DOCUMENT RESUME

ED 418 095 TM 028 189
AUTHOR Ashcraft, Alyce S.

TITLE Ways To Evaluate the Assumption of Multivariate Normality.
PUB DATE 1998-04-11

NOTE 67p.; Paper presented at the Annual Meeting of the

Southwestern Psychological Association (New Orleans, LA,
April 11, 1998).

PUB TYPE Reports - Evaluative (142) -- Speeches/Meeting Papers (150)
EDRS PRICE MF01/PC03 Plus Postage.

DESCRIPTORS Chi Square; *Evaluation Methods; *Multivariate Analysis
IDENTIFIERS Graphic Representation; *Normality Tests; *Scattergrams
ABSTRACT

This paper reviews graphical and nongraphical methods for
estimating multivariate normality. Prior to exploring this methodology, a
foundation is established by presenting ways to assess univariate and
bivariate normality. A data set of three variables used by J. Stevens (1986)
is analyzed using Q-Q plots, stem and leaf plots, histograms, skewness, and
kurtosis coefficients, the Shapiro-Wilk statistic, and bivariate and
multivariate scatterplots. Multivariate normality is explored in terms of
calculating Mahalanobis distances and plotting them on a scattergram against
derived chi-square values using Fortran and Statistical Package for the
Social Sciences (SPSS) programs developed by B. Thompson (1990, 1997).
Appendixes, which comprise more than half the half, contain the SPSS
commands, two computer programs for the analysis, and some results of the
analyses. (Contains 24 figures and 11 references.) (Author/SLD)

X R 2222 2222222222232 2222222222 2 2 2 2222 o222 st o ittt S b

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
2 R 2R 2 R R 2R 2222 RS RSS2 RRR AR 2222 22 22 22 2 2 22ttt s

ERIC

Aruitoxt provided by Eic:



Multivariate Normality 1

Running head: MULTIVARIATE NORMALITY

ED 418 095

Ways to Evaluate the Assumption of Multivariate Normality
Alyce S. Ashcraft

The University of Texas at Austin

O s areh ShiH s PERMISSION TO REPRODUCE AND

EDMCATIONAL RESOURCES INFORMATION DISSEMINATE THIS MATERIAL
CENTER (ERIC) HAS BEEN GRANTED BY

D This document has been reproduced as

received from the person or organization A X
originating it. ﬂ») \JC/L ¢ M(Q
- L9

O Minor changes have been made to
improve reproduction quality.

®  Points of vi ini tated in thi
document 8o ot necessarly represent TO THE EDUCATIONAL RESOURCES
official OERI position or policy. INFORMATION CENTER (ERIC)

Paper presented at the annual meeting of the Southwestern Psychological Association,

New Orleans, April 11, 1998

MO8 (87

o BE
e ST COPY AVAILABLE 2

Aruitoxt provided by Eic:
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Abstract

The present paper reviews the graphical and nongraphical methods for estimating
multivariate normality. Prior to exploring this methodology, a foundation will first be established
by presenting ways to assess univariate and bivariate normality. A data set of three variables used
by Stevens (1986) is analyzed using Q-Q plots, stem and leaf plots, histograms, skewness and
kurtosis coefficients, the Shapiro-Wilk statistic, and bivariate and multivariate scatterplots.
Multivariate normality is explored in terms of calculating Mahalanobis distances and plotting them
on a scattergram against derived chi-square values using Fortran and SPSS programs developed

by Thompson (1990, 1997).
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Ways to Evaluate the Assumption of Multivariate Normality

Multivariate analyses are vital to the social sciences in the exploration of a dynamic
environment. Fish (1988) and Thompson (1994) stated that use of multivariate methods are vital
for two reasons. First, multivariate methods avoid the inflation of experimentwise Type I error
rates that occur when univariate methods are employed in a single study to test multiple
hypotheses that are at least partially uncorrelated. Secondly, and more importantly, multivariate
methods analytically honor a substantive reality in which most effects have multiple causes and
multiple consequences.

The trend toward utilization of multivariate methods has increased over the past two
decades, as noted by Emmons, Stallings, and Layne (1990) and Grimm and Yarnold (1995). The
former group of researchers studied 16 years of research reports in three journals and found that

the multivariate characteristic of the social science research environment with its

many confounding or intervening variables has been addressed through the trend

toward increased use of multivariate analysis of variance and covariance, multiple

regression, and multiple correlation. (p. 14)

The latter group of researchers noted that, “In the last 20 years, the use of multivariate statistics
has become commonplace. Indeed, it is difficult to find empirically based articles that do not use
one or another multivariate analysis” (p. vii).

Because these methods are gaining in popularity, it is important to understand the
assumptions underlying multivariate statistical techniques, one of which is multivariate normality.
It is imperative to remember that multivariate normality is basic to the statistical significance

inference procedure of multivariate analysis (Marascuilo& Levin, 1983). The purpose of the
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present paper is to review the graphical and nongraphical methods for estimating multivariate
normality. Prior to exploring this methodology, a foundation will first be established by
presenting ways to assess univariate and bivariate normality.
Normality
Parametric tests require the estimation of a least one population parameter from the
sample statistics. To make the estimation, certain assumptions must be made, the most important
of which is that the variable measured in the sample is normally distributed in the population to
which it is to be generalized (Munro & Page, 1993). Itis important to remember that the normal
curve is a mathematical model that depends upon the mean and the standard deviation, in the
restrictive sense that the mean and the standard deviation are used to calculate skewness and
kurtosis. Skewness and kurtosis quantitatively evaluate the normality of the distribution, with
skewness referring to the asymmetry of the curve and kurtosis referring to the tallness or flatness
of the curve (Bump, 1991).
Properties of the Normal Curve. The properties of the normal curve include the

following:

1. The curve is symmetrical The mean, median, and mode

coincide.

2. The maximum ordinate of the curve occurs at the mean, that s,

where z=01in a normal z score distribution, and the unit normal

curve is equal to .3989.

3. The curve is asymptotic. It approaches but does not meet the

horizontal axis and extends from minus infinity to plus infinity.

5
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4. The points of inflection of the curve occur at points plus or

minus one standard deviation unit above and below the mean. Thus

the curve changes from convex to concave in relation to the

horizonal axis at these points.

5. Roughly 68% of the area of the curve falls within the limits plus

or minus one standard deviation unit from the mean.

6. In the unit normal curve the limits z = +/- 1.96 include 95% and

the limits z = +/- 2 58 include 99% of the total area of the curve,

5% and 1% of the area, respectively, falling béyond these limits.

(Ferguson, 1976, p. 98)
Univariate Normality

Before proceeding to a discussion of multivariate normality, it is important to review
univariate and bivariate normality because “normality on each of the variable is a necessary but
not sufficient condition for multivariate normality to hold” (Stevens, 1996, P. 243). Analysis of
variance (ANOVA) tests whether between group means differ and has as one of its assumptions
that the dependent variable should be normally distributed. ANOVA is robust with respect to the
normality assumption and skewness has very little effect (generally only a few hundredths) on
level of significance or power if the design is “balanced” (i.e., equal number of observations per
cell). Platykurtosis (flattened distribution relative to the normal distribution) attenuates power
(Stevens, 1996).
Univariate tests for assessing normality may be graphical and nongraphical. To graphically

determine univariate normality, a Q-Q Plot (quantile-versus-quantile), compares observed values
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with expected normal distribution values. In these plots, scores are ranked and sorted. An
expected normal value is computed and compared with the actual normal values for each case.
The expected normal value is the position a case with that rank holds in a normal distribution; the
normal value is the position it holds in the actual distribution. If the actual distribution is normal,
the points for the cases fall along the diagonal running from lower left to upper right, with some
minor deviations secondary to random processes (Tabachnick & Fidell, 1989).

Figure 1 graphically displays a variable with one hundred responses in increasing order of
magnitude plotted against expected normal distribution values. Normality is tenable in this
instance because the plot resembles a straight line. Figure 2 is an arrangement of 50 responses for
a variable in increasing order of magnitude plotted against expected normal distribution values.
Normality is not tenable in this instance because the plot does not resemble a straight line. Only
two points are plotted when n = 50. In this instance, other pictorial representations assist in the
determination of normality.

Q-Q plots are available using the graphs menu on SPSS (Appendix A). SPSS also
provides stem and leaf plots (e.g., Figure 3) and histograms (e. g., Figure 4) for visualization of
normality. The normal curve, as presented in basic statistical texts, is more readily visualized in
stem and leaf plots and histograms. Figures 3 and 4 demonstrate the classic bell curve using the
one hundred responses denoted in Figure 1. Figures 5 and 6 fail to demonstrate normality using
the 50 responses denoted in figure 2. It is important to remember that with small or moderate
sample sizes, it may be difficult to tell whether graphic non-normality is real or apparent
(Gnanadesikan, 1977, Neter, Kutner, Nachtsheim, & Wasserman, 1996; Norusis, 1995).

The most powerful non-graphic tests for determining univariate normality includes the
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skewness and kurtosis coeflicients and the Shapiro-Wilk test (Stevens, 1996). In SPSS, this
information can be obtained with the Explore procedure (Appendix A). Note that SPSS will print
the Shapiro-Wilk for samples with less than 50 observations and the K-S Lilliefors statistic for
samples with greater than 50 observations. Table 1 shows the SPSS Descriptives printout for
data with 100 responses and Table 2 shows the SPSS Descriptives printout for data with 26
responses.

Fisher’s Measure of Skewness. This statistic is based on deviations from the mean to the

third power. A symmetrical curve will result in a value of 0. If the skewness value 1s positive,
then the curve is skewed to the right, and vice versa. Dividing the measure of skewness by the
standard error for skewness results in a number that is interpreted in terms of the normal curve.
Values above +1.96 or below -1.96 are statistically significant because 95% of the scores in the
normal distribution fall between +1.96 and -1.96 standard deviations from the mean. Because this
statistic is based on deviations to the third power, it is very sensitive to extreme values (Munro &
Page, 1993). The coefficients in Tables 1 and 2 are not statistically significant.

Fisher’s Measure of Kurtosis. This statistic indicates whether a distribution is too flat or

too peaked, being based on deviations of the mean to the fourth power. If the kurtosis value is
positive, the distribution is too peaked to be normal; if the kurtosis value is negative, the curve is
too flat to be normal. The kurtosis statistic is divided by the standard error for kurtosis and the
values compared to the +/- 1.96 range used to determine skewness (Munro & Page, 1993). The
coefficients in Tables 1 and 2 are not statistically significant.

Shapiro-Wilk Test. Shapiro and Wilk developed a test for normality that is sensitive to a

wide variety of alternatives to the normal. Small values of W correspond to departure from
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normality. If observed significance levels are reasonably large (greater than 0.1), normality is not
an unreasonable assumption (Gnanadesikan, 1977). The Shapiro-Wilk statistic in Table 2 is
sufficiently large so that the assumption of normality is tenable.

Bivariate Normality

The normal correlation model for the case of two variables is based on the bivariate
normal distribution. Consider the vocabulary (X,) scores and math (X,) scores for a group of
students from Table 3. The student’s score combinations form a scatter diagram (Figure 7). The
centroid, (X; = 17.6. X, = 16.1), is the center of the 10 cases (Tatsuoka, 1971b). If there was a
large population of students, a clustering of points would be expected around the centroid with a
gradual thinning as the distance away from the centroid continues. To depict this in a manner
analogous to t.he normal curve, a third dimension, frequency, is needed perpendicular to the (X,,
X,) plane.

The surface will resemble a bell shaped “mound” similar to Figures 8, 9, 10, and 11, with
the apex vertically above the centroid (Karson, 1982, Neter, Kutner, Nachtsheim, & Wasserman,
1996, Tatasuoka, 1971a, 1971b). For every pair of values (X,, X,), the density f (X,, X,)
represents the height of the surface at that very point. The surface is continuous, with probability
corresponding to the volume under the surface (Neter, Kutner, Nachtsheim, & Wasserman,
1996). Though this conveys a general impression, it is customary to represent the bivariate curve
with a series of contour lines. These contour lines (Figure 12) are a series of concentric ellipses
and their common center is the centroid. The statistical implication of the volume under the
bivariate normal surface of a given elliptical region is parallel to the meaning of the area under the

normal curve over a given interval. It represents the probability that a random bivariate
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observation, when plotted as a point on the (X,, X,) plane, will lie within the elliptical region. For
example, in Figure 12, an observation that falls in the small ellipse has an 80% chance of being
included in the sample because it is close to the mean, whereas an observation that falls in the
large ellipse has a 20% chance of being included in the sample because it is far from the mean
(Morrison, 1983). The contour is a cross section of the surface made by a plane parallel to the
(X,, X;) plane. Thinking must still be three dimensional because the bell shaped “mound” is
being sliced into sections, with the top part of the “mound” being the top of the normal curve and
the bottom part of the “mound” being the bottom of the normal curve. Thus, bivariate normality
is checked by graphing X, and X, and noting the scatter of the variables around the centroid. The
pattern should be elliptical (Karson, 1982, Neter, Kutner, Nachtsheim, & Wasserman, 1996,
Tatasuoka, 1971a, 1971b).

Multivariate Normality

Multivariate normality is assessed to verify the reasonableness of assuming normality for a
given body of multiresponse questions. As can be imagined, there are many possibilities for
departure from normality with multiresponse data. A preliminary step in evaluating the normality
of multiresponse data is to evaluate univariate normality for each of the variables. In the printout
of the MULTINOR Program written by Thompson (1990) (Appendix B), univariate normality for
each of the three variables was checked using Q-Q Plots, stem and leaf plots, histograms, the
Shapiro-Wilk’s statistic, and skewness and kurtosis coefficients (Figures 13 through 21; Tables 4
and 5). The Q-Q plots of the three variables (Figures 13, 14, and 15) show that normality is
tenable for variable one because the plot resembles a straight line but normality is not as tenable

for variables two and three because the plots do not resemble a straight line. The stem and leaf

10
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plot and histogram of variable one (Figures 16 and Figure 19) reveal a somewhat normal
distribution while the stem and leaf plots and histograms of variables two (Figures 17 and 20) and
three (Figures 18 and 21) reveal negatively skewed and trimodal distributions respectively. The
descriptives data (Tables 4 and 5) reveal skewness and kurtosis statistics that are not statistically
significant for all three variables and Shapiro-Wilk statistics that are significantly large for
variables one and three to make the normality assumption not unreasonable. Univariate normality
cannot be assumed for these variables. Remember that univariate normality was discussed
because “normality on each of the variables separately is a necessary, but not sufficient, condition
for multivariate normality to hold” (Stevens, 1996, p. 243).

Next, for normality to hold, any linear combinations of the variables must be normally
distributed and all subsets of the set of variables must have multivariate normal distributions. This
condition implies that all pairs of variables must be bivariate normal (Stevens, 1996). Bivariate
normality was checked for in the MULTINOR data (Appendix B) by requesting scatterplots and
noting elliptical patterns for the three possible combinations of the variables (Figures 22 through
24). A cursory view of the patterns around the centroids does not reveal a clear elliptical pattern.
Measuring and connecting the variables to form elliptical patterns based on percentages (80%,
60%, 40%, and 20%) of variables around the centroid assists in visualizing the ellipses.

The data can finally be checked for multivariate normality by calculating the Mahalanobis
distance (D?) for each subject (Thompson, 1990). The Mahalanobis distance is the distance of a
case from the centroid of the remaining cases where the centroid is the point defined by the means
of all the variables (Tabachnick & Fidell, 1989). Basically, it indicates how far a case is from the

centroid of all cases for the predictor variables. A large distance indicates an observation that is
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an outlier for the predictors. The Mahalanobis distance is the accepted measu.re of distance
between two (quantitative) multivariate populations and is indépendent of sample size
(Krzanowski, 1988; Stevens, 1996).

In the MULTINOﬁ printout, (Appendix B) the D* can bé calculated for each subject using
thé formula D% = (x, - x)’ S (x; - x) where x; is the vector of data for case i and x is the vector of
means (centroid) for the predictors. Using the data for subject eight from the MULTINOR

printout, the equation for subject eight-would be as follows (numbers are rounded to the nearest

tenth):
D?, = (3.-09,05) /057 -012 03N p3\ = 069408
012 033 -0.26 [-09
037 -026 092/\05
| X3  3X3 3x| | ¥ |
™ 47T T T Tt 2= A

Based on the formula, the matrices are 1 x 3, 3 x 3, and 3 x 1. To determine the numbers for the
equation, first subtract the mean of each variable from the scores of the lselected subject to form
the 1 x 3 and 3 x 1 matrices and use the inverted variance/covariance matrix from the printout for
S The results will match the Mahalanobis distances given on the second page of the
MULTINOR printo_ut. After the distances are calculated, the values are sorted in ascending order
and paired with a derived chi-square value [(j - 0.5)/n = percentile for the chi-square]. A table or
computer program is required to determine p values because each chi square is not at the standard
0.01 or 0.05 levels (see the second page of the MULTINOR printout). The pairs are then plotted
in a scattergram (see the third page of the MULTINOR printout). If n (number of subjects in the

sample) - p (number of variables) is greater than 25, the plot should resemble a straight line.
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Conceptually, it is important to remember that the inverted variance/covariance matrix serves as a
constant in the equation. Just by looking at the 1 x 3 and 3 x 1 matrices and their relation to the
centroid, deciding where a subject will fall on a graph is possible. Order inferred distance can be
estimated without the inverted variance/covariance matrix.

Looking at the MULTINOR scatterplot (Appendix B), each subject can be identified.
Subject 8 is the first * in the lower left hand corner because the D*/chi square value is the closest
to the centroid; subject 17 is the * in the far upper right hand corner because the D*chi square
value is fartherest from the centroid (0/0). Again, distance indicates how far the case is from the
centroid and if the plot resembles a straight line, normality is more tenable. The Mahalanobis
distance represents the coordinate for the three means. In a multivariate normal curve, the cases
will cluster around the centroid and taper off as the distance increases.

Thompson (1997) wrote an SPSS program to test multivariate normality graphically
(Appendix C). Note the commands on the first page of the program. Page two of the program
lists all of the variables for the data set and their means. On page three of the program, the
Mahalanobis statistics are listed with the residual statistics. Page four details the Mahalanobis
Distances for each subject in ascending order (subject number six is first; subject number three is
last). The distances are paired with Chi Square values and graphed (page six).

Homogeneity of Variance-Covariance Matrices

An indirect way to assess multivariate normality is to test the assumption that the
variance-covariance matrices within each cell of the design are sampled from the same population
variance-covariance matrix. If the matrices are sampled from the same population, they can

reasonably be pooled to create a single estimate of error. Evaluation of homogeneity of variance-
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covariance matrices in especially important when sample sizes are not equal.

SPSS MANOVA conducts a Box’s M test to determine homogeneity of the variance-
covariance matrices. The null hypothesis for the Box’s M test is that the variance-covariance
matrices are not statistically significant, therefore a p value of greater that 0.05 is desired. If the
assumption for multivariate generalization of homogeneity of variance is met, then it is likely that
the assumption for multivariate normality is also met. This paper will not discuss in depth the
relationship between normality and homogeneity and refers the reader to Tabachnick and Fidell
(1989) for further exploration.

Conclusion

Although multivariate normality is not required to estimate most multivariate parameters
(e.g., function coefTicients, structure coefficients), even in these cases the distributions of the
variables must be reasonably comnparable. To test for multivariate normality, univariate and
bivariate assumptions should be met in addition to calculating Mahalanobis distances and plotting
them against a derived chi-square value to note their linearity. If the assumption for multivariate
normality is met solely through calculation of Mahalanobis distances and graphically noting
linearity, then the assumptions for univariate and bivariate normality are met. However, if data
are determined to be univariate and bivariate normal, it may not be assumed to be multivariate
normal. Computer programs are available to ease calculations to determine normality, including

Thompson’s Multinor (1990, 1997) program.
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Appendix A

SPSS Commands

PPLOT
/NARIABLES=0ne
MNOLOG
MNOSTANDARDIZE
TYPE=Q-Q
/[FRACTION=BLOM
/TIES=MEAN
MDIST=NORMAL.

GRAPH
MISTOGRAM=0ne.

EXAMINE
VARIABLES=0ne two three
/PLOT BOXPLOT STEMLEAF HISTOGRAM NPPLOT
ICOMPARE GROUP
/STATISTICS DESCRIPTIVES
/ICINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.

GRAPH _
/SCATTERPLOT(BIVAR)=0ne WITH three
MISSING=LISTWISE.

PLOT
NERTICAL='"VARIABLE ONE’ REFERENCE (6.4)
/HORIZONTAL='VARIABLE THREE' REFERENCE (6.7)
/PLOT=ONE WITH THREE.

GRAPH
/SCATTERPLOT(BIVAR)=0one WITH two
/MISSING=LISTWISE.

PLOT
NVERTICAL='"VARIABLE ONE’ REFERENCE (6.4)
/HORIZONTAL="VARIABLE TWO' REFERENCE (6.9)
/PLOT=ONE WITH TWO.

GRAPH :

/SCATTERPLOT(BIVAR)=two WITH three
MISSING=LISTWISE.

PLOT
NVERTICAL='VARIABLE TWO' REFERENCE (6.9)
/HORIZONTAL="VARIABLE THREE' REFERENCE (6.7)
/PLOT=TWO WITH THREE,

18
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Appendix C

multino2.aer 10/11/97

multinor.sps

SET BLANKS=SYSMIS UNDEFINED=WARN printback=list.

TITLE ‘MULTINOR.SPS tests multivar normality graphically****‘.
COMMENT i*ii*iiii***i*i*i*iiii**i*****i***i*ii**ii*i****i*ii*ii.
COMMENT The original MULTINOR computer program was presented,
COMMENT with examples, in:

COMMENT Thompson, B. (1990). MULTINOR: A FORTRAN program that
COMMENT assists in evaluating multivariate normality.

COMMENT _Educational and Psychological Measurement_, 50,
COMMENT 845-848.

COMMENT

COMMENT The logic and the data source for the example are from:
COMMENT Stevens, J. (1986). _Applied multivariate statistics
COMMENT for the social sciences. Hillsdale, NJ: Erlbaum.
COMMENT (pp. 207-212)

COMMENT ***********************************************************.

COMMENT Here there are 3 variables for which multivariate
COMMENT normality is being confirmed.
DATA LIST

FILE='c:\spsswin\multinor.dat’ FIXED RECORDS=1 TABLE

/1 x1 1-3 (1) x2 5-7 (1) x3 9-11 (1)-
list variables=all/cases=9999/format=numbered .
COMMENT ‘y’ is a variable automatically created by the program, and
COMMENT does not have to modified for different data sets.
compute y=$casenum .
print formats y(FS) .
regression variables=y x1 to x3/

descriptive=mean stddev corr/

dependent=y/enter x1 to x3/

save=mahal (mahal) .
sort cases by mahal(a) -
execute .
list variables=xl to x3 mahal/cases=9999/format=numbered .
COMMENT In the next TWO lines, for a given data set put the actual
COMMENT in place of the number ‘12’ used for the example data set.
loop #i=1] to 12 .
COMMENT 1In the next line, change ‘3’ to whatever is the number
COMMENT of variables.
COMMENT The p critical value of chi square for a given case
COMMENT is set as [the case number ({(after sorting) - .5] / the
COMMENT sample size].
compute p=($casenum - .5) / 12. .
compute chisgq=idf.chisq(p,3) -
end loop .
print formats p chisqg (F8.5) .
list variables=y p mahal chisq/cases=9999/format=numbered .
plot

vertical=‘chi square’/ . :

horizontal=‘Mahalabis distance’/

plot=chisq with mahal .

multinor.dat
2.4 2.1 2.4
3.5 1.8 3.9
6.7 3.6 5.9
5.3 3.3 6.1
5.2 4.1 6.4
3.2 2.7 4.0
4.5 4.9 5.7
3.9 4.7 4.7
4.0 3.6 2.9
5.7 5.5 6.2
2.4 2.9 3.2
2.7 2.6 4.1

ERIC
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multinor.lst
-> SET BLANKS=SYSMIS UNDEFINED=WARN printback=liat.

-> TITLE ‘MULTINOR.SPS tests multivar normality graphically#*#*+**’.

*********t***t**t**********************************t***.

-> COMMENT
-> COMMENT The original MULTINOR computer program was presented,

-> COMMENT with examples, in:

-> COMMENT Thompson, B. (1990). MULTINOR: A FORTRAN program that
-> COMMENT assists in evaluating multivariate normality.

-> COMMENT _Educational and Psychological Measurement_, 50,

-> COMMENT 845-848.

-> COMMENT

-> COMMENT The logic and the data source for the example are from:
-> COMMENT Stevens, J. (1986). _Applied multivariate statistics
-> COMMENT for the social sciences. Hillsdale, NJ: Erlbaum.

-> COMMENT (pp. 207-212) '

*********t***t***t**************t************************tt.

-> COMMENT

-> COMMENT Here there are 3 variables for which multivariate
-> COMMENT normality is being confirmed.

-> DATA LIST
-> FILE='c:\spsswin\multinor.dat’ FIXED RECORDS=1 TABLE
-> /1 x1 1-3 (1) x2 5-7 (1) x3 9-11 (1).

-> list variables=all/cases=9999/format=numbered .

X1 X2 X3
1 2.4 2.1 2.4
2 3.5 1.8 3.9
3 6.7 3.6 5.9
4 5.3 3.3 6.1
5 5.2 4.1 6.4
6 3.2 2.7 4.0 \(
7 4.5 4.9 5.7
8 3.9 4.7 4.7
9 4.0 3.6 2.9
10 5.7 5.5 6.2
11 2.4 2.9 3.2
12 2.7 2.6 4.1

Number of cases read: 12 Number of cases listed: 12

-> COMMENT ‘y‘ is a variable automatically created by the program, and
—-> COMMENT does not have to modified for different data sets.

-> compute y=$casenum .
-> print formats y(F5) .

-> regression variables=y x1 to x3/
-> descriptive=mean stddev corr/
-> dependent=y/enter x1 to x3/
-> save=mahal (mahal) .

ok kR MULTIPLE REGRESSION L

Listwise Deletion of Missing Data
Mean Std Dev Label

Y 3.606
X1 1.384
X2 1.147
X3 1.406

ERIC
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N of Cases = 12
Correlation:

Y X1 X2
Y 1.000 -.207 .376
X1 -.207 1.000 .606
X2 .376 . 606 1.000
X3 -.044 . 845 .656

* % K K

MULTIPLE

Equation Number 1 Dependent Variable..

Y

Descriptive Statistics are printed on Page

Block Number 1. Method: Enter

Variable(s) Entered on Step Number

1

8

X3
.044
.845
.656
.000

REGRESSION

3
X3

v
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% % % %

1.. X3

2.. X2

3.. X1 P} M
Multiple R .66417 )}\o\d &
R Square .44112-7
Adjusted R Square .23154 lﬂ‘\\
Standard Error 3.16069 '
Analysis of Variance

DF Sum of Squares Mean Square

Regression 3 63.08053 21.02684
Residual 8 79.91947 9.98993
F = 2.10480 Signif F = .1780
-— variables in the Equation
Variable B SE B Beta T Sig T
X1 -1.909097 1.296480 -.733029 -1.473 .1791
X2 2.445453 1.110369 .778083 2.202 .0588
X3 .165296 1.345478 .064454 .123 .9053
(Constant) 5.092203 3.454771 1.474 .1787

End Block Number 1

* Kk * % MULTIPLE

Equation Number 1 Dependent Variable.. Y
Residuals Statistics:

Min Max Mean Std Dev
*PRED 2.0801 9.9172 6.5000 2.3947
*ZPRED -1.8457 1.4270 .0000 1.0000
*SEPRED 1.2118 2.4798 1.7932 .3534
*ADJPRED .6074 10.6661  6.2406 2.9511
*RESID -5.0425 5.0265 .0000 2.6954
*ZRESID -1.5954 1.5903 .0000 .8528
*SRESID -1.9334 1.8781 .0291 1.0420
*DRESID -7.4057 7.0104 .2594 4.0901
*SDRESID -2.4778 2.3496 .0287 1.2152
*MAHAL .7004 5.8543 2.7500 1.5070
*COOK D . 0000 .4543 .1364 .1713
*LEVER .0637 .5322 .2500 .1370
Total Cases = 12

3

RIC

All requested variables entered.

REGRESSION

33
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*****************************

From Equation 1: 1 new variables have been created.
Name Contents
MAHAL Mahalanobis’ Distance

-> sort cases by mahal(a) -
-> execute .

—> list variables=xl to x3 mahal cases=9999/format=numbered .

MAHAL
.70038 St
1.65042
1.98854
2.17303
2.19634
2.22174
2.37118
2.53196
2.59346
3.12622
5.59246
5.85428 9

»

»d
WON_MOHINHNAENOW

NONANWUINONANKE
»

WO sWN -

e o e e s e

¢« o 0 o s e o o 0
COMFOWWOUANKHWOUNN

)

10
11
12

obdUINWLWUNAENWLINDW
WWUMNHEFWANDANN
nNnoNhwondbdoOWwWa

Number of cases read: 12 tumBer of cases listed: 12

-> COMMENT In the next TWO lines, for a given data set put the actual
-> COMMENT in place of the number ©12¢ used for the example data set.

-> loop #i=1 to 12 .

-> COMMENT In the next line, change ‘3’ to whatever is the number

-> COMMENT of variables.
-> COMMENT The p critical value of chi square for a given case

-> COMMENT is set as [the case number (after sorting) - .5] / the
-> COMMENT sample size].

N\
-> compute p=($casenum — .5) / 12. . /%3
-> compute chisg=idf.chisq(p,3) - gﬁs; \
-> end loop . ’3"@)
W

-> print formats p chisq (F8.5)

-> list variables=y p mah chisq/cases=99§9/format=numbered .
)4

Y MAHAL . CHISQ

1 6 .04167 .70038 .30897
2 11 .12500 1.65042 .69236
3 S .20833 1.98854 1.03962
4 8 .29167 2.17303 1.38807
S 12 .37500 2.19634 1.75398
6 7 .45833 2.22174 2.15099
7 4 .54167 2.37118 2.59519
8 2 .62500 2.53196 3.10983
9 1 .70833 2.59346 3.73392
10 10 .79167 3.12622 4.54475
11 9 .87500 5.59246 5.73941
12 3 .95833 5.85428 8.22056

Number of cases read: -12 Number of cases listed: 12
4

ERIC 3
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-> plot

-> vertical=’chi square’/

-> horizontal=‘Mahalabis distance’/
-> plot=chisg with mahal .

Hi-Res Chart # 6:Plot of chisg with mahal

o
ERIC 35
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Table 1

SPSS Descriptives Printout for a Variable with 100 Responses Demonstrating Normality

X
Valid cases: 100.0 Missing cases: .0 Percent missing: .0
Mean .0000 Std Err .1005 Min -2.6000 Skewness .0000
Median - .0000 Variance 1.0099 Max 2.6000 S E Skew .2414
5% Trim .0000 Std Dev 1.0049 Range 5.2000 Kurtosis -.0900
95% CI for Mean (-.1994, .1994) IQR 1.4000 S E Kurt .4783
Statistic df Significance
K-S (Lilliefors) .0253 100 > .2000

37




Table 2
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SPSS Descriptives Printout for a Variable with 26 Responses Failing to Demonstrate Normality

ONE

Valid cases:

Mean 6.4038
Median 6.0500
- 5% Trim 6.2791

95% (I for Mean (5

Shapiro-Wilks
K-S (Lilliefors)

26.0 Missing cases:

Std Err L4171

Variance 4,.5228

Std Dev 2.1267
.5449, 7.2628)

Statistic

.9424
.1151

Min
Max
Range
IQR

df

26
26

38

.0 Percent missing:

2.9000 Skewness
12.5000 S E Skew
9.6000 Kurtostis
2.8250 S E Kurt

Significance

.2169
> . 2000

.9959
. 4556
1.6858
. 8865
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Table 3

Vocabulary and Math Scores from 10 students

Pupil Number Vocabulary Test (X,) Math Test (X,)
! 19 15
2 20 18
3 17 18
4 16 12
> 19 16
6 17 16
! 18 13
8 17 20
2 15 17
10 18 6
Mean 17.6 16.1
BEST COPY AVAILABLE
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Table 4

SPSS Descriptives Printout forVariables One, Two, and Three of Multinor data

i Skbstc 31d. Error
ONE Mean 6.4038 4171
85% Confidence Lower Bound 5.5449
Interval for Mean Upper Bound 72628
5% Trimmed Mean 8.2791
Median 6.0500
Variance 4523
Std. Deviation 2.1267
Minimum 2.90
Maximum : 12.50
Range 9.60
Interquartile Range 28250
Skewness 996 456
Kurtosis 1.686 .887
TWO Mean : 6.8692 5338
95% Confidence Lower Bound 5.7695
| for Mean Upper Bound 7.9689
5% Trimmed M_ean 6.8474
Median 7.1000
Variance 7.413
Std. Doviation 2.7226
Minimum 3.00
Maximum 1120
Range 820
Intarquartile Range s6750
Skewness .069 456
Kurtosis .1.380 887
THREE Mean 6.7154 3568
95% Confidence Lower Bound 5.9805
for Mean Upper Bound 7.4502
5% Trimmed Mean 6.
Madian 6.5500
Varance 3.310
Std. Deviation 18194
Minimum 420
Maximum 11.00
Range 6.80
interquartile Range 29750
Skewness 344 458
Kurtosis -.506 .887
O
ERIC BEST COPY AVAILABLE .
40
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Table S

Tests of Normality for Variables One, Two, and Three

=Raﬁogorov T Wk—
Statistic of Sig. Statistic df Sig.
ONE 115 2 . 200° 542 26 217
TWO 122 26 .200° 925 26 .069
THREE .094 26 200" .950 26 310

°. This is a lower bound of the true significance.
& Litliefors Significance Correction

BEST COPY AVAILABLE
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Figure Captions
Figure 1. Q-Q plot of 100 responses to a variable demonstrating normality.
Figure 2. Q-Q plots of 50 responses to a variable failing to demonstrate normality.
Figure 3. Stem and leaf plot of 100 responses to a variable demonstrating normality.
Figure 4. Histogram of 100 responses to a variable demonstrating normality.
Figure 5. Stem and leaf plots of 50 responses to a variable failing to demonstrate normality.
Figure 6. Histograms of 50 responses to a variable failing to demonstrate normality.
Figure 7. Scattergram of vocabulary and math scores.

Note. From Selected Topics in Advanced Statistics: An Elementary Approach (p.15), by M.

Tatsuoka, 1971, Champaign, Illinois: The Institute for Personality and Ability Testing. Copyright
1971 by the Institute for Personality and Ability Testing.

Figure 8. Graphical representation of a bivariate normal distribution (1)

Note. From Selected Topics in Advanced Statistics: An Elementary Approach (p.16), by M.
Tatsuoka, 1971, Champaign, Illinois: The Institute for Personality and Ability Testing. Copyright
1971 by the Institute for Personality and Ability Testing.

Figure 9. Graphical representation of a bivariate normal distribution (2)

Note. From Multivariate Analysis: Techniques for Educational Psychological Research (p. 64),

by M. Tatsuoka, 1971, New York: John Wiley & Sons. Copyright 1971 by John Wiley & Sons
Inc.
Figure 10. Graphical representation of a bivariate normal distribution 3)

Note. From Multivariate Statistical Methods: An Introduction (p. 52), by M. Karson, 1982,

Ames, Iowa: The Iowa State University Press. Copyright 1982 by The lowa State University

42
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Press.
Figure 11. Graphical representation of a bivariate normal distribution (4)

Note. From Applied Linear Statistical Models (p. 633), by J. Neter, M. Kutner, C. Nachtsheim,

and W. Wasserman, Chicago: Irwin. Copyright 1996 by Times Mirror Higher Education Group,
Inc.
Figure 12. Contour diagram for a bivariate normal surface

Note. From Applied Linear Statistical Methods (p. 26), by D. Morrison, 1983, Englewood Cliffs,

New Jersey: Prentice-Hall, Inc. Copyright 1983 by Prentice-Hall, Inc.
Figure 13. Q-Q plot of variable one of Multinor data

Figure 14. Q-Q plot of variable two of Multinor data

Figure 15. Q-Q plot of variable three of Multinor data

Figure 16. Stem and leaf plot of variable one of Mulitinor data
Figure 17. Stem and leaf plot of variable two of Mulitinor data
Figure 18. Stem and leaf plot of variable three of Mulitinor data
Figure 19. Histogram of variable one of Multinor data

Figure 20. Histogram of variable two of Multinor data

Figure 21. Histogram of variable three of Multinor data

Figure 22. Scattergram of variables one and three of Multinor data
Figure 23. Scattergram of variables one and two of Multinor data

Figure 24. Scattergram of variables two and three of Multinor data



Normal Q-Q Plot of X

Expected Normal Value
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Expected Normal Value

Expected Normal

4.5

4.0+

3.5

Normal Q-Q Plot of VAR00001

3.09 -

2.5

Observed Value

Normal Q-Q Plot of VAR00002

1.8 2.0 22 24 26 2.8 3.0

Observed Value
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Frequency Stem & Leaf

1.00 -2 . 6
2.00 -2 * 02
4.00 -1 . 5678
10.00 -1 * 0011223344
15.00 -0 . 555666777888999
16.00 -@ * 1111222233334444
20.00 0 * 00001111222233334444
15.00 @ . 555666777888999
10.00 1 * 0011223344
4.00 1. 5678
2.00 2 * 02
1.00 2. 6
Stem width: 1.00
Each leaf: 1 case(s)

46




30

Std. Dev = 1.00
Mean = 0.00
wow N = 100.00

-2.50 -1.50 -.50 .50 1.50 2.50
-2.00 -1.00 0.00 1.00 2.00

4’y




VAR00001 Stem-and-Leaf Plot

Frequency Stem & Leaf
25.00 1 0000000000000000000000000
.00 1
.00 2
.00 2 .

.00 3
.00 3
.00 4
.00 4

25.00 S 0000000000000000000000000

Stem width: 1.00

Each leaf: 1l case(s)

VAR00002 Stem-and-Leaf Plot

Frequency Stem & Leaf
25.00 2 0000000000000000000000000
.00 2
.00 2
.00 2
.00 2
25.00 3 0000000000000000000000000
Stem width: 1.00
Each leaf: 1 case(s)

48



Histogram

30
20
10
g, Std. Dev=2.02
- 3 Mean=3.0
g . N =150.00
2.0 4i0
VARO00001
Histogram
30
20
>
o
2 Std. Dev = .51
3 Mean = 2.50
g
s 0 ' N =50.00
2.00 2.50 3.00
VARO00002
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Normal Q-Q Plot of ONE

1
0 £

-1 a

Expected Normal

&

Observed Value

Ut
o

o0 4

14



Expected Normal

Normal Q-Q Plot of TWO

2.0
1.5+
1.04

S+

0.0 4

&

-1.09

R »

.'2._53

-1.51
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Expected Normal

Normal Q-Q Plot of THREE

1.54

1.04
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Frequency Stem & Leaf
1.00 2. 9
1.00 3. 3
5.00 4 . 26888
5.00 S . 22678
5.00 6 . 01279
4.00 7 . 1267
3.00 8 . 136

.00 9 .
1.00 10 . 6
1.00 Extrenmes (12.5)
Stem width: 1.00
Each leaf: 1 case(s)

r
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Frequency Stem & Leaf

6.00 3 . 003778
2.00 4 . 16
3.00 5 . 378
1.00 6. 0
5.00 7 . 11277
1.00 8§ . 4
4.00 9 . 3777
2,00 10 . 369
1.00 11. 2

Stem width: 1.00

Each leaf: 1 case(s)




Frequency Stem & Leaf

6.00 4 . 223379
3.00 5. 345
6.00 6 . 222479
3.00 /7 . 228
7.00 8 . 1147999
.00 9 .
.00 10 .
1.00 211 . 0
Stem width: 1.00
Each leaf: 1 case(s)




Variable One

~J

Std. Dev = 2.13
3%":"“""“""“:';} Mean = 6.4
SN =26.00

ONE

P

(o)
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