
DOCUMENT RESUME

ED 418 999 TM 028 294

AUTHOR Li, Yuan H.; Lissitz, Robert W.
TITLE An Evaluation of Multidimensional IRT Equating Methods by

Assessing the Accuracy of Transforming Parameters onto a
Target Test Metric.

PUB DATE 1998-04-00
NOTE 48p.; Paper presented at the Annual Meeting of the National

Council on Measurement in Education (San Diego, CA, April
12-16, 1998).

PUB TYPE Reports Evaluative (142) Speeches/Meeting Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Equated Scores; Estimation (Mathematics); *Item Response

Theory
IDENTIFIERS Item Parameters; *Multidimensional Approach

ABSTRACT
The metric of the multidimensional item response theory

(MIRT) item parameter estimates is usually referred to as reference axes that
are orthogonal and of unit length. This is due to the fact that most MIRT
parameter estimation programs solve the identification problem by requiring
that multidimensional abilities be distributed as multivariate normal
distribution, N (0, I). Under this circumstance, the equated group's
reference system can be transformed into the base group's reference system by
a composite transformation: an orthogonal procrustes rotation, a translation
transformation, and a single dilation. Based on this composite
transformation, three sets of MIRT equating methods have been developed and
evaluated in this study. The results indicate that the best MIRT equating
method is an unbiased, effective, and consistent estimator producing accurate
transformation parameter estimates when the errors in the estimation of item
parameters were purposely manipulated. In addition, this MIRT equating method
is capable of successfully recovering parameters, especially for the item
parameters, under well-fitting model conditions. (Contains 17 figures, 4
tables, and 35 references.) (Author/SLD)

********************************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

********************************************************************************



An Evaluation of Multidimensional IRT Equating Methods by Assessing the

Accuracy of Transforming Parameters onto a Target Test Metric

PERMISSION TO REPRODUCE AND
DISSEMINATE THIS MATERIAL

HAS BEEN GRANTED BY

Yuan H. Li*

University of Maryland & Prince George's County Public Schools

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)

Robert W. Lissitz*

University of Maryland at College Park

U.S. DEPARTMENT OF EDUCATION
Office of Educational Research end Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as
received from the person or organization
originating it.

Minor changes have been made to
improve reproduction quality.

Points of view or opinions stated in this
document do not necessarily represent
official OERI position or policy.

Paper presented at the annual meeting of the National Council
on Measurement in Education

April 14-16, 1998, San Diego, California

* The authors would like to convey special thanks to Mark Reckase,
Rafael De Ayala, C. M. Dayton and Frank Alt for their insightful
suggestions on this paper

BEST COPY AVAILABLE

2



MIRT Equating

An Evaluation of Multidimensional IRT Equating Methods by Assessing the

Accuracy of Transforming Parameters onto a Target Test Metric

Abstract

The metric of the MIRT (multidimensional item response theory) item

parameter estimates is usually referred to reference axes that are orthogonal and of

unit length due to the fact that most MIRT parameter estimation programs solve

the identification problem by requiring that multidimensional abilities be distributed

as multivariate normal distribution, N(0, I). Under this circumstance, the equated

group's reference system can be transformed into the base group's reference system

by a composite transformation: an orthogonal procrustes rotation, a translation

transformation and a single dilation. Based on this composite transformation, three

sets of MIRT equating methods have been developed and evaluated in this study.

The results from this study indicate that the best MIRT equating method is an

unbiased, effective and consistent estimator producing accurate transformation-

parameter estimates when the errors in the estimation of item parameters were

purposely manipulated. In addition, this MIRT equating method is capable of

successfully recovering parameters, especially for the item parameters, under well-

fitting model conditions.

Index Terms: Item Response Theory (IRT); Test Equating; Item Linking;

Multidimensional Item Response Theory (MIRT); Simulation Study.

1



MIRT Equating

I. Introduction

A. Motivation

Item response theory (IRT) consists of a family of probabilistic models that hypothesize

the relationship between an examinee's latent ability and a correct response to an item. It is often

assumed that only one latent trait is necessary to account for variations in examinee's item

response vectors (Hambleton & Swaminathan, 1985). However, the test-examinee interaction

process can be quite complex since a set of test items may be sensitive to several traits; and a

group of examinees may vary in several latent abilities (Ackerman, 1992). It becomes apparent

that practitioners may encounter problems applying unidimensional IRT to multidimensional

datasets. These problems may jeopardize the invariant feature of the unidimensional IRT models

(Ackerman, 1992; McKinley & Mills, 1985).

Test equating methods have been developed to adjust for differences in item

characteristics such as item difficulties and discriminations among test forms so that examinees'

scores reported from different test forms can be converted into each other (Kolen & Brennan,

1995). When two tests are equated, it is of course desirable to try to ensure that the two test

datasets are unidimensional. Unfortunately, this condition may not be met in most testing

situations. Consequently, inaccurate test score reports could occur when reporting scales from

different tests, which are equated using unidimensional IRT equating when latent dimensions on

each test dataset are multidimensional. Researchers who have used multidimensional IRT

(MIRT) analysis (e.g. Ackerman, 1992, 1994; Bock, Gibbons & Muraki, 1988; Reckase, 1985)

have indicated that MIRT models more adequately explain both simulated and real

multidimensional data than do unidimensional models. In other words, the feature of invariant

parameters of MIRT can be retained. From the perspective of MIRT equating, test practitioners

can ask if two test datasets are essentially multidimensional, and can MIRT equating produce

correct test scores. That is the central issue of MIRT equating.

2
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MIRT Equating
B. Background of MIRT Equating Methods

When the same set of test items is administered to two groups (called the base group and

the equated group) with differing ability profiles and two sets of test response data are calibrated

separately, two sets of different numerical values of parameter estimates are obtained. The reason

given is that the origins and units of the two reference systems (ability-dimensions) are defined

independently and the reference systems may be rotated (Reckase, 1985). The MIRT equating

method is used for transforming the equated group's reference system into the base group's

reference system by re-rotating its reference system, re-scaling its unit length and shifting its

point of origin.

The metric of the MIRT item parameter estimates is usually referred to reference axes

that are orthogonal and of unit length due to the fact that most MIRT parameter estimation

programs solve the identification problem (or result in a unique solution) by requiring

multidimensional abilities (0) be distributed as multivariate normal distribution, N(0, I)

(Mislevy, 1986).Under this circumstance, the equated group's reference system can be

transformed into the base group's reference system by a composite (Schonemann & Carroll,

1970): an orthogonal procrustes rotation, a translation transformation, and a single dilation (or

contraction). A single dilation parameter is preferred because of two main reasons: (1) it provides

a more tractable mathematical problem and (2) in most cases the variance across dimensions will

be similar enough that a single dilation parameter will provide reasonable accuracy. This kind of

composite transformation takes into account the properties of the metric of MIRT item

parameters defined by MIRT computer programs and holds the features of : (1) symmetry, that

is, the sum of squared errors is the same, whether the equated test is linked to the base test or

the base test is linked to the equated test, and (2) retains original angles and relative positions of

all pairs of item discrimination parameters in space while referring them to the base group's

coordinate system.

In reviewing the research on MIRT equating methods, four particularly relevant studies

(Hirsch, 1989; Oshima & Davey, 1994; Oshima, Davey & Lee, 1997; Thompson, Nering &

Davey, 1997) were identified. The first MIRT equating study conducted by Hirsch (1989)

3
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MIRT Equating
provided practitioners with valuable knowledge of the MIRT equating principles. The MIRT

method employed in Hirsch's study was, however, rather complicated. For instance, in the two-

dimensional MIRT case, four rotation matrixes, two dilation parameters and two location

parameters need to be estimated. In contrast, the four MIRT equating methods developed in the

Oshima et al.' study were much more straightforward (refer to Oshima et al., 1997). The main

approach of each of the four MIRT equating methods introduced in the Oshima et al.' study is to

simultaneously estimate a rotation matrix and a translation vector by minimizing a mathematical

function such as defined by squared differences of two test characteristic surfaces. However, it

should be pointed out that no dilation parameter was found or defined in the Oshima et al's

MIRT equating methods. The rotation matrix produced by Oshima et al's study can be formed by

a variety of composite transformations, for instance, a scalar times a nonorthogonal

transformation matrix.

On the other hand, Thompson et al (1997) attempted to develop a MIRT linking method

that can be employed to equate tests without common items or common examinees under the

circumstance that different tests are randomly assigned to a very large number of examinees.

They "assume that the origin, axes, and correlations between axes are the same between groups

since the groups are randomly equivalent(p 5)." However, the arbitrary rotation for each group's

reference system occurs during the process of parameter estimation as it happens in factor

analysis. This phenomena is known as rotational indeterminacy which is tackled by identifying

similar item content "clusters" (note: not items) on different test forms and then by rotating them

in the same multidimensional-reference system. The approach taken to identify item clusters on

different test forms can be found in Reckase, Thompson and Nering (1997). Whether this linking

procedure can be successfully accomplished relies on the accuracy of identifying similar item

content clusters on multiple test forms. Consequently, this MIRT equating approach is still

experimental and more evidence to clarify those uncertain issues, as pointed out in the Thompson

et al's study (1997), is still needed.

4
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MIRT Equating
C. Statements of Research Question

The accuracy of parameter estimates can be assessed by using BIAS (average differences

between the true parameters and the corresponding estimates) and RMSE (root mean square

errors) (refer to Skaggs & Lissitz, 1988). From a practical perspective, the MIRT equating

methods used in previous studies were not formally evaluated in terms of the BIAS and RMSE

indices of the transformation-parameter estimates, or the transformed item and ability estimates.

Apparently, more study is needed to evaluate these techniques. In addition, developing more

MIRT equating techniques, especially those that can maintain such features as the composite

transformation (Schonemann & Carroll, 1970), is critical. Accordingly, based on the above

composite transformation, three sets of MIRT equating methods have been developed in this

study and have been evaluated by using the BIAS and RMSE criterion. The three MIRT equating

methods are illustrated in the next section.

Sample size, the shape of examinees' abilities and the characteristic of test items can

cause errors in the parameter estimates. A mathematical expression for this relationship has been

developed by Thissen and Wainer (1892) for a family of IRT models and is used in this study

for modeling error in the simulation of parameter estimates. The issue of which MIRT equating

method among the three ones developed can produce the most accurate transformation of

parameter estimates was evaluated under conditions in which errors in the estimation of item

parameters were purposely manipulated. The issue of "Can this best MIRT equating method

produce accurate and reliable results for linking item parameters onto a common scale?" was

then examined under conditions in which the examinee's ability characteristics were manipulated.

It is usually assumed that a MIRT model should be applied to a multidimensional dataset.

It could happen that practitioners will apply a MIRT model to a test dataset, in which only one

latent dimension exists. Practitioners would then be concerned with whether a MIRT model can

explain a unidimensional test dataset. Thus, a unidimensional dataset was created and an MIRT

model will be applied to it. The issue of parameter recovery was explored.

5
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MIRT Equating
H. MIRT Equating Methods for Dichotomous Item Response Data

A. Multidimensional Logistic IRT Model

The probability of a correct response, u;i=1, by person j to item i, given an individual's

m-dimensional latent abilities, O, is (refer to Reckase, 1985):

zil
P(ui; = a )= c, +(lc,) e

1 + e
z'i (1)

where,

Zji EaikOik + di
k=1

(2)

a; is a m-dimensional vector of item discrimination parameters,

d, is a location parameter related to item difficulty and

c; is a pseudo-guessing parameter.

The above model is a multidimensional extension of the three-parameter logistic model

(M3PL). Since the terms in Equation 2 are additive, being low on one latent trait can be

compensated for by being high on the other latent traits. Thus, this model is called a

compensatory model (Reckase, 1985). A multidimensional extension of the two-parameter

logistic model (M2PL) is attained if the guessing parameter c; is constrained to zero for all items

in Equation 1 above.

B. Rotational Indeterminacy and Scale Indeterminacy

There are two main issues that need attention in the invariant MIRT parameters (Carlson,

1987; Hirsch, 1989). They are: Rotational Indeterminacy and Scale Indeterminacy.

Rotational Indeterminacy: A special feature of the MIRT model is the joint rotational

indeterminacy of the vector of item discriminations, a1, and the vector of abilities, 0j. The axes of

the ability space can be rotated by pre-multiplication by a matrix TR and the a'; simultaneously

is post-multiplied by the inverse of TR. TR-I, so that the probability of a correct response given

ability values is not altered (refer to Hirsch, 1989).

6

8



R el

'R ' -Ia. = a T R

MIRT Equating

(3)

(4)

Thus, an infinite pairwise number of OiR and aiR parameter estimates retain the

P(ur 1 I ai, di, 6 j) unaltered. In practice, the MIRT parameter estimation program TESTFACT

(Wilson, Wood & Gibbons, 1991) solves the identification problem by imposing

multidimensional-0 to be distributed with iid N(0, 1) at the end of the estimation process. In

addition, the MIRT item discrimination estimates from any solution (e.g., the full-information

item analysis, Muraki & Engelhard, 1985; Bock, Gibbons & Muraki, 1988) can be arbitrarily

rotated by some criterion, for instance, "Varimax".

Scale Indeterminacy: Similar to the unidimensional models, the MIRT model is invariant to the

origin shift and unit change. The following transformations are used to overcome scale

indeterminacy in the parameter estimation by standardizing the ability estimates for each

dimension to zero mean and unit variance after each step in which parameters are estimated

(Carlson, 1987). In the two dimensional framework, the point of origin of each ability dimension

(Oji, °j2) can be shifted by subtracting the corresponding mean (p.01, p.o2 ) of the ability estimates

on each dimension. Meanwhile, the unit of each ability dimension can be rescaled by dividing by

the corresponding standard deviation (oe1, 002 ) of the ability estimates (refer to Carlson, 1987;

Hirsch, 1989).

# p.ei
0,1 = (5)

691

ej2 1102
Uj2 = (6)

6e2

The probability of a correct response for any item given an individual's ability values remains

unchanged if item discriminations (al, a2) are rescaled by multiplying by the corresponding

standard deviations of the ability estimates,
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(7)

(8)

and d is rescaled by:

di# =d1 + a.111-1, o + a-121102 (9)

Through these transformations, the original ability estimates (Os, or ei2) on each

dimension are converted into the z-scale scores (ail° or 0.'24) having zero mean and unit variance.

As seen in Equation 7 or 8, each transformed value of a-parameter (aii# or a124 ) on each

dimension equal the product of the original a-parameter and the corresponding standard deviation

(a constant, Gel or 062) of ability estimates. Thus, the new variance of the transformed-a-

parameter on each dimension equals the product of the original variance and the corresponding

variance of ability estimates.

Reckase (1997a) indicated that "If the correlations among the 0-dimensions are

constrained to be 0.0, then the observed correlations among the item scores will be accounted for

solely by the a-parameters (p275)." Similarly, if the variances of multidimensional abilities are

constrained to be one, the a-parameter estimates produced from most MIRT estimation programs

will take into account the original heterogeneous variances of multidimensional abilities. By

imposing 6 to be distributed as N (0, I), the original (or unstandardized) heterogeneous variances

and covariances of multidimensional abilities are captured by the variances and covariances of

multidimensional a-parameter estimates.

C. Multidimensional IRT Equating

From the geometric perspective, the numerical estimates of the MIRT item parameters

depend upon an arbitrary reference system (0-dimensions). For instance, as illustrated in Figure

1, the basis vectors of the equated form are different from those of the base form. Those

differences are (refer to Green, 1976):

(a). The axes for the base form are B1 and B2. The axes for the equated form are E1 and E2 which

can be rotated into the base form's corresponding axes by premultiplying or

postmultiplying an orthogonal rotation matrix, T (or T-I);

8



MIRT Equating
(b). The point of origin for the base form is OB; the point of origin for the equated form is OE,

which is moved from OB to OE. The coordinates of point OB and OE are defined as (0,0)

and (m1, m2), respectively, where ml is the length of the shift from the point of origin of

the first dimension in the base form to the equated form and m2 is the length of the shift

for the second dimension. These ml and m2 are translation coefficients that are used to

translate the point of origin for the equated form into the point of origin for the base form;

and

(c). The unit for the base form equals the segment of point OB and point UB and the unit for the

equated form equals the segment of point OE and point UE. The ratio of the unit for the

equated form to the unit in the base form represents the dilation (or contraction)

coefficient, k which is used to dilate (or to contract) the unit for the equated form to the

unit of the base form.

Figure 1. A Composite Transformation: A Rotation, a Translation and a Central Dilation.

9



MIRT Equating
The above composite transformation of the scale and the rotational transformations can

be expressed using a matrix notation. That is, if the model selected fits the data (see McKinley &

Mills, 1985; Tam & Li, 1997, for reviews of popular methods for evaluating model-data fit),

aiEl eiE diE (refer to Equation2) remains unaltered when both item (aiEI, diE) and ability (8 E)

parameters are transformed in the following ways:

aie = k aiE' T, (10)

diB* = diE + (aiE' T) m , and (11)

8.gi* =(1/k)(1-16L - m), (12)

where the superscript * represents the transformed values from the equated scale to the base

scale, k is a dilation parameter, T is an orthogonal rotation matrix and m is a translation vector.

In contrast, the following transformations were found in Oshima et al.' study (1997):

aiB* = (A-5' aiE', (13)

die = diE - (aiE' and (14)

ejg* =Aei, -3, (15)

where the rotation matrix A adjusts the variances and covariances of the ability dimensions, and

the translation vector p. re-shift the point of origin on each ability dimension. As pointed out

previously, no dilation parameter was found or defined in the Oshima et al's MIRT equating

methods. If the rotation matrix produced by Oshima et al's study is a nonorthogonal

transformation matrix, the relative positions of all pairs of item discrimination parameters in

space in the equated form will be distorted while referring them to the base form's reference

system.

D. The Methods of Estimating MIRT Transformation Parameters

1. The Principle of Estimating the Rotation Matrix

The ordinary orthogonal procrustes rotation (Schonemann, 1966) is used for rotating the

estimates of item discrimination of the equated test so that the sum of the squared differences

10
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MIRT Equating
(see Equation 16) between each item's pair of item discrimination estimates (base and equated) is

minimized.

= AE T -AB (16)

where E, is the residual matrix, T is the transformation matrix, and AE and AB are L x m

discrimination-parameter matrixes for the equated group and for the base group, respectively (L

represents the number of anchor test items and m represents the number of dimension). The

order of estimating the scaling coefficients is arbitrary (refer to Schonemann & Carroll, 1970, Li,

1997). Practically speaking, if rotational indeterminacy is resolved, the reminding issues of

origin shift and unit change can be resolved using unidimensional IRT equating principles (e.g.

minimizing differences between two test characteristic curves).

2. The Principle of Estimating the Scaling Coefficients

Three sets of methods to estimate the scaling coefficients, ml, m2 and k were used for this

study. Each is discussed in a section to follow.

(1). Matching Test Characteristic Surfaces (MTCS)

The matching test characteristic surfaces method is the extension of Stocking's and

Lord's procedures to MIRT models (refer to Oshima, Davey & Lee, 1997). The MIRT version of

the test characteristic function is a surface formed by summing the probabilities of correct

responses of common items, known as the expected true score. In the two-dimensional case, the

correct linear transformation of scales from the common items inserted in two different tests

would produce the same expected true score for examinee j if the scaling coefficients, m1, m2 and

k, were known. In practice, it is desirable to choose mi, m2 and k so that the average squared

differences between these surfaces is as small as possible. The function below to be minimized

is:

1 N
F =

N
E [t(eji3O;2) - t *(0 ,e;2 )]2

I I

y3

(17)
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where t(0.,,, 0j2) and t* (ej,, 0j2) are the expected true scores of an examinee on the set of

common items in the base test and in the equated test, respectively, and N is the number of grids

points. The arbitrary composite abilities can be put into Equation 17. In the two-dimensional case,

the number of the grid points equals n 2 if each ability dimension is divided into n points.

The scaling coefficients of m1, m2 and k that minimize the value F can be derived by

differentiating Equation 17 with respect to m1, m2 and k and by setting these three partial

derivative equations equal to zero. The scaling coefficients, m1, m2 and k can be obtained by

simultaneously solving for the three equations, using the Newton-Raphson procedure.

Figure 2 is an example of this process. The lower test characteristic surface in Figure 2 is

assumed to be plotted using the first twenty item parameters from ACT Form-24B (Reckase,

1985). On the other hand, the upper test characteristic surface in Figure 2 was graphed using the

same test items as those used in the lower test characteristic surface in Figure 2, but the

corresponding item parameter estimates are calibrated from another group (Note that the

rotational indeterminacy of those estimated item parameters is assumed to be resolved). As a

matter of fact, the upper test characteristic surface was plotted using the estimated d parameters

by adding 1 on each known d value and the estimated parameter-a's by multiplying 0.5 on each

known parameter-a value. It is desirable to seek the scaling parameters (m1 = -1, m2 = -1 and

k =2) so that the average squared differences between two test characteristic surfaces is as

minimal as possible.

12
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Figure 2. Matching Two Characteristic Surfaces: m1= -1, m2=-1, k=2

(2). Least Squares for the translation parameter estimates and Ratio of Eivenvalues for the

dilation parameter estimate

The mi, m2 and k values can be estimated separately. To find estimators of the m1 and m2

parameters, the method of least squares is employed. For each sample observation (d,E, d,B) the

method of least squares considers the deviation of dB from the transformed value of diE defined

13
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on Equation 11. The method of least squares utilizes the sum of the L (number of common test

items) squared deviations. The criterion is denoted by Q:

Q = E[d,H - d,B* ]2 (18)

The values of ml and m2 that minimize Q can be derived by differentiating Equation 18 with

respect to rn, and m2 and by setting this partial derivative equal to zero. The values of mi and m2

can be obtained by simultaneously solving for the two equations.

The k parameter can be estimated by computing the ratio of the square root of the

maximum eigenvalue of B'B to the square root of the maximum eigenvalue of E'E (called Rtio

of Eigenvalues procedure). Let B = AB, the nonnegative square roots of the eigenvalues of

B'B are called the singular values of B, denoted as Sig (B) (see Marcus, 1993). Let E = A'E AE,

the nonnegative square roots of the eigenvalues of E'E are called the singular values of E,

denoted as Sig (E). Then the estimate k equals:

k
Max[Sig(B)]

(19)
Max[Sig(E)]

where Max represents the Maximum function. In essence, much information about

matrix, B, can be obtained from the properties of the matrix B -?.BI, where 43 values are called

the characteristic roots or eigenvalues of B. The maximizing values of the AB can account for the

most variance of the matrix B (refer to Tatsuoka & Lohnes, 1988). The square root of the largest

eigenvalue of the matrix B serves as a reliability index of scaling, denoted as Max[Sig (B)].

Similarly, the same information about matrix, E, can be obtained. Consequently, the ratio of the

Max[Sig (B)] to the Max[Sig (E)] could be a good estimator of k.

(3). Least Squares for the translation parameter estimates and Ratio of Trace for the dilation

parameter estimate

The Least Squares for the translation parameter estimates was illustrated previously. A

similar least squares method to estimate the dilation parameter can be found in the study

(Schonemann and Carroll (1970). This Least Squares method was developed for fitting one

matrix to another under choice of a rotation matrix, a translation vector and a central dilation

14
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MIRT Equating
vector that minimize the sum of squared errors of the residual matrix E2 (see Equation 20). The

translation transformation is removed from the original formula because the pair of MIRT item

discriminations (base test and equated test) can not reveal any information about the translation

vector or origin shift coefficients.

E2 = (kAET )-AB (20)

where, k is the unit change coefficient. The above procedure was originally developed for

nonmetric multidimensional scaling. This procedure can be applied to MIRT Equating as well.

The equations for estimating the rotation matrix and the unit change coefficient were derived

simultaneously. After the former step, the estimate of the rotation matrix is free from the

estimate of the unit change coefficient (refer to Schonemann & Carroll, 1970). The rotation

matrix and the unit change coefficient are obtained through the following steps: (a) Center all the

elements of the matrix of AE, the centered matrix called ACE, (b) Center all the elements of the

matrix of AB, the centered matrix called A CB, (c) Perform a standard orthogonal procrustes

subroutine to obtain the transformation matrix T, and (d) Finally, compute the scalar, k

k =
trace(T'A'CE )ACB

trace(XcE ACE)
(21)

Based on the above literature review, three sets of MIRT equating procedures could be

used for transforming the equated group's reference system into the base group's reference

system. The estimates of the transformation parameters can be obtained via the computer

program MDEQUATE (Li, 1996), written in the computer language, MATLAB (The

MathWorks, Inc, 1995). The numerical differentiation using difference approximations is

employed in MDEQUATE to calculate the first-order and the second-order partial derivatives.

15
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E. The Distribution of Errors in the Estimation of Parameters

The magnitude of the value of an item parameter itself may have an effect on its standard

error. On the average, the hard items and easy items have larger standard errors; as do the high

and low discrimination items. When the distribution of abilities is bell-shaped, the standard error

of an item difficulty associated with a high discrimination parameter, is lower than the same item

difficulty associated with a low discrimination parameter (see Figures 2, 3 and 4, Thissen &

Wainer, 1982). Thus, the combination of a set of item parameters for an item should be taken

into account when modeling the standard error in the estimation of parameter estimates. The

sample size is also a substantive factor on the standard error of parameter estimates. The larger

the sample size; the less standard error the parameter estimate has. A mathematical expression

for this relation has been developed by Thissen and Wainer (1982) and is illustrated below.

For an item i, the likelihood of the observed responses for N independent examinees is:

L= fPJL(1_P)
J =1

(22)

where P can be calculated from a M2PL model, u=1 for correct response; u=0 for incorrect

response. The loglikelihood of Equation 22 is

logL = [u log(13, ) + (1 u) log(1 Pi )] (23)
1=1

The maximum likelihood estimates of each parameter (a1, d1, ) are located where the partial

derivatives of Equation 23 are zero. For ease of expression, represents the M2PL item

parameters (a di, ). Given a density of 0 (e.g. multivariate Gaussian with iid N(0, I)), for any

parameter ands, the negative expected value of the second derivative of the loglikelihood

function, Equation, 23, has the form (refer to Thissen, Wainer, 1982),

E(a2 log L) -dr VP(9) aP(0))
(0)d0 , (24)aa4, 1:1113Q)( a4s

where E is the expectation and Q=1-P. Equation 24 requires the derivatives of P(0) with respect

to its parameters. These derivatives of P(0) can be substituted in Equation 24 to give a 3 x 3 (for

the M2PL model) information matrix corresponding to the triplet item parameters (d, al and a2).

16
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MIRT Equating
The inverse of that information matrix is the asymptotic variance-covariance matrix of the three

parameters. The square roots of the diagonal elements of the variance-covariance matrix are the

asymptotic standard errors of the parameters.

The numerical approximation of the multiple integral in Equation 24 can be calculated

by the two-dimensional Gauss-Hermite quadrature and is presented in Equation 25 in the two-

dimensional case,

61, (ap(x) aP(X)\
{

q2 gi

}A(Xqi
=i=1 s

(25)

where X is a quadrature point in one of two ability dimensions, q is the number of quadrature in

this ability dimension and A(X) is the corresponding weight of the quadrature. The number of

quadrature points for numerical integration are set to ten for each dimension in this study.
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III. Methodology

Two simulation studies have been conducted sequentially. The first examines: The Effect

of Error in the Parameter Estimates on the Precision in Estimating the Transformation

Parameters. Based on the results of the first study, the best MIRT equating method was chosen

for the second study: Linking Multidimensional IRT Parameters onto a Known Target Test

Metric: The Item Bank Case.

A. First Study.

1 Key Variables

(1) Sample Sizes and Standard Error

The known item parameters are from ACT Form-24B (Reckase,1985). Each simulated

observed item parameter from a set of parameters (d, a1, a2) for an item was computed from the

summation of the corresponding true item parameter and the expected measurement error,

generated as a random value from N (0, V), where V is the asymptotic variance-covariance

matrix corresponding to this set of triple item parameters (d, a!, a2). Equation 25 was used for

computing the matrix V for each item under different sample sizes, which are: (a). 1000

(b). 2000, and (c). 4000. The second condition (N=2000) was recommended by several

researchers (e.g., Ackerman, 1994; Carlson, 1987) and may serve as a base for comparisons with

the rest of the two conditions

(2) Equating Situations

Two cases were explored. They are: (a) Simulation Study of Parameter Recovery or of

Equating: Error of the parameter estimates only exists in the equated test. (b) Equating Study of

Real Dataset: Error of the parameter estimates exists in both the equated test and the base test.

(3) The Number of Anchor Test Items
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Two cases of the number of anchor test items were systematically chosen from Form-

24B. They are: (a) 15 anchor test items and (b) 25 anchor test items. Since the order of item

number reported in the study (Reckase, 1985) was approximately arranged by the value of

traditional difficulty (p value), systematically sampling items from this set of test items will

make the test characteristics of the anchor test similar to the ones of the whole test.

(4). Horizontal and Vertical Linking

Two types of item linking were explored. They are: (a). Horizontal Linking: (m1=0;

m2=0; k=1) (b). Vertical Linking: (m1= -0.5; m2=0.5; k=1.25), where ml and m2 are the origin

shift coefficients and k is the unit change coefficient. The angle corresponding to the cosine of

the rotation was set to 45 degree across all conditions.

2. Data Analysis and Evaluation of Result

In all, there are 72 different combinations of situations (Three methods x Three Sample

Sizes x Two Equating Situations x Two Anchor Levels x Two Linking Situations). For each

combination, 200 replications have been conducted. The accuracy of the transformation-

parameter estimation procedures for each of the 72 simulation conditions was analyzed using two

criteria BIAS and RMSE.

Separate regression analyses were performed to predict Log[RMSE] in each of the

transformation-parameter estimates (DEGREE, m1, m2 and k) by fitting those predictors

mentioned above (refer to Harwell, Stone, Hsu and Kirisci, 1996). It should be noted that a log

transformation for the outcome variable RMSE was conducted in order to better satisfy

(approximate) the normality assumption. In addition, the main reason for choosing a multiple

regression method rather than an analysis of variance (ANOVA) as an inferential approach is that

some of the simulation factors such as sample size and test length are quantitative.

Since two methods are available to estimate each translation parameter (m1 or m2) in this

study, an indicator variable (dummy variable) was coded for representing the method of

estimating the translation parameter (Least Squares Procedure coded as 1; MTCS coded as 0).
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Similarly, two equating situations (Horizontal coded as 0; Vertical coded as 1) and two study

situations (Parameter Recovery coded as 0; Equating coded as 1) were separately coded as

dummy variables. Meanwhile, since three methods are available to estimate the dilation

parameter, k, two dummy variables (called as DM01 and DM02) were coded for representing the

three methods of estimating k, where the Ratio of Eigenvalue was coded "0 0" as a reference

method. The significant t-test for each dummy-variable regression coefficient of "Equating

Method" was performed to detect whether one linking method has significantly different impact

than the other on the precision of a transformation-parameter estimate when the rest of the

simulation factors were held constant.

B. Second Study

1. The Simulation of Test Data

(1) Sample Size and Ability Composites in the Equated Group

The sample size is set to 2000. Two combinations of ability composites in the equated

group were generated. They are: (a). Normal distribution on both Dimensions (Called NorNor)

(b). Normal distribution on the first-Dimension and positively-skewed distribution on the

second-Dimension (Called NorPos). For the tested group of NorNor, two thousand sets of the

two-dimension ability parameters were randomly selected from the multivariate normal

distribution, N(0,I). This case meets the default of TESTFACT and serves as a base for

comparison.

With respect to the tested group of NorPos, the first-dimension ability parameters were

chosen from the first-dimension parameters in the NorNor ability composites. This will make the

comparisons of the accuracy of the first-dimension of transformed ability estimates produced

from different research conditions possible. Also, the two thousand numerical values randomly

selected from a positively-skewed distribution. They were then standardized to a mean of 0 and a

SD of 1 and were used as the two thousand ability parameters of the second dimension. This

positively-skewed distribution is characterized by a chi-square distribution with eight degrees of
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freedom (see Seong, 1990). The skewness of this distribution is 1. All ability parameters were

held constant across the 100 replications of data under each combination of study conditions.

(2). Number of Anchor Items and the Whole test

Twenty anchor items were systematically chosen from the 40-item test of Form-24B and

used in the equating. The mean MIRT item difficulty, d, of the whole test is -0.324, reflecting a

moderately difficult test when ability is centered on a mean of zero mean a SD of one.

(3). Dimensionality

Two kinds of datasets were manipulated. (a) Two-dimensional dataset (b)

Unidimensional dataset . A unidimensional dataset was created by setting the item discrimination

parameters of the second dimension to zero at the process of data generation.

(4). Data Generation and Parameter Estimation

There exists three research conditions. They are (1) multidimensional NorNor case, (2)

multidimensional NorPos case, and (3) unidimensional case. It is assumed that the metric of the

target test item parameters is defined with reference to orthogonal traits. The item response

vectors were generated via MDGEN01 computer program (Li, 1996) based on the two-

dimensional logistic function, M2PL. One hundred replications were generated under each

research condition.

The item response datasets were calibrated via TESTFACT, in which several key options

were set up as follows: (a) For initial MINRES factor analysis, two-factor solution was requested

and the maximum number of iterative communality improvement was set to 5 with the precision

criterion for communality improvement at 0.001, (b) For full-information analysis, the number of

quadrature points for numerical integration was set to ten for each dimension, the maximum

number of E-step iterations and iterations within M-step were set to 100, and the precision

criterion for convergence in M-step was set at 0.001, (c) The factor loadings from the full-

information item factor analysis were rotated orthogonally according to the "Varimax" criterion
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(refer to Muraki & Engelhard, 1985; Bock, Gibbons & Muraki, 1988), and (d) The

multidimensional-ability scores (0) were computed by the expected a posteriori method (EAP).

2. Data Analysis and Evaluation of Result

The effect of the accuracy of the equating method (used in the second study ) on linking

ability and item parameters onto a common scale is assessed by using BIAS and RMSE criteria.

Since the same set of item parameters were repeatedly estimated across research conditions, the

Log[RMSE] of each of various item parameter estimates can be treated as a repeated-measure

across research conditions. The t-test for dependent observations was then performed to compare

the impact of the research condition (e.g. Condition 1 Versus 2 or Condition 1 Versus 3) on the

precision of each of various item parameter estimates.

IV. Results and Discussions

A. First Study

1. Descriptive Method: BIAS and RMSE for Each Transformation-parameter Estimate

The combinations of two equating situations (Horizontal and Vertical) and two study

situations (Parameter Recovery and Equating ) were chosen to generate four main research

situations. The descriptive statistics of BIAS and RMSE for each of the MIRT linking

coefficients under the first research situation, the combination of horizontal linking and

parameter recovery study, are reported in Table 1. Similarly, the descriptive statistics of BIAS

and RMSE for the MIRT linking coefficients under the second research situation (the

combination of vertical linking with parameter recovery study), the third research situation (the

combination of horizontal linking with equating study), and the fourth research situation (the

combination of vertical linking with equating study) are reported in Table 1.

The descriptive statistics are sequentially listed under the simulation factors of sample

sizes, test length and MIRT equating method. For example, the value of -0.0027, reported in the

second data row and first data column of Table 1, represents the BIAS statistic of the k estimate
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by the Ratio of Eigenvalue method under the combination of horizontal linking, parameter

recovery study, sample size=1000 and test length= 15.

The rotation matrix produced from the procrusts procedure (labeled as Procrus in the

tables) is presented as the DEGREE of angle corresponding to the cosine of the rotation. Three

methods were used for estimating k. They are labeled as Eig_k (Ratio of Eigenvalues), Trace_k

(Ratio of Trace) and MTCS _k (Matching Test Characteristics Surfaces). Two methods were used

for estimating ml (or m2). They are labeled as LS_ml (or LS_m2) and MTCS_ml (or

MTCS_m2) for representing the Least Squares and the MTCS method, respectively. All the

BIAS and RMSE indices listed in Table I were estimated under the circumstance that the errors

in the estimation of item parameters were purposely manipulated.

Findings from Table 1 are summarized: (1). Of these three methods for estimating

dilation parameter, k, the Ratio of Trace consistently performed the best in term of the criterion

of RMSE and Range (distance between the minimum and the maximum parameter estimates)

across all simulation situations; (2). Of the two methods for estimating translation parameters,

ml and m2, the Least Squares Procedures consistently performed better across all simulation

situations in terms of the criterion of RMSE and Range; (3). The BIAS value produced from

each of MIRT estimating methods across all combinations of conditions are close to zero. The

results imply that each of these methods for the MIRT equating is a unbiased estimator; (4). The

magnitudes of RMSE produced from each of the MIRT equating methods across all simulation

conditions are relatively small. It implies that these MIRT equating methods are all effective

estimators; and (5). The value of BIAS produced from each of the MIRT estimating methods

across all combinations of conditions become small as sample size or test length increases. It

implies that these MIRT equating methods are consistent estimators.
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Table 1

Descriptive Statistics of BIAS and RMSE of the MIRT Transformation-parameter

Estimates under the Four Research Situations
Research Situation 1 2 3 4

N=1000
TL=15 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

Procrus -0.1603 2.2069 -0.0853 2.1947 0.0929 2.3827 -0.0252 2.4481
Eig_k -0.0027 0.0285 -0.0037 0.0384 0.0096 0.0504 0.0013 0.0635
Trace_k 0.0010 0.0259 0.0019 0.0354 0.0024 0.0475 -0.0039 0.0603
MTCS_k 0.0268 0.0731 0.0459 0.1021 -0.0121 0.0834 -0.0041 0.1048
LS_ml 0.0065 0.0679 0.0404 0.1081 -0.0063 0.1025 0.0330 0.1299
MTCS_ml 0.0276 0.0820 0.0485 0.1232 -0.0003 0.1130 0.0225 0.1397
LS_m2 -0.0070 0.0843 -0.0622 0.1338 0.0088 0.1466 -0.0641 0.1791
MTCS_m2 -0.0663 0.1383 -0.1313 0.2232 -0.0127 0.1797 -0.0618 0.2447

TL=25 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
Procrus -0.0382 1.3897 0.0290 1.5959 -0.0630 1.9569 -0.0885 1.9828
Eig_k -0.0025 0.0230 -0.0018 0.0316 0.0053 0.0420 0.0059 0.0540
Trace_k 0.0019 0.0212 0.0055 0.0294 0.0016 0.0384 0.0025 0.0498
MTCS_k 0.0348 0.0694 0.0681 0.1119 -0.0021 0.0729 0.0144 0.0971
LS_ml -0.0024 0.0581 0.0304 0.0914 -0.0094 0.0771 0.0191 0.1078
MICS_ml 0.0209 0.0699 0.0533 0.1169 -0.0044 0.0904 0.0175 0.1279
LS_m2 -0.0017 0.0579 -0.0401 0.0935 0.0105 0.0819 -0.0325 0.1153
MTCS_m2 -0.0529 0.1021 -0.1156 0.1891 -0.0009 0.1231 -0.0557 0.1787

N=2000
TL=15 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

Procrus -0.1227 1.3873 -0.1788 1.3898 0.0280 1.5539 -0.2249 1.7933
Eig_k -0.0022 0.0173 -0.0030 0.0232 0.0040 0.0394 0.0026 0.0489
Trace_k 0.0005 0.0163 0.0007 0.0224 0.0009 0.0359 -0.0009 0.0457
MTCS_k 0.0147 0.0528 0.0247 0.0706 -0.0124 0.0656 -0.0088 0.0712
LS_ml 0.0011 0.0542 0.0195 0.0801 -0.0016 0.0656 0.0180 0.0871
MTCS_ml 0.0100 0.0556 0.0205 0.0836 -0.0030 0.0700 0.0070 0.0911
LS_m2 -0.0038 0.0709 -0.0378 0.1033 0.0066 0.0878 -0.0357 0.1232
MTCS_m2 -0.0320 0.1011 -0.0667 0.1540 0.0071 0.1190 -0.0302 0.1528

TL=25 BIAS RMSE BIAS RMSE BIAS RMSE M BIAS RMSE
Procrus 0.0280 1.1211 -0.0052 1.0610 -0.0813 1.3537 -0.0853 1.3657
Eig_k -0.0044 0.0183 -0.0054 0.0230 0.0001 0.0273 -0.0004 0.0353
Trace_k -0.0013 0.0158 -0.0016 0.0210 -0.0011 0.0248 -0.0014 0.0324
MTCS_k 0.0159 0.0482 0.0263 0.0677 -0.0036 0.0515 0.0034 0.0672
LS_ml 0.0014 0.0438 0.0140 0.0655 -0.0052 0.0587 0.0083 0.0828
MTCS_ml 0.0154 0.0501 0.0257 0.0772 0.0009 0.0625 0.0134 0.0909
LS_m2 -0.0039 0.0439 -0.0242 0.0653 0.0029 0.0596 -0.0192 0.0858
MTCS_m2 -0.0348 0.0756 -0.0626 0.1185 -0.0053 0.0846 -0.0339 0.1260

N=4000
TL=15 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE

Procrus -0.0888 1.1038 -0.0348 0.9586 0.0470 1.2185 -0.0545 1.2517
Eig_k 0.0000 0.0142 -0.0023 0.0193 0.0031 0.0256 0.0001 0.0339
Trace_k 0.0007 0.0129 -0.0005 0.0180 0.0017 0.0233 -0.0015 0.0316
MTCS_k 0.0069 0.0353 0.0068 0.0456 -0.0007 0.0447 -0.0100 0.0597
LS_ml 0.0032 0.0352 0.0062 0.0510 -0.0024 0.0484 0.0006 0.0655
MTCS_ml 0.0091 0.0394 0.0062 0.0547 -0.0010 0.0514 -0.0002 0.0712
LS_m2 -0.0004 0.0443 -0.0136 0.0638 0.0037 0.0655 -0.0020 0.0903
MTCS_m2 -0.0200 0.0654 -0.0248 0.0953 -0.0031 0.0905 -0.0023 0.1215

TL=25 BIAS RMSE BIAS RMSE BIAS RMSE BIAS RMSE
Procrus 0.0192 0.7615 0.0285 0.8149 -0.0528 0.9364 -0.0589 0.9469
Eig_k -0.0009 0.0111 -0.0014 0.0157 0.0004 0.0201 0.0002 0.0260
Trace_k -0.0003 0.0098 0.0005 0.0145 -0.0004 0.0186 -0.0005 0.0243
MTCS_k 0.0091 0.0307 0.0141 0.0445 -0.0042 0.0366 -0.0014 0.0475
LS ml 0.0011 0.0292 0.0083 0.0437 0.0002 0.0405 0.0063 0.0589

MT-65ml 0.0082 0.0344 0.0149 0.0547 -0.0016 0.0490 0.0010 0.0704

LS_m2 -0.0012 0.0285 -0.0123 0.0412 0.0005 0.0418 -0.0095 0.0581
MTCSm2 -0.0154 0.0493 -0.0323 0.0811 0.0051 0.0623 -0.0039 0.0895
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2. Inferential Method: A Regression Approach

Separate regression analyses were performed to predict Log[RMSE] in each of the

transformation-parameter estimates (DEGREE, m1, m2 and k) by fitting those simulation

factors. The adjusted R2 and standardized regression coefficients in each predictor in the

regression model are presented in Table 2.

Regarding the regression model of the Log[RMSE] of k estimate, the predictor of

Equating Method, especially for the dummy variable DM2 (MTCS versus Ratio of Eigenvalue),

was the main contributor to the variation of the k estimate (see Table 2).The DM2's standardized

regression coefficient was 0.652 which was statistically significant from zero. In contrast, the

DMZ's standardized regression coefficient (Ratio of Trace versus Ratio of Eigenvalue) was

0.067 which was not statistically significant from zero. These results indicate that the

performance of these three methods of estimating k was in this order, from best to worst, Ratio

of Trace, Ratio of Eigenvalue, and MCTS. The first two equating methods were not statistically

different; whereas the comparison between the first two methods and the third one did have

statistically significant impact on the precision of the k estimate.

The regression model of Log[RMSE] for the ml or m2 estimates, the standardized

regression coefficient of the dummy variable (MTCS versus Least Square Procedures) was

statistically different from zero. These results indicate that the Least Squares Procedures did

account for less variation of the translation parameter estimate, especially for the m2 estimate,

than the MTCS method did.

The results of adjusted Rs for each of the Log[RMSE] models, ranging from 0.86 to

0.90, reported on the right side of Table 2, suggest that this set of simulation factors was very

sensitive to variations in each of the transformation-parameter estimates. Thus, the accuracy of

estimating each of MIRT transformation-parameter estimates appeared to depend heavily on

these simulation factors.
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Table 2
The Adjusted R2 and Standardized Regression Coefficients in Each Regression Model Using
those Simulation Factors to Predict the Log[RMSE1 of the Transformation-parameter Estimate

Predictors Adjusted
Equating

Outcome Method
Sample
Size

Test
Length

Equating
Situation

Study
Situation

DEGREE N/A -0.837* -0.395* 0.285* 0.029 0.86*
ml 0.165* -0.749* -0.168* 0.315* 0.489* 0.90*
m2 0.452* -0.622* -0.378* 0.245* 0.404* 0.90*

DM01 DM02
k -0.067 0.652* -0.497* -0.148* 0.361* 0.250* 0.86*

(Trace vs Eig) (MTCS vs Eig)

#: For estimating the angle degree of reference system being rotated, only one method was
employed so that the predictor of Method was unable to be included in the regression model.

B. Second Study:

1. Item Parameter Recovery:

The plots of BIAS index against the true parameters are used to illustrate the degree of

precision in estimating each level (e.g., easy or difficult item; low or high discrimination item,

etc.) of item parameter. The descriptive statistics of these two indices of BIAS and RMSE

computed across the 40 items provide a summary of global information about the precision in

estimating the 40 item parameters.

In the case of normal distribution on both ability dimensions, the plots of BIASs against

the true item parameters are presented in Figures 3, 4 and 5 for the item difficulty (d) and the

item discriminations (al, a2), in that order. The BIAS statistic for each level of item parameter is

usually expected to be close to zero as happened here. For the item difficulty estimates, the

average BIAS's and RMSE's of the 40 items were found to be 0.024 and 0.210, respectively. For

the item discrimination estimates, the average BIAS's of the 40 items were 0.004 and -0.006 for

al and a2, respectively; the average RMSE amounted to 0.094 and 0.082 for al and a2,

respectively. Since the first research condition meets the default of TESTFACT, the results from

this condition would serve as a base for comparisons with those from the second and the third

research conditions.

26

28 BIEOT COTT MARL A LE



MIRT Equating
Table 3
The Descriptive Statistics of BIAS and RMSE Indices for the Various Item Parameter
Estimates and the t-test for Each Repeated Measure of Log[RMSE] under the
Comparison of Condition 1 versus Condition 2 (or 3) (Items =40, N=2000)
Condition BIAS KMSE

Mean Min Max Mean t Min Max
1 d 0.024 -0.73 0.46 0.210 0.04 0.73

al 0.004 -0.14 0.11 0.094 0.04 0.17
a2 -0.006 -0.09 0.08 0.082 0.04 0.18

2 d 0.026 -0.69 0.47 0.205 0.87 0.04 0.70
al 0.005 -0.09 0.07 0.079 6.07* 0.04 0.13
a2 0.003 -0.08 0.08 0.077 2.82* 0.04 0.20

3 d 0.122 -0.63 0.72 0.291 -3.08* 0.09 0.73
al 0.005 -0.05 0.03 0.059 7.93* 0.03 0.11
a2 0.001 -0.03 0.03 0.123 N/A 0.09 0.17

1. MIRT Case: Normal Distribution on Both Dimensions
2. MIRT Case: Normal Distribution on the First Dimension and Positively-

skewed Distribution on the Second Dimension
3. UIRT Case
*. P <0.05
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Figure 3. The Plot of BIAS d Parameters Versus the True d Parameters under Condition 1
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Figure 4. The Plot of BIAS al Parameters Versus the True al Parameters under Condition 1

1.

0.0 1.0

True a2
Figure 5. The Plot of BIAS a2 Parameters Versus the True a2 Parameters under Condition 1
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As regards the case of normal distribution on the first dimension and positively-skewed

distribution on the second dimension, the plots in Figures 6 to 8 below present the relationship

between the BIAS parameter estimates and the corresponding true item difficulty (d) and

discriminations (al, a2) parameters, in that order. These graphical analyses clearly indicate that

the results from the first and the second conditions are quite similar. The average BIAS's were

0.026, 0.005 and 0.003 for the item difficulty and item discrimination (al, a2) estimates,

respectively (see Table 3). And the average RMSE's were 0.205, 0.079 and 0.077 for the item

difficulty and item discriminations (al, a2), respectively. Generally, these average BIAS's and

RMSE 's were similar to the corresponding indexes reported on the first research condition.

The dependent t-statistic for the Log[RMSE] of item difficulty estimate indicates that no

evidence was found to suggest that the distributions of the multidimensional abilities had a

significant impact on the variation of item difficulty estimates. However, a statistically

significant difference was found for the RMSE al and RMSE a2 estimates. As a matter of fact,

the RMSE of al and a2 estimates did decrease rather than increase when the distribution of

multidimensional abilities does not meet the default, N (03) of the TESTFACT.
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Figure 6. The Plot of BIAS d Parameters Versus the True d Parameters under Condition 2

29

31 BM COPY AVATIABILE



MIRT Equating

0.0 1.0 1.5 2.0 2.5

True al

Figure 7. The Plot of BIAS al Parameters against the True al Parameters under Condition 2
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Figure 8. The Plot of BIAS a2 Parameters Versus the True a2 Parameters under Condition 2

With respect to the unidimensional case, the plots in Figures 9 and 10 present the

relationship between the BIAS statistics and the corresponding true item difficulty (d) and

discrimination al parameters, respectively. Comparison between Figures 3 and 9 indicates that

although the figures have similar range ( -0.7 to 0.7) of BIAS d parameters, a very clear pattern

of the BIASs in Figure 9 is found. That is, easy items are always estimated as relatively harder

items; hard items are always estimated as relatively easier items and little error is found for the

medium difficulty items (d=0). As seen in Figure 10, parameter-al estimates have BIAS that is

closer to zero than those seen for parameter-a, estimates in Figure 4. Since the true a2 parameters

were all set to zero under the unidimensional case, no plot of BIAS is presented.
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The average BIAS was 0.122, 0.005 and 0.001 for the item difficulty, item discrimination

(al, a2) estimates, respectively. As for the average RMSE, they amounted to 0.291, 0.059 and

0.123 for the item difficulty, item discrimination (al, a2) estimates, respectively. These BIAS

and RMSE indices of item difficulty estimates were slightly larger than the corresponding

values obtained from the case of the multidimensional data. In contrast, the RMSE of the a,

estimates under the case of the unidimensional data was slightly smaller than the corresponding

value obtained from the case of the multidimensional data.

The Log[RMSE] of item difficulty estimates produced from the unidimensional data was

statistically significantly larger than those produced from the multidimensional data

(see Table 3). In contrast, a statistically significant decrease was found for the Log[RMSE] of

item discrimination al. No comparison of the second-dimension discriminations across

conditions was possible. These analyses indicate that more measurement error of the difficulty

parameter estimate and less measurement error of the discrimination parameter estimate is likely

to occur when the same set of numerical values of item difficulty and discrimination parameters

was recovered from the unidimensional case rather than the multidimensional case. From a

practitioner's view, based on graphical analyses, the item difficulty and 1st discrimination value

from the multidimensional and the unidimensional datasets are quite similar. Accordingly,

although the MIRT model is designed to model the multidimensional test data, it is also capable

of modeling unidimensional test data.

As pointed out in the section on methodology, the unidimensional dataset was created by

setting the second-dimension item discriminations to zero at the time of data generation. This is

also necessary while the MIRT equating procedure is used to recover unidimensional IRT item

parameters. This MIRT item linking is analogous to linking two-dimensional item

discriminations calibrated from both test datasets, in which the estimates of item discriminations

on one dimension from two datasets are all close to zero, and may not exist. That is why the

MIRT equating procedure can be used successfully to recover unidimensional IRT item

parameters.
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On the other hand, the same unidimensional test data can also be generated by setting the

second-dimension ability rather than discrimination parameters to zero. This setting will cause

problems in recovering the item parameter estimates because the number of dimensions of metric

is "two" for the true parameters and is "one" for the estimated parameters. We might resolve this

problem by setting all the true discrimination parameters of the second dimension to zero during

the equating process although they are not really zero. Conceptually, this item linking is

analogous to linking one set of the identified item discriminations calibrated from both test

datasets, in which one dataset fits a one-dimensional latent trait model well, whereas the other

fits a two-dimensional latent trait model well. Consequently, although the results produced from

the case of unidimensional datasets indicate that the unidimensional test data can be captured by

MIRT model as well, the results also imply that linking a set of identified-unidimensional

discriminations of interest in two datasets seems feasible when number of dimensions of the two

test datasets is different.
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2. Ability Parameter Recovery

The plots of BIAS statistics against the true parameters are used to illustrate the degree

of precision in estimating each level (e.g., low, medium or high) of ability parameter or the

expected true score. The descriptive statistics of these two indices of BIAS and RMSE computed

across the 2000 examinees provide a summary of global information about the precision in

estimating each multidimensional ability estimate and the expected true score.

With regard to the case of normal distribution on both ability dimensions, the plots of

BIAS against the true first-dimension and true second-dimension ability parameters are presented

in Figures 11 and 12, respectively. The average BIAS's of the 2000 examinees were found to be

-0.132 for the first-dimension and 0.355 for the second-dimension ability estimate. Their other

corresponding statistics such as standard deviation, skewness, kurtosis, minimum and maximum

are also reported in Table 4. Likewise, the average RMSE was 0.336, 0.515 for the first-

dimension and the second-dimension ability estimate, respectively. Other corresponding

statistics such as minimum and maximum are also reported in Table 4. The descriptive statistics

of BIAS and RMSE and graphical analyses indicate that the ability parameters are precisely

estimated. The first-dimension discrimination parameters of the simulated test used in this study

had, on the average, higher values than the second-dimension ones so that the larger test

information of the first-dimension ability estimates can be expected. Consequently, their

corresponding standard errors of ability estimates are relatively smaller.
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Two issues derived from the above results deserve more attention. One is that the average

first-dimension ability estimate was underestimated and the average second-dimension ability

estimate was overestimated. The reasons for this result need to be investigated. The other issue is

that the low ability parameter was often overestimated and the high ability parameter was often

underestimated according to the graphical analysis. This is partly due to the regression effect

when the EAP was used to estimate ability parameters.

Table 4
The Descriptive Statistics of the BIASs or the RMSEs Index for the Multidimensional
Ability and the Expected True Score Estimates under Three Simulation Conditions 1'23
(N=2000)
Condition BIAS RMSE
Mean SD Skew Kurt Min Max Mean Min Max
1 N01 -0.132 0.257 -0.52 7.64 -2.15 1.49 0.336 0.17 2.16

Ne2 0.355 0.328 0.55 3.93 -1.70 2.16 0.515 0.22 2.17
t 1.38 2.273 0.35 1.14 -6.85 9.86 2.840 0.64 9.98

2 Nei -0.136 0.243 -0.39 10.17 -2.21 1.43 0.337 0.17 2.21

Pe2 0.322 0.345 -4.17 46.64 -5.32 1.31 0.516 0.21 5.33
t 0.835 0.598 -1.05 4.64 -3.30 2.83 1.969 1.06 3.50

3 Nei -0.002 0.133 0.64 23.38 -1.36 1.21 0.255 0.14 1.38

NO2 0.041 1.016 -0.20 -0.09 -3.90 2.95 1.236 0.69 4.00
t 1.016 0.461 0.03 0.35 -1.33 2.89 2.020 0.94 2.94

Note:
N represents the normal distribution
t represents the expected true score
P represents the positively-skewed distribution

Regarding the expected true score estimates, the graphical analysis plotted the BIASs

against the corresponding expected true scores (Figures 13) denotes that the estimate of the

expected true score seems somewhat inaccurate. For instance, examinees with extreme expected

true scores often get high BIAS scores, ranging from -6.85 to 9.86. The average BIAS's was 1.38,

where the expected true score scale ranged from 0 to 40. Likewise, the average RMSE's was

2.84. The expected true score recovery suggests that if test items are designed to measure two

latent traits that are uncorrelated with each other and of equivalent relative ability level, the

estimated test score may be inaccurate and unreliable. It implies that using the estimated

expected true score to reflect examinees' multiple-traits abilities is risky.
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As regards the case of normal distribution on the first-dimension abilities and positively-

skewed distribution on the second-dimension abilities, the plots of BIAS against the true first-

dimension and second-dimension ability parameters are presented in Figures 14 and 15,

respectively. The average BIAS's of the 2000 examinees were found to be -0.136, 0.322 for the

first-dimension and the second-dimension ability estimates, respectively. Their other

corresponding statistics such as skewness, kurtosis, minimum and maximum are reported in

Table 4. Likewise, the average RMSE were 0.337, 0.516 for the first-dimension and the second-

dimension ability estimates, respectively. Their corresponding statistics such as minimum and

maximum are also reported in Table 4. Based on the descriptive data and the graphical analyses,

the estimates of multidimensional ability parameters were quite precise.

Regarding the expected true score estimates, the graphical analysis plotting the BIASs

against the corresponding expected true scores (see Figure 16) denotes that the precision of the

expected true score estimate seems more satisfactory than those results from the first simulation

condition (Normal Distribution on Both Ability Dithensions). As seen in Table 4, the average

BIAS's and RMSE's were 0.835 and 1.97, respectively. These findings suggest that if test items

are sensitive to two traits, one of which is minor for most examinees, a single test score report

such as the expected true score may be appropriate. This is basically consistent with the

observation by Ackerman (1992) that under same circumstances test data can be modeled

unidimensionally.
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With respect to the unidimensional case, plotting the BIAS versus the corresponding true

ability parameters (see Figure 17) clearly indicates that the first-dimension ability parameters were

quite precisely estimated. Comparisons of these two plots with the corresponding Figure 11 (a

plot, similar to Figure 17, was presented in the first research condition) and Figure 14 (a plot,

similar to Figure 17, was presented in the second research condition) strongly suggest that the

ability estimates are potentially more accurate and reliable when the test items are purposely

constructed to measure only one trait rather than to measure two traits. The average BIAS's and

RMSE's of the 2000 examinees' ability estimates on the first dimension were found to be -0.002

and 0.255, respectively. These two BIAS and RMSE indices from the unidimensional case were

smaller than the corresponding values of the BIAS and RMSE for the first dimension ability

estimate found in the first and the second research conditions.

The findings have two implications for the field. First, if only one trait is to be measured,

the test items should be designed to be sensitive to that latent trait only. Doing so will ensure that

the unidimensional ability estimates are more accurate and stable. Second, from another

perspective, the test equating procedure for recovering a set of unidimensional ability parameters

can be analogous to equating one set of identified-dimension abilities calibrated from two

datasets, in which one fits unidimensional trait model well; the other fits a two-dimensional latent

trait model well. The success of recovering a set of the identified-dimension ability parameters
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indicates that when the number of dimensions of the two test datasets is different, equating one of

the identified ability dimensions of interest in two datasets seems feasible. In the same manner, this

sort of problem can occur in real testing situations. For example, when two different tests with

common items are designed to measure two latent traits of interest and are administered to two

different groups, one group of examinees may vary significantly on one of the requisite traits

while the other group of examinees varies on both requisite traits. In this case, the dimensionality

of the two test response datasets can be quite different, permitting equating on just one

dimension.

Within the framework of real testing, both the dimensionality of the target responses and

the dimensionality of the responses to be transformed are unknown and are obtained by

estimation. The process of identifying the dimensions for each dataset and matching the pairs of

the identified dimensions of interest from both test datasets is a critical step in the MIRT equating

(refer to Davey, Oshima & Lee, 1996). Put another way, whether the MIRT equating can be

successfully accomplished depends on how well the MIRT can fit the data and how clear the

latent structure of the test-examinee interaction in each dataset can be revealed. The ability

dimensions are statistical constructs and the interpretation of these dimensions may not be

essential in Reckase's argument (1977a) about the definition of multiple ability dimensions, when

the main concern is the data-model fit.
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V. Summary and Conclusions

The three research questions have been explored and the summary of research results are

given below. Finally, future research questions resulting from this study is highlighted.

A. Summary and Conclusions to the Research Questions

Regarding the question of " Which MIRT equating method among the three MIRT

equating methods developed can produce the most accurate transformation-parameter

estimates?", the most appropriate one is the combination of procrustes rotational approach , the

Ratio of Trace and the Least Squares Procedures for estimating the rotational transformation

matrix, the dilation parameter and the set of translation parameters, respectively.

More specifically, the performance of the procrustes rotational method for estimating the

rotation matrix was quite satisfactory in terms of the BIAS and RMSE indices. The ability of

these three methods to estimate the dilation parameter is in this order, from best to worst, Ratio

of Trace, Ratio of Eigenvalue, and MCTS. In estimating each of the set of translation

parameters, the Least Squares Procedures can produce less errors, especially for the m2 estimate,

than the MTCS method did.

With respect to the question of "How accurate can the best MIRT equating method

transform parameters onto a target metric?", this MIRT equating method is capable of producing

accurate linking of items and "approximately" equivalent estimation of ability parameters under

well-fitting model conditions. However, the precision of the expected true score recovery is

dependent on the multidimensional-ability composites.

In the case of MIRT ability recovery, one unusual pattern was found and needs further

study. That is, the average first-dimension ability estimate was underestimated and the average

second-dimension ability estimate was overestimated. With respect to the expected true score

recovery, the estimate of the true score was not accurate, especially in the case where the two

latent traits are uncorrelated with each other and of equivalent relative ability level. This finding

implies that the expected true score can not be a good score to report because the variation of the

expected true score estimates is dependent on the composites of multiple-trait parameters as

pointed out by (Ackerman, 1996). Luecht ( 1996) also stressed that if the reported test score is
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strictly limited to a single score, there may be little apparent practical advantage in considering the

MIRT model that attempts to capture the salient multidimensionality of the test-examinee

interaction. Unfortunately, so far, providing the meaning for each of the complete latent traits is

difficult and people are not ready to accept the multiple scores generated from a single test.

Therefore, the issue of what composite of the latent traits is best measured by a single reported

score is critical and has being investigated (e.g., see Zhang 1997).

Regarding the question of "Can the MIRT model also be applied to a unidimensional test

dataset ?", the MIRT model can be applied to unidimensional test data as well. This result also

implies that equating one of the identified ability dimensions of interest in two datasets seems

feasible when the number of dimensions of the two test datasets is different.

The measurement errors of al-parameter estimates in the unidimensional datasets are

much smaller than the corresponding al-parameter estimates in the two-dimension datasets. The

d-parameters are slightly biased. Comparison of the results of ability recovery from the

unidimensional test data with those first-dimension ability estimates under the two types of

multidimensional test data strongly suggests that the unidimensional ability estimates are more

accurate and stable when test items are only sensitive to one latent trait being measured. From

another perspective, the test equating procedure for recovering a set of unidimensional ability

parameters can be analogous to equating one set of identified-dimension abilities calibrated from

two datasets, in which one fits a unidimensional trait model well; the other fits a two-dimensional

latent trait model well. The success of recovering a set of the identified-dimension ability

parameters indicates that equating one of the identified ability dimensions of interest in two

datasets seems feasible when number of dimensions of the two test datasets is different. However,

whether equating some identified ability dimensions of interest can be successfully accomplished

depends on how well the MIRT can fit the data and how clear the latent structure of the test-

examinee interaction in each dataset can be revealed.

B. Future Research Questions

Further research is needed in many related areas. As seen in Table 4, on the average,

ability estimates on both dimensions are slightly biased. Example questions related to these results
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are, Is the sample size too small?, Is the whole test or anchor test too short? Is the parameter

estimation method or the corresponding estimation computer program questionable? etc. These,

and similar problems have been largely addressed in the area of unidimensional IRT. In contrast,

the research on these questions in the multidimensional case is quite rare, especially when the

MIRT model increases in complexity to include more dimensions, say Ten (see Thompson, Nering

& Davey, 1997).

Although Reckase and Hirsch (1991) suggest that " the number of dimensions is often

underestimated and that overestimating the number of dimensions does little harm." We might

expect that the suggestion they made is more true if the number of test items and sample size are

"very large." Unfortunately, the number of test items is often limited, say Fifty, in real testing

situations. The issue raised here is " How many dimensions can be clearly identified by a 50-item

test?" If the dimensions are defined as statistical constructs and the interpretation of the

dimensions is not essential, this issue may be lessened because the estimation algorithms might

allow each item to have multiple high loadings on many dimensions. However, within the

framework of MIRT equating, the process of identifying meaningful dimensions is critical, and

the goal of interpretable dimensionality may be assisted by instructing the MIRT estimation

procedure to produce the simple structure of item factor loadings. That is, an item should only

make a high contribution to one dimension and have little contribution to the rest of the

dimensions. The combination of simple structure and the limitation of test length may limit the

number of dimensions clearly identified. Consequently, test practitioners want to know under

which conditions such as test length, number of dimension and sample size the MIRT equating

can produce an accurate result.

In this study, we also found that the accuracy of ability estimates in each dimension relies

on the corresponding magnitude of the discrimination parameters. If a complex model, say 20

dimensions, is chosen to account for a 50-item test and the simple structure of item

discriminations is pursued, we might expect that the values of the discrimination estimates of

some dimensions will be too small. As found in this study, ability estimates on the dimension with

lower discrimination parameters can be relatively inaccurate or unstable. It may imply that the

precision of estimating ability parameters for the dimensions with low item discriminations will be
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questionable. Consequently, the question of how many dimensions are appropriate to explain any

set of test data deserves careful attention.

Another issue is related to the robustness of MIRT equating with heterogeneous groups.

If two tests measure the same multiple latent traits and are administered to two heterogeneous

groups which differ in the locations and variabilities of their ability distributions, can the MIRT

equating method perform well? In particular, if the underlying dimensionality of the two datasets

is different, how can the MIRT equating overcome this problem?

Another quite practical research topic is how do various MIRT equating methods compare in

their accuracy of linking of items and equivalent estimation of ability parameters. The MIRT

equating procedures developed by Oshima et al (1997) and Thompson et al (1997) are different

from those introduced in this study. Practitioners are concerned with which MIRT equating

method can produce more accurate linking of the item and ability parameters.
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