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What isosceles triangle circumscribing a given circle
has the shortest congruent legs?
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About the Cover

Some af the bzst mathematical prohleins 1o use with students
are the ones which have an obvious answer which wrns out to be
wrong. The need for logic and careful reasoning is reinforced. A
nice ¢xample of such a problem is given in the note A Unique Isosceles Triangle™
by Michael Scott McClendon in this issue and illustrated on the cover. The
problem is *“What isosceles (riangle circumseribing a given circle has the shortest
congruent legs?” Many would expect the equilateral triangle or. perhaps, the
457-45°-90° wrianglc to fill the requirement, bul neither is optimal.

Frecommend that all readers look at the article by Marilvn Carlson in this
issue concerning what our students know about functions when they finish a
college algebra course. You may chuckle at somie of the misconceptions expressed
in the interviews she quotes. but they sound like things some of my students could
say. The really disturbing thing, to me. was that Carlson was only looking at
students who got high grades i the course. While this was just a small study at one
college, it it is at all representative of students elsewhere, the teaching of this wopic
needs more atiention,

Itain't so much what people den't know that makes trouble in this waorld
as it is what people do know that ain't so.

Mark Twain

Some Good Byes to Columnists

Michael Ecker is stepping down as editor ol the Problem Section. Mike started
the Problem Section soime 16 years ago and has borne (he load ever since. As a
former Problem Editor myself {in another journal) ! wish to thank and commend
Mike for the excellent job he has done in this capacity. Mike continues to teach at
Penn State Wilkes-Barre campus.

Also stepping down is Judy Cain who was responsible for starting the
Chalkboard column. Judy is both a friend and a colleague and I have thoroughly
enjoyed working with her on this project. Judy retired (early) from Tompkins
Cortland Community College and cxpects o do a good deal of traveling with her
husband,

The Probtem Section will continue though, as 1 write this, [ am not sure who
the new editor will be. The Chalkboard has been receiving very {ew subinissions
recently, so Judy and I decided to let it go w its rest.




| @/%ore useful for more

classes than any calculator
& in its class.

TISL The ane calendator fur cverglhony from
alychra throogd calealus, dnelading (e

(el stagistoes.

The TINS handbes a bost of Juwetioes for
a rarady of sulgects sedb foulnees Bife these,

ﬂ'”fc‘ i .’II",I e

. » Diflerentiates graphs with a
- variety of line styles.
» Analyzes larger data sets

= %Y1
1 ' R
with up to 999 elements. R H‘ﬂ""gm:ﬂ;“’“
. . . ta trace the geaph and scrull
p Solves for different variables 'ﬁ?“ﬁ%‘ < b table gmltanconshy
. . 105 | 5758
o interactively. ol
' » New Statistics Handbook Seantcn Display reclta of
. « wys hypothesls Losts praphleally >
with activities and and nmerieally.
applications. II€=4EI3::B-§; tz-12522  lrz2s7
a s ]%=14,
(Sold separately) pU=o0h0.00 s, s fion
FU=6, 08 A dmenseolmoues, cash fluns,
P/¥=12.90 sad sdterilznilon.
- C/v=12. 08
- The affordable. portable THSEL A calewlator PHT:HIK BEGIN | ¥
withoul cqual.
*!? T & )
EXAS PRbe IRONH
INSTRUMENTS
1-80G0-T1-CARES li-cares@1i. com www.li. com/colec
IH111997 61997 TI




MATHEMATICAL EXPOSITION

Factor x®—3x" —dx? = 8x" + x>+ 2x + 2

An Introduction to Computer Algebra
by
Philip Mahier

Middlesex Community College
Bedford MA 01730

Philip Mahler is a professor of mathiematics and computer
science wt Middlesex Communite College. He has raught for
aver 2 years in Florida, Michigan, and Massachusents, is a
past vice chair of the Michigan Section of the MAA, past
& newslener editor and current two-vear college representative
ITEITH for the Northeast Section of the MAA, Is a past president of
m%é NEMATYC, was a"()(?t’l{ Arrangements c_luu’r for the !9?3
AMATYC mecting in Boston, has written iextbooks in
intermediate algebra through precalendus mathematies, and
has a strong interest in self-paced instruction, developmental
rathematics, eomnputer science, and foreign languages.

A computer algebra system (CAS)Y is a computer program which is capable of
periorming symbolic manipulations of algebraic objects. As thesc systems
proliferate, mathematics educators should become aware ol the mathematical
knowledge base which makes them possible, 1t is the intention of this anicle 10
introduce mathemalics educators to this relatively new area ol mathematics.

1 am lascinated by the algebraic power of these systems. What [ present here
arew out of curiosity about how CAS programs work their magic. It turns out that
the search for answers opened a door for me to the rich subdiscipline of comnputer
algebra. It is the intent of this exposition o introduce both CAS concepls and
several examples from the ficld of computer algebra.

A few products which support computer algebra and which run on personal
compulers are Mathematica, Maple, Derive, and Mathview (lormerly Theorist, and
called MathPlus outside of the Americas), more or less in decreasing order of
power. There are many other software packages which supply this capability in
varying degrees. Some ol us have already been using these systems on
microcamputers - there are educators that offer their calculus exclusively using
Mathematica. Eately, the Texas InsTrusMENTs T-92 bas thrust computer algebra
syslems inter our professional lives. For a price well helow $200 we and our
students can hinve access Lo a powerful symbolic algebra system, based on Denive.

A few things which a# CAS will do, with case. ure illustrated here.




Solve v + b = c(nx - ¢} Tor v or for any of the fiteral constants,
13 h -
o Solveax +my+nx+n —¢=0for.x.

»  (ive the set of exact solutions to 8§ cos(3x - DY = ¢

i

. [ e 1
» Compute | ——dvory ——
A+ L e+

- o K 3 S 5 A st 2 .
o BEactora™+x" +loora 4 loorx™ =30 - dv =30+ v+ 2,

s Generate the terms in the Taylor series Tor sin v cosx out o the term of a
user-specified power.

+« Find the formal solution to the inverse of a matrix whose elements are
arbitrary expressions.

+  Solve differentiad equations exactly or numerically.

+ Find the generating function for dimensions ol representations ol the Lie
group ol type (7. (Heck, 1993, p. 12)

Factoring and Antidifferentiation

I dan’t believe it is widely appreciated how mucit is known in the field of
computer algebra about factoring and anti-differentiation, The fact is that
algorithms exist for tactoring any polynomial over the integers, and for finding the
antiderivative of any expression composed of algebraic and elementary
transcendental functions, if it exists, or determining that no antiderivative exists
{Steen. 1981). However. it is nol casy to approach any ol the algorithms {or
lactoring or antidilferentiation. They ace sophisticated and do not lend themselves
to hand calculation. A Mavor of this s given below, related to factoring.

Antidifferentiation

Pienie Simon de Ta Place Tormulated a conjecture about the integral of algebaic
functions in the carly mneteenth century. Niels Henrik Abel proved it about 1830
This fed Joseph Liouville to formulate a general theorem about the integral of any
clementary function - those built up from the standard transcendental and
algebraic functions. This theorem tells which functions can be integrated, but does
not preduce the antiderivative. (Steen, 1981)

LEarly CAS efforts found antiderivatives by the heuristic rules presented in most
caleulus courses. Failure i these cases may only mean the practilioner is not
skilled enough — if an expression does not have a formal antiderivative. in teyms of
clementary {unctions, these heuristics will not tell that, These same methods stiil
provide the starting point for some CAS’s.

An algorithm for generating the Tormal anliderivative, if it exists, ol an
expression of elementary functions, was completed in 1968 by Robert H, Risch of
the System Development Corp. in Santa Monica, California (Steen, 1981). A {ull
discussion of the Risch itegration algorithm is found in Geddes (1992). This
algorithm also determines that an antiderivative in the form ol elementary
functions does not exist, if that is the case.



It is worth noting (hat the aigonthms of computer algebra involve many basic
concepts of college algebra, such as rings and hields, vector spaces, cigenvalues
and eigenvectors, and modular arithmetic of integers and polynomials. The
wgortthin of Risch is butlt on elliptical function theory.

Factoring Polynomnials Over the Integers

To get a [Tavor of the study now called computer algebra, | present some of
what is known about fctoring polynomials over the integers.

[on Knoth cites first attempts at factoring polynomials in Isaac Newton's
Arithmetic Universalis (1707) and to the astronomer Fricdrich T v. Schuberl who,
in 1793, presented a finite step algorithm to compute the lactors of a univariate
polynomial over the integers. 1. Kronecker rediscovered Schubert’s method in
1882, and also gave algorithms {or (actoring multivariate poiynomials (Knuth,
981y, Kroneked's method can be very inefficient. In 1967 E. R. Berlekamp
devised an algorithm that is more eflicient. This can be extended 1o Tactor
polynomials in any number of variables over the integers. These algorithms can
require a long search pracess. and involve factoring the given polynomial over the
integers modulo one or more prime nombers, but they do produce the Tactors or a
determination that the given polynomial will not factor.

We will illustrate the process of factoring univaniate, monie polynomtials over
the intcgers — that is, polynomials with leading coelficient one, in one variable. It
witl be seen that (his uses inleresting concepts in modular arithmetic, algebra, and
Hncar algebra, The theory can be couched in the terminology of unique
factorization domains, null spaces, and eigen values and vectors, bul 1 prefer to
keep the terminology as simple as possible. What T present s largely as presented
in Knuth (1981} and Davenport (1988), with seme maodilication and additional
detail. Also. what follows does not always produce a complete factorization. but
the method can be modified so it will always work. This is discussed later.

Finding Multiple Factors

It turns out to be casy 1o [ind factors which have multiplicity greater than one,
and this is the first step, Consider a polynomial P{x) with a factor py) ol
multiplicity & > 1. Then £(x) = g(x) - pr). Now consider the derivative of P(x).

P = (glx) - pla) ) = gy - kpot pe) + Q) - plot [1]

It can be seen that p(a)* s a factor of £7x). Thus, finding the greatest common
divisor of /7 and 27 will produce at least twa factors, one of which will include
p(0)* " as a factor. These two new factors can, in turn, be checked for multiple
[actors also. The Euclidean algorithm for finding the greatest common divisor of
(wo natural numbers can be used Lo do the same thing with polynomials,

By way of example. consider P(y) = A" + 63" + 12¢" + [0x° + 3, whose factored
form is (¢ + D'+ 3% Py = B+ 36x° + J8x" + 20x. Use Euclid’s algorithm
for finding the greaiest common divisor of two integers, applicd to P and
P70 This process s illustrated in the following table. We begin by

1]




- e ) - - - n -
applying long division to the problem —{— which shows in step | ol the tabie, for

example, that /2 = (%,\')(H.\T 36 48+ 200 + (%.r" +0n' 4 E A 3). After re-

peated iterations, when the remainder is O, (step ) the previous remainder is the
ged, 3+ 60 + 3or 3t + 20 + 1) The 3 is not relevam - in Tact there are
algorithms other than the long division algorithm which deal only with imtegers in
the division process. and would not produce the factor of 3 — see Knuth (1981)
page 402 08 for exumple.

Siep Division performed Remainder
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Observe that a* + 20 + | = (0 + 1YL Divide v' + 20 + 1 out of P(v), producing
PO = 8+ 28 + 137+ e+ 3). Each of these factors can now be factored in
turn. [T o polvnomial does not have a multiple factor. we say that polynomial
tv square free  that is, all its polynomial factors appear exactly once. The factor
XA+ 3 s square ree - itis not oo difficult 1o show that it Py is written as
GCHF(P.LTY - Ox), then Q) is square Tree.

Factoring a square free monic polynomial

All useful algorithms Tor Tactoring square [ree polynomials over the integers
use the idea of factaring over the integers modulo g, for some prime p. The choice
ol p is prelty much arbitrary.

We will illustrate with the polynomial in [2], which can be shown to be square
free iy the method just described, ie. GODPP ) = |,

Py=2 -0 A s T2 (2]

With Knuth as inspiration. we will use p = 13, Any prime p may be chosen, but il
should not divide what is called the discriminant of £ (Mignotte, 1992), We can
avoid this prablem. and this concept. by first finding all lincar lactors using the
methads of the rational zero thearem of precaleulus level mathematies. Tt can be
verified that [2] does not have any lincar [actors.




What lollows is onc version of Berlekamp's Adgorithm. First we will present
some of the thearetical underpirnings of the method, including various relatively
well-known theorems, without proof. Two numerical examples follow, including
lfactoring the polynomial in [2].

We first need a tool called the Chinese Remainder Theorem. Usualbly applicd o
sets ol integers, it can be applicd to polynomials. We uwse a wording which deals
with our specific needs here, Note that in all of what Tollows, until otherwise noted,
we are doing arithmetic modufo 13,

Chinese Remainder Theorem for Polynomials (3
Let p iy, p ), . px) be re uli\'cly prime monic polynomials and Py =
mO e e p, (x) Lets . he integers modulo p. a prime. Then there

I~ @ unigue pul\numml ‘L(x) smh m.u Vix)y =5 mod p(\) Viv) =3, mod JLREVN

Ao =s mad p x) E Vi) =5 mod Py for some s, where s is an integer
mndulu p. E-mlhcr Lthe degree of Vis less than the degrec ul I (Knu[h 1981). Note
that moed p (x) means the remainder upon division by p(x).

This theorem is useful to us if the polynomiais p are the lactors of [2]. Thus,
dssune

Pay=p - plyr- - plx)

is the lactorization of {2], where the poare relatively prime. and cach p appears
once, since 7 is square free.

Theorem: v/ = v mod p e any integer v and prime p. (4]

Davenport (198K) notes that this theorem 1s sometimes called Fermat's little
thearem.

Using | 3] and [4]. we conclude that Vio” - Vs v Vo maod piadlorcach & Thas,
Vg = Yaormod 2. Alsa, the gel ol Py and Vi)' - s 18 non-trivial.

Theorenm: maodulo p, X7 X = (X - WX - DX -2y (X —(p-- 1 [5]

This implies that Vo' = Ve = (Voo — iV - 10V = 2) .. (Vo = 12),
and. since p(a divides V(v - Vi) Tor cach i and each p is prime. then cach pa)
divides one of Vixy - s for somes, 0 < s < 12,

This means that, i we could find V. then finding the GCF for Vi) - 5 and
Pro for cach v will praduce the fuctors of P(o), mod 13, This polvnomial V is
the key to factoring moduloe p. To find a solution fur ¥ we use the fact that
Veo" = Vi) mad Py, Remember that the degree of Vis less than the degree of P
fwhiich is 8 in cquation {2]) so we can deseribe Vas follows.

. | z 1 1 A fa 7
letViv = s v 4+ vouo v e e e Hex ve {00 T 12 (6]
~ - - " . )

Theovem: Poa’ = Podymadulo p, for any polvnomial £ (7




Replacing x by +'"in [6]. and using | 7] with p = {3, we obtain an expression for
o't

Vi =t = 1;_.!.':' + \'1.1."” ety ";-";.’ +ra oy r‘.\'m + \;‘.\'-" +ux 18]
- . 1 . .
Remember that we are interested in VoY . and Vi, modulo £04). so consider
i 1 Jov 3y 5 - . - - .
oL each madelo Pro. This is 8 equations of the following form:

s b s e Far S e My C
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CEL A TP A T N+ r, AT+ v mod Py

- A" e, U mod Pl

' "t H 3 NI : - .
Now replace vV " " i |8) with the corresponding values in [9).
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v e (L SR S UN SN 0 2 U O NS AN | mad P{u)
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I Vex) " = Vi), then the equations in [10] are equivalent to |[6]. Comparing the
coelficients of corresponding powers ol . this means that

".'._n"n + }‘“_ 1'| + RUR + ...+ .r'“Jl'7

[N ]'I |"| + v

I + .. FF v,
10 0 1

1'1‘”1'”4- |l":_|'l.'I + l',.:l'j Ll Y S

Remember that the 12 are known. but not the v,
1 3
A matrix equation which expresses this system of linear equations ts the following,
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Coensider this matrix equation: @V = V, QV - V= 0.(Q — 1V = (. Linear algebra
provides a standard method for flinding a representation of V using ¢ - 7, the
matrix which maps vector Voto the vector 0, by row reducing ¢ — 7 into a matrix
with the propecties which follow, Such a matrix is said to he in triangular
idempotent form.

+ [t i5 upper triangular

+ The main diagonal has only 7eros or ones

+ [t a diagonal entry is 1, itis the only nenzero entry 1n that row

 [[a diagonal entry is (0. then thal entire columa is zero.

Nole that idempotent refers to the fact that such a matris. (. has the property that
0" = O lar positive integers 1. We will see an exainiple below.

An Example - Factor x* - 3x" — 4y’ - 3x" + 17 + 20 + 2

At this point we apply the theory above to factoring P(x) = 2" = 3¢ - dv' - Sv' +

Al . . -
X4+ 2+ 2 (12]), and say some things about the compulations as we proceed, First,
v

we determine (be remainders when 2 ' ¥, L0 " are divided by P, modulo
13. These are i [12]. and were determined with Maple. [t would not be feasible 1o
compute these by hand. In practice, there is a recurrence relation which can be
cxploited to determine these remainders. but it too is computationally intensive —
see Knuth (1981) or Geddes (1992). Of course. one could write a calculator
program 1o do the long division, modaio p, to extract the remainders. This would
be an interesting project.
mod P(a) [12]
? . - 3 :
=80 0"+ ST+ I 20 T 4 B s 3 mod Py
s+t Ao 20+ O+ T mod P
R Sy X SN TR (o I T I oy N o mod ()
7 i s 1 :
TEAC AR E O+ 8 2 2 kS mad P(x)

20+ 3 12w I I 3 s v+ 12 mod Pl
e e 2w i w10+ 120+ 120+ 10 mod Py}

7 h 5 = 1 2
=00+ 2"+ B0+ 50 + 20 + 8+ mad (1)

Comparing to [8] we are saying that for Vi = v v o+ a0 + 0 +x

Vivy = vl |3} 4+

VAR O+ ST e 20+ T B Byt

7 [ A3 4 1 3
U200 00 00 20+ + T+ L+

A F 20 F R E T 2 e+

As stated above, we will determiine, from these. a more useful expression lor Vix),
using the idea of [ 1. The following procedure daes this for us.
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Create an array @ of the coefticients of the right hand expressions in {12}, as
shown. Observe that, conforming 1o [11]. we use the columns, and we start with
the term of lowest degree in cach case.

f1 2 7 3 S 1210 1
[0 & 9 6 4 1 12
boo7 2 1 2 312 %
=10 2 6 2 21210 2
Soe 6 4 811 4s
In 5 6 2 612 2 8§
|09 27 2 3
o & 11 3 2 0 9,

Recall that wee want the wray 0 - 4 where [ s the standard 8 x 8 identity matnx
with 17w on the diagonat and 0 evervwhere clse. For convenience, call ¢ — /by Q7

032 7 3 51210 |1
07T 9 6 4 1120
0 7 1 1 2 312 8
. O 2 6 1 21210 2
Q=0-1= O 6 4 711 4 s
0O s 6 2 611 2 8
O Y 2 7 2 310 12
08 11 32 008,

Now we wanl to sweep out cach column, starting with column 2. This is the
standard procedure for producing a row reduced echelon form. One way is Lo
proceed as shown below. Remember the objective is triangular idempotent form.
Remember also that the arithmetic is done modulo 13, This is most easily done by
first converting cach pivet clement into |, then using standard row operations to
sweep out the rest of that column. For this 1l is nice to know the reciprocals
modulo 13 - that is, for «. the value ¢ ' such that g - ¢ ' = 1 mod 13, The following
lists & ' for the non-zero values «.

Reciprocals modula 13 'l
IP=1.2"=7.3" 294" =105 =8 6'=11.7"'=2.8"=5, |
9i=310"'=4 11" '=6,12" =2 ’

e e —————— e

First, mulupty row 2 by 7' = 2, <o that element Q7
column 2.

is 1 | Then, sweep oul

]
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0
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0
0
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0
0
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=

2
i 2
12 3

o 2C fn la 5 o —

:':_

7

Note: It is possible to pertorm these cateulations on a TI-92, using an additional
& = & matrix with all elements 13, the mod lunction, and a short program. [n Maple
1 is only necessary (0 sel the Q7 element 1o 1. 1o force sweeping oul 1o start at
element @7, . and invoke the Hermite function. No doubt most CAS svstems
provide this capabitity in one way or another.

Now nultiply row 3 by & which is § ', then sweep out column 3,

Multiply row 4 by 12, whichis 12,

0
0
0
V]
)
]
0

0

T
{)
¥
0
()
0
0

0

(
!
0
0
0
0
G
0

0
|
0
)
0
0
(
0

Multipty row S by 11 whichis 6

()=

0
0
4]
0
(}
0
{1
8]

}]
|
§]
0
n
f]
()
(0

——
—

e s s
— e et e e =

0
0
I
0
4]
0
0
0

. then sweep out

{1
()
!
0
0
{4
0
()

o = A2 L e —

c..—-

0
)
(}
|
0
0
O
0

()
(
{}
1
(
0
0
#

9
10
0

t]

6

)

G

9
10
10

0

0O

0

Yy

-1

0
()
0
)
1
0
0
9]

1 3
G 1l
I 0
7 1
6 0
612
n 2
123

o>

T S R S R B

0
3
10

—_—
—

()

O
I
it 8
6 12
9 3
0 o
0 0
o o

14

10
1]

= e —

10

0

b
0

A

4
0
§]
§]

column 3.




It is a thecorem of linear algebra that a basis for Vis the non-zero columns of 7 - (¢,
which is caleulated maduto 13 as usual.

000
0 0 0 0
0 0 0 0
bono0 0
0O 0 00
00 00
00 0 0 0
00 0 00

The basis polynonmals for Viay may be read from this Tast matrix.
bivy=1 bx)= R e R S [ 1 bioy=x"+ 10x" + A4 2v
hin= RIS PR F Rt A

In other words
Vigy=vih+ t'_.(.x* FO T I+ 100+ r:(.\'“ o e A N A R Y

7 4 H ~
v A+ 90 + e + 4 for some values v v oo

R
Parenthetically. it is interesting to use a CAS to verify that V{v) (for any values of
v b, vy and B () all have the property that O = O mod P,
This means that gedtPtayb oy -3y =2 dord s =012, ... 12 are
divisors of Ptx), mod 13 The foliowing wble shows the calculations of gedt P,
b (1) = 51, with the resulis. These were also caleulated with Maple.
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Note that & + 7¢" + 67 + 120 + 7 = (1 + 6)(x' + 27 + 12250 it does not correspond
to a prime factor ol Pix).

Potential factors pia), mod 13 of Py = a7 - 30 - At Sy 4+ v+ 2are
v+ 0,7+ 2 7 s 00+ 2 and o+ 7+ 120 T will refer o these as the four seed Tactors.

Note that (v + )7 + D7 + 00+ 200 + 0 + 120 =" 4 1007 +9v + 8v' + 7 +
v + 2 = Py mod 13, so this is a complele Tactorization of Py, modulo 130 10is
not a concidence that there are tour basis polynomizls b (x) - b oo for Viv) and the
fact that Pa) has four prime factors modulo 13,

We now use the four seed factors (o find {actors ol P, over the integers. We
do this by wving all potential factors p’(x) which are congruent o Lthe four seed
factors. modulo 13, In sther words. we try these same four expressions, by dividing
them into P{y), but io. the coefficients take on any values which correspond 1o
those above. modulo 13,

First, consider v + 6. We reject this seed factor because 6 = =200 -7, 6, 19, ...,
nonc of which divide 2, the constant coefficient in P{x). Thus, nonc ol ... . v = 20,
XY—T7.x+ 0.0+ 19, .. vould be Gactors ol £, Also it is casy to verily. with the
rational zero theorem of precaleulus, that £ hias no linear lactors.

Consider " + 2: PLO) = (¥ + =" = 2 - At + v+ Loso ™ + 2is a prime
factor ol £(x).

Consider x™ + 6x + 2. This does not divide into Py (evenly of coursel so it is
not a prime factor of P(x). Consider A° = 7x + 2, since -7 = 6 mod 13. This does not
work either, After the discussion of the next paragraph we will drop & + 6 + 2 as
a seed flor actual factors.

There are many expressions congruent 10 v 4 On + 2. [ihe v - 7y + 2, Jound by
trying coctficients congruent to the coefficients |, 6, and 2, modulo 13 In practice,
there is a theorem which dictates how large these coelticients can be, so the list of
candidates is linite.

Theorem: Let Alv) = x4, A"+ .+ a v +a, beapolynomial and - {15]
By =bx + b '+ o4 b b proper factor of A Then r <o
Then for all ;.

Pofr=1), r—1| ’ v s v
h|< A+ a |, where 14l= [@+a +.. +a+a }
i H : _l I.| " " a1l | n

J J—
called the guadratic norm ol a polynomial). (Cohen, 1995)

In ihis case we know that the leading coetlicient is 1 and the trailing coclicient is
+1 or 2, and it would seem futile to try values Tor the coefficient of & larger than 7
in absolute value. This cannot be asswmed in general. however, Coefficients of
lactors can be much larger than the coefficients ol their product. (In the case of
4 Ox + 2 the theorem tells us that § is an upper limil for the absolute value of this
coelficient.)

. H M ] 3 i ;
Now consider a4 + 2 T+ 0+ 12men i3 P s+ - D=x -2+

] 2 . . S e . .
X =3v-2v- 2isox 4 - Disa prime factor. We will not pursue this seed any
further.

J




Thus we have x* + 2 and .« + X’ — | as prime factors. Of course in this particular
case, we could divide these out of P{x) to see what's left, but the direct way in this
method is 1o now try multiples of the seed factors, lirst two at a time. then if
necessury three at a time, ete. In theory one may have to create new seeds by trying
the products of all possible combinations of the original sceds, and then try all
possible expressions congruent o these seeds modulo 13, up to the size limit for
coelticicnts, as mentioned above.

- ks B 1 1 )
[Infact. (v + 6M" + 2) =" + 607 + 2y + 12 =3 + 607 + 2v — | among others,
but these do not work, However. (v + 60 + 00+ 2) = v + 120 + 120 + |2 =
&' = ~x = 1, which divides Px).

Thue Pur=U - —d m Sy v+ i+ 2=+ 200 40 - D = —a = 1),

A Less Tractable Example

An example winch itHustrates that the methodology abore is not complete is Lo
factoer

A O #2067 = 300 ~ 370 #1900 + 20 - 69 - 1 [16]

The factorization is (x7 + 3¢+ 20¢" + 3¢ = Jv— 1w’ - v+ 7y, Using p = §3 and

hY

P 41t 6 0 9
G0 7 7 7 510 5
60 210 s 1 5 6 2
the same technigues as above produces the matnix ‘0 72 910 1 8 1
i3m0 7 3 3
|() 40 4 012 2
0610 502 6 3 3
lo 4+ 7 07 5 310
0o 0 0 6 0 0 0
0O o0 0 0 2 611 7
O 6 0 0 9 710 4
which reduces o [0 0 0 0 1b 1809 - Comiputing the geds as above
o0 0o 0o ot 6 4 0 -
O 00 6 0 1 00
0O ¢ 0 ¢ 0 0 1 0
O 0 0 0 0 0 0 I

produces the following seeds: v+ 3, v + 7.0+ 10,0 + v+ 12 v + 9+ 70" +
WA BT F 8T 1204 6. Only A~ v+ 7T =" + 90+ 7 praduces a Factor of the
original polynomial, leaving the quolient

G0 2 -6y — v -2 [17]
No other combination of seeds is productive.

Reproducing the procedure above Tor f17] vields the seeds v+ 3,v+ 7, v+ 8,

X+ 10, +4d, ¢+ 2v + 4. This produces (v + B)v + 10) = X+ 51+ 2 mod 13,

-




which is a divisor, yielding (F + 5x+ 20 + 57 —3v~ 1), This is a complele
factorization of [ 17].

Another tact would be ta factor [17] modulo o different prime. Using p = 1
produces the single basis polynomial v(x) = 2" + x* + 10x, which yiclds the factors
X 450+ 8x + 10 and x7 + 5x + 2. for s = 7 and 10 respectively. The second is a
factor of [17]. and x* + 55 + 8x + 10 = 5" + 5¢° - 3x - § modulo 11, which is the
other lactor of [17].

Other comments

As noted carlier, the process illustruted above is not guaranteed to provide a
factorization. It can be made algorithmic by increasing the size of the prime p so
that I is greater than the size of any coelficient of any factor (Davenport, 1988).
The ecessary value of p can be determined by using the thcorem in [[5].
Untortunately most such values increase the number of calculations to l[actor
modulo p tremendously, as well as the number of potential lactors implied by the
sceds. Also, what has been presented here is very primitive with respect to other
algorithms - there are many varigtions, and better, albeit not simpler, methods. One
is called the continued {raction factoring algorichm (CFRAC), for example. and
th re are Sl newer, fuster algorithms (Cohen, 1995).

We have presented two cxamples of monic, univariate polynomial factoring.
Left unaddressed are factoring polynomials which are not monic. or which are
multivariate. The procedures are refated to the case illustrated here, but, as you
might expect, get much more complicated.

[nterestingly cnough, Maple factors Px) in [2] successfully, but Derive, both in
a PC cnvironment or on the TI-92, only finds the quadratic factor of P(x). yielding
4+ 20" - 27— 3x' v+ 1), Although Derive is manifestly very powerful as a
factoring tool. it doesnt seem to handle all possible cases. And of course, given the
complexity of the programniing task and the theoretical complexity of these
algorithms. these will be {luws in any CAS.

Summary

As can be scen. examples when trom the domain of computer algebra can
provide interesting applications of college algebra and linear algebra. In fact. 1o
fully study the theory presented here requires a great deal of mathematical
sophistication. However, none of the mathematics pre«ented above is more
complicated than that found in precalculus fevel courses (even [inding the formal
derivative of a polynomial can be mastered quickly) and it would seem 1o me that
good high school and undergraduate students could tackle interesting projects
related Lo this topic. For example, students could iry factoring the same polynomial
relative to different prime numbers. They could write progirams for the TI-92. or
even a graphing caleulator such as the TI-85. which implement the edicus pirts of
the algorithnme T would postuiate that these kinds of projects would generate an
interest in some students 1o learn more about the theory of all of this, and coukd
provide the impetus o want {o study college algehra tie. groups, rings. ficlds, cte.)
and linear algebra.
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Lucky Larry #28
Lairy Tound a new way (o do Tree Tall moton problems which always
works (provided the time is 2 see). The problem was
10 the acceleration due o gravity is 9.8 m/sec” and an object is
launched upward al a velocity of 40 mfsec, Tind (he object’s height after
2 see.
A standard approach maght be this;

S R
.\—T,g'! '1‘\Uf+.§“

= % (98302 +10(2) + 0
= ) hin

Larry. however. “reasoned” this way:

L U
=982 +-Hi
= 60.dn

Submitled by Plullip G. Hogy
Punxsutawney A
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Abstract
A model of rain development is Tormuliated from a system of ordinary
differential equations. Properties of peniodic solutions are used to prove that if
cumulus clouds are present but no lree dust parlicles existin the lower atmosphere,
then no periodic rainfall is possible.

Introduction

We shabl deseribe an application of elementary ordinary ditTerential equations to
the study of the Jormation and precipitation ol raindrops in the aimosphere. Of




particular interest will be the role ptayed by free dust particles. Our analysis s
exclusively based on standard techniques and results from a lirst course in ordinary
differential equations and has proved to be an eminently popular apphication with
our undergraduate students.

Cumulus clouds are the white pully clouds usually found at lower altitudes. In
the classical theory of cloud physics, of. {Pruppacher & Klett, 1978) and (Shaetter
& v, 1981}, three main ingredients are necessary for the mitiation ol cumulus
cloud arowth: sufficient water vapor, an updraft of air and dust particles suspended
in the atmosphere. An important characteristic of the lower atmosphere is that there
are always a sufficient number of dust particles to tmtiate cumulus cloud
development. Sew (Rogers, 1970) for a detailed explanation.

Let xtn). vy and z(ry denote. respectively.the number of raindrops, cloud
droplets and dust particles at tme 1. The term raindrop 1s used to denote the
accumulations of moisture which are heavy cnough 1o possibly 1all 1o the earth,
while cloud droplet relers to the lighter accumulations suspended in the
atmosphere. Our objective is to derive a mathematical model which represents the
generation of cumulus clouds in terms of the interaction between x(f). (1) and (1),
assuming that initially, al time ¢ = 0, cach is positive. We obtain a three-
dimensional system of ordinary differential equations cach solution of which
satisfies the positivity conditions, xtn. vi and z(n >0 forall 1 = 0 . To keep the
problem simiple we then consider, in the presence of cumulus clouds, whether
sustained periodic rainfall would be possible in the absence of [ree dust particles.
Under these conditions, itis shown that the corresponding (wo-dimensional system
does not possess o noo-trivial periodic solution.

Main Derivation

Rain Drop Equation

H we choose two cloud droplets vy and vs at random, then the probability that
they will coalesce. over some time interval o7, is given by the product of the
prohability that v collides with ¥5 and the conditional probability that ¥ coalesces
with vy given that v has collided with v». To simplily the problem, we assume that
any codlision ol cloud droplets feads to momentary coalescence, so that the
conditional probability 1s cqual to one. Furthermore, for small df two cloud
droplets will encounter cach other oaly once. The number of wiys that y(n objects’
can combine in pairs is represented by,

W! Al M

Civtn, 2y = =
Noven 2 2

Normally, i the presence of cumulus clonds, there are o large number of ¢loud

. - . !
droplets present in the atmosphere, so we can approximate Civtr). 2) by —v=(1). Thus,
if ¢y v the probability that two cloud droplets collide w produce a single ruindrop
in tine o, te the number of rundrops produced Ty cloud droplet collision during

. - - - el
the time interval df is approximated by 2=,

i
Y.  }




A significant number of times when two raindrops have combined, the resulting
raindrop is unstable and breakup will take plice. We shall assume that, over the
time interval o, this raindrop breakup produces exactly one of the following three
outeomes: iwao raindrops, 4 raindrop and a cloud droplet. or two cloud droplets; the
corresponding probability that raindrop breakup occurs and one ol these three
outcomes ensues is denoted, respectively, by o ¢pand o). So. the number of
raindrops produced in time f due w raindrop breakup is bx(e) — dya(ey . Henee, if
e, 1 the probability that a raindrop will fall to the carth during time o, then the
total rate of growth of the rutndrop population at time £ will be given by,

1

o
o= ?'_\'3“1 + Uy —dy - e ),

Cloud Broplet Equation

The principal mechanism hy which cloud droplets are formed is by
condensation around dust particles. This happens when rising air cools and the
relative humidity increases. Water vapor then begins to condense on the dust
particles as the saturation point is approached (Pruppacher & Klett, 1978).
Assuming moisture is plentiful, the rate of cloud droplet production 1s directly
proportional to the number of dust particles, with propertionality constant .

The breakup of unstable raindrops will also have & positive influence on the
cloud droplet population. During the time interval o, the number of cloud droplet
births is, therefore, seen o be @22(¢) + (2d| + ca{r). These birth processes are
accompanied by three death processes: caalescence between two cloud droplets 1o
produce a single larger cloud droplet. with probability £, coalescence between two
cloud droplets to praduce a single raindrop, the probahility «| (as in the derivation
of the raindrop equation); and coalescence between a cloud droplet and a raindrop
to produce a single raindrop. with probability > . So. by a stmilar argument 1a that
used for the raindrop equation. death processes for cloud droplets over the interval

. . . Dy
ot will he ol the form (u, + JT) VIO 4 e,

Hence. the equation [or the growth rate of cloud droplets at time ¢ is given by,

dr - a2+ (2 + et - caxtnvy - ((11 + h—) V(1)
di ) - LA

where all constants are positive real numbers.

Dust Particle Equation

The atmosphere has a imited carrying capacity for dust particles, We assume a
togistic prowth madel in which die rate of growth of dust particles is proportional
to the product of the current number ot dust particles, z¢/), and the unutilized

capacity ol the atmosphere for dust growth, Thus, if ;—:—‘ is the upper limit of the
K|

number of dust particles that can possibly be contained in the lower atmosphere,
then the rate of prowth of dust particles at time ¢ is represented by axz(1) — By2(1).
The numbers @, and By are positive constants bul do not represent probabililies.
The death rate lor dust particies is dependent upon the number of interactions
between raindrops and dust particles, and between cloud droplels and dust
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particles. Hence, the equation for the rate of growth af duw particles at time @ may
be written as,

I-

‘-!'- = 2ttay - bl — eanle) - d iy,

i
where ey and oy represent the probabilities that dust particles will adhere o,
respecinely. clowd droplets and raindrops.

Henceo our mathematical model {or the generation of cumulus clouds in the 5
[ower atmosphere is represented by the following three-dimensional system of N

ordinary dilferential equations:

‘—';—‘=—“T!A\’-‘(I)-"(b]—d:—c’,ll‘“). AN
ol - .
Ja 5 by o

L= n + Qudp e - el - a4+ 2 v, F (1)

i -

I-

'—'!% =Nt - bytn — vt —dpn J

ot

Analysis of the System
Fheorem I, {7 Oy it and 200) are positive. then any solutiont 1o svsten o) will
be positive: e o, v aned 200) > Ofor alf iimes 12 0.
Proof. The differential equation.

de = 2UWary — B2y - ety = Jd ol

citlt he wertten as the cquinalent integral equation,

-(1) = :(())(,[1 o _[r[h;'nl LT 4!|\|\'I|rf\'

Clearhy, the signof & s completely determe ed by the imGat condition -0 2 0,
Thus, ztn > O forall + 2 O
Similarly, the differential equation,

dy

=V Uy =y - e,
r -

s lincar in x and, therefore, has the solution,

'
! h
A = ¢t o e () +! _{va\.‘(_\](,.lhl dyoe SN

So = 0hen oy >0 forall 124,
Finally, the dulterential equation,

‘i}: N 42y e U = vt - (@) + b ) ¥,
[} -

may he written as the equivalent integral equation,
r
et = v(U) + | [eazts} + (2dy + o) )ats) s )eda,
i




where,
i e avinl + [u, T I{-l\nlln!\
ulfr=e¢" - - '

Since {03, 1), 200 and A0 are positive Torall 1 2 0, then vir) s positive for all ¢
z{}. Henee, the theorem is proved.

A complete analysis of the three-dimensional system (1) is beyond the scope of
this paper. However, we shall prove that in the absence of free dust particles, the
corresponding system does not possess a non-trivial positive periodic solution.

Analysis of the system in the absence of free dust particles

When & = 0, the three-dimensional system reduces 1o the two-dimensional
salem,
L=ty by - dy - et
: | | 1
ot
&

]
aif

; By s
= (2dy + epu) — ca{rvin - (fi, + f} v i2)

Due to the absence of dust particles, the existence of a selution (o the (wo-
dimensional system (2), witl depend only on the coalescence ol cloud droplets
together with the breakup of raindrops. In order to ascertain the existence of
periodic rainfall under these condinons, we need to seck non-trivial pertodic
selutions to systeur (2). It will be seen that no such solution exists, The following
well-known theorem will yield our result.

Thegrem 2. (Poincaré-Bendixon Fheorem) For ihe svstem of differential

- fx . I . R . .

cqguations tT = Flx.wv) ane ‘—J;:—= Gy, i Fly) and Glx,y) have continuous first
€ 4 ) ) )

arder partiad derivatives in a simply connected domain D of the xyv-plane and

d)i\' + %f\i has the same sign throughout D, ithen there is no periodic solusion o the

PR ;

svstem dT: = Flx, v) and ‘—!i:— = Gix, vpwhich Bes entirelv in .
t t

Theorem 3. If positive initial conditons are given and the coefficients of svstem
(2) sarisfy the inequality Iy < i + e then systent (2) daey not possess a non-trivial
positive periodic solution.
Proaf.

Applying Theorem 2 o,

! . LI
ﬁ =M V) = ‘7'_\-—(;; F by -dy - e nin

. b,
‘—% = Gty = Qedy ey - oot - fay + S
i -




we see that

ar
and
?{T' = — o) = a4+ baavir,
Hence.
r)l". X1 R )
-r}t_*(ﬁ =thy - dy - e - e - Ly + by

From Theorem |, f positive initiad conditions are given then x(n0 and v(i) are
positive at any time r 2 O, So if b < d; + ¢ then there is no periodic solution (o
sysicm (2) contained in the region v > Oand v > ().

Conclusion

Theorem 2 tells us that in the absence of dust panticles, there can be no periodic
rainfall il b £ d, + e, Accarding Lo (Pruppacher & Klew, 1978), cuindrop breakup
eventually produces many small cloud droplets along with a few larger cloud
droplets and raindrops. Hence, we can assume that normally #, < ¢, and so the
inequality &, <d| + ¢ is always satisfied. Hence, in the ahsence of dust particles,
there can be no penodic rainfall.
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| have never let my schooling interfere wath my education.

Mark Twain

L) L >
e oo 4

Every lime you stop a school, vou will hive 1o build a jatl. What y ou gain
at one end you lose at the other. IUs like feeding a dog an his own il It
won' L fatten the dog.

Mark Twain (Speech 11723719000
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Exploring Directionsl Derivatives on the
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e ol the ~tanduard 1opics e multivieriable caleutus is that of directional
derivitive, of which partial derivatives are special cases. In this article we illustrate
how dirvectional derivatives can be approximated. and the undertying concept
clarificd, through the Tubfe feature of the TI-82483 araphics caleulator.

First recall that. for a point Fy(x,.¥,) in the domain of a ditierentiable function f.
the partial derivative of f with respect to x at £, is defined as follows:

- - ft hovb -ty v
D4k =lim —‘L'f—"—"f'_,i_‘;-n‘;”__ (0
hoan |

pravided this linitexists.
Similarly, the partial denvavve of fwith respect o v at P is defined as tollow s
- - (8]

. o by e v
Dy =liny SALTA LT LS AL (th
HEY1

A
provided this limit exists.

Let v = {u.by be a vector in the vw-plane. The directional derivative of § al i, m
the direction 1 is a scalar denoted by 2 f()) and can be defined as follows:

> al
D fuhy = lim LLARN TN (I
' 2

where £ is in the direction of v e, 2P =10 1> 0,
The ras lrom B through 22 can be parametrized as lollows: v =y, + al.y =
¥, + ez 00 Defimbion el is thus equivalent o

Qf”:,} = lim foy, Fatv, bty v _ (v)

ren I et

Note here that II,’,IBI = Il Ivl. Note also that & = 0 gives an expression eqguivalent
o (hisince £ s GindN yifand only b e - Gin D, while = 0 gives an capression
equivalent to (1D, confirming that the partial derivatives are indeed special cases of
the directional derivative.



The gradient vector Vf(f}} is defined to be {2 f1P), D j'(Pl,)). and a theorem in
every calculus book says that 1) f(P,)) = VI(B) - i, where i is a unit vector in the
direction of v. This theorem is easy o apply in computing directional derivatives.
If 0 is the unale between VIR and i then ViR - o = IV cosB. This
shows that D f(P ) is greatest when v is in the direction of the gradient vector since
cos@ is then equal 1o 1.

As an example. let fixy) = ©° + ayv - 17, Suppose that f(x.y) represents the
temperature at the point Ce.y) in the xv-plane and that a bug is resting at £ We then
interpret £ £0F)) as the instantaneous rate of wemperature change experienced by
the bug as it moves off in the direction defined by v, Taking 7 o be (3.4) and
Vo= (L =2y willustrate, we compute V7P = 20+ v - 200 so Vi) = (10.-5).

A

Since the unit sector in the direction of 1 is 1 = (l_ - ;_). we compute £ f(P) =

—_ A KR
{10.-5; - (': i_\): VS = 89440 IF temiperature is in Celstuy degrees and
ENTE
distance Is in meters, we conclude that the bug experiences an instantancous
in¢rease intemperature of 8.9:017/m as it moves away from (3.4) in the direction of
{1.=-2). Of course this a local result. If the bug wishes to get warmer as quickly us
possibfe. it should set out in the direction of V(P = (10.-5). in which case its
instantaneous rate of temperature change would be [{10.-53) = 111807 /m.

We now tum to the calculator 1o demonstrite computation of approximations to
the directional deriviative in a table. Referring to the example above, we use the
calcnfutor’s Y = kev to set the following:

Y= 3+ xRS
¥o=4-2Xhs

R p .

¥, = (Y, - FaOnfabne X

Here X s the parameter usuadly denoted in hooks by 12 )] 1s the abscissa of the
variable point near 3.4y }, is the ordinate of the variable point: ¥, is the value of
the function f at the variable point: ¥(0) is the vadue of the function fat the point

B, ¥y is the difference quotient in (1V).

Chonse Table Set on the TE82/83. The user has the chotee of Auto or Ask lor
the independent variable X and for the dependent variable(s) Y. T prefer Ask lor X
and Auto for the Vs, though choosing Ask for the Vs produces a slower,
controlied output and may be pedagogicully preferable i a (irst example.

The values given in Table 1 are obtained by pressing the Table key on the
Ti-B2/83 and entering values Tor X from, say. | down to 001 in whatever steps the
user chooses. If the Auto option is chiosen Tor the dependent variables, the columns
¥, through ¥ are compuied immediately. The caleulator screen permits viewing




onty two of the dependent variables at a time, along with X, so right and left arrow
scrolling is necessary. Note the close agreement between the lower right entry and
the value of the directional derivative computed above by the standard [ormula.
Inspection of the ¥, and ¥, columns shows that the variable point approaches (3,4)
from a more or less southeasterly direction. For example, comparing the abscissa ¥,
and the ordinate ¥, as X changes from | 1o .5, we sce that ¥, decreases by 2236 and
¥, increases by AH72, consistent with the slape =2 of the veclor {1,-2).

It is instructive to let the parameter X approach O through negative values, say,
from -1 to —.001. This causes the variable point £ to approach £, along the vector
—v and gives values approaching the opposite of the limit found with positive
pirameter values,

kY ¥, 1, Y, Y,
1000 4472 21056 12.044 7.9443
SO0 32236 3552 V.22 bk
100 20447 39106 58814 H.5443
A30 30224 J.ussR S4447 ®.8043
010 3.0045 39911 5.0893 8.9343
005 3.0022 39955 50447 8.9393
001 30004 3.uyy] 30089 8.0433
Table 1

As i second example consider the funcnon of three variables given by
Jlevozy = Latl + 3%+ v - 2 Let £ = (L=l Dy and fet ' = (2,2, [}, Then
. 3 L A . . . . L ] .
"= {T‘ S T) is the unit vector in the dircetion ol v, The gradient of f is the vector
1 .

R 2y 2 4

- ) so Vi) ={1. -1, -1} and the stan-

4 +47 - L+ Gy -0 [T e

. R ) b Al . .
dard computation gives 1 (1) =(1.-1.-1,- (% 5 —Il—) = 1. A set ol parameltric

- - - . - .. T bl
cquations for the ray from £, in the direction v s v =1 + Thy= -1+ [— i)f

s =1 +rlz—!.f<’”.

In the Table. X again i< the parameter. Yo F.oand ¥ are the coordinates x, v and
morespeetively Foas the function expression. and 3 is the difference guotient in
(IVy. That s,




B Y, =1+ 2X/3
o= -1 - 2X/73
Y¥.=1+ X3

Vo= hotl ¥+ 57 - 10

Vo= (¥, = FiOn/absiX)
The computed results are shown in Table 2.

X ¥, Y, Y, ¥, Y
B i.0n0 L6667  -1667 L3333 15040 AT083
500 1.1313 e RER L1667 i.1614 3653
.1ag 1.0667 -1.067 E0332 9199 ONRWY _
' 050 1.0333 -1.033 0167 74286 99431 o
e 010 1.0067 -1.007 RYIRR] 0314 YYRER -
] 005 1.0033 -1.003 1.0017 O9814 09944 )
— 001 LOON7  ~1.001 L0003 6U15 99989 |
= Table 2 '
_ it goes withowt saying. of course. that a table of figures is of little instructional
x value it is not accompanied by an instrucior’s explanatorny comments. But a
- visual demonstration, with students™ involvement using their own caleulators, to
produce tables like these can take some of the mystery out ol the traditional
. farmulit application.
3
It is not knowledge, but the act of learning. not passession but the act of
getting there, which grants the greatest enjoyment. YWhen I have clarified
and exhausted o subject, then | turn away [rom i, in order Lo go into
darkness again: the never-satistied man is so strange it he has completed a
structare, then it is not in order to dwelt in it peacefully, but in order o
begin another. T imagine the world conqueror must feel thus, who, alter
one kingdoni is scarcely conguered, stietches out his arms lor ofhers. .
Karl Friedrich Gauss (Letier to Balyai, 1808.)
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Inelementary geometry we become familiar with the four basic wriangles: right,
scalene. isosceles and equilateral. We would like (3 examine the isosceles triangle
a little more closely. The isosceles tniangle has two congruent legs and one hise.
Also, the angles opposite the congruent legs of an isosceles triangle are congruent.
H we construct an isasceles triangle sa that it is circumseribed about a circle of
radius v, then we claim that there must be a unigue isoseeles triangle which
minimizes the length ol the congruent legs.

At first, one may be tempted to claiim that the isosceles triangle which
minimnizes the lengths ol each cangruent leg of the isosceles triangle would be the
equilateral triangle. However. as we shall see. this is not the case. Indeed. there is a
unique triangle in which the congruent sides are of a minimal length, and it is not
an cquilaterat triangle.

As shown in figure 1. we begin with
a circle af radius r centered at the
origin, We will circumsceribe the
isosceles triangie about the cirele so
that the base of the triangle runs along
the line y = - from point B (-H, -r) o
point B, (b, —~r). and the tap ol the
triangle falls on the y-axis at the point
Cth. ). Let A be the Tenagth of one of
the congruent leas of the triangle. | ot
point Ata,.i,) be the point of
tangency belween the leg CB, and the
circle. )

For a lixed r. as the value of ¢
increases without bound, the value of &
inereases without hound. Also. for a
fixed r. as the value of ¢ approacies r,
the value of £ again increases without Figure 1




bound. For some value of ¢ greater than r, there must be at least one minimum
value ol &, 11 there is only one minimum value of &, then that triangle would be the
unique triangke for which we are secarching,

I SR SO N . .
Now the slope ol radis €24 1s . Since leg OB, of the triangle is tangent w
i -

the circle at point Afa,. o ) then leg CB, i perpendicular (o radius QA Thus, the
slope of line CH, s

(ll i,

o,

a,—t
- th
o,
This relationship caiy be expressed as

. .
TR TR

Since point Ve ) lies on the eirele ol radius rowe also have

A - x
N|"f'£“T =r-.

Thus, Trom equatons (25 and £3) we have a,c = = That is. we have

_
“:—'T'.

From cguations (3) and (4. we get

ul =

and the equation deseribing line CB, i~

=

L s T
=Nt —
r

Thus. for any paint (1, v) on the line CB, | equation (7) yrives us

rie -y
V= —

weotf
Specifically lor paint b, r, we have

_ ot + 1)




By the Pythagorean theorem. and from cguation (9), we have for right triangle

CDB, that
PR . et
o= 4n+n-—{u]+n-+rr=L’”—. (10)
LY et | l: - l':
- 50 Lhat
A:c'lr+r) (”)
= PR
ik
[ ]
We want to determine the vatue ol ¢ which will minimize £ Che denvative ol &
with respect to ¢ is given by
b Y e e N A (12}
v TR (¢« e -r

Since ¢ > rowe will not have division by zero, Thus, setting cquation (123 equal Lo
7ero and solving Tor ¢ yields

(3

Since o > r.the only solution is given by

¢‘:J'[-l—+ﬁ—"‘5—)=r(]). (5

where @ 1s the golden ratio. Let the degree measure of Z0¢A be w. Then, since
-'?: = @ and ACAQ is a right tnangle, we have w = cse ', Thus, for our unique

isosceles triangle B,CBL we have the degree meisure of 2B CB, i< given by

mZB OB, = 2w = ELsL ‘. Also, the measure of cuch ol the two congruent angles,
2 b‘ B dnd 2 ll’ H ismZz{( l's’ B = m.{(‘ﬁ‘ B == -y E - ose .

Finally, in order to get a better description nl' this triangle, we will ;1pprmimule
the degree measures of the three anales. We calculate that ZB,CB,
approximalely cqual to 76.3454 " and the du'uv measure of cach ol the mngrucnl
angles, ZCB B, and ZCB,53,. 1s dp[)ll)\lllhlld\r u|ual o 51.8273 . Thus, ABCB, |
clearly not an “equilateral lrmnnlc and yet it is the vnigue isosceles ln.m"lc
aircumsenbed abouta circle of radius r in which the congruent legs sdre mlmmuud.

The selt taught man seldom knows sy thing accurateds, and he does not
honow a tenth as much as he could have known il he had worked under
teachers, and besides, he brags, and s the means ol fooling other
thoughtless people mito poing and domy as he himsell has done.

Mark Twan i faming the Biovele, 1917
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Euler (1996) showed that the zeros of the polynomial (2 + D" = £ 2" must satisfy
Rez = i [0 this note. we give a simpler prool that is also more general. We
consider polynomials of the lorm

(C+a) =h", 1}

where ¢ is o non-zero redl number, 21 is a positive integer, b is g compiex constant
and 2 is a complex variable. Dividing both sides of (1) by 2 and taking absolute

1 i 14 .
values leads lu|l +¥l=lb| " Thus, | + L= b, 8 real. or equivalently,

=_"*._ (‘))

Il

Note thit the zeros ol the polynomial (1) must be of the form (2). Moreover,
(23 may be viewed as a bilincar mapping ol the unit circle [ = 1 onto

¢

W e (3)

.
it o

50 that the zeros of { Ty ie on the image of this vansformation,



(£ 1bl = 1. the image of the unit cirele under (3) s [u': Rew = - %

0161 # 1, then (3) maps the unit cirele onto the cirele in which the endpoints of i
£}

dianmieter are —=—=— gnd -——— .., the circle
[l 1 [+
i It n !
[l o [ fantn o
|| ] [l
Conclusion

i 10EBL = 1o the seros of the polynomial pizy = 2+ 2 = b2 in (1) all satisfy
Keo ==L There are s such zeros il b # [ and o~ | zeros i h = 1, The special

case =% Land e = | gives Buler’s result [ 1.

i I0IAL # 1, the 1 zevos of ptz) lie on the circle defined by (43, In particular, the

- - { 1
real parts ol the zeros of peo1are between -—— and —

; ‘ . while the imag-
It - Wl +

albl' Voaiblt

1
imary parts ol the zeros of pioyare between — i l—l———-' and | ———1,
: h [ | H Sh ]

demark

[ the number @ in the polynonual (1 is oot reals e bilineas map (33 shows that
the 7eros of the polvnomial will lie on a fine tha s not parallel o the imaginary
anis when bbl = 1, and on a cirele whose center is not on the real axis when [l 2 1.

Reference

Euter. . (19961, The distribution of 1oots of an cquation, [l AMATTC Revien,
702y p. 24225

Only two things arc infinite: The universe and human stupidity, and I'm
not sure about the former.
Albert imstein

S}
oy o

Nateversthing tatt can be counted counts: and not every thing that counts
can he counted.

Albert Einstein
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From Divisibility By 6
to the Euclidean Algorithm and the
RSA Cryptographic Method

by

John B. Cosgrave
St. Patrick’s College
Drumcondra, Dublin 9, Treland

John 8. Cosgrave first learned of the Euclidean Algorithm from
his father, who tanght the mechanies of it = on his own
initiative — to his primery school pupils (aged 10-12) in rural
treland. He studied at Roval Halloway College of London
University (B.5c. (1968), Ph.D. (1972) in Analyiic Number
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His research interests ave in elementary number theory and in
the past few years lie has come to be a passionate user of
computer algebra software in his teaching,

fn a recent note (Francis, 1996) the author wrote: Some divisibility tests are
hughly inndtive (as for 2, 5, 10, or 100) whereas others are more subtle (as in the
case for 3.9, or 1), No subsequent mention was made about a test for divisibility
by 6 (perhaps because it was not felt worth commenting upon?).

I would like to nwuke a case for the quite rich developmient of mathematical
deas that can flow from considering the apparently simple guestion of finding a
divisbility test for 6, and what 1 describe below is based on my experience over a
number of years or teaching eiementary number theory to my students (who are
trainming 1o be pnmary school teachersy. Tt is not an approach that | use every time
as Ldon't wish to standardize my approach to teaching a given topic. 1 hope it will
be of interest to other teachers,

For American readers I should point out that | teach in what might be called a
three-year college. one that tiains students to teach in the primary school sector
tages 4 o 1200 My students are ones who are studying mathentatics as one of their
two “academic™ subjects i thewr first vear of studies. and those whe continue with
it as their single academic subiect in their second and third vears. Besides their
dcademic subjects they all study a substantial Education programme.

The Normal Experience

Wheneser Task my students i they can tell how to decide i 4 number iy
divisible by 20T abwavs getthe response: a nwther iy divisible by 2 ifin final digit
iy dvisible by 201 aceept that, but T draw te their attention that the truth of that is




dependent on the number being exprussed in an even base. 1L would be
unreasanable ol me Lo expect them to know that, since none of my students have
any prior expericnee ol base. However, when [ do intraduce them to the notions of
base 2, base 3, cte., they quickly grasp the idea, and see that “4” (cven), when
expressed in the base 3, ends in an odd digit, ar that 5" (odd). when expressed in
the base 3, ends in an cven digil.

When | ask my students if they can tell me how to decide if a number is
divisible by 3, [ generally find that a number of them have heard {roin some source
thal ¢ mmber is divisible by 3 if (and only if) the sum of its digits is divisible by 3.
I never let that ane slip past and always spend some time bringing out a proof from
them, as I have never encauntered a student who has scen a proofl of Lhis simple
result, or even seen the central idea of its proof which can be quickly conveyed by
stmple examples like:

FRE.214 = 70,000 + 80.000 + 8000 + 200 + 10+ 4
=7(99999 + N+ 80999+ )+ 8959+ NN+ 290+ I+ (U +iy+4
= an obvious mulliple of 3+ (7 + 8+ 8+ 2+ | +4), erc.

Tests for divisibility by 4 and 5 always bring forth the standard replies, and then
when T ask for a divisibility test [ar 6, 1 always get o reply along the lines of:
a number ix divisible by 6 if ir ix divisible by 2 and 3.

My question 1o them is then: how do you knaw that a number is divisible by 6 if it
is divisible by 2 and 37 That question always cuuses some puzzlement amongst them,
and I can almost hear them thinking: is enr feachier stupid? 1 press them, and ask
again: how can they be so sure that 2 number is divisible by 6 il it is divisible by both
2 and 37 The (reluctant) answer never varies: Iy abviowy, yiv ix sve thiees.

Ah! so six is two threes. And bwelve is three fours, and fifteen is thiee fives,
and thirty-five is live sevens, and twenty-four is four sixes, ... . 1 ask it they are
going to tell me that a number is divisible by «b if it is divisible by both ¢ and b, on
the grounds that “it’s obvious, ab ix a timex 6. Some bold ones will jump in and
immediately say that of course iUs true, it’s abvious, but after a little while — having
asked the question again - 1 invariably pet some contributions along the lines of:
no, it’s not abwavs true. Twelve i divisitle by fowr and six, but it ix not divisible by
fweniy-four

The Start of Real Development

At that point even the weakest student in my class realizes that my original
question really is a question after all. All of us who teach know that there is no
hope whatever of getting students to think about a problem or a question until they
accept that there really is a problem or question to think about.

Sa. how daes one know that if 2 number is divisible by both 2 and 3 then it is
divisible by 67 Now i generally get 1wo answers:

1. Ziseven and 3 ix odd,
Is that an acceptable reason? § generally pet a refutation like: & and 3 divide 12,
but 6 times 3 doey not divide 12,

2. 2 and 3are primes.




Now Lhat is a more sublle one (o handle, becaunse it happens to be true that if p
and g are distinel primes then any number that is divisible by both p and ¢ is also
divisible by pg, and <o one has now encountered a new question. namely: how does
one know that that is true? (ncidentally this is a key step in the proot of the special
case of the Euler-Fermat theorem which is needed in the Rivest-Shamir-Adleman
eryptographic method, as 1 sill show at the end of (his note.)

[ usually handle that response by suying that what has been suggested is close to
the truth, but is not the entire tlruth, For example. any number that is divisible by 4
{not a prime) and 3 (prime) must also be divisible by 12, or any number that is
divisible by 21 (not a prime) and 10 (not a prime) must also be divisible by 210,
But how do § know that those claims are true?

Intervention is Now Necessary

Lam now at a point where [ have o introduce them 1o a new method. actuslly to
two new methods. Both approaches will be seen o “work™. but it soon becomes
clear that one of them is almost compleaely useless. whereas the other 1s very, very
poweriul indeed. I believe thit it 1s a mast important efement in the development of
a student’s appreciation of mathematics that they encounter the contrasting values
ol different approaches o solving a given problem.

Mecthod One. If # is any integer, then, on division by 6, it must leave one of 6
possible remainders: 0. 1,2, 3, Jor 5. Insymbols, il e Z, thenn =64 + 0, 1, 2,
3.4 or 5, for some A € Z. Butl il & is divisible by 2 then those six possibilities are
reduced to three, nameby: #= 04 + 0, 2, or 4, and if n is divisible by 3 the original
six possibilities are reduced to two, namely: n = 64 + 0 or 3. It then follows
immediately that 1f a2 is divisible by 2 and 3 then the only possibility s
n=0A +0 =04, sonis divisible by 6.
To ensure that they have absorbed that approach I set routine exercises Jike:
il s divisible by 4 and 7, does it follow that # must be divisible by 287
il 1 is divisible by 4 and 100 does it follow tvat & must be divisible by 407
With the fiest of those they will ind that the answer is, of course. “yes". and.
with the sccond one, one ol two things will happen: a student will cither sce
immediately that the answer is "no™ { “twentv is divisible by Jowr ane ten bt nor by
Jorte™), or — and 1 alimost prefer this lo happen — will discover in an anatysis that
the answer is "na™ as a result of doing this:

n=40A+ 0.1, 2,345 . 38 or 39 Torsome A e £ .
Butif s is divisible by 3 then:
n=404 + 0,48, 12,06,20, 23, 28, 32 or 36,
And il s divisible by 10 then:
n=40A + 0,10, 20 or M.

[t is then seen that il & is divisible by 4 and 10 then there are two possibilities,
namely either 1 = 404 or s = 404 + 20, and in the Tatter case n isn't divisible by 401



Methad Two. We use the (apparently) trivial fact that 2 and 2 differ by I. Now let
n be an integer divisible by 2 and 3. Then nn = 24 and n = 38, for some 4, Be Z.
From 3 - 2 = Fweobtain 35 - 20 =1 = 3(24) — 238y = 00A — By, and so n s
divisible by 6 since (A - B) is an integer.

Real Progress with dMethod Two

Many students are fascinated with the latter approach. Three minus two is one!
[t has o touch of magic about it, ax it scems that one gets something from almost
nothing. It is immediately apparent that it is certainly vastly <uperior to Method
One when one uses it to prove results like:

if 7 is divisible by €) and 11 then i is divisible by 110,
il 1 is divisible by 15 and 16 then n is divisible by 2440,

and in fact students can immediately prove the non-trivial general result: i » is
divisible by moand (s + 1) then # is divisible by s + 1),

How. though. does it compare with Method One with respect w other problems
previously encountered? For examnple: if o is divisible by 4 and 7. does it follow
that n must be divisible by 287

This is the point at which weak students will say things like: you can't use
Method Twa here because 7 and 4 don’'t differ by 1. But it 1s alsa the point at which
if 1 say something like: "true. 7 and 4 don’t differ by 1. but can you see a way of
getting a 17 from 4 and 7 that might be of some use to us”, that at least one
student will come up with: vou can still do it by wsing nwo fours minus seven is 1.

The details: 2 x4 -7 = |. Now let 1 be an integer that is divisible by 4
and 7. Then n = dAd and n = 78, for some A, B e 7. Since 2 x dn - Tn = a then
2x4(78) - 7(4A) = n, and so 28(28 - A) = #, and thus »n is divisible by 28,
because(2B — A) i< an integer.

That worked with 4 and 7, but how about 5 and 13?7 Or 8and 117 ... . Queslions
from me. and answers from them quickty lead o resulis like:

Simple Result. Itne Z and 8| nand {1 ]n then 88| n.

Proof 3 x 11 —d x ¥ =1 (or, if we wish, 7 x 8 - 5 x 11 = [ indeed any such
combination of & and . I actually now use the standard terminology - as they are
now prepared for it — of integral lincar combination, and T <ay that "1 has been
expressed as an integral linear combination of 8 and 117). eic.

[ay special emphasis on the importance of “getting that 17, and [ invite them o
see what happens if one tried 10 prove (the false result): if 7 € Z and 12]n and
I5]n then 180]n.

First attempted proof. Try using 15 - 12 = 3. Then with 157 - 121 = 3a. and
0 =124 and n = 158 one has 150124 - 12(1538) = 3n, and <o 180iA - By = 30
Thus 18] 2x. Does it follow from that, though. than 18027 And one quickly sees
that it doesn't... . So,using 15 - 12 = 3 certaunly docsn’t work.
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Another attempted proof. Can we express [ as an integral linear combination of
12 and 157 That is, are there x, v € Z with 12x + 15y = |? (The motivation for
asking this is clear: if we can find such an integral linear combination then the
above result would immediately have a proof. That would, of course. come as
something of a shock as the resull 1s false! My interest 1s not just that my students
see it is false, but rather in seeing why it is false.) It is clear that there is no such
combination because 12 and 5 are bath divisible by 3, and so if x, v € Z with
12v + 15y = | were to happen then one would have that 1 was divisible by 3. which
eannot be so.

Now siudents are ready for:

The Big Leap Forward

The big question now hecomes: How should integers ¢ and & be related so that
whenever an integer 2 is divisible by ¢ and # then 2 must be divisible by ab? Or, to
put it another way, what is it about 2 ind 3, or-t and 7. or 8 and 1. efc.. that made
the earlier results true, and what is it about 4 and 6. or 6 and 9. or 15 and 25, etc.
that made the cormespanding possible results not be true?

The typical responses thal T get are: 4 ane 6 are divisible by 2 and so thev are
nor correcely related, 6 and 9 are divisible by 3 and so they are not correctly
reluted, ete. Also, 2 and 3 are not divisible by any number and so dre correctly
related, 4 and 7 are not divisible by any manber and so are correctly related, etc.

I praise their insight, hut just carrect their language slightly by pointing out that
they should say of the laner cases: 2 and 3 are not divisible by anv number greater
than {4, and so are correctly related: 4 and 7 are not divisible by any number
grecter than [, and xo are correctly related, ere.

But the question now is: is this the correct general observation to be making? In

other words: it @, b, n e Z with gedta, by = | and a]n and b, does i follow that
ab|n?

Al this point students do realize that this i< a non-trivial question, and are able
to prove it in concrele instunces by finding appropriate integral linear combinations
of the given ¢ and b (o give the number 1. That is done by simple trial and error,
which they enjoy (especially the weaker students, as it gives them the salisfaction
of Lthinking that they are achieving something).

It is now also abundantly clear that whereas one can quickly find a suitable
eomibination for small values of a and b (or even when one of them is small and the
other large) itis not a simple matter if one has large values for a and b. And — more
importantly - it s not ¢lear to thent at this stage how one nright give a proof of the
general claim that if a. h € Z with acdta, H) = | then there are x, v € Z with
av+ hv = 1.

Another Direct Intervention: Enter the Euclidean Algorithm

This is the point ar which | now make ansther dicect intervention and tell them
that 1 am going o mtroduce them o a method — discovered by Euclid - which is
one of the sery simptestideas inall of mathematics, and yet is at the same lime one




of the most valuable and powerful, namely the Enclidean Algorithm and the
accompanying “extended Euclidean Algorithm”. These enable one to calculate
(with breathtaking speed) the greatest common divisor « of two integers a and b,
and then - the “extended” part — express o as an integral linear combination of a
and b.

Since the Euclidean Algorithm and the cxtended Euclidean Algorithm are so
well known {sce, for example, Rosen (1988}, Bressoud (1989) or Koblitz (1994)) I
will only record here the sort of standard exercises that [ then expect all my
students to be able to do with ease, and the sort of solutions that I expect from
them. [ will also record just one example of the sort of general theorem which [
also expect them to be able (o prove, and its proof.

Exercise. Calculate ged(7541, 3680), express it as an integral linear combination of
7541 and 3680, and then decide if the following is true: if n € Z with 3680]n and
7541 | 1, does it follow that (3680 x 7541y u?

Solution. First we calculate the greatest common divisor by:

,__1=L68_0><2+m
0 =181 %20 + 60,
181 =60x 3+ 1.
60 =1 x60.

Thus ged(75:41. J680) = gcd(3680. 181} = gedt181. 60) = pedi60. 1) = 1.

Next we express the ged as an integral finear combination by:
| =181 -3 x 60
= 18] -3 x (3680 - 20 x 181y =61 x 181 - 3 x 3680
= Gl x (7541 - 2 x 3680) - 3 x 3680 = 6] » 7541 - 125 x 3680.

Thus 61 x 7541 - 125 % 3680 = 1.
Because the ged s 1 then the divisibility result follows, and can be proved as
above.

Important variation of the above exercise. Calculate ged(7541, 3680), express it
as an integral linear combination of 7541 and 3680, and then decide if the
following is true:

if 1 € Z with 7541 3680n. docs it follow that 754t |

Solution. As above, and yes the divisibility result does follow, and can be proved
by: Since # € Z and 7541{3680n, then 3680n = 7541A, some A € Z . Multiplying
throughout 61 x 7541 — 125 x 3680 = | by n gives 61 x 75410 - 125 x 3680n = n.
Replacing 36800 wiln 75414 gives 61 x 7541a - 125 x 75414 =
754161 - 1254, and s0 7541 n since (61n - 125A) e Z .
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Comment. The latter is exactly the sort of work that enables a student to then
follow the classic proof of the "Fundamcental Property of Prime Numbers™: if p is
prime and m, n € Z with p{mn. then plm or pln. And. in turn. that is exactly what
one needs to give the classic proof of Fermat's “little™ theorem: if p is prime and
ae Z with ¢ 2 0(mod p) then a” - ' = limod p).

An example of 1 theorem, et A, B. C e Z with A{8C and ged(A, By = 1, then A |C.

Proof. Since ged(A.B) = 1 then. by the extended Euclidean Algorithm there are

x.yeZ withAx + By = 1. Also. since A} BC. we have BC = AD forsome D e Z.

Thus we have AxC + BvC = C = AxC + ADy = A(C +vD). and so AC since
C+ve Z.

Comment. The “Fundamental Property of Prime Numbers”™ is, of course. a speciat
case of this theoren.

The RSA Cryptographic Method

Almost no area of mathematics can have received greater publicity in recent
vears than the application of elementary number theory to the Rivest-Shamir-
Adleman cryptographic method. T dido’t realize umil | tried for the first time to
teach 2 course on number theory. with a large cryptography input, just how
interested students would be in such a course. Centrar 1o the success of the course
wits the use of computer algebra software (we used MAPLE. though any other
comparable package would do). which enabled my students to do realistic cases of
encryption and decryption. I would unreservedly recommend colleagues o
consider teaching a number theory and cryptography course.

The ideas involved in connection with the RSA methaod are so well known that [
need not go over them here. 1 will just refer the interested reader who may not be
familiar with the details of the method to Rivest-Shamir-Adleman (1978). Rosen
(1988), Koblitz (1994) and Garfinkel (1995). RSA (1978) is the original trail-
blazing paper of Rivest. Shamic and Adleman. Garfinkel's book is especially good
on histoncal matiers.

And what number theory does o student need o be familiar with o understand
the hine detail of the RSA method?
L. Efficient modular exponentiation. That is, being able to quickly calculate
a™ {mod n).

2 Euler-Fermat thearem: it a € Iv and @ € £ with gedie.n) = 1 then
a®? = ltmad ). where oiny is the Fuler phi-function (the number of
inlegers v between | and (1 - 1) for which gedix, ny = .

3. How to find two large primes poand g o Form the “poblic modulus™ 10 wath

H= .

4o ow to choose the public “enciyption power”™ o so that
vediedp - Iig -1 =1

5. How 1o choose the private “decryption power”™ o ~o  that
e = Ttmoedp - Ty - i

Commnent on 1. OF course H one s using a computer algebra soltware package like

MAPLE then one has a butlt-mn ceommand readily avaitable, but one doesn't just
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wanl 1o have students button pushing and it is easy to teach them the classic
“squarc-and-multipiy™ technique, which is what MAPLE is using anyway.

Comments on 2. Since it requires quite a bit of work to prove this theorem, and
since as far as the RSA method is concerned one only needs the special case where
n is the product of two distinct primes p and ¢ (n which case @(n) =¢(py) =
{(p - Iig — 11, it might be of some interest to record a simple prool of this special
case. since it can be done direetly from Fermal's “hittde” theorem, and the very
ideas discussed carlier in this note. So:

Theorem. Let p and ¢ be distinet primes, letn = pg, and leta € Z with gedta, ny = 1,
and a7 "9 = | amodn).

Proof. Since gedta, ) = | then « # G(mod p) and ¢ £ O(mod ¢). and thus by
Fermat's “little™ theorem we have a” ~! = lmodp) and a4 -1 = [(imod ¢). From the
first of these we obtain (¢ Y ' = 11 = Himod p). that is o'7 11 = 1(mod p),
and from the second we also obtain @ "9 = 1(mod ¢). Tt then follows that
a®? -1 = {imod pg(= n)). And the justification for that is precisely the theorem
encountered in the earlier part of this article. namely: if p and ¢ are distinet primes
(in fact. it is sufficient that p and ¢ satisfy ged(p, ¢) = 1) and piA and g| A, where
Ae Z. then pglA. Here Ads o - 1a -1,

Comment en 3. Finding large primes is @ massive field of study {e.g.. Bressoud
(1989), Riescl (1994)), and a serious study begins with Fermat's “litle”™ theorem
and its possible converse.

Comment on 4 and S. Both of the«e involve the Euclidean Algorithm and the
extended Euclidean Algorithni in an essential way.

Summing Up

I have tned to show in this note that students can very quickly get into some
very serious mathentatics from very modest and accessible beginnings.
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Abstract

This paper reports results of investigating high-performing college algebra
students” understanding of the function concept. Results reveal that these high-
performing students possessed weak understanding of major aspects of the [unction
concept. They did not understand the function language, were unable (o interpret
eraphical function information, and did noi know how to use function notation o
represent “real world™ relationships. They did not view functions as processes
which accept input and produce output; rather they viewed them as a sequence of
memorized operations to be carried out. In addition to their conceptual
misunderstandings, the interview results revealed that high-performing college
algebra students possess weak mathematical habits and hitde confidence in their
mathematical abilities

Introduction

Ascarly as 1921, the National Committee on Mathematical Reguirements of the
Mathematical Associaton of America recommended that the study of functions be
given cenatral focus in secondary school mathematics (Cooney & Wilson, 1993).
The NCTM (1989) Currictdum and Evaluation Standards called for the inclusion
of function-related activities as carly as fourth grade (p. 60), continuing through the
high school mathematics curriculum where the concept of function is a unifying
idea (p. 154 In Evervbody Cornts (National Rescarch Ceaneil, 1988), the authors
stated: it undevgraduate mathematics does nothing else. it should help students
develop function sense™ (p. 513 Additionally, the [unction concept is an important
and unifying concept in modem mathematics (Leinhardt et all, 1990), central to
different bramches of mathematies (Kleiner, 1989y, and essential o related areas of
the scicnces tSelden & Selden, 1992y, Further, a strong understanding of the
concept of function 1~ a vital part of the background of any student hoping o
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understand calculus (Breidenbach et al., 1992), Although curriculum reform efforts
are beginning (o respond to calls for change and researchers have begun to identify
many ol the difficulties students experience with understanding components of the
function concept (MAA Notes, Volumes 25, 1992), ongoing analysis of student
understanding is necessary for guiding future curricutum decisions. Without such
amalysis, there is fittle hope that curriculum decisions will be guided by informed
judgments of how students acquire understanding of essential function information.

This study was designed o guide algebra teachers and curriculum developers by
providing insights into how high performing coliege algebra students develop an
understanding of major aspects of the function concept. Maore specifically. this
rescarch investigated students’ abilities to:

.

» Characterize “real world”™ function relationships using function notation:

* Operate with a particular type of function representaiion. such as a formula, a
table. or a graph;

+ Move between different representations (graph. able, algchraic. ete.) of the
same function:

= Interpret “static™ graphical information for specific points and intervals of the
doman:

+  fnterpret “dynamic™ graphical information for specific points and intervals of
the domain;

« Construct functions using formalas and other functions;
*  Recognize functions. non-lunctions and general lunction tvpes:

= Represent and interpret covartant aspects of the function situation ti.c.
recognize and characterize how change in one variable aflzcts change in
another);

= Canceptualize a funclion as o process;
* Interpret and understand tunction notation, and
¢ Characterize the relationship between a function and an equation.

This list of abilitics provides a framework for investigating changes in students’
function conceptions,

Methods

The subjects for this study comprised 30 stodents just completing a {unclion-
integrated college algebra course with a grade of A, A twenty-five itemy written
exam was developed to measure students”™ understandings of the above function
abilities, and was administered at completion of the course. Five point rubrics,
measuring the accuracy. strength of justification and degree of conceptual
understanding were written for scoring each writlen exam question. Development
of the written exam and rubrics involved a lengthy process of verification and
refinement (Carlson. 1995).

Five students performing at different fevels on the written exam were selegted (o

- .
49 l)’ b




T A T |

i

L Y [ 3!

“\l ILL

| |-i1“x- i

e ‘dl‘

wy
| ] L
! J l

participate in follow-up interviews designed to determine how students acquire
particular function information. During the subsequent inferview cach question was
read aloud and general reference was made to the student’s writien response. [f
desived the student was given a few minutes to review her response. The student
was then prompted to verbally describe her written solution, providing clarification
and justilication for the solution approuch. Afler the student’s summary of the
written response. the researcher made general requests, such as, “explain™ or
“clarify”, and continued to ask more specific questions, if necessary, until a
response was elicited or it appeared that all knowledge had been provided. If one of
the main components of the question was correctly answered., the student was
prompted Lo recall when and how the concept was acquired. The rescarcher
repeited the pracess [or cach question on the written exan.

Final results were obtained by analyzing both the quantitative and gualitative
results from the writien exam scorings and interview transcripts. The quantitative
results report common written responses, and group means and standard deviations
for each item, The qualitative results were obtained by repeatedly reading cach
interview transcript, while attempting 1o identify common student responses,
misconceptions and the function knowledge motivating individual responses. The
pereentage of students providing each response type for cach item were determined
and common responses were noted.

Resulis

Because of the large amount of data collected, quantitative and detailed
qualitative data represented for select written exams items and interviews are
presented to reveal common student misunderstandings. These results suggest
aspects of fuaction instruction which need increased attention by both classroom
instructors and curriculum developers and provide insights inte the types of
understandings that high performing college algebra students possess. For a full
description of results of the twenty-five item exam see Carlsan (1995),

Results - Item 1

Express the diameter of a circle as a function of its area and sketeh its
graph.

The mean score for this written exam item is 1.O0 (out of 5.0) and standard
deviation is 1O, with 87% of the thirty college algebra students in this study
making no aitempt to isolate .

The interview responses varied on this item, with only one student (of the five
interview subjects) providing a correct algebraic response supported by a well-
formulated verbal justification. Two of the interview subjects did not know the
formula for the area of a circle and when provided with the formula made
not attempt to sotve for d. The other two students knew the area formula and

successfully substituted % for r. but did not attempt 1o isolate . As a follow-up

question during the interviews, cach student was asked to explain what is meant by
the statement, “express s as a function of 7. One student responded that this
statement means you are uying to find where s and 1 are equal. Another student




responded that this statement means you are trying to find where s and 1 are equal.
Another student responded with the stalement. "find the zeros™, another student
said, “kind of how it related to”, and two remaining students responded “write an
equation with s's and 1's”. These responses suggest that high-performing college
algebra students do not know what it means 10 represent one quantily as a function
of another. More spectfically. they did not know that when expressing s as a
function ol ¢, they should attemipt to set s equal 1o some expression containing 1.

Selected Interview - Ifem I

Interviewer: Explain vour written solution.

Student E: | remember that equation, A = ur-. Then ! figured out » = :’, . Now.
area equals 7=, Now, [ can’t remember what [ did. (Long |'J_11U.\C)

. . ! .
Interviewer: Looks like vou replaced <= for .

Student E: Yes. [ needed to replace r with 4. 1 mean % Now, | have it, T then

wrote 4 = n( d )_.

5

Interviewer:  [s this the final answer? Is diameter expressed as a function of area?
Student k:  Yes, this is my answer. Is this right?

Interviewer: What were you trying to achieve when ashed to express “diameter

as a function ol area™!

Student I2: T was trving to write an cquation with A and o's,

Interviewer: 1 ask you ta express s as a Tunction of ¢, what does this mean (o
you?!

Student E:  Write an equation with 8"s and 5 and then find the zeros.

Results - Itein 2d
Compute fix + a) given flr) = 3t + 20 — 4,

High-performing cotlege algebra students received o mean score ol 2.07 coul of
5.0y and standard deviation of 2,32 on this 1tem. The most comman incorrect
written exam response (3% was fley= e+ 2o~ d +a

Although four of the five interview «ubjects provided o correct justiheation to
their correel response. the justifications provided insights into how college algebra
students think about the evaluation of f{x + «). Euch student described his/her
solution cither as a substitution ol "x + ¢ fora. or a procedure of adding « to every
x. When promipted for & more in depth explanation, none ol the interview subjects
referred to computing flx + o} as evaluating fat “x + 7. nor did they describe
“v+ e s the input to f2 The student who simply added o™ (o the expression on the

right of the equal sign indicated that he/she arrived at this solution by substiluting
3% 4 2y — dinto the ain fia + ). Additionally. two other students stated they once
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had difficulty with this type of problem because they did not know “which one to
plug into which one™. They both also admitted that they had initially thought that
the expression on {he right was o be substituted for the v in f{.x + ), and only after
some practice were they able to resolve this misconception. Alihough none of the
interview suhjeets indicated that they viewed the problem as simply adding 4™ to
both sides ol the cqual sign, this justification did occur when pilotiog the interview
procedures, These responses suggest that college algebra studenis do not vicw the
expression inside the paentheses (in a lunction statcinent) as the input which is
processed by the function to produce output. [nstead, they appear to view the
evaluation of a function as nothing more than a process of algorithmically carrying
ol a sequence ol steps.,

Results - [temt 8a

The given graph represents speed vs, time for two cars,

speed

t =0 hrs. ttme in hours 1=

State the relationship between the position of car A and car B atf =1 hr.
{assume the two cars start from the same position and are traveling in
the same direction). Explain.

The mean score lor college alpebra students was .83 (out of 5.0) and the
standard deviation was 174, with 474 of college algebra students stating that the
car. are in the same position and 34% responding that car B is passing car A. These
responses suggest that 889 of the subjects interpreted the graphs diterally as the
paths of the cars. rather than interpreting the Tunction information displayed by the
sraphs.

Twer of the ive irterview subjects indicated that the cars collided at r = 1 br,
siee therr “paths™ areinterseeting. Another student <tated that the cars are moving

iy Trem one another at ¢ = 1 hr The remaming (wo subjects provided a correct
explanation, qustils il that car A was ahead of car B osinee it had been traveling

U0
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faster for the entire time. Although the author made attempts to redirect students’
attention to the function information displayed by the graphs. none of the students
who provided incorrect responses attempted to rethink the problem. They all
continued 1o provide responses suggesting they were interpreting the graphs as the
paths of the cars.

Selected Interviews - ftem 8a

Interview Transcript for Student A

Interviewer: Your response on question 8ais: “The position seems (o be the same
and hopefully a collision is taking place. They would both bounce
off eacn other equaily if they were the same mass and weight.” Can
vou explain how you determined this result?

Student At [ sy that as they cross path. it is the position of the wreek. Since
they are on the same path they are going (o collide.

Interviewer: Remember, the graph represents speed as a function of time.

Student A:  Yes, this is why when the speeds are the same this s where the
collision takes place.

Interview Transcript for Student B

Interviewer: You indicated that the 1wo cars were moving away Irom cach other
at dilferent speeds. Can you explain this?

Student B:  Because this one (pointing o the graph for car By is increasing

speed and this onpe (pointing 10 the graph Tor car A) is conslant. so
they would go like opposite; not really opposite but they will go
away rom cach other.

Resulis - Itemnt 5

Does there exist a function all of whose values are equal to each other?
(Give an exampie to confirm the existence of a function. If one does not
exist, explain why.

The mean score on the written exam was .07 tout of 5.4 and the standard
deviation was 1.76, with only 7% ol these college algebra students constructing a
correct example.

Analysis of college algebra interview results reveal that four ol the five
interview subjects persisted with v = & as the answer, when asked to construct
function all of whose values are equal 1o cach other, The inlerviews for this
guestion suggest that high-performing college algebra students do not understand
that the Tunction values represent the v values (assuming traditional labeling).
When prompted o explain what i< meant by the phrase. “all of whose values are
equal o cach other”, two students gave responses indicating that all the x values are
equal, and two students mdicated that all 1 vadues must equal all v values, The




interview (sanscripts reveal (hat high performing college algebra students are not
able to translate verbal function language Lo algebraic funiction notation for a basic,
but essential aspect of lunctions.

Selected Interviews - Item 5

Interviewer: You said yes, and you constructed the function v = x. Explain to me
why you think this function works.

Student C: [ was (hinking all v values are equal to all v values, like il you got
one side of the equation, a numher is the same number on the other
side of the equation. That would Gl in the whole chalk hoard. No, it
would not fill in everything, it would be a line.

Interviewer: Does this meet the criterta that all values are equal to each other?

Student C: A Tunction all whose values are equal. No, because what you want
is something where v equals and all of the x would be equal, so you
want v io be the same. That will be a straight line, a vertical line.

But it would not be a function, becanse you cannot have a vertical
line as a function, because it would not pass the vertical line test.

Interviewer: How did you determine that vou wanted all the 1 values equal 10
cuch other?

Student C: v is just arbitrary. [ mean. not arbitrary but a solution. If you want
all values equal to cach other, then the x values that you plug in the
lformula are equal 1o cach ather. So all x need o be the same.

Interviewer: [t tooks like you are still thinking.

Student C: Well, there 18 something that | am not guite graspimg.

Resules - Irem 10

Sketch rough graphs of f(x) = x> — 4 and g(x) = 3x, and diseuss the
solution to the equation f{x) = g(x) in terms of the:  graphs,

The mean score on Lhis item was 3.30 and standard deviation was 1.26, with the
majority of the writlen exam responses and 80% of the interview subjects
indicating that the solutions to the equation are the points of intersection, and only
10% of the students responding correctly that the solutions are the v-values
corresponding to where the y-values (function values) are equal. During the
interviews the students showed no indication that they understood that graphically
determining the solutions of flx) = g(x) corresponds to finding the values ol the x-
coordinates of the points where the two graphs intersect. The major obstacle for
students in completing this problem appeared to he their inability to associate f{v)
and g(v) with the y-values of the two graphs, and subsequently recognize that the
solutions correspond to the x-values that make the equation true. Three of the
inlerview subjects used the phrases “points of intersection™ and “solutions (o
S = gl interchangeably, making no distinction helween the two.



Results - Itemn 3

If possible, deseribe the following situation using a function. If not,
explain why.
The club members dues status.
MName Owed
Sue $17
John 6
Sam 27
Bill ]
Iris 6
Eve 12
Henry i4
Louis 6
Jane 12
The written exam mean score was .7 (out of 5) with the majority of the writien
responses including an attempt to define a formula relating the name with the
amount owed. When prompted during the interviews 1o explain their responses,
three of the five interview subjects described an attempt to define a formula relating
the name and the amount owed; Turther explaining that when they were unable to
do so, they concluded that it was not possible Lo deseribe the situation with a

lunction. it appears that these students believed that all function retationships must
he definable by an algebraic fornula.

Selected Interview - Item 3
Interviewer: Could you deline this situation using a lunetion?

Student D:  No, because 1 did not understand a relationship that exists between
cach individual increase and decrease and amount { cannot set 1t
equal to anything 1 know.

Interviewer: Did you try to think of a formula?

Student D Yes. Something to do, some way ol doing that. | could not ligure
out the relationship between the names and how much money they
uwed. T eould not do any thing. No function exisis.

Conclusions and Implications

High-performing college algebia students possess limited undersianding of
many uspects of the lunction coneept. They appear 1o have litde understanding of
the function language and are unable to use tuncuion notation o represent “real
waorld”™ Tunction relationships. During the interviews they could not express one
yuantity as a lunction of another, and were unable to verbalize the meaning of
flx + ) when given a quadratic Tunction f. Although these students were able o
algebraically evaluate functions Tor specific inputs, construct graphs ol simple
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algebra functions and interpret points of a graph. they demonsirated great difficulty
interpreting graphical function information for intervals of the domain.

Further, the analysis of the mnterview results revealed that these students viewed
the evaluation of a function as nothing more than a set of memorized steps. They
did not view functions more generally as processes; rather they viewed them us a
sequence of procedural operations to be carrted out. They did not understand what
it means to graphically find solutions 1o the equation fix) = gx). and did not
understand how 1o aleebratcally construct this equation by equating the delining
expressions for the two functions. [n summary, analysis of the quantifative results
and interview transeripts (Curlson, 1995) indicates that these students do nor:

¢ Understand the language of functions.
- What it means tor one quantity to be a function of another.
~ The role ol the parentheses in an algebraic function representation.
~ "Fhat the “functional value™ is the y-value Gissuming comventional labeling).

+ Know how to represent real world function relationships using algebraie and
griphic function representations.

+  Know how to interpret graphical information for intervals of the domuin.

.

*  Know how to interpret graphical information representing “'rate of chanyge™.

* Understand the general nature of a function. They mistakenly think all
functions must he definable by a single algebraic formula.

+ Understand the role of the independent and dependent variable in an
algebraic function representation.

*  Distinguish beiween “solutions of an equation™ and “roots of a function™
+ Possess a process view of functions,

These results revealed that even the most talented sudents, at the completion of
college algebra, sl have many inisconceptions and wre unable 1o aceess much of
the information explicitly taught during the course.

fn addition to their conceptual misunderstandings, during ihe interviews
students were unwiling to perast and appeared to have very little confidence in
their mathematical abilities. They reported that they didn™t like trying to figure out
problems on their own, and appreciated teachers who showed them how to get the
answers, They did not appear to trust the mathematics that they know when solving
unfamiliar problems. nor did they engage in activities which demonstrate an
expectation of “sense making”™ when constructing their responses. When prompted
during the interviews to describe their mathematical experiences. four of the five
interview subjects comphained that the rapid pace of math conrses had frequently
encatraged them to resort 1o memorization and settle for superficial understanding.,

This rescarch identitied many obstacles for college algebra students in
understinding the function concept, with summary results and student intervicws
providing specifie arcas of concern and insights regarding the types of experiences
and curriculum needed to gwide fretire relorms.




Discussion and Recommendations

Gaining an understanding of the many aspects of the function concept appears
to be complex, as even high performing students possessed numerous
misconceptions regarding many simple but essential aspects of functions. Tt
requires the acquisition of a language tor talking about its many features and
having the ability to translate that language into several different representations.
Once students learn o translate between the various [unction tepresentations, they
must learn o interpret features of cach representation for many different types of
tunctions. Concurrently they are expected. on demand. to demonstrate the ability to
construct cach representation for a variety of real world situations. To further
complicate matters, we ask that they learn a formal definition, at times inconsistent
with the waysin which they use Tunctions, and expect them to precisely apply this
definition in arbitrary situations. At the same time, a process view of function must
emerge for understanding o become complete. Even this duunting scenario is no
doubt an over-simplification of what really takes place as an individual struggles 1o
make sense of functions. However, it suggests that understanding and assimilating
the many aspects of functions requires building essential function knowledge and
the ability to orchestra their function knowledge to work in concert,

This rescarch offers insights regarding the function knowledge needed for
students to “really™ understand Tunctions. It does so by revealing wany of the
misconceptions that college algebra students hold. Even though this research does
not prescribe exact solutions for developing students™ function understanding, it
does provide numerous insights for curriculum developers and classroom teachers
which may assist them in wniting and delivering improved fupction curricuium.
Somce suggestions follow:

+ (College algebra students need to be engaged in activities which develop:

~ The vocabulary for referencing and constructing aspects of both algebraic
and graphic function representations:

The ability to interpret graphical mlormation and compare multiple
eraphs:

- The ability 1o interpret (in the context ot an applied problenn the “rate™
information conveyed by the graph’s shape, and compure relative
rates/slopes for different intervals of the domain:

- The ability to use tunctions to describe real world situations: including an
ability to respond Lo probing questions that demonstrate an understanding
of what cach aspeet of the graph represents in the context of the applied
situation;

A view of functions as a process which aceepts input and produces output:

« (College algebra students appear to need extensive work with new concepls:
otherwise they develop superficial understandings, replacing understanding
with memorization.

¢ Teachers should not assume that students have acquired full understanding of
cven the most central aspects of concepts taught in a course: instead they
should regularly probe <tudents” understandings and make adjustments as
neceded.
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It appears that curriculum developers and classroom teachers have under-
estimated the complexity of acquiring an understanding of many of the essential
componenis of the function concept. Even high performing college algebra
students do not understand essential aspects of the function concept at the
comipletion of their course. The pace at which content is presented, the context in
which it is presented, as well as the types of acthivities in which we engage students
appedr o have an enormous impact on what students know and what they can do
when they exit a course. Consequently, it is rccommended that curriculum
developers and classroom teachers gain as much information as is currently
available describing how students acqguire the concepts specific to a course, as wetl
as mathematical concepts in general. Oree we have gained these insights. we have
the challenge to use this information to develop new curmicofum which witl make
real ditferences in developing students” function understandings, enhanctng their
confidence and improv ing their overall mathematical abilities.
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My grandfather once told me that ihere are two kinds of people: those
who do the work and those who tuke the credit. He told me 1o try to be in
the first groups: there was less competition there.

Indira Gandhi

L T
LA

There are two Kinds of people: those who believe they can, and those who
believe they can't. Paradovically. both are correct,

Unknown

Lucky Larry #29

The problem was to find the slope of the line that contains the points
(=3, =5y and (-6, 1. Lucky Larry apparently used the “all purpose minus
sign” (the one that dees both negation and subtraction at the same time) and
got the right answer as follows:

.“1__\|
n= = —
v, --.\.l
-10- 5
T3
13 5
IETRRNEY

Submitted by Delores Anderson
Truett-MceConnelt College
Cleveland GA 30528
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REGULAR FEATURES

Snapshots of Applications in Mathematics

Dennis Callas David J. Hildreth
Staie Umiversity Callege of Technology  State University Coltepe .
Delhi NY 13753 Oneonta NY 13820 x

The purpose of this feature ts to showease applications o mathematics designed
to demonstrate to students how the topics under study are used in the “real world,”
or ure used 1o solve simply “charming”™ problems. Typically one to two pages in
length, including exercises, these snapshots are “teasers”™ rather than complete
expositions. [n this way they differ from existing examples produced by UMAP
and COMAP. The intent of these snapshols is o convince the student of the
usefulness of the mathematics. It is hoped that the instructor can cover the
applications quickly in class ar assign them o students. Snapshots in this column
may be adapied from interviews, journal articles. newspaper reports, lextbooks., or
personal experiences. Contributions from readers are welcome, and should be sent
to Professor Callas.

What's the Difference Between Debt and Deficit?
(o accompany the study of scientilic notationy

by Denms C. Runde. Manatee Community College, Bradenton, FL
A day does not go by without politicians talking about the national dept and the
hudeet defici Elections cin be won or lost on these issues. Yet, most Americans N
would find it difficult o define these terms or explain how they differ, Lt
The Tollowing numbers were compited by the Central Intelligence Agency :
(1995) and frem the US. Treasury Depanment’s Office of Public Debt Accounting -
(19u6).
1995 U.S. Federal Expenditures ... SEAGE trithon
PO LS. Tederat Revenues. o WS 12858 inllion
U S, Debtas of Dec, 30, 1994 e e S-L800 tillion
'S Population asof July 1995 0L 2638 million
Table 1. U.S. National Debt and Deficit Facts
2
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Discussion Questions

The federal budget deficit is the difference between the amount of money
collected (revenues) and the amount ol money spent (expenditures). What is
the 1995 LLS. federal budget deficit?

13538 % 107 1461 < 107 = 203 x 10
S2.03 < ot

The federal government spent about $200 biflion more than it ok in. [t
borrowed the 5200 billion shortlall from investors through the issuing of
government bonds.

The national debt s the sum wotal of ali budget deticits, What will the 1995
nationat debt he?
J800 % 107 +2.03x 10"
4800 % 10" + 203 % 10"

Our national debt is now over $3 trillion. 1t should be noted that the political
discussions taking place in Washington vsually address reducing the budget
defreit, not the national debt.

i

S.003 < 10"

A first step in eliminating the national debt is to eliminate the budget deficit. If
the federal budget deficit were to stay the siume as it was in 1995, when would
the national debt exceed 310 trillion?

Let ¥ = the number of years, then we get
1800 % 10" + (203 < 10" = 100 x 107
Which leads (o:

o L0010 480 10
Yal- o

_boo= 107 4Ro0 s 10
203 107

ST

TR0

= 256 x [0

= 25.0 years

Unless efforts 10 reduce the deficit are successful, at (he 1995 rate. the national
debt will supass the Si0grillion mark sometime during the year 2020,

Suppose everyone in the LS. were to piteh in to retire the national debt. How
much would cach man. woman, and child need to contribute 1o retire the 1995
debt?
A00% - ()
2OAR Y

= | 896513 10

= $18,905.13/person
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Obviously, this is not a feasible solution to reducing the debt. The debt should
be discussed though for many reasons: not the least of which is the amount of
interest paid by the government,

Suppose the average interest rate on the national debu is 5% . Using the simple
mterest formula, 7/ = P+ rer how much interest would the government pay for
the year 19957

1= (4800 % 107 (.05 )= ]

F=2.400x% 10"
The government therefore spends over $200 billion cach year just on paying
fittzrest on the national debt.

6. What pereentage of the federal revenues does this interest compiise?
5 .
240010 _ g ¢,
123K < 10
Almost one dollar in every five goes toward paving 1he interest on the debt of
the federad government.
Exercises
. The foltowing numbers were compiled by the Central Intelligence Agency
(1995 with regard to the Canadian Government's debt and deficit. Use these
data to answer the same guestions ashed above. How does the debt/deficit
status of Canada compare (o that of the 11.S?
1094 Canadian Governmment Expenditures . ... SIS billion
1994 Canadian Government Revenues................S85.0 billion
Canadian Debtas of Dee, 3001993 . $243.0 billion
Canadian Population as of July 1995 . 2843 mthon
Table 2. Canadian National Debt and Deficit Facts
2. Gnen that a one inch thick stack of S100 bills has about 2235 balls, tind the
“height™ of the LS. debt in $100 hills using inches, feet, and miles.
3. Given that a S100 bill is about 6,125 inches fong. find the “length™ of the U.€
debt in $100 bitls using inches, feet, und miles.
- Write o 2-3 page paper on how (o rednee the deficit. Tnclude numerical support

for your proposed plan.



5. Using The Warld Fact Book (see URL below), compare the debt/person ratio of

== the U.S. to that of Canada, Mexico, Argentina, Brazil, Jupan, Taiwan, United

e Kingdom, Germany, South Africa, Australia, Egypt. Saudi Arabia. and Israel
B tor include any other country of interest to you).

References
Central Intelligence Agency. (1995). The world fuct book 1995 Available:
hup:/Avww.odei.govicia/publications/9S lact/us hem
Galbraith. J. K., & Darity, W. Ir. (1993). A guide to the deficit. Challenge, 38043, 5-
. 12.
7 United States Treasury Department. (19961, Warld wide web sire. Available;
- hitp:/fw w i ustreas. covireasurny

Common sense is the collection ol prejudices acyuired by age eighteen.

f.. Aibert Einstein

Mathematies 15 often erroneously referred to as the science ol commaon
T sense. Actually, it may transcend common sense and go beyond either
- imaginatton or intuition. 1t has become a very strange and perhaps .
irightening su' ject from the ordinary point of view, but anyone who '
T penetrates into it will find a veritable fairyland, a lairyland which is
strange. but makes sense, if not common sense.

ol L. Kasner and 1. Newmian
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Notes from the Mathematical Underground
hy

Alain Schremmer
Mathematics Department. Commuanity College of Philadetphia

1700 Spring Garden Street
Philadeiphia PA 19130

SchremmerA @ ool com

Thie opinions eapressed herve are thase of the author wind showdd not be
constiieed as represenring the positieny of AMATYC i officers, or amnone else.

Posted: This column seeks to advocate {provoke™?) an analysis and a discussion
of the wmathematics underlying the courses we teach, Basic Arithmeuce, Caleulus,
Lincar Algebra, ... and of exactly whear the students get out of it and of why they
should get it

The reason we don't hike to do this is that. o begin with, we don™t understand
much mathematics and. then. usually haven't given much thought to what little we
assumne we know, The late I N, Herstein used to advocate the creation of a Ph.D. in
mathematical knowledge alongside the conventional Ph.D. in mathematical
research. Briefly, he argued that the rescarch Ph.D. mostly resulted in infinite
expertise in infinitesimal areas and that this was guite incompatible with the training
of cotlege students. As | recall, he said that the research Ph.D. produced people with
no wea of how to present anything outside their area of expertise, if thal. (Hence the
need [or the “fat text™.) On the other hand. the Ed.D. produces people who claim to
know all abeut “how to present”™ with no idea of what it is they are talking about,
{Henee the need fur. Oy Predictubly, his adjurations had no elfect whatsoever. The
only example 1 know of a thesis written along such lines is A Propaosed Sophomore-

Level Experimentad Cowrse in Geometric Algebra Bused Primarily on the Work of

Famil Artin (Judd, [969) and, n fact. it was more @ paraphrase of {Artin, 1957) than
the construction of a real cottrse,

But even distinguished mathematicians often don’t seem (o see that lesser beings
might want to approach the subject in altermate wavs. Not too long ago. a very well
known mathematician wrate that “(Ohe central notion of calculus is that of a limit”
and consequently cemplained about the lack of precision in the definition of limit in
some text: How. under such circumstances, could the students be expected to leam
what a hmit s, [replied to him

“I would rather put it like (Gleason, 1967):

Fhe course we teach i college which s usually called Caleutus frequentls hurries into
such guesthons as ditferentiation and itegration, and often lals to put the proper
emphasis on what the subject v all about, namely functians ol a real vaniable, or ot
severdl vanables The ditferenteal and itegral colealus are, after all, technigues used o
Hind vul certain propettics of tunctions, and should not be conwidered as ends in
themselves.
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“Thus, | would say that limits are jusi a tool. A powerful tool but not one
indispensible to beginners. There was once an exchangs among, 1 believe, Thom,
Serre and Dicudonnéd about the latter’s *A has Fuclide’: The question was the extent
1o which linew algebra and axiomatic aifine geometry ought o replace Luclid’s
twelhve books. One ol Dicudonné’s adversaries minntained that one could enter
veometrs oty diffetent ponls and that what most matered wie that the point of
entny be cicarly delincated.

“I would argue that it is precisely the identification of “the” calculus with its
Bolzano-Cauchy-Weirstrass avaiar that has doomed the “caleulus reform’™. For
instance. one can casily enter the caleulus by way of little ohs given with their
operating rules (rather than defined rom limits). To be sure. even if, for & Freshman
(Freshpersan?), enough Minctions admit asy mtotic expansions, pot all do. For those
who will continue, that very fact will be the “raison d'étre” for limits. OF course, at
the levet ol an stindents, alt fttle ohs are replaced by (0000 read "o Ltle bit and
Justified only by considerations of orders of magnitude for powers of 10: When they
see h. they are o think ol {31,

“Where | most disagree is in what constilutes “le mot juste”. [ think it was Church
who pointed out that a perfectly correct definition of the human animal 1s that itis a
featherless biped. is a draughtman’s drawing of an apple more specific, more
evocative than a rendering by Cézanne? | can well imagine that a thousand counter-
examples must bave gone through your mind as you read the Harvard text but, much
as [ dislike the book, T must point out that no such counter-examples are likely to
come 1o the nind of most ol its readers, indructors included. so that what portion of
the message can be transmitted will have been effectively transmitted. How precise
the fanguage should depend on the audience, The criteria for rigor imposed by
research mathematicians on mathematics beginners have resulted. for instance. in
basic algebra texts that. while (hey nowhere mention complex numbers, make sure
that the equation x* 4 1 = 0 is said 1o have no reaf solution. On the other hand. these
sanie lexts never discuss paues such as how 22 arises out of the manner in which, for
instance, 3+ v = 2 has no olution in 4o how, with e equation 3 = 2 we can

- LT - . 7 - . -
gither construct W and <say the solution is oW hich is exact but sav~ nothing about

ity arder of magnitude. or use approximate decimal solutions. In a diiferent vein,
that, for im~tance, constant functions are degenerate affine functions needs to he
pointed out but taking i constantly into consideration complicates the Language to
the point where it becomes campletely opague. T would rather warn the students that
my language is not foolprool and inyvite them (o find the loopholes T left, witingly or
not.

“1 also think that the current efforte 1o make caleulus “wser friendiv’ are
misplaced: First Year Calcutus has essentaify ne application 1o the real world:
Dilferential Fguations is the first course that does. [f one insists to dhe contrary, then
I am afraid that calculus will go the way of Greek and Lating to be replaced by some
kind ol data analysis. For the most pait. and cenainly for heginners, mathematics
can onby be a labor of lone, even when unrequited.

“As o proof versus justification or even plavsibility, Fthink, again, that the issug
is more the conststency ot the level of rigor with the audience. In my experience,

(R




just plain folks” (weak sudents™?) will erjoy mathematics in general and calculus
in particular when the idea of proof is presented as what attorneys do in front of a
jury, namcely give convincing arguments with the amount of supporting evidence
depending largely on the challenges of the other side. Which is perhaps why [ have a
nostalgia for the oral examinations of my youth in which what we said might be
challenged at any moment.”

The above is slightly abbreviated but the exiremely intlaential and very
redoubtable mathematician’s full answer was:

Professor Alain Schremmer.
I feel sormy for your students, who will evidently and <adly be misled.

Youirs truly.

Alrcady on several occasions 1 have raised the issue of contents architecture.
Here s another. In his preface, the author of (Valenza, 1993) asks:

“What s the mature of hnear algebra? One might give two antipodal and complementany
rephies: ke wane and particle physies, both illuminate the truth:

THE STRUCTURAL REPLY. Linear algebra is the study of vector spaces and linear
Gansformations. A vector space is a structure which abstracts and generalizes certain
Lmelie notions of hoth geoametry and algebras A Tinear transformation s a function
belween vector spaces that preserves elements of this structure. In some sense, this
disaipline aflows us to import some long-familiar and well understond ideas of zeomerry
mte settings which are not geometric 10 any obvious way.

THE COMPUTATIONAL REPLY. Linear Algebra is the study of linear systems and, in
particular, of certain wehnigues of matriv algebra that arise 1n connection with such
systesns The aims of the discipline are largely computational, and the computations are
deed anp[v\ "

indeed. the computational approach, a historically well founded architecture,
deriving as it does from what used to be catled “Higher Algebra™, starts with
syateins of equations o end with lineur transtormations. This has of course the merit
that, for students thoroughty Familiar with systems of at feast two or three equations,
as was generally the case once upon a time. it can make sense to engage in a careful,
detinted generatization via Gauss elimination in matrix form. This is the route taken,
mter aita, by (Anton & Rorres, 1994) (and | must admit that | rather liked this opus
of the iHustrious author of "I defense of the Far Calewlus Text™y as well as by
(Strang. 1980). an author | respect enormously — the introduction alone justifies
acquiring the book. However. | contend that the only reason this route appears
nakural is that it is the historicat onc. (Just as the order which, in afthmetic, makes
us teach fractions ahead of decimals and integers.) Then, there is the unfortunate
fact that none of uy students, even the very sharp ones, is well-grounded in the
soluiion of svstems of cquations,

The much more recent structural approach usually begiis with the study of R” as

el

tor space and ol st transformations 2% 550 Bur a realty natural




route would start with the coordinate-free notion of a geometric transformation,
7. Ve Wit o Ystinguished, once bases have been chosen in VO and W,
from its matrix representation 72 R — R
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en, given b . and to quole Strang. “(the) goal is a cenuine understanding,
Then. & he W and to quote Strang, “(the) goal ; lerstanding
deeper than elimination can give, of the equation 'J(x) = b” — as distinguishea from
the system of equations 2711"‘} =h,.

Admittedly, lincar algebra is a very tough subject to organize and 10 muke
transparent. What 1 would like to sce is somethung like A proposed Sopliomore-Level
« based on 7, say, the first part of (Lax, 19497), No doubt, this row  has structural
problems of its awn and this should be cause enough for an “exchange™ to tuke
place in this space.

Re mathematics” relevance: How come the issues that we absolutely avoid are
absolutely the most relevant ones. namely those that regard the polis? Why couldn’t
we, for instance and at least those of us who have lenure, give to an arithmetie class
the following “word problem™ adapted from (Bartlett & Steele, 1996), a rich source
of “applications™

A Federal Reserve Board study <hows that the top 1 pereent of houscholds in the
USA controls 304 percent of the nation’s ~t work and that the next 9 pereent holds
36.8 percent of the nation’s wealth. How much docs the remaining 90 pereent
accuunt for?!

Re compitters: 1 just read (Gordon, Fusaro & Meyer, 1989). {1t is worth
(redreading. Not because it purports to explain why { should computenze my cliasses
bitt because it is such an excellent thustration of those “methads of proof which do
Hot apprear in (reatives fon formal mathematios], but. none the less, are wsed in
many mathemeatios classrooms and texibooks: 1 Meames Flutierus, 20 Proof by
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Intimidation, 3. Proof by Circumvention, 4. Proof by Coercion” (Browne, [989).
There is not even a single reference to supporting rescarch. Could it be that there
isn"tany? That the emperor has no clathes?
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Like the ski resort full of girls hunting for husbands and husbands hunting
for gerls, the sitvation is not as symmetrical as it might seem.
Alan Lindsay Mackay
+

J +
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ATEmankind is divided into three classes: those that are nnmaosable, those
that are moveable, and those that move.

Arubic proverh




Book Reviews
Edited by Sandra Del.ozier Coleman

FLATLAND A Romance of dMany Dimensions, Edwin A. Abbott. A Signet
Classic. Penguin Books USA Inc.. 1984, 160 pages, ISBN 0-451-52290-7. pbk.

ALICE IN QUANTUMLAND An Allegory of Quantum Physics. Robert
Gilmore. Copernicus, an imprint of Springer-Verlag New York, Inc. 1995 ix + 184
pages, [ISBN ()-387-91.495- 1.

The travel section of the local bookstore is packed with picture books designed
to lure readers to exotic places or to help themt make the most of any trip.
Sometimes just imagining exploring some yet undiscovered city can serve to fill a
quict alternoon. For armchair travelers in the world of mathematics, | can
recommend twe books which won’t be found in the travel section of the local
bookstore, but which Jead (o exotic focations in the realin of the imagination that
adventurous minds are sure  enjoyv visiting.

Perhaps the best known among such travel guides is Flatland, A Romance of
Many Dimeunsions, a classic tale written by Dr. Edwin A. Abbott in 1884, The book
has been reissued many. many times and is currently offered by several different
publishing houses. It is a “must read™ for every mathematician. but would be a good
choice for any reader who would enjoy having a shght push to reach beyond the
everyday view of the world in which we live.

Within the pages ol Flatland, we joumney in our imaginations o an interesting
two-dimensional realm in which the male inhabitants are polygons and the female
inhabitants arc line segments. There we discover a complicated society in which
secial position is clearly defined by one’s shape, and in which prejudices abound.
As we exptore this new world, we learn about the housing. the weather,
occupations, family relationships. and more. The interaction between the sexes in
Flatland is particularly interesting as a reflection of Victorian values and customs.
Abbort’s work is a satire designed in part to amuse us by exposing some of the
pettiness and ignorance to which we space inhabitants have somctimes falien prey.
Viewed from an historical point of view. it is interesting (o nole how much has
changed in the last one hundred years.

To the mathematician, the elaborate social satire is of minimal interest, however,
compared to the physical and philosaphical implications of the central event of the
story — an cncounter between the story's narrator, a rather unsophisticated squate,
and a spherical visitor from the realm of three dimensions. The square. having no
related experience o use as a point of reference, sees the sphere which passes
through his plane as 4 phantom which suddenly appears out of nowhere. He sces no
sphere, but, rather, only & point which first expands to a circle of increasing size
and then diminishes until it disappears. When the sphere. frustrated by his inability
to make his nature known, finally snatches the helpless square from his comforable
position of limited knowledge into & whole new world, the astonished square finds

ey
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that he is at a loss for words to describe what has taken place. His futile attempt to
explain what he has seen to other Flatlanders earns him only a diagnosis of insanity.

The square is helped on his path to understanding by a dream in which he finds
himself a visitor in a one-dimensional Lineland, where the inhabitants are points and
line segments. Experiencing firsthand the frustration of not being able to explain his
nature 1o the King of that world, he is betler able w comprehend the problem
encountered by the sphere. As the reader places himself and his perception of reality
within the framework of the Flarland allegory, it is impossible not to consider the
implications for three-dimensional beings. He finds himself wanting to comprchend
the idea of a universe of four or more dimensions. The sphere provides some help by
using inductive reasoning to relate the point o the line, the line to the square, the
square to the cube, and the cube to the four-dimensional hypercube by comparing
the number of vertices, edges. and faces and noting the patterns in these sequences.
He challenges us to imagine a direction perpendicular to all three of the directions
we commonly represent by the v, v, and - axes. Just when we are about to shout,
“Nonsense.” because we find such a direction incomprehensible, we hear the voice
of the lowly square murmuring something about “Upward, not northward,” and
begin to see that to view the universe that we perceive with our senses as the
ultimate reality is immaodest to say the least. It is this revelation which makes the
story worth the reading.

In addition to the many printed copics of Flarfand available from various
publishers. an unabnidged version is also available as public domain electronic text
and can be accessed, downloaded, and printed from the intemet through the address:
fip:/fwiretap.spies.com/Library/Classic/Hlatland.axt.

Having ventured into the mind-expanding universe of multiple dimensions,
adventurous travelers who [ind themselves hungry for more might want to hitch a
ride with Robert Gilmore's heroine as her curiosity and restlessness lead her deep
into the rabbit hole of subatomic partticles. In Alice in Quantumland — An Allegory of
Quannan Physics, Gilmore's Alice carries the experience of shrinking to the
cxtreme as she enters a strange and wonderful world where she experiences
firsthand the nature of quantum mechanics.

Greeted on her arrival by a rapidly-moving spin-up clectron, Alice realizes
immediately that she will have many new rules to learn in these unaccustomed
surroundings. As her companion tries to comply with her request that he slow down
so that she can see himi, she is surprised to find that the very act of slowing down
causes him o become so spread out and hazy that she can see him no belter than
when he was bouncing o and fro. As Alice and her companion wait to board the
photon express, she soon begins o lcarn how sensitive an electron can be when
asked to go against his principle (the Pauli principle) and occupy the same space as
another etectron.

As Alice encounters ane strange characler and cvent alter another, she searches
conslantly for someone who can explain (o her what is going on around her. Her
first stop is at the Heisenberg Bank, where an accommodating be.k manager



attempts to explain to her about cnergy loans. Here again the rules scem strangely at
odds with what Alice had thought would be natural, since instead of allowing {arger
loans to be paid back over a greater amount of time than smaller loans — the larger
the loan, the shorter the time a virtual particle is allowed 1o keep its borrowed
encrgy. She leams that just as money can 1ake the form of cash or a savings account
or an investiment, energy can take various forms such as kinetic energy or potential
eHergy.

Just as poor Alice begins to think that she understands, she is introduced to the
Uncertain Accountant, who tells her confidentially that the energy the bank is
loaning doesn’t really come from anywhere. It is a quantum fluctuation and the
amount of energy that any system has is not absolutely definite. The fact that the
energy s less well-conserved in the short run than in the long run, explains why it is
taking him forever to balance the books.

Alice’s many questions lead the accountant to suggest that she visit the
Mechanics Institute, but he warns her that any door might lead there and that the
best he can do for her is to arrange for a high probability that she will reach her
destination. He proceeds to direct her to go through all of the available doors at
once, which he insists she can do as long as he does not observe her going through
any door in particular. Despite her protests that it is ridiculous to assume that
whatever is not forbidden is compulsory, he convinces her that if she wants to get
anywhere she must do everything she can possibly do and all at the same time! Alice
opens the doors and steps through.

Along the many paths she travels, Alice meets a host of interesting characters
who attempt to help her to understand the land that she is visiting, The Classical
Mcechanic and the Quantum Mechanic leave their game of billiards to introduce her
to cause-and-cffect relationships, the phenomenon of interference, and the concepl
of superposition of states. An encounter with Schridinger’s cat leads to more
questions which she hopes to have answered in a university classroom if she can
only determine how to get there.

At the Copenhagen School. delightful fairy tale characters make their cases for
various hypotheses related 1o what we observe to be real in the universe in which we
live. The philosophical implications arc mind-boggling. making this chapter
interesting reading even for those who do not care to leamn about particle and energy
relationships. The Emperor, for example, a proponent of the Mind over Matter
hypothesis. suggests that any purely material system is always in a combination of
states in which all that might be or might have been co-exist and that it is only when
the situation is observed by a mind, which exists outside the laws of the quantum
world. that a selection from among all of the possihilities is made. That which is
observed is selected and hecomes readin.

Throughout her journey Alice complains that there is Loo much that she does not
fully understand. Apparently she is in good company, since Neils Bohr, the father of
quantum mechanics once said that anvone who did not feel dizzy when thinking
about quantum mechanics had not understood . ICs too bad that the converse
doesn’t foHow.

Alice’s creator, Robert Gilinore intoduces his story by warming us that much of
the way that quantum mechanics describes the world may scem at first sight 10 be




nonsense — and that possibly it may seem so at the second, third, and twenty-fifth

sight as well. He tells us taat the world seems to be stranger than we have imagined

and possibly stranger than we ¢an imagine. Yel. the quantum explanation, which

scems to agree with all obscrvations made, cven while disputing that any

observations can actually be made at all, seems to be the enly game in town. If we

would wish to understand the physical reality of our own existence, we can make a
- modest beginning by joining Alice as she explores this world within our world and
- then thank aur host for the facts and the fantasy which we enjoy along the way.

S Reviewed by the Fditor, Sandra Del.ozier Coleman.

Z The AMATYC Review welcomes contnibutions of book reviews by iis readers. We
— wauld like to continue 10 have reviews of books that would be of interest to a broad
spectrum ol persons associated with or interested in the world of mathematics.
Revie ws of individual books are welcome, although we would like 10 know about
aroups of hooks which complement cach other in sbedding light on a particular
topic. Occasionally, reviews from severai readers may be combined in order 1o

: present this type of selection.
Send reviews to: Sandra Dellozier Coleman. 4531 Parkview Lane. Niceville, FL
X 32578-8734 SDColeman@ AQL,.COM

To know that what is impenetrable to us really exists, manifesting itself as
the highest wisdom and the most radiant beauty, which our dull faculties
can comprchend only in their most primitive foring — this knowledge, this
feeling, is at the center of true religiousness.

Albert Einstcin
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The Problem Section

Dr. Michael W, Ecker Dr. Robert E. Stong
Problem Section Editor Solution Editor
The AMATYC Review The AMATYC Review
909 Violet Terrace 150 Bennington Road
Clarks Summit PA 18411 Charlottesville VA 22901

Greetings, and welcome o the AMATYC Review Problem Section! [ usually
reserve this space for instructions on problem submission. This time, however,
after 16 years of doing this, [ announce my retirement as the Founding Problem
Section Editor of The AMATYC Review. This is my linal column in that capacity.

An avid problem-solver and problem-poser in the late 1970s through the 1980s,
[ decided in 1981-82 to intensify my activity. Usually a participant in the ranks,
[ liked the idea of being in charge, a lieutenant. Alas, all of the magazines of the
MAA und kindred organizations had well-established problem columns. Around
1981 | heard of a relatively new organization. AMATYC. Aftcr seeing
The AMATYC Review, [ pitched the idea of a problem section to the late Etta Mae
Whitton, then The AMATYC Review's Editor. Perhaps [ was brash, barely familiar
with the new organization or the publication. However, [ remember thinking that
AMATYC's Review would ook more like a collegiate mathematics publication by
having its own problem section.

Pyve served under at Ieast four editors in this space for the past 16 vears. During
most of the 1980s [ continued to pose and solve problems. with recognition in the
form of an invitation to join the Advisory Pancl of the MAA Committee on High
Schoo! Contests, and then later as member of the Comimittee on American
Mathematics Competitions. Most of my later work for the committee was done for
the AIME subcommittee. ve met lots of great problem-solvers, such as legendary
Murray Klamkin, who has not hesitated to tell me once or twice when 1 was doing
something bonehcaded with this section! Heady times and great challenges!

However. in 1982 | was bitten by the computer bug as well. In [978-82 1
authored a dozen mathematics papers, but during 1982-1990 | authored 350
publications that were mostly columns, reviews, and articles of computer-related
materials. In the course of writing for one PC magazine that lasted just half a year
(PC Clanes, first half of 1988), I got a Ictter from a modest fellow who simply
signed his name Bob Stong. He wrote with mathematical information on
permutations groups, but the authority with which he wrote gave him away as a
mathematician. 1 looked him up in the MAA listings and found Dr. Robert Stong,
profcssor of mathematics at the University ol Virginia. 1 came to correspond with
him and shortly thereafter asked him to serve as Solutions Editor. And now, my
dirty little secret is out: Bob has done most of the real work for the second half of
my tenure here! T have been blessed by his assistance. and so T thank him.
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My wife wamed me that people would assume that | am old and retining overall.
Not so! ['m still tenured at the Wilkes-Barre Campus of Penn State U.. soon to be
in PSU’s new Commonwealth College. | won't retire for 20 years or so. ! am in my
twelith year of a lifetime commitment of publishing my own newsletter/fanzine,
Recreational & Educational Computing (REC). Begun Jan. 1986 as an
outgrowth of my former computer math recreations columns in Byte, Popular
Compnating, and Creative Computing. REC [eatures the tnterplay of math and
computers that | love enough to make my tife’s work. Dr. Stong continues (o serve
as a REC Senior Correspondent. He's is in good company there. as this title is
shared only by the renowned Martin Gardner!

I thank AMATYC. its officers, and its editors (past and present), and you
readers. for the opportunity to have served in this capacity for so long. This is a
volunteer organization of committed individuals, after all. What we get oul is what
we put in. It is time for me to step aside and let somebody else with knowledge and
dedication take over, assuming AMATYC wishes to continue this department and
pick 2 worthy successor.

If you have heen enjoving this column. I would love o hear from vou. Please

write to me or c-mail me at MWEI@psu.edu, DrMWEcker@aol com, or
DrMichael @ Juno.com.

We are pleased to announce that regular contributor to the Problem
Pepartment, Stephen Plett. has accepted the position as new editor of the
departiment. Correspondence to the Problem Departmient should now be sent to

Stephen Plett
Fullerton College
321 East Chapman Avenue
Fullerton CA 92832

Ed.

New Problems

Set AG Problems are due for consideration April I, 1998, Howe: er, regardless
of deadline. no problem is ever closed permanently. and new insights to old
problems are always welcome.

Problem AG-L Proposed by Donald Fuller. Gainesville Cotlege, Gatnesvitle, GA.

A jogging math professor wonders under what circumstances he can be
absolutely certain in the course ol a long run that he has covered at least 1.5 miles
in some continwous 12-minute segment of his run. For example, it you ignore the
limitations of current human performance, in which of the following cases must the
individual have passed the following test?:




I. He runs 2.99 miles in 16 minutes.
or
2. He runs 3.0 miles in 24 minutes.
Can vou generalize the result?
Problem AG-2. Proposed by Michacl W. Ecker, Pennsylvania State University,
Wilkes-Barre Campus, Lehman, PA.

Given an arhitrary vector space over the field of real numbers and any element x
of the space, must v 4 v = 2v? (Take other ficlds if you wish to see whether the
answer is affected.)

Problem AG-3. Proposed by Michael W, Ecker. Pennsylvania State University.
Wilkes-Barre Campus. Lehman, PA.

You are given a function f differentiable on K (i.c., the set of all real numbers)
and a point () = (x;. \p) not on the graph of /. Consider the point P = (v, v} on the
eraph that is closest to Q. It is intuitively clear that PQ is normal to the curve at P,

a) After satisfying yourself that point P must exist. prove the claimed

normality.

b) By wecakening the hypotheses, produce a counter-example to show that a
more general function — even one with domain R - need not have a point
closest to a given external point.

Problem AG-4. Proposed by Kenncth G. Boback. Pennsylvania State University.
Wilkes-Barre Campus. Lechman. PA.

Caleulate R = V43 + V-1 + W3- V[ exactly.

Problem AG-5. Proposcd by Kenneth G Boback, Pennsylvania State University.
Wilkes-Barre Campus, Lehman, PA.

Define ¢ diameter of an ellipse as the locus of midpoints of a system of parallel

chords. Let an ellipse ‘— 1 ;—

_ = | be vpecified with & > b atong with a sel of
o A

parallel chords of slope m.

at Find in terms of a. b and m the slope of the corresponding diameter. Also
find its equation.

Suppose now that 2 is such that the paraltel chords and the diameier meet at a
45-degree angle.

b) What is the relation ol mto ¢ and b?

¢} What i the greatest lower bound of ;—' T This deflines the solution cluss of
- ¥
ellipses.)




Problem AG-6. Proposed by Loren Krienke, San Diego, Californi..

Given an investment portfolio of an amount M (that produces a rate of return, r.
At the beginming of the year you want o withdraw an amount v for living expenses
in the first year. At the beginning of the second year you want to increase the
amount you withdraw to provide for intlation, assumed to be p. [n all subsequent
years you want to continue giving voursell cost-ol-tiving adjustments. (AU the start
of the first year, withdraw v. Al the start of the second year, withdraw vl + p). At
the start of the third year. withdraw x(1 + ]J):, ele.).

What i< the percentage of M you should withdraw at the beginning il you
expect to five for n years? Le., find a formula x = f(M. r. p. i) where A = current
value, r = periodic rate of retuen. p = periodic provision (rate) for intlation.
11 = number of periods. and v = amount o withdraw at the start to achieve a luture
vilue of zero ut the end of the sith period. Then convert the result o the form
L glrop.on).

A

Hints: At the start of the second period, the porttohio will have the value
(M — )] + r). Note also that at the start of the #th period. the withdrawal will be
100%. At the start of year (n - 1), the withdrawal will be approximately 509%. A
special case s required when p = r.

Problem AG-7. Proposed by Vahagn H. Mikaclian, Department of [nformatics.
Yerevan State University, Armenia. (Note: Ken Boback independently sent a fairly
stmilar proposal & solution. )

We have a homogencous [0mm x 18nan x SOmar rectangular paratlelepiped box
of maiches, ABCDA'B'C’D. where AB = W, BC = 18nuir, AA= 30mm. Two
points, M and N, are given on faces ABCD and A'BC’D’, respectively, such that M
and NV are equidistant from edges AD and 8°C7, respectively. This distance 1s equal
o Fae, M and N are equidistant from poants A2, and 8207, wo.

T

C’ ‘;) B Can an ant (= g single mass
& p oN poinl) go from point V to point
! F')“' > A such that the length of the
| AV [ A "
. 2.4 A vath is less than 60mm?
L (The ant cannot gn inside
oM the hox’y

i A

Problem AG-8*. Proposed by Michael W, Ecker, Peansylvania State University,
Wilkes-Barre Campus, Lchman, PA.

Characterize all real-valued polynomial functions f ol a single real variable v
stch that f(a) is rational if and only H t s rational ¢F [ know the answer, but don’t
have my own proof.)

R



Set AE Solutions
Boxing iatch

Problem AE-L. Proposed by the Problem Editor, but borrowed from clsewhere.

Fingd all reclangular solids whose sides have integral lengths and whose swrface
area is numencaily equal 1o the volume (in that system of unitst.

Solutions by Robert Bernstein, Mohawk Valley Conmimunity College, Utica, NY;
Donald Fuller, Gainesville College, Gainesville. GA: Randy K. Schwartz,
Schoolgraft College, Livonia, MI; and the proposer.

Letting the sides be « < 6 < ¢, one has ahe = ab + ac + be) so abe < Ghe
and so g £ 60 Fixing a. (a — 2¥be = Qaih + ¢) which forces ¢ 2 3. Then
L. 4
(dede 2 2ih 4+ 1 2 Chadh, su (da)e 2 (@ - 20be 2 (da)b giving ¢ 2 =2 2 b 2 a. For
[

cach fixedaand bwith3<ag<banda<sh = o

= onie then has a ilnear equation for
o - -

. Sobving taus list of equations, one finds 10 solutions given by:

(3.7.42). (3 8. 24) (3.9, 18 (3100 15), (3. 12,12y, 4. 5. 200,
-4 6, 12), (4. 8, 8), (5. 5. 10), and (6. 6. 6).

Side, Angle, Area?

Problem AKE-2, Proposed by the Problem Editor and Jim Preston, Minneapolis,
MN.

Given that a proposed triangle is to have a given arca, one given side, and the
opposite angle given. find the other parts. I necessary. consider discussion of
existence and unigueness of such a triangle based on the siven information.

Solutions by Kenneth G. Boback, Penn State University, Wilkes-Barre Campus,
Lehiman, PA; Randy K. Schwartz. Schooleraft College, Livonit, MI: and the
Proposcr.

Let K be the area and suppose the sides are a, b, and ¢, with ¢ and the angle ¢

: : T -_ ] ; : - : 2 :
being given. Then K = — absinC gives the value ab. From ¢ =« + I - 2abeosC,

-

the value of ¢ + b is then known, Then (a + Y = @ + b % 2ab gives a + b and
a - b (supposing « 2 b), and then ¢ and b are known. The law of cosines will
determine the angles 4 and 8.

Random Angles

Prablem AE-3. Proposed by the Problem Editor.

Suppose that you have an equiprobable choice of any one of the 180 angles of
integral degrec-measures 1 through 186G You randomly pick two such measures,
one at a time, with replacement. In fact, afler any one choice, the next choice is
independent of the first.



A
L+
k]

What is the probability that the two chosen angles are complementary? .
supplementary?

Solutions by Robert Bernstein, Mohawk Valley Community College, Utica, NY,
Kenneth G. Boback, Penn State University, Wilkes-Barre Campus, Lehman, PA;
Rill Fox. Moberly Arca Community College, Moberly, MO: Daonald Fuller,
Gainesville College. Gainesville, GA; Keith McAllister, City College of San
Francisco. San Francisco, CA: Dennis Reissig, Suffolk Community College,
Selden, NY: Randy K. Schwartz, Schooleraft College. Livonia, MI: and the
PrOpoOser.

There are 180 % 18( choices for the two angles. For complementary angles, one
89
L)< 150
supplementary angles. one has a pair (A, 180 - Ay and must have 1 €4 <179, The
179
150 180

has a pair (1. 90 - Ay and must have 1 £A4 €89, The probability 15 then For

prabability s
Fermat FFun v

Problem AE-4. Propused by the Problem Editor, but borrowed from elsewhere.

Consider any right triangle with legs a, h and hypotenuse ¢. Of course,
a + 6= Letn > 2 What can you say ahout ¢" + 7 vs. "7 (Prove your answer.}

Solutions by Robert Bernstein, Mohawk Vailey Community College., thica, NY
Bill Fox, Moberly Arca Community College. Maoberly, MO: Donald Fuller,
Gainesville Colloge, Gainesville. GA: Randy K. Schwarls, Schooleraft College,
Livonia, MI: and the proposer.

Since @ + b =, onchasa<cand b <. Thenad + 0 =d'ad” “+ b 7 <
@' TR b = by = Thusat BT <

Persistent Resistance

Problem AE-5, Submitted by Don L. Lewis, Bee County College. Beeville, TX.

Each individual resistor below has resistance » Find the equivalent resistance of
the infinite network, (Option: Write a erminating continved-fraction expression for
anetwork of 7 loops).

r
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Solutions by Donald Fuller, Gainesville College, Gainesville, GA; James E.
Kesster. Vermont Technical College, Randolph Center, VT: Randy K. Schwartz,
Schoolcraft College, Livonia, MI; and the proposer.

[.etting R be the resistance of the infinite netwark, one has

R=2r+— =2p ¢ 2K
RIS S r+ R
r R

This gives the equation B - 7R - 2r =0, so R = (1 £ Vi Clearly only the

positive rool is a valid sofution, so R = (1 + N3~

Iniegral Polynomial

Probdem AE-6, Proposed by the Problem Editor.

Let p(x) be the monic polynomial of degree n that lixes the first # positive
integers. That is. consider the monic polynomial p with p(1) = 1. p(2) = 2, p(3) = 3,
wand pr)y=n, Find ptn + 1.

Solutions by Robert Bemstein. Mohawk Vatley Community College. Utica. NY;
Kenneth G. Boback. Penn State University., Wilke=-Barre Campus, Lehman. PA;
Randy K. Schwarte., Schoolcraft College, Livonia, M and the proposer.

Let p(x) be the indicated polynomial. Then ply) ~vis zeroforx= 1.2 ... . n
andsoplxy—x=(r~Ix-2) . (x—n) Thenptn+ [y=n'+(n+ 1.

Radical Rehash

Probiem AE-7. Proposed by Frank P Batles, Massachusetts Mariime Academy,
Buzzards Bay, MA.

17 - . e N ) )
For which values of x is YN+ 1 + 0 - Yva + | - aninteger?

Solutions by Robert Bernslein, Mobuwk Valley Community College, Utica, NY:
Bill Fox. Moberly Area Community College. Moberly. MO; Keith McAllister, City
College of San Francisco. San Francisco, CA; Randy K. Schwartz, Schoolcraft
College, Livonia, MI: Charles Stone, DeKalb College. Clarkston, GA; Wesley W,
Torn, Chaffey College. Rancho Cucamonga, CA: and the proposer.

Y pp—— NN

lets=Vvor + L+ andr=YYc + 1 - v Then
(s -1 =5 — 1 = 35008 - 1)

. 1 . - :[:_'\
withs' -t '=2vand st = 1. Thus 7 =5 - ssatisfies '+ 32 - 2v =0 with v = e

If = is integral, one of 7 and 2 + 3 is even, so v is integral. Thus x must be an mieger

. Tt .
of the form U\_:’“_ Y or some integer £
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WHY JOIN AMATYC?
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About the Cover

The figure on the cover illustrates a construction ol the terms
: - o1 - o -
of the harmonic sequence, ll, T } Ihe oot is given in
2 ]
a note by Dennis Gittinger in thes issue. [US oL quite a prool without words™ but
certainty elegant.

New Problem Columnist

Whenever | discuss this journal with non-mathematicians and mention that we
have o “Problem Columin Editor” they offer condolences, They misunderstand and
think I mean a “problem colnnn editor.”” Remaoval of those capital letters makes 2
hig difierence. So let me welcome our new Problem Column Editor, Stephen Plett
ol Fullerton College in California. Readers of the Problem Column will recognize
s name since he has been a major contributor of problems for several years.

New Editor Selected

AL the Annual Conference in Atlanta last Tall the ANMATYC Executive Board
appointed Virginia Carsan ol DeKalb College in Clarkston, Georgia, 1o be the next
cditor al The AMATYC Review . Technically her term begins next fall, but the fact is
she i already gearing up and receiving new manuscripts for review. The new
production manager will he Lichie Thorneberrs, also ol DeKatb College. We wish
them well as they fearn the ropes and continue the tradition of this jouinial.

[.etter to the Editor

Fwas absoelutely averjoved o see i the Fallo 1997, issue Denmis O Runde's
“What's the Difference Between Debt and Delicit?” (Snapshots ol Applications in
Mathemabies, pp.o0-63) as a sugpested accompaniment W the stedy ol scientific
notatton. He rightully savs that for every man, woman. and child in the US. 10
piteh i to retire the national debt s not a feasible solution. | hope that, in
larthcommy issues, he will analvze other, nwore eguitable, if less egalitarian,
solutions

Al Schieniner
Covumeinty College ol Philadelphiz
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MATHEMATICAL EXPOSITION

Personal Financial Planning

by
Martin Vern Bonsangue
and

Maijian Qian
California State University. Fullerton
[Fullerton CA 92834

Muarty Bonsangue received his PhD in Mathemettics Education
Sroun The Claremonr Graduate School in 1992, where e wax
awarded the Peier Lincoln Spenser Memorial Award for
Quistanding Dissertation of the Year He has taught
mathematics (o middle schaol, high school, and caollege
students for owenry vears, during which time he has faithfuily
contributed o a Tax-Shelter Annuity,

Muaijian Qian received her PhD in Optimization from ihe
University of Washington in 1992, She iy interesied in the
development of applications relevant jor Business Calcudus,
which she hay taweht for nraay seme ters.

One of the great benefits of learning mathematics is not only to understand i«
power as a tool for characterizing and solving important real-world problems. but
o realize that these problems can impact the fearner direetly. Ninong the most
sidient of these is the application of caleulus to the financial world. The problem
ects even more intelesting when learning not about linancial maiters in general, but
about one’s persanal finances, For example. this journal recently reported that
persons who have Tax Shelter Annuitics can restassured knowing thar TSA's are a
good investment even if their post-relirement income level is not lower than i1 wis
when they were working (Shultz & Bonsangue, 1996). Like all good applicvations.,
1t is the learning process that one goes through, rather than just the end resule, that
aHow s her or him (o understand and appreciate the resudt enonsh o act upon it

In this spirit, the purpose of this article is to develop the mathematics underlyin
the concept of Present and Futare Values using basic deas taken rom Hrst-
seinester calenlus We will develop the Tormulas with a real-world example that
wses the exponential function as i <oletion tea simple dilferential equation. Thix is
followed by the general soluton ta the question. “How much should Tave now i |l
want (o have plenty ol money when | retire” Our hope s that readers will not only
w o decper apprectation for the mathentatios under]ving the lormulas, dut will be
tble 1o use the dernvations presented here moa meamngful way with then own
students ol mathematios




The Case of Ivlara

Mara is a recent college graduate just starting out as a salesperson. Alter
receiving her first paycheck, she puts $100 into a savings account paying a rate of
5% compounded continuously. Of course. Mara would fike to know how much
money she will have at the end ol the year. The change in her savings is the interest
added into the account, and the amount of that interest is the rate times the current
amount, I v is the amount of money in the bank at time x, she needs a [unction
v = f(x) such that

D - 50y = 05y . ()
dy ; ;
Since Mara ook a course in Business Calculus. she knows that the function
v = Ce" has this property. Since she started with $100, that is, yi0) = Ce®= 100.
she knows that C = 100. Using cquation (1), Mara sees that at the end of one year
her $100 will become $100¢" %" = $105.13. Similarly, at the end of ten years her
$ 100 will have modestly grown 1o $100¢" %1 = $164.87.

Planning for Retirement

Like any bright young businessperson, Mara is interested in planning her
financial future. She is 20 now (she graduated high school carly), and plans to
retire at the age of 65, She does not think that social security will be a dependable
income resource alter her retirement, Hence, she plans (o save a certain amount of
money each year to ensure a secure retirement. How much should she save each
vear? Mara hopes that after she retires she will have 330,000 a year to enjoy up
until she is 90 years old. In addition, she would like (o have $100.000 remaining n
her bank account, so that she can either leave it to her children (or grandchildren)
or she can use it as living cxpense if she is still afive at 90,

There are two patterns of changes in Mara’s account, namely, the vears during
which she makes deposits, and the years during which she makes withdrawals.
Consider now her working years, Assume the interest rate does not change and
equals r percent per year. While Mara is working and depositing § dollars per year,
the change of money in her account is the added interest plus her new deposits.
Hence

dy

—=ry+ 8. 2
dx f (<)

I is casy to checek that the funciion
y=Ce¢' - -
) r

satisfies

Since Mara has nmo money in her account at the beginning, v(0) = 0. giving Lhe
S

value of Cas € == Therefore. while Mara is working. the amount of money in




her ac -ount at the 1th year is

vivy = 3 ("
-

-1 (3

When Muara retires at 65, we have x = 45, Hence. the amount ol money in her
account will be

P.—-_vHS):'f:(c"‘H b h

After Retirement

The second patiern of change in Mara's account oceurs alter she retires. Upon
retirement, Mara will withdraw W dollars per year. Thus, the change in her account
is the added interest less the amount of withdrawal. If - represenis the amount of
money in her account 1 years alter reuring, then

1tis casy Lo check ihat the function
:(A‘J=[Jic""+i (5
-

salisftes

de Hre™ = I'(H(’”-I- W l - W= W

i r !
When dMara retires at age 65 (¢ = ). she has P dollars in her account.
Evalugting equation (3yatr=0withz =/ wehave 5= - i Therefore, after

!
Mara retires, the amount of money in her account ¢ vears after retirement 1s

AN = ‘.l” - —‘:—‘)t"; + —‘:— or

—“—(t""~ l). (6)
.

2y = Pe -

Now in order 1o 1ind out how much Mara has 10 save cach year while she is

working, we first need o figure out how much she would like 10 hive when she

retires, that is. the amount P. Assume that after retirement she wishes to withdraw

W= 330000 cach year end that r remains (conservatively) 5% during her

retircment vears. At age Y0 (r = 25) she would stll like to have $100,000 in her
account, or 2(25) = 100,000, Using these values in equation (6) gives

UK ((,ID(F{:"\!
.05

100,000 = P - - 1),

ar P = 5456.748.

With £ known we can find the value S that Mara should save each year while
she s working. ST assuming a constant interest rate of 5%, cquation (4) gives



156,748 = y(45) = —2— (00 )
0.05

or § = 82691, Thus, Mara should save about $225 cach month 1o meet her
retirement goals {of course, it she can get a better interest rate than 5%, she could
aflord to save even less!),

A General Observation

In general, we ean determine how much a person wifl need lor retitement
assuming that he or she wishes to withdraw W dollars each year for T years and
still have L dollars remaining in the account. Solving equation {(6) for P gives
W,

L+—=w'-D
P=—r (N
o
&
Likewise. il one plans 1o work lor K years and wishes to have P dollars upon
retiremient. then from equation (31 the amount one needs 10 save cach month during
the working years is
g
S — (%)
12¢e™ - 1,
If we want to account for pest-retirement inflation, we need only (o reduce the
interest rate r. In order 1o allow Tor taxes (or any other anticipated expenscs).
simply increase the value for W, the amount withdrawn cuch year.

Conclusion

The derivations presented here about personal linancial planning have obvious
applications for most of us (certainly for lcachers), Typically these formulas are
presenied in cafculus as definite integrals involving exponential functions
(c.g.. Bittinger, 1996, pp., 427-249). Our experience is that many students do nat
gain a clear understanding of what the integrals may mean. nor the application o
their own financial situations. Too often the student’s solution depends on pushing
the right buttons on a financial caleulator,

It is our hope that the derivations preseuted here may help students to more
clearty understand the mathematics behind the hack boxes of calculators and
lormulae. We hope likewise that teachers will feel encouraged 1o take their
students through this mathematical sidetrip of Persanal Financial Planning as a
classroom lesson or perhaps as o mathematices project for student teams. The
mathematics of Personal Financial Planning incorporates many of the critical
clements ol problem-solving described by the NCTM Standards (1991 and
AMATYC Standards (1995), including exploration, critical thinking, and
generalization. Moreover, the information is relevant not only because we can learn
information about a person’s financial future. but because we can gain the
mathematical power needed 1o control our own.



References

Anerican Mathematical Association of Two-Year Colleges. (1995). Crossroads in
mathematics: Standards for introductory college wmathematics before calculus.

Memphis, TN: AMATYC,

Bittinger, M. Calculus aenel its applicarions, 6th Ed. (1996). Reading. MA: Addison
Wesley.

National Council of Teachers of Mathematics. (1991). Professional standurds for
teaching mathemarics, Reston, VA: NCTM.

Shuliz, H., and Bonsangue, M. (1996). Tax shelter annuities. The AMATYC
Review, {7(2), 18-20.

I constantly meet people who are doubtful, generally without duc reason,
about their potential capacity [as mathematicians]. The first test is
whether you got anything out of geometry. To have disliked or failed to
get on with other [mathematical] subjects need mean nothing: much drill
and drudgery is unaveoidable before they can get started, and bad teaching
can make (hem unintelligible even to a born mathematician.

J. E. Litllewood
in A Mathematician’s Miscellany
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On Periodic Alignment
by

Paul O'Meara
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While looking at varations of the hypocycloid, I came across a [amily of smooth
curves which appears to be constructible with a Spirograph®. There is an interesting
conneelion belween the poinis at which these curves cross themselves und the pairs
of inverse clements in corresponding guotient groups. A curve of this family is given
by the polar equation:

r= \f((: -+ b4 20 a - l:)cos%.

This equation describes a sort of “hypocycloid with a slipped disk™, which one could
not recally draw with a Spirograph®. The locus of points @ in the sketch below
describe such a curve. We can imagine a circle of radius h<ua rolling
countercloekwise, without slipping, along the inside of a circle of radius . The path
of the point £ is a hypocycloid; the
path of the point 2, a point the
same distance from the center as
P, but always on the line of
centers, resulls in the foregoing
equation. The points P and Q
coincide at the outset (¢ = M), and if

b< ‘;—' , al the end of every hall

L

revolution of the smaller circle
thereafter.

The curve, like the hypo-
cycloid, will close on itself il and
only if the radit of the two circles
have rational ratio. It is ¢asier to



Lo Li R

|

. e . H .
graph these curves on a graphing wiility it we set =1 and b= =~ | with n and m
m

relatively prime in M, the natwral numbers. Then the Toregoeing cquation assumes the
[orm:

. Ll

L me e nit
rEY S E o

w- m- n

bl " - - - - - .
where ¢ = m- - 2 4 20-. A graph ol this equation for b = = looks like this:

= |

. - .. . - i . vyt 2 . .
The points of intersection for b= 24 form n- 1 “tiers™. On cach tier these peints
m
determine the vertices ol a regular se-sided polvgon, Bach tien, frony innermost o
oulermost is a rotation ol its precessor by £
Tom

Now let us look inte the reasons for this pattern. First we shall simplify a fitle by
considering ¢ 10 be an even. continuous, periodic [unction of period 1 which is

strictly monaotonic on [(). -iv ]an(l [% l]. Assume further that g(0) = 0 and that gt()

is a maximum or 2 minimum value of g. I ¢ had period p> | then we could consider.
instead. hty) = gty which has perod 1,

Then let fix) :‘u(% ) Now v = 1 is the least positive number for which f( = fiih

and glx)y = g(0). For il f(x)= f10) then = A for some integer & And, i glyv) = ¢ith,
ot

then v = f for some integer £ Thus An = jr and since (o) = |, mlk and alf, The
lcast positive & available is & = s making f = .

Let 1 =0, n]. The “alignment” question is this:

i
i




FFor which pairs (v, 27y e Tx T is it true that

ftu = fi'yand lx—al et

We are not looking to satisly f1v) = () and ey = 00 only, in addition, we wian
the elements o a pair o diflfer by a multiple of the period of g

The description of » in the Tast paragraph assures us that we shall not find any
pairs of points in 1 which differ by both a multiple uf% and. at the same time, an
integer. However, because af the even characier of fand g, we could consider
pairs of the form x and x* = T: —x. Now

ki

L \]’ =ie M ifand only il x = fedn

cwhere i'= 2y,

" -

Letj =i+ kn and observe that .r:% el imrand only il 0 < j < 2nm - |.
—m

The Torm of the choices for x, here, leads us 0 consider a relationship with the
additive group Z(2mm) ol i mlc"Lrs mod 2ner. We wdentify this group with the set

G= N UL <€ - 1t Tviafor ‘L The homomorphism f:Z( 2y 2 Z02m)

2m 2m

whicin maps § (mod 2ma) to jimod 2a) has kernel K = [0 20,40, 0 0 20m - D}

“n - i . . . 1 - - -

The corresponding points in ¢ are A7 {U . e lin ] which consists
Hl H n

of the zeros of fin 1. Here fIA"y = 0 and lorany y ¢ (i..l't K+ x) =/

With the identification mentioned above, we cun consider
GIK'= {!\ +— 0<j<n- 1]

s o quotient group maod 2, cach clcmcnl tcoset) of which contains wr elements of

the original group G, The element, K+ =, of GIR for which /(!\ r — l(;—' )
.,." P e

is & maximum or a minimwn ol £7 iy the only non-zero sell-inverse clement of G/A”.

Seuting this clement and K itself aside. there are then s 1 pairs of non-sero inveise
.
S T - . . T . .
elements left in /A7, They have the Torm K7+ _'L and K7 + _T,i J #n. on which.
2 2m

et Fieoven KT 2 Ve gfar e Sy S
because fis uu‘l._l(h + 5 )-._[(A + ]__/(

2m -

There are 2m ponts in the union of thewe two elements of (/K7 and (or a given

- . . . o
point v € K7+ 2 we can find i corresponding point A ¢ K7+ 3 L. such that
..I“ i

kn . . L'n Tl e n g
lv-vTebileta=z 2 v e kv Loandierv= 220 ek /
m 2 2 m 2 D

oK iy . . . , )
Thenv- v'= 2252 "0 Goan integer il andondy itk £ D i e Now the

"




appropriate k” can be found, since (un) = | implies that there arc integer solutions
to nz = —j{mod m) and any two are congruent, mod m., Thus there are m pairs of

points in (K" + ﬁ) ) (K’ + @) for which f(x) = f(x"y and lx - x| € N. And,

m

- : oy S
finaily, there are mifr — 1) such pairs in L. Note also that successive cosets (K + J-j-—h—)
Zm

PRV T A ranslati i
and (K + 5;;) diller by a translation of =
Here is an algorithm for matching pairs:
For fixed k and j,

1. Solve nz = -j(mod m)
Set k- - y= z(imad m)

ha

3. Let k= (] - k+ z(mod m)y (mod 1)
4. k" =(m - (k")) (mad m).

Example: Let g(x) =cos(.r],f(.t)=cus(%.r) on [0. 8n). (Forget the period 2n
for now; let us just do the arithmetic {mod 5) and then multiply by 2r). Here
K = 0.%. —2—(5'—11‘ % %] andje (1,2, 3, 5, 6.7 We skip 4 here because
K+ % is that singular, non-zero, self-inverse member of G/K”, Let us find the other

element in a matched pair lor x = l(g—) + _JEU_ Here, £ =2 and j = 3, Solve 45 = -3imod 3).
say = = 8. (Yes, 3 would be easier), With & = 2, set (2 — k"= 1) = 8(mod 5) = 3. Then
k= 2(mod 3). s0 k’ = 3. v=8 3 W ae =120 5 22 Muiplyi
(imod 3), so Then x S + 0T nd x S + 5= 10 Multiplying
by 21, we obtain x = —1—:- T and x’ =%n in [, 8m). Nole that I.r— o= 21 and

298 Sn 3

G 3 . 5
R _ cos 2 while cos (-, .r’) = 08 525 = cos B = 008 ==
3 f 4 4 4

(5 ) R
cos [ = x| = cos
4

You cair watch the tiers ol interscction points lurm on a graphing calculator this
way: Use, (or tnstanee, the foregoing example f(x) = cos (%1) on {0. 8m). Graph
v =C0s (% (v + 2kn)); k=0,1,2. 3 all on the same picture over [0, 25|. Since the

domain is taken to be [, 8m), when the picture is complete, simply identily the left
and right edges.

[Criticized for using formal mathematical manipulations, withoul
understanding how they worked:] Should T refuse « good dinner simply
because 1 do not understand the process of digestion?

Miver Heaviside (1850-192%)




On a Simple Exercise in Linear Algebra
by

T. W. Leung
Hong Kong Polytechnic University
Kowloon, Hong Kong

1 W Leung did his undergraduate study at the University of

Waterloo, Ontario and obtained his PhD from Queen's

Q University. Since then he has devoted 1ot of his time teaching
mathematics 1o engineering students. He is imteresied in

v investigating why studemts make similar mistakes tfime and
again. In mathematics he is interested in combinaiarial

optimization, elementary number theory and mathematics
education.

[ cannot recall where I first saw the following exercise in linear algebra:
Lei A be areal 2 x 2 nonzero matrix and suppose 4% = (0. Show that A* = 0.

[t wrns out that the exercise is useful o illustrale many ideas, and I want to
describe a few of them here. But before thut, let me stress that the exercise is for
sludents with only elementary knowledge of matrices, delenuninants and cigemvalucs,
roughly at the level of Anton (1984). They know nothing about Jordan form nor
minimal polynomial; otherwise the exercise will * ¢ oo casy.

e

E First, it is not unusual 1o find 2w £ Powing “prool™ by a student. Because AY = 0,
B hence A* =A 1432 A10= 0, again A = A "4 = A 10 = 0 hence A= A AT =A10 =0,
E Unfortunately, the student does not go one step further to get A = A7A® = 4710 = 0,

and realize the fallacy of the argument.

The above argument illusirates the sloppy attitude of the student; as a matter of
convenience he simply assumes the inverse of A exists. But ol course we know in this
case. the inverse of A does not exist, as the determinant of A is zero.

The correct proof rests very much on the fact that the matrix A is 2 x 2, and that
the determinant of A is zero. In fact, [A®] = [A]% = 0.and |Al, a real number, whose
fifth power is zero, impliey [Al=0. Now suppose A is given by

[tl h ]
o d

and 0 = A= ad - be We try A2 1o get

a-+be ab hd
be+dd*

.

AT =

ac + cd




@ +ad  ab+ hd

ae+ed  ad+d?

I}
=td+) tl ;]

=tel + 1A,

Hence A = A% = (a0 + DAY = (o + dP A and A = (@ + dVA A = (@ + dFPAL Because
AT =0and A # 0, we have (g + ) = 0, which implies (¢ + ) = 0. Thus
Al=(a+ A =0.

From the above proof it is immediately clear that the =57 in the cxercise may he
replaced by any integer 3 or above, IUis meant only 1o conluse the students: some
students think it is not so bad 10 try multiplying out A°.

A few students manage W lind another tonger prach. First it is observed thet
[AY = ad ~ b = 0. Now the characteristic polynonid ol A is

!}'\.'~(l -h i
e A-dl

=22 c(u + hh + tad - hey
= hth—(u+dn.

Henee the cigenvalues of the matnx are 0 and e + o Suppose now a4 o # (L then A is
diagonalizable. thus we (ind an invertible £ such that
A0

PP = =0
0k,

Hence A = PP Y and 0= AY = PO Y forcing D7 = O or 4 = A = 0, which
implies X, = X, =0.0r A = PDP 1 =0, a contradiction. We must then have o + o = 0,
Trom A° = (a + d)A. get A = 0. This proof is correct, but itis a bit indirect.

Besides obtaining a correct proof, there are things that may be considered.

The exercise does not specily whether such amatrix exists. In fact, we cannot find
a 1 x 1 real nonzero matrix A such thae A° = (0. However, it is possible to find a
2 % 2 ponzero matrix with the required property. In fact we see that 0 is the only
cigenvalue of Az aller some experimentation, we sce

[(} I 00
o of " v

will satisty the hypotheses ol the exereise,
Adier that a student may be led to discover it is necessary o specily the size of the

b

matriz. A student may be asked 1o lind o real nonzero 3 < 3 matrix B, such that
B =0, yet B~ £ 0. Now i is natural for a student 1o consider 3 x 3 upper or lower

I 1 ”U




triangular imatrices, with zero diagonal clements. He may lind out the matrices
a1 0 I() 0
O 0 1jo il 00
0 0 0 o1 0

pussess the above mentioned property,

The proof of the exercise hay another purpose. Namely it can be used to prove i a
mateix cquition has any solution. If A is a matrix as in the exercise, it is impuossible o
lind & real C such thit €% = A, Because if €2 = A then (* = A% =0, but arguing as in
the proof, CV= 0 implies C* =0, or A = 0, a contradiction. By the swme oken, we see
that A is not any »™ power. when o 2 2 In lact it C* = A, then
C™ = A* = 0, bul C* = 0 implies €2 = 0. henee (% = (). The idea is nothing new: it
was deseribed in Halmos (1991) and various aspects of this (vpe of matrix equations
may be found in Flanders (1986) or Winter (1980).

Now we see for matrices of farger size. (he situation may be more complicited. A
student may then see the relevaney of the concept of rank. [For a nonzero 2 % 2 matris,
ils certain power is zero, then its vank s 1. Bu tor a nonsero nx o matnx, il its
determinant is sera, its rank may lie between 1 and o — 1. Nevertheless, let's consider
anax (e > 3) matrix of rank 1. In BeG 30 A s an i xon (n 2= 3y ek | matnx, then

1
b b, hluﬂg
bha,  ba, h.uq_l
. M Hal
A= {
i
;
t
ha —bao . bai
Iyt )
b,
b,
hy ta ay bl ot )
i | . | | .
Henee A= ; ; |
! I
: i i
| N
bnl ih'-l

h | led, ... u”l - ANA

1

= 1)_,(1'/)' )

i
I} I
n

17 iU




for some constant K.

Using this, it is of course trivial lo prove our original excreise, but it may also be
said that it demnonstrates the subtlety of the rank concept. After trying to get through
the exercise, a student may in fact sce or discover the concept or 11s relevancy
himsell.

MNow it would be nice for a student 10 chserve:
Let A be arank 1 x a matrix (0 2 3y such that A" =0 (m 2 3). Then A2 =0,

Onc should nevertheless note thal a rank b a x i mutrix does nol necessarily
imply A" = (i. For instance no powcer of the rank | matrix

100 . 0]
o . . .90
o . . . 0
is ever zero,
We also cannot cliim that such an A is not a power of some B, using the previous
0 1 0
argument, because /f may not be of rank I For instance it 8=10 0 1], and
0 ¢ 0
0 o |
A={0 0 0 then B = A, It ts more difficult te find a matrix B such thal
0 0 0

0
5=
{)
We should try a suitable matrix of rank 2.

One may then consider the matrix over certain rings o see if the stateiment is still
valid, or consider the exercise in the context of transformation. Readers may. of
course, conjure up other vadations from this exercise.

References

Anton, N, (1984, Elementary linear algebra. (4th ed.), New York: John Wiley &
Sons.,

Flanders, H. (1986). On polynomial matnix equations. College Mathemation Joreniied,
[7(5), 388-391.

Halmos, P.R. (1991). Profdemy for mathenaticians young and ofd. Washington:
Mathematical Association of America,

Winter, J.L. (1980). The matrix equation X' = A. Journal of Algebra, 67, 82-87.

A proof tells us where to concentrate our doubts.

orris Kline
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each parl of the expression. And that's a visible advantage
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SHORT COMMUNICATIONS

A Note on f{x)f"(x) = 0
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Russell Ewder is a professor in the department of mothematics
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This short paper was motivaled by thie following simple, yet siimulating
caleulus problem:

i £ty = 0 for all xe(a.h). then {is constant on (a0 (where
« and & can be finite or infinite).

The solution to this problem s straightforward once students realize that
7300 = 2fi)f (). The purpose of this paper is Lo give a higher-order derivative
generalization to this problem. More precisely, the follawing result will be proved.
Theorem: Lel fbe an a-diflerentiable real-valued function on {6, Then

S =0

forall xeta.byif and only if

fy=a, 2" Tha, X T v+,

" -
where aeRlori=0,1.... . 0-L
First, we need the following result.
Proposition: [.¢
roposition: [.et

hyitph A" e by +bh lorver
v a1 | 0

ftuy = .
R N R G Y (L=

)]

il




for alt vin an open interval (¢, h) comaining r. IF fis a-differentiable at v = 7, then
h=ctlori=0,1....n
i

Proof: Let gxy =b "+ b, "

% + o Stnce @) = (). B, = ¢, Then, since g Yy =B Vb,

ot hx+e b and vy =cpm v e, (F L+
lzf;; 1
Proceeding in this fashion gives b =¢ tori=0. 1, ... .n.

We are now ready to prove our theorem.

Proofl: (M 4x) =u,
AEfa ).

AT T e+ a then S0 = 0 and so i) 0 = 0 for all

Now assuime that £ 40 = 0 Tor all xewby, I ftxy =0 for all x g(w b, then
the desired result follows by choosing ¢ = Ofor i = 0. 1, ... . # —~ | So. suppose that
fix,y# O Tor some x,eR. Since fis continuous at v, there exists some Ay > O such
that flx) £ O lor all xeix, -0, v, + #,). 1L lollows from the assumplion of the
theorem that /""(x) = U for all xely, - fi, X, + hp). By integrating o limoes,
fry=a, x" '+t apr e forall vely, - hyox, + ).

Let V ={xeta,Drfixy # 0}, Then Vois ap open set and can be wrilten as a
countable union of disjoint open intervals, say V= U/, Repeat the previous argument
on cach / to get a polynomial of degree at most 7 - 1. The polynamials over two

consceulive intervals, / and /. intersect at a point r, such that fir) = 0. By the
previous proposition, these two polynomials must be identical. Therelore.

fy=a, ¥ '+ +av+a,
on {af?).

Firatly, # can be noted hat the theerem can he readily generalived “o complex-
vilued [unctions on an open disk 1. The proof is almost identica o the one
presented above with only some appropriate changes in terminofogy.

A human being is a part ol the whole. catled by us “Universe.” a part
limited in time and space. He experiences himsclf, his thoughts and
feelings as something separated from the rest. a kind of optical delusion
ol liis consciousness. This delusion is a kind of prison for us, restriciing
us teour personal desires and to affection for a few persons nearest (o us,
Our lask must be to frec ourselves rom this prison by widening our cirele
of compassion to embrace all living creatures and the whole ol nature in
its beauty, Nobody 1s able (o achieve this completelv. but the striving lor
such achievement is in itsell a part of the heration and & foundation for
inner securily,

Albert Einstein (1879-1955)

In W Eves Mathematical Cirdles Adicen,
Boston: Prindle. Weber and Schimid, 1977
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A Construction of the Harmonic Sequence

by
Dennis J. Gittinger

Northwest Visla College
San Antonio TX 78204-1429

Dennis Girtinger is a native Texan. He holds BA and MS
P degrees in mathemarics from St. Mary's Universin: and a Ph in
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T Dennis was a mathematics prafessor ar St. Philip’s College in
| ] San Antonio from 1972-1998. He is currently the chief academic
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Conmunity College District,

A geomeltric representation of the harmonic sequence can be constructed rather
simply. We will lead up to this through an elementary construction and its
generalization. These will be stated as problems for the benefit of those who would
like to work out their own proofs.

Construetion: Start with any rectangle ABCD (sce Fig. 1.). Let £ be the midpoint
of BC. Draw diagonal BD and linc segment AE. intersecting at G. Construct Fif
through & and perpendicular to AD. Prove that AH is one-third of AD.

i F E C
G -
! H D +
Fig. 1

Proof: Triangles ADG and EBG are similar. Segment BE is half ol
AD. Because of the sunilar triangles, #F s half of DH, and since
Al = BE AH mwst also be hall of DH. Thus DH = 2417 and Al s
one-third ol A,

Generalization: [f point £ is constructed so that 2F = "’—:) prove that A/f = —:—g—)T
!
12




B Y C

o

Fig. 2

Proof: (See Fig. 2.) Again triangles ADG and FBG are similar,
this time with proportionality constant n. Thus BF = ¥ . Since
!

AH = BF. we have AH = %’i ot DH = nAH. Then

DH+AH=AD
HAH+ AH=AD
AH(n + 1) = AD

AH =D
) n+t’

Now if we set AD) = | and carry oul the construction process repeatedly. the points

(H) will he at distances of % L. % ... from A (see Fig. 3.), giving us the harmonic
sequence. )
i1 ¢
%
//
! LE 11 I b
[:te. P = |




Notice that just as the horizontal segments divide AD into halves, thirds, fourths,
ete., so also do the vertical segmients. those perpendicular to BC. divide CD by the
same ratios, Thus, this single construetion can be used to divide, simultancously,
two line segments into n equal parts.

Biographical history. as taught in our public schools, is still largely a
history of boneheads: ridiculous kings and gueens, paranoid political
leaders, compulsive voyagers. ignorant generals — the flotsam and jelzam
of historical currents. The men who radically allered history, the great
scientists and mathemadicians, are seldom mentioned, ifacall.

Marttn Gardner

* k) L)
e g e

In the index 1o the six hundred odd pages of Amold Toyonbee’™s A Study of
History, atbridged version, the names of Copernicus, Galileo., Descartes
and Newton do not oceur yel their cosmic quest destroyed the medieval
vision ol an immutabie social order in a walled-in universe and
iransformed the European landscape, society. culture, habits and general
outlook. as thoroughly as il a new species had arisen on this planet.

£rthur Koestler

L) () L)
DX )

Unfortunately what 15 little recognized is that the most worthwhile
~cientilic books are those o which the author clearly indicates what he
does not know: for an auther most hurts his readers by concealing
dilficulties

Evariste Galois




Lucky Larry #30
The problem: The expected low temperature. 1. in Fairbanks may be approxi-
2 - 2 1 - . -
mided by 7= 36 sin [{(—’f_‘u - 1t )J + 14 where 18 in days with ¢ = 0 corre-
AR

sponding to January 1. Find on which day the expected low wemperature it
reaches O F,

|
Larry's Solution: 16 sin [—]‘% (- 101 )] + 14=0
N

.xin[i"i,(w |n|;]

A

-1

i 101 -

Lindia’s Solution: 36 sin [AK— tr- 10l }] + 14
163 ]

. ) 'l"‘i

63 165 3

2 202n 14

sin ( = -
165 65 ih

H6Ssin [$5) =365 - 28

SIn(2ne) =

sin{ 2
P

sine= 101 =226

f =784 i.c. the 78th dav
ol the year

g . - 3 + -~ +
T'he correct solution is based on -‘-‘(—n (=101 =-sin '(-- i—: ] from which 1 = 78.
RLIN RI¢}

Submitted by Keith McAllister
City College ol 5an Francisco
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Absiract

Two publications in the late 1980 (NCTM. 1989 and MAA, 1988) sparked a
nationwide call to rejuvenate the teaching ol mathematics. Since then, most reform
attempts at the post-secondary level have heen aimed at calculus. Recently,
however, various groups, including the College Board, have been considering ways
in which precalculus might be “re-formed™ in order o

+ place more cmphasis on realistic applications, including those based on dala
sels:
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* increase the use of technology, especially graphing calculators:
* foster group data gathering and exploratory activities: and
* require extensive oral and written reporting about key concepls,

Such changes would permit mathematics laculty to respond more eftectively 1o the
changing requircments ol majors served by precalculus, as well as to the growing
influence of calculus reform, and the changing environment of the marketplace. In
addition, a reformed precilculus would provide an alternative approach for
students disenchanted with a traditional presentation of the course. This paper
describes the five year evolulion of a multi-sectioned precalculus course for
business and health professions majors at the University ol Hartford. which
attempts Lo meet the poals described above,

History

For over (wo decades, the vast majorily of students enrolled in our precalculus
course (M1 10) were business majors who were required 1o take a subsequent one-
semester course in calculus. During that time our presentation of M 110 had been
raditional both in content and pedagogy. mirroring to a large extent what students
had experienced (often unsuccessfully) in high school. The demographics shifted
abruptly five years ago when we admitted large groups of students to new
programs in occupational and physical therapy. causing our audicnce 1o il owards
% health professions, 353% business, and 15% Liberals ans and education majors.

in the Talf of 1992 the authors of this article. who had been invalved with
departmental efforts Lo revise our three semester calettlus sequence, began o plan a
revision of precalculus with intent of making it more uselul to our client
departments as well as more interesting and valuable to our students. Gue year
later we offercd three pilot sections of precalculus using a modified syllubus tha
depended heavily on the use of a graphing caleulator. Encouraged by our students’
positive reactions, we continued to revise our material and enlist more [ull-time
faculty 1o (cach the course. Last fall we ran eight sections of the course tfour (aughi
by lull-time [aculty), all of which used the graphing calculator.

Guiding Principles
Our redesign of M1 10 ix guided by the following four principles:

1. Realistic applications. Our first goul is 1o engage our audience, niany
of whom have not enjoyed prior suceess in mathematics and.
consequently, are atten taking this course under a combination of stress
and duress, Thus, we wanl o convinee students carly on that math
really is “good for something”™ worth theic commitment of time and
encergy. To this end, we set about designing a collection of classroum
examples. homework problems, and b exercises thiat were casy Lo
understand, that used real data, and that the students (we heped) would
lind interesting and meaningful.
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