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ABSTRACT

The present paper describes structural equation modeling (SEM) in

comparison with another overarching analysis within the general

linear model (GLM) analytic family: canonical correlation analysis.

From the paper the uninitiated reader will gain an understanding of

SEM's basic tenets and applications. Latent constructs discovered

via a measurement model will be explored and the structural models

that "connect" the latent constructs will be described. In addition

to reviewing SEM concepts, via analysis of a heuristic data set the

paper shows how SEM as the most general analytic approach subsumes

canonical correlation analysis as a special case, even though

canonical correlation analysis in turn itself subsumes other

parametric methods (e.g., t-tests, ANOVA, regression, MANOVA,

discriminant analysis) as special cases.
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"Variables, variables, variables; why so many variables?";

thus Wampold (1987) begins his article on covariance structure

analysis. In fact, multiple variables are more a reflection of

reality than are events taking place in isolation, i.e., one

independent variable influencing one dependent variable where both

are observable. Indeed, with the complexity of most of the

constructs found in behavioral and social research, measures that

are useful for testing theories are frequently multidimensional and

multidirectional. Thus, multivariate methods have become the

panacea for questions of this sort (Thompson, 1994). And according

to Wampold (1987), structural equation modeling (SEM, also called

covariance structure analysis) is the "Gucci" of multivariate

measures. Further, Lomax (1989) stated that "The development of

methodologies to test hypotheses regarding the structure underlying

covariance matrices [e.g., structural equation modeling] appears to

be the single-most important contribution of statistics to the

social and behavioral sciences during the past 20 years" (p. 171).

Joreskog (1994) argued for the utility of structural equation

modeling in solving many substantive research questions in the

social and behavioral sciences. Further, he pointed out that the

methodology underlying many 'different' models, e.g., simultaneous

equations systems, linear causal analysis, confirmatory factor

analysis, path analysis, structural equation models, recursive and

non-recursive models for cross-sectional and longitudinal data, and

covariance structure models, are in fact quite similar, if not

exactly the same. The practice of giving different labels to the

same processes has been previously revealed by Thompson (1995) as
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an attempt "mainly to obfuscate the commonalities of parametric

methods, and to confuse graduate students" (p. 87).

It is unclear whether the myriad labels applied to structural

equation modeling is the sole, or only a partial reason why

structural equation modeling continues to be misunderstood by many.

This is in stark contrast to the statistical sophistication

commonly applied to analyzing data by evaluating mean differences,

correlational coefficients, tabular data and an occasional factor

structure. Even though 10 years ago, Biddle and Marlin (1987)

stated in reference to structural equation modeling that, "Misuse

of these techniques have appeared in major journals. Users have

made inappropriate claims for findings generated through these

procedures and have applied them mindlessly in data analysis" (p.

4, italics added), these problems have persisted nonetheless.

The misconceptions and errors in applying and interpreting

structural equation models are partially a result of these models

being considered by many as "causal models" in the literal sense

(Lomax, 1989). Causal modeling is thought to improve the ability to

make causal inferences from field-study data. Because a

predetermined statement of causal relationships among variables is

required in structural equation modeling, one might assume that if

a theoretical model "fits" data, then the fit is a function of

causation (Biddle & Marlin, 1987). But in fact, evidence of a "fit"

is merely an indication of an association and/or possible temporal

relationship. As Biddle and Marlin (1987) stated: "Readers do not

have to be reminded that correlation does not imply causality, [but

in fact] causal modelers are occasionally tricked into this belief
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by the word causal" (p. 9, italics added).

One other related semantic misunderstanding deals with the use

of the term, "confirmed." Some of the users of structural equation

modeling apparently erroneously believe that confirmation of model

fit means "proof" that the model exemplifies reality and "truth,"

and further, that a confirmed model is exclusive in its explanation

of the variables in question (Biddle & Marlin, 1987). Clearly, this

is not the case. Confirmation of a model is one explanation of the

model, but by no means is that model necessarily the only

explanation of the variables. In fact, innumerable models may all

fit a given data set, just as innumerable different models may also

not fit the same data.

The present paper will delineate the underlying theory and

application of structural equation modeling. Additionally, as it

has been previously demonstrated that all classical univariate and

multivariate methods are special cases (Fan, 1996; Knapp, 1978;

Thompson, 1991) of canonical correlation analysis (Thompson, 1984),

here a heuristic data set will be utilized to exemplify that

structural equation modeling subsumes canonical correlation

analysis. This will further support Fan's (1997) claim that,

"Hierarchically, the relationship between the two analytic

approaches [canonical correlation analysis and structural equation

modeling] suggests that SEM stands to be a[n even] more general

analytic approach" (p. 65).

Theory of SEM

A structural equation model consists of a measurement model

and a structural model. The measurement portion of the model is an

6
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attempt to explain relationships among a set of observations (i.e.,

"measured" or "observed" variables) in terms of a smaller set of

unobserved variables (i.e., "latent" or "synthetic" variables)

(Long, 1983). This is accomplished by utilizing factor analysis to

reproduce the interrelationships among a set of observed variables

through a fewer number of synthetic variables (common factors)

(Lomax, 1989). The relationships among the observed variables are

determined by the covariances among the variables, found in

variance/covariance (sometimes simply called, covariance) matrices.

This matrix assumes that the unobserved variables are producing the

pattern of relationship between the observed variables. A

measurement model is utilized to link the unobserved latent or

synthetic variables to the observed measured variables (Long,

1983). The structural model, in turn, specifies how the latent

constructs are correlated with or influenced by other latent

variables.

The Measurement Model

As noted previously, the aim of factor analysis is to explain

the relationships between observed variables via common factors.

The common factors are linear combinations of the measured

variables that have substantive meaning. One way to specify the

confirmatory factor analysis (CFA) model is by equation 3.10 from

Joreskog and Stirbom (1989, p. 97, illustrative subscripts added) in

the context of population parameter matrices:

E(9 X9) = A(9 X3) (1)(3 X 3) A1(3 X 9) ± °(9X9) (2 [3.10])

where Ao is the factor pattern coefficient matrix, (1)01s the

matrix of correlation coefficients among the three factors, 00"is

7
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the unique variance in the measured variables (usually associated

with measurement error in a correctly specified model) and the

covariances of these errors, and E(9X9) is the matrix of covariances

or correlation coefficients among the nine measured or observed

variables.

Two heuristic diagrams of measurement models are provided in

Figure 1 and Figure 2 to clarify the relationships between the

observed indicator variables (in Figure 1, variables named "V1"

through "V12", conventionally denoted in the squares; in Figure 2,

variables named "Al" through "C4"), the unobserved common factors

(all latent/synthetic constructs are denoted by the oval shapes, by

convention) and the error terms associated with each measured or

observed indicator variable.

Insert Figure 1 and Figure 2 about here

An exploratory factor analysis imposes somewhat different

specifications on the data (i.e., observed variables are a function

of all the common factors, each observed variable is also partly a

function of a unique factor, unique factors are always

uncorrelated, and the common factors often are uncorrelated, as

well) than a confirmatory factor analysis. In a confirmatory factor

analysis, the researcher sets predetermined constraints on the

model. For example the researcher may specify, (a) which observed

variables are a function of which common factors, (b) which

observed variables are a function of a unique factor, and (c) which

common and which unique factors are correlated (Lomax, 1989). There

are three major assumptions to accompany these specifications, (a)

BEST COPY AVAILABLE
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x (the observed variable(s)), (the unobserved variable(s)), and

(5 (the error terms) are measured as deviations from their means,

(b) q (observed) > n (unobserved), and (c) the common factors are

uncorrelated with the unique factors (Long, 1983).

Model "identification" must be resolved before one can

estimate the parameters of the model. Identification involves

whether the parameters of the model can be uniquely determined or

estimated based on the sample covariance matrix (S). If the model

is not identified, then the parameters can not be uniquely defined,

i.e., many different combinations of values can be placed into the

above equation to equally well estimate the population covariance

matrix E. So, by imposing constraints on the factor model,

identification can be accomplished. If enough constraints are

imposed on the model until only one set of values remain, then the

model is said to be "identified" (Lomax, 1989). Of course, as

Mulaik (1987) pointed out, allowing the parameters to be "fixed and

freed" in a trial and error fashion until the model fits the data

ignores the fact that the resulting model may or may not be

meaningful.

The Structural Model

While the measurement model specifies how the latent or

synthetic variables (i.e., hypothetical constructs) are measured in

terms of observed variables, the structural model specifies the

hypothesized casual relationships among the latent variables

(Anderson, 1987). A distinction is made between two types of common

factors, the latent independent variable (or latent exogenous

variable) and latent dependent variables (or latent endogenous
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variables). If we designate n2 (m x 1) as a vector of the latent

endogenous variables etas and (n x 1) as a vector of the latent

exogenous variables, then a system of linear structure equations

is:

ni = B nff

where B (m x m) and r (m x n) are matrices of structure

coefficients (or weights) relating the endogenous variables to one

another and the exogenous variables to each other, and 3- (m x 1) is

a residual (error or disturbance) vector (Anderson, 1987; Lomax,

1989). It is assumed that is uncorrelated with and that I - B

is non-singular (Joreskog, 1994). A heuristic diagram is provided

in Figure 3 linking the two measurement models provided in Figures

1 and 2 and describing how the constructs impact upon each other.

Insert Figure 3 about here

To help clarify the above formula in relation to the

structural model found in Figure 3, Figure 4 is provided showing

the actualization of these abstract concepts. In Figure 4, type of

attachment is hypothesized to impact psychological well-being. In

this example, only depression will be utilized as representing

well-being for the sake of clarity.

Insert Figure 4 about here

As can be seen in Figure 4, only a secure and ambivalent

attachment affects depression. For illustrative purposes, the

regression coefficients are shown on the paths going from these two

attachment styles toward the construct of depression (secure = .4,
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ambivalent = .2). If a path did not achieve a certain predetermined

level of effect on the depression construct, then it would have

been deleted from the final diagram.

Method of SEM

Parameter Estimation

Maximum-likelihood estimates of the model parameters can be

generated by the LISREL computer program (JOreskog & Sorbom, 1984)

or other popular SEM computer packages (e.g., AMOS, EQS). LISREL

has probably been the most widely used statistical program to

estimate linear structural relationships among a set of variables,

although for various reasons other packages are becoming

increasingly popular. LISREL is designed to estimate parameters and

test the validity of a wide range of models that contain

measurement error, specification error, reciprocal causation,

variables measured at several points in time, and latent

(unobserved) variables (Anderson, 1987; JOreskog, 1994).

Variance-covariance matrices or other matrices of association

are analyzed by LISREL. The program outputs the parameter estimates

derived using least squares, maximum-likelihood, or some other

statistical theory.

Assessing Goodness of Fit

The squared correlation coefficient is computed for each

structural equation. These consist of separate R2s for each of the

equations in the model. (These R2s are different from the ones in

regression in that they do not have an intercept term usually found

in the output of regression models). A total coefficient of

determination is computed for all the structural equations
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simultaneously, for example in Figure 4, the equation would be

expressed as:

Depression = Secure (.4) + Ambivalent (.2)....

This result indicates the amount of variance in the endogenous

variables jointly accounted for by the model.

The LISREL model provides a chi-square statistic to test the

fit of the model to the data. The chi-square statistic is a

function of the difference between the observed covariance matrix

and a predicted population matrix based on the model and sample

size. To interpret the test, the residual covariance matrix that

results when comparing the observed and predicted values is

examined to see if it differs from zero. But because the chi-square

statistic is also a function of sample size, then almost any model

is likely to be rejected if the sample is large enough (Anderson,

1987) .

Literally dozens of alternative fit statistics have been

proposed. We are only beginning to understand (cf. Fan, Thompson &

Wang, in press; Fan, Wang & Thompson, 1997) how these statistics

perform under different conditions (e.g., degrees of multivariate

normality, model specification) and what values may be reasonable

for deeming that a model has adequate fit. Examples of the more

common fit statistics used are provided in Table 1.

Insert Table 1 about here

In using fit statistics, the baseline model must first be

employed. The baseline or null model (Bentler & Bonett, 1980)

posits that the variables are mutually exclusive and that certain

12
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variances and covariances are known. The baseline model is then

used to determine how much of the observed variance-covariance

matrix can be reproduced solely by the knowledge of zero-order

correlations among the exogenous variables and the unique variances

of the endogenous variables. The baseline or null model fit

statistics are then used to calculate other fit statistics, as

shown in Table 1.

In addition to the model chi square reported in Table 1, the

Goodness of Fit Index (GFI), and the Adjusted Goodness of Fit Index

(AGFI) are examples of other fit statistics, and also can be found

in Table 1. The AGFI is adjusted for sample size. The Parsimony

Ratio is used primarily to compare models; the more parameters

estimated by a model, the less parsimonious is the model. The

Parsimony Ratio can be used to weight other fit statistics to

create an index that jointly considers both model fit and model

parsimony. The CFI is compared to the null model to discern how the

results compare to the null model. And finally, the Root Mean

Square Residual (RMSR) and the Root Mean Square Error of

Approximation (RMSEA) are important fit statistics. Desirable

values for the fit statistics referenced in Table 1 are: GFI =

or >.95; AGFI = > .9; the greater the value the parsimony ratio

achieves, the better--if "0" is obtained, then there is no

parsimony. For the CFI, values greater than .9 are desirable, and

for the RMSEA, a value of less than .05 is optimal.

SEM and Canonical Correlation Analysis

Canonical correlation analysis (CCA) summarizes the

relationship between two sets of variables. These two sets of
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variables are linearly combined to produce pairs of synthetic

variables (canonical variates) that have maximum bivariate

correlation and are orthogonal to each other (Thompson, 1984,

1991). As mentioned earlier, CCA has been heralded as a unifying

parametric statistical testing method for both univariate and

multivariate problems (Fan, 1997), and all other univariate and

multivariate parametric techniques can be subsumed under the

auspices of CCA (Thompson, 1997). However, the present section

illustrates that SEM subsumes CCA as an even more general

statistical model. Using the same heuristic data set, a CCA will be

performed, followed by a SEM, thereby concretely showing the

greater generality of the SEM approach.

In the appendix, a CCA was applied to the Holzinger and

Swineford (1939) data set. Utilizing variables T6 and T7 as

dependent variables (found on physical page 2 of the appendix), and

variables T2, T4, T20, T21, and T22 as the indicator variables

(found on the Appendix pages labelled "Page 7" through "Page 10"),

two functions result in this CCA as the number in the smaller set

is two (Fan, 1997). The function coefficient for each variable is

found in the bolded areas on the respective pages of the appendix,

e.g., for T6, the function coefficients are .44962 and -1.40007 for

function I and II respectively, and so on.

It will now be illustrated how the bolded canonical results

can be reproduced as the corresponding bolded values from the SEM

analysis also presented in the Appendix. The demonstration is a

heuristic to show that SEM is the most general case of the general

linear model (cf. Fan, 1996, 1997).

14
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To apply a SEM, the PRELIS program found subsequently in the

Appendix was first used to compute the correlation matrix. Then

this correlation matrix from PRELIS was used to run four LISREL

analyses, to reproduce the canonical function coefficients for both

variables sets on both functions.

Note that the subsequent bolded four sets of LISREL

coefficients for the "gamma" matrix exactly match (within rounding

error) the canonical function coefficients presented previously in

the printout. The only exception is that all the signs for the SEM

second canonical function coefficients must be "reflected."

"Reflecting" a function (changing all the signs on a given

function, factor, or equation) is always permissible, because the

scaling of psychological constructs is arbitrary. Thus, as can be

seen from the data set found in the appendix, the SEM and the

canonical analysis derived the same results.

Although this demonstration was primarily heuristic, to

illustrate SEM's generality, there may also be some practical

advantages to using SEM to compute canonical results. For example,

within the SEM approach statistical significance testing of

individual canonical function coefficients and structure

coefficients is possible, and individual canonical coefficients can

be tested (Fan, 1997). This is not readily accomplished in

conventional canonical analysis (Thompson, 1984).

Conclusions

Structural equation modeling has become an increasingly

popular statistical tool. Unfortunately, there is a direct positive

correlation between statistical sophistication and the density and

15
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abstractness of the methods employed. In that vein, a less

recondite, almost rudimentary approach to structural equation

modeling has been put forth through this paper. The basic tenets of

structural equation modeling have been described and applied using

heuristic path diagrams. Further, for the uninitiated, the formulas

inherent in SEM have been operationalized and "tied" into their

place in the diagrams. Lastly, to exemplify that SEM is the most

general linear approach to statistics, a data set was used to

juxtapose the CCA and the SEM approaches to analysis, thus deriving

the exact same results.

16
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Table 1
Illustrative Model Fit Statistics

Statistic Model #1 Model #2
v
n

18
780

18
780

Null chi sq 2519.24 2519.24
Null df 153 153
Noncentrality 2366.24 2366.24a

Model chi sq 205.78 748.95
Model df 128 135
Noncentrality 77.78 613.95a
NC / df 0.607656 4.547777h
GFI 0.960 0.699
Pars Ratio 0.748538 0.789473`
GFI*Pars 0.718596 0.551842d
CFI 0.967129 0.740537`
Pars Ratio 0.836601 0.882352f
CFI*Pars 0.809101 0.653415g
RMSR 0.005 0.199
RMSEA 0.000780 0.005837h

alloncentrality = X2 - df

bNoncentrality / df

`Parsimony Ratio = Model df

dGFI * Parsimony Ratio

/ [(variables * (variables + 1)) / 2]

`CFI [(Null Y2 - Null df) - (Model X2 - Model df)]-
(Null X2 - Null df)

(Parsimony Ratio = Model df / [(variables * (variables - 1)) / 2]

gCFI * Parsimony Ratio

hRMSEA = [(Model X2 Model df) / (Model df * (n -1)))3
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WELL-BEING MEASUREMENT MODEL
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APPENDIX
Illustration that SEM Subsumes CCA

aercanli.aer 12/7/97

07-Dec-97 SPSS RELEASE 4.1 FOR IBM OS/MVS Page 1

07:52:44 TEXAS A&M UNIVERSITY: CIS IBM 3090-400J MVS/ESA/JES3

For MVS/ESA/JES3 TEXAS A&M UNIVERSITY: CIS
This software is functional through August 31, 1998.

License Number 1267

1 0 TITLE 'CANLISRL.SPS Holzinger & Swineford (1939) Data **'.
2 0 COMMENT ********************************************************************.
3 0 COMMENT Holzinger, K.J., & Swineford, F. (1939). A study in factor analysis:.
4 0 COMMENT The stability of a bi-factor solution (No. 48). Chicago, IL:.
5 0 COMMENT University of Chicago. (data on pp. 81-91).
6 0 COMMENT ********************************************************************
7 0 SET BLANKS=SYSMIS UNDEFINED=WARN.
8 0 DATA LIST
9 0 FILE=abc FIXED RECORDS=2 TABLE
10 0 /1 id 1-3 sex 4-4 ageyr 6-7
11 0 agemo 8-9 tl 11-12 t2 14-15 t3 17-18 t4 20-21 t5 23-24 t6 26-27 t7 29-30 t8
12 0 32-33 t9 35-36 t10 38-40 tll 42-44 t12 46-48 t13 50-52 t14 54-56 t15 58-60
13 0 t16 62-64 t17 66-67 t18 69-70 t19 72-73 t20 74-76 t21 78-79 /2 t22 11-12
14 0 t23 14-15 t24 17-18 t25 20-21 t26 23-24 .

This command will read 2 records from 'E100BT.HOLZINGR.DTA'
Variable Rec Start End Format

ID 1 1 3 F3.0
SEX 1 4 4 F1.0
AGEYR 1 6 7 F2.0
AGEMO 1 8 9 F2.0
T1 1 11 12 F2.0
T2 1 14 15 F2.0
T3 1 17 18 F2.0
T4 1 20 21 F2.0
T5 1 23 24 F2.0
T6 1 26 27 F2.0
T7 1 29 30 F2.0
T8 1 32 33 F2.0
T9 1 35 36 F2.0
T10 1 38 40 F3.0
Til 1 42 44 F3.0
T12 1 46 48 F3.0
T13 1 50 52 F3.0
T14 1 54 56 F3.0
T15 1 58 60 F3.0
T16 1 62 64 F3.0
T17 1 66 67 F2.0
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data ** Page 2
07:52:45 TEXAS A&M UNIVERSITY: CIS IBM 3090-400J MVS/ESA/JES3

T18 1 69 70 F2.0
T19 1 72 73 F2.0
T20 1 74 76 F3.0
T21 1 78 79 F2.0
T22 2 11 12 F2.0
T23 2 14 15 F2.0
T24 2 17 18 F2.0
T25 2 20 21 F2.0
T26 2 23 24 F2.0

15 0 EXECUTE.

This program was writren by Bruce Thompson, and is used here with
permission.

27
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16 0
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COMPUTE SCHOOL=1.
17 0 IF (ID GT 200)SCHOOL=2.
18 0 IF (ID GE 1 AND ID LE 85)GRADE=7.
19 0 IF (ID GE 86 AND ID LE 168)GRADE=8.
20 0 IF (ID GE 201 AND ID LE 281)GRADE=7.
21 0 IF (ID GE 282 AND ID LE 351)GRADE=8.
22 0 IF (ID GE 1 AND ID LE 44)TRACK=2.
23 0 IF (ID GE 45 AND ID LE 85)TRACK=1.
24 0 IF (ID GE 86 AND ID LE 129)TRACK=2.
25 0 IF (ID GE 130)TRACK=1.
26 0 PRINT FORMATS SCHOOL TO TRACK(F1.0).
27 0 VALUE LABELS SCHOOL(1)PASTEUR (2) GRANT-WHITE/
28 0 TRACK (1)JUNE PROMOTIONS (2)FEB PROMOTIONS/.
29 0 VARIABLE LABELS T1 VISUAL PERCEPTION TEST FROM SPEARMAN VPT, PART III
30 0 T2 CUBES, SIMPLIFICATION OF BRIGHAM'S SPATIAL RELATIONS TEST
31 0 T3 PAPER FORM BOARD--SHAPES THAT CAN BE COMBINED TO FORM A TARGET
32 0 T4 LOZENGES FROM THORNDIKE--SHAPES FLIPPED OVER THEN IDENTIFY TARGET
33 0 T5 GENERAL INFORMATION VERBAL TEST
34 0 T6 PARAGRAPH COMPREHENSION TEST
35 0 T7 SENTENCE COMPLETION TEST
36 0 T8 WORD CLASSIFICATION--WHICH WORD NOT BELONG IN SET
37 0 T9 WORD MEANING TEST
38 0 T10 SPEEDED ADDITION TEST
39 0 T11 SPEEDED CODE TEST--TRANSFORM SHAPES INTO ALPHA WITH CODE
40 0 T12 SPEEDED COUNTING OF DOTS IN SHAPE
41 0 T13 SPEEDED DISCRIM STRAIGHT AND CURVED CAPS
42 0 T14 MEMORY OF TARGET WORDS
43 0 T15 MEMORY OF TARGET NUMBERS
44 0 T16 MEMORY OF TARGET SHAPES
45 0 T17 MEMORY OF OBJECT-NUMBER ASSOCIATION TARGETS
46 0 T18 MEMORY OF NUMBER-OBJECT ASSOCIATION TARGETS
47 0 T19 MEMORY OF FIGURE-WORD ASSOCIATION TARGETS
48 0 T20 DEDUCTIVE MATH ABILITY
49 0 T21 MATH NUMBER PUZZLES
50 0 T22 MATH WORD PROBLEM REASONING
51 0 T23 COMPLETION OF A MATH NUMBER SERIES
52 0 T24 WOODY-MCCALL MIXED MATH FUNDAMENTALS TEST
53 0 T25 REVISION OF T3--PAPER FORM BOARD
54 0 T26 FLAGS--POSSIBLE SUBSTITUTE FOR T4 LOZENGES.
55 0 SUBTITLE 'CCA ##############'.

07-Dec-97 CANLISRL.SPS Holzinger
07:52:45 CCA ##############

56 0 correlations variables=t6
57 0 statistics=all .

PEARSON CORR problem requires 1,120

& Swineford (1939) Data

t7 t2 t4 t20 t21 t22/

bytes of workspace.

** Page 3

07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data ** Page 4
07:52:45 CCA ##############

Variable Cases Mean Std Dev

T6 301 9.1827 3.4923
T7 301 17.3621 5.1619
T2 301 24.3522 4.7098
T4 301 18.0033 9.0478
T20 301 26.8904 19.3339
T21 301 14.2492 4.5623
T22 301 26.2392 9.1972
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data ** Page 5
07:52:45 CCA

Variables

##############

Cases Cross-Prod Dev Variance-Covar Variables Cases Cross-Prod Dev Variance-Covar

T6 T7 301 3965.0831 13.2169 T6 T2 301 754.6312 2.5154
T6 T4 301 1503.8173 5.0127 T6 120 301 6969.0299 23.2301
T6 121 301 1532.2957 5.1077 T6 722 301 4312.8439 14.3761
T7 T2 301 1016.6146 3.3887 T7 14 301 1081.6379 3.6055
T7 T20 301 10080.9502 33.6032 T7 121 301 2133.8405 7.1128
T7 722 301 6690.9269 22.3031 T2 14 301 4344.6478 14.4822
T2 T20 301 7681.6213 25.6054 T2 T21 301 1568.5880 5.2286
T2 722 301 3653.6445 12.1788 T4 T20 301 17017.1096 56.7237
T4 T21 301 4098.7508 13.6625 T4 T22 301 7643.7608 25.4792
120 121 301 10317.2226 34.3907 120 722 301 21056.8937 70.1896



T21 722

07-Dec-97
07:52:45
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301 4742.0598 15.8069

CANLISRL.SPS Holzinger & Swineford (1939) Data **
CCA ##############

- - Correlation Coefficients - -

T6 T7 T2

T6 1.0000 .7332** .1529**
T7 .7332** 1.0000 .1394*
T2 .1529** .1394* 1.0000
T4 .1586** .0772 .3398**
T20 .3440** .3367** .2812**
T21 .3206** .3020** .2433**
T22 .4476** .4698** .2812**
* - Signif. LE .05 ** - Signif. LE .01
coefficient cannot be computed
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:45 CCA ##############

T4 T20

.1586** .3440**

.0772 .3367**

.3398** .2812**
1.0000 .3243**
.3243** 1.0000
.3310** .3899**
.3062** .3947**

(2-tailed)

Page 6

T21 T22

.3206** .4476**

.3020** .4698**

.2433** .2812**

.3310** .3062**

.3899** .3947**
1.0000 .3767**
.3767** 1.0000

" . " printed if a

Preceding task required .07 seconds CPU time; .21 seconds elapsed.

58 0 manova t6 t7 with t2 t4 t20 t21 t22/
59 0 print=signif(multiv eigen dimenr)/
60 0 discrim=stan cor alpha(.999)/design .

61 0
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:45 CCA ##############

Page 7

Page 8

* * * * * * * * * * * * * * * * *ANALYSIS OF VARIANCE* * * * * * * * *
* * * * * * * *

301 cases accepted.
O cases rejected because of out-of-range factor values.
O cases rejected because of missing data.
1 non-empty cell.
1 design will be processed.

07-Dec-97
07:52:46

CANLISRL.SPS Holzinger & Swineford (1939) Data **
CCA ##############

* * * * * * * * * * * * * * * * *ANALYSIS' OF VARIANCE-- DESIGN
* * * * * * * * * * * * * * *

EFFECT .. WITHIN CELLS Regression
Multivariate Tests of Significance (S = 2, M = 1 , N = 146 )

Test Name Value Approx. F

Pillais .31623 11.08083
Hotellings .44521 13.04463
Milks .68860 12.05883
Roys .30014

Note.. F statistic for WILK'S Lambda is exact.

Hypoth. DF

10.00
10.00

10.00

Error DF

590.00
586.00
588.00

Sig. of F

.000

.000

.000

Page 9

1 * *

Eigenvalues and Canonical Correlations

Root No. Eigenvalue Pct. Cum. Pct.

2

.42885 96.32657 96.32657

.01635 3.67343 100.00000

Canon Cor.

.54785

.12685

Sq. Cor

.30014

.01609

Dimension Reduction Analysis

Roots

1702
2 TO 2

Wilks L.

.68860 12.05883

.98391 1.20614

Hypoth. DF Error DF

10.00 588.00
4.00 295.00

2S

Sig. of F

.000

.308
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EFFECT .. WITHIN CELLS Regression (Cont.)
Univariate F-tests with (5,295) D. F.

Variable Sq. Mul. R Mul. R Adj. R-sq. Hypoth. MS Error MS F Sig. of F

16

17
.24924 .49924 .23652 182.39270 9.31182 19.58722
.27358 .52305 .26127 437.37920 19.68350 22.22060

.000

.000

Standardized canonical coefficients for DEPENDENT variables
Function No.

Variable 1 2

T6 .44962 -1.40007
T7 .62246 1.33225

07-Dec-97 CANLISRL.SPS Holzinger 8 Swineford (1939) Data ** Page 10
07:52:46 CCA ##############

ANALYSIS OF VARIANCE-- DESIGN 1

Correlations between DEPENDENT and canonical variables
Function No.

Variable

T6

17

1 2

.90599 -.42330

.95211 .30576

Variance explained by canonical variables of DEPENDENT variables

CAN. VAR.

1

2

Pct Var DEP Cum Pct.DEP Pct Var COV Cum Pct COV

86.36628 86.36628 25.92187 25.92187
13.63372 100.00000 .21938 26.14126

Standardized canonical coefficients for COVARIATES
CAN. VAR.

COVARIATE 1 2

T2 -.01468 .06704
T4 -.20012 -1.00653
T20 .34100 -.02762
T21 .26772 -.17401
T22 .73104 .35974

Correlations between COVARIATES and canonical variables
CAN. VAR.

Covariate 1 2

12 .28388 -.22399
T4 .21791 -.94015
T20 .66492 -.26099
T21 .60625 -.36609
T22 .90109 -.00605

Variance explained by canonical variables of the COVARIATES

CAN. VAR.

1

2

Pct Var DEP Cum Pct DEP

10.50305 10.50305
.36567 10.86872

Pct Var COV Cum Pct COV

34.99398 34.99398
22.72448 57.71846

3G
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07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:46 CCA ##############

11152 bytes of memory are needed for MANOVA execution.
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:46 CCA##############

Preceding task required .13 seconds CPU time; 1.08 seconds elapsed.

62 0 SUBTITLE 'Function I 2nd Variate n=301 v=7'.
63 0 execute .

Preceding task required .01 seconds CPU time; .03 seconds elapsed.

64 0 PRELIS
65 0 /VARIABLES
66 0 t2 (CO) t4 (CO) t20 (CO) t21 (CO) t22 (CO)
67 0 t6 (CO) t7 (CO)
68 0 /TYPE=CORRELATION
69 0 /MATRIX=OUT(CR1)

Time stamp on saved file: 07-DEC-97 07:52:47
File contains 9 variables, 72 bytes per case before compression
There are 3,044,392 bytes of memory available.
The largest contiguous area has 3,037,808 bytes.

PRELIS A PREPROCESSOR FOR LISREL

PROGRAM VERSION 1.12 DISTRIBUTED BY

SCIENTIFIC SOFTWARE, INC.
1369 NEITZEL ROAD
MOORESVILLE, INDIANA 46158
(317) 831-6336

THIS COPY AUTHORIZED FOR USE IN SPSS-X
PROGRAM COPYRIGHT 1987-89 BY SCIENTIFIC SOFTWARE, INC.,

(A MICHIGAN CORPORATION).
DISTRIBUTION OR USE UNAUTHORIZED BY SCIENTIFIC SOFTWARE, INC. IS PROHIBITED.

MVS -PRELIS 1.12
BY

KARL G JORESKOG AND DAG SORBOM

THE FOLLOWING PRELIS CONTROL LINES HAVE BEEN READ :

CANLISRL.SPS HOLZINGER & SWINEFORD (1939) DATA **;
DA NI=7 NO =O MI= -0.989898D+37 MC=1 TR=LI
LA

T2 T4 T20 T21 T22 T6 T7
RA FI=PLDDRAW
CO T2
CO T4
CO T20
CO T21
CO T22
CO T6
CO T7
OU MA=KM SM=PLDDMAT WP

TOTAL SAMPLE SIZE = 301
UNIVARIATE SUMMARY STATISTICS
VARIABLE MEAN ST. DEV.

FOR CONTINUOUS VARIABLES
SKEWNESS KURTOSIS MINIMUM FREQ MAXIMUM FREQ.

T2 24.352 4.710 0.475 0.377 9.000 1 37.000 5
T4 18.003 9.048 0.387 -0.879 2.000 1 36.000 6

T20 26.890 19.334 0.493 0.199 -18.000 1 87.000 2
T21 14.249 4.562 -0.311 0.140 1.000 1 24.000 2
T22 26.239 9.197 0.409 -0.188 7.000 2 50.000 5
T6 9.183 3.492 0.270 0.122 0.000 1 19.000 1
T7 17.362 5.162 -0.353 -0.520 4.000 2 28.000 1



CANLISRL.SPS HOLZINGER & SWINEFORD (1939) DATA **;
ESTIMATED CORRELATION MATRIX

T20 T21

T2

T2 T4

1.000
T4 0.340 1.000

T20 0.281 0.324
T21 0.243 0.331
T22 0.281 0.306
T6 0.153 0.159
T7 0.139 0.077

THE PROBLEM USED

SEM vs Canonical -29-

T22 T6 T7

1.000
0.390 1.000
0.395 0.377 1.000
0.344 0.321 0.448 1.000
0.337 0.302 0.470 0.733 1.000

94552 BYTES (= 3.1% OF AVAILABLE WORKSPACE)
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:48 Function I 2nd Variate n=301 v=7

Preceding task required .71 seconds CPU time; 1.86 seconds elapsed.

70 0 LISREL
71 0 /"lb First Function n=301 v=7"
72 0 /DA NI=7 NO=301 MA=KM
73 0 /MATRIX=IN(CR1)
74 0 /MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR
75 0 GA=FU,FI PH=SY,FR NX=2 NY=5 NK=2 NE=1
76 0 /VA 1.0 PH(1,1) PH(2,2)
77 0 /VA 1.0 LY(1,1)
78 0 /FR LY(2,1) LY(3,1) LY(4,1) LY(5,1)
79 0 /FR GA(1,1) GA(1,2)
80 0 /OU SS FS SL=1 TM=1200 ND=5

There are 3,036,568 bytes of memory available.
The largest contiguous area has 3,030,440 bytes.

LISREL 7: ESTIMATION OF LINEAR STRUCTURAL EQUATION SYSTEMS
PROGRAM VERSION 7.16 DISTRIBUTED BY

SCIENTIFIC SOFTWARE, INC.
1369 NEITZEL ROAD
MOORESVILLE, INDIANA 46158
(317) 831-6336

THIS COPY AUTHORIZED FOR USE IN SPSS-X
PROGRAM COPYRIGHT 1977-89 BY SCIENTIFIC SOFTWARE, INC.,

(A MICHIGAN CORPORATION).
DISTRIBUTION OR USE UNAUTHORIZED BY SCIENTIFIC SOFTWARE, INC. IS PROHIBITED.

MVS - L I S R E L 7.16
BY

KARL G JORESKOG AND DAG SORBOM

THE FOLLOWING LISREL CONTROL LINES HAVE BEEN READ :

lb First Function n=301 v=7
DA NI=7 NO=301 MA=KM
KM FI=LSDDDTA FO
(5E14.6)
LA
T2 T4 T20 T21 T22 T6
MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR C

GA=FU,FI PH=SY,FR NX=2 NY=5 NK=2 NE=1
VA 1.0 PH(1,1) PH(2,2)
VA 1.0 LY(1,1)
FR LY(2,1) LY(3,1) LY(4,1) LY(5,1)
FR GA(1,1) GA(1,2)
OU SS FS SL=1 TM=1200 ND=5
lb First Function n=301 v=7

NUMBER OF INPUT VARIABLES 7
NUMBER OF Y - VARIABLES 5

NUMBER OF X VARIABLES 2

NUMBER OF ETA - VARIABLES 1

NUMBER OF KSI - VARIABLES 2
NUMBER OF OBSERVATIONS 301

lb First Function n=301 v=7

T7

32.
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CORRELATION MATRIX TO BE ANALYZED
T2 T4 T20 T21 T22 T6 T7

T2 1.00000
T4 0.33986 1.00000

T20 0.28121 0.32427 1.00000
T21 0.24334 0.33099 0.38990 1.00000
T22 0.28116 0.30619 0.39474 0.37672 1.00000
T6 0.15293 0.15864 0.34405 0.32058 0.44758 1.00000
T7 0.13939 0.07720 0.33672 0.30204 0.46980 0.73319 1.00000

lb First Function n=301 v=7
PARAMETER SPECIFICATIONS

LAMBDA Y
ETA 1

T2 0
T4 1

T20 2

T21 3

T22 4
GAMMA

ETA 1
PHI

T6

5

T6

T7

6

T7

T6 7

T7 8 9
THETA EPS

T2 T4 T20 T21 T22

T2 10
T4 11 12

T20 13 14 15
T21 16 17 18 19
T22 20 21 22 23 24

lb First Function n=301 v=7
INITIAL ESTIMATES (TSLS)

LAMBDA Y
ETA 1

T2 1.00000
T4 1.17397

T20 1.18343
T21 1.16531
T22 1.14421

GAMMA
T6 T7

ETA 1 0.00000 0.00000
COVARIANCE MATRIX OF ETA AND KSI

ETA 1 T6 T7

ETA 1 0.00000
T6 0.00000 1.00000
T7 0.00000 0.73319 1.00000

THETA EPS
T2 T4 T20 T21 T22

T2 1.00000
T4 0.33986 1.00000

T20 0.28121 0.32427 1.00000
T21 0.24334 0.33099 0.38990 1.00000
T22 0.28116 0.30619 0.39474 0.37672 1.00000

SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES
T2 T4 T20 T21 T22

0.00000 0.00000 0.00000 0.00000 0.00000
TOTAL COEFFICIENT OF DETERMINATION FOR Y VARIABLES IS 0.000

lb First Function n=301 v=7



LISREL ESTIMATES (MAXIMUM LIKELIHOOD)
LAMBDA Y

ETA 1

T2 1.00000
T4 0.76757

T20 2.34225
T21 2.13559
T22 3.17417

GAMMA
T6 T7

ETA

ETA 1

1 0.06992 0.09682

COVARIANCE MATRIX OF ETA AND KSI
ETA 1 T6 T7

0.02419
T6 0.14091 1.00000
T7 0.14808 0.73319 1.00000

THETA EPS
T2 T4 T20

T2 0.97581
T4 0.32129 0.98575

T20 0.22455 0.28079 0.86730
T21 0.19169 0.29134 0.26891
T22 0.20438 0.24726 0.21490
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T21 T22

0.88968
0.21275 0.75629

SQUARED MULTIPLE CORRELATIONS FOR Y - VARIABLES
T2 T4 T20 T21 T22

0.02419 0.01425 0.13270 0.11032 0.24371
TOTAL COEFFICIENT OF DETERMINATION FOR Y - VARIABLES IS 0.300

CHI-SQUARE WITH 4 DEGREES OF FREEDOM = 4.87 (P = .301)
GOODNESS OF FIT INDEX =0.995

ADJUSTED GOODNESS OF FIT INDEX =0.968
ROOT MEAN SQUARE RESIDUAL = 0.013

lb First Function n=301 v=7
SUMMARY STATISTICS FOR FITTED RESIDUALS
SMALLEST FITTED RESIDUAL = -0.036
MEDIAN FITTED RESIDUAL = 0.000
LARGEST FITTED RESIDUAL = 0.050

STEMLEAF PLOT
- 3
- 2
- 1
- 0

0
1
2

3

4
5

6

40
900000000000000000000

24
0

0
SUMMARY STATISTICS FOR STANDARDIZED RESIDUALS
SMALLEST STANDARDIZED RESIDUAL = -2.117
MEDIAN STANDARDIZED RESIDUAL = 0.000
LARGEST STANDARDIZED RESIDUAL = 2.117

STEMLEAF PLOT
- 2
- 1
- 1
- o
- o

0
0
1
1

1

0
85
00000000000000000000

58
0 34
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211
lb First Function n=301 v=7
FACTOR SCORES REGRESSIONS

ETA
T2 T4 T20 T21 T22 T6 T7

ETA 1
X

0.00000 0.00000 0.00000 0.00000 0.00000 0.06992 0.09682

T2 T4 T20 T21 T22 T6 T7

T6 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 0.00000
T7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

lb First Function n=301 v=7
STANDARDIZED SOLUTION

LAMBDA Y
ETA 1

T2 0.15553
T4 0.11938

T20 0.36428
T21 0.33214
T22 0.49367

ETA 1

GAMMA
T6 T7

0.44957 0.62250

CORRELATION MATRIX OF ETA AND KSI
ETA 1 T6 T7

ETA 1 1.00000
T6 0.90598 1.00000
T7 0.95212 0.73319 1.00000

REGRESSION MATRIX ETA ON X (STANDARDIZED)
T6 T7

ETA 1 0.44957 0.62250
THE PROBLEM USED 7704 BYTES (= 0.3% OF AVAILABLE WORKSPACE)

TIME USED : 0.00 SECONDS
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:50 Function I 2nd Variate n=301 v=7

Preceding task required .44 seconds CPU time; 1.41 seconds elapsed.

81 0 SUBTITLE 'Function I 1st Variate n=301 v=7'.
82 0 execute .

Preceding task required .01 seconds CPU time; .03 seconds elapsed.

83 0 PRELIS
84 0 /VARIABLES
85 0 t6 (CO) t7 (CO)
86 0 t2 (CO) t4 (CO) t20 (CO) t21 (CO) t22 (CO)
87 0 /TYPE=CORRELATION
88 0 /MATRIX=OUT(CR2)

Time stamp on saved file: 07-DEC-97 07:52:50
File contains 9 variables, 72 bytes per case before compression
There are 3,041,056 bytes of memory available.
The largest contiguous area has 3,030,872 bytes.

PRELIS A PREPROCESSOR FOR LISREL

PROGRAM VERSION 1.12 DISTRIBUTED BY

SCIENTIFIC SOFTWARE, INC.
1369 NEITZEL ROAD
MOORESVILLE, INDIANA 46158
(317) 831-6336

35
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THIS COPY AUTHORIZED FOR USE IN SPSS-X
PROGRAM COPYRIGHT 1987-89 BY SCIENTIFIC SOFTWARE, INC.,

(A MICHIGAN CORPORATION).
DISTRIBUTION OR USE UNAUTHORIZED BY SCIENTIFIC SOFTWARE, INC. IS PROHIBITED._

MVS -PRELIS 1.12
BY

KARL G JORESKOG AND DAG SORBOM

THE FOLLOWING PRELIS CONTROL LINES HAVE BEEN READ :

CANLISRL.SPS HOLZINGER & SWINEFORD (1939) DATA **;
DA NI=7 NO=0 MI= -0.989898D+37 MC=1 TR=LI
LA

T6 T7 T2 T4 T20 T21 T22
RA FI=PLDDRAW
CO T6
CO T7
CO T2
CO T4
CO T20
CO T21
CO T22
OU MA=KM SM=PLDDMAT WP

TOTAL SAMPLE SIZE = 301
UNIVARIATE SUMMARY STATISTICS
VARIABLE MEAN ST. DEV.

FOR CONTINUOUS VARIABLES
SKEWNESS KURTOSIS MINIMUM FREQ. MAXIMUM FREQ.

T6 9.183 3.492 0.270 0.122 0.000 1 19.000 1
T7 17.362 5.162 -0.353 -0.520 4.000 2 28.000 1
T2 24.352 4.710 0.475 0.377 9.000 1 37.000 5
T4 18.003 9.048 0.387 -0.879 2.000 1 36.000 6

T20 26.890 19.334 0.493 0.199 -18.000 1 87.000 2
T21 14.249 4.562 -0.311 0.140 1.000 1 24.000 2
T22 26.239 9.197 0.409 -0.188 7.000 2 50.000 5

CANLISRL.SPS HOLZINGER & SWINEFORD (1939) DATA **;
ESTIMATED CORRELATION MATRIX

T6 T7 T2 T4 T20 T21 T22

T6 1.000
T7 0.733 1.000
T2 0.153 0.139 1.000
T4 0.159 0.077 0.340 1.000

T20 0.344 0.337 0.281 0.324 1.000
T21 0.321 0.302 0.243 0.331 0.390 1.000
T22 0.448 0.470 0.281 0.306 0.395 0.377 1.000

THE PROBLEM USED 94344 BYTES (= 3.1% OF AVAILABLE WORKSPACE)
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:52 Function I 1st Variate n=301 v=7

Preceding task required .72 seconds CPU time; 1.86 seconds elapsed.

89 0 LISREL
90 0 /"la First Function n=301 v=7"
91 0 /DA NI=7 NO=301 MA=KM
92 0 /MATRIX=IN(CR2)
93 0 /MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR
94 0 GA=FU,FI PH=SY,FR NX=5 NY=2 NK=5 NE=1
95 0 /VA 1.0 PH(1,1) PH(2,2) PH(3,3) PH(4,4) PH(5,5)
96 0 /VA 1.0 LY(1,1)
97 0 /FR LY(2,1)
98 0 /FR GA(1,1) GA(1,2) GA(1,3) GA(1,4) GA(1,5)
99 0 /OU SS FS SL=1 TM=1200 ND=5

100 0

There are 3,032,512 bytes of memory available.
The largest contiguous area has 3,026,376 bytes.

LISREL 7: ESTIMATION OF LINEAR STRUCTURAL EQUATION SYSTEMS
PROGRAM VERSION 7.16 DISTRIBUTED BY

36
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SCIENTIFIC SOFTWARE, INC.
1369 NEITZEL ROAD
MOORESVILLE, INDIANA 46158
(317) 831-6336

THIS COPY AUTHORIZED FOR USE IN SPSS-X
PROGRAM COPYRIGHT 1977-89 BY SCIENTIFIC SOFTWARE, INC.,

(A MICHIGAN CORPORATION).
DISTRIBUTION OR USE UNAUTHORIZED BY SCIENTIFIC SOFTWARE, INC. IS PROHIBITED.

MVS -LISREL 7.16
BY

KARL G JORESKOG AND DAG SORBOM

THE FOLLOWING LISREL CONTROL LINES HAVE BEEN READ :

la First Function n=301 v=7
DA NI=7 NO=301 MA=KM
KM FI=LSDDDTA FO
(5E14.6)
LA
T6 T7 T2 T4 T20 T21 T22
MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR C
GA=FU,FI PH=SY,FR NX=5 NY=2 NK=5 NE=1

VA 1.0 PH(1,1) PH(2,2) PH(3,3) PH(4,4) PH(5,5)
VA 1.0 LY(1,1)
FR LY(2,1)
FR GA(1,1) GA(1,2) GA(1,3) GA(1,4) GA(1,5)
OU SS FS SL=1 TM=1200 ND=5
la First Function n=301 v=7

NUMBER OF INPUT VARIABLES 7

NUMBER OF Y - VARIABLES 2
NUMBER OF X - VARIABLES 5

NUMBER OF ETA - VARIABLES 1

NUMBER OF KSI - VARIABLES 5

NUMBER OF OBSERVATIONS 301
la First Function n=301 v=7

CORRELATION MATRIX TO BE ANALYZED
T6 T7 T2 T4 T20 T21 T22

T6 1.00000
T7 0.73319 1.00000
T2 0.15293 0.13939 1.00000
T4 0.15864 0.07720 0.33986 1.00000

T20 0.34405 0.33672 0.28121 0.32427 1.00000
T21 0.32058 0.30204 0.24334 0.33099 0.38990 1.00000
T22 0.44758 0.46980 0.28116 0.30619 0.39474 0.37672 1.00000

la First Function n=301 v=7
PARAMETER SPECIFICATIONS

LAMBDA Y
ETA 1

T6 0
T7 1

GAMMA
T2 T4

ETA 1 2 3
PHI

T2 T4

T2 7

T4 8
T20 10
T21 13
T22 17

THETA EPS
T6

T6 22

T20

4

T20

T21 T22

5 6

T21 T22

9

11 12
14 15 16
18 19 20

T7

37
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T7 23 24
la First Function n=301 v=7

LISREL ESTIMATES (MAXIMUM LIKELIHOOD)
LAMBDA Y

ETA I

T6 1.00000
T7 1.05093
GAMMA

T2 T4 T20 T21 T22

ETA 1 -0.00729 -0.09934 0.16926 0.13288 0.36285

STANDARDIZED SOLUTION
LAMBDA Y

ETA 1

T6 0.49635
T7 0.52163

GAMMA
T2 T4 T20 T21 T22

ETA 1 -0.01468 -0.20014 0.34100 0.26772 0.73104

CORRELATION MATRIX OF ETA AND KSI
ETA 1 T2 T4 T20 T21 T22

ETA 1 1.00000
T2 0.28388 1.00000
T4 0.21790 0.33986 1.00000

T20 0.66492 0.28121 0.32427 1.00000
T21 0.60626 0.24334 0.33099 0.38990
T22 0.90109 0.28116 0.30619 0.39474

REGRESSION MATRIX ETA ON X (STANDARDIZED)
T2 T4 T20 T21

1.00000
0.37672

T22

1.00000

ETA 1 -0.01468 -0.20014 0.34100 0.26772 0.73104
THE PROBLEM USED 8616 BYTES (= 0.3% OF AVAILABLE WORKSPACE)

TIME USED : 0.00 SECONDS
07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:53 Function I 1st Variate n=301 v=7

Preceding task required .41 seconds CPU time; 1.40 seconds elapsed.

101 0 SUBTITLE 'Function II 2nd Variate n=301 v=7'.
102 0 execute .

Preceding task required .01 seconds CPU time; .03 seconds elapsed.

103 0 LISREL
104 0 /"2b Second Function n=301 v=7"
105 0 /DA NI=7 NO=301 MA=KM
106 0 /MATRIX=IN(CR1)
107 0 /MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR
108 0 GA=FU,FI PH=SY,FR NX=2 NY=5 NK=2 NE=2
109 0 /VA 1.0 PH(1,1) PH(2,2)
110 0 /VA 1.0 LY(1,1) LY(1,2)
111 0 /VA 0.76757 LY(2,1)
112 0 /VA 2.34225 LY(3,1)
113 0 /VA 2.13559 LY(4,1)
114 0 /VA 3.17417 LY(5,1)
115 0 /FR LY(2,2) LY(3,2) LY(4,2) LY(5,2)
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116 0 /VA 0.06992 GA(1,1)
117 0 /VA 0.09682 GA(1,2)
118 0 /FR GA(2,1) GA(2,2)
119 0 /OU SS FS SL=1 TM=1200 ND=5

There are 3,027,680 bytes of memory available.
The largest contiguous area has 3,021,552 bytes.
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LISREL 7: ESTIMATION OF LINEAR STRUCTURAL EQUATION SYSTEMS
PROGRAM VERSION 7.16 DISTRIBUTED BY

SCIENTIFIC SOFTWARE, INC.
1369 NEITZEL ROAD
MOORESVILLE, INDIANA 46158
(317) 831-6336

THIS COPY AUTHORIZED FOR USE IN SPSS-X
PROGRAM COPYRIGHT 1977-89 BY SCIENTIFIC SOFTWARE, INC.,

(A MICHIGAN CORPORATION).
DISTRIBUTION OR USE UNAUTHORIZED BY SCIENTIFIC SOFTWARE, INC. IS PROHIBITED.

MVS -LISREL 7.16
BY

KARL G JORESKOG AND DAG SORBOM

THE FOLLOWING LISREL CONTROL LINES HAVE BEEN READ :

2b Second Function n=301 v=7
DA NI=7 N0 =301 MA=KM
KM FI=LSDDDTA FO
(5E14.6)
LA
T2 T4 T20 T21 T22 T6
MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR C
GA=FU,FI PH=SY,FR NX=2 NY=5 NK=2 NE=2

VA 1.0 PH(1,1) PH(2,2)
VA 1.0 LY(1,1) LY(1,2)
VA 0.76757 LY(2,1)
VA 2.34225 LY(3,1)
VA 2.13559 LY(4,1)
VA 3.17417 LY(5,1)
FR LY(2,2) LY(3,2) LY(4,2) LY(5,2)
VA 0.06992 GA(1,1)
VA 0.09682 GA(1,2)
FR GA(2,1) GA(2,2)
OU SS FS SL=1 TM=1200 ND=5
2b Second Function n=301 v=7

NUMBER OF INPUT VARIABLES 7

NUMBER OF Y - VARIABLES 5

NUMBER OF X - VARIABLES 2

NUMBER OF ETA - VARIABLES 2

NUMBER OF KSI - VARIABLES 2

NUMBER OF OBSERVATIONS 301
2b Second Function n=301 v=7

CORRELATION MATRIX TO BE ANALYZED
T2 T4 T20 T21

T7

T22 T6 T7

T2
T4

T20
T21
T22
T6
T7

1.00000
0.33986
0.28121
0.24334
0.28116
0.15293
0.13939

1.00000
0.32427
0.33099
0.30619
0.15864
0.07720

1.00000
0.38990
0.39474
0.34405
0.33672

1.00000
0.37672
0.32058
0.30204

1.00000
0.44758
0.46980

1.00000
0.73319 1.00000

2b Second Function n=301 v=7
PARAMETER SPECIFICATIONS

LAMBDA Y
ETA 1 ETA 2
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T2 0
T4 0

T20 0
T21 0
T22 0

GAMMA
T6

0
1

2

3

4

T7

ETA 1 0 0
ETA 2 5 6

PHI
T6 T7

T6 7

T7 8 9

THETA EPS
T2 T4 T20

T2 10
T4 11 12

T20 13 14 15
T21 16 17 18
T22 20 21 22

2b Second Function n=301 v=7

STANDARDIZED SOLUTION
LAMBDA Y

ETA 1 ETA 2

T2 0.15553 0.02842
T4 0.11938 0.11927

T20 0.36429 0.03311
T21 0.33215 0.04645
T22 0.49368 0.00077

GAMMA
T6 T7

ETA 1 0.44956 0.62251
ETA 2 1.40013 -1.33228

CORRELATION MATRIX OF ETA AND KSI
ETA 1 ETA 2 T6

SEM vs Canonical -37-

T21 T22

19
23 24

T7

ETA 1 1.00000
ETA 2 -0.00001 1.00000

T6 0.90598 0.42332 1.00000
T7 0.95212 -0.30572 0.73319 1.00000

REGRESSION MATRIX ETA ON X (STANDARDIZED)
T6 T7

ETA 1 0.44956 0.62251
ETA 2 1.40013 -1.33228

THE PROBLEM USED 8072 BYTES (= 0.3% OF AVAILABLE WORKSPACE)
TIME USED : 0.00 SECONDS

07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:54 Function II 2nd Variate n=301 v=7

Preceding task required .63 seconds CPU time; 1.45 seconds elapsed.

120 0 SUBTITLE 'Function II 1st Variate n=301 v=7'.
121 0 execute .

.03 seconds elapsed.Preceding task required .01 seconds CPU time;

122 0 LISREL
123 0 /"2a Second Function n=301 v=7"
124 0 /DA NI=7 NO=301 MA=KM
125 0 /MATRIX=IN(CR2) 40
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LISREL 7: ESTIMATION OF LINEAR STRUCTURAL EQUATION SYSTEMS
PROGRAM VERSION 7.16 DISTRIBUTED BY

SCIENTIFIC SOFTWARE, INC.
1369 NEITZEL ROAD
MOORESVILLE, INDIANA 46158
(317) 831-6336

THIS COPY AUTHORIZED FOR USE IN SPSS-X
PROGRAM COPYRIGHT 1977-89 BY SCIENTIFIC SOFTWARE, INC.,

(A MICHIGAN CORPORATION).
DISTRIBUTION OR USE UNAUTHORIZED BY SCIENTIFIC SOFTWARE, INC. IS PROHIBITED.

MVS -LISREL 7.16
BY

KARL G JORESKOG AND DAG SORBOM

THE FOLLOWING LISREL CONTROL LINES HAVE BEEN READ :

2a Second Function n=301 v=7
DA NI=7 NO=301 MA=KM
KM FI=LSDDDTA FO
(5E14.6)
LA
T6 T7 T2 T4 T20 T21 T22

MO BE=ZE PS=ZE TD=ZE LX=ID LY=FU,FI TE=SY,FR C
GA=FU,FI PH=SY,FR NX=5 NY=2 NK=5 NE=2

VA 1.0 PH(1,1) PH(2,2) PH(3,3) PH(4,4) PH(5,5)
VA 1.0 LY(1,1) LY(1,2)
VA 1.05093 LY(2,1)
FR LY(2,2)
VA -.00729 GA(1,1)
VA -.09934 GA(1,2)
VA 0.16926 GA(1,3)
VA 0.13288 GA(1,4)
VA 0.36285 GA(1,5)
FR GA(2,1) GA(2,2) GA(2,3) GA(2,4) GA(2,5)
OU SS FS SL=1 TM=1200 ND=5
2a Second Function n=301 v=7

NUMBER OF INPUT VARIABLES 7

NUMBER OF Y - VARIABLES 2

NUMBER OF X VARIABLES 5

NUMBER OF ETA - VARIABLES 2

NUMBER OF KSI - VARIABLES 5

NUMBER OF OBSERVATIONS 301
2a Second Function n=301 v=7

CORRELATION MATRIX TO BE ANALYZED
T6 T7 T2 T4 T20

,3) PH(4,4) PH(5,5)
VA 1.0 LY(1,1) LY(1,2)
VA 1.05093 LY(2,1)
FR LY(2,2)
VA -.00729 GA(1,1)
VA -.09934 GA(1,2)
VA 0.16926 GA(1,3)
VA 0.13288 GA(1,4)
VA 0.36285 GA(1,5)
FR GA(2,1) GA(2,2) GA(2,3) GA(2,4) GA(2,5)
OU SS FS SL=1 TM=1200 ND=5
2a Second Function n=301 v=7

NUMBER OF INPUT VARIABLES 7

NUMBER OF Y - VARIABLES 2

NUMBER OF X VARIABLES 5

NUMBER OF ETA - VARIABLES 2

NUMBER OF KSI - VARIABLES 5

NUMBER OF OBSERVATIONS 301
2a Second Function n=301 v=7

CORRELATION MATRIX TO BE ANALYZED
T6 T7 T2 T4 T21 T22T20

41 BEST COPY AVAILABLE

T21 T22



T6 1.00000
T7 0.73319 1.00000
T2 0.15293 0.13939 1.00000
T4 0.15864 0.07720 0.33986

T20 0.34405 0.33672 0.28121
T21 0.32058 0.30204 0.24334
T22 0.44758 0.46980 0.28116

2a Second Function n=301 v=7
PARAMETER SPECIFICATIONS

LAMBDA Y
ETA 1 ETA 2

1.00000
0.32427
0.33099
0.30619

SEM vs Canonical -39-

1.00000
0.38990
0.39474

T6 0 0
T7 0 1

GAMMA
T2 T4 T20 T21 T22

ETA 1 0 0 0 0 0
ETA 2 2 3 4 5 6

PHI
T2 T4 T20 T21 T22

T2 7

T4 8 9
T20 10 11 12
T21 13 14 15 16
T22 17 18 19 20 21

THETA EPS
T6 T7

T6 22
T7 23 24

2a Second Function n=301 v=7

STANDARDIZED SOLUTION
LAMBDA Y

ETA 1 ETA 2

T6 0.49635 0.05370
T7 0.52163 -0.03878

ETA 1
ETA 2

GAMMA

1.00000
0.37672

T2 T4 T20 T21 T22

-0.01469
-0.06706

-0.20014
1.00653

0.34101
0.02762

0.26771
0.17402

0.73104
-0.35972

1.00000

CORRELATION MATRIX OF ETA AND KSI
ETA 1 ETA 2 T2 T4 T20 T21 T22

ETA 1 1.00000
ETA 2 0.00001 1.00000

T2 0.28387 0.22399 1.00000
T4 0.21790 0.94015 0.33986 1.00000

T20 0.66493 0.26101 0.28121 0.32427 1.00000
T21 0.60625 0.36611 0.24334 0.33099 0.38990
T22 0.90109 0.00607 0.28116 0.30619 0.39474

REGRESSION MATRIX ETA ON X (STANDARDIZED)
T2 T4 T20 T21 T22

1.00000
0.37672

ETA 1 -0.01469 -0.20014 0.34101 0.26771 0.73104
ETA 2 -0.06706 1.00653 0.02762 0.17402 -0.35972

THE PROBLEM USED 9480 BYTES (= 0.3% OF AVAILABLE WORKSPACE)
TIME USED : 0.00 SECONDS

07-Dec-97 CANLISRL.SPS Holzinger & Swineford (1939) Data **
07:52:56 Function II 1st Variate n=301 v=7

1.00000
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