math-
ematics or indicated to us her need to do so. Since Mary Ann’s planning period
was the following hour, we then collaborated in a teaching episode to make
sense of the events of the previous class and plan alternative strategies for sub-
sequent lessons. Immediately after the teaching episode. we observed Mary
Ann teaching the same subject to her third period class in order to document
effects of the teaching episode. Finally, Mary Ann was asked to write personal
reflections after each visit describing how her teaching practice had changed
through this process.

Developing Pedagogical Content Knowledge through Classroom . ractice

Our first visits served to build Mary Ann’s trust that we were coll. Hrators
in developing her understanding about teaching mathematics. For us, this was
pivotal if we were 1o help bridge her zone of proximal development. Soon. the
amicable rapport she enjoyed with her students spilled into our relationship.
Mary Ann's interactions with her students during these carly observations re-
vealed a focus for our teaching episodes which one particular visit brought to
light. During her first period class, she introduced a lesson on “working back-
wards™ as a problem solving technique by giving students a problem to solve
on their own. “P'm thinking of o number”, she said. “that if you divide by three
and then add five. the result is eleven.” The disconrse that tollowed likely typi-
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fies the novice teacher’s practice. After a short pause. Mary Ann began to dole
out hints until a correct answer appeared. A student was asked to share her
procedure for obtaining this solution, upon which Mary Ann began a step-by-
step account of how to work backwards to find the answer. Her instructions
were interspersed with questions which required students only to perform simple
computations, or that were worded su as to suggest the desired response’ She
later commented to us. “I look at math as just operations you go through. just
like a series of steps.” Mary Ann seemed to interpret students’ participation as
an indication of understanding: however, her frustration surfaced when the class
attempted to solve an almost identical problem.

Mary Ann:

Class:

Mary Ann:

Class:
Mary Ann:

Class:

Mary Ann:

OK. I'm thinking of a number if + »u divide by three and then
add five, the result is thirteen. So what would I first do just to
get an idea of what we're talking about? Does anybody know
how we did the last one? (No one responds to her questions.)
OK. what we need to do first, step one. we need to write every-
thing down in the order in which we read 1t. So we start read-
ing, "If you agivide by three™. <o we divide by three. Then we're
gonna [sic] add five. . . . Then the result is thirteen, and we
want to work backwards. So what have we got to do when we
work backwards? (Again. no response.) OK, what was the word
that we used when we talked about what we've got to do with
all of these [operations]?

Inverse.

Inverse. OK., so we have to take the inverse of operations . ..
OK? So what are we gomg to do with the five? Add it ¢ sub-
tract it”

Subtract.

Subtract. We're working with imverse. We're working with op-
posites. OK. then are we gonna {sicldivide or multiply by three?
Multiply.

Multiply by three. OK. that's step two. to write down every-
thing that's the mverse, and it's very important that you keep
the same order. You have to keep the same order as the prob-
lem. So it wall help it vou wiite 1t down, lice this. Step one,
step two.{She points out cach of the steps that she has written
on the overhead projectorn,) OK, step three s to actually solve
the problem. Wnat are we gonna [sic] do”? Somebody tell me
what the first step.. 18],

Mary Ann continued this interaction with one particular target student. Af-
ter he produced a response of twenty-four, she concluded. " Twenty-four, So
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that's my answer. That is the answer. I ask you what number did I start with,
you'll say what?” The students are silent. She continues, “*“What number did [
start with? The problem says, ‘I'm thinking of a number’. What number am 1
thinking of 7 Hesitantly, they began to suggest various numbers that occurred
in the problem. Twenty-four seemed to dorminate, cueing Mary Ann to once
again argue its veracity. She repeated, “Twenty-four. That is your answer. You
worked backwards. You said thirteen minus five is eight and eight times three is
twenty-four. That is the number you started with.” It seemed to us that students
were not actively solving a problem, but were at most reproducing a series of
steps. Also, it was not clear that they felt any sense of ownership in this process.
Mary Ann insisted that they had worked the problem whiie, in truth, one stu-
dent had volunteered most of the responses to her running dialogue. Our chal-
lenge was to use these classroom interactions to help her develop a sense of
mathematics as a problem solving endeavor, to let students struggle with unfa-
miliar problems, to promote their justifications of ideas through mathematical
discourse with each other and Mary Ann, and to learn from unsuccessful at-
tempts at problem solving. The students’ mathematical dilemmas had already
prompted Mary Ann to reconsider how she taught the lesson, presenting us
with an opportunity to guide her emerging practice. During the teaching epi-
sode, we planned an approach with Mary Ann that would prioritize students’
obligations as problem solvers.

The success of the next class rested on Mary Ann’s willingness to risk a
different approach on a topic with which she was admittedly uncomfortable.
What happened was as powerful for us as for her. Departing from her previous
strategy. Mary Ann placed the students in dyads to solve the problem she had
started with in her earlier class. She removed herself as the sole authority of
knowledge, delaying closure so that students would begin to communicate
mathematically with each other. Sharing ideas was no longer limited to those
who had found the right answer. As one of the students began explaining her
group’s strategy, Mary Ann looked to us in excited disbelief and mouthed,
“Wow!" She praised th student, You just taught our lesson for today!” Her
Jjournal reflection for this visit succinetly illustrated the transformation in her
knowledge about teaching mathematics:

Teaching this [to the first class] was a real eye-opener for me. I think 1
totally confused my students completely. 1 tried to show them steps
without letting them think about the problem themselves. . . .[The next
class] was different. After [the university supervisorf and I talked about
the Iesson and going over several suggestions, things secin [sic] to run
much smoother. Instead of throwing information out, 1 let them figure
the problem out in their own style. . .. To my surprise, one of my
students performed the problem exactly as the strategy suggested. Boy,
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was this a memorable event. The pressure was lifted off of me. . . Once
the students saw how one of their peers was able to solve the problem,
things were a lot more clear to all. I learned that having a student come
up with the solution means more to the others than the teacher giving a
long, drawn out lecture. Sometimes you need for things to flop, so you
can think up new ways to approach the situation.

Conclusions

Although Mary Ann’s emerging pedagogical content knowledge exhibited
a certain nonlinearity over the semester, there were indications that our visits
were moving her practice in a positive direction. The visit described here, later
monikered the “problem solving day”, served to anchor her ability to try alter-
native strategies. She seemed to receive from us the permission to take risks
regardless of the outcome. We felt that this was an interesting parallel to her
own practice. Although our three-hour schedule with Mary Ann was ideal for
us, we realize that it may have limitations for supervising large numbers of
prospective teachers. However, helping Mary Ann to make sense of classroom
events as they unfolded seemed crucial to her development. As we encouraged
har to take meaningful risks in her teaching, Mary Ann was able to move be-
yond what we believe she would have accomplished on her own.
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In this paper we examine the explanations that two teachers, Mr. Kantor and Mr. Tay-
lor, constructed about the definition of division in terms of conceptual and procedural
knowledge. We also attempt to understand the sources of difficulties that one teacher
experienced when teaching this topic. It was found that both teachers’ explanations and
rcpresentations involved procedural and conceptual knowledge but conceptual knowi-
edge dominated Mr. Kantor’s explanations and procedural knowledge dominated Mr.
Taylor’s explanations. Only Mr, Kantor experienced major difficulties due, in part, to
the conceptual emphasis and to students’ functional fixedness.

In this paper we compare and contrast the explanations and representations
that two teachers, Mr. Kantor and Mr. Taylor, constructed for teaching the defi-
nition of division. The objectives are to attempt to understand: (a) the role of
the teachers’ knowledge of representations on their classroom instruction, (b)
the difficulties that the teachers face when teaching division for both proce-
dural and conceptual knowledge (Hiebert & Lefevre, 1986). To this end, we
address the following research questions: (1) Do Mr. Kantor and Mr. Taylor’s
explanations involve both procedural and conceptual knowledge? (2) If yes,
what representations do these teachers use? (3) Do these teachers experience
difficulties when teaching algebraic division? (4) If yes, what are the sources of
these difficulties?

Empirical Background

Previous research has examined teachers’ knowledge of representations
about division (e.g., Ball, 1990: Simon, 1993). In Simon’s (1993) study, only
10 of 33 prospective elementary teachers were able to provide a story problem

31
that could be solved by Z + :1— However, we need to examine how teachers

use their knowledge in teaching situations (Simon, 1993). Borko et al. (1992)
examined one teaching episode in which a middle school student teacher failed
to construct a conceptual explaration for the algorithm of division of fractions

. . 3 1
using word problems and pictures for the example of 1 + —. Borko et al.
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concluded that the student teacher’s failure was due, in part, to a lack of knowl-
edge of representations and poor understanding of the algorithm. While these
studies suggest that weak knowledge of representations prevents teachers from
constructing conceptually based explanations. there is not empirical evidence
that knowing the representations of why division is related to multiplication
would influence teachers’ construction of conceptual explanations. As stated
before, this is one of the objectives of this paper. We found that the participants

of the study knew representations of whya+b=a-—. b #0.

Conceptual Framework

The figure below displays the conceptual framework that framed the re-
search questions and guided the analysis of the teachers’ explanations and rep-
resentations. A content curriculum event (CCE) is each mathematical idea (e.g.,
concepts, formulas, theorems, axioms, procedures, etc.) identified in a curricu-
lum text such as curriculum guides or textbooks (Contreras, 1996). Teachers’
knowledge of mathematical and pedagogical representations influence their
teaching. Students’ cognitions may have also an impact on teachers’ explana-
tions and representations. '

Methodology and Data Sources

Participants and setting. Mr. Kantor and Mr. Taylor teach middle-grade math-
emutics in a school district known for high student achievement in a U.S. city.

[—Sludcnls' cognitions I

TEACHING
¢ (Construction of

pedagogical events.
explanations
representations
questions)

CURRICULUM
(Content
curriculum
cvents)

Mathemaucal representations Pedagogical representations
(Symbolic representations (Pictonal representations

Proofs) Story-problem  representations)

P Because of space limitations, I have only outlined the theoretical frame-
work, A more complete description will be provided during the oral presenta-
tion.




At the time of the study, Mr. Kantor and Mr. Taylor had about five and 20 years
of experience teaching mathematics, respectively.

Procedures for data collection. We videotaped Mr. Kantor and Mr. Taylor’s
instruction when teaching the lesson of the textbook dealing with the definition
of division. Based on a content analysis of the teachers’ instruction and the
textbook the following CCE’s were identified as central to division: the con-

1
cept of division, the definition of division as a + b = a-—, b # 0, division by

zero and the rules of signs for division. Audiotaped interviews were conducted
to examine the teachers’ knowledge of representations about those CCE’s.

Data Analysis

Content analyses of the transcriptions of the videotapes and interviews was
carried out to answer the research questions.

Teachers’ explanations and procedural and conceptual knowledge. Mr.
Kantor constructed explanations for only two CCEs: the concept of division
and the definition of division. Mr. Taylor, on the other hand, constructed expla-
nations for three CCE’s: concept of division, definition of division, and divi-
sion by zero. None of the teachers constructed explanations for any of the rules
of signs for division. Tables 1 and 2 display the representations that Mr. Taylor
and Mr. Kantor constructed for teaching the definition of division, respectively.
The tables show that while Mr. Taylor used mainly pictorial representations
and the quotitive model for division, Mr. Kantor used mainly story-problem
representations and used both the partitive model and the quotitive model for
the concept of division.

The data displayed in the tables show that both teachers attempted to teach
the definition of division for procedural and conceptual understanding. How-
ever, while Mr. Taylor used indirect representations to represent why a + b as

a 5 using numerical examples and a pattern to establish the plausibility of

. ! :
computing ¢ + b as a B’ Mr. Kantor used story problems to illustrate why

division can be defined in terms of multiplication. For example, Mr. Taylor
constructed the following explanations about the represemtations entered in the
definition of division in Tablc |:

Well, another way to think of this ... is to think of, well, if | am divid-
ing six, and say how many two'’s are there? ... 1 want ones, one whole
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units, how many of those pieces do I want? I want two pieces, don’t I?
So I really gotta say one of two pieces. What about if I want halves?
What kinds of parts do I divide this into? I divide it into two parts. If [
divide it into two parts then what is the full number of parts I"m gonna
end up with? Six whole things, 2 parts per each thing, right? Six times
two which is twelve and then I am asking how many of those one halves
.... We get groups of ones. How many groups of ones are there in those
twelve halves? Well, there are twelve. By doing thirds. I have three
parts per each of these wholes, don’t I? So I multiply six whole num-
bers, three parts in each, total, how many parts, 18, and again, how
many do I want? I want how many one thirds. so groups of ones again.
How many groups of ones are there in 18? There are 18. And the last
one is, I divide it into thirds again, so there are how many parts, six
wholes times three parts, that's 18, but I am not asking now how many
ones parts, I'm asking how many groups of, what, two are in there. So
that’s another way of thinking of the problem.

We notice that Mr. Taylor is not representing why a + b = «(1/b) directly.

)
For example, when talking about 6 + 5 he converted the units into thirds to get

. . 18
_ 18 and since we want groups of two thirds we have - From table 1 we see

ya

. 18 e -
that he was thinking of = —2— {by multiplication of fractions theorem].

2

, 2 3 18 2
Since both 6 + — and $ can be expressed as ? we conclude that 6 + —

2 6
1

. However. he did not emphasized that connection. Rather, he used the

-
9| W

2 6 3 .
factthat 6 + Y and T - give the same answer (o focus on the pattern between
the divisor and the second factor of the multiplication as shown in his explana-
tion:

What happuis 1s, this [1/72] is just the reciprocal of two. isn’t it? This [ 2] 1s just the
reciprocal of a half. This [3] is just the reciprocal of a third. This [3/2] is just the
reciprocal of [two thirds]. So, what we found, by looking at these patterns is that
when you want to divide what you can do is change the problem to times the recip-
rocal of the second number. And, indeed. that's the definition of what division is in
atgebra. The definition, ¢ divided by b, I can change it to ¢ times the reciprocal of b.
1
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After this explanation Mr. Taylor provided several examples to express
division in terms of multiplication and he focused on the procedure. Mr. Kantor,
on the other hand, focused and emphasized the conceptual base of the connec-

1 . .
tion betweena + b and a- ; using the of model for multiplication (taking a half

4
z’— = §—— =28) (see
4 3
the representations entered under the column “definition of division” in Table

2).

1
ofTor7- 5 ), the rate model and an indirect approach (21 +

Teachers’ difficulties when teaching the definition of division. While Mr.
Taylor did not experience difficulties when teaching the connection between a

| . . .
+b and a- -E Mr. Kantor struggled teaching the connection. To illustrate, Mr.

| .
Kantor’s stiuggles to show why 5 + E = 5-2 using the word problem displayed
in table 2 are described in the following teaching episode.

1.K: So you have five dollars. You wanna find out how many pencils you
can buy that cost fifty cents a piece. ... Doesn’t it make sense that you
get the same answer as five times two? ... Using the same situation
explain why.

The opposite.

Now, in the context of that problem, why does five times two give me
the answer?

Because it equals ten.

.... six plus four equals ten, too.... but that doesn’t mean it’s the mecha-
nism to employ this in other problems. What?

Because when you divide a fraction you can do the same thing by mul-
tiplying by the reciprocal.

Tell me in a concrete way why that gives you the same thing ...
Because it is.

[ can find out how many times it goes into five. The process of doing
that, how can I do it?

ETRY




Because it is.... Because it is.

Let me change the problem just a little bit.... I wanna give each kid
fifty cents. I have five-dollar bills ... I have to go to the bank and get
fifty-cent pieces for five-dollar bills. For every dollar bill they give
what?

12.S: Two.

13. K: Two fifty-cent pieces, right? and so that’s five times two is how many
fifty-cent pieces | get. The samething.... How many times a half goes into five
is the same as five times two.

As we can see from this teaching episode, Mr. Kantor is experiencing

. . : . 1 :
difficulties getting students to think about why 5 + —2— = 5-2 using the story
problem. Mr. Kantor does not give up and creates another story-problem rep-

. . 3 4
resentation and asked students to explain why 21 + — = 21. —. However, Mr.

Kantor also experienced difficulties this time as evidenced by students’ responses
and reactions (You can try it, it works: | just told you. You can do it. You like to
make things more complicated than they are Mr. Kantor; Oh, boy; You can do it
and it works. What else do you want?; because division is multiplication). This

34

time Mr. Kantor represented why 21 + Z = EY = 28 directly rather than rep-

resenting it as 21 + % =21- % (See Table 2, second column).

Explanations and representations for the other content curriculum events.
While Mr. Kantor did not construct explanations nor representations for divi-
sion by zero, Mr. Taylor constructed a procedural representation: *“You can’t
divide by zero.... That is why ... you can not have ... zero in the denominator.”
None of the teachers constructed representations about the rules of signs for
division.

Discussion and Conclusion

Although both Mr. Kantor and Mr. Taylor's explanations involved clements
of procedural and conceptual knowledge for the definition of division, proce-
dural elements dominated Mr. Taylor's explanations and conceptual clements
dominated Mr. Kantor's explanations. In addition, Mr. Taylor’s explanation about
division by zero was procedural. One possible reason to explain Mr. Taylor's
emphasis on procedural knowledge is that he lacks conceptual knowledge about
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the definition of division and about division by zero. However, interviews re-
vealed that he knew representations about why division can be defined in terms
of multiplication. In the case of division by zero he knew why division by zero
is impossible when the numerat'sr is not zero. Therefore lack of conceptual
knowledge is not a complete explanation about Mr. Taylor’s instructional rep-
resentations. Another plausible explanation is that Mr. Taylor does not value
teaching for conceptual knowledge. However, this explanation might to be rule
out because he said that teaching for understanding was very important. Other
reasons such as pressure to cover the curriculum, lack of time, etc. may have an
influence on his curricular and pedagogical decisions. Those and other reasons
may suggest why Mr. Kantor and Mr. Taylor’s did not construct explanations
about the rules of signs for division.

Mr. Kantor experienced difficulties teaching the definition of division due,
in part, to the fact that his explanations involved strong elements of conceptual
knowledge. Another factor was students’ reluctance to think of the definition of
division in conceptual terms. We think that students were reluctant to learn why

1 L
a+b=a Z because they already knew that connection in procedural terms.

This phenomenon is similar to what Gestalt psychologists have termed func-
tional fixedness. In Hiebert & Carpenter’s (1992) words, “when a particular ...
procedure is practiced it can become fixed, making it difficult to think of the
problem in another way” (p. 79).
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PRESERVICE SECONDARY MATHEMATICS
TEACHERS’ INTERPRETATIONS OF
MATHEMATICAL PROOF
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The purpose of this study was to examine the nature of preservice secondary math-
ematics teachers’ understanding of mathematical proof and to examine their expecta-
tions of mathematical proof for students. Their understanding and expectations were
characterized along four levels of proof. representing an hicrarchical progresston from
inductive toward deductive generalizations. The findings suggest that several of the
preservice teachers’ understanding differed from what might be expected from pro-
spective secondary mathematics teachers. Additionally, their expectations for their
future students’ understanding of mathematical proof were primarily characterized at
the lowest level.

Proof holds a central role in the discipline of mathematics and is beginning
to play a larger role in the secondary mathematics curriculum (outside the realm
of geometry). In fact, teachers are being called upon to provide al! students
with rich opportunities and experiences with mathematical proof. Consequently,
many mathematics educators have been re-examining the nature of mathemati-
cal proof in the secondary curriculum, and as a result, there has been a shifi in
emphasis, away from what has often been perceived as an over-reliance on
rigorous proofs toward a conception of proof as convincing argument (Hanna,
1990). The classroom practice aligned with this conception of proof places an
emphasis on developing mathematical reasoning through the social interac-
tions occurring within the classroom community—interactions which provide
an opportunity for students to “make conjectures and present solutions; explore
examples and counterexamples to investigate a conjecture; try to convince them-
selves and one another of the validity of particular representations, solutions,
conjectures, and answers; [and] rely on mathematical evidence and argument
to determine validity” (NCTM, 1991, p. 45). In fact, Balacheff (1991) con-
tends that “social interaction has been the real engine which leads the students
to an awareness of the need for proofs, forcing them to justify themselves or to
elicit the rationality of the decision to be taken™ (p. 95).

Accordingly, teachers play a crucial role in promoting “the establishment
of a classroom mathematics community in which mathematical validation and
understanding are seen as appropriate and important foci” (Simon & Blume,
1996, p. 9). Morcover, as representatives of the mathematics communiy, teach-
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ers have the primary responsibility for establishing and negotiating what counts
as an acceptable mathematical explanation and justification within the class-
room community ( Yackel & Cobb, 1996). Consequently, teachers’ understand-
ing of mathematical proof influerices both the experiences they provide their
students and the expectations of proof they hold for their students. The purpose
of this study was to examine the nature of their interpretations by examining
preservice teachers’ understanding of mathematical proof and their expecta-
tions of mathematical proof for their future students.

Conceptual Framework & Research Questions

In order to characterize the nature of the preservice secondary mathematics
teachers’ interpretations of mathematical proof, we utilized the four levels of
Balacheft’s (1991) taxonomy of proof: naive empiricism, crucial experiment,
generic example, and thought experiment. Simon and Blume (1996) provide a
succinct description of the four levels:

At the first level the student concludes that an assertion is valid from a
small number of cases. At the second level, the student deals more
explicitly with the question of generalization by examining a case that
is not very particular (e.g., choosing an extreme case). At the third
level, the students develop arguments based on a ‘generic example’
(e.g., an example representative of a class of objects). At the fourth
level, students begin to detach their explanations from particular ex-
amples and begin to move from practical to intellectual proofs (p. 8).

These levels represent an hierarchy that students are expected to progress through
as their notions of mathematical proof develop, that is, their understanding of
mathematical proof is “likely to proceed from inductive toward deductive and
toward greater generality” (Simon & Blume, 1996, p. 9). Although these levels
were originally used for categorizing secondary students’ understanding of proof,
we found Balacheff’s distinctions provided a means for describing the nature
of preservice teachers’ understanding of proof and for examining their expecta-

tions for their students’ understanding of mathematical proof.

The study was guided primarily by two questions: (1) What is the nature of
preservice secondary mathematics teachers’ understandings of mathematical
proof? and (2) What expectations of proof do preservice secondary mathemat-

ics teachers hold for students who have not yet been exposed to formal deduc-
tive proofs?




Methods

Context

The participants were preservice secondary mathematics teachers (n = 9)
who were in the process of completing or had previously completed an under-
graduate degree (or its equivalent) in mathematics. The participants were en-
rolled in a semester-long, reform-based mathematics methods course. A major
portion of each methods class was spent in the context of solving mathematics
problems—the students attempted to solve each problem individually and/or in
small groups, and the mathematics task, concepts and skills then provided the
context for discussing a variety of pedagogical issues. In addition, the students
were frequently assigned homework problems whose solutions were then dis-
cussed during the following class. Central to both the in-class and homework
discussions were the mathematical justification students provided as they pre-
sented their solutions to the mathematics problems. This format not only pro-
vided a more dynamic examination of their notions of mathematical proof and
its role in the teaching of mathematics, but it also promoted reflection on their
own interpretations of mathematical proof.

Sample Problems

The following two problems are representative of the types of problems
that were assigned: (1) Given line k and two points A and B on the same side of
the line, find point X on k so that the path A-X-B is as small as possible.
Present an argument justifying your solution (L.. Sowder, personal communica-
tion, Spring 1993); (2) Given a circle with center F, and a point inside the circle
H, find a chord that passes through the point and produces the largest product
of the two resulting segments. Present an argument justifying your solution
(Cooney, 1988).

Data Sources and Analysis

Data sources included video-tapes of class discussions, student write-ups
of homework problems, and student interviews. The interviews focused on the
students’ descriptions of their solutions to homework problems and on their
expectations for secondary school (pre-geometry) students’ solutions on simi-
lar problems. Data—students’ homework solutions, class discussions, and in-
terview responses—were analyzed using Balacheff's four levels of proof. Each
student’s solution was categorized according to the level that best represented
the student’s response.

Results

What is the nature of preservice secondary mathematics teachers’ under-
standings of mathematical proof? We briefly describe the preservice teachers’
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solutions for the first problem and characterize their solutions in terms of
Balacheff's four levels of proof.! Although it would be reasonable to expect all
of the preservice teachers to present proofs at the fourth level in Balacheff's
taxonomy, we were surprised to find two teachers who did not fall into this
category. For this reason, we describe in greater detail the proofs these two
teachers presented.

In solving the first problem, three different solution methods were utilized:
a geometric approach, a calculus approach, and an empirical approach. Five of
the preservice teachers employed a geometric approach in which they attempted
to prove their solution deductively. Although these teachers might be classified
as being at the fourth level (i.e., thought experiment), their proofs differed sig-
nificantly. Only two of these preservice teachers provided a proof that we con-
sidered mathematically viable; the other three made an assumption regarding
the correct location for the point X and then based their proofs on this assump-
tion (the assumption in fact also required proof). The calculus approach was
used by two of the preservice teachers in proving their solutions—proofs repre-
sentative of the thought experiment level. They placed point X on line k, used
the distance formula to find the length of A-X-B, and then set the derivative
equal to zero in order to find the location of point X that produced the mini-
mum distance.

The remaining two preservice teachers presented empirical arguments as
justification for their solutions. One teacher decided initially to test three dif-
ferent possible locations for point X. She placed one test point, X, on line k
such that the two angles formed by line k and the lines AX, and BX| were
congruent. Next, she placed two additional test points on line k, one on each
side of the first test point. She then measured the lengths of the three paths
formed in order to determine the shortest path. At this point, she concluded
that the first test point location for X produced the shortest path. Rather than
repeating the previous steps with different placements of A and B, she decided
to “formulate a more mathematical generalization about what is going on.”
Her mathematical generalization began with recalling “from my past geometry
experience, that the shortest distance between two points is a straight path.”
Interestingly though, she proceeded to draw a diagram showing the reflection
of point A about line k. but rather than attempting to prove her previous conclu-
sion deductively, she chose to again verify it empirically—she measured the
path from the reflected point to B and compared it with the length of path A-X-
B. Finding these lengths to be approximately equal, she concluded that this
location for X produced the shortest path. Based strictly on the work she pre-
sented, it seems as though her recollection of a fact from geometry was enough

I'The characterization of the preservice teachers” solutions for other problems included
in the study were consistent with their solutions to this first problem.




I
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to warrant this proof being considered as a more mathematical generalization
than her initial “trial and error” proof. We felt that her proof might best be
characterized at the crucial experiment level; she strategically examined three
possible locations, specifically trying to narrow her choices down to one poten-
tial winner, and then verified this choice as the correct location. In other words,
the question of generalizability was explicitly examined, a distinguishing fea-
ture Balacheff ascribes to this level.

The second teacher, also using an empirical approach, began by assuming
that the points A and B were equidistant from line k, specified a value for the
distance from these points to line k, and specified a value for the distance be-
tween points A and B. Her resulting diagram was a rectangle with line k as a
base, points A and B at the vertices of the opposite base, and point X located on
line k, at the vertex opposite point A. She proceeded to calculate, using trigo-
nometry, the path length of A-X-B for different locations of X (she began with
X at its initial location and moved it to its final location, the midpoint between
A and B on line k). She displayed the results in a table and decided to then
graph the data in order to get “a better feel for the location of X.” From the
tabular and graphical representations, she determined the location for X that
produced the minimum path. It is interesting that in her conclusion, she gener-
alizes the results from a specific example to all cases—justification character-
istic of Balacheff’s first level. However, it is possible that she selected her
example to be representative of a class of objects (i.e., all cases in which points
A and B are equidistant from line k), which would then be more characteristic
of Balacheff’s third level, generic example. Although based solely on her writ-
ten response (she was not interviewed). it is difficult to determine how she was
thinking about the example she used.

What expectations of proof do preservice secondary mathematics teachers
hold for students who have not been exposed to formal deductive proofs? Six
of the seven preservice teachers interviewed expected their students to offer
proofs at the naive empiricism level. The following description typifies the
proof they expected their students would present for the second problem. The
students would draw a circle with center F and a point H inside the circle. Next
they would draw several chords that passed through point H. They would then
measure the lengths of the two segments formed by each chord. find the prod-
uct for each pair of segments, and compare the resulting products. Finally,
taking into account any measurement error, the students would then conclude
that all chords through the given point would produce equal segment products.
The preservice teachers did not expect their students to go beyond this point,
although several mentioned that they would at least point out to their students
that they had only measured a small number of all the possible chords, and
therefore their conclusion was tenable at best. Interestingly, only one preservice
teacher expected students to demonstrate a more sophisticated understanding
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of proof—a proof representative of Balacheff’s crucial experiment. This teacher
expected his students to check several different circles, several different point
locations, and chords that included the longest and the shortest (i.e., the short-
est they could reasonably draw and accurately measure) chords. It is important
to distinguish the difference between the preservice teachers’ expectations for
the mathematical thinking of their students. In the former situation, the teach-
ers expected students to be satisfied with their justification based on a small
number of specific cases, whereas in the latter situation, the teacher expected
students to feel the need to test particular cases (e.g., longest andshortest cases)
and test different circles and point locations. This teacher wanted students to
recognize the need to check more than a few cases. cases that aren't typical,
and cases that the students felt would really test the validity of their assertion.
It is also interesting to note that none of the preservice teachers expected their
students to produce proofs at the generic example level, the highest level stu-
dents without formal deductive proof experience might attain.

Concluding Remarks

The results suggest that several of the preservice teachers’ interpretations
of mathematical proof differed from what the mathematics community would

consider as mathematically acceptable. Further, most of the preservice teach-
ers’ expectations of proof for their students was limited. Two explanations for
these findings seem feasible: (1) the preservice teachers possess an inadequate
understanding of mathematical proof or (2) the preservice teachers have a dif-
ferent notion of what is an acceptable mathematical proof outside of the formal
setting of their university mathematics classes. In either case however, the end
result—student understanding of proof and its use in mathematics—is prob-
lematic. This is particularly true for students whe lack experience with formal
deductive proof. As Martin and Harel (1989) warn, “if teachers lead their stu-
dents to believe that a few well-chosen examples constitute proof, it is natural
to expect the idea of proof in high school geometry and other courses will be
difficult for the students™ (p. 42). Consequently, if teachers are to support the
development of their students’ understanding of proof. it is important that teach-
ers not only have a robust understanding of proof, but that they are also af-
forded opportunities to “explore, develop mathematical arguments, conjecture.
validate possible solutions, and identify connections among mathematical ideas”
(NCTM, 1991, p. 128). Such opportunities not only provide a more dynamic
examination of the nature of mathematical proof in the secondary curriculum,
but they also engender discussion concerning expectations of proof for stu-
dents.
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WHY DO WE INVERT AND MULTIPLY?
ELEMENTARY TEACHERS’ STRUGGLE
TO CONCEPTUALIZE DIVISION
OF FRACTIONS
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To study elementary teachers' construction of understanding of division of fractions,
we conducted a teaching experiment with a class of 12 teachers and case studies with
three of the teachers. Initially, the teachers were able te create meaningful division
situations of fractions and solve them using the invert-and-multiply (1&M) algorithm,
but they could not make sense of the algorithm. During instruction, teachers solved
tasks in a computer microworld which led to their construction of fractions as co-mea-
sure units, a process that had previously been observed in children. The teachers ob-
scrved that the result of using the co-measure units was consistent with the algorithmic
answer. However, they were not able to pose and solve tasks in the “opposite of multi-
plication” context. which would allow them to relate their mental operations with the
algorithm. The study demonstrates how a teacher educator can usc research on stages
of children’s learning about fractions to organize observations of teachers’ knowledge
and to devise situations that promote teachers” understanding.

This paper addresses the problem of how elementary teachers might con-
struct conceptual structures and operations necessary for relational knowledge
(Skemp, 1987) of the division of fractions algorithm, “invert-and-multiply”
(1&M). In particular, it demonstrates how conceptions identified in research on
children’s learning can contribute to advancing and studying teachers’ develop-
ment. Addressing this problem is important because many elementary teachers
cannot facilitate children’s construction of such knowledge because they have
not constructed it themselves (Post, Harel, Behr, & Lesh, 1991). As ateacher in
our study put it, teaching division of fractions is characterized by the rhyme:
“Invert and multiply, and don’t ask me why.” The paper outlines the constructivist
framework and method used to study the problem. presents analysis of the teach-
ers’ work, and discusses the significance of the teachers’ evolving understand-
ings.

A Constructivist Theoretical Framework

We view human fearning in the context of scheme theory (von Glasersfeld,
1989), as the continual processes of accommodating established conceptual
structures and operations to neutralize perturbations. In this context, a teacher
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can promote learning of specific mathematical knowledge by engaging the learn-
ers in solving tasks designed to create specific mathematical perturbations in
the learners. To do so, the teacher needs to infer the learners’ conceptions as
they solve, or fail to solve the tasks, and to generate conjectures as to how they
might modify these conceptions. Simon (1995) refers to such conjectures as a
hypothetical learning trajectory (HLT). Since research on teachers’ fraction
knowledge (Ball, 1990; Lehrer & Franke, 1992) provided us with no hypoth-
eses for inferring teachers’ established schemes or for implementing previously
tested HLT’s, we adapted findings from research on children’s fraction learn-
ing.

Tzur (1996) proposes the iterative fraction scheme as a transformation in
children’s thinking about fraction units, from one part out of several equal parts
contained in a partitioned ONE to a relation between the part and the ONE. For
a child with the latter knowledge, the word “one-eleventh” symbolizes a frac-
tion unit that stands in 1-to-11 relation with the ONE, a relation the child antici-
pates without needing to iterate the fraction unit 11 times. Tzur (1995) found
that a child can then construct the distributive partitioning scheme by abstract-
ing, in 3 sub-stages, the results of the operation of partitioning parts {recursive
partitioning). First, a child makes sense of partitioning, say, 1/4 into 5 parts, by
distributing 5 parts across each of the 4 fourths, finding the total number of
parts in the ONE (20), and translating it into a fraction unit (1/20). Next, the
child abstracts the multiplicative relation between two recursive partitions, and
can anticipate the size of the resultant fraction without executing the distribu-
tion. Then, the child generalizes the latter abstraction to several recursive parti-
tions, which is a case of the fundamental operation of splitting (Confrey &
Smith, 1995).

Olive (1993) proposes the construction of co-measure units and scheme as
the next advancement in the child’s fraction knowledge. In this stage, the child
abstracts and reverses the relationship between the recursive partitioning op-
eration and its resultant sub-units, thus being able to anticipate, without ex-
ecuting, the result of using this operation to produce fraction units. For ex-
ample, the child conceives 1/30 as a fraction unit that could produce or relate 1/
2, 1/5, and 1/6. Both Olive and Tzur hypothesize that those schemes underlie
understanding of arithmetical operations such as: (a) finding common denomi-
nators, (b) adding unlike-denominator fractions, (c) simplifying fractions, and
(d) multiplying/dividing fractions.

Methodology

We studied the development of 12 elementary school teachers who partici-
pated in a master’s course taught by the first author, in which they used the
Sticks computer microworld. In this microworld the user can draw linear ob-
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jects (“sticks™) on the screen, place vertical marks at any point on a stick (and
erase them), copy a stick several times, join sticks, duplicate (repeat) sticks,
partition sticks (or parts) into a number (2-99) of equal parts, break marked/
partitioned sticks into pieces, cover/uncover an area on the screen, designate a
stick as the measuring unit of ONE by copying it into the “Ruler” and then
measure any stick on the screen, label sticks with fraction numerals, and
disembedded parts from a marked or partitioned stick without changing the
original. Thus, Sticks provides learners with an environment in which they can
actively explore, or demonstrate understandings of fractional relationships be-
tween sizes of one-dimensional objects.

We videotaped every lesson, with one camera recording the entire group
activities and the second focusing on case study teachers. The second author
conducted case studies of three of the teachers, including four audiotaped inter-
views with each teacher, collection of written work, and observation of the
teachers in their classrooms. Finally, we transcribed the tapes (video and au-
dio) and analyzed the relevant segments line-by-line.

Analysis

After considerable work on division problems with whole numbers. the
teachers’ solutions indicated that they understood division in 3 contexts—par-
titioning, measurement, and “opposite of multiplication” (e.g., solving 2({= 6
by 6 + 2). Understunding the latter context was important since it underlies a
possible explanation of the 1&M algorithm. For example, one can solve the
problem “I'm thinking of a stick that the 3/4 is 2/5 of it” by: (a) partitioning
each of the 3 fourths into 2 parts to create 1/5 of the desired outcome, hence
dividing it into 3/8, and (b) iterating this sub-unit 5 times to complete the pro-
cess while producing /5/8 of the original ONE. In this solution. one multiplies
3/4 by 5/2 (the inverted reciprocal of 2/5) in two steps—first dividing by 2 and
then multiplying by 3.

In class 12 (4-3-96), we discussed the teachers’ solution to a problem the
instructor (I) posed the previous week in the context of “opposite of multiplica-
tion™:

I:  Tthought of a stick that yours was 5/8 of it. What exactly
did you do with your 5/8 to make mine?

P: Wedivided the 5/8 by 5/8.

I:  (Emphasizes that he meant what Sticks actions did they
use. and reminds them that they first divided the 5/8 into
5. then took 8 of those. Next. he poses the task which the
students would solve in small groups): The question is
why do we invert and multiply? And the task is, use one
or more aspects of division, that is. partitioning, measur-
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ing. or “opposite of multiplication.” and Sticks
microworld, and the fractions 3/4 and 2/5, to come up
with a problem or a situation, that is a division problem. .
.. Make something that is similar to mine, or a different

problem.

Unlike in Ball’s (1990) study, the teachers could easily find a measurement
situation such as “How many scarves can we possibly make if it takes 2/5 of a
yard to make one scarf and we have 3/4 of a yard of cloth?” and solve it using
the 1&M algorithm. They also had no problem making a 3/4-stick and a 2/5-
stick to represent the two quantities, and rephrasing the task as “having to find
how many times 2/5 goes into 3/4” {see Figure 1). Yet, only one student (D)
was able to solve the problem. As D attested in her reflective journal and in
class, she used the numbers obtained by the algorithm (15/8) to find a way of
creating common de-

NOMINAtors bEtWEEN ¢ 4 (s emees stoter :
the two fractions, a ISR oo g, b+ 3, 17 Jp
way she termed
“working from the
solution backward.”
In conceptual
terms, D recursively
partitioned each of
the three-fourths into
5 parts (hence 15/20)
and each of the two-
fifths into 4 parts
(hence 8/20), then used the precise co-measure unit (1/20)to figure out that
they could possibly make 15/8 scarves (or 1 and 7/8). However, in spite of
initiating and solving many simpler problems, D did not know why her method
worked:

D: (inclass 14, 4-17-96): It [my method] works, but I'm not
really [sure why].

So is this only an accident or maybe there is something in
it?

D: I think therc's something in it, I've tried it on a lot of
simpler problems ...
Our analysis of class 14 focused on our puzzlement as to why most teach-
crs were not able to follow D's activities to figure out “how many times 2/5
goes into 3/4," and why the teachers reverted to a measurement division con-




text instead of following the instructor’s “opposite of multiplication” example.
Building on our understanding of stages in children’s conceptualization, we
felt it was necessary to examine and advance the teachers’ establishment of an
anticipatory relationship between the results of two consecutive partitions and
the second step (multiply the fractions) of the I&M algorithm.

In class 15 the instructor first posed tasks such as “Could you figure out
how much is 3/4 of 1/5 of the ONE?" to foster teachers’ conceptual reorganiza-
tion of: multiplication of fractions, partitioning parts, and the units of units
conception. The teachers partitioned the ONE into 5 parts and 1/5 into 4 parts
(1720), disembedded 3 such parts, and explained that it was 3/20. Yet, they had
great difficulty when trying to solve the reciprocal task (1/5 of 3/4). Unlike the
first task in which the teachers could regard the single fifth as a unit in itself, in
the reciprocal task they worked with 3 parts (1/4 each), which required co-
ordinating the operation of partitioning parts and the operation of uniting (com-
posing) 3 of the resultant sub-units. Their difficulty in anticipating the results
of partitioning parts was seen in D’s solution. She partitioned each fourth into 5
parts, disembedded one such part from each fourth, and joined them, but in-
stead of co-ordinating these activities to figure out how much this part was of
the whole (3/20) she reverted to the established operation of iterating that part
(6 and 2/3 times), which left her with a perturbing, meaningless number. In
turn, this perturbation led her to reflect on the recursive partitioning acts, which
led to realizing that the resultant sub-unit was 1/20 of the ONE, and that they
had 3 such parts, hence 3/20. This realization brought about an “AHA™ experi-
ence—the ability to grasp why the result of both tasks was the same as the
result obtained via the multiplication algorithm.

Class 15 was the end of the semester, but the teachers indicated a high
interest in additional work on division of fractions. Thus, we added class 16 (5-
1-96) during the final exams week. Our analysis of the teachers’ work in class
15 suggested that they needed to advance their anticipation of the result of
partitioning parts and to use it to solve problems that require the creation of co-
measure units. To this end, the instructor first engaged them in solving tasks
such as figuring out the result of partitioning the ONE into 3 parts, then 1/3 into
4 parts, then 1/12 into 3 parts, etc. The teachers’ work (in pairs) indicated that
they were able to anticipate the result of a potential (next) partitioning act prior
to executing it. For examnple, they knew that if they were to partition 1/36 into 4
parts. cach of the resultant parts would be 1/144 of the ONE because the ONE
can potentially consist of 144 such parts.

Then. the instructor asked them to create 1/5 of the ONIE from a piece
which was 1/4 of the ONE. To do so, they partitioned (in an anticipatory way)
the /4 into S parts, then disembedded and iterated this co-measure unit (1/5 of
1/4} four times to make 1/5 of the ONE. This solution indicated the creation of
1720 as a co-measure unit for 1/4 and 175 of the ONE. Next, they worked on

55 o
557 ‘{ll)




addition problems such as 2/6+1/7. They solved this task by partitioning each
sixth into 7 parts and each seventh into 6 parts to create 1/42 as the co-measure
unit, then adding both to find the result (14/42 + 6/42 = 20/42). In all, the
teachers’ solutions of those tasks indicated to the instructor an anticipatory and
flexible co-ordination of partitioning parts and uniting the resultant sub-units
(distributive scheme). Thus, he asked them to work on their scarves (division)
problem.

Afler a short time, all groups’ solutions indicated how they essentially an-
ticipated the need for creating a co-measure unit (1/20) to figure out how many
times the 2/5-stick goes into the 3/4-stick. They seemed to understand: (a) the
change of the measurement unit from one yard to one scarf (2/5 of a yard), (b)
that this process can be generalized for other fractions, and (c) that the results
are consistent with those obtained via the I1&M algorithm. However, as D’s
concluding response to the instructor’s question “How is this related to invert
and multiply?” indicated, they did not yet understand why: “Well, I don’t know,
it just works with the numbers.”

Discussion

After several weeks of struggling with the perturbation of “Why do we
invert and multiply?”, including the additional class during final exam week.
the teachers appeared to have constructed relational knowledge that: (a) en-
abled their evolving understanding of muitiplicative operations with fractions
and (b) could lead to making sense of the I&M algorithm. The results imply
that teachers need to construct similar conceptual stages found in children’s
learning, using similar tasks, before they can make sense of the accepted math-
ematical algorithms of adding and multiplying fractions. In this sense, adapting
conceptual stages (and tasks) from research with children to advance teachers’
knowledge of the 1&M algorithm substantiated and extended these conceptual
stages, and served as the basis for the instructor’s hypothetical learning trajec-
tory.

The teachers’ learning included several conceptual transformations result-
ing from a long struggle to make sense of the perturbing, “magical” I&M algo-
rithm. Yet, their work was only a step in constructing the conceptual structures
and operations necessary for understanding the algorithm, because creating 15
sub-units was based on dividing three-fourths by §, not on multiplying them as
implied by the algorithm. The teachers’ solutions indicated an anticipation of a
multiplicative pattern in the results of the operation—every time they partition
the parts reciprocally (e.g., each 1/4 into 5 and each 1/5 into 4) they can extract
the numbers obtained by the algorithm. However, it would require more re-
search to articulate how they may make a deeper sense of the I&M algorithm,
e.g., by solving problems in the “opposite of multiplication” context.
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UNDERSTANDING MATHEMATICS CURRICULUM:

TEACHERS MAKING SENSE OF PROBLEM SOLVING,

COMMUNICATION, CONNECTIONS, AND
REASONING

Florence Glanfield
University of Alberta
glanfiel @gpu.srv.ualberta.ca

Across North America, policy-makers believe that students will be able to
achieve higher levels in problem solving (International Assessment of Educa-
tion Progress, 1992; School Achievement Indicators Program, 1993; National
Council of Teachers of Mathematics, 1989) if students have experience with
mathematics curricula that integrates the processes of problem solving, reason-
ing, communication, and connections throughout content. Curricula are being
developed to refiect this belief; however teachers’ understanding of these pro-
cesses will affect their actions in implementing these new curricula. This paper
investigates teachers’ pursuit of meaning of problem solving, communication,
connections, and reasoning.

The data for this paper is taken from a larger study of .cachers making
sense of these mathematical processes and their translation of these processes
into practice. Each teacher from one of the groups in the project was asked to
write what he/she believed the meaning of these mathematical processes were
and then through conversation in a group, develop a taken-as-shared meaning
of these processes.

Teachers brought forth a world of significance about problem solving. rea-
soning, connections, and communication with others in their group. Each indi-
vidual teacher’s structure and definition of these words were being changed as
they participated in negotiating meaning of these processes. From a narrative
perspective, the individual teacher’s story about these four mathematical pro-
cesses was constantly being changed by his/her conversations and interactions.

References

Council of Ministers of Education, Canada. (1993). School achievement indi-
cators program report on mathematics assessment. Toronto, ON: Author.

Educational Testing Service. (1992). The international assessment of educa-
tional progress performance assessment: An international experiment.
Princeton, NJ: Author.

Educational Testing Service. (1992). The international assessment of educa-
tional progress learning mathematics. Princeton, NJ: Author.

National Council of Teachers of Mathematics. (1989). Curriculum and evalu-

ation standards for school mathematics. Reston, VA: Author.




THE INFLUENCE OF ONE TEACHER’S KNOWLEDGE
OF HER STUDENTS’ MATHEMATICAL THINKING
ON HER PRACTICE

David Feikes
Purdue University North Central
feikesd @ purduenc.edu

Teacher’s knowledge of their students’ mathematical thinking significantly
influences teachers' beliefs and practices. This paper draws on a qualitative
case study of one teacher as she attempted to realize a constructivist, reform-
oriented approach to teaching mathematics in her second-grade classroom. The
study suggests that helping teachers develop knowledge of how their students
solve problems and think mathematically, is one of the most salient aspects in
realizing reform efforts. Further this knowledge development was ongoing and
occurred in the course of the teachers’ interactions with students.

Excerpts from the case study will be presented to iHustrate how one teacher,
Mary, developed her knowledge of students’ mathematical thinking in the course
of her practice. Mary learned more about how her students thought mathemati-
cally and with this new knowledge she attempted to help students develop vi-
able solutions to problems. In specific classroom interactions she might sug-
gest that students use manipulatives to solve problems or have children explain
their solution method in an attempt to help them reflect on their own thinking
and resolve conflicts. By listening to these explanations it appeared, from the
researchers perspective, that she had come to believe that what students said
made sense to them, however strange it might seem to her. As consequence she
changed her role from one who directed students to answers, to one who tried
to understand and influence the process they used. Classroom interactions with
students were the key influence for Mary to change her teaching practices. Her
knowledge of her students mathematical thinking and her changes in her teach-
ing were reflexively related.

A report on the CGI project corroborates the assertion that teachers” knowl-
edge of their students’ mathematical thinking is at the heart of teachers’ leam-
ing. Knapp and Peterson (1995) concluded that, "“{Teachers] reported learning
mainly through their interactions with students and other teachers.” Enhancing
teachers practices by providing them with research-based knowledge may be a
viable step, but it does not explain teachers” learning and chunge in practice.
This study suggests that we must look at more than increasing the subject mat-
ter knowledge of teachers or providing them with pedagogical knowledge in
order to realize reform-oriented classrooms. More appropriately, the math-
ematics education community might consider providing teachers with opportu-
nities to learn about their students” mathematical thinking,
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PROCEDURAL AND CONCEPTUAL KNOWLEDGE IN
ONE TEACHER’S EXPLANATIONS

José N. Contreras
University of Southern Mississippi
jcontrer@ocean.usm.edu

Objectives

The objective of this paper is tc examine the explanations that one knowl-
edgeable teacher, Mr. Kantor, constructed when teaching topics related to eighth-
grade algebraic multiplication in terms of procedural and conceptual knowl-
edge (Hiebert & Lefevre, 1986).

Data Collection and Procedures

Through a content analysis of the ten lessons of the textbook dealing with
algebraic multiplication, about 41 mathematical ideas for which the textbook
provides representations or explanations were identified. Since the textbook
provides representations and or explanations, it was reasonable to assume that
Mr. Kantor would construct explanations for some of these mathematical ideas.
Mr. Kantor’s classroom instruction was videotaped to examine the degree of
conceptual and procedural knowledge in his explanations.

Data Analysis and Results

[ attempted to categorize Mr. Kantor's explanations into four categories:
instrumental-procedural, procedural-conceptual, conceptual-procedural, and
conceptual-and-procedural rich explanations. Mr. Kantor only constructed ex-
planations for 18 of the 41 possible mathematical ideas. All explanations
involved some elements of procedural and conceptual knowledge with proce-
dural knowledge emphasized in ten explanations and conceptual knowledge
emphasized in 8 explanations. However. the degree of both conceptual and
procedural knowledge could have been much stronger.

Conclusion

The findings suggest that knowledgeable teachers can use their knowledge
to construct explanations involving both conceptual and procedural knowledge.
However, the relationship between teachers’ knowledge and use of that knowl-
edge during classroom instruction to construct explanations involving strong
elements of both procedural and conceptual knowledge is far from being a lin-
ear relationship.
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EXPERIENCED SECONDARY TEACHERS’
KNOWLEDGE OF DIVISION AND ITS
RELATIONSHIP TO MULTIPLICATION:
TWO CASE STUDIES

José N. Contreras
University of Southern Mississippi
jeontrer@ocean.usm.edu

The main objective of this paper is to examine in detail how two experi-
enced eighth grade mathematics teachers, Mr. Kantor and Mr. Taylor, under-
stand the concept of division and its relationship to multiplication in four con-

I
texts: (a) concept of division, (b) definition of divisionas a + b = —i; b=0,(c)

division by zero, and (d) the rules of signs.

The teachers were asked to create, when appropriate, a story problem, 1
picture. a symbolic representation, and a proof of the main mathematical ideas
related to division and its relationship to multiplication using audiotaped inter-
views and questionnaires. Teachers’ conceptions of division included both par-
titive division and quotitive division. As an example, Mr. Kantor constructed
the problem: “you have five loaves of bread and give half loaf to each family.
How many families can you feed?” Both teachers represented the symbolic

. . 1
definition of division as a = b = ; b # 0. Both teachers constructed correct

: : 1
story problem representations to illustrate why ¢ + b = o b # 0. For example,

3
Mr. Taylor. iltustrated why 21 + 3 = ?_l~; using the word problem [ got

twenty one ounces of some chemical. I need three fourths for each experiment
... how many experiments can [ do”? . . . for one ounce you are gonna carry out
one and a third experiment. So. in other word:.. four thirds experiments are
gomg to come from one ounce. . . . You have twenty-one of those ounces, (s0)

3 times ... 21 gives you the total number of experiments.” Both teachers

stated that division by zero was impossible or undefined. However, Mr. Taylor
wils unsure about the case 0+ 0,

Mr. Kantor and Mr. Taylor knew representations about the concept of divi-
sion and its relationship to multiplication. From a teaching perspective, the
question of the impact of those teachers’ knowledge on their classroom in-
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struction remains open. We address this question in the sequel to this paper
{Contreras, 1997).
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A COMPARISON OF STUDENT BELIEFS: HIGH
SCHOOL PRE-ALGEBRA AND COLLEGE
DEVELOCPMENTAL MATH
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Many studies have shown that programs at colleges and universities which
address the affective factors, as well as the cognitive, in teaching students have
been successful with students who have had difficulty leaming traditional math-
ematics in high school. At the same time, Curriculum and Evaluation Stan-
dards for School Mathematics (National Council of Teachers of Mathematics,
1989), has encouraged mathematics educators at all levels to increase their
awareness of affective factors in the leamning process and not focus solely on
cognitive factors.

This study investigated the beliefs of two groups: remedial math students
at a rural high school, and developmental math students at a state university.
Results of a Chi-Square analysis of free response questions regarding self-be-
liefs and beliefs about mathematics indicated that both groups (high school and
college) had relatively the same beliefs about their mathematical ability. Con-
sequently, vertical alignment of the affective curriculum could be explored. It
could be suggested that affective techniques used by colleges which are suc-
cessful in remediating students could be used by teachers in high school to
address students’ affective needs. If high school teachers could use techniques
to meet the affective needs of their students as well as maintain cognitive stan-
dards, then students could achieve success in mathematics earlier in their school-
ing. thus lessening the need for remediation in college.
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SHAPE MAKERS: A COMPUTER MICROWORLD FOR
PROMOTING DYNAMIC IMAGERY IN SUPPORT OF
GEOMETRIC REASONING

Michael T. Battista Caroline Van Auken Borrow
Kent State University Kent State University
mbattist@kentvm.kent.edu

This paper describes research on the development of students’ pre-proof geometric
thinking in a specially-designed computer microworld. It focuses on students’ transi-
tions from visual to property-based thinking, and from property-based thought to thinking
that utilizes inference to relate and organize both properties and classes of shapes. It
analyzes episodes of pairs of students who were working at computers during class-
room instruction conducted by the students’ regular classroom teacher. The theoretical
framework integrates two perspectives—that of the van Hicle hierarchy, and that of
mental models—all within a constructivist paradigm. First, we briefly describe the
microworld; second, we summarize our theoretical framework; and. finally. we give
several examples of our preliminary analysis of data.!

The Shape Makers Computer Microworld

The Shape Makers computer microworld (Battista, in press) was designed
to promote in students the development of dynamic mental models that they
can use for reasoning about geometric shapes. In the microworld. each class of
common quadrilaterals and triangles has a “Shape Maker,” a Geometer's
Sketchpad construction that can be dynamically transformed in various ways,
but only to produce different shapes in the class. For instance, the Rectangle
Maker can be used to make any desired rectangle that fits on the computer
screen, no matter what its shape, size, or orientation——but only rectangles. It is
manipulated by using the mouse to drag its handles—small circles that appear
at its vertices—to make it taller, wider, or change its orientation and size.
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The van Hiele Levels of Geometric Thinking

According to van Hiele, students progress through several qualitatively dif-
ferent levels of geometric thinking (Clements & Battista, 1992). Geometric
thought begins at the Gestalt-like visual level in which students identify and
operate on shapes and other geometric configurations according to their ap-
pearance. It progresses to the level of description and analysis in which stu-
dents recognize and can characterize shapes by their mathematical properties.
At the next level, students’ geometric thinking becomes abstract and relational
as they see that one property can signal other properties, define classes of
shapes, distinguish between necessary and sufficient conditions for classes of
shapes, understand and provide “locally” logical arguments for assertions, and
hierarchically classify shapes. At the fourth level, students can comprehend
and create formal geometric proofs, and at the fifth, students can compare axi-
omatic systems.

Geometric Reasoning and Mental Models

Research suggests that the reasoning exhibited by students during the first
three van Hiele levels can be accomplished with mental models (Battista, 1994).
A mental model is an analog mental version of a situation whose structure is
isomorphic to the perceived structure of the situation that it represents (Johnson-
Laird, 1983). Individuals reason about a situation by activating mental models
that enable them to simulate interactions within the situation so that they can
explore possible scenarios and solutions to problems. When using a mental
model to reason about a situation, a person can mentally move around, move on
or into, combine, and transform otjects, as well as perform other operations
like those that can be performed on objects in the physical world. “The behav-
ior of objects in the model is similar to the behavior of objects that they repre-
sent, and inferences are based on observing the effects of the operations”
(Greeno, 1991, p. 178). Furthermore, individuals use of mental models is con-
strained by their kirowledge and beliefs. That is, much of what happens when
we form and manipulate a mental model reflects our underlying knowledge
and beliefs about what would happen'if we were dealing with the objects they
represent.

Mental Models and Understanding

According to the mental model view of the mind, individuals understand or
make sense of a situation or a set of connected verbal propositions describing a
situation when they can construct or activate a previously constructed mental
model to represent the situation (Johnson-Laird, 1983). As mental models are
constructed through a recursive process of successive abstraction, the results
obtained with them have different degrees of representational power. At first,
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the models may be employed only in the presence of the physical phenomena
they represent. Later, they can be activated in the absence of these phenomena.
And still later, they can be used to simulate never-performed actions on phe-
nomena. The power of mental model-based reasoning increases as the level of
abstraction and degree of generality of the models increase.

Sample Analyses

We will now present several examples that illustrate the type of data and
focus of analysis of our research. All examples are from fifth-grade classrooms
with 10- and 1 1-year-old students.

Episode 1
In his initial manipulations of several Shape Makers, MI commented:
MI: fOn the Kite Maker] If I pull one end out, the other end goes out.
[After trying to make a non-square rectangle with the Square Maker

and concluding that it couldn’t be done] The Square [Maker] would
only get bigger and twist around—so it can’t make a rectangle.

MlIdiscovered constraints for the Shape Makers, but these constraints were not
typical mathematical properties—that is, they were not explicit relationships
between parts of shapes.

Episode 2
Three students were investigating the Squarel Maker.
MT:  Ithink maybe you could have made a rectangle.
ID: No; because when you change one side, they all change.

ER:  All the sides are equal.

MT, JD, and ER have abstracted different things from their Shape Maker ma-
nipulations. MT noticed the visual similarity between squares and rectangles,
causing him to conjecture that the Square Maker could make a rectangle. JD
abstracted an action-based property—when one side changes length, all sides
change. ER conceptualized a traditional mathematical property. In essence.
JD and ER referred to the same constraint on the Square Maker. But ER de-
scribed this constraint abstractly in terms of a relationship between measure-
ments of the Shape Maker's sides.

Episode 3. Three students were considering
whether the Paraliclogram Maker could be used
to make the trapezoidal target figure at the right.
Their knowledge of the Parallelogram Maker was

Target Figure
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insufficient to predict that this was impossible. However, as they manipu-
lated the Parallelogram Maker, one of the students discovered something
about it that enabled her to solve the problem.

[Pointing to the non-horizontal sides
in the Parallelogram Maker] No, it

won’t work. See this one and this
one stay the same, you know, '
together. If you push this one [side]

out, this one [the opposite side] goes
out... This side moves along with this Parallelogram Maker

side.

As ST manipulated the Parallelogram Maker in her attempts to make the
target figure, she detected a pattern or regularity in its movement. After she
abstracted and incorporated this movement pattern into her mental model for
the Parallelogram Maker, she was able to infer that the target figure was impos-
sible to make. By using the well-developed mental operations she had avail-
able for reasoning about physical objects and images, ST made a discovery that
can, with further elaboration, form the basis for making sense of the formal

mathematical property “in a parallelogram, opposites sides are parallel and
congruent.”

Episode 4: Analysis Leads to Properties

NL is using the quadrilateral Shape
Makers to make the design at the right.
One of the researchers is observing and
asking questions as ML tries to make
shape C with the Rhombus Maker.

NL: I don’t think that this is
going to work...When 1
try to fit it on the shape,
and I try to make it big-
ger or smaller, the whole
thing moves. It will never get exactly the right size...

When you tried to fit the Rhombus Maker on C, did you notice
anything about shape C or the Rhombus Maker?

The Rhombus Maker could make the same shape pretty much, but
if you tried to make it small enough to fit on C, it would make the
whole thing smaller, or it would move the shape down. And when
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you tried to move it up to make it smaller, it would make the whole
shape move up.

Res:  You said the Rhombus Maker could make the same shape, what do
you mean by that?

NL: It could make this shape, the one with 2 diagonal [oblique] sides
and 2 straight [horizontal] sides that are parallel. 1t could have
been almost that shape [C] and it got so close I thought it was that
shape. See it could make the same shape as that [shape C]. [NL
manipulates the Rhombus Maker, making different angles, trying
to get it to make an elongated parallelogram.]

Oh, I see why it didn't work, because the 4 sides are eveii and this
[shape C] is more of a rectangle.

Res:  How did you discover that?

NL:  All you can do is just move it from side to side and up. But you
can’t get it to make a rectangle. When you move it this way it is a
square and you can’t move it up to make a rectangle. And when
you move this {other handle] it just gets a bigger square.

Res:  So what made you notice that?

NL.: Well I was just thinking about it {the Rhombus Maker]. If it was
the same shape then there is no reason it couldn’t fit onto C. But I
saw when [ was playing with it to see how you could move it, that
whenever I made it bigger cr smaller. it was always like a square,
but sometimes it would be leaning up, but the sides are always
equal.

This episode clearly shows how a student’s manipulation of a Shape Maker
and resultant reflection on that manipulation can enable the student to move
from thinking holistically to thinking about interrelationships between a shape’s
parts, that is, about its mathematical properties. Indeed, NL began the episode
thinking about the Rhombus Maker and shapes holistically, saying that she was
trying to make the Rhombus Maker “bigger or smaller,” but “the whole thing
moves.”

The fact that NL could not make the non-equilateral parallelogram with the
Rhombus Maker caused her to reevaluate her conception of the Rhombus Maker
and reformulate it in terms of a mental model that explicitly incorporated her
newly discovered mathematical property. Originally, because her model was
not constrained by the property “all sides cqual,” her mental simulations of
changing the shape of the Rhombus Maker included transforming it into non-
equilateral parallelograms. Her subsequent attempts to manipulate the actual
Rhombus Maker into a non-equilateral parallelogram tested her model, show-
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ing her that it was not viable. As she continued to analyze why the Rhombus
Maker would not make the parallelogram—why it would not elongate—her
attention shifted to the possibilities for changing its side lengths. This new
focus of attention enabled her to abstract the regularity that all sides are equal.

Episode 5: Shape Makers As Representations of Classes of Shapes.

One of our major hypotheses is that a Shape Maker can become for stu-
dents a “concrete” embodiment for the class of shapes given by its name. The
Rectangle Maker, for example, can represent the class of all rectangles because
the properties embodied by it are exactly those properties that all rectangles
have. As the example below illustrates, this Shape Maker to shape-class corre-
spondence enabled students to interrelate classes hierarchically, a characteris-
tic of van Hiele level 3.

BE: A square is a rectangle, but a rectangle is not a square.

MA: Tagree. The Rectangle Maker can make a square, but the Square
Maker cannot make all rectangles.

SO: Every shape made by the Square Maker can be made by the Rect-
angle Maker because a square is a rectangle.

MA's statement shows how he was using his knowledge of the Shape Mak-
ers to justify BE's claim that squares are rectangles. Because MA and SO took
the Shape Makers as representations of classes of shapes, they could reflect on
their mental models of the Shape Makers and draw conclusions about proper-
ties of, and interrelationships between, classes of shapes.

Episode 6: Implication

Another example of level 3 thinking is demonstrated by the following in-
stances in which students infer one property of a shape from another. The
students are explaining why the Right Triangle Maker can’t make a triangle
with all sides equal.

NL:  The line across from the right angle, it has to be longer because if

it was shorter, then the two lines that form the right angle, it wouldn’t
be a right angle, it would be less than 90°.

TM:  The diagonal line [hypotenuse] is longer, because if the two lines
are there and they are both straight, it will take longer for the di-
agonal to get to each point—to connect to each point.

In these episodes, NL and TM reasoned by activating their mental models
of various triangle Shape Makers. They made correct inferences not by logi-
cally deducing theorems from axioms. but by generating possibilities through
simulations with these models. In fact, the mental model theory of inference
assumes that individuals construct or activate a set of models, or a single dy-
namic transformable model, to represent premises and generate as well as re-
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flect on possible implications (Johnson-Laird, 1983). The theory also postu-
lates that individuals’ inferencing passes through several levels of sophistica-
tion (Markovits, 1993). At first, individuals pay little attention to the exhaus-
tiveness of their model-based s~rch for possibilities relevant to the implica-
tion. Their mental models incoiporate possibilities that have been directly ex-
perienced and can thus be accessed by reference to episodic memory (i.e.
memory of personally experienced events). For instance, in their predictions,
NL and TM were reflecting on mental models they had abstracted from their
previous actions with the Shape Makers. However, the conclusions reached
with such models are only locally necessary, in the sense that they may change
if access to specific elements in episodic memory is altered.

At the next higher level of sophistication, individuals develop the ability to
construct and use mental models that represent classes of events and relations
derived from semantic memory (i.e. knowledge that is outside the realm of
personal experience). As their standards of rigor increase further, individuals
deem a conclusion valid only if their search for possible outcomes is system-
atic and exhaustive. They come to realize that, in some situations, possibilities
may exist despite their personal inability to specify the exact nature of these
possibilities. Finally, as they become acculturated into the ways of formal sci-
ence, mathematics, or logic. individuals learn and attempt to make their rea-
soning conform to systematic principles governing validity. That is, they at-
tempt to utilize formal deduction, logic, and axiomatic thinking.

Conclusion

As students manipulate and reflect on their manipulations of a Shape Maker,
they abstract certain actions that they are able to perform with it. They inte-
grate these abstractions into a mental model of the Shape Maker that consti-
tutes the students’ construction of meaning for the Shape Maker. This mental
model includes representations of the Shape Maker’s visual characteristics and
movement possibilities, which, because of the way the Shape Maker has been
constructed, reflect the geometric properties of the class of shapes made by the
Shape Maker. At first, these properties are incorporated into a mental model
implicitly as the properties become ermbodied in the model’s simulated behav-
ior. Later, the properties become explicit as they are individually disembedded
and abstracted from the simulated behavior, and as students develop. through
social interaction, the terms and concepts used to describe them in traditional
mathematical language. What results from the increasingly sophisticated men-
tal models of Shape Makers is not only knowledge of geometric properties of
shapes, but the ability to reason about shapes and classes of shapes in increas-
ingly sophisticated ways.




References

Battista, M. T. (in press). SHAPE MAKERS: Developing Geometric Reason-
ing with The Geometer's Sketchpad. Berkeley, CA: Key Curriculum Press.

Battista, M. T. (1994). On Greeno’s environmental/model view of conceptual
domains: A spatial/geometric perspective. Journal for Research in Math-
ematics Education, 25, 86-94.

Clements, D. H. & Battista, M. T. (1992). Geometry and spatial reasoning. In
D. Grouws (Ed.), Handbook of Research on Mathematics Teaching and
Learning (pp. 420-464). New York: NCTM/Macmillan.

Greeno, 1. G. (1991). Number sense as situated knowing in a conceptual do-
main. Journal for Research in Mathematics Education, 22, 170-218.

Johinson-Laird, P. N. (1983). Mental models: Towards a cognitive science of
language, inference, and conscicusness. Cambridge, MA: Harvard Uni-
versity Press.

Markovits, H. (1993). The dcvelopment of conditional reasoning: A Piagetian
reformulation of mental models theory. Merrill-Palmer Quarterly, 39(1),
131-158.

Notes
Explicity knowledge may or may not be incorporated into one’s mental

models.
How is explicity knowledge incorporated into our mental models?

Conceptualizations include our explicity knowledge. Mental models some-
how exist at deeper level and can be used in our conceptualizations.

Sometimes knowledge that we have can’t be integrated into a proper men-
tal model—3d for example.




o, & -

INTERACTIVE DIAGRAMS: A NEW LEARNING TOOL

Jere Confrey, University of Texas at Austin
Jose Castro Filho, University of Texas at Austin
Alan Maloney, Quest Multimedia Math and Science

This research interviews four students working with an interactive diagram which re-
lates the coefficients of the general form of the quadratic functions to a graph. The
students’ investigation of b and ¢ is discussed.

Each time a new medium becomcs available, new representational forms
evolve. As we have worked for the past year on Mult‘media Precalculus (Confrey
and Maloney, in progress) we have made considerable use of a new kind of tool
for communicating mathematical ideas, called the “interactive diagram” (an
ID). An interactive diagram is a computer-based representation that permits a
user to undertake investigations of a display on the screen by varying certain
selected parameters. Unlike a static figure and picture, it’s interactivity allows
the user to try out variations and observe consequences. Unlike a tool like FP2
(Confrey, 1996). where the students’ choices of actions are quite flexible and
varied, in the ID, the possible actions are constrained to modifying a few pa-
rameters. Because of this constraint, we refer to an ID as a *closed tool”.

Through our design process we have come to identify and design for three
overlapping types of interactive diagrams: simulations, representations, and il-
lustrations. In this paper we focus on representations that look more like tradi-
tional mathematical expressions but which permit rapid actions on them and
machine responses. The one that we will discuss in this paper included a graph
of a parabola and its equation in general form with adjustable coefficients. We
choose to report on research on “‘representations”, because although relatively
traditional looking. they yield surprising inventions and insights,

The Study

Four college students from Comell University were interviewed for two
hours over two days. The small sample consisted of two women and two men.
The group included an Asian and an African-American woman, and a Puerto
Rican and White male. All students were completing a precalculus course taught
with computer-based labs and a focus on (a) contextual problems, (b) multi-
representational software, and (¢) transformations generally of the form v = A
*f{ B(x-C)) + D. Three IDS were discussed, but only one is presented herein.

Methods
The students volunteered for the study over exam period and were paid for

their participation. Students were asked to use the ID and were told that the
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diagrams were proto-types in the larger multimedia project and would benefit
from their feedback. In each case they were given a mathematical task to do or
explain something, so discussion of the IDs could accompany the process of
solution. The research questions the team sought to answer were three: (1) how
did the student approach the task? (2) how did the ID seem to influence the
approach? and (3) how could the ID have assisted the student in his/her ap-
proach? The interviewer’s primary role was to follow the approach of the stu-
dent. The diagram of interest was of a graph of the function: y = ax®+bx+c.
The equation was written so that there were three boxes for @, b and ¢ that
could be varied. The initial conditions were a=/, b=0, ¢=0 and the ranges
were -4<a<4 , -8<b<8, and -8<c<8. The fixed range on the graph displayed
from -8 to 8 with units of 2. There was a reset button. In the quadratic there was
also a trace feature called “erase” which wlien not selected, left an image of
each of the previous parabolas that were graphed until reset was clicked. In
each case, the student was asked to vary the coefficients using the box or slider
and to predict and describe how the graph would change.

Results on the General Form of the Parabola Coefficients

The majority of the interview was spent working with varying the coeffi-
cients in the general form of the quadratic y = ax’+bx+c . Because the students
were far more accustomed to the form y = A(x-hf+K, (we will call this a trans-
formational form) none of the students found the task easy: nor did any fully
investigate all the interactions among a, b. c. All students eventually defined
their task as relating these two forms.

Typically, a quick answer to this task by instructors is that a controls the
shape of the curve, c predicts the y intercept and b is difficult to describe. How-
ever, from previous research by Borba (1995), we knew that by systematically
varying b, a family of parabolas were produced whose vertices, if connected,
create a parabola. Furthermore, from another study by Borba (1997) with graph-
ing calculators, we knew if b and ¢ were not equal to zero, then a would not
only effect curve shape but the location of the vertex. This previous work alerted
us to the fact that understanding changes in the coefficients was not a trivial
task.

In our results, we will describe two approaches to discussing the changes
in the coefficients and the location of the vertex. We will then offer a more
elaborated analysis of the task and discuss the issues of how the ID was used
and how it could have been used. This approach Lo analysis is within a heuristic
proposed by Confrey (1994) called voice and perspective dialectic where one
first attempts to authentically present the approach of the student as it evolves
in the interview, *voice”. And then one steps back and explicitly allows the
experience of *voice” to lead one to explicit and deep reexamination of the
content, “the perspective” part of the dialectic. It is a dialectic, because the
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interactions occur repeatedly and because the cycle of analysis is repeated
multiple times.

As a result of our analysis, we have come to conjecture that in these few
interviews, we saw evidence of three systematic ways to work in this closed
tool environment: (1) conjecture and confirm/disconfirm (with a limited num-
ber of cases) (2) coordination of forms through algebraic bridging, and (3) dy-
namic visualization.

Student Voice I: Paula (Asian, female)

Paula’s initial approach to the task was to explore a, b and ¢ dynamically,
changing the coefficients using the sliders and looking at what happened with
the graph. She quickly was able to relate a to the stretch factor and ¢ to both
the y intercept and the vertex. She begins to change b, and describe this move-
ment in terms of slope. The interviewer was surprised by her use of slope and
unsure whether her references would prove understandable.

When asked about what she meant by slope she said that she meant the
change of v overthe change of x [as a description of the change in the location
of the vertex]. She showed surprise when she changed b to 4, because the
vertex was at (-2,-4 ) and not at (-/,-4) as she expected. She then conjectured
that the slope will be (b/2)°. She was able to predict the behavior of the graph
for some b values, including negative ones, but she kept saying that she was
confused as to why the graph moves to the third quadrant when & is positive
and to the fourth quadrant when & is negative. She suggested that it is because
of the value of the slope. She said that if b is positive, the slope should be in
one direction, and if it is negative it should have opposite directions, and sig-
naled the directions with her hands. She kept repeating that she was not used to
the general formula, and that she would prefer to work with the transforma-
tional one. Earlier she suggested that she could work from the general form to
the transformational form, but only pursued it at the suggestion of the inter-
viewer. From completing the square algebraically, she concluded at the end
that the vertex is ( -(b/2), -(b/2) ). She was very excited about it. She then
predicted the vertex for a=2, b=-6 and ¢=3. Her prediction differed from ID
having forgotten to consider the impact of a on the vertex. She works algebra-
ically again to correct her prediction. Near the end of the investigation, the
interviewer had her reexamine her initial conjecture about slope. She had shown
that when you change from general to transformational form, then ( A, k)=( -(b/
2a, -(b/2a)" )'. Treating this as a slope, give you a slope of the line connecting
(0, 0)to (h. k) as (b/2a). In the case that a=], then it is in fact a slope of b2 as
she predicted.

!"Her note show that she found the k= -(b/2 /4. but he makes a mistake and puts the a
inside the parenthesis.
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At the end of the interview she mentioned that she was not sure how much
the ID helped her to understand the quadratic, but when the interviewer showed
how you can change the graph dynamically, she seemed excited and said that
the graph was going down like an inverted parabola form. When prompted to
look te her vertex formula, she said it makes sense because there is a square and
a negative sign which makes the parabola inverted. She ended her interview by
mentioning that working on this was terrific.

Student Voice 2: Carl (Puerto Rican, male):

Carl also began by looking to the graphs dynamically. He soon changed to
inputting the values to obtain just the graphs he wanted. He said that changing
the a changes the width and making it negative causes a reflection. Next he
tested b, but seemed surprised by what b did. He too said he was used to the
transformational formula y=A(x-h)? + k, where A gives you the stretch, 2 and
k the coordinates of the vertex. Then he picked up the transformational form
and expanded it. Because he wrote the transformational form as y=-A (x-h)* +
k, he produced the equation, by hand, y= -Ax? + 2Axh - Ah? + k . Because he
could not immediately see how this helped to answer the question of what q, b
and ¢ do, he worked two examples: y=2 (x+3f + 2 and y=2 (x+/)’ + 2 and
changed them into general form. He explored the graph trying to find relations
between a, b and the vertex. He showed confusion on the explorations and
affirmed that he could predict everything for the transformational formula, but
that he was not used to the general formula for graphing, but only for algebra
problems. He tummed to explore ¢ saying it teils you where the vertex is going to
be in the y axis {He seems to be thinking only of quadratics where 5=0 but
doesn’t specify this.]. He conjectured that b will give you where the vertex is
going to be on the x axis. He comes back to the formula trying to establish a
relation between b and c. He says he thinks a is the same as A because it does
not change, just get distributed

He turned his attention to the relationship between ¢ and k. By examining
his two examples, he saw that k#c. He looked at the process of squaring the
{x+2) and the (x+1) terms and saw that they produced a constant term that was
subsequently added to k. He conjectured therefore that the problem relates to
b. he said that k is doing something with b to get the vertex. This led him to
think, perhaps the relationship was that k= b/c so he inputted b= 6 and ¢ = 3
to test his conjecture (¢=1). To his surprise, the vertex of the parabola moved to
(-1, 5). He looked again and proposed an alternative conjecture, that if you add
the coefficients of the vertex (# and & in more formal terms) then you get ¢. The
idea that ¢ is the sum of the coefficients in the vertex surprised the interviewer,




who initially found the idea of adding an ordered pair a very unlikely conjec-
ture. Because of the negative sign, he adjusted his conjecture to take the abso-
lute value of hand add it to k. He tested the equation y= x" + x + 4 . The vertex,
he said was approximately (-.5, 3.5). although he was not certain of its accu-
racy. By this time, the interviewer has reexamined the term (-Ah* + k) in the
expansion of transformational form, realized that since -A=/. then this simpli-
fies to #° + k and that if he squares rather than takes the absolute value, his
conjecture will work. What surprised her is that thinking of this algebraic value
of ¢ operationally as an additive action on the ordered pair of the vertex never
occurred to her. She suggested that he reexamine his earlier formula for the
transformational expansion , y= -Ax’ + 2Axh - Ah* + k., and he now could
interpret it. He concluded that ¢=-Ah® + k. and then he sees that if he rewrites it
using A and not -A, he has v= Ax? - 2Axh + AR® + k, where a= A, b= -2Ah and
¢= Ah* + k. He computes the vertex for a=2, b= 6 and ¢=3, but makes a com-
putational error. which he corrects after he checked his computation with the
graph produced on the ID.

Perspective

Our understanding evolved by watching and analyzing the tasks. Both
students found it necessary to link the general form and the transformational
form algebraically in order to explain the impact of a, b, and ¢. Paula went
from general form to transformational form and Carl did the opposite. Either
of these algebraic manipulations produces all the information needed to link
the coefficients a, » and ¢ to the ordered pair for the vertex (A, k& ) and the
stretch factor A. Because of this, predicting the vertex from the coefficients in
general form is ““a solved problem”, at this point.

However, we suggest in a dynamic environment, this is only the beginning
of the solution to the question, “how does chunging the cocfficient have an
impuct on the parabola?” Qur further question is “what can be gleaned from
these algebraic equations in a dynamic environment?" To explore the diagram
more fully, one can consider not only how to predict the vertex and shape of the
parabola, but also what sequence of curves are produced when sequences of
values are substituted for a, b or ¢. We refer to this as “dynamic visualization™
which means parameterizing the coefficients and examining the resulting fami-
lies of curves. Because of the special qualities of zero, this investigation is
often aided by setting one of the other two coefficients to zero to reduce the
interactions among the variables.

Neither student undertook full dynamic visualization, because both treated
therr algebraie statements as formula and not functions. Their tendeney was to
just input convenient or “uice” vilues for b, but not to input a sequence of
values or to use the merement capability of the slider to produce the family
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visually after doing the algebra. They also did not see it because few if any
curricula teach students to consider how to envision implicit formula in terms
of the characteristics of functions which relate different variables (direct, indi-
rect, squaring, etc.).

A second issue besides parameterizing is a question of the order of the
replacement of the coefficients. In a static medium all three changes are input
and present simultaneously. However, in Paula’s case, since she felt that she
understood c as a vertical translation of ¢ on y= ax? + bx, she only needed to
learn to predict the vertex in that simpler case (¢=0). We referred to this as
order of replacement of the coefficients.

Furthermore, we are suggesting that the way the diagram is used varies
across students. Some use it as simple conjecture and confirm/disconfirm tool.
Others can become deeply involved in coordinating graphical and algebraic
forms through a careful examination of the algebraic equivalencies as bridged
formulaically. Finally, we propose a newer form of “dynamic visualization” by
which the user parameterizes the coefficients in order to consider what family
of functions evolves. When multiple coefficients are involved, there is a further
issue of or ordering one’s replacement of coefficients.

There are design modifications which must be undertaken to increase
the potential of the diagram. These include simple revisions such as adding a

register of the vertex and a point one unit left and right of it. It includes more
" difficult design challenges such as building a “scriptable slider” that allows the
user to create the parametric sequence to fit the particular situation. And, it
includes a question of how to let the user create and specify a generalizable
method that includes the order of replacement.
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This study examined the ways in which college students with substantial mathematics
backgrounds and access to calculators with computer algebra systems (T1-92s) gener-
ate and verify conjectures in their non-routine problem solving. Eight college students
who had completed at least 15 credits of college mathematics were observed as they
solved non-routine problems in the context of a series of content-based interviews.
Students displayed representational styles in the ways they generated conjectures and
in the ways they verified them. Most students were likely to seck a verification for a
conjecture in the same representation that prompted the conjecture. In addition. stu-
dents” refationship to the technology and the extent to which they were prone to errors
influenced the ways in which they made and tested conjectures.

Background

Conjectures, for the purposc of this study, are mathematical generaliza-
tions “that may be true or false: at the time of consideration, the conjecturer
does not know for sure whether it (the conjecture) is true or false, but thinks
that it 1s true” (Chazan & Houde, 1989, p. 3). Generating and testing conjec-
tures are processes that are essential in doing mathematics (Schoenfeld, 1994).
Multirepresentational hand-held technology presents promising opportunities
for students to generate data and produce mathematical conjectures about rela-
tionships in that data. Research on technological approaches to the teaching
and learning of mathematics (Chazan, 1993; Yerushalmy, 1993: Yerushalmy ct
al., 1993) have begun to reveal potential barriers to engaging students in such
authentic mathematical activity, yet most of this rescarch has been conducted
with high school students who have little exposure to mathematics. This study
will examine the ways in which college students who have substantial math-
cimatics backgrounds and access to multirepresentational technology gencrate
mathematical conjectures and test them.

588 SN




Sample and Instructional Setting

Subjects for the study were drawn from the 17 prospective secondary math-
ematics teachers who enrolled in the only section of a mathematics education
course focusing on technology and the learning and teaching of mathematics
(TLTM) (all volunteered to participate in the study). TLTM had a prerequisite
of 10 credits in post-calculus college mathematics. Eight students were selected
for this study, on the basis of their performance on a non-routine problem-
solving task, to represent a range of tendencies to explore and investigate math-
ematics.

The TLTM course met for 15 three-hour weekly sessions during the
semester. Each student was provided with a TI-92 calculator' for use both in
and out of class. One primary aim of the course was to provide the students the
opportunity to deepen their understandings of concepts of school mathematics
in a technological environment. Students explored mathematics through open-
ended assignments in which they were expected to justify their claims and to
reflect on their thinking. One of the authors of this paper was the course in-
structor, and a second had served as course instructor during the pilot semester.
These mathematics education faculty, along with five mathematics education
and science education doctoral students and one mathematics professor consti-
tuted the research team®.

Data Sources, Collection, and Analysis

The major source of data for the study reported here is a series of four task-
based interviews conducted by members of the research team with the targetcd
students. The task-based interview schedules, each of which included two non-
routine problems®, were constructed by the research team. The interview tasks
required mathematical explorations and were designed to be amenable to solu-
tion through use of the TI-92. Tasks required exploring families of functions,
exploring geometrical relationships, and creating and exploring mathematical
models. The project team piloted all interview tasks and data collection tech-
lAmong the utilities on the Texas Instruments TI-92 calculator are a computer algebra
system and a dynamic geometry tool. This material is based on work supported by the
National Science Foundation under Grant No. GER 94-54048. by an cquipment loan
from Texas Instruments, and by Department of Curriculum and Instruction of The Penn-
sylvania State University. Any opinions. findings, and conclusions or recommenda-
tions expressed in this material arc those of the authors and do not necessarily reflect
the views of the sponsors.

In addition to the authors, Robert Kuech, James Laughner, and Ron Wenger served
on the research team.

3The problein statements appear in a previous PME Proceedings. (Blume, Heid, Iseri,
Kuech, Laughner, Marshall, Wenger, 1996).




niques with the TLTM class offered in the previous semester. The interviews
were audiotaped and videotaped, and verbatim transcripts were produced,
proofed, and annotated with calculator screen dumps and descriptions of ac-
tions. The project staff read through the transcript of each interview task for
each subject while viewing the videotape. Preliminary passes identified indi-
vidual student conjectures and characterized students’ generation and verifica-
tion* of conjectures. Subsequent comparative passes allowed the emergence of
themes relating students’ conjecturesto use of representations and technology
(Glaser & Strauss, 1967).

Results

Subjects displayed the ability to form conjectures based on a wide array of
sources (numerical, graphical, symbolic); however, dominant representational
styles characterized the conjecturing and verifying of each subject. Sample rep-
resentational styles are discussed in the following section. In addition to repre-
sentational style, students’ strategies for using technology and their tendencies
to make errors seemed to influence the ways they made and tested conjectures.

Representational Style

Amanda frequently shared her view that she needed to scarch for a sym-
bolic representation, claiming that it was the best representation. Arriving at
the symbolic representation, however, did not seem to convince Amanda, and
she did not seem to reason from the symbolic representations she generated.
Instead, pictures and graphs provided Amanda the most powerful representa-
tion with which to reason. She used the graphing capabilities of the calculator
to help her make conjectures and to guide her in reasoning symbolically about
them. Frederick's preferred representation was symbolic. He generally started
w "> the symbolic, made conjectures based on the symbolic, and often returned
to the symbolic to verify his conjectures. Nevertheless, Frederick did not con-
fine his verifications solely to the symbolic. Frederick verified conjectures us-
ing a variety of representations and drawing on his well-connected mathemati-
cal knowledge. Hillary's forte was numerical data. Numerical data allowed
Hillary to form conjectures across most of the interview tasks. For example,
she generated two rules from a patterned counting strategy, one symbolic and
the other iterative, and she verified both of these rules numerically. Hillary's
strategy generally consisted of taking small ~steps in her conjectures and verify-
ing cach of these steps. The deliberauon with which she undertook each step
may have been areflection of her hesitation to make large conjectures without

Heor the purposes ol this study, 1he rescarchers mterpreted “venfications™ to mean
processes students used to satisty themselves concerning the vahidity of their conjec-
tures, rather than formal mathematical justifications.




being confident of their tiuth or feasibility. Agnes’ conjectures generally arose
out of a search for patterns in data. She reasoned fairly well about the patterns
she observed, connecting her conjectures to mathematical concepts like rate of
change. Although usually thic data was numeric and displayed in a table, her
search for patterns in data extended to graphic, numeric, and pictorial data.

In a surprisingly large number of cases, students verified a conjecture us-
ing the same representation they used to generate it. Agnes’ conjectures tended
to be based more upon patterns, no matter what the representation, and her
verification of these conjectures was usually based in the same representation
in which the pattern was first observed. Hillary’s conjectures, almost always
arising from the numeric were also almost always verified by the numeric.
Debbie’s conjectures were most often numerically or graphically based and
usually, but not always, verified within the same representation from which
they arose.

Role of Technology

The TI-92 technology with its CAS and dynamic geometry capabilities
played an important role in the ways in which students generated and attempted
to verify conjectures. Perhaps because of its extensive and flexible capabilities,
the technology provided Frederick with an arena in which to use his extensive
repertoire of mathematical connections to verify his conjectures. Perhaps be-
cause of the calculator’s ability to generate quickly a large number of examples,
Debbie, Hillary and Agnes used it in their conjecturing to gener 'te examples
about which they reasoned as well as to facilitate their verification processes.
Debbie and Agnes appeared to be more likely to use the calculator to verify a
conjecture if they had utilized it generating the examples upon which the con-
jecture was based. Perhaps because of the speed with which the calculator pro-
duced results, Tim used the calculator handily in his routine of generating an
example, making a conjecture, and testing to see if his conjecture was true, and
then moving on to the next example and the next conjecture. The calculator was
not always a help, however, and students were sometimes hindered in their
conjecturing activities because of their knowledge or interpretation of calcula-
tor results or capacities. Throughout the interviews, for example, Jay displayed
a penchant for working with the calculator, but his unfamiliarity with the mean-
ing of calculator results disrupted his conjecturing on some occasions. Simi-
larly, Emily’s acceptance of calculator measurements without attention to the
consequences of roundoff as well as her limited view of a graph resulting from
overly restricted window settings led her misguidedly to reject one of her con-
jectures.

Knowledge of the mceaning of calculator results affected some students’
work with conjectures. During his work on the Polygons Task, Jay conjectured
that in order for the perimeter of an inscribed polygon to be greater than 90% of
the circumference of the circle the polygon would have to have more than




three sides. To check his conjecture, Jay constructed an inscribed pentagon,
measured its perimeter, and noted that the perimeter was larger than 90% of the
circumference of the circle in which it was inscribed. He outlined the rest of his
verification as having to check the case of four sides, and three if four was still
larger. When he checked the case of the inscribed square, the perimeter of the
square displayed on the calculator screen had the same value as 90% of the
displayed circle circumference (both were 9.95 cm). The machine values were
rounded, however, and the square’s actual perimeter exceeds 90% of the cir-
cumference. Jay did not interpret the values he saw as approximate, and he
chose the regular pentagon as the first case that exceeded 90% of the circle’s
circumference. This error could have been resolved by displaying more preci-
sion in the measurements or by testing 4> 1.8% or a number of other ways
including graphing. Jay seemed very confident in the accuracy of the results
the calculator provided and did not seem to have the slightest question about
his answer.

Frederick used technology in his conjecturing process in a variety of ways.
In considering a family of functions task, Frederick had focused on determin-

[ 1
ing the as totes of the family, f(x)= | —F———
g symptotes of the family, f{x) ax® + bx +c

He conjectured that the graph of £ would have asymptotes when the de-
nominator was zero, and he proceeded to verify his conjecture through by-hand
and calculator-generated symbolic manipulation. Later in the interview, he sub-
stituted in values, a=1,b = 1, and ¢ = 0, and conjectured that changing the ¢
value would cause a shift in the graph. In the standard viewing window he saw
the graph of y = (shown on the left in the following figure) and conjectured that
the graph does not stop, but rather that there were vertical asymptotes at x =0
and x = -1. He verified this conjecture several ways, by zooming in, tracing
along the graph, and substituting in the values into his symbolic forms that he
had derived for the asymptotes. He substitutedina=1.b=1.and ¢ = | and then
viewed the graph shown on the right in the following figure:
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He had expected to see an upward shift in the graph, and he seemed sur-
prised at the resulting graph as he remarked: “Oh, okay! ¢ didn’t, ¢ had a
different effect.” To determine what effect ¢ = 1 had, he reasoned symboli-
cally. He concluded that there would not be any real asymptotes in the graph:
“Since these are imaginary numbers, they don’t exists on this graph, meaning
that the values that would make this equal to zero don’t exist . . . so we’re not
going to get any asymptotes.”

Role of Errors

Because of her focus on patterns, Agnes’ frequent errors in arithmetic,
counting, and drawing seemed to have a significant effect on what she conjec-
tured since these mistakes caused disruptions in her patterns. It is possible that
Agnes’ errors and her response to them played a role in her ownership of her
conjectures and her readiness to abandon her conjectures. Anomalies in the
patterns she saw did not seem to surprise her, possibly because of the fre-
quency with which she encountered such errors. This readiness to abandon
conjectures arose in Agnes’ work even when her errors were conceptual in
nature. It is interesting to compare Agnes’ reactions with those of Debbie when
both conjectured, because of a conceptual error, that the circumscribed square
would more closely approximate the circumference of a circle than would an
inscribed triangle “ince a square has more sides than a triangle. Debbic was
satisfied enough with her conceptual argument that she did not attempt any
verification of her conjecture. Agnes, on the other hand, rejected her conjec-
ture on the basis of one poorly structured example. She had constructed the
square and a non-cquilateral triangle using circles of different sizes as shown
in the following figure.
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Conclusion

As the subjects in this study made and tested conjectures within the context
of their mathematical investigations, two features of their problem solving style
seemed to influence their thinking: their use of multiple representations and the
ways they used technology to generate and test their conjectures. For many of
the subjects. a marked preference for a particular representation seemed to domi-
nate their gencration of data from which to conjecture. Some of these subjects
also seemed torely on their preferred representation as the initial arbiter for the
truth of their conjectures. This study begins an investigation of the ways in
which students who have access to multirepresentational technology generate
and test mathematical conjectures.

591




References

Blume, G. W, Heid, M. K., Iseri, L., Kuech, R., Laughner, J., Marshall, J., &
Wenger, R. (1996). A computer algebra system (CAS) learning study:
The impact of access to a CAS calculator on the nature of mathematical
exploration by prospective mathematics teachers. In E. Jakubowski, D.
Watkins, & H. Biske (Eds.), Proceedings of the Eighteenth Annual Meet-
ing of the North American Chapter of the International Group for the Psy-
chology of Mathematics Education (pp. 541-546). Columbus, OH: ERIC.

Chazan, D. (1993). High school geometry students; justification for their views
of empirical evidence and mathematical proof. Educational Studies in Math-
ematics, 24(4), 359-387.

Chazan, D. & Houde, R. (1989). How to use conjecturing and microcomput-
ers to teach geometry. Reston, VA: National Council of Teachers of Math-
ematics.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory:
Strategies for qualitative research. New York: Aldine Publishing Com-
pany.

Schoenfeld, A. H. (1994). Reflections on doing and teaching mathematics. In
A. H. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp.
53-70). Hillsdale, NJ: Lawrence Erlbaum Associates.

Yerushalmy, M. (1993). Generalization in geometry. In J. L. Schwartz, M.
Yerushalmy, & B. Wilson (Eds.), The Geometric Supposer: What is it a
cuase of? (pp. 57-84). Hillsdale, NJ: Lawrence Erlbaum Associates.

Yerushalmy, M., Chazan, D., & Gordon, M. (1993). Posing problems: One
aspect of bringing inquiry into classrooms. InJ. L. Schwartz, M. Yerushalmy,
& B. Wilson (Eds.), The Geometric Supposer: What is it a case of? (pp.
117-142). Hillsdale, NJ: Lawrence Erlbaum Associates.
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This study examined the ways in which college students with substantial mathematics
backgrounds and access to calculators with computer algebra systems (TI-92s) use
symbolic representations in their non-routine problem solving. Eight college students
who had completed at least 15 credits of college mathematics werc observed as they
solved non-routine problems in the context of a series of content-based interviews.
Students seemed to generate symbolic representations for different purposes. These
purposes included having a symbolic representation to manipulate, serving as a place
holder for an idea to which to return, and capturing their personal understanding of a
concept. Although most of the subjects regularly adopted the goal of generating a sym-
bolic representation, only one of the eight target students regularly reasoned from the
representations he had gencrated.

Background

With ready availability of multi-representational technology has come an
increased interest in the ways in which students use multiple representations of
functions to rcason about mathematics. Although symbolic representations have
long played a central role in students’ mathematical development, most of the
work to date on multiple representations of functions has centered on work
with graphical or numerical representations (Dugdale, 1993; Goldenberg, 1995;
Janvier, 1987: Kaput, 1986; Kaput. 1994: Nemirovsky, 1994: Perkins & Unger,
1994; Pimm, 1995). The advent of classroom-friendly computer algebra sys-
tems (CASs). however, generates a new inter t in students’ use of symbolic
representations and how that use might influcnce their mathematical thinking.

! This material is based on work supported by the National Science Foundation under
Grant No. GER 94-53048, by an cquipment loan trom Texas Instruments, and by De-
partment of Curricufum and Instruction of The Pennsylvania State University. Any
opinions, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the sponsors,
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Researchers are currently grappling with the 1~sues of the nature of symbolic
reasoning and symbol sense and the roles they wul play in technology-inten-
sive mathematics classrooms (Dreyfus & Halevi, 1990/91: Fey, 1990; Kaput,
1987; Keller, 1993/1994; Nemirovsky, 1994: Onslow. 1991; Pimm, 1995:
Yerushalmy, 1992; Yerushalmy, 1993). A small but growing number of theo-
retical perspectives have been offered and need to be corroborated through ob-
servations of students using symbolic representations in their mathematical
problem solving. This study' examines ways in which students with significant
college mathematics backgrounds, and equippea with hand-held symbolic ma-
nipulators, generate and use symbolic representations in solving non-routine
mathematical problems.

Sample and Instructional Setting

Subjects for the study were drawn from the 17 prospective secondary math-
ematics teachers who enrolled in the only section of a mathematics education
. course focusing on technology and the leaming and teaching of mathematics
(TLTM). Each of these students was enrolled in a teacher preparation program
and each had completed at least 15 mathematics credits at the Calculus level
and beyond. All seventeen students volunteered to be observed in their in-class
work and to participate in task-based interviews, and eight students were se-
lected for observation and task-based interviews. These eight were selected. on
the basis of their performance on a non-routine problem solving task com-
pleted as an assignment during the first week of class, to represent a range of
tendencies to explore and investigate mathematics. The names used in this re-
port are not the students’ actual names but we have retained the gender of the
subjects in the names we have chosen.

The TLTM course met for 15 three-hour weekly sessions during the semes-
ter. Each student was provided with a TI-92 calculator for use both in and out of
class. One primary aim of the course was to provide the students the opportu-
nity to deepen their understandings of concepts of school mathematics in a
technological environment. Students explored mathematics through open-ended
assignments in which they were encouraged to justify their claims using nu-
meric, symbolic, and graphical representations and to reflect on their thinking.
One of the authors of this proposal was the course instructor, and a second had
served as course instructor during the pilot semester. These mathematics edu-
cation faculty, along with six mathematics education and science education
doctoral students and one mathematics professor constituted the research team®.

il .. .
= In: Jdition to the authors, Robert Kuech. James Laughner. and Ron Wenger served
on the rusearch team.



Data Sources and Collection

The major source of data for the study reported here is a series of task-
based interviews conducted with the targeted students. The interviews were
audiotaped and videotaped. Transcripts were produced, with a tri-level proce-
dure for checking the accuracy of the transcripts, by the mathematics education
research staff who had conducted the interviews. First, an initial transcript of
verbal interchange was prepared from the audiotape. Second, the initial tran-
script was proofread and annotated by comparing the transcript with the video-
tape and annotating it with calculator screen dumps and descriptions of actions.
Finally, as a subgroup of the research team viewed the videotape while reading
and analyzing the transcripts, they made additional corrections to the transcripts.

The task-based interview schedules, each of which included two non-rou-
tine problems, were constructed by the project team. The interview tasks re-
quired mathematical explorations and were designed to be amenable to solu-
tion through use of the T1-92. Tasks required exploring families of functions,
exploring geometrical relationships, and creating and exploring mathematical
models. The project team piloted all interview tasks and data collection tech-
niques in the TLTM class offered in the semester previous to that of the study.

Data Analysis and Results

The project staff read through the transcript of each interview task for each
subject while viewing the videotape. Preliminary passes through the individual
transcripts focused on uses of symbolic, numeric, and graphic representations
and generated a framework which reflected characteristics of the students’ use
of various representations. Subsequent comparative passes focused on themes
that cut across different representations and allowed those themes to emerge
(Glaser & Strauss, 1967) . Many of the themes which emerged featured the role
of symbolic representations and. in particular, the processes of generating and
reasoning from symbolic representations.

Generating Symbolic Representations

Students seemed to generate symbolic representations for different pur-
poses. These purposes included having a symbolic representation to manipu-
late. serving as a place holder for an idea to which to return, and to capturing
students’ personal understandings of a concept.

One student regularly generated symbolic representations so that he could
perform symbolic manipulations on them. Frederick expressed the opinion that
symbolic representations were easiest, he generated them as his representation
of first resort, and once he produced a symbolic representation he tended to
focus his activities on performing various manipulations on that representa-
tion. This tendency to create and manipulate symbols frequently. but not al-
ways, allowed Frederick to gain insight into the mathematical relationships at
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hand.

Other students seemed to use symbolic representations as place holders to
which they could later return and which they would refine in successive re-
turns. These representations seemed not to be intended to represent the actual
mathematical ideas the students were entertaining. Instead, these representa-
tions apparently reminded the students that, although the students had not yet
represented the exact relationships, they knew the magnitude and position of
what they intended and would later revisit to refine the representations. Early in
the Square Wrapping Function Task, for example, both Hillary and Amanda
created piecewise defiaitions for the targeted distance (See Figure 1 for Amanda’s
first version of a piecewise-defined function for the Square Wrapping Function
Task.) which they said were not the actual function rules. Their definitions
were not accurate representations of the actual distances but rather expressions
that held the place of representations they would seek to develop later in the
interview.

Sometimes, students had a clearly understood idea for which they did
not have a readily accessible symbolic representation. In these cases, students
created personal non-standard representations whose purpose scemed to be to
hold onto the features of the concepts the students were trying to depict. These
representations were not place holders in that the student intended them to rep-
resent their current understandings and did not intend to return later to revise or

refine them. Hillary’s personal graphical representation (See Figure 2.) was
intended to show that as the number of sides on an inscribed regular polygon
increases, the perimeter of the polygon gets increasingly closer to the circum-
ference of the circle.

Reasoning From and About Symbolic Representations

Frequently, students created symbolic representations as if the creation
of the representation was their final goal. Only one of the eight students
(Frederick) regularly reasoned from symbolic

representations, or used the symbolic to inform himself about other repre-
sentations. For example, as Frederick explored a family of functions and no-
ticed a vertical strip on the graph which contained no function values, he veri-
fied from his symbolic representation that the function was undefined in that
region. More often students would work from another representation (usually,
numeric or graphic) to verify pieces of information they were gleaning from
the symbolic. Amanda, for example, used the numeric to get a handle on how
the symbolic was working in her exploration of the family,

1

2
ax“ +bx+c
She  started with the case for which a = b = ¢ = 1, and examined
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A function fis defined which assigns to each angle u the shortest distance from
the line L to the corresponding point P. Describe the behavior of the function f
in as many ways as you can.

/

Segment M

Line L

Figure 1a Statement of interview task: Square Wrapping Function Task.

f (14345° PQ Distance )

315°<u° fixed

PQ
fixed Distance J

AB+BQ

f

(225°2 u >135°

f

135°>2u 2458° ___
l PQ Distance

" PQ Distance
f (3150211 5050 U Ptanee

Figure th Amanda’s work.

Figure 1 Amanda’s first pass at svmbolizing the function for the Square
Wrapping Function Tusk.
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# of sides . .
perimeter of circle

/
7

perimeter

Figure 2 Hillarv's personal graphical representation.

1.2 1 7.2 7
2 )= . - -
(-2)% +(-2)+ 1, ( 2) +( 2)+17and ( 8) +( 8)+1
for how the X term and the x term interacted. Only then did she move on to
make some statements about the interaction among terms. When Jay began to
reason from symbolic forms during the Circles Task*, he rejected his symbolic
results in favor of contradictory numerical or graphical results without recon-
ciling the differences suggested by the various representations. On the Circles
Task, Hillary zoomed in several times to determine whether the function rules
she had produced to fit sets of data (f(x) = 3x - 3 and f(x) = 3x - 11.5) were
parallel. There was a consistent pattern in the interview data, that although
students saw the symbolic as a goal, they did not reason from it.

,to give hera feel

Conclusion

As we studied the use of symbolic representations by students who have
substantial collegiate mathematics backgrounds, we identified ways in which
symbols commonly serve students in their problem solving. First, our students
readily adopted the production of a symbolic rule as a goal in their problem
solving; surprisingly, however, they did little reasoning from those rules once
they had produced them. Second, just as earlier research suggested that paper-
and-pencil arithmetic algorithms may alleviate the need to hold a large amount
of information in memory, students’ use of place holders may also serve to

3The Circles Task along with the other tasks appear in a previous PME Proceedings,
(Blume, Heid, Iscri, Kuech, Laughner, Marshall et al., 1996). It was created by Ron
Wenger, University of Delaware.
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reduce the cognitive load in more complicated mathematical work. Third, in
spite of a mathematical lifetime of exposure to standard mathematical nota-
tions and representations, students used personally designed non-standard rep-
resentations to hold the mathematical ideas they were developing. As a result
of these observations, we came to view the use of symbols by these students as
an important part of their problem-solving process rather than simply a transla-
tion and manipulation procedure. This study deepens our understanding of the
use of symbolic representations, an understanding that underpins much of math-
ematical thinking at the secondary levels and beyond.
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THE ROLE OF TECHNOLOGY IN LESSON
PLANNING: THE CASE OF PRESERVICE TEACHERS

Draga Vidakovic, Sarah Berenson & Maria Blanton
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This presentation describes preservice teachers’ ideas of how technology
can be used to help high school students develop an understanding of the math-
ematical concept under consideration. The subjects in the study were the five
preservice teachers enrolled in the methods course, Teaching Mathematics with
Technology. The analysis of the lesson plans developed by the subject revealed
the differences in preservice teachers’ ideas of the role of technology. The NCTM
Standards (1989) maintain that the appropriate integration of technology will
“transform the mathematics classreom into a laboratory . . . where students use
technology to investigate, conjecture, and verify their findings . . . [and] the
teacher encourages experimentation” (p. 128). In this context, teachers often
become students as they struggle with understanding technology and its peda-
gogical implications (Norman, 1993). Vygotsky’s assumption of an active in-
dividual and an active environment (Vygotsky, 1986) served as the basis for our
hypothesis that teachers will learn about pedagogical implications of technol-
ogy through their active involvement in lesson planning.

The results of the qualitative analysis show a continuum of meaning among
preservice teachers with respect to how they perceive the role of technology in
their classrooms. Two distinctive categories emerged: (i) technology that en-
hances the presentation of information: (ii) investigations for students to ex-
plore mathematics using technology. Further analysis revealed that the investi-
gations ranged from simple to complex. Additional results and their implica-
tion to practice will be discussed at the conference.
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TEACHER AS BRICOLEUR: USING COMPUTING
TECHNOLOGIES FOR TEACHING MATHEMATICS

Lynn Stallings
Georgia State University
Istallings@gsu.edu

The objective of this study was to understand more about mathematics teach-
ers’ instructional decisions and practices involving computing technologies
(CTs). Six mathematics teachers from two high schools were studied using
survey, interviews, and observations. After observations of lessons on topics
where teachers judged CTs to be most effective, they were interviewed. This
interview-observation-interview cycle was repeated several times. Theoretical
sampling of twenty additional teachers was used to further explore findings
about the CT effective topics, assessment, and the role of collegiality in a
teacher’s CT use.

A primary finding was the usefulness of the metaphor of teacher as bricoleur
(Levi-Strauss, 1966; Wheeler, 1980; Huberman, 1993) for understanding how
mathematics teachers teach using CTs. Bricoleur is a French word that roughly
translates to “craftsman” (Huberman, 1993). This metaphor was used to ex-
plain how these teachers viewed their “universe of instruments” and “rules of
the game” (Levi-Strauss, 1966, p. 17) for teaching using CTs. Other findings of
interest were those topics these teachers judged CTs to be most effective and
the reasons teachers selected those topics as effective sites for CT use. These
teachers judged CT use to be effective because CTs provided more accurate
ways of doing mathematics, access to more mathematics, and an alternate method
for teaching a topic regarded as difficult.
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GRAPHING CALCULATORS IN THE MATHEMATICS
CLASSROOM

Laurie J. Riggs
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The teaching of mathematics has undergone many changes in the last three
decades. Technologies are being integrated into mathematics classrooms na-
tionwide with the full support of the National Council of Teachers of Math-
ematics (NCTM, 1989). This study explored factors that contributed to calcu-
lator proficiency to determine if there was a gender difference in calculator use.

This field study took place on a large high school campus that regularly
employed graphing calculators. Observations and interviews were done in three
classrooms, two advanced and one remedial. The data revealed: (1) Teachers
report male students used the graphing calculator more, and were more famil-
iar with it. *“The boys seem to do more playing with the calculator.” (2) The
researcher ascertained from student interviews that the male students had more
experience with this type of technology than the female students. (3) Video
taped observations showed that when the calculator was shared between a male
and female student, the male student always took control of the instrument.
This was aided by the female student’s passive non-engagement with the calcu-
lator.

The data reveal a gender difference in calculator use. According to Malcolm
(1993) experience with an instrument will ameliorate anxiety. If the curricu-
lum for advanced mathematics classes requires the mastery of certain tech-
nologies, then we must understand the ways in which our female students ap-
proach the tools involved and be willing to proactively adjust our pedagogy to
induce their engagement.
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CABRI-GEOMETRY: A CATALOG OF PROBLEMS
THAT IT SOLVES AND QUESTIONS WHICH IT
PROPOSES

Eugenio DiazBarriga
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In the traditional curriculum, the interaction between the student and the
geonetric objects takes place via “photographic images” developed step-by-
step in static form on the blackboard, without chance to change the position or
the relative size between the elements the same construction. A dynamic ge-
ometry environment like CABRI-Geometry allows one to move and change
the objects (for example: the center of a circumference can be moved within
the environment; the focus and/or the directrix of a parabolic curve can be
moved, etc.).

Traditionally, the teacher shows one figure
and asks the pupils for calculations and/or the
reasons about this image. If the teacher intends

ALKl GEOMETRY I to give more graphic information, it must be

e v s obtained by additional constructions. This pro-
cess is a laborious thing and it does not allow
1) Nocs InsTRUMDAS .
mem e e students to see the gradual gradual changes in-
volved. In Dynamic Geometry setting, the
graphic information is very important: when
we obtain the first figure, we can then change
the independent objects, keeping track of the links and invariants as students
explore.

The group of problems to be shown has a status in the curriculum. Ex-
amples of the problems are:

Optimization: The problem of the “little
box™ (See Figure 1.); the
rectangle of maximum
area and fixed perimeter:;
the maximum angle to vi-
sualize a segment (over an
inclined line); the cone
with manimum volume
startin from a circle; etc,

T Sy
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Functions: The function of area of a
sector between a circum-




Constructions:

ference and a line; the exponential function drawn with traces
on the axis; the construction of a general function with the
commands calculate and tabulate; the tangent line in the opti-
mization of one and two variables; etc.

Mechanical curves, simulation problems in 3D, etc.

In an environment generated with CABRI-Geometry, questions
that students pose and discuss include: what are dependent and
independent objects?; If I move this element, what does it
change in the figure?; Why does an element keep a specific
link with another?

The creation of a catalog of environments for mathematical exploration
could be an important goal for the teacher of mathematics. The catalog could
help students produce observations, conjectures, proofs, new constructions, and
propositions. Such an effort demands educational experimentation in the cur-

riculum,




GENERATING MEANINGS BEYOND “RIGHT-
WRONG” EVALUATIONS IN AN INTERACTIVE
MANIPULATIVE ENVIRONMENT

Sergei Abramovich and Gwendolyn Stephens
The University of Illinois at Chicago
sergei@math.uic.edu

An important feature of the current reform movement in mathematics edu-
cation is an appropriate use of computers at all grade levels. Yet economical
constraints often stand in the way of incorporating technology into mathemat-
ics classrooms. This calls for technology-mediated pedagogy to shift the em-
phasis from resting solely on special purpose software as teaching and learning
tools to a more sophisticated use of general computer tools commonly avail-
able across different educational settings.

The paper presents a spreadsheet-based environment for the study of the
concept of percent which juxtaposes manipulative and computational features
of the software. The tasks that structure this learning environment involve stu-
dents’ constructive activity within an interactive medium so that any action by
a student leading to a qualitative change of an iconic input yields an immediate .
change of a numerical output. The pedagogy of the environment is structured
by what French researches called addidactical situation —something that does
not require explicit teacher intervention due to a careful design of the tasks
allowing for a sufficient students’ antonomy in a computer presence.

Another focus of the suggested computer activities is to encourage stu-
dents’ active involvement into construction of knowledge about the concept of
percent by utilizing both univocal and dialogic functions of the environment.
On the one hand, the univocality of the medium is concermned with an inert link
between a student’s numerical hypothesis regarding the percentage form of the
iconic structure of a pictorial input and interactive evaluation of the hypothesis
by the computer. On the other hand, the dialogic function of the medium is to
generate new meanings of what may be wrong with such hypothesis through a
follow-up manipulative on-computer activity in which a student constructs an
iconic representation of the original guess. There is an assumption, rooted in
the Vygotskian theory of semiotic mediation, that comparing a static configu-
ration presented in a task to a dynamic structure actively constructed by a stu-
dent enhances a transition from an initial erroneous guess to a correct answer
by transforming a student’s action into his or her consciousness.

The authors illustrate the above strategics by presenting results from a pilot
study on students developing ideas about percentage in the computer environ-
ment.
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“PSYCHOLOGY” OF THE TI-92

Donald Porzio Roger Day
Northern Illinois University Illinois State University
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Technology such as the recently developed TI-92 hand-held “computer”
has presented mathematics teachers and educators with numerous new educa-
tional opportunities for exploring and teaching mathcematics. Such technology
has also presented teachers and educators with a myriad of concerns regarding
if and how it should be integrated into the mathematics curriculum. One objec-
tive for this discussion group is to raise awareness of and examine psychologi-
cal issues associated with learning and teaching mathematics in a technological
world. Another objective for the group is to grapple with the key question:
What is mathematics, given the capabilities of the TI-92 and other technologies
that now or soon will exist? The group organizers firmly believe that until this
question is addressed by those involved with the teaching of mathematics and
of inservice and pre-service mathematics teachers, appropriate integration of
technology into the mathematics curriculum will remain an unattainable goal.

The group organizers will set a context for the discussion by briefly dem-
onstrating the capabilities of the TI-92. Loaner calculators will be made avail-
able for those participants who want to gain additional hands-on experience.
The demonstrations will be followed by 15 to 30 minutes of small group (3-4
participants per group) discussion of the question “What is mathematics " Af-
ter this discussion, the large group will reconvene to address the ideas pre-
sented in the small groups and to attempt to reach some consensus of response
to the aforementioned question. Next. the group will brainstorm for 10 to 20
minutes on psychological issues associated with the integration of technology
into the mathematics curriculum and on possible ways to address these issues
through research, through the training and education of preservice and inservice
teachers, and through the sharing of ideas with colleagues in the mathematics
and mathematics education communities.  The session will conclude with a
discussion of potential follow-up activities for the group over the year follow-
ing this meeting,
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ANALYZING STUDENTS’ LEARNING WITH
COMPUTER-BASED MICROWORLDS: DO YOU SEE
WHAT I SEE?

Janet Bowers
San Diego State University
JBowers@sunstroke.sdsu.edu

This paper describes a theoretical framework for analyzing students’ learning with com-
puter-based microworlds. The basic assumption is that students’ ways of acting may be
analyzed by coordinating social and psychological perspectives in an attempt to ac-
count for individual learning within the social context of the classrooni. The goal of the
analysis is to examine the differcnt meanings that emerged during onc interview con-
ducted with a pair of third-grade students acting with a microworld that had been an
integral part of their classroom instruction. The case documents the ways in which the
two students, who appear to solve a problem together in the microworld, may be seen
to be talking past cach other. The analysis attempts to determine what cach of the stu-
dents saw and why they saw their activity in different ways

Computer-based microworlds have extended the possibilities for mathemati-
cal learning and research. For example, Kaput (1994) has argued that computer

representations that are linked to real-world phenomena can enable students to
bridge the islands of mathematical symbols and real-world experiences. The
question for rescarchers is to determine if the students are seeing what the de-
signers intend, or what the researcher sees, or even what another student may
see. Addressing this question involves discerning when students are relying on
advanced reasoning and when they are simply clicking and experimenting. To
mitigate the possibility of misinterpretation, the approach taken in the follow-
ing case study was to create an analytic framework that coordinates a social
perspective of the context in which the students were acting with a psychologi-
cal perspective of the students’ possible mathematical conceptions (Cobb &
Yackel, in press).

Theoretical Framework

The theoretical framework that guided this analysis is based on the as-
sumption that students’ computer-based activity, mathematical interpretations,
solutions, explanations, and justifications can be viewed as incorporating both
psychological and social aspects (Cobb & Yackel. in press: Lampert, 1990:;
Simon, 1995; Voigt, 1995). To account tor the interplay between these compo-
nents, this framework attempts to take the individual acting with the computer
within the social microculture as the unit ot analysis. The psychological com-
ponent of this study involved documenting students® individual ways of know-
ing and acting by exploring their conceptions of ten and hundred. The con-
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structs underlying this analysis «ere based on the conceptual models of children’s
arithmetical learning developed by Steffe and his colleagues (Steffe, Cobb, &
von Glasersfeld, 1988). At the risk of over-simplification, Steffe et al.’s frame-
work was collapsed into three overarching constructs of place value. These
include students’ creation of: (1) numerical composites of ten and hundred, (2)
composite units of ten and hundred, and (3) part-whole reasoning (For a de-
tailed description of these distinctions, see Bowers, Cobb, & McClain, 1997).

The social component of this study involves documenting the social norms,
the sociomathematical norms, and the mathematical practices in which the stu-
dents engaged during in-class discussions and small-group activities (Cobb &
Yackel, in press). The term mathematical practice is meant to convey the notion
of taken-as-shared ways of constituting an activity that emerge as students at-
tempt to explain and justify their explanations.

Methodology

The case study presented in this paper is part of a teaching experiment that
was conducted over 37 consecutive school days during the fall of 1994. The
setting was a third-grade classroom in a public school in the southeastern part
of the United States. The goal of the teaching experiment was to develop a
reform-based instructional sequence and to research the ways in which the stu-
dents developed increasingly sophisticated conceptions of place value and per-
sonally meaningful (but sometimes non-standard) ways to solve three-digit ad-
dition and subtraction problems. The teacher for this teaching experiment was
an active member of the research and design team who replaced the regular
classroom teacher for 45 minutes of math instruction each day. The decision to
work with a “drop-in” teacher was based on the regular teacher’s indication
that her pedagogical beliefs were traditional in nature. For example, she chose
to teach the students standard algorithms for adding and subtracting two- and
three-digit numerals in the afternoons each day after the research team had left
the school.

The candy factory instructional sequence and three accompanying
microworlds were designed to support students’ transition from acting in ev-
ervday situations involving grouping objects toward more formalized notions
of place value. The instructional sequence was based on a scenario in which
students invented ways to keep track of the inventory of a candy factory by
packing sets of 10 candies into a roll and packing sets of 10 rolls into a box.
Initial activities involved enumerating collections of candies and figuring out
different arrangements of boxes, rolls, and pieces that could contain the same
total quantity of candies (e.g., 543 candies could be packed into 5 boxes, 4
rolls, and 3 pieces or it could be packed into 4 boxes. 14 rolls, and 3 pieces,
etc.) by drawing pictures and later using the first two microworlds. Analyses of
the mathematical practices revealed that, as students engaged in these initial
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activities, they developed notions of how transformations conserve quantity.
The final activities involved adding and subtracting quantities of candies by
conducting transactions. These activities were augmented by the use of the
third microworld in both whole-class and computer-laboratory settings.

The three microworlds each featured icons resembling students’ drawings
of boxes, rolls, and pieces. These icons could be packed and unpacked by click-
ing and dragging. The third microworld (shown in Figures 1 & 2) also included
icons indicating candies that had been added or subtracted, and an inventory
form that was linked to these storeroom icons. This linked representation sys-
tem enabled students to initiate changes by clicking on the storeroom icons, in
which the case the numerals on the inventory form would be updated, or by
clicking on the dynamic numerals on the inventory form in which case the
storeroom icons would be updated. It is critical to note that the goal of this
linked representation was not to have the students attempt to figure out the
supposed link between the two systems, but rather to provide an environment
in which the students could work flexibly between the two representation sys-
tems to support their development of imagery for conserving quantity.

Interview

The interview began as Martine and Carolyn attempted to solve the follow-
ing problem:

There are 504 candies in the storeroom. A customer places an order
Sfor 69 candies. How many candies are left in the storeroom after the

order is filled?

Martine attempted to solve the problem using pencil and paper by writing:

504
69
194

. Based on this and several other classroom episodes. it appears that, for

Martine, solving pencil and paper tasks involved participating in the mathemati-
cal practice of following a procedure for manipulating digits which was most
likely rooted in his experiences during afternoon classes with the regular class-
room teacher. When the interviewer asked Carolyn if she agreed with Martine’s
answer, she stated, “When he wrote that down um, he said that there were 600,
6 boxes, and on the sheet it suys they only made 69 pieces, so, he should have
moved the 6 over...” Even though Martine never actually said 6 hundred” or
*6 boxes.” Carolyn interpreted his notation as indicating a written communica-
tion. Carolyn’s explanation did not appear to be based on a meorized (but
potentially meaningless) symbolic convention. Instead, she appeared to be rea-
soning symbolically, which is consistent with analyses of her post-interview
activity. For her, the symbols had numerical significance and transcended any
particular social context (i.c., she was not thinking of acting in the candy fuc-
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tory or acting in the afternoon instruction sessions). Upon hearing Carolyn’s
504
- 69
565
At this point, the interviewer asked Carolyn if she agreed with Martine’s
answer and if the two would like to work with the microworld. Carolyn indi-
cated that she did not feel comfortable correcting Martine’s work, and that the
computer offered a more attractive alternative. As the two students began working
in the microworld, they entered 5 boxes and 4 pieces as shown in Figure 1,
Carolyn suggested that they unpack one box and one roll so that they could
send out 6 rolls and 9 pieces. Her anticipatory statement indicates that she was
thinking in terms of part-whole relations. In contrast, Martine, suggested that
the pair unpack 7 rolls to send out 69 pieces. This suggestion, which was con-
sistent with his interpretations during several prior whole-class discussions,
was logical from Martine’s point of view and indicates his structuring of the
order to be sent out in terms of numerical composites rather than composite
units. While one might argue that this interpretation is consistent with the way
the problem was posed, it was not consistent with the taken-as-shared conven-
tions that had been negotiated in prior classroom episodes. It is interesting to
note that, due to the social norms that had been negotiated during whole-class
discussions and as students worked in pairs in the computer lab, neither Carolyn
nor Martine attempted to make sense of the other’s interpretation from a math-
ematical point of view. For example, neither asked for clarification or turned to
the computer to explore what would happen if 7 rolls were unpacked (which
would have been easily accommodated by the software). Instead, Carolyn at-
tempted to justify her approach by unpacking one box and one roll. As she did
so0, she stated, **You need to unpack only one roll. We are trying to figure out
what is in the storeroom after we send out the ... umm ...[order].” Once Carolyn
unpacked the box and roll, the screen appeared as shown in Figure 2.
After some further negotiation, Martine agreed to send out 6 rolls and
9 pieces. While this act may indicate that Martine reorganized his interpreta-
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response, Martine reorganized his work as follows.

Figure 1 [nitial screen showing 5 Figure2 Screen appearance after one
boxes and 4 pieces. box was unpacked.




tion of the 69 pieces so that he now “saw’ it as a composite unit composed of 6
rolls and 9 pieces, it does not indicate that he was new reasoning in terms of
part-whole relations or that he “‘'saw” the results of his activity prior to acting.
In fact, close examination of the social relations between the two indicates that
Martine may have acquiesced to Carolyn without fully understanding the un-
derlying mathematical concepts. In this way. Martine was “playing the school
game”—arole with which he was very familiar. To complete the solution, Martine
counted the remaining boxes, rolls, and pieces and recorded these totals on the
inventory form.

Discussion

As stated carlier, the underlying assumption of this analytic approach is
that students’ interpretations of their computer-based activity are constrained
and enabled by their own mathematical conceptions and their interpretation of
the social practices in which they are engaging. Based on this assumption, the
two goals of this analysis are to document the nature of the differences between
the students’ interpretations of their computer-based activity and to address the
ways in which the students’ collective interpretations differed from the design-
ers’ intentions. In general, the microworlds were designed to support students’
cfforts to symbolize their activities and to generalize their situated activities by
exploring relations between large numbers. For example, the designers assumed
that students would pursue “what if...” questions by unpacking large numbers
of boxes or rolls. In contrast, the class did not constitute the software as an
exploratory medium. Instead, some, such as Cassie, interpreted their activities
in terms of acting with an expressive medium. Others, such as Martine, viewed
their activity in terms of acting with a simulation world. One difference be-
tween these two interpretations is that students who viewed their activities in
terms of symbolizing were able to generalize their activities while others such
as Martine who viewed their computer-based activities in terms of acting in a
real (micro) world did not. It appears that Martine did not view the dynamic
inventory form as a way to enact changes on the graphics because such a device
is inconsistent with his interpretation of the microworld as an empirical simula-
tion world in which one acts as one would in real life. That is, in real life, it is
not possible to act on numbers to change objects; one acts on objects and then
records the results with numbers. This interpretation is consistent with his in-
terpretation of the boxes, rolls, and pieces as numerical composites. For him,
acting in the microworld was acting with the boxes, rolls, and pieces, whereas
his paper and pencil activity appeared to be unrefated to any real-world task.

In contrast. Carolyn, and many others in the class, had generalhized their
situated activity in terms of part-whole relations such that, for them, acting
with the numerals, the icons, and pencil and paper all referred to the same
conceptual imagery. It is critical to note that this generalization process did not
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arise from efforts to figure out the link between the numerals on the inventory
form and the icons in the microworld. Instead, for Carolyn, the linked represen-
tation system was self-evident, and she was comfortable enacting transactions
by clicking on the numbers on the inventory form or clicking on the graphics.
The critical distinction between Carolyn's interpretation and that of Martine is
that her efforts to anticipate the results of her acting were implicit in her deci-
sions. In contrast, for Martine, who had not generalized his situated activities,
the link between the notation systems was not apparent, nor was it an integral
part of his situated activities.

Based on this analysis, one possible revision to the microworld would be to
eliminate the linked representation system. Activities with the revised microworld
would involve having students conduct transactions and transformations with
the graphics, but develop their own ways to record their actions. As was seen in
this class, many students attempted to curtail their drawing activity by record-
ing their activity with numerals. In this way, the use of numbers arises as a
natural way to expedite the symbolizing process. This approach parallels the
historical development of symbolizations and would support students’ devel-
opment of meta-representational knowledge (cf. diSessa et al., 1991).
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WARNING: ASKING QUESTIONS MAY LOWER YOUR
MATHEMATICAL STATUS IN SMALL GROUPS

Kathy M. C. Ivey
Western Carolina University
kivey @wpoff.weu.edu

When students are placed in small groups to work on mathematics, how do they deter-
mine the mathematical status of each group member? In this report, mathematical
status refers to the perceived trustworthiness of the contributions of individuals. Data
gathered in this study suggest that onc way a student may lose mathematical status is
through asking many questions. A student may gain mathematical status through an-
swering questions. Once the relative status of each group member is established. stu-
dents with high mathematical status. “helpers™, also ask teacher-type questions of other
group members, the “helped™, to check on their understanding. Even though this work
is limited by the number of groups examined. it suggests several important arcas for
additional study. Do students distinguish between procedural questions, conceptual
questions, and exploratory or extension questions in assigning status? Do students
distinguish between real questions and veiled suggestions? What relationships exist
between students’ mathematcal status and their understanding of mathematics?

As more students are placed in small groups to work on mathematics, the
interactions in groups take on new importance. When students are placed in
groups, they must assess the “trustworthiness™ of each student’s contributions.
Jf students are unknown to each other, as often happens in today’s classrooms,
how do they judge the trustworthiness or mathematical status of group mem-
bers? According to many researchers, being good at mathematics is associated
with certainty. with getting the “right” answer quickly, and with remembering
the rules. (Schoenfeld. 1985, Stodolsky. 1988). Lampert (1991) argues that
these beliefs are shaped through many years of school experience and are deeply
embedded in students’ understandings of the clussroom. How students assign
mathematical status to their pecrs is not clear, but it is particularly important in
light of the call for increased communication in mathematics classrooms as
one basis for instruction. (NCTM, 1989). This report examines the differences
in mathematical status of individuals in small groups in a college pre-calculus
class. The larger scope of the study is to examine interactions within groups as
they work on textbook problems and on laboratory explorations in hopes of
better understanding what mathematics students come to know through peer
interactions, and how they learn it. This report focuses on a narrow part of the
larger study. Specifically, what evidence exists of differing mathematical sta-
tus for members of a group? Is the involvement of individuals in the work of
the group related to their status?




Small Groups, Engagement, and Questions

Prior research has examined difference in interactions between high and
low achieving students (Paradis & Peverly, 1994; Farivar, 1992; Swing &
Peterson, 1981) and between teachers and groups of differing abilities (Cooper,
1981). Researchers have also examined the interactions between teachers and
whole classes (Cobb, Wood, & Yackel, 1991; Lampert, 1991) and between teach-
ers and small groups (Wood & Yackel, 1990). But little work has looked at the
interactions among students within small groups without the teacher present.

A significant point to examine in small group interactions is the engage-
ment of the individual group members. Engagement in mathematics has been
linked to increased retention of at-risk students (Finn, 1993) and
underrepresented groups such as women (Sax, 1993; McDermott, 1983). Steele
(1993) reports that students are more likely to engage in mathematics during
exploratory activities. Ivey & Williams (1993) report that many students en-
gage in mathematics only if they see a place for their ideas and opinions in the
work. These reports suggest that some students need to be valued for their
unique contributions in a group in order to engage in mathematics. It scems
reasonable that if a student is valued more highly in a group, then the student is
more likely to engage in the mathematics class. Increased engagement should
lead students to richer understandings.

This paper suggests one way in which students may assign or confirm math-
ematical status in small groups. The status of “helped”, or poor student, may
be established through asking many questions early in the group’s existence,
while the “helper”, or good student, is the one who responds. Walen (1994)
describes students” perceptions of questions in whole class discussions. She
reports that students assessed the level of questions asked and labeled them as
“dumb” or “good” questions. These labels were passed from the question to
the questioner. The students in her study, however. were from a small school
system and had known each other for many years. Thus the statu: given to the
question may have come from a prior status given to the student. In this study,
students who are unknown to each other also developed attitudes about ques-
tions and questioners, but the key factor appears to be quantity of questions
carly in the term.

Being in the World of the Classroom

Analysis of data proceeded from a framework that assumes that students
bring many assumptions and attitudes into the classroom. (For a more com-
plete exposition of this framework, see Williams, 1993.) Briefly, this frame-
work assumes that students’ actions reflect the Heideggerian notion of being-
in-the-woerld. They are thrown into a situation, and they act. How they judge a
situation and act within that situation is often at a non-reflective level. As long




as their assumptions do not come into conflict with something within the situ-
ation, they do not examine the basis of their actions. Precisely because these
assumptions are not reflected upon, their existence has profound impact on the
actions of individuals. At the same time, the underlying nature of the assump-
tions make them difficult to articulate. If I ask student A whether student B, in
the same group, is smart or not smart, student A will have an answer. If I ask
student A about the basis for that assessment, the answer is likely to be vague.
However, by looking at students’ actions and interactions, some indication of
their underlying assumptions can often be inferred.

The data presented in this report come from videotapes of small group
interaction during one semester of pre-calculus taught by the author at a com-
prehensive regional university. After obtaining informed consent, the class was
videotaped each time it met. Each day, established small groups reviewed as-
signments or performed laboratory explorations together. Each of three groups
was videotaped alternately beginning on the third day of class. Due to length
constraints, this paper will report on the evidence of differing mathematical
status within groups as a whole, but will use one of the groups as an example.
This focus group consisted of three males, whom I wiil call Paul, Steve, and
Ronnie. This group was videotaped during nine, 75-minute classes spread
through a 15 week term. The interactions discussed here took place without
the teacher present.

Suggestions, Questions, and Mathematical Status

As the term progressed, it became obvious that the groups valued the con-
tributions of cach member differently. One strong example of this discrepancy
can be seen in the two lab activity tapes which were part of the nine videotapes
of Paul, Steve, and Ronnie. The first of these two episodes occurred in late
September, about one month after the beginning of classes, and the second
occurred in December about a week before the end of the term. In the first Jab,
all of the students participated fully. They used a Calculator Based Labora-
tory"™ connected to a TI-85 calculator to collect data on the path of a ball thrown
up and ailowed to fall freely. They took turns attempting to toss the ball over
the detector, but Paul always operated the calculator. They all examined the
resulting graph and collectively decided when their graph was “good enough.”
During this episode, there were no questions asked and only a few suggestions
offered because the group did not have difficulty in producing or ugreeing on
the required graphs. All of the members were involved in deciding how to
accomplish their tasks and when they were done. During the second lab, how-
ever, the interactions were different. In this Jab, students were given a styrofoam
cone and a knife, and they were to cut the cone to produce sections whose
outlines were a paraboli, one branch of a hyperbola, a circle, and an ellipse.
This time, Paul and Steve discussed with each other what to do, while Ronnie
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looked over their shoulders. Once they reached a decision, they gave Ronnie
the knife to make the cuts, but only after Steve had marked where to cut. After
cutting the cone, Ronnie was teased about his poor job of cutting. Interest-
ingly, as the students passed around the various pieces, it was Ronnie who
asked which piece was the parabola and which was the hyperbola. Unlike the
earlier lab where everyone seemed to participate more or less equally, in this
lab, Ronnie was not included in the decision making part of the lab. It appeared
that all three students were participating, but their participation was not of the
same type.

To further document the disparity noted above, each group’s tapes were
examined. Using the constant comparative method, student suggestions were
coded, and the reception of the group was noted. A pattern developed that
substantiated the observation that some students’ suggestions were seldom fol-
lowed, while other students’ suggestions were usually or always followed.
During the first half of the term, Ronnie made about half of all oral suggestions
in his group, with many of them ignored. Steve made most of the rest of the
oral suggestions, and these suggestions were usually either implemented im-
mediately or discussed between Paul and Steve. Paul was usually the physical
center of this group’s activity, so most of his suggestions were not oral. He
would write something down on paper, if they were trying to perform some
mathematical procedure, or he would key something into his calculator and
show the resulting display to the others. Not surprisingly, students whose
suggestions were not followed tended to offer fewer suggestions as the term
progressed. During the second half of the term, Ronnie made fewer than ten
percent of the oral suggestions. Steve continued to make about the same num-
ber of suggestions as earlier, but now they accounted for a much higher per-
centage of all suggestions. Paul also began to give more oral suggestions be-
fore or as he tried them.

Further examination of the groups’ interactions led to the observation that
the more questions a student asked early in the term. the fewer suggestions he
or she made later in the term. Ronnic asked the greatest number of questions of
the three students, but early in the term, he made about as many suggestions as
he asked questions. Later, he continued to ask many questions, but he made
fewer suggestions. Early in the term, all questions tended to be put to the group
as a whole, while later the questions became more directed towards particular
group members, giving further evidence of perceived differences in mathematical
status. Of the questions clearly directed toward an individual (either by name
or by touching to gain attention) at least sixty percent were directed toward
Paul. In general, Ronnie would ask Paul most of his questions and would only
ask Steve if Paul were busy. Paul directed all of his real questions toward
Steve, and Ronnie had only three real questions directly addressed to him in all
nine tapes. By real questions, I mean questions that ask for information un-
known to the asker.




Toward the middle of the term, question asking changed. While the “helped™
members still asked niany questions, the “helpers™ also began asking ques-
tions. but not real questions.

Paul:  "OK. Ronnie. how do you get A

Ronnie: "Fill in another point?”

Paul.  “Yeah, that's right”

These leading questions were similar in tone and type to questions usually
asked by teachers (Mcehan, 1979). The types of questions asked by the “helped™
were also examined, revealing many procedural questions. A typical example
was a question about the calculator.

Ronnie: (Touching Paul’s arm) “How do you get the picture up?”

Paul:  Stat, Draw, Scatter.” (key strokes on the calculator)

The interactions between “helpers™ and “helped™ in two of the three groups
followed this pattern closely. The third group also followed this pattern, but to
a lesser extent. One possible explanation may be that some members of the
third group were known to cach other prior to this class, unlike the members of
groups one and two.

Few Answers and Still more Questions

The level of involvement in the group appears to be closely hnked to a
student’s status, and thus to a student’s engagement in mathematics. This study
suggests that question asking is one way that students may acquire or confirm
the status of “helped™ or “helper™ in small groups. There 1s not sufficient evi-
dence to support a causal link between questien asking and mathematical sta-
tus, but it is apparent that these two issues are linked. How quickly mathemati-
cal status is assigned cannot be determined from this study. This report does
further our understanding of how students interact in small groups, and suggests
one why in which a particular student may come to have high or low math-
ematidal status in a group. It also raises an interesting question concerning
gendef issues in mathematics. 1F girls and women frequently offer suggestions
in tie form of questions, as suggested by various writers (beginning with Lakoff,
1975), xdoc.\ this practice lead to lower mathematical status?  Other questions
also enmierge. Which comes first. mathematical status or questioning behavior?
Do students distinguish between genuine questions, disguised suggestions, and
teachertlike feading questions in assigning status”? Do students distinguish be-
tween procedural questions, coneeptual questions, and exploratory or exten-
ston questions in assigning status? What relationships exist between students’
mathematical status and their understanding of mathemauces?  Like much re-
scarch, this study suggests many new questions,
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OCCASIONING UNDERSTANDING:
UNDERSTANDING OCCASIONING
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As part of our rescarca of students’ mathematical understanding we are exploring how
interactions with the environment and those persons in it become occasions for student
and teacher knowing. The illustration used in this paper comes from a study of a class
of tenth grade mathematics students with weak performance histories in school math-
ematics as they worked in a hands-on and pre-formal algebra environment. In this
paper, we discuss how the teacher's initial prompt became an occasion for the students’
mathematical activity: how one student’s actions become occasions for another student’s
learning: how the teacher's interaction with the students throughout the session was
implicated in the students” mathematical knowing; and how the teacher’s pedagogical-
content knowing was revealed and changed in the interaction within this setting.

Introduction

[Heinz von Foerster] coined the phrase “order from noise™ to indicate
that a self-organizing system does not just “import” order from its en-
vironment, but takes in new energy rich matter, integrates it into its
own structure, and thereby increases its order. (Capra, 1996, p.84)

Since human learners can be thought of as self-organizing systems par
excellence, the above quote suggests that in mathematics classes the student is
not directly instructed by the teacher, or materials, or text, but must use his or
her own schemes to make sense of the environment and hence alter his or her
mathematical understanding. At the same time the above quote suggests that
the environment and others in it act as sources of “energy rich matter” and
hence are fully implicated in the student’s cognition. The question of how this
works is at the centre of much contemporary research in mathematics educa-
tion (e.g.. Cobb, Yackel, Wood, 1992; Confrey, 1995; Simmt. Kieren, Gordon
Calvert, 1996). The purpose of our paper is to continue the discussion by ex-
ploring the question: How, through student (and teacher) actions, do aspects
of the classroom environment, and interaction among students, and among stu-
dents and teachers become transformed mto occasions for mathematical know-
g’

We consider this question by interpreting the interaction among tenth grade
mathematics students with weak performance histories in school mathematics
as they worked with ateacher in a hands-on and pre-formal polynomial algebra
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environment. In particular, we will illustrate how materials and the interac-
tions raise the possibilities that are uniquely transformed by individual students
using their own schemes into mathematical knowing actions. We will also
illustrate how reciprocally such actions help change the teacher’s pedagogical
content knowledge.

Theoretical Perspective

It is easy to think of mathematical activity as occurring in response to dis-
crete stimulus scttings or as response oriented problem solving. § ich activity
can be captured in the oral and written responses of students which can then
either be matched and compared with pre-given “answers” or analysed in their
own right for patterns and characteristics. But such a view of mathematical
products and the study of them, however valuable and however complex. might
be thought of as a study of the disembodied surface of mathematical knowing.
The theoretical framework underlying this research asks us to think differently
and to consider mathematical knowing as a fully embodied phenomenon. It is
based on the biological, evolutionary and ecological work on cognition devel-
oped in Maturana and Varela (1987) and Varela, Thompson and Rosch (1991).
Rather than observing mathematical cognition as answer-generating or even as
problem-solving, this enactive view observes mathematical knowing in the per-
sonal action of bringing forth a world of mathematical significance with others
in a sphere of behavioural possibilities (Maturana and Varela, 1987). In this
paper we consider occasioning as a mechanism which helps explain how this
“bringing forth™ occurs. Qccasioning occurs as the person selects elements
Sfrom the environment and acts on them, thus changing the environment and in
SJact bringing forth a world; but also the history of the person’s mathematical
activity is changed and thus his or her understanding (structure—schemes) is
altered.

Methods and Data Sources

In order to study the way in which the environment and student actions and
interactions allowed for the occasioning of changing understanding a math-
ematics class of 28 students participated in a two month long rescarch project
as they studied polynomial algebra. The authors, supported by the observation
of and continuing interaction with the regular classroom teacher developed kits
of 2 and 3 dimensional polynomial materials and some 60 lesson set-ups which
were framed in the context of what was called the Polvnomial Engineering
Project. 1t was intended that these materials and lessons would allow the stu-
dents to experience and use polynomial convepts, language, and computations
to design and describe mathematical objects. The study was conducted across
25 80-minute class periods and followed the objectives of the provincial cur-
riculum. Although the classroom teacher was present for all of the lessons and
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worked with small groups of students, it was one of the researchers that took
responsibility for teaching the class over the course of the research project. In
addition to video and audio taping | or 2 groups of students each day and inter-
acting and interviewing many of the students on an ongoing basis throughout
the unit, two pairs of students participated in a clinical interview five months
after the classroom teaching experiment. Student work, observer field notes,
video and audio tapss, interview records, notes from interaction with the class-
room teacher and the input of the researchers who participated in the activity at
the research site formed the corpus of data for this study.

Results and Interpretations

The interpretations developed below which attempt to answer the central
question posed in this paper are based on the interactions of two students, Donny
and Jennifer as they worked with the teacher/researcher, Tom Kieren. on a vari-
able-entry prompt. This prompt and the actions of the students discussed here
were typical of the ways in which many of the students in this class came to
think of and treat polynomial algebra. When Donny was asked why he was in
the non-academic mathematics class, he, like others in his class had been heard
to say, replied “Because 1 suck at mathematics.” In contrast, Jennifer re sponded
that she was “LD” (leamming disabled) and had always been placed in such

classes. Records of the students’ work (figure 1) and the vignette (figure 2) that
follow are based on a short portion of a clinical interview in which Donny. who
“sucked at math.” and Jennifer. who was “"LD" were exploring polynomial fac-
tors and products.

In order to provide a response to the rescarch question posed in this paper
and remain within its scope. the interpretation below takes the form of brief
answers to various sub-questions.

. ® ;
o Nﬁxa

Figure 1 A part of Jennifer and Donny’s working records.
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1) How does the prompt come to provide occasions for learning ? In light of
the role Donny plays in the dialogue in Figure 2, one would think that he would
have immediately made sophisticated responses to the prompt. But such was
not the case. Donny was puzzled by the missing term and even how to interpret
the “24”. His initial response was to take out the polynomial kit and build "
“rectangles.” Jennifer responded ditferently. Because she had an image of

factorable rectangles (that is, rectangles for which the length and width could

be expressed as first degree polynomials) and had come to associate that image

with the mathematics of the grid, she used this image and this “‘tool” to create a

variety of possible polynomials. This difference, as well as the profusion of

polynomials which were produced by Jennifer and Donny, points to the way in

which the prompt was turned into occasions for mathematical action. The prompt

did not cause a particular set of actions: rather. the students acted within the

mathematical constraints of the prompt and the constraints of their own histo-

ries (Jennifer with grids and Donny, at first. with materials).

2) How does the action of one student come to provide an occasion for
other students’ learning? In lines 5-10 we see the effect of Jennifer’s polyno-
mial creations on both the teacher and Donny. By using different factors of 24
to create binomial factors (see Figure 1), Jennifer provided instances which
surprised the teacher and prompted Donny to reflect on the products of his,
Jennifer’s, and the teacher’s interacting activities.

As discussed above, Jennifer’s image of factorable polynomials allowed
her to use grids to generate polynomials. But her collection of polynomials
became a continuing source inspiring Donny’s pattern noticing and pattern cre-
ating activities. For example, Donny suggested that they turn their attention to
what happens when vou “reverse” the factors of 24 (eg.. 2x + 4 and x + 6
compared with 2x + 6 and x + 4). Donny and the teacher became very inter-
ested in this idea; but their very interest and prompting brought Jennifer’s tech-
nical and reflective attention to this task as well. Notice in lines 15-17 she
adjusts her technique and in line 18 she now offers a conjecture. Thus Jennifer's
actions (and the teacher’s) enlarged the sphere of possibilities for Donny. How-
ever. Donny’s thinking prompts not only different actions on Jennifer's part
(lines 16, 26) but different reflections as well (see line, 16 18). Thus we might
sity Donny’s and Jennifer's mathematics in action are co-implicated: their ac-
tions co-cmerge.

3) What is the impact of the teacher on the occasions for learning in this
serting? Although the teacher provided the initial prompt for this lesson, he did
not “cause” the leaming nor did he simply facilitate or model that learning. Tt
is clear that the teacher was working with the students as they worked. This is
llustrated in his indications of surprise and delight in the mathematics as it
developed in the actions of the students (e.g.. lines 7. 25). Through his own real
interest in the situaiion he provides other possibilities or in von Foerster's terms
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Figure 2 A vignette created from the trunscripts and video tepe of a pair of students, Donny
and Jennifer, and the teacher/researcher, Tom, responding to a variable-entry prompt

In this scene, Donny and Jennmifer were responding to the prompt:
The following polvnonual is known to form a rectangular design, however it is missing a term.
Before vou can pass on the order 1o vour client vou need to find out what the missing term might
be. Offer c possibilirv or a list of possibilines to go over with vour partner.

22+ +24

Jennifer had just found that by using 3 and B (factors of 24 that Donny had suggested they
consider) that she could generate another possible polynomial.

“Oh! That is a pretty good one. I didn’t know it was going to tum out quite the way it did.”
noted Tom, the teacher/rescarcher.

"1 didn’t even see that” responded Donny.

“Because you were talking too much,” Jennifer. replicd as she looked up from her sheet.

Denny had been generating factors of 24 out loud. As he did so he looked to Jennifer to
compute the polynomials that were generated using the set of factors he had identified. By this
time it had struck Donny that there was some potential in taking the same two factors of 24 and
reversing thein in the gnid that Jennifer had been using 10 do her computations.

“Now try your reverse,” Tom suggested.

“It’s going to be the same.” said Jennifer. “You mean put a 2x here and then—-"

“No,” replied Donny.  “Put x and then switch the 4 and the 6™

Jennifer was sull not sure why Donny and Tom were suggesting she do this  “You are sull
going to get the same thing.”

As she carried out the computation, her records were visible for Tom and Donny to reflect
on. "What's the difference.” Donny asked

“There it ts,” said Tom as he pointed to the posibon of the x terms on the gnd. “I0s the way
itlooks. They look quite different.”

But Dunny noticed something etse. "No. not only that. there’s no 12 here and there™sa 12
here.”

Oh. nght.” Tom's voice reflected his surpnise.
o

“Oh. they are different. We are gettng this one ™ Tom pointed to another polynomal
product that had been calculated previously

By this ime Tom and Donny were very excited. Damel asked Jenmifer to do another one.

Tom was still working through what he and Donny had noticed. “So you are saving
actualy when you had 2x +4 and x + 6 you got the same shape down here as this one ™

“Right.” Donny confirmed Tom'’s observation.

“Wow, this 1s just incredible. 1 didn"tknow this.”

“And the only thing that 1s different1s nght here.” Donny concluded.

Donny, Jessica, and Tom continued to work on this property that switching the factors of 24

between the ¢ and the 2x terms would generate poly nomial products that they found trom other
tactors.

When a third set of factors of 24 generated vet another new polynomial product Donny blurted
out “That actually scares me. Just by simply putung st a ditterent part and you get a ditferent
answer. You know your work, but you just notice we get difterent answers, You put that on
the test and you'll get kids contradicting themselves saying, 1s this really right?™




“energy rich matter” for the students as he points to what he sees as interesting
in the mathematics they are bringing forth together (e.g.. lines 15, 22-23, 27).
As is perhaps best seen in Donny’s remarks in lines 37-40, this matter is used
by the students in their own way not only to generate mathematics but to reflect
on how they are doing this.

4) What is the nature of the teacher’s pedagogical content knowledge
as revealed in this setting? It is typical to think of a teacher’s pedagogical
content knowledge as a blending of content and pedagogy (Shulman, 1986)
into how a particular topic (e.g., factorable polynormmals) is organized and rep-
resented for instruction (e.g., Polynomial Kits, grid techniques, even variable-
entry prompts). In addition, pedagogical content knowledge might refer to
teacher’s mental constructions of the relationship between student’s leaming
(perhaps as measured on a test) and pre-given mathematical knowledge. Our
interpretation of the vignette in figure 2 adds a lived dimension to pedagogical
content knowledge . Pedagogical content knowledge is not something that the
teacher acquires. Like the student’s mathematical knowing, pedagogical con-
tent knowing is a bringing forth of a world of significance with others, espe-
cially with students in the course of mathematical knowing in action and inter-
action. It is the students’ actions in the environment which actually occasion
the transformation of the teacher’s pedagogical content knowledge (lines 24-
30). Here the teacher is changing what he knows pedagogically about polyno-
mials based on the mathematical concems of the students. When he says I
didn’t know this™ in line 33, the teacher is not revealing ignorance of factorable
polynomials per se. What he didn’t know and what he was in the process of
learning was how this might manifest itself in the mathematical lives of stu-
dents. Thus the actions of the students provided the possibilities for teacher
learning not just about student thinking but about the way certain polynonual
ideas can occur; that is, new to him pedagogical mathematics. Here the teacher
was the learner and in certain places (e.g., lines 20-34) this reciprocity of teach-
ing and learning is especially evident.

Summary

This paper has been about looking at mathematics teaching/lcarning not
simply as problem solving but as bringing forth a world of significance with
others. We have argued that such a view prompts us to think of how: elements of
the environment and interactions in it are transformed by the knowing actions
of individuals into occasions for learning. 1f in such a setting the teacher acts to
open puossibilities for the feamers and vice versa, “energy rich matter™ can be
transformed by both teacher and students together imo occasions for richer
matheraatics in action.
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The purpose of this paper is to document the interactive process by which students
developed personally-meaningful ways to reason mathematirally within the context of
measurcment. This process encompasses the proactive role of the teacher, the contri-
bution of carefully sequenced instructional activities, and the importance of discus-
sions in which students explain and justify their thinking. In doing so. we will present
episodes taken from a four-month teaching experiment conducted in a first-grade class-
room. Our intent is not to offer examples of exemplary teaching. Itis instead to provide
a context in which to examine the relationship between the role of measurement and
students’ construction of increasingly sophisticated ways to think and reasen math-
ematically.

Introduction

Our purpose in this paper is to describe how one group of students devel-
oped personally-meaningful ways to reason mathematically within the context
of measurement. To clarify our viewpoint, we present episodes taken from a
first-grade classroom in which we conducted a four-month teaching experi-
ment. One of the goals of the teaching experiment was to develop instruction:l
sequences designed to support first-graders construction of meaningful under-
standings for (1) measurement and (2) mental computation and estimation strat-
egies for numbers up to 100. A primary focus when developing the instruc-
tional sequences was to support students’ multiple interpretations of problem
situations. These interpretations would then serve as the basis for classroom
discussions in which students explained their mathematical reasoning. Our
intent in presenting the episodes is not to offer examples of exemplary teach-
ing. Itis instead to provide a setting in which to examine measurement as a
context for supporting students’ construction of sophisticated ways to think
and reason mathematically.

The first-grade classroom in the study is of particular interes because pre-
inminary analysis of the data indicates that the students” develepment of math-
ematical reasoning was substantial. For example. students who at the begin-
ning of the classroom teaching experiment were unable to reason quantitatively
with numbers up to twenty were by the end of the experiment able to use flex-
ible strategies for mental computation with two-digit numbers, The particular
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approach we take to analyzing students’ mathematical activity involves coordi-
nating constructivist analyses of individual students’ activities and meanings
with an analysis of the communal mathematical practices in which they occur
(cf. Cobb & Yackel, in press).

Data Corpus

Data were collected during the spring semester of the 1996 school year and
consist of daily video-recordings of 62 mathematics lessons from two cameras.
One camera focused on the white board and students who came to the front of
the room to offer explanations and justifications. The second camera focused
on the students seated in whole class. Additional documentation consists of
copies of all the students’ written work, three sets of daily field notes that sum-
marize classroom events, notes from the teacher’s daily planning and reflection
with the research team, field notes and audio tapes from weekly project meet-
ings, and taped clinical interviews conducted with each student in January and
May.

The Instructional Sequences

As we have noted, a primary focus cf the teaching experiment was to de-

velop two instructional sequences. The first sequence dealt with measurement
and the second one built on the measuring activities to support students’ con-
struction of mental computation and estimation strategies for reasoning with
numbers to 100. In the case of the instructional sequence that dealt with mea-
surement, our initial goal was that students might come to reason mathemati-
cally about measurement and not merely measure accurately. The focus was
therefore on the development of understanding rather than the correct use of
tools. In particular, we hoped that the students would come to interpret the
activity of measuring as the accumulation of distance (c¢f. Thompson & Th-
ompson, 1996). Further, our intent was that the resuits of measuring would be
structured quantitics of known measure. We therefore hoped that the students
would come to act in a spatial environment in which distances are structured
quantities whose numcrical measure can be specified by measuring. In such an
environment, it wouid be seif evident that while distances are invariant quanti-
tics, their measures vary according to the size of the measurement unit used.
As we will sec, measuring with composite units became an established
mathematics practice in the course of the teaching experiment. Initially, the
students drew around their shoes and taped five shoe-prints together to create a
unit they named a feotsirip. Later, in the setting of an ongoing narrative about
acommunity of Smurfs, the students used a bar of ten unifix cubes to measure.
These instructional activities evolved into measuring with a strip that was the
length of 100 unifix cubes. This in turn made it possible for the students® activ-
ity of measuring to serve as the starting point for the second instructional se-

636




.

quence that focused on mental computation and estimation with two-digit num-
bers. Interms of Greeno’s (1991) environmental metaphor, the intent of this
latter sequence was that the students would come to act in a quantitative envi-
ronment structured in terms of relationships between numbers up to 100. We,
therefore, focused on students’ construction of numerical relationships that are
implicit in their calculational methods. This shifts the focus from calculational
strategies per se to the mathematical interpretations and understandings that
make flexible use possible.

Classroom Episodes

The instructional activities used in the teaching experiment were typically
posed in the context of an ongoing narrative. To accomplish this, the teacher
engaged the students in a story in which the characters encountered various
problems that the students were asked to solve. The narratives both served to
ground the students’ activity in imagery and provided a point of reference as
they explained their reasoning. In addition, the problems were sequenced within
the narratives so that the students developed increasingly effective measure-
ment tools with the teacher’s support. Further, the narrative supported the
emergence of tools out of students’ problem solving activity.

The second narrative developed during the measurement sequence involved
a community of Smurfs who often encountered problems that involved finding
the length or height of certain objects. The teacher explained that the Smurf’s
decided to measure by stacking cans the height of the object to be measured. In
the classroom, the students used Unifix Cubes as substitutes for cans and mea-
sured numerous objects tor the Smurfs such as the height of the wall around the
Smurf village, the length of the animal pens, and the depth of the water in the
river. After several measuring activities, the teacher explained to the students
that the Smurfs were getting tired of carrying around the large number of cans
needed for measuring. The students agreed that this was cambersome and dis-
cussed alternative approaches. Several suggested iterating a bar of cubes (cans)
that they eventually called a Smurf bar.

When measuring with the Smurf bar, all the students measured by iterating
the bar along the length of the item to be measured and counting by tens. How-
ever, some counted the last cubes of the measure within the last iterated decade.
Solutions of this type became the focus of discussions as can be seen in an
incident that occurred two weeks after the measurement sequence began. The
teacher had posed the following task: The Smurfs are building a shed. They
need to cut some planks out of a long piece of board. Fach plank must be 23
cans long. Show on the board where they would cut to get a plank 23 cans long.
Students had been given long pieces of adding machine tape as the board and
asked to use the Smurt bar to measure a plank the length of 23 cans. Ann was
the first student asked to share her solution process with the class. She showed
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how she had measured a length of 23 cans by iterating the bar twice and then

counting 21, 22, and 23 beyond the second iteration. When she finished, Eddy

disagreed stating that Ann had shown a distance of 33 since he counted cubes

21, 22, and 23 within the second it ration, thus measuring a length that was

actually 13 cubes. Ann then asked Eddy to explain his answer again.

Eddy:  Ten (places bar down in first iteration), 20 {(moves bar to second
iteration). (Pause) I changed by mind. She’s right.

Teacher: What do you mean?
Eddy:  This would be 20 (points to end of second iteration).
Teacher: What would be 207

Eddy:  This is 20 right here (places one hand at the beginning of the
“plank” and the other at the end of the second iteration). This is
the 20.

Teacher: So that where your fingers are shows a plank that would be 20
cans long? Is that what you mean? Any questions for Eddy so
far?

Eddy:  Then if I move it up just three more. There. (Breaks the bar to
show 3 cans and places the 3 cans beyond 20). That’s 23.

It appeared that in the course of re-explaining his solution. Eddy reflected
on Ann’'s method and reconceptualized what he was doing  "1en he iterated the
har. Initially, for Eddy. placing the Smurf bar down the second time as he said
*20” meant the twenties decade. Therefore, for him, 21, 22, and 23 lay within
the second iteration. However, he subsequently reconceptualized “20" as re-
ferring to the distanced measured by iterating the bar twice and realized that
21, 22. and 23 must lie beyond the distance whose measure was 20. This type
of reasoning was supported by Eddy at least implicitly folding back (McClain
& Cobb, in press) to counting the cans that he iterated when moving the bar
(i.e., the measure of the first two iterations was 20 because he would count 20
cans).

It 1s important to note that the teacher’s overriding concern in this episode
was not to ensure that all the students measured correctly. In fact. the teacher
frequently called on students who had reasoned differently about problems in
order to make it possible for the class to reflect on and discuss the quantities
being established by measuring. Her goal was that measuring with the Smurf
bar would come to signify the measure of the distance iterated thus far rather
than the single iteration that they made as they said a particular number word.
Her focus was therefore on the development of mathematical reasoning that
would make it possible for the students to measure correctly with understand-
ing.




After the students had measured several planks and other items with the
Smurf bar, the teacher explained that the Smurfs decided they needed a new
measurement tool so they would not have to carry any cans around with them
each time they wanted-to measure. In the ensuing discussion, students pro-
posed creating a paper strip wiat would be the same length as a Smurf bar and
marked with the increments for the cans. During a discussion about the mean-
ing of measuring by iterating a ten-strip, the teacher taped several of the stu-
dents’ strips end-to-end on the white board to show successive placements of
the strip. In doing so, she created a measurement strip 100 cans long.  The
transition from the measurement sequence to the mental computation and esti-
mation sequence occurred when the students began to use the measurement
strip to reason about the relationship between the lengths or heights of objects
that were not physically present. One of the first instructional activities in the
mental computation and estimation sequence involved an experiment the Smurfs
were conducting with sunflower seeds. The teacher explained that the Smurfs
typically grew sunflowers that were 51 cans tall. However, in one of the ex-
periments, the sunflowers grew only 45 cans tall. Students were then asked to
find the difference in heights and were given only a measurement strip. As a
consequence, they could not create objects 45 cans and 51 cans long to repre-
sent the sunflowers, but instead had to reason with the strip.

Students first worked in pairs to solve the task and then discussed their
solution in the whole-class setting. The teacher began by placing a vertical
measurement strip on the wall and asking students to mark both 51 cans and 45
cans (see Figure 1). An issue that emerged almost immediately in the discus-
sion was that of whether to count the lines or the spaces on the strip.

lllTng

]
]

1

¢

Figure 1 Measurement strip marked to show 51 und 45,
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Pete: Here (points to 51) all the way down to here (points to 45) would
be seven.

Teacher: Can you show me the seven?

Pete: Here is 51 and here is 45 and here is 1. 2, 3, 4, 5. 6, 7 (points to
lines as he counts).

Pat: I have a questinca. You are supposed to count the spaces not the
lines.

Teacher: Why, Pat?

Pat: The cans of food are bigger than the lines and you are trying to

figure out how many cans not lines.

Teacher: So when you say space you think of this space as a can of food
(points)?
Pat: And that’s how much and you’re trying to figure out how much
that is.
For Pat, reasoning with the measurement strip was related to the prior activity
of measuring with a Smurf bar. As a consequence, the spaces signified unifix
cubes/cans for him. In contrast, reasoning with the strip did not appear to be
grounded in prior activity for Pete and he was simply trying to figure out a way
to use it to solve the task at hand. However, Pat’s explanation led Pete to modify
how he reasconed with the strip. This is evidenced by the fact that Pete asked if
he could use a can/cube to help him solve the task. He then folded back to prior
activity by placing a single cube on the measurement strip and iterating the
spaces between 45 and 51 to arrive at the answer of six rather than seven.

Immediately after the exchange between Pat and Pete, Andy gave an expla-
nation that involved reasoning about the quantities in a different way.

Andy:  If you went from 50 down five you'd get to 45 cans. Think § less

than 50. But you are really one more so it's six since it's one

more than 50,
Andy's explanation indicates that for him, as for Pat, 45 and 51 signified
distances from the bottom of the strip measured in cans. The task for him
was to find the difference between these two quantities, and he did so by
reasoning with the strip. We would in fact argue that the strip supported the
shift he made from a counting to a thinking strategy solution in which he
reasoned that 50 to 45 was five, so 51 to 45 is six.

It is important to note that the solution method offered by Andy fit with the
teacher’s pedagogical agenda of supporting students’ development of increas-
ingly sophisticated strategies. However, the teacher was also aware of difter-
cnces in her students’ reasoning and did not want to create a situation where
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students simply imitated strategies that they did not understand. As a result,
she continued to acknowledge the differing ways that students reasoned about
tasks while highlighting solution methods that fit with her agenda. Thus, the
focus in discussions was on the numerical meaning that students’ records of
their measuring activity had for them. In addition, students seemed to
reconceptualize their understanding of what it means to know and do math-
ematics as they compared and contrasted solutions. The crucial norm that be-
came established was that of explaining and justifying solutions in quantitative
terms. We find this significant because the students were not only able to
reconceptualize their notions of school math in this setting, but, using Skemp's
(1976) distinction, many of the students shifted fromn instrumental toward more
relational views of doing mathematics.
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COORDINATING SOCIAL AND PSYCHOLOGICAL
PERSPECTIVES TO ANALYZE STUDENTS’
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This paper provides an argument for the coordination of social and psychological per-
spectives when analyzing students’ conceptions of measurement by presenting class-
room cpisodes taken from a four-month classroom teaching experiment. The focus of
the experiment was on the development of an instructional sequence intended to sup-
port students’ construction of personally-meaningful ways to reason about measure-
ment. Against the background of the measurement studies of Piaget and the research
cfforts that followed. this paper presents a study in which informal individual psycho-
logical analyses were coordinated with social analyses of classroom interactions in
order to provide insights into students” ways of reasoning that would subsequently
intorm instructional decisions.

Introduction

Measuring plays a prominent role in both in- school and out-of-school prac-
tices. As a result, instruction in measurement is written into most elementary
curricula. Accordingly. the National Council of Teachers of Mathematics Cur-
riculum and Evaluation Standards for School Mathematics (1989) emphasize
the importance of establishing a firm foundation in the basic underlying con-
cepts and skills of measurement. The Standards stress that children need to
“understand the attribute to be measured as well as what it means to measure™
(p. 51). A large body of literature on children’s conceptions of measurerment
has amassed over the past three decades with undoubtedly the most influential
work being that of Jean Piaget and his colleagues (Piaget, Inhelder, & Szeminska,
1960). Piaget i al. identificd developmental fages that they claimed children
pass through as they learn to measure. As a result of Piaget's analyses, many
rescarchers have tried to isolate the ages at which children develop certain mea-
surement coneepts, Other researchers devised training programs in order to
increase the acquisition rate of measurement concepts. However, few studies
have been conducted which address social and cultural influences on children’s
development of meaningful wavs to reason about measurement. Although Piaget
and his successors would not deny that social interactions are an important
source of cognitive conflicts, their actual analyses focused on cognitive devel-
opment without acknowledging the role that interactions with peers or inter-
viewers played in the process.




In our view, learning is both an individual and social accomplishment with
neither taking primacy over the other. Therefore, for us. investigations of stu-
dents’ understandings of measurement should be framed in terms of individu-
als’ participation in the social practices of the classroorn community or of the
interview situations. The relationship between social and psychological pro-
cesses has received increased attention in recent years but is defined differently
in contrasting theoretical perspectives. Socioculturalists, for instance. give pri-
macy to social and cultural influences. They would argue that there is a rela-
tively direct link between social interactions and psychological processes (Cobb
& Yackel, in press). In other words, the quality of students’ thinking is gener-
ated by or derived from the social processes in which they participate. In con-
trast, emergent theorists characterize the link between collective and individual
processes as indirect in that participation enables and constrains individual learn-
ing. but does not determine it. In the emergent perspective, participation in the
collective mathematical practices is said to constitute the immediate social situ-
ation of learning and to provide opportunities for the possibility of learning
(Cobb & Yackel, in press). Learning is both an individual and social process
with neither taking primacy over the other. The social and psychological are
then said to be reflexively related.

Despite the differences between the emergent and sociocultural perspec-
tives, proponents of both theoretical perspectives claim that students’ develop-
ment cannot be adequately explained in cognitive terms alone; social and cul-
tural processes must be acknowledged when explaining psychological devel-
opment. It is important to note that sociocultural and emergent theories do not
discount psychological analyses conducted in interviews. However, theorists
from both sociocultural and emergent perspectives would argue that traditional
psychological analyses characterize students’ conceptual understanding inde-
pendently of situation and purpose (Cobb and Yuckel. in press). They would
instead argue that interviews are social events where the interviewer/child sys-
tem is the unit of analysis.

Interviews are not the sole means of assessing students’ conceptions. Ob-
serving students as they participate in the social practices of the mathematics
classroom offers an additional perspective into students’ understanding. These
classroom observations, especially in the context of a classroom teaching ex-
periment, involve accounting for individuals’ mathematical development as they
participate in the social and cultural practices of the classroom community (Cobb,
in press: Yackel, 1995). Individual students” development is analyzed in terms
of their participation in and contribution to the emerging, communal math-
ematical practices. Further, students are seen to contribute to the evolution of
the mathematical practices as they reorganize their activity while participating
in these practices. As a result, the classroom teaching experiment is one site for
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investigating students’ understandings of incasurement that takes into account
students’ participation in social and cultural practices.

In the following sections of this paper, we will ground our discussion in a
classroom teaching experiment we conducted in one first-grade classroom. We
begin by first describing the intent of the instructional sequence that was uti-
lized. Next, we describe the setting. We then present episodes from the class-
room intended to highlight the importance of coordinating social and psycho-
logical analyses in supporting students’ mathematical development.

Instructional Sequence

The primary focus of the teaching experiment was to develop two closely
related instructional sequences. The first sequence involved supporting stu-
dents’ increasingly sophisticated understanding of measuring and the second
built on the measurement sequence to support students’ construction of mental
computation and estimation strategies for reasoning with numbers up to 100.
In the case of the measurement sequence, our hope was that students would
come to reason mathematically about measuring rather than become proficient
with measuring procedures. This in turn made it possible for the students’
activity of measuring to serve as the starting point for the second instructional
sequence that focused on mental computation and estimation with two-digit
numbers.

The instructional intent of the measurement sequence was formulated such
that measuring was an activity in which students are physically or mentally
acting on space. We wanted the activity of measuring to signify the partition-
ing of space into units that could be used to find a measure. Thus, measuring
would not merely be a matter of iterating a unit and verbalizing the number
obtained when the unit was iterated for the last time. We would want the num-
ber that results from the last iteration to signify not simply the last iteration
itself but rather the result of the accumulation of the distances iterated (cf. Th-
omipson & Thompson, 1996). For example, if students were measuring by
pacing heel to toe, it was hoped that the number words they said as they paced
would each come to signify the measure of the distance paced thus far rather
than the single pace that they made as they said a number word. Tt was also
hoped that the students would come to act in an environment of quantities that
could be structured in different ways. For example, we wanted students to be
able to interpret their measuring activity as not only a space measuring 25 feet
but also five distances of five feet or two distances of ten feet and a distance of
five feet. as the need arose.

Setting
The data reported in this study were taken from a four-month classroom

teaching experiment conducted in a first-grade classroom in a private school in
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the Nashville Metropolitan area. The 16 students, seven girls and nine boys,
were primarily from upper middle-class backgrounds. The teacher was in her
fifth year of teaching and was attempting to reform her practice in light of
current recommendations. She viewed the members of the research team as
peers with whom she could collaborate as she reflected on her changing prac-
tice.

At the beginning of the teaching experiment, interviews were conducted to
assess students’ mathematical understanding so that we could ensure that the
instructional sequence built on their current ways of knowing. Comparisons
with post-interviews indicate that, for most students, space had come to signify
an object that could be partitioned, and measuring signified the accumulation
of distance. Students had developed relatively sophisticated ways to think and
reason about measurement. In addition, a preliminary comparison of pre- and
post-interviews indicates that most of the students had developed effective think-
ing strategies for solving two-digit addition and subtraction problems over the
course of the teaching experiment.

Episodes from the Classroom

The instructional activities used in the teaching experiment were typically
posed in the context of an ongoing narrative. To accomplish this, the teacher
engaged the students in a story in which the characters encountered various
problems that the students were asked to solve. The narratives served both to
ground the students’ activity in imagery and provided a point of reference as
they explained their reasoning. A typical math session was structured as fol-
lows: (1) the teacher related the problems to be solved, (2) children worked
individually or in pairs. and then (3) whole-class discussions followed.

The first narrative concerned a king who wanted to measure items in his
kingdom by using his foot. However. the king did not know how he could
accomplish this and requested the students’ help. After students had made vari-
ous suggestions, the class decided that the king could measure objects by plac-
ing one foot after another and walking the length of the item to be measured.
Subsequent instructional sctivities included having pairs of students. each tak-
ing turns acting as king. pace the length of objects located in the classroom to
determine their measure. As students engaged in the measuring activities, two
distinct ways of measuring the length of different objects emerged. Some stu-
dents placed one foot at the beginning of the object to be measured and counted
“one”" with the placement of their second foot. Other students placed their foot
at the beginning of the same object and counted it as “one.” We conjectured
that these two ways of counting their paces were mathematically significant
because students counting in the first manner did not appear to be filling space
as they paced. This conjecture emerged as we conducted informal psychologi-
cal analyses of “target” students during their measuring activities. These analyses
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indicated the need to highlight these two ways of counting as students paced.
In that way, filling space might become a topic of ‘conversation in vvhole class
during which students could reflect on their own prior activity of measuring. It
is important to note that the intent of these whole-class discussions was not to
ensure that students counted their paces “the right way.” Rather, we felt that if
the students participated in a discussion about these two different ways of count-
ing their puces, they would have an opportunity to reorganize their understand-
ing about what it means to measure.

While studc its were discussing the two ways of counting their paces, the
teacher marked the students’ footsteps with tape alongside the rug that was
being measured so that the class would have arecord of the paces. As a conse-
quence, many students pointed to the space between the first and second piece
of tape and argued that the students reasoning in the first manner were not
counting that step. Thus, a portion of the rug was not being measured. It wasin
the context of these types of discussions that students began to reconceptualize
their prior activity.

During the whole-class discussions we attempted to make sense out of the
students’ discussion by bringing the social perspective to the foreground of our
analysis. However, it is important Lo point out that our initial conjectures were
informed by our prior individual psychological analyses. Thus, when making
conjectures about individual students® activity, the psychological perspective
came to the foreground while the social perspective faded into the background.
In this way, we were coordinating a psychological and social perspective. These
analyses then served to inform instructional decisions on a daily basis.

Two days later a second issue arose concerning how to account for an amount
of space remaining at the end of the rug that did not make a whole foot. Often
students’ feet did not measure the length of the rug in a complete nuinber of
feet. During observations of their activity, we noticed that many students ac-
counted for the extra space by turning their foot sideways in order to stay within
the space bounded by the rug. For these individual students, we conjectured
that pacing was an activity of filling or defining the space to be measured. In
other words, they did not extend the measurement unit past the space to be
measured. Other students, rather than tuming their last foot sideways, simply
counted the whole foot (e.g., 18 instead of 17 1/2). We, again, speculated that
this was a mathematically significant issue that needed to be investigated in the
context of whole class. As a result, the teacher highlighted the differing meth-
ods in the subsequent whole-class discussion,

Again, the purpose of the whole-class discusston was not to ensure that all
students reasoned correctly, or even reasoned the same way. It was intended to
present the students with a mathematically significant issue which they could
then reason about in the context of a discussion while reflecting on their own
prior activity. In this way, students were able to explain and justify the various
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ways they conceptualized and re-conceptiualized the task. Our analyses, both
social and psychological, of their current activity then served to inform our
decisions about appropriate subsequent instruction..! activities.

Conclusion

In the previous accounts from the classroom. we have highlighted the im-
portance of students’ participation in whole-class discussions where the prob-
lematic nature of their mathematical activity is highlighted. In doing so we
have also coordinated the informal psychological analyses of students’ activi-
ties and the social analysis of the subsequent whole-class discussions. It is
important to note that the informal analyses were informed by both a proposed
learning trajectory (Simon, 1995) and the intent of the instructional sequence.
Hence. decisions about what to highlight in whole-class discussions were made
in terms of the big picture, while the route itself took various shapes depending
on how the trajectory was realized in interaction. This process was informed
by a continuing cycle of informal individual and whole-class analyses made
against the conjectured learning trajectory. This process supported students’
construction of personally-meaningful ways to reason about measurement that
they developed as they contributed to the emergence of the classroom math-
ematical practices.
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LEARNING AS SENSE-MAKING AND
PROPERTY-NOTICING

David Slavit
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Thns paper outlines a framework for studying student learning and understanding.
Building on a sociocultural perspective of learning that incorporates an alternative to
the theory of reification, learning is described as a mutually dependent process involv-
ing personal sense making and the public negotiation of meaning, mediated by the acts
of reflection and communication. The development of taken-as-shared mcaning is, in
part, a process of building knowledge structures through the establishment of under-
standings of properties of various conceptual entitics. The latter understandings are a
result of personal reflection and the negotiation of meaning through the act of commu-
nication. Hence, sense making and meaning making occur collectively and depen-
dently. Results from a study discuss the kinds of algebraic thought present in the dif-
ferent solution strategics of 7th and 8th grade students. Analysis centered on the devel-
opinent of functional reasoning and the ability to abstract computation to an algebraic
mode. Specifically, the analysis focused on the kinds of mathematical objects and
ideas that arose during student-student talk, with particular attention to the personal
and taken-as-shared nature of the properties that helped to define these objects. These
data are used to provide empiricat support for the framework.

Perspectives

What is the difference between sense and meaning? Drawing on the Soviet
philosophies of Vygotsky and Leont’cv, Wertsch (1991) distinguishes between
sense and meaning by focusing on the personal and public aspects of activity.
Lave, Murtaugh, and de la Rocha (1984) concur, stating that “sense designates
personal intent. as opposcd to meaning, which is public, explicit, and literal”
(p- 73). Hiebert (1992) maintains that the personal act of reflection and the
public act of communication are the two most important cognitive forces shap-
ing current views of mathematical lcarning. These forces relate in a manner
that allows one’s personal reflections to mediate and be mediated by one’s in-
teractions with the environment (Bauersfeld, 1992). Hence, sense is bascd on
one's individual reflections, whereas meaning has both a personal and public
dimension.

Because the focus of this paper is on learning and knowledge construction,
perhaps a more germane question would involve the differences between sense
making and meaning making. A radical constructivist perspective rejects the
notion that two individuals can know that they have the same knowledge, so
sense making and meaning making are one in the same. von Glaserfeld (1996)
states:
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“I would never say that they are wrong, but I would ask that they present
a plausible model of how such sharing of meaning, and the collective
generation of knowledge in language can take place.” (p. 137)

Others, however, draw more separation between the two. For example. Cobb et
al. (1992) describe a sociocultural perspective of learning in which students
make use of external (or instructional) representations, mediated by develop-
mental interventions of the instructor, in order to construct understandings that
are either principally generated by one’s sense making activities or that ap-
proximate and expand on the taken-as-shared meanings of a society. From this
perspective, sense making is a mechanism by which meaning making can oc-
cur.

Kieren et al. (1995) have expanded this perspective to research settings.
Their description of an enactive learning environment attempts to balance the
aspects of the learning situation with the cognitive and social backgrounds of
the participants engaged in mathematical activity. This occurs in a group inter-
view format where the mathematical activity and research focus are mediated
by researchers, participants, and setting. Kieren et al. prefer to give balance to
the role of one’s sense making activity and one’s ability to negotiate meaning.
As they state, instead of siruared cognition or situated cognition, research should
focus on situated cognition..

The theory of reification (c.f. Sfard and Linchevski, 1994 ) provides one
explanation for.the development of meaning. It involves the transitioning of
understandings associated with actions and processes to more permanent un-
derstandings in line with mathematical objects. Slavit (in press) has articu-
lated an alternative to this theory involving the development of meaning through
an awareness of the properties of publicly negotiated and taken-as-shared ob-
jects. The ability to make sense of these properties can lead to the development
of richer forms of personal meaning, such as occurs in the cognitive act of
formalization. These personal meanings can then be weighed against one’s
perceptions of the taken-as-shared meanings of society as a whole. This per-
spective focuses on the developmient of mental constructs associated with es-
tablished mathematical objects and ideas by focusing on the properties that
help define them.

Algebra, as a mathematical area, has specific properties that help define it.
Although algebra is a multi-faceted mathematical area, it can be viewed as an
abstract form of arithmetic. For example, a’- b* = (a+b)(a-b) expresses the
consistent relationship between the difference of the squares of any two num-
bers and the product of their sum and difference. Properties associated with
covariance (slope, extrema, etc.) also give meaning to the structure of algebra,
particularly in regard to functional algebra.




Method

This paper discusses one probiem solving episode from a larger study that
involved fourteen 7th graders and fourteen 8th graders from two middle school
classrooms. The study looked at the sense making and meaning making activi-
ties of pairs of students engaged in problem solving. The students worked in
pairs on two tasks (see below) for approximately 30 minutes, although some
interviews went close to an hour. The students were given one copy of the first
task and were told to “*work the problem anyway you wish, but you may wish to
work together.”” When it seemed that the students were at the end of their solu-
tion attempt, I questioned them on the manner in which they approached the
task, and asked them to think about other ways to solve the problem. This
“looking back™ stage was intended to promote critical reflection by the stu-
dents on their solution strategy. These procedures were repeated for the second
task.

Analysis centered on the kinds of understandings that the students brought
into the problem solving situation, and the kinds of understandings that the
pairs utifized and constructed in their solution. Hence, the social, external, and
mathematical constraints inherent in problem solving were present, but the analy-
sis centered on the construction of understandings. Particular attention was
given to the kinds of properties that the students attached to the mathematical
ideas and objects which helped support their investigation. Only pencil and
paper were provided:

Task 1: Two carnivals are coming to Pullman. You and your friend decide
to go to different carnivals. The carnival that yvou attend charges
$10 1o get in and an additional $2 for each ride. The carnival vour
Sfriend attends charges 36 to get in, but each additional ride costs
$3. If the two of vou spent the same amount of money, how many
rides could each of vou have ridden?

Task 2: What digit is in the one’s place of the ninber 27 34 57
Results

This paper will discuss the problem solving strategics of Tim and Molly,
two eighth graders, as they worked Task 1. Students can find a solution to this
task by simply adding the cost of a ride or rides to each admission until these
totals are the same. However, students could also extend this strategy and find
many other combinations where the amount of money spent is the same. Since
there are infinitely many solutions, students could also express their answer in
a manner that describes a variable relationship between the amount of rides
denoting this general relationship. One way this more algebraic approach could
be performed is to set the expressions 10+2a and 6+3b equal to each other, or
draw the graph of this lincar relationship.
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The transcription of the solution strategy of Task | developed by Tim and
Molly illustrates how the two initially constructed an understanding of the prob-
lem based on the properties of the two functions that represent the amounts of
money spent by the two carnival attenders. These properties involved the ini-
tial amount (admission) and rate of increase (cost per ride). Analysis centered
on their individual sense making and collective meaning making activities as
they engaged in a solution attempt. This interview was chosen because of the
degree of collaboration and collective sense making that occurred. Although
shared meaning developed between Tim and Molly, such activity was not found
in ail of the interviews.

A microanalysis of specific portions of the interview reveal particular in-
stances of sense making and property noticing that led to their solution. Con-
sider the following segment at the onset of their solution attempt of Task 1:
Tim & Molly: (read problem, mumbling)

Molly: 1 don’t know.

Tim: Wow (exasperated). (pause) Do you have a calculator?

DS: No no no.

Tim: OK. so right now we know that each person paid at least
10 and 6 dollars.

Molly: And then they could also go on 2 times, but it depends
how many rides he’d want to go to.

Tim: How many rides can each

Molly: Actually, 1t depends on how many rides he'd want to go
on.

Tim: No actually, um, actually it’s pretty much asking what, like,

sort of asking, it’s almost like asking lowest common mul-
tiple, almost, or something like that, but anyway.

Molly: You actually learned something (gibingly).

Tim: That wasn’t funny (good-humoredly).

The beginning portion of the interview illustrates several important aspects
present throughout the interview. First, the two students felt comfortable with
one another and did not appear to be nervous or affected by the camera or
interview setting. Second, the students were also individually engaged in the
task and actively sought an understanding of the context and solution strategy.
The next few lines of the interview illustrate that the two were beginning to
make use of each other’s sense making activities,




Molly: One of my family’s jokes. (pause) This actually depends
on how many rides you went on, to go on: if you wanted to

go on like 2 rides, you could spend

Tim: It depends, no, OK
Molly: for each
Tim: OK, if T wanted, if I was here and you there, right, if I

wanted to go on 2 rides that would be a total of 14 dollars,
for me, if you wanted to go on 2 rides then it would only
be 12 dollars for you, so it would end up costing

Molly: Oh. I was mixed up. OK (laughs) well, one of them, one
person didn't have to ride at all to get 10 doilars. no

Tim: OK, so what we are trying to figure out is, they spent the
same amount

Molly: Yeah I know, OK, and 6 dollars, what, what adds up to

being. lets see, 10, 20, (long pause). OK

Motlly began to explore the problem by advancing on her initial sense of
the situation, which involved an understanding of the need to consider “how
many rides.” She made use of the cost of admission and ride price. situational
properties which correspond to the lincar functional properties of y-intercept
and slope. We also sce that the two were beginning to construct and make use
of shared meanings of the situation. Tim utilized Molly's remarks regarding
the need to consider the case of going on 2 rides to begin his numerical analy-
sis. After these computations, Molly then recognized that this would not be a
desired solution and said T was mixed up.” They then retumed to their indi-
vidual sense making activities in the last two comments. Tim then made the
following key insight:

Tim: [ could goon 1 and you could go on 2 and then we'd cach

spend 12 dollars (very confident) would go. Yeah, (puts
pencil down) I getit, there's that one.

Using the covariance properties previously explored. Tim decided to vary
the number of rides for cach person, changing the (2.2) case to (1.2). This
produced a solution that Molly was able to immediately verbalize. Tum's per-
sonal solution became a shared and meaningfut one, although Tim waus clearly
the mitiator of nearly all of the public meaning. But this immediately changed:




DS:

Molly:
Tim:
Molly:
Tim:
Molly:

DS:
Molly:
Tim:
DS:
Tim:

Molly:
DS:

Molly:
Tim:

Molly:

Tim:

Tim and Molly:
Tim:

Molly:
Tim:

Molly:
Tim:

’
LN

You spent 12, OK, so the ene was 2 and the other was |
ride?

Well you could spend more time and

You could spend alot more money, and then

Yeah

You could

One person could go on 2 rides and the other person could
go on 4 rides and you'd still get the same thing.

Molly’s current sense of the solution allowed her to expand the situa-
tion by linearly increasing their solutions. But as we will see, while Molly was
verbalizing the meanings she constructed that led to this conjecture, Tim makes
sense of Molly's remarks and challenges the meaning put forth by Molly after
conducting a few computations:

OK, what would they spend in that case?
Well, if you had

(writes) 6 times 30

Or what makes you say that?

and if the other person goes on 4, or wait a minute, this
person goes on 2,

It would be the same amount just as the first time.

By the first time you mean when the one person rides 1
and the other person rides 27?

OK, one person

No it wouldn't (confidently). OK, wait so you're saying,
50 you're saying

OK, you go

one person goes 4 times, goes on 4 rides

and the other person goes on 2

that’s 12, 14, this one’s 9, 12, 15, 18, s0. no that’s not ex-
actly true.

What (contentiously)?

You said one person goes on 2 and another person goes on
4.

So. but wait.

‘cause this person has to pay 6 just to get in and three for
cich ride
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Molly: yeah

Tim: that's 4 rides, that’s a total of 12 right there, plus another 6
is 18, so that’s not necessarily true.

Molly: Well, um, if you take, it’s 10 and 6, uand then the first time,
one person goes on | once

Tim: that’s 2 dollars right there

Molly: yes, that’s 2 dollars, and then another person goes on an-

other time, that’s 2 times, and then you go on it again, 6,
and another 2, I guess that doesn’t work. It's worked in
the past for me.
Eventually their meaning making exchanges collectively led to the (4.4)
solution, but no further generalizations were made by either participant.

Conclusion

In many situations, learning is a collective process of internally con-
structed personal sense and externally constructed meaning. The ability to uti-
lize one’s sense to articulate meaning as well as make sense of other’s stated
meanings enriches the taken-as-shared network being constructed. Learning is
adynamic interplay between one’s sense, one's stated meanings, and the sense
one makes out of other’s stated meanings. The above episode provides in-
stances where these three activities combined to form a collective, rich under-
standing of the situation as well as an extensive analysis of the possible solu-
tions. This analysis was based on personal and shared understandings of the
properties that shaped the situation and the objects that helped comprise it. The
taken-as-shared meanings developed were certainly a product of the two
individual's sense making activities, but the development of these meanings
also effected future sense making activities. These students were both willing
and able to participate in this personal and shared process, and their collective
sense and meaning making activities were at the heart of their learning experi-
ences.
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University of Wisconsin-Madison
wortham@ macc.wisc.edu

The purpose of this study was to validate and extend Karplus, Pulos and Stage’s (1983)
model of proportional reasoning in carly adolescents. Karplus et al.’s model posits four
hicrarchical “cognitive elements™ related to numeric relationships within proportion
problems. These form a scale such that students capable of solving a problem represen-
tative of a “difficult” element are also capable of solving problems representative of
“casicr” elements. However, Karplus et al. tested their model with only one type of
problem, a "Lemonade Puzzle”™—similar to Noelting and Gagne's (1980) orange juice
task—which required that students make judgments about the taste of a sugar/lemon
mixture. We wished to see if Karplus ct al.’s scale of cognitive elements held for pro-
portion problems drawn from other rational number subconstructs. Our data suggests
that for quotient, operator and measure problems, the scale holds.

Overview

In their work on proportional reasoning in adolescents, Karplus, Pulos and
Stage (1983) found that sixth- and cighth-graders® performance on proportion
problems is dependent upon the numerical relationships represented in the prob-
lems—that is, whether the ratios involve integers or non-integers, and whether
the ratios themselves are equal or not. Consider the following four capacities:
(I comparing equal integer ratios (e.g.. 2/4=6/12); (2) comparing unequal in-
teger-noninteger ratios (e.g., 2/4<>3/7); (3) comparing cqual noninteger ratios
(e.g., M7 =6/14); and (4) comparing non-cqual noninteger ratios (e.g.. 3/7<>5/
8). Karplus et al. found that 80 of 83 students capable of solving level (4) prob-
lems could also solve problems at levels (3). (2) and (1). Karplus et al.’s four-
level Guttman scale (Torgerson, 1958) of “cognitive elements™ for proportional
reasoning may interest researchers, teachers, and curricular designers, since it
provides a tool for thinking about and discussing students® proportional reason-
ing that 1s perhaps analogous to Carpenter and Moser’s (1982) models of how
children’s solution strategies interact with problem types in the additive field.

Karplus et al. tested fermonade mixture problems—a variant of Noelting
and Gagne's (1980) orange juice problem. The Lemonade Puzzle poses two
recipes, cach of which specifies an amount of sugar and lemon are mixed to
make lemonade. Students are asked to decide which recipe tastes sweeter and,
il necessary, decide how much sugar or lemon would be needed to make the
recipes taste the same. For example, a Lemonade Puzzle is, “John makes con-
centrate by using 4 spoonfuls of sugar and 10 spoonfuls of lemon juice. Mary
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makes concentrate by using 6 spoonfuls of sugar and 15 spoonfuls of lemon
juice. Will the concentrates taste the same?”” Students in the Karplus et al. study
responded to a total of eight Lemonade Puzzles, each representing a different
combination of integer/non-integer relations, equal or unequal ratios, and
whether or not the integer relation (if present) existed within ratios or between
ratios.

Qur goal was to test and extend these results by varying the type of propor-
tion problems given to children, in an effort to evaluate whether Karplus et al.’s
scale of cognitive elements generalizes beyond the Lemonade Puzzle. We also
wished to examine whether students’ solution strategies varied according to
problem type, such as their use of factoring (between-ratio) or unitizing (within-
ratio) approaches.

Rational Number Subconstructs

Proportion problems compare two rational numbers of the form x/y. The
numbers themselves may refer to one of a number of semantic groups, termed
subconstructs in the literature. Researchers posit anywhere from three to seven
distinct subconstructs (c.f. Behr, Lesh, Post and Silver, 1983, 1992; Freudenthal,
1983; Kieren, 1976, 1993; Ohlsson, 1987; Rappaport, 1966; Vergnaud, 1983).
For instance, the Lemonade Puzzle might be considered a mixture or ratio prob-
lem. In addition to the ratio subconstruct originally tested by Karplus et al., we
tested quotient, operator, and measure items as well,

Quotient. For Behret al. (1983), a ratio problem fits the quotient subconstruct
if the numerator/denominator pair is interpreted as an indicated division. We
used partitioning problems to represent this subconstruct; these are problems
where the numerator of the rational number is a quantity and the denominator
is a parameter. The goal of a partitioning problem is to separate the quantity
into a number of equal-sized parts (Ohlsson, 1988). The idea behind this is
intuitive to children; it grows out of the idea of “fair sharing™ according to
Hunting (1983). Our quotient puzzle was, “Children are seated at two tables
eating cookies. The children at John’s table are sharing 4 cookies among 6
children. The children at Mary’s table are sharing 10 cookies among 15 chil-
dren. At which table does each child get more cookies, or do they get the same
amount?”

Operator. The operator subconstruct is a rational number interpreted as
size a transformation (Kieren, 1995). The pair of numbers in a ratio can be
interpreted as either duplicator and partition-reducer. multiplier and divisor, or
stretcher and shrinker. For our operator puzzle we used the following: “Mary
and John are taking a photography class, in which they can enlarge and reduce
the photographs they take. They both start with photos of a tree that is the same
size. Mary makes her trce 4 times taller, and then makes the resulting tree 6
times shorter. John makes his tree 10 times taller, and then makes the resulting
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tree 15 times shorter. Whose tree is now taller, Mary's or John's, or are they the
same size?”

Measure. Measure uses u fixed reference quantity. called the unit, and a
fixed partitioning parameter. Rational number as measure, then, is the number-
ing of these equal partitions (1/n) of the unit (Ohlsson, 1988). The focus is on
unit and subdivision rather than the relationship to a whole. Our measure puzzle
read as follows: “On the track at John’s school, John has to run 6 laps in order
to run a mile. At Mary's school. she has to run 15 laps around the track to run a
mile. One day, John ran 4 laps at the track at his school. Mary ran 10 laps
around the track at her school. Who ran farther, or did they run the same dis-
tance?”

Ratio. We used Karplus et al.’s Lemonade Puzzle (see above) to represent
the ratio subconstruct.

Methods and Procedures

Farticipants. The participants were 16 eighth-grade and 17 sixth-grade stu-
dents from Midwestern middle schools. Half the students from each grade were
randomly assigned to each of the four problem-task test conditions.

Procedure. Each student participated in an interview in which she or he
was asked to solve two practice and eight test items from a single subconstruct.
Quantities embedded in the problems were identical to those used by Karplus
et al. (1983). Four investigators conducted the interviews, one investigator for
cach of the test conditions. Each interviewer coded her or his own interviews.

Interviews were conducted in accordance with a written protocol, which
was reviewed for fidelity to Karplus et al.’s original protocol (S. Pulos, per-
sonal communication, May 3, 1996). All items administered to cach subject
conformed to a single puzzle or task type. corresponding to the participant's
assigned test condition. Items in each of the test conditions used identical nu-
merical values. Interviewers presented items by means of an illustrated while
card, reading the problem text aloud. Appropriate follow-up questions were
asked as necessary to probe children’s strategies on each item. We tape re-
corded participants’ responses, an collected all written work.

In pilot studies, Karplus et al. found that when participants were presented
with a difficult problem at the onset of the interview, they frequently became
frustrated and used irrational strategies to solve them. Subsequently, partici-
pants continued to apply irrational strategics on the remainder of the items (S.
Pulos, personal communication, June 21, 1996). Consequently. Karplus et al.
did not present test items in a randomized vrder, but instead presented them to
all participants in their hypothesized order of difficulty. We presented items in
this same order. Participants’ explanations to the comparison questions were
classified into four categories. as identified by Karplus et al.. (1983): (1) in-
complete or illogical, (2) qualitative, (3) additive, and (4) proportional. In addi-
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tion, participants’ additive and proportional response strategies were catego-
rized, when possible, as either Within (comparing component 1 to component
2 separately for John and Mary) or Between (comparing corresponding com-
ponents between John and Mary) comparisons, as identified by Noelting and
Gagne (1980) and used by Karplus et al. (1983).

Results and Discussion

The distribution of strategies used by problem type are given in Table |
below. As Karplus et al. (1983) did, we classify strategies first as illogical (I),
qualitative (Q), additive (A), or proportional (P). Additive and proportional strat-
egies are further categorized according to whether students used a between or
factoring approach (b), a within or unitizing approach, or (u) an unclassifiable
approach.

Overall, students used more within (unitizing) strategies than between (fac-
toring) strategies (+*=97.8, df=1, p<0.0001), even on puzzles with integral be-
tween ratios (x’=34.0, df=1, p<0.0001). This may be an artifact of the order of
presentation, since all students saw puzzles with integral within ratios before
integral between ratios. Only on the lemonade and photography puzzles did
students tend to use between or factoring approaches.

Table 1 Strategy use by subconstruct

Quotient Ratio Operator Measure

Strategy @ (cookies) (lemonade)  (photography) (running)
I 1 15 3 15
Q 0 0 3 K}
(A-w) 11 7 33 6
(A-b) 0 3 0 0
(A-u) 0 0 0 0
A 11 10 RX) 6
(P-w) 47 28 12 40
(P-b) 4 18 12 0
(P-u) 0 ] ] 0
P 51 47 25 40
nb &¢ 9 8 8

4 I-Mogical; Q-qualitative; A-additive: P-proportional
b Number of subjects. Each answered 8 items.
¢ n=7 for problem NX.
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Table 2 Guttman scale for cognitive elementsé

Element Students Errors
None (no proportional reasoning) 7 0
Integer-integer, equal 26 0
Integer-noninteger, unequal 23 0
Noninteger-noninteger, equal 17 1

Integer-integer, unequal ‘ 15 1
2 n=33

Data from Table 1 above suggests that participants’ use of proportional
reasoning differed significantly among the problem types (x"=24.2, df=3,
p<0.005). Students used proportional reasoning on about 80% of the guorient
items. For ratio items, about 75% of items were answered proportionallyv. On
the operator items, just 40% of strategies were proportional, with participants
using additive strategies for about 50% of the operator items. For the measure
items, over 60% of the strategies were proportional. The ratio and measure
problem types elicited significantly more illogical strategies—more than 20%
of strategies used—than the other two contexts (¥*=21.3, df=23, p<0.005).

Combining data from all four subconstructs, the four cognitive elements
formed a Guttman scale (Torgerson, 1958) in the sume order as the one found
by Karplus et al. {1983), and with a coefficient of scalability in excess of 0.90
(Table 2 below). Seven participants did not use proportional reasoning at all; of
the remaining 26 participants. 24 fit the scale. with a coefficient of scalability
in excess of 0.90. The two not fitting the scale were from measure and operator
groups.

Since the scale held for the combined data. it therefore held for each of the
24 students who fit the scale. Because we administered items to students from
onc of the four subconstructs, the data support the hypothesis that the scale
holds in each subconstruct individually.

While the sample sizes are too small to draw clear inferences within each
subconstruct, we saw some interesting and suggestive patterns. All eight par-
ticipants in the quotient group fit the scale, and all showed evidence of the first
two cognitive elements (integer-integer equal comparisons, such as 2/4=6/12,
and integer-noninteger unequal, such as 2/4<>3/7). In the ratio group, one sub-
ject showed no evidence of proportional reasoning. and the remaining eight all




fit the scale. However, there were only four participants in the measure group
and three participants in the operator group who fit the scale; in each of these
two groups, there were three participants who showed no proportional reason-
ing at all, and one subject who used proportional reasoning but did not fit the
scale.

Some of the differences observed among the test conditions might reflect a
difference in the structure of the problem contexts. Karplus et al. (1983) de-
signed their tasks to be free of the need for complex knowledge of physical
principles. The concept of photographic enlargement and reducing may have
been sufficiently unfamiliar to students to explain the low incidence of propor-
tional reasoning elicited in the operator group. In contrast, the intuitive and
preliminary nature of partitioning tasks (Hunting, 1983; Pothier & Sawada,
1983) likely explains the high incidence of proportional reasoning on the quo-
tient tasks.

Some participants settled on a particular strategy that they developed while
completing the first few items, and persisted with that strategy on later items.
This is consistent with the findings of Karplus et al. (S. Pulos, personal com-
munication, June 21, 1996) that participants’ overall strategy use was based on
the strategies they used in the earliest items. Since the test items were presented
to participants in a pre-conceived order of difficulty, which corresponds to the
scale derived from the data, the distribution of strategies and the scale of cogni-
tive elements derived from them may be confounded with item order. Future
work should examine the effect of changing the order of presentation of the test
items (for example, presenting some between-ratio-integral items before some
within-ratio-integral items). The effects of reversing the order in which the four
numbers are presented in each item should also be investigated. Similarly, stu-
dent performance with multiple problem types should be explored.
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A VYGOTSKIAN MODEL FOR UNFOLDING,
FORMULATING, AND SOLVING MATH PROBLEMS
FROM CHILDREN’S NARRATIVES OF EXPERIENCE
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Northwestern University
r-steeby @nwu.edu

This Vygotskian model describes one way in which teachers build on
children’s spontaneous concepts of various situations to facilitate children’s
construction of formal mathematical concepts, symbolism, and problems. This
specifies in the area of early mathematical problem solving Vygotsky's hy-
pothesized inter-connection of spontaneous concepts and formal scientific school
concepts.

This process is one in which the teacher leads the class in a mathematizing
process focused on one child’s story and/or drawing that is based on personal
experience. The teacher first asks other children to retell the story in their own
words and to ask and answer questions about the story. This earliest phase
facilitates listening, memory, and participation as well as understanding. Next,
the teacher has the children ask questions about mathem itical aspects of the
story. From these elements, the teacher poses a mathematized story that still
possesses complex real-world aspects but that omits many of the non-math-
ematical elements of the original story. Several children retell this mathematized
story and ask and answer questions about it so that children understand this
new version. Children pose various questions about a particular situation that
occurs within the context of the story; these questions form different kinds of
problem situations. The final result of these questions is a math problem that
resembles typical school word problems.

Students then set out to solve the problem. Teachers encourage students to
solve it in different ways. While some students quickly solve the problem
using fingers, equations, or mental methods, some need more concrete experi-
ences to see or feel the answer. Even when some students have the answer
automatically they are asked to draw or mode! the problem situation so that
they can reflect on their mathematical thinking and be able to explain the pro-
cess more thoroughly. This is especially true when they are exploring a new
type ot math word problem. The models (or drawings) serve as a scaffold to
help the child remember the steps that s/he tooh to solve the problem. Children
also uct out problems, especially when the story is about selling experiences. A
small group or a pair can act the situation out in front of the class.

Leaming within a context, especially if that context comes directly from
their lives, children are able to construct methods that are comprehensible and
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meaningful to them. Our goal is to empower students to apply their math skills
and experience to their daily lives, as well as to encourage and support them in
generating work on their own.

The research reported in this paper was supported by the National Science Foun-
dation under Grant No. RED 935373. The opinions expressed in this paper are
those of the author and do not necessarily reflect the views of NSF.




DIFFERENT APPROACHES TO THE SEMIOTIC
SYSTEMS OF REPRESENTATION: REPRESENTATION
IN A MATHEMATICAL ACTIVITY

Fernando Hitt-Espinosa
Departamento de Matemitica Educativa, Cinvestav-IPN, CONACyT
fhitta{mailer.main.conacyt.mx)

Thie discussion we propose is a reflection focused on the necessity on the
part of the students to coordinate different representations that are in different
semiotic systems of representation in the construction of mathematical knowl-
edge. That is, in order to differentiate a mathematical object from his represen-
tation, it is necessary for the student to represent that mathematical object with
at least two different representations.

Duval (1993, p. 40} quotes: “a semiotic system could be a representation
register, when it must permit three cognitive activities related to the semiosis:
(1) the presence of an identifiable representation; (2) the treatment of a repre-
sentation which is the transformation of the representation within the same reg-
ister where it has been formed: and (3) the conversion of a representation which
is the transformation of the representation in other representation of another
register in which it conserves the totality or part of the meaning of the initial
representation.”

Analyzing the work of different authors related to semiotic systems of rep-
resentation, and our research on epistemological obstacles, an aspect that it is
not clear on these authors is the place of the crror or the presence of an episte-
mological obstacle in this context. For the construction of mathematical con-
cepts, on the one hand, it is necessary for the study of epistemological ob-
stacles; on the other hand, it seems also necessary to develop a theory of knowl-
edge to support a theory of representation (i.e., Semiosis and Noesis). The use
in the classroom to provoke in the students the coordination, out of contradic-
tions, different semiotic systems of representations related to the concept im-
merse in a problem situation.




JILL’S USE OF DEDUCTIVE REASONING:
A CASE STUDY FROM GRADE 10

David A. Reid
Memorial University of Newfoundland
dareid@morgan.ucs.mun.ca

Mathematical reasoning, especially deductive reasoning, has been identi-
fied in curriculum reform documents and the research literature as an important
area for additional research. This case study is part of a long term school based
research project on students’ use of deductive reasoning and the contexts in
which such reasoning occurs. The student who is the focus of the case study 1s
froma grade 10 classroom in which a problem solving/discovery approach was
taken to the teaching of coordinate and Euclidean geometry.

The key features of the contexts in which Jill used deductive reasoning
include the activities presented in the class, and the nature of her interactions
with her peers, her teacher and the researchers. An important commonality of
these features is that they encouraged the use of deductive reasoning to explain,
rather than verify or explore mathematics.

The activities were designed to allow problem solving, pattern noticing
and deductive reasoning to be used in learning the content specified by the
curriculum. In cases where deductive reasoning was explicitly called for (such
as explaining geometrical principles), more deductive reasoning took place than
in contexts related to objectives unsuited to deductive reasoning (such as deter-
mining an equation from a graph).

In some cases the teacher, or rescarchers acting in the role of a teacher,
provided verbal prompts that resulted in extended deductive arguments. Such
prompts extended the activities and were interrogatory rather than instructive.
There was an explicit message from the teacher that the students should explain
any assertions they made, which translated into a social context which contrib-
uted to some occasions for deductive rcasoning. In other cases the teacher or
researcher made a comment that interrupted activity in which deductive rea-
soning was taking place or provided instructions which discouraged deductive
reasoning.

The two main factors related to peers as contexts for deductive reasoning
were the peers’ interest in the mathematical activity, and the mathematical back-
groand they had to draw on. Interactions with peers who were interested and
knowledgeable led to more use of deductive reasoning that interactions with
peers who were disinterested and less knowledgeable.
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THE DEVELOPMENT OF CHILDREN’S
UNDERSTANDING OF ADDITIVE
COMMUTATIVITY '

Arthur J. Baroody, Sirpa Tiilikainen, & Jesse L. M. Wilkins
University of Illinois at Urbana-Champaign
baroody @uiuc.edu

The research before 1975 left us with little substantial knowledge of
children’s understanding of additive commutativity. Although mathematics
educators have long recommended using this principle to help children master
basic addition fact, there is, in fact, little methodologically sound evidence to
support this contention.

Research from 1975 to 1989 indicated that children understood commuta-
tivity before formal instruction on the principle and as early as kindergarten. It
suggested that they discover this regularity as a result of their computational
experience, but that this principle was not a necessary condition for inventing
computational strategies that disregarded addend order.

In the 1990s, Resnick (1992) proposed that commutativity is derived from
a general understanding of additive composition, and others (e.g., Ganetsou &
Cowan, 1995) concluded that this principle develops independently of compu-
tational experience but serves as a basis for strategies that disregard addend
order. Unfortunately, the evidence for these propositions is either ambiguous
or methodologically flawed.

Consistent with Resnick’s (1992) model, commutativity may evolve from
arelatively weak schema to a relatively strong one. Initially, however, addition
may be linked to an order-constrained, rather than an order-indifferent, part-
whole schema. Computational experience may help to connect this operation
to a part-whole schema characterized by commutativity.
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THE EFFECTS OF PROBLEM SIZE ON CHILDREN’S
UNDERSTANDING OF ADDITIVE COMMUTATIVITY
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The ability to solve problems regardless of number size is taken as evi-
dence of a general principle. Resnick (1992) argued that an understanding of
additive commutativity is initially context-bound and tied to number size. Ex-
isting evidence of size effects is mixed and limited to addends less than 10.

This study examined the performance of 24 kindergartners and 24 first
graders on commutativity tasks involving addends 310 9, 13 to 19, and 26 to
59. The order of the levels was counterbalanced. Within each level, there were
two commuted trials (e.g., Big Bird has 9 cookies and he got 7 more. 1f Cookie
Monster already has 7 cookies, how many more does he need to have the same
number as Big Bird?) and one noncommuted trial to check for response biases.
These trials were presented in random order.

The data were analyzed using a conservative criterion (subjects responded
correctly and differentially to commuted and noncommuted trials) and a liberal
criterion (subjects responded correctly to commuted trials). Although qualita-
tive analyses indicated that addend size seems to affect some children, a 2 (Group:
K vs. 1) x 3 (Addend size: small vs. teen vs. large) ANOVA using the conser-
vative criterion did not detect a significant difference for grade level or addend
size. The ANOVA using the liberal criterion did approach significance
(F(1.80,94) = 2.81. p = .07, MsE = .09). The results suggest that, for most
children, commutativity is understood as a relatively general concept. They
also indicate that previous research that did not control for a response bias
(e.g., Bermejo & Rodriguez, 1993) may have overestimated knowledge of com-
mutativity.
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KINDERGARTNERS’ UNDERSTANDING OF
ADDITIVE COMMUTATIVITY WITHIN THE
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Baroody and Gannon (1984) proposed that children’s understanding of
additive commutativity progresses through several stages that are based on a
unary understanding of addition (change meaning) before developing a “true”
understanding of commutativity based on a binary conception (part-whole
meaning). Resnick (1992) also proposed that an understanding of commutativ-
ity progressively becomes more sophisticated. However, she implies that chil-
dren have a unary and binary conception of addition from the earliest stages of
development.

In this study, 25 kindergartners’ understanding of additive commutativity
was investigated using performance on tasks involving two types of addition
word problems. A child’s unary understanding of commutativity was tested
using “change-add-to” word problems.! A child’s binary understanding was
tested using “‘part-part-whole” word problems.’ In both cases, children were
asked if commuted and noncommuted situations would result in the same sum.

Fourteen children (56%) were successful on both additive commutativity
tasks, seven (28%) were unsuccessful on both. Four (16%) were successful on
the binary task only, which is inconsistent with a value of zero implied by
Resnick’s model (p = .16, 95% CI: .04 < p, one-tail). The data were also
inconsistent with, but not sufficient to reject, the Baroody-Gannon model (Bi-
nomial Test, p = .0625). The results do suggest a weak commutative permis-
sion that is used inconsistently across tasks.
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I'This problem type imphes a physical action in which a starting amount is increased
by a secund amount.

This problem type represents a static situation in which the two amounts are present
from the start and are combined 1o create the whole.
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This study examines sixth graders’ representations of multiplication. Data
was collected by way of individual interviews in which the subjects were asked
to complete various tasks, such as a card sort. using a manipulative, drawing
pictures, writing a story problem, etc. The researchers also used a Piagetian
task to study development from additive to multiplicative reasoning. The re-
sults led researchers to conclude that children have many different representa-
tions of multiplication, some of them correct and some incorrect. The most
common correct representation was representing multiplication as repeated
addition. The multiplication story problems written by the participants ranged
from addition to multiplication to nonsensical. The researchers compared each
subject’s story problems with their representation of multiplication to construct
a picture of each subject’s overall conceptions of multiplication.
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