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GRAPHICS CALCULATORS USE IN PRECALCULUS

AND ACHIEVEMENT IN CALCULUS

Pedro Gomez, Felipe Fernandez

"una empresa docente" University of los Andes, Colombia*

Most studies on the effects of graphics calculators on students' achievement in
precalculus use specially designed tests that are implemented immediately after
the introduction of the technology. In many cases, the way the new technology is
integrated into the curriculum is not taken into account. This study analyzed the
achievement on calculus of students who took a curriculum innovation in a pre-
calculus course that involved graphics calculators use. Even though no differ-
ences were found between the noncalculators and calculators groups at the
adaptation phase, significant differences were found between these two groups
at the consolidation phase, and between the calculators groups of the adapta-
tion and consolidation phases.

Introduction
Current research on the use and effects of graphics calculators suggests mixed results
(Penglase and Arnold, 1996). Some studies show that graphics calculators can
enhance the learning of functions and graphing concepts and the development of spa-
tial visualization skills. They can also promote a shift from symbolic manipulation to
the graphical investigation and examination of the connections among the several rep-
resentation systems associated to a given concept. Nevertheless, other studies show
that graphics calculators use might not promote the development of some necessary
skills and in some cases may result in some "deskilling". Most studies use specially
designed tests to assess the effects of graphics calculators use. These tests are adminis-
tered immediately after the experience and no follow-up is presented. Furthermore, in
many cases it is difficult to distinguish between the effects of the graphics calculator as
a tool and the effects of the instructional process in which its use was involved. There
has been little attention paid to the effects of graphics calculators use depending on the
level of integration of the tool into the curriculum.

In this study we were concerned about the effects on students' achievement on cal-
culus of graphics calculators use in a precalculus course. We wanted to see whether
students that had taken a precalculus course involving a curriculum innovation that
included graphics calculators use could obtain better results in the second calculus
course of the mathematics cycle (in which there was no graphics calculators use),
when compared with other students who took the standard precalculus course. Addi-
tionally, we were interested in seeing whether the effects of graphics calculators use
depended upon the phase at which the technology was integrated into the curriculum.

The research reported in this paper was supported by the Colombian Institute for the Development
of Science and Technology (COLCIENCIAS), the Foundation for the Development of Science and
Technology of the Colombian Central Bank, the PLACEM project and Texas Instruments.
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Graphics calculator and students' "mathematical future"
In this study we were not concerned about the effects on students' understanding of
graphics calculators use. Research has shown that in most cases graphics calculators
use can have enhancing effects on students' understanding of precalculus concepts.
Even though this understanding is clearly important, it is meaningful if, for instance, it
can help students succeed in their performance in the calculus courses that follow the
precalculus one at the university level. Whether graphics calculators use has relevant
"de-skilling" effects depends upon whether students will need those skills in the
future. If students are allowed to freely use graphics calculators in all their mathemat-
ics activities through their career, then it might be possible that, even if this "de-skill-
ing" takes place, it does not affect the students' "mathematical future". However,
graphics calculators use is not generalized in all educational institutions and at all lev-
els. This was the case of the university in which this study took place. Graphics calcu-
lators use in some precalculus courses was seen as an "experiment", and graphics
calculators were (and are) not used in any other mathematics course. This meant that
students taking the course that involved the curriculum innovation with graphics cal-
culatdrs were not going to be able to use graphics calculators in the two calculus
courses that followed. This posed the question of whether, if there has been some "de-
skilling" due to the curriculum innovation involving the graphics calculator, this "de-
skilling" had any effects on the students' "mathematical future".

Graphics calculators integration into the curriculum
Graphics calculators cannot be simply introduced into curriculum. They can be used at
different levels and they can have different roles in curriculum design and implemen-
tation. The effects of graphics calculators use can depend upon how they are integrated
into curriculum. Following the ideas suggested by Kissane, Kemp and Bradley (1996)
for assessment and graphics calculators use, we introduce four phases concerning
graphics calculators use in curriculum design and implementation: nonexistent, intro-
duction, adaptation and consolidation. We consider five elements of curriculum: stu-
dents' use, teachers' use, tasks proposed, textbook, and assessment. Each of these
elements can be in any of the four phases. The first phase is evident: graphics calcula-
tors are not used or mentioned at all. The table in the following page shows how each
of the three other phases is defined on the basis of the curriculum elements considered.

The main difference between the adaptation and the consolidation phases concerns
whether advantage is taken of the graphics calculator possibilities. This means
whether graphics calculators are used in order to create new learning opportunities
through promoting mathematical investigation and exploration and emphasizing rela-
tionships among representation systems. The above categories do not take into account
the way graphics calculators are used by teacher and students when presenting an
explanation or solving a problem.

These categories are proposed in order to classify curriculum innovations that
involve graphics calculators use. It is clearly possible for a given curriculum innova-
tion implementation to be located in different phases for different elements of the cur-
riculum. This can be the case, for example, when teacher's use of the graphics
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Phases

Introduction Adaptation Consolidation

Students

Students have restrict-
ed access during some
classes. They do not
have access outside the
classroom.

Students have unrestricted access to graphics
calculators.

Teacher

The teacher has a basic
knowledge about the
graphics calculator op-
eration. He/she does
not use it during class-
room activities at all,
except for explaining
how to use it.

The teacher uses the
graphics calculator when it
is necessary or when asked
to do so by the students.
His/her explanations do
not take advantage of
graphics calculator possi-
bilities.

The teacher takes
advantage of the
graphics calcula-
for possibilities
for explanations
and problem pos-
ing.

Tasks

The only tasks that in-
volve the graphics cal-
culator are those used
to learn how to use it.

Few tasks take advantage
of the graphics calculator
possibilities.

Most tasks take
advantage of the
graphics calcula-
for possibilities.

Textbook

Reference is made to
graphics calculator as
far as how to use it.
Problems and exercis-
es do not take advan-
tage of the graphics
calculator possibilities.

Some problems and exer-
cises are specially de-
signed for graphics calcu-
lators use. The way content
is presented and learning is
promoted do not take ad-
vantage of the graphics
calculator possibilities.

Problems pro-
posed and the way
content is present-
ed and learning is
promoted take ad-
vantage of the
graphics calcula-
for possibilities.

Assessment

Graphics calculators
are not allowed in
tests.

Questions are "calculator
neutral". There is no ad-
vantage to students with a
graphics calculator.

Unrestricted cal-
culator access.
Students decide
when and how to
use the graphics
calculator.

calculator remains at the introduction phase, whereas curriculum design imposes con-
ditions for graphics calculators use at the adaptation phase on the other elements. In
this sense, the teacher plays an important role in the process. This can also be the case
concerning assessment. If assessment remains at the introduction phase, the effects of
graphics calculators use might be curtailed even if other elements are at the adaptation
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phase. Nevertheless, even if no curriculum innovation can be accurately classified in
one level, it seems reasonable to think that most elements will adjust themselves so
that they are approximately at the same phase.

Context
In the university this study was done, first semester students of Engineering, Business
Administration, Economics and Biological Sciences are classified according to their
results in the mathematics section of the State Examination. Those students with best
results enter directly to the first calculus course. The rest, approximately half of them,'
start their mathematics cycle with the precalculus course. The students who succeed in
the precalculus course are supposed to take the first calculus course during the follow-
ing semester. If they succeed in this course, they should take the second calculus
course immediately thereafter. Students are allowed to drop any course before the
midsemester without getting a grade. Those who fail a course have to take the course
again the following semester or during the summer holidays. The study 'considered
only those students starting the mathematics cycle with the pre-calculus course who
were able to succeed in the three courses comprising the cycle during the three consec-
utive semesters.

The established precalculus course is an introductory course to the study of func-
tions in which some emphasis is given to the graphical representation and to problem
solving. Usually the teacher presents some theory at the beginning of the lecture, and
the rest of it is spent solving exercises with some students at the blackboard. The cur-
riculum innovation involving graphics calculators use introduced some changes to this
precalculus curriculum. A stronger emphasis was given to the connections between the
symbolic and the graphical representations and the concept of family of functions was
introduced. Lectures were mainly developed around problem solving activities
(G6mez et al., 1996) that followed the ideas of higherorder mathematical thinking
(Resnick,1987). As an example of some of the differences between the two courses,
the table shows a question of the final exam from each course.

No
calculators With calculators

Solve:
x3 k g (x) has [0, 1 ] U [c ,...) as solution

set. It is known that k and c are positive num- x
. xjx1

x 1

5
ibers; g(x) cuts the Xaxis a t zi; if h(x) = x + 2,

the functionfunction h(g(x)) has y=0 as asymptote. The
figure shows the graph of g(x). Find k, c and
g(x)

Graphic calculators are not allowed in the two calculus courses that follow the precal-
culus course. In these courses students are expected to develop operational skills for

12
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symbolic manipulation. Lectures are taught in a similar way to the standard pre,calcu-
lus course.

The curriculum innovation involving graphics calculators use underwent the three
phases (introduction, adaptation and consolidation) described previously. The three
phases were developed during three consecutive semesters. Some results are already
known concerning this curriculum innovation. Mesa and Gomez (1996) found no dif-
ferences in some aspects of understanding between the students who took the tradi-
tional course and those who took the curriculum innovation at the adaptation phase.
Gomez (1995) and Gomez and Rico (1995) found that the students of this group par-
ticipated more actively in social interaction and in the construction of the mathemati-
cal discourse, changes that can partially be attributed to a different behavior of the
teacher. Even though she changed her behavior, Valero and Gomez (1996) found that
the teacher could not change completely her beliefs system. Finally, Carulla and
G6mez (1996) found that the teachers and researchers who participated in the curricu-
lum innovation (at the adaptation and consolidation phases) underwent significant
changes on their visions about mathematics, its learning and teaching.

Problem
We wanted to answer two questions:

Were there any differences in the students' final grades in the second calcu-
lus course between those who took the traditional precalculus course and
those who took the curriculum innovation involving graphics calculators
use?
Were there any differences in the students' final grades in the second calcu-
lus course between those who took the curriculum innovation involving
graphics calculators use at the adaptation phase and those who took it at the
consolidation phase?

Design
Two groups of students starting the precalculus course during two consecutive semes-
ters were taken into account. The first group was divided into two subgroups. The first
one (G1C, with 134 students and five different teachers) took a precalculus course in
which the curriculum innovation was implemented. The second subgroup (G1NC,
with 111 students and five different teachers) took the established precalculus course
without calculators. A different group of students starting the precalculus course the
following semester were divided in the same way: those taking the precalculus course
in which graphics calculators were used (G2C, 58 students and two teachers), and
those who took the traditional precalculus course (G2NC, 125 students and four
teachers). The graphics calculators subgroup of the first semester (G1C) followed a
curriculum innovation that was at the adaptation phase. The curriculum innovation for
the graphics calculators subgroup of the second semester (G2C) was at the consoli-
dation phase. Students were randomly assigned to each teacher.

This was a longitudinal comparative study. Students' achievement was measured
on the basis of the students' final grades in the second calculus course of the mathe-
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matics cycle. The comparisons between groups and between graphics calculators
adaptation and consolidation phases were established on the basis of the difference of
sampling means of the final grades of the second calculus course. The parameter ana-
lyzed was of the form RA pi?. The statistical significance of the difference of sam-
pling means was measured with a two tails pvalue associated to the ttest of
comparison of two independent populations. In order to analyze the possibility of con-
fusing factors, the teacher's effect at the adaptation phase was taken into account. In
the first group there were ten teachers. Five of them implemented the curriculum inno-
vation. Only two of these five teachers implemented the curriculum innovation at the
consolidation phase.

Three comparisons were made: between the calculators and noncalculators
groups corresponding to the adaptation phase (G 1C and G1NC); between the calcula-
tors and noncalculators groups corresponding to the consolidation phase (G2C and
G2NC); and between the students of the two teachers that implemented the curriculum
innovation at the consolidation phase and the students from these two teachers at the
adaptation phase (G2C and G1C(2T)). Since the proportion of students who succeed
the precalculus course differs from one teacher to another, in order to establish appro-
priate comparisons, we considered the 25% of students who obtained the best grades
in the second calculus course from each group.

Results
The table presents the grades' mean and standard deviation and the percentage of stu-
dents considered for each of the five groups mentioned above, together with the results
for the three comparisons proposed. We observe that, for the first comparison (G IC
and G1NC), even though the difference was negative, it was not significative (p=0.14).
Nevertheless, when we look at the other two comparisons, we observe that there were
very significant differences. In the case of the two groups corresponding to the consol-
idation phase (G2NC and G2C), the difference favors the calculators group
(p=0.0034). In the case of the comparison for the same two teachers (G1C(2T) and
G2C), the difference favors the group corresponding to the consolidation phase
(1)=0.00057).

G1NC G1C G2NC G2C G1C(2T) G2C
X 3.43 3.22 3.56 4.04 3.42 4.04

s 0.6 0.44 0.5 0.4 0.385 0.4

% 24.3% 24.6% 25% 24.1% 26% 24.1%

Dif -1.53 3.09 3.94

p 0.14 0.0034 0.00057

Discussion
We cannot assure that the results obtained in this study are valid for other circum-
stances except for a hypothetical situation in which similar students take the same
courses with the same teachers and curriculum implementation. The statistical analy-
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sis refers to that hypothetical population.
The results show that the effects of graphics calculators use in this study depended

directly upon the phase at which graphics calculators were integrated into the curricu-
lum. While no significant difference was observed between the calculators and non
calculators groups when the curriculum innovation was at the adaptation phase, signif-
icant differences were found between these two groups at the consolidation phase, and
between the calculators groups of the adaptation and consolidation phases. This might
be due to the fact that during the consolidation phase, graphics calculators were used
to create new learning opportunities through the promotion of mathematical investiga-
tion and exploration and the emphasis given to the relationships among representation
systems. Furthermore, these differences (specially those concerning the two teachers
that participated at the two phases) might also be explained by the change that teachers
and researchers had of their visions about mathematics, its teaching and learning as a
consequence of the way graphics calculators were integrated into the curriculum
(Carulla and Gomez, 1996). These results show that, at least as far as achievement is
concerned, graphics calculators effects cannot and should not be studied indepen-
dently of the way the new technology is integrated into the curriculum. Furthermore, it
might be possible, as it was the case for the experience reported here, that the use of
graphics calculators needs to go through an "integration process" in which in order to
attain a given phase, the previous phases have to be completed. It remains to be seen
whether a successful consolidation phase (as far as achievement is concerned) can be
attained without a change in teachers' visions.

The results obtained in this study do not support the "deskilling" argument that is
sometimes presented against graphics calculators use. The two calculus courses that
follow the precalculus course considered in this study do not allow graphics calcula-
tors use and follow a traditional curriculum in which students are expected to develop
operational skills that emphasize symbolic manipulation. If, in fact, some "deskill-
ing" took place, then either it was not relevant, or its negative effect was overcome by
other skills and knowledge developed by the students who used graphics calculators.

Even though this study did not analyze the new skills and knowledge developed by
the students who used graphics calculators, it showed that graphics calculators use had
positive effects on their "mathematical future".
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TAPPING INTO ALGEBRAIC VARIABLES THROUGH
THE GRAPHIC CALCULATOR

Alan Graham Mike Thomas
The Open University The University of Auckland
Milton Keynes Auckland
U.K N.Z.

There has been much discussion about how best to introduce algebra into the
student's mathematical experience. However this is attempted it is our belief that an
understanding of the concept of variable is fundamental to progress in algebra. This
paper describes a study in which we used a module of work based on a graphic
calculator to provide an environment in which students could begin to build an
understanding of variable. The graphic calculator proved to be a motivating instrument
for successfully achieving a significant improvement in student understanding,
something which has often proved difficult.

Introduction

The experience of teachers and a wide range of empirical research inform us that
children find great difficulty in understanding the algebra of generalised arithmetic
(e.g. Ktichemann, 1981; Wagner, Rachlin & Jensen, 1984; Thomas, 1988). One of
the most important obstacles to progress involves a concept that is too rarely
discussed in most classrooms where algebra is presented and yet one which
underpins all that students learn. This is the concept of variable. It is important that
students gain some understanding of variable if they are to progress beyond basic
processes. Kfichemann (1981) showed clearly that extremely few students reach a
working knowledge of variable, with only 9% of 15 year-old students in his study
having gained an appreciation of variable beyond that of specific unknown. This
paper addresses how the graphic calculator may be effectively utilised in the
classroom to improve student understanding in this area.

Background

A procept has been described (Gray & Tall, 1994) as a combination of mathematical
symbols, a process (which they may invoke) and the concept (which they may
represent). For example, x + 1, is a symbolisation which simultaneously represents.
an expression (or function) and the process of adding one to an unknown value. It is,
however, important to encapsulate the generalised process of adding one as the
object x + 1, because the process cannot be carried out directly unless x is given a
value. However, many students only see the symbol x + 1 as a process and not as a
mental object in its own right, capable of manipulation in an abstract form. A theory
of procepts helps us see that whilst arithmetic expressions may be successfully
interpreted as signalling a process to calculate the answer, algebraic expressions are
different and require proceptual thinking. Prior to the introduction of algebra,
children become accustomed to working in an arithmetic environment where they
solve problems by producing a numerical "answer" (Kieran, 1981), leading to the
expectation that the same will be true for algebra. To cope with the difficult
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transition from arithmetic process-oriented thinking to proceptual algebraic
thinking, teaching has tended to emphasise the process side of algebra; the
calculation and manipulation of algebraic expressions. Students have been taught the
rules of algebra so that they could develop the necessary manipulative ability, but
there has been little addressing of the concepts. Kieran (1994) presents three
different views of algebra: operational; fixed-value; and functional and suggests that
these have .often been introduced to the learner in this order. She proposes a
different approach which would start with functional algebra and the use of letter as
variable. Sfard (1995) agrees that this might help to reduce the difficulties of
students. Examining algebra beyond the introduction of symbols leads to an
examination of combinations of letters and numbers in strings of symbols and Sfard
and Linchevski (1994) have described four different views of these which different
contexts may evoke: computational process; specific unknown; function; and mere
string of symbols. Whichever starting point is used for algebra, the student, to be
successful, has to grow to an understanding of the use of symbolic expressions which
will encompass these four strands and take into account the current understanding of
the initial learner of algebra. We believe that the success rate can be significantly
improved by giving a coherent meaning to the letters used. We have had
considerable success in the past in doing exactly this using the computer (Thomas,
1988; Thomas & Tall, 1988; Tall & Thomas, 1991), demonstrating that it was
possible to improve students' understanding of variable by giving them
environments in which they could manipulate examples, predict and test and gain
experiences on which higher-level abstractions could be built. However, as with
much research, the beneficial effects are often slow to permeate into the
mathematics classroom, if indeed they ever do. Whilst there are a number of
possible reasons for this (see, e.g. Thomas et al., 1996; Thomas, 1996), one often
mentioned by teachers is the lack of resources, both in terms of computers and
relevant, tried and tested software. The graphic calculator is now a portable,
affordable alternative option to the computer for many schools and it has two very
useful qualities. Firstly, like the computer it intrinsically employs variables in its
operation. Secondly, the multi-line display enables one to see, reflect on and interact
with, several previous input/output rounds. It is important to appreciate that the
calculator is a tool with these important attributes which can be integrated into a
teaching module (Penglase & Arnold, 1996). This present research study attempted
to combine these advantages with the principles and techniques we had learned from
using the computer and put them into practice on the graphic calculator.

Method

Teachers from five United Kingdom schools volunteered to take part in the research
project. Each of them agreed to teach a module of work in algebra to one of their
classes, based on the TI-80 graphic calculator. In addition they chose a control
group of pupils, similar in ability and background to the experimental group,
against which to make a comparison. The control group received algebra work to
parallel the experimental group, but were taught using usual teaching methods.
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Students were from years 8 to 10 (age 12-14 years) top and middle ability groups.
The module was taught during early 1996 by the classroom teachers, each of whom
had attended a weekend course (run by one of the researchers) which was designed
to help them gain proficiency in the use of the calculator. The researchers were not
present in any of the classrooms while the students were working on the project.
The classroom groups were all given a pre-test and a post-test which comprised
questions based on, and extending, the Ktichemann (1981) research, since these still
provide a normed measure of understanding. The two tests used were different, with
the pre-test having 28 questions and the post-test 68. This latter test was more
difficult, containing 63.2% of level 3 and 4 questions (specific unknown and
generalised number) compared with 53.6% for the pre-test.
The algebra module

The module of work was designed to last about three weeks. The first section
comprised an introduction to using the graphic calculator, since it was assumed that
almost no students would have had experience of using them. In the previous
research study we had used simple programming in BASIC, such as:

A=3 followed by PRINT A+2

so that the computer responded with the number 5. Students could then conjecture
what would happen if they typed

PRINT A+3 or B=A+2 PRINT B

and so on, in order to begin to formulate theories about the consistency with which
the language handles the symbols and to build an understanding of their purpose. On
the graphic calculator (we used the TI-80) the above sequence became:

3>A (using the STO> key) A+2 [Enter] A+3 [Enter] (or A+2>B) B[Enter]
but the essential elements remain the same. Figure -1 gives an idea of the layout used
in the module, illustrating the 'Press', 'See' and `Explanation' features which were
universally used.

You can use letters as stores for numbers. Try the following:
Press See Explanation

4 [STO] [ALPHA] A [ENTER]

[[CLEAR]

[ALPHA] A [ENTER]

4 > A

A

4

4

The value 4 is stored in A.

This clears the display.

This confirms that the number
stored in A is 4.

Figure I. An example of the layout of the work in the a gebra module

Building on this introduction, a typical early exercise was:
Store the value 2.5 in A and 0.1 in B.
Now predict the results of the ten sequences listed below.
Then press the sequences to check your predictions.
A+B, B+A, A 5B, 2A + I OB, A/B
AB, BA, 2A + 2B, 2(A+B), 4(A+5B).
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One of the novel aspects of the module was the use of screensnaps, where the
student was given a screen view and required to reproduce it on their calculator
screen. Examples of these which were given include those in figure 2. These have
the advantage of encouraging beginning algebra students to engage in reflective
thinking using variables. This is beneficial since, unlike experienced mathematicians,
they do not reproduce them by using algebraic procedures but by predicting and
testing. Other topics covered included squares and square roots, sequences,
formulas, random numbers and function tables of values. In all of these activities the
student is actively involved in a cybernetic process where the technology reacts to
the individual's actions according to pre-programmed and predictable rules. This
environment provides consistent feedback in which students may predict and test,
enabling them to construct an understanding of letters in algebra as stores with
labels and changeable contents.

A+B A+B A+B A+B
0 I I I I 1 I

A/B AB AB AB
-1 5 -3

Figure 2: Examples of screensnaps from the algebra module
Whilst this is not the full story of the mathematician's perception of a variable, the
attainment of such an understanding represents a considerable advancement on that
which many students currently reach.

Results

A summary of the results of the schools in both of the tests is given in table 1. These
results may be easily compared by examining figure 3, which gives the mean
percentage scores in the pre- and post-tests. There were fewer questions in the first
test and that included more of the relatively easy questions, which may account for
the apparent drop in performance in school 2. However, in each case, the relative
improvement of the experimental students over the control students is clearly seen.
Examining these results we see that, whilst the groups do not differ at the pre-test,
the post-test results of the experimental groups are significantly better than that of
the controls for 4 of the 5 schools. Since the tests were constructed so that they were
a direct measure of the students' level of understanding of letter as specific
unknown, generalised number and variable in algebra, we conclude that the graphic
calculator module has improved the students' conceptual understanding of this
concept.

In order to see the extent of this improvement we analysed the performance of the
two groups on those questions at levels 3 and 4 only (understanding letter as specific
unknown and generalised number respectively), as described by Kiichemann (1981).
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Table I : A statistical analysis using t-tests of the post-test results for each of the five schools

Experimental means (SD) Control means (SD)
Pre-test
(max=28)

Post-test
(max=68)

Pre-test
(max=28)

Post-test
(max=68)

Ne

(Pre/Post)
Nc

(Pre/Post) t P

School 1 5.07 26.17 5.79 24.16 27/24 24/25 1.05 n.s.

(2.78) (7.30) (3.23) (5.95)

School 2 19.26 45.71 17.56 34.45 27/28 27/29 5.17 <.0001

(3.35) (8.46) (4.12) (7.96)

School 3 8.75 28.96 8.0 22.24 29/29 24/24 2.08 <.05

(2.71) (7.86) (6.39) (15.06)

School 4 2.04 10.17 3.25 6.88 23/23 20/17 2.23 <.05

(1.43) (5.91) (2.05) (3.40)

School 5 3.32 27.93 2.6 21.13 31/31 29/30 2.79 <.005

(1.96) (11.35) (1.92) (6.50)

'At these levels the experimental group students were again getting significantly

more questions correct.
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Figure 3: The mean percentage scores in the pre- and post-tests for each of thefive schools

Table 2: A comparison of questions examining conceptual understanding
Experimental Control

Question proportion proportion 2

correct (N=130) correct (N=129) X

x-y=z-y always, never,
sometimes ... when ?
a+b=b- always, never,
sometimes ... when ?
L-i-M+N=L+P+N,- always,
never, sometimes ... when?
3h=c+3 and h=2, then c=?
r=s+t and r+s+t=30, then r?
Area of rectangle 5 by e+2
Which is larger: 3q or q+3 ?

0.30 0.16 7.73 <0.01

0.35 0.12 17.7 <0.001

0.31 0.19 5.15 <0.05

0.58 0.44 2.39 n.s.
0.34 0.14 14.1 <0.001
0.15 0.08 3.68 n.s.
0.08 0.02 4.23 <0.05

In Table 2 we give some examples of specific questions (abbreviated) at levels 3
(specific unknown) and 4 (generalised number) where the understanding of the
students who had used the calculators was better. Of the five questions shown where
they did significantly better, four of them are at a level requiring an understanding
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of letter as generalised number. This seems to represent a considerable advance in
understanding. In the previous study (Tall & Thomas, 1991) we had noticed that,
initially, the computer students had performed less well on the traditional skill type
qUestions. What was pleasing to see in this study was that the students who used the
graphic calculators did at least as well on these questions in virtually every case and

Table 3: A comparison of questions examining procedural skills
Experimental Control

Question proportion proportion
correct (N.130) correct (N.129) c2

Simplify (a+b)+a 0.62 0.39 14.3 <0.001
Simplify 2a +56 + a 0.61 0.50 2.83 n.s.
Simplify 3a b + a 0.17 0.09 3.30 n.s.
Simplify (a -b) +b 0.18 0.08 6.51 <0.05
Simplify 3a (b + a) 0.44 0.37 1.18 n.s.
Simplify (a+b)-(a-b) 0.03 0.02 n.s.
2a+2b= 2(a +b) always, never,
sometimes ... when ?

0.44 0.46 n.s.

significantly better in two (see table 3). Since there had been no attempt to teach
explicitly these skills these results are very encouraging.
Student comments

Both the teachers and their students were asked to comment on their experiences
with the graphic calculator teaching module. The majority of students felt that the
experience of using the graphics calculator was of benefit in improving
understanding and making the learning of algebra more palatable by providing a
useful diversion, with typical students remarking:

The work we did using the graphics calculator was very interesting and it made algebra
seem a little more fun. Algebra was a lot easier on the graphics calculators that it was doing
it the ordinary way...The graphics calculators have also given me a better understanding
of algebra.
I think I understand algebra more after this course and if it worked for me it should work
for almost anybody.

It was clear that the majority of the participating pupils enjoyed the experience.
However, a small minority found it hard or unsatisfying. This demonstrates what we
had expected, namely that a few students do not need such a prolonged introduction
to variables, while others seem to find algebra difficult however it is approached.
Teacher comments

Each participating teacher submitted an invaluable commentary on their own
impressions of the project, including ways in which it could have been improved.
The project was not designed to provide a set of comprehensive, polished or
coherent classroom materials. Nevertheless the teachers were clearly interested in
using these materials again in the future and made a number of useful suggestions on
how they could be organised more effectively, for example commenting on the
practicality of the worksheets:

I thought the worksheets were extremely well presented and the pupils were able to follow
them easily. I gave the exercises involving predictions as homework to check their
understanding.
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The module contained no work on manipulating expressions etc. and our aim was to
ensure that it did not 'teach the test'. This certainly appears to have worked, since
several of the teachers commented on the apparent lack of a relationship between the
calculator work and the tests:

At times I was not entirely sure what the purpose of some of the exercises was. I felt that I
might be emphasising the wrong thing.
The project work provides a lot of very useful practice in algebraic ideas but there is very
little practice of work resulting in non-numerical answers. By this I mean answers like
25m or 8t + 3, i.e. answers like those required in the post-test.

Overall the teachers' comments were very positive and they felt that their pupils'
algebra did benefit as a result of working on the calculator. One particular area
mentioned centred around the primary purpose of the module, namely the idea of a
letter as a store for a number and the value of a physical metaphor for this concept:

I think it was useful to use the calculators for the idea of 'storing' a number. This was a
concept that the children found easy to grasp. It was much easier to get this idea across

. with the calculators because the number was physically stored.

Further, the opportunities created for discussion were seen as valuable, if a novel
experience for some:

My pupils are not good at discussing mathematics! This may be partly my fault, of course,
and the TI-80 work was good for encouraging discussion but, with little previous practice,
I don't think the pupils were able to get as much from the discussions as they might have.
Having said that, I do think the idea of discussing the work is excellent.

All the teachers felt that the pupils enjoyed the work on the project. Most were
unqualified in their enthusiasm, although one or two noted that pupil interest started
to wane a little at the latter stages and this is a fair indication that the work may be a
little longer than is necessary.

The work took around three weeks and at no time did they seem to get bored normally,
three weeks on any topic results in at least some pupils becoming disillusioned. The project
work itself was varied and easily kept pupils interested and motivated throughout. They
particularly enjoyed the screensnaps.
Their enthusiasm is undiminished.
The kids really enjoyed the work. It made the algebra much more interesting and obviously
the novelty of the graphics was a hit!

The comments from the teachers are most encouraging since we realise (Thomas et
al., 1996) that the most important element in the successful introduction of
technology into the classroom is the attitude and support of the teachers.

Conclusion

The evidence that we have presented from our study shows that students can obtain
an improved understanding of the use of letters as specific unknown and generalised
number from a module of work based on the graphic calculator. Approaching
algebra by gaining an appreciation of the use of letters as labelled stores will, we

. believe, help students construct an understanding which will improve assimilation of
later concepts. Certainly they enjoyed learning about algebra in this way, with the
technology providing strong motivation in the short term. Their teachers too
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appreciated the value of the experience and were keen to use the method again. With
the assistance and support of classroom teachers, innovative strategies such as that
we propose here can make a difference. To try to show the universal value and
appeal of this approach to learning about variables we have also used the module in
a parallel study in New Zealand. The results of this study are also extremely positive
and we will be reporting these in the near future.
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This paper investigates the informal reasoning of elementary school children as evidenced in their
language and discursive practices, while they engage in collaborative problem solving in an
inquiry mathematics classroom. The reasoning evolves in the context of the activity as thirteen fifth
grade students discuss a variant of the "chessboard problem." We present transcriptions of video
data which illustrate how the interpretive and argumentative strategies are applied in conjunction
with the domain-specific knowledge of mathematics. We describe how a collective voice emerges
from the coordinated and distributed reasoning among the children by providing instances where
they complete each other's ideas, paraphrase each other's expression, repeat each other's language
and articulate claims based on what another child says.

Theoretical framework. This paper investigates the informal reasoning of fifth
grade children as evidenced in their language and discursive practices, while they
engage in collaborative problem solving in an inquiry mathematics classroom.
Currently, there is increasing interest in the study of discourse as an interaction of
individual, social and cultural processes. This research which has examined the social
and functional uses of language (cf., Bernstein, 1996; Freedman & Medway, 1994;
Halliday, 1975; Lemke, 1995; Vygotsky, 1978), has also included examinations of the
specific discursive practices which occur in mathematics and science classrooms (Ball,
1991; Halliday & Martin, 1993; Lemke, 1991; Roth, 1995; Walkerdine, 1991). In
addition, much research into mathematics education has lent support for the view that
students develop the understanding of what it means to do mathematics from the
practices into which they are socialized (Lampert, 1990; Lave, 1988; Schoenfeld, 1992;
Steffe, Nesher, Cobb, Golden, & Greer, 1996).

What then is the relationship between the individual and the broader social and
cultural contexts? Our framework for understanding this relationship draws on the
work of emergent theorists (Kieren, Calvert, Reid, & Simmt, 1995; Maturana &
Varela, 1980; Varela, Thompson & Rosch, 1993). This position maintains that the
individual and the social/cultural are equally privileged and mutually constituted in
their interactions and should always be viewed in conjunction with one another. From
this perspective language functions as a system of orienting behavior which permits
individuals to construct a consensual domain of behavior in interaction with one another
(Maturana, 1972/1980, p. 30). This can occur, however, only if the domains of
interactions share a comparable framework. In addition while the linguistic interactions
serve to orient the individual they do not control the subsequent performance.

Taken together these different research perspectives support the view that not only
the classroom and school community but also the wider social and cultural contexts,
model attitudes and practices which result in the generation of specific types of
discourse and reasoning. It is in accordance with these multiple contexts that reasoning
individuals make inferences, defend their choices, and provide explanations. We use the
expression informal reasoning to identify an argument practice in which a valid
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conclusion requires the presentation of supporting evidence, and the quality of the
argument rests on the strength of the evidence gathered in support of the conclusion
(Voss, Perkins, & Segal, 1991). In this way informal reasoning shares much with the
view of explanatory proof as put forth by Hanna (1995). With respect to informal
reasoning in mathematics, the specific problem-solving activities in which the children
are engaged create an arena for argument discourse. The goal is "understanding; the
coin of the realm [is] argumentation" (Schoenfeld, 1991, p. 338).

Method. This paper examines a large group discussion of thirteen fifth grade
students who are discussing a variant of the "chessboard problem" and describes how
they apply strategies, see patterns, identify mathematical structures and connect this
information to support their formulations. In our data we are interested in evidence of
a collective voice (Smithson & Diaz, 1996) as it emerges from the coordinated and
distributed reasoning among the children.

The problem activity and its context. The specific problem activity along with many
others in this inquiry mathematics classroom is structured in the following way: For
each problem assignment the students first work individually, then collectively in
groups of 2/3, and then in groups of 4/5. Finally they meet in a large group to discuss
the problem. In practical terms this means they have been engaged with the problem on
four separate occasions. The group discussions typically begin with a comparison of the
students' answers and then proceed to a comparison of solutions and strategies. At each
step of the way students are encouraged to reflect on what they did, justify their
formulations with evidence, understand how someone else went about solving the
problem and assess the value of different strategic approaches.

During the weeks prior to this particular group discussion, the students had
calculated the squares for both a 4 x 4 and a 5 x 5 figure. In general, their initial
strategy was count, check, and double check. Over many discussions this was eventually
replaced by adding the squared values of the different types of squares, that is, 52 + 42
+32 +22 +12 = 55 (for a 5 x 5 figure). This performance does not mean that the students
were always explicitly aware of the squared nature of the values since often what they
added were the values, 1 + 4 + 9 + 16 + 25. The students were then asked to identify
the procedure for finding the number of squares in a 10 x 10 and in a 60 x 60 sided
figure. The fact that they were not required to work out the solution but rather just
describe the procedure for arriving at a solution was a less familiar task and almost all
calculated the number of squares in the 10 x 10 (385). In most cases they transferred
their successful strategies from solving the simpler 4 x 4 and 5 x 5 problems and
calculated the sum of the squared values to arrive at 385. While this approach is applied
by a number of students to the 60 x 60 figure, there is a divergent strategy adopted by
6 of the children which was to multiply the number of squares in a 10 x .10, that is 385,
by 6 to get 2310 squares in a 60 x 60. It is at this point that we enter the large group
discussion in which several children argue against this strategy.

The data. The data for this presentation consist of video-tape recordings of the
children as they discuss in a large group. It begins with Will at the board while the
other children are seated in a semi-circle on the floor. The entire argument takes twelve



minutes and is sustained by the students themselves. There are only a few conversational
turns contributed by the teacher and these for points of clarification, and discourse
management. Five excerpts from the transcript have been chosen and presented in their
original sequence. The first sets up the problem; the second, third and fourth present
the argument data, the claim and the warrant/explanation respectively (Toulmin, 1995);
the fifth excerpt is included to illustrate collective understanding and argument. The
excerpts were chosen so that the reader can focus on the coherence of the argument
itself and the evolving understanding of the students. In addition the amount of idea
completion, repetition and agreement contributed by various students as well as the
large amount of overlap in their talk as signaled by / / and the immediate uptake or
continuation of ideas as signaled by =, are presented as evidence for the collaborative
and distributed nature of the argument.

Name Transcription Description and comments

I) Setting up the problem
Will: I can prove that that doesn't work.

Well, in this pattern uh-

Will:
Ruby:
Mary:
Will:

Gord:
Will:

Mary:
Gord:
Ross:

(Lew seated in the circle, provides an "easier
proof' and explains that since there are thirty-
six hundred small squares in a 60x60 figure, the
answer must be greater than thirty-six hundred.
He says conclusively: "That's more than the
answer you got. That in itself proves it wrong.")

Here. I can prove it wrong in another way.
In these numbers here
/What is that?/
/Which are?/
Well for example, in one two three four,

one two three four five
one two three /four/

/four, five/=
=five. So this is a five times five. So wait

What are you doing?
You'll see
That's a good question.'

In this first excerpt, Will explicitly states his goal which is to disprove the
multiplication strategy used by a number of students. In preparation for his argument,
he sets out on the board the values and diagram which he feels are necessary for

[Will goes to the board. He
writes the following: 25, 16,
9, 4, 1 in a vertical column,
and in a second vertical
column shows how the values
increase by adding two each
time to the preceding
number]

[Points to the column of
increasing values]
[Request for clarification]

[Draws a grid counting the
lines as he draws.]
[Draws vertical lines]
[Draws horizontal lines]
[Completes idea].
[Writes the values for a 5x5
resulting from adding two to
the preceding number]
[Request for clarification]
[Sets up expectation]
[Validates request]
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understanding the argument. Two of the students are asking for clarification as he
proceeds, "What are you doing?" and Gord replies, "You'll see," which sets up the
capectation for what will follow. Gord knows what Will is about to do since Will, Lew
and Gord have already argued against this strategy in their group of five. In the
meantime, Ross' response, "That's a good question" validates the request for
clarification and underlines the fact that Will must consider the audience as he proceeds.

2) The data: Identification and definition of a pattern
Will: Well it's to-, these numbers are a pattern that [Points to pattern emphasizing

keeps on going on forever. /And you can-,/ forever with a downward
gesture of his hand]
[Spoken very rapidly]Gord:

Will:

Nora:
Will:

Will:

Jane:
Will:

Ruby:
Will:

Gord:
Will:

Nora:
Will:

Nora:

/one two three four/
five six seven eight nine ten=
=you can use this to calculate the amount
/of-, of/=
/It's not one two three four five six seven/
=squares in any size of square. Well there's-,
like even a googol by a googol, as long as you
keep on going long enough.
(This is followed by four turns which revolve
around what a googol is.)
Anyway, so to get this you can either-, since it's
five times five, you can either just go five down
which is twenty-five? uh here
or you can just go uh five times five which is
twenty-five so you get to there, right? there
and if you add the one, the four, the nine, the
sixteen and the twenty-five you'll get the total
amount of squares in this.
Right
Well-, so you agree that this is a working
pattern?
Hm hmm
Well these-, what makes these a pattern
and not just random numbers, one, four, nine,
sixteen, twenty-five is it-, the number=
= /increases/
/the difference/ in them increases by two each
time. So the difference betWeen one and four is
three. Then the difference, so in other words=
=oh okay, I understand.
it's always a difference in two between the one-,
here look, to get the four_you /add three/

/I understand/
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[Points to values on board]

[Points to board and
underlines the last value]

[Checks audience]

[Points to the sequence of
numbers he just read out]

[Idea completion]
[Elaborates]

[Repeats]



Will: and to then get the nine you add five to that and [Elaborates and repeats]
it always increases by two.

Ruby: We understand how you get it.

In terms of the mathematics, Will argues the numbers constitute a pattern which
"keep[s] on going on forever." In addition these numbers are not random since they
systematically increase by two. This is an important principle for his argument and the
means by which he calculates the number of squares in a square of any size. He gives
specific examples to back this and continues to do so until Nora has said, "I understand"
on two occasions, and Ruby says, "We understand how you get it." Once this has been
established he continues:

3) The claim
Will: Now to prove-, so you need to know this to

understand my proof.
So what happens uh, if this restarted itself, say
when-, like after maybe ten of them or
something then, then /that would work./

Lew:

Nora:

Will:

Ross:

/It would work/ but it
doesn't.=
=Wait Will, what are you proving that-, that-
that the answer is=
=that you cannot just take like a certain figure
and find out-, like a figure five times bigger,
that you can't just multiply the number of
squares in there by five=
=take a number (0) and multiply it times six

Will: For this five times five, to get a ten times ten
which is two times bigger you cannot just
multiply the answer here by two=

Lew: =by two=

[Pointing to the continuing
pattern. Here he introduces
the notion of "restarting" as
the necessary condition for
being able to multiply.]
[Overlaps and expands this
idea.]
[At the same time N requests
clarification]
[States the claim]

[Extends the explanation]

[Re-states the claim]

[Echoes W's claim]

At this point the claim has been put forth with respect to multiplying by 5, 6, and 2
by Will, Ross, and Lew.

4) The warrant or explanation for the claim
Will: Okay well that goes on forever= [The pattern as data]
Gord: =that always increases by two more than the [Re-iterates and elaborates]

/last one/
Will: /and it/ always is increasing this by a lot. Like-, [Points to board]

(4 sec. pause) like= [Students are speaking to each
other]

Gord: =Can I just say /something'll
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Will:

Gord:
Will:

Gord:
Will:

Gord:
Nora:
Gord:
Will:
Ruby:
Gord:
Will:
Gord:

Will:
Gord:

Will:
Ruby:

/Wait./ Now if-, now, this keeps
on increasing. Now what you're doing in
multiplying, is just taking it and stopping it here
and then re-starting it=
=You already said this=
=and keep restarting it six times instead of
having it keep increasing like it's supposed to.
You're just restarting it and then restarting it
again and then restarting it, and you're
restarting it six times=
=Here, /Will/

/instead/ of letting it go until you get sixty
of these numbers=
=Will=
=/Oh okay/

/Will,/ Will=
=Got it?.
= Okay but why=
=can I just say something?
Yes=
=See if you're-, if you're doing-, say if you want
to do a six-sided figure and you have a three-
sided figure and you know the answer already
for a three sided figure okay?
/so a six-sided figure/
/what you're doing/ is you're just making it stop
wherever you want and then it's not a pattern=
=Yeah so like here=
=Okay

[Maintains the floor and
connects the notion of
restarting and the
multiplication strategy]

[Explanation continued]

[Hand raised for permission]
[Explanation continued]

[Checks audience]

[Goes to the board]
[Points to values on the
board]

[Repeats]
[Reiterates W's notion of
restarting.]

The discussion continues and the same arguments are repeated. Lew then comes to
the board to present his argument which he has stated at the outset of the discussion
while Will was writing on the board.

5) Collective understanding
Lew: Okay so what was the answer that you got?

Mary:
Lew:
Ross:

Lew:
Gord:
Lew:

Two thousand three hundred and ten.
Okay two thousand three hundred and ten.
/Yes two thousand- me and Terry-, Terry and I
got the exact same thing./
/Sixty times sixty You get thirty six thousand/=
=hundred
Yes thirty-six hundred, sorry, and that's more
than the answer you got and that's only the little
squares /the little individual units/
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Will:

Nora:

Lew:
Mary:
Gord:
Lew:

Lew:
Will:

Nora:
Jane:

/That's the amount of the little squares/
but then there are-, but then there are
No, you can't prove that
/yes you can/ (chorus of voices)
/yes I can/-=
= cause you go sixty times sixty equals=
=the area of the whole square
Look, for this one-, for this one you go one two
three four five, five times five is twenty-five . If
you count these squares there's going to be
twenty-five of them.

[Points emphatically moving
up the vertical right edge]
[He counts softly one two
three four five six seven eight
nine ten]

That's the exact same thing= (chorus of voices)
=it's just bigger numbers
In sixty by sixty you go sixty times sixty you'll
get the total amount of little squares
Right
So already your ((answer is)) wrong. [Addressing the counter

position]

Collective argument. If you take the preceding discussion removing the names of the
speakers, it coheres into the voice of a single speaker. Just after Nora: says, "No, you
can't prove that," the rest follows in one voice.

"Yes you can. Yes I can cause you go sixty times sixty equals the
area of the whole square. Look, for this one-, for this one you go
one two three four five, five times five is twenty-five. If you count
these squares there's going to be twenty-five of them. That's the
exact same thing. It's just bigger numbers. In sixty by sixty you go
sixty times sixty you'll get the total amount of little squares. Right.
So already your ((answer is)) wrong."

While Will has the floor and often exhibits explicit strategies to maintain that
position, what we see is an inter-active discussion of the ideas involving eight students.
Specifically, we see instances where they complete each other's ideas, paraphrase each
other's expression, repeat each other's language and articulate claims based on what
another child says. The reasoning evolVes in the context of the activity. While claims,
justification, and counter-argument are viewed as rhetorical activities (Billig, 1996),
these interpretive and argumentative strategies are applied in conjunction with the
domain-specific knowledge of mathematics. The strategies both emerge from and
depend on the mathematical activity in which they occur.
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WORKING FROM THE INSIDE WITH THEORY FROM THE OUTSIDE
Una Hanley Manchester Metropolitan University and Tansy Hardy,

Nottingham University, England

Working from a long term interest in supporting teachers'development of
their practice, our recent efforts in the the area have led us to examine more
closely the process involved in researching and working on practice. It seemed
to us that reflection and analysis used alone'as techniques in this process were
limiting and this has led us to look more closely at the role that 'theory' and
'theorising' might play. This paper discusses our construction of the bringing
together of theory and practice and describes leachers' responses to strategies
we used in attempting to promote 'theorising practice' and 'practising theory'.

Introduction
Practitioner research as part of a teacher's professional development has
gained in prominence in the UK in higher education courses. Whilst in these
courses there has been a centralisation of teachers' own practices and
experience there are obvious difficulties in linking school-based and
institutional parts of these courses.
There has been discomfort with the false binary that could be seen
underpinning previous academic courses and research and indeed teachers'
perception of their own practices and professional knowledge; that is, a false
binary in the form of the polarisation of 'theory' and 'practice'; of educational
theory from teachers' day to day professional activities.
That this is of international concern is indicated by the formation of the PME
'Teacher as Researcher' working group and its extensive work. Indeed, there
have been many moves in maths education to variously rehabilitate 'theory' or
'practice' as valid sources of professional knowledge.(eg Carr &Kemmis 1986)
Attention to practitioner research has generated a dissatisfaction with the
methodologies available to structure teachers' enquiries. Alternative
frameworks have been developed that offer a more authentic basis for such
enquiries. When John Mason gave a plenary address to PME17 (1994), where
he presented his development of a research methodology 'Noticing' for
practitioner research, he emphasised that he was speaking to our experience.
Our own researches have been in the development of methodological
frameworks on which to base courses for teachers that articulate the bringing
together of theory and practice, of crashing the binary.
In giving here our construction of a dialogic approach to theory and practice
in teacher development we draw on our work over the last 2 years with
practitioners from both primary and secondary classrooms who have taken
part in a term long module as part of a modular Master's course in
Mathematics Education at the Manchester Metropolitan University. This course
acted as a vehicle for us to devise strategies that might promote 'theorising
practice' and 'practising theory'.
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For many of the teachers attending this course, development of practice has
been closely associated in the past with initiatives and ideas developed by
'experts' elsewhere which are thought to be replicable in a variety of
classroom contexts. Whilst our privileging of teachers' own knowing offered
no credence to this transference model of professional development our
experience indicates that for many teachers reflection and analysis on existing
views of practice served to create teachers skilled exclusively in this reflection
rather than in conceptualising different forms of practice.
This led us to search for strategies that offer a means of looking again at over
familiar classroom situations. This also raised questions about the professional
knowledge per se and what it means to 'come to know' in our profession.

A view of knowledge for teacher development.
Knowledge about teaching comes in various forms and from many sources.
Much of our personal knowledge is in the form of generalisations that are
derived in part from our interaction with the world. More specifically for
teachers this means knowledge derived from experience, amassed through
practical work in the classroom. There is a 'taken for grantedness' about this
knowledge; much of it remains unexamined and unarticulated (Elbaz 1990).

In order to examine this knowledge, we must become more aware of our
professional acts, our professional decisions, the justifications we offer for
these, and, importantly reflect on these in order to develop a critical sense of
how our professional knowledge is formed. Through a deeper awareness and
clearer articulations of our professional acts, we can hold up and acknowledge
these as a source of professional knowledge and theory. Experience is not
automatically theoretical; however it is open to generalisations, to theorising.
By being able to form valid generalisations from instances of experience, it is
possible to create an overall sense of current beliefs and preferred practices;
and to imagine the possibility for refinement or change. It is very difficult to
envisage changes to practice when experiences feel singular and unrelated.

To break down this sense of singularity we work from the belief that the
development of practice requires the closer examination of the things that we
currently do, the examination of the personal knowledge and the theories to
which we attribute aspects of our practice and the broadening these horizons
through consideration of the theoretical frameworks of others.
Our work with 'Noticing' (Mason 1992) has been significant in this
articulation of our professional 'coming to know' and in our subsequent design
of this teacher research module.

So to address our concern that the techniques of reflection and analysis alone
do not assist teachers' conceptualising of different practices we sought
strategies to use the 'theory of others' in the re-examinaton and reformation of
our practices, professional knowledge and our own theoretical frameworks.
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A framework for bringing research into practice and vice versa
For many teachers, there has long been a distinction between the knowledge
offered by 'theory' or research and that which can be detived from classroom
experience. There is also the sense that 'experience' can only he described in
practical terms and not, for example, as reading or reflection. A question for
us was how to work with 'theory' in such a way as to dissolve this distinction.
In order for theory to appear relevant, there is a sense in which it needs to be
recognised. Before we can recognise and understand something, we already
need to have a pre-conception of it. 'We drive at an insightful and explicit
understanding of something only on the basis of "something we have in
advance(Gallagher 1992, p.61, citing Heidegger). There needs to be a
resonance or jarring with something already existing in my cognition. In this
there are possibilities for re-cognition, for while I still have my existing
understanding, my attention has been shifted towards alternatives and the
possibility of other ways of thinking.
In this sense, we are working towards creating a dialogue again, this time
between our experiences, our generalisations and those of others.

We are not advocating here the straightforward acceptance of the propositional
truths which others' theories appear to carry, but to consider our reactions to
our reading. We need to be able to articulate our own response to these
readings, clarifying our interpretations, and to consider the way we position
ourselves in relation to the propositions on offer. Forms of language and
concepts made available to us can (if they acknowledge the complexity of our
practice) assist in our examination of our existing beliefs and understanding
and perception those aspects of practice which are open to generalisation.

Linking our theoretical framework (for teacher development and
research) to our practice (as tutors on a teacher research course)
When coming to work with teachers on our Master's level practitioner
research unit, we employed strategies that were sympathetic to a form of
research that gives explicit recognition of our professional knowledge and its
role in theorising our practice. This is described in detail elsewhere (Mason
1992; Hardy, Wilson, 1996). In particular the process of anecdoting was used.
Briefly here, the roles of teller of and listener to an anecdote are identified.
The teller reviews the-anecdote, the listener seeks resonance with her own
experience. The listener also assists the teller in identifying where the
significance of the moment lies. The teller may then consider systematically
other incidents from her practice, to consult literature from her field of
enquiries, to tell and re-tell these anecdotes to colleagues, discussing similar
experiences and seeking recognition. This systematic reflection leads to a
search for strands within her own experience that will throw up relevant
questions to ask; areas on which to focus enquiries, interpretations that might
be constructed, generalities which might be made.
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Within this Master's course we employed particular strategies for engaging
with theory alongside the process of anecdoting. Such a strategy was our use of
readings from mathematics education literature, and it is this strategy we are
choosing to describe in detail as it illustrates well the necessary (for us)
position 'theory' holds in practitioner research. The illustrations we give are
drawn from work which took place in university sessions in summer 1996 and
from the writing which that group of teachers regularly produced. Both tutors
acted as participant observers in tutor led and student led sessions keeping
notes of student interactions and taking copies of written work.
Our choice of literature was inevitably influenced by readings that as tutors,
we had found particularly powerful or useful. Some texts were chosen because
they offer a model that teachers can easily recognise from their own practice,
they offer reassurance; for example, Barbara Jaworski's article "'Is' versus
'seeing as': Constructivisrn in the Mathematics Classroom" (Pimm 1988).
Others, for example, Brousseau's notion of the didactic contract and Bateson's
of the double bind have a jarring effect, making (over) familiar practice seem
less familiar and so open to re-examination and led to lively and fruitful .

discussion of teaching-learning interactions.
In the 1996 course we gave students two writings related to these, one John
Mason's chapter 'Tensions' (Pimm 1988) , the other a section from Stieg Me lin
Olsen's book 'The Politics of Mathematics Education' (1987).
The students' first task was to read through both articles and highlight a
section that resonated strongly or jarred in some way with their sense of
classroom dynamics, and also to identify a section that they found inaccessible
or unclear (the response 'all of it' was not allowed! ) and bring these to the
next session. The task was not one of gaining a 'full' understanding of the
theoretical framework being offered but of finding some personal response to
the writing.
We then spent some time as a group discussing their highlighted sections,
mapping the notions and language used in the texts onto our experience,
developing our sense of recognition or dissonance with our own stories about
our practice, in a process of anecdoting as we described above.
John Mason (Pimm 1988) describes the didactic contract as
`...between teacher and pupil although it may never he explicit. The teacher's task
is to foster learning, but it is the pupil who must do the learning. The pupil's task is
to learn, or at least to get through the system. They may wish to be told what they
need to know, and often they wish to invest the minimum of energy in order to
succeed.... it contains a paradoxical dilemma. Acceding to the pupil's perspective
reduces the potential for the pupil to learn, yet the teacher's task is to establish
conditions to help the student to learn. The dilemma is then that everything
the teacher does to make the pupil produce the behaviour the teacher expects,
tends to deprive the pupil of the conditions necessary for producing the behaviour
as a byproduct of learning; the behaviour sought and the behaviour produced
become the focus of attention.
Put another way, the more the teacher is explicit about what behaviour is wanted,

3 -28



the less the opportunity the pupils have to come to it for themselves and make the
underlying knowledge or understanding their own.'

The notion that these are inescapable classroom phenomena with no simple
resolution, that you cannot satisfy both sides of the contract, seems
uncomfortable for teachers who are striving to improve their practice. The
need to resolve these tensions is clear, their inevitability is disabling.

The ways forward offered by Mason and Me lin Olsen may be seen as
circumspect and unclear. They certainly offer no slick solutions.They both
discuss the power of awareness of (or sensitivity to) the 'bind' in unblocking
the energy wasted in these tensions.

'To stay alive as a teacher, it is necessary to he aware of the variety of perspectives
(...that students and teachers have as to the nature of learning and the roleof
teachers ) and the fact that they are very deeply rooted.
In the midst of a lesson we respond to the pressures of the moment. But I have also
caught myself locking up energy in resentment or guilt or if onlys'.
I believe that it is important to he open to these dilemmas, to take opportunities to
talk about them with colleagues, to try to become precise in our articulations,
because then it is possible to unlock the blocked energy and exploit it positively'

in Piturn 1988

Me lin Olsen talks about working on a metalevel

The method of avoiding its (the double hind) damaging effects is to loosen it by
communicating at the metalevel as often as possible, thus releasing the
contradictions which determine it.'

He also talks of `...Bateson's conception of metalearning, and double bind are
all useful for a full understanding of learning behaviour. ... what are being
offered are thinking tools which help to understand the pupil's predispositions
for learning'
We are asking students to approach such theoretical notions as 'double binds'
as tools, to apply to their classroom experience and see what awarenesses
might be thrown up for them, and not as theories to be analysed for their truth
in an absolute or external way. The task is not about identifying 'what I should

have done'.
In the next paragraphs we discuss teachers' response to working with these

theories and the difficulties they encounter. When faced with making meaning
of a theoretical framework they often revert to a technical solution. In this
sense students find working with 'theory as a tool' an unfamiliar notion. It
requires effort and practice and in that sense is not easy. Using 'theory as a
tool' is rarely teachers' initial response to the reading tasks we give them.

We followed on the discussion of highlighted sections from readings ondouble
binds and the didactic contract by giving students the task of jotting down an
incident from their teaching over the coming week that contained within it
some kind of double bind and bringing it along for anecdoting in the next
session.

The following anecdote was offered by Judith:
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A lively, enthusiastic year 7 class 'bounce' into the classroom, buzzing with
questions and answers for challenges from previous lessons. Kevin comes in two
minutes later looking at the floor and walks up and down from the front to back of
the classroom. Eventually he picks up a chair and drags it to the back of the
classroom and sits on his own. I set a few questions for the class to occupy them
and avoid too much attention on Kevin.

*Kevin, what's happened ? I can see you are upset, what's the problem?'
`Nothing, nothing!' came the forceful reply.
`Kevin, let me help if I can - who do you want to sit next to ?
`Nobody wants to sit next to me'
`Why Kevin, why is that?'
'I don't know but I can't do maths, french, anything'

We continued in this vein for a few minutes where I tried to be positive. Kevin had
produced some excellent work in the last few lessons in percentages. He agreed to
start afresh after a lot of praise.

The group then worked on the incident against the theoretical notions of
double bind and didactic contract with a sense of t working with theory as a
tool.They were able to identify a range of interpretations in terms of the
double binds that actors in the interaction were in:

A bind for the teacher working with a mixed ability class:
I believe that confidence is important for all children to work successfully at
mathematics. I am especially concerned that Special Needs kids develop this
confidence. I want to help them break out of the demotivating failure cycle and
break their self image as failures and of maths as 'too hard'. This would lead me to
give separate ( not too hard ) work that they can succeed at ( In practice such tasks
prove unengaging and being given this sort of work rarely boosts children's
confidence rather it stigmatises. ). At the same time I believe challenge is important
and so think that they should 'hang on' with the rest of the class and that I should
offer them the support they need to stay with the group and engage in this work.

This form of double bind is expressed by John Mason:
The confidence challenge tension leads educators to simplify the tasks given to
low-attaining pupils, Any intellectual challenge is removed on the grounds that
they cannot handle it and all edge, all interest is gone. in Pimm 1988

Thinking of Kevin's position in the incident the group developed the following
possible scenario

A bind for Kevin:
I want my own work. I want to feel special and to work on something that I can do.
At the same time I want to be with the group.When I work with the group they
know I'm slow and I don't like that. They expect me to struggle and don't listen to
what I say or ask. They think I slow them down. I don't expect to have anything
useful to offer to group work. I want to be able to be part of the group, to be
accepted. It's important not to be different. I want to be able to show my worth.

In the group reworking we were not looking for the 'I should have s'. The
group was not concerned with finding the 'truth' of Kevin's acts or the best
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teaching approach. The concern for us was to use theory creatively as a
'thinking tool' (after Vygotsky's dialectical notion of tool-and-result, see
Newnam & Holtzman 1993).
Teachers then had some time to capture in writing the reworked incident and

their discussion, recording what had struck them, what resonated, jarred. What
they are doing here can be seen as producing data for their own enquiries.

Another scenario that had been identified was a 'bind' for the teacher: Should
my attention be with the whole class or the individual child?

Another teacher, Andrew has offered an anecdote earlier about the tension of
breaking off a whole class discussion or exposition to follow up some query or
misunderstanding voiced by one student.

He expressed this tension:
'Do I tell them to shelve that concern for now and just follow the class input ( I'll
pick it up on an individual basis later ) or do I take the whole class's time dealing
with the query in the belief it will prove beneficial for all of them ? If one child is
having a problem then others will be too. What about those who have followed so
far and whose time I am wasting?'

Andrew recognised this aspect in the retelling of Judith's anecdote:
it's the same as in my anecdote. Should my primary concern be with the whole
class, the pace of work they need, the support they need or with the individual who
has come to my attention 1

He quizzed Judith about her response of setting the whole class 'work to get on
with' so that she could engage with Kevin individually.
Was this quality work? Were you just occupying them? How did you justify it ?
Should we pick up all queries as they come up? or work with a belief that children
will make connections in their own time if they keep listening? that they
won't/don't need to sort out every detail before they move on.'

Andrew recorded these as questions for his line of enquiry. Judith's anecdote
acted as data for her enquiries and Andrew's response to her anecdote acts as
second-layer data for him. The exercise is about creating data, getting a sense
of what there is to be studied and reflected upon. In this way, his sense of
recognition give validity to the focus of his enquiry.

Conclusion
We have described a process where theoretical tools are used to shed new light
on over-familiar classroom interactions and illustrated with their responses the
effectivity of teachers working this way. However our concern with the
relationship between theory and practice endures. It continues as problematic.
The issue of making theorising useful and valid remains for us. Different
theoretical tools shed light on different aspects of classroom experience,
offering a range of interpretations, indicating different possible responses
decisions or choices and promoting different questions and enquiries. We are
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not advocating an orgy of interpretations for their own sake but are still aware
of the need for some way to discern the usefulness of theories generated.
Recognition and resonance or jarring with existing cognition perhaps
determines the usefulness of any one tool. The theory must speak to my own
experience. In this way also, validity may be added to the generalisation we
make from our practice.
We see our role as teacher educators as instrumental in enabling teachers to
open up their practice for examination. This involves becoming involved in
group activities which support a process of coming to recognise and articulate
personal theories which in their various guises underpin professional
practice,that is becoming actively involved with 'theorising' practice and
identifying pertinent questions. We may have to find different ways of
thinking and talking about practice in order to begin to answer such a question
other than superficially, and this can involve working with others' theoretical
frameworks. We believe that theory and practice are symbiotic, that the
articulation and clarification of one illuminates the other and that both aspects
of this relationship need to be reflected upon in order for meaningful
professional development to take place. We continue to work on our
articulation of this dialogue and continue our work with teachers in
investigating the implications for all involved in practitioner research.
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GENDER DIFFERENCES AND THEIR RELATION TO
MATHEMATICS CLASSROOM CONTEXT

Markku Hannula and Marja-Liisa Malmivuori

University of Helsinki, Departement of Teacher Education, Finland

In this article some relationships between gender and mathematics are examined.
Quantitative analysis is based on a sample of 739 Finnish ninth-graders from 50
different lower secondary schools. Gender is found to act as an important mediator
between success, self-confidence and classroom environment in mathematics. The
effects of classroom environment are stronger for girls and they are seen most
markedly at the classroom level. Teaching variables explains 60 percent of the
variation of self confidence between girls from different classes.

Previous studies on mathematics education show some clear gender differences in
pupils' mathematical attitudes and performances. One of the most consistent
findings of these relates to girls' lower confidence in learning mathematics than
that of boys' (e.g. Fennema, 1989; Leder, 1995). Also boys generally tend to score
better than girls in mathematics tests (e.g. Friedman, 1989; Pehkonen, 1992).
Various instructional, environmental or social factors has been suggested as
determinants for these differences. Maybe the most often referred are the variables
attached to characteristics or activities of the teacher. The way, that teacher
"creates" these differences, however, is not well known. Shaugnessy et al. (1983) in
their study of the relations between attitude toward mathematics and some
environmental factors reported that teacher variables correlated with mathematics
attitude more strongly for females than for males. Again in Forgasz's (1995)
examination of the relations between pupils affective variables and classroom
environment, the pattern of relations was not the same for males and females, and
the gender differences in affective factors were more marked on the group level
than for individuals. Some relations has been found also between teacher-student
interactions and students' gender or their levels of confidence in learning
mathematics (Hart, 1989).

This study was designed to consider the significance of environmental factors for
the gender differences in pupils' mathematical performances and some of their
attitudes or beliefs. A special focus was in pupils' levels of self-confidence in
mathematics. These results are viewed to guide the efforts to find means for
affecting the perceived central gender differences in mathematics within classroom
context of which pupils self-confidence seems particularly influential. The results
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of the study derive from a Finnish research project considering mathematical
beliefs and performances with 739 (363 girls, 376 boys) ninth-grade Finnish pupils
from 50 mixed classes and the mathematics teachers of these classes. The data of
mathematical beliefs was based on pupils' responses to a structured questionnaire
measuring their views about mathematics, mathematics learning and teaching, and
about self as mathematics learners (Malmivuori, 1996; Malmivuori & Pehkonen,
1996). Their mathematical performances were measured through the national grade
9 examination concentrating on mathematics at everyday situations (Pehkonen,
1996). The teacher factors of the study were again constructed on the basis of
teachers' responses to a questionnaire with 28 (open and closed) items covering
teachers' backround information, teaching practices, mathematical beliefs, and
evaluation methods (Pehkonen, 1996).

Differences between boys and girls

The obtained results from the study were consistent with the previous findings of
gender-related differences in mathematics. Boys scored on average 25.7 points
compared with girls' 23.8 points in the mathematics test. The perceived gender
difference in favor of boys was statistically significant at 0.05 level, but still only
minimal compared with the related standard deviation (12 points). To consider
gender-differences in pupils' beliefs, nine factors were constructed from their
responses to the questionnaire on the basis of the performed factor analyses
(Hannula, 1996). Statistically very significant (p<0.001) differences were found in
three of those factors, but only two of these factors with largest gender-differences
were selected for further analyses.

The first factor represented the constructed self-confidence measure on the
questionnaire, based mainly on the items used in Fennema & Sherman's (1976)
Mathematics Attitudes Scales and partly on items constructed for. Finnish research
projects. It involved statements as "I am not the type to do well in mathematics." or
"I think I could learn more difficult mathematics.", with positive loadings referring
to high self-confidence. The other considered factor was named Co-operation with
positive factor scores referring to pupils' preference for active learning and
interactions with other pupils and the teacher. The included items in the factor of
Co-operation together with the related factor loadings are given below

"Co-operaiion as a way to learn mathematics":

You can learn mathematics by asking help from other pupils (0.73)

You can learn mathematics by thinking together with other pupils (0.66)

You can learn mathematics by making mistakes (0.66)

You can learn mathematics by asking as much as possible from your teacher during
the lessons (0.43)
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Factor scores for these two factors were calculated for all pupils. Statistically
significant (at the 0.1% confidence level) t-test values for the differences between
girls' and boys' scores were found for both of these factors. Boys were more
confident than girls on their abilities in mathematics (t = -6.54), whereas girls
reflected more often than boys a tendency for co-operation in their learning of
mathematics (t = 5.00). These results on mathematical beliefs were contrasted
against pupils' mathematics successes.

Interrelations within classrooms

Correlations between pupils' self-confidence or co-operation, and their success in

mathematics were calculated for boys and girls separately. Statistically significant

correlations were found only between pupils' success and their self-confidence in

mathematics (p < 0.001), where the related positive correlation was slightly

stronger among boys than among girls. Other correlations were very small. In

order to examine these interrelations and gender-related differences at classroom

level, mean scores for the three variables were computed for boy-groups and girl-

groups within each class of the study. Below are presented the obtained correlations

both at individual level and at classroom level (i.e. with the means of the scores)

between these variables (Figure 1).
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Figure 1. Correlations (separately for boys and girls ) between self-confidence, co-
operation and success at individual and classroom levels.

Some interesting correlations emerged at classroom level, that could not be
found at individual level. At individual level there was no significant correlation

between pupils' mathematics success and their co-operation, but correlations at
classroom level displayed fairly strong positive connection between girls` success

and their co-operation (with p < 0.01). This correlation was even slightly stronger

than the positive correlation between self-confidence and success or between self-

confidence and co-operation within girl-groups. The strongest correlation within

boy-groups could be found between means of self-confidence levels and
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mathematics successes. Similarly as at individual level, the correlations between
boy-groups' self-confidence and co-operation, and between their co-operation and
success were very small, indicating rather low significance of co-operation for
boys' levels of success in mathematics. Instead, there was again a significant
positive relation between boys' means of self-confidence and their means of
successes.

These results are consistent with the obtained previous results of the central and
rather independent role of self-confidence levels for boys' mathematical
performances compared to that of girls', and again the significance of co-operation
for girls' learning of mathematics (e.g. Malmivuori, 1996; Pehkonen, 1992). These
findings further indicate that significant environmental effects on pupils'
mathematical views and behaviours may operate within classrooms, that would not
appear if the classroom context is omitted. Moreover, the environmental factors
seem to have separate impacts for girls' and again boys' learning of mathematics.
How important in this would be mathematics teacher-variables will be considered in
the further analyses below. But first is presented a figure (Figure 2) that illustrates
the distribution of girl- and boy-groups' self-confidence levels and the correlations
between these groups' self-confidence and success in mathematics.
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Figure 2. Self-confidence of girls and boys in different classes as a function of
groups' success (the classroom level). Seven low-confidence groups of girls are
encircled.

The Figure 2 shows that most of the self-confidence levels of girl-groups'
display a negative attitude toward self, whereas the boy-groups reflect basicly
positive attitude. Further, the positive relation between boy-groups' self-confidence
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and their success is more apparent than that of girl-groups' the result shown
already in the differences in the correlations given above. Extremely clearly can be
discerned the appearance of self-confidence levels of middle achieving girl-groups,
that express very low self-confidence regardless of their average or above average
success in mathematics. Seven of this kind of girl-groups are encircled in Figure 2.
It seems that some very significant environmental or social features may affect
girls' attitudes toward self in mathematics, especially within the groups with large
amount of middle achievening girls. They represent a group that may lie
particularly open to these kind of influences. Examples of these possible influences
are considered below with some teacher variables.

Connections between pupils' self-confidence and teacher factors

In order to consider the effects of some contextual factors in mathematics
learning, correlations were calculated between the variables obtained from
teachers' responses to the teacher questionnaire, and pupils' self-confidence, co-
operation and success respectively. In the Table 3 are presented correlations
between the self-confidence levels of boy- or girl-groups' and the teacher variables

for these groups. All the statistically significant (p < 0.01) differences between

girls' and boys' correlations (with teacher variables) are represented in the table.

Teacher variable Correlation with
boys

self-confidence Difference
girls (stat.sign.)

Use of textbook's teacher manual for planning -0.14 (-) 0.30 (-) **

Use of school-made material for planning -0.15 (-) 0.52 (***) ***

Use of school-made material for teaching -0.06 (-) 0.52 (***) ***

Teacher feels need for research problems that
enlighten the structure of mathematics 0.22 (-) -0.22 (-) **

How often one uses following working methods:
Exercises in small groups 0.23 (-) 0.63 (***)
Solving problems in pairs or small groups -0.17 (-) 0.40 (*) **

Co-operative learning 0.07 (-) 0.46 (**) **

Changes in teaching in recent years -0.14 (-) 0.43 (**) ***

Mathematics tests have changed 0.16 (-) -0.26 (-) **

Table 3. Correlations between some teacher variables and the self-confidence
levels of girl-groups and boy-groups. 'Difference' refers to the difference of
correlations between sexes.

Many of the teacher variables correlated only with the views of one of the two

groups (boy- or girl-groups). In the presented table this concerns only girl-groups.
Considering all teacher variables, correlations were usually stronger for girls, but

there were also variables which correlated significantly only for boy-groups. The

most (statistically) significant correlations were however the positive correlation
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between girl-groups' self-confidence and their teachers' use of school-made
material for planning and teaching, or of exercises in small groups as working
methods. Positive correlations were found also between girl-groups' self-
confidence and their teachers' emphasis for co-operative learning and for, use of
pair or small group problem solving in teaching. Recent changes in teachers'
teaching was also positively related with girl-groups' self-confidence levels, but
instead the number of working years of the teachers' or the sex of the teachers' did
not have any significant correlation with the self-confidence levels of either of the
groups'.

A stepwise regression analysis was further performed in order to find some
examples of possible causal effects between teacher variables and girl-groups'
levels of self-confidence in mathematics. The results of the performed regression
analysis are given in the Table 4 below.

Variable:

Teacher values also the prosess-

Coeff.: Std. Err.: Std. Coeff. : F to Remove:

nature of mathematics 0.384 0.194 0.196 3.926
Use of school-made material

for planning 9.123 2.058 0.428 19.652

Use of working methods:

Exercises in small groups 6.435 2.233 0.335 8.307
Changes in teaching in recent

years 3.879 2.022 0.214 3.68
Test results of girls 0.65 0.224 0.284 8.408

R2 = 0.64

Table 4. A regression analysis for girl-groups' self-confidence in mathematics and
some teacher variables.

Girl-groups' means of test scores together with four teacher variables (the best
predictors) explained over 60 % of the variation in self-confidence levels between
girl-groups, from which the four teacher variables explained the most variance
(almost 60 %). The best two predictors were teachers' use of school-made material
for planning and their use of exercises in small groups. The third predictor girl-
groups' means of mathematics test scores explained alone about 16 % of the
variance in the self-confidence means of girl-groups'. The last two chosen
predictors represented teachers' recent changes in their teaching and their views of
mathematics as a process.
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Epilogue

In the presented results for studying ninth-grade girls' and boys' mathematical
beliefs, clear gender-differences were found in pupils' mathematical performances,
in their confidence in learning and doing well in mathematics, and in their views of
co-operation in learning mathematics. Also there was evidence that the influential
aspects included in girls' learning of mathematics in classroom context may differ
from those features operating in boys' learning, and that these aspects may
importantly affect the perceived gender-differences in mathematics. Consideration
of the variables of this study indicated further that mathematics teacher may
represent an important factor in constituting these aspects. These factors were
related to mathematics teachers' activity and especially to things as teachers'
emphasis for co-operation in learning groups. The characteristics involved in the
co-operative type of work in classrooms seemed to play an important role in girls'
successes and confidence in mathematics, but not in boys' learning. As with girls,
also boys' mathematics performances were highly positively related to their self-
confidence in mathematics, but not their self-confidence nor their successes could
be directly connected to their teachers' actions nor to their own preference for co-
operation, as was with girls at classroom level. This result was different from
Forgasz's (1995), in whose study the connection between self-confidence and
learning environment was found for boys but not for girls on classroom level.
However, in both cases the learning environment is related with gender diffrences.

Behind the studied variables and relations may be found a key to the explanations
for girls' generally lower confidence in their mathematical abilities than that of
boys', as well as to the possible ways of increasing girls' levels of confidence in
mathematics classrooms. These factors could be traced back to the learning
processes and environmental features operating in mathematics learning situations,
that constitute the framework for the appearance of the different experiences and
lives of girls' and boys' in and outside classrooms (see e.g. Bem, 1993; Leder,
'1995). As the results above show, much responsibility for these features may be
assigned to mathematics teachers and their actions, at least in the case of girls'
learning of mathematics. Moreover, the kind of teacher variables considered here
can be directly connected to the prevalent characteristics and processes of schools
(e.g. factors reflected in the amounts of teachers' use of school-made material).
Thus teachers actions may not arise only from their personal views, characteristics
or experiences as mathematics teachers, but also from the features and lives of
schools.
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Recently there has been a trend towards admitting expert statistical evidence in UK
court cases. There have been a number of cases, however, in which outcomes have
been distorted by statistical or probabilistic misconceptions and by faulty inference.
Typically, lawyers receive no training in these areas apart from their compulsory
school mathematical education. The data from five groups of trainee lawyers
demonstrate that their errors in assessing likelihoods persist irrespective of the level
and type of mathematical education that they have received. The typical approaches
and content of mathematical education at school or college need re-thinking. Data
from two other groups of subjects (one of statistical educators) with different types
of mathematical backgrounds were available for comparison purposes.

Background
The project was a collaborative initiative between the RSS Centre for Statistical
Education in Nottingham and staff at the College of Law, the UK's largest law

school (recruiting over 3,500 students a year at its four main branches in London,
Guilford, York, and Chester).

In the past twenty years, there has been a steady growth of empirical research
findings which identify the problems and misconceptions that people have in the
areas of statistics and probability. (See reviews by Garfield, 1995; Shaughnessy,
1992; Kapadia & Borovcnik, 1991; Garfield & Ahlgren, 1988; and Hawkins &
Kapadia, 1984.) It is clear that many of these misconceptions are peculiarly resistant
to conventional scientific and mathematical education, and indeed that some may
worsen with such schooling (Fischbein & Schnark, 1996). During the same period of
time, there have been curriculum changes and developments of teaching methods and
materials. The content and style of these developments have, however, tended to be
belief-driven, rather than based on research findings. In any event, there is evidence
to demonstrate that the misconceptions still persist, even after encounters with these
newer teaching approaches.
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If lawyers are also prey to these misconceptions, their ability to evaluate cases
adequately will be affected. They will not easily be able to use, and may therefore
avoid using, quantitatively-based arguments when these are appropriate. Nor will
they, as advocates, be able to give correct guidance to members of the public who
serve as jurors. They may also, therefore, be responsible for promulgating more
widespread scientific misconceptions. The present study focused specifically on
lawyers' facilities with assessing likelihoods, a skill that is fundamental to the
execution of their professional duties.

Typically, lawyers in the UK receive no training iri these areas apart from their
compulsory school mathematical education. If they were to conform to earlier
research findings with other (non-lawyer) respondents, they would exhibit a number
of predictable misconceptions. Indeed, the outcomes of some recent court cases have
suggested that this is a very likely state of affairs. This study is the first to focus on
the precise nature of lawyers' misconceptions. It is a precursor to developing and
implementing teaching materials and approaches specifically aimed at combating the
difficulties they have with probabilistic information and evidence. The effectiveness
of lawyers'' previous mathematical training in preparing them reliably to assess
likelihoods was also evaluated.

Methodology

A Likelihood Schedule was administered to seven groups of people, there being 217
respondents in all. Five of the groups were trainee lawyers. The schedule was
designed to evaluate respondents' abilities to assess likelihoods in a number of
different contexts relevant to what lawyers might encounter in their work.

All the groups were advised that it was usual for the schedule to take about six
minutes to complete. No respondent was prevented from spending longer if
necessary, but only a few did require any extra time. The groups were asked not to
confer, and the researchers were available to ensure that the respondents did indeed
work independently.

Information was also collected about the mathematical backgrounds of the
respondents. A list of qualifications, ordered by level, was provided and the
respondents recorded the appropriate code number on their schedules which were
then handed in anonymously. A similar exercise was conducted for the statistical
backgrounds of the statistical educators. The legal background of the first five
groups was already known, and was also recorded for the final group.

Subjects

Five of the groups consisted of 168 trainee lawyers (all graduates) who had had a
minimum of one year's legal training. A further group was made up of 23 mature
postgraduate students, who were all following distance-learning courses in statistical
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education, and who were also all teachers of statistics. The final group comprised 26
retired or semi-retired professionals or businessmen (PROBUS members). Three had
received some legal training, including one who was a magistrate.

Most (91%) of the statistical educators had studied mathematics to degree level and
beyond. Of these, at least 39% had qualifications in statistics that were lower than
their mathematics qualifications. 30% had no formal qualification in statistics, and
only 57% had a college level qualification. Only four (17%) had studied statistics in
conjunction with education. [Note that this does not necessarily mean that they had
studied statistical pedagogy.] Most of the trainee lawyers (94%) and PROBUS
members (81%) had no formal qualification in mathematics beyond school level,
although this includes 32% of the lawyers and 24% of the PROBUS members who
had secured the equivalent of `A'-levels in a mathematical subject.

Research Instrument
The research instrument was developed to reflect probabilistic misconceptions and
heuristics which have been described in the literature (e.g. Kahneman et al, 1982).
This included two items on the Availability or Simulation Heuristic, whereby people
give an incorrect answer because they find it easier to imagine than the objectively
correct response (Tversky & Kahneman, 1973). Like all the questions, the first item
was couched in a longer, more wordy, form but it essentially required respondents to
assess which was more likely to produce distinct panels of judges from a pool of ten
judges panels of 3, panels of 7, or neither. The second item referred to assessing the
likelihood that one person would be more upset than another by what were
objectively the same outcomes in terms of penalties experienced. One person,
however, was seen to incur the penalty by the elapse of a long time period whereas
the other person 'only just missed' arriving in time. A 'neither' response was
available.

One item demonstrated possible over-reliance on the Representativeness Heuristic,
under which people respond according to the degree to which they believe that a
sample of observations matches up to their expectations about a population of
outcomes (Kahneman & Tversky, 1972; Shaughnessy, 1992). This was a version of
the fairly classic item related to dichotomous events that appear to occur in too
systematic an order to be random (see also Green, 1982). Again the objectively
correct answer 'neither' was given as one of the options.

One item was based on the possible existence of the Conjunction Fallacy, whereby
people tend to overestimate the likelihood of two or more things that occur in
conjunction with one another (Tversky & Kahneman, 1982). Respondents were
given a potted description about Roger and then asked to rank the likelihoods of his
being a law student, a student, someone who likes listening to jazz, and a law student
who likes listening to jazz.

3 - 43

5Ls,



Problems with Inferential Asymmetries (described as interpretation of conditionality
as causality by Falk, 1988) were also explored. The research literature suggests that
respondents find it easier to reason the forward influence of events than their
backward influence. They were told that two banisters and two solicitors were all
going independently to a meeting, and were asked what was the likelihood of (i) one
of the solicitors arriving second, given that the other one arrived first, and (ii) one of
the solicitors arriving first, given that the other one arrived second.

Finally, the research instrument tested respondents' ability to assess likelihood in the
face of two (conflicting) items of evidence. The problem requires the application of
Bayes theorem to arrive at an objectively correct response. The research literature
suggests that here, in the absence of recourse to Bayes, subjects will tend to ignore
base-rate data which they perceive to be incidental, but not base-rate information
which they see as causal (Bar-Hillel, 1980; Hawkins et al, 1992; Hawkins &
Hawkins, 1992). A version of the taxi-cab problem was used, asking respondents to
assess whether a blue cab company was liable in an accident given a certain
percentage of blue (as opposed to green) cabs in the district, and a witness who
identified the colour to have been blue but who was shown to be unreliable a certain
percentage of the time.

All of the questions were couched within legal situations in order to remove the
possibility that the trainee lawyers would be confused by an unfamiliarity with the
context. Answers required only a tick (or in one case the entry of rank orders) in
answer boxes printed beneath the questions. Respondents were also asked to give
reasons for their answer to the base-rate question.

Outcomes

It was found that mathematical background only appeared to be a significant factor
influencing performance on the first three items. Higher levels of mathematical
qualification seemed to combat to a certain extent misconceptions associated with
availability and representativeness. It must be remembered, however, that those more
highly qualified in mathematics tended to be concentrated in the group of statistical
educators, and they also tended to have received more statistical training. The
performance of the different groups has been analysed for the present study, and also
in comparison with research findings reported by others. The following overview
gives a general idea of how the different groups performed. Many of the differences
reported were significant at the 0.01 level. More detailed analysis is available for
presentation at PME-21.

On the first Availability Heuristic item, the findings supported those reported in the
research literature with most of the lawyers and PROBUS members (83-84%) giving
an incorrect answer. However, the PROBUS members appeared to be less inclined to
conform to the predicted bias (answering 'Panels of 3') than were the lawyers. The
statistical educators were relatively immune to errors.
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The second Availability or Simulation Heuristic item posed difficulty for all the
groups, particularly the lawyers. Of the lawyers and statistical educators who were
incorrect, 95% and 90% respectively chose the answer predicted in the literature (the
`near miss' person), but only 67% of the errors made by PROBUS members were
biased in this way.

The statistical educators did not have any problems with the representativeness item.
The PROBUS group did particularly badly, however, and they seemed to be more
susceptible to give the answer that accorded with the Representativeness Fallacy
than the lawyers (i.e. they chose the unsystematic order to be the most likely).

The Conjunction item was certainly the question that appeared to cause most
difficulties for the respondents, especially the PROBUS group where the missing
response rate is higher overall than for the other questions. There were significant
differences between the groups with respect to the ability to correctly rank the
likelihoods. Overall, the PROBUS members did much worse than the trainee lawyers
and statistical educators. However, on ranking 'likes jazz' and law student who likes
jazz', the lawyers and statistical educators did less well, and their performance
dropped towards that of the PROBUS group, even though they might have coped
correctly with ranking 'student' and law student who likes jazz'.

The statistical educators were relatively impervious to the potential problems in the
Inference Asymmetry item. The PROBUS group did much worse, with only about
55% getting the right answer to each part (and not the same 55% either). Most of the
lawyers (84%) correctly managed the likelihood of a second specified event given
the first, but their performance was reduced to the level of the PROBUS group for
the likelihood of a first event given the second.

On the base-rate item, one that specifically asked for a judgment of whether a
company was liable for an accident, it was particularly disappointing to find that the
lawyers performed worse than either of the other two groups. Once again, the
statistical educators did best, but they were by no means infallible.

An analysis of the reasons given by respondents for their answers to the base-rate
item revealed great confusion and eccentric reasoning. In particular, the lawyers
often resorted to statements that had merit neither in legal terms .nor in probabilistic
terms. There was very little evidence of any real ability to bring these two separate
strands of their understanding together in a coherent and constructive way, and
several respondents admitted to resorting to pure guesswork. Guesswork in the
absence of sound probabilistic intuitions, however, does not make for correct
inferences.

Discussion

The research literature has typically classified errors according to certain labels. In
some cases, the researchers have then started from these labels and devised means of
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demonstrating that the phenomena do indeed exist, using essentially 'tricky'
probability questions designed to trip up the respondents in predictable ways. With
respect to identifying the real nature of the misconceptions, such an approach can
become somewhat circular. However, it is clear that the outcomes of studies of
probabilistic understanding are extremely sensitive to small changes in the wording
of the questions. The present researchers therefore chose to adopt versions of tried
and tested research questions, rather than embarking with a new, and therefore
potentially unreliable, test instrument.

Nevertheless, a new framework of explanation was also adopted, derived from
Glickman (see Hawkins et al, 1992). This was based on the identification of more
general types of error - failure to formulate and/or failure to enumerate possible
outcomes of the required probability model. The analysis of the results was indeed
also conducted with a view to validating, or otherwise, the more specific categories
of error reported elsewhere in the research literature. However, it was felt that the
Glickman framework was more likely to yield insights that could be applied to
enhancing statistical education strategies, and that these insights would relate better
to pedagogic reforms observed in many mathematical curricula. Greater emphasis on
representation and modelling is entirely in keeping with moves towards transferable
mathematical skills. Too much emphasis on specific error types tends to obscure our
understanding of general cognitive skills and strategies. Ways must be found
whereby the teaching/learning process will succeed in inclining students to use the
`right' approaches to probability questions. It is not clear that their encounters with
statistics and probability in the conventional mathematics curriculum is succeeding
in this respect.

The Prosecutor's and the Defendant's Fallacies have received much media attention
recently because they have been associated with a number of miscarriages of justice
(Thompson & Schumann, 1987; Finkelstein & Levin, 1990; Donelly, 1994; People v
Collins, 1968; R v Deen, 1994). The relationship of these misconceptions with the
lawyers' performance on the Conjunction Fallacy and Base-rate items in the present
study, as well as with the Glickman framework of explanation, is promising as an
area for research.

Conclusions

The conventional forms of mathematics training that these groups of respondents had
received were not sufficient to instil the necessary understanding of chance,
probability and likelihood reflected in these test items. Even the statistical educators
who were generally more highly qualified in mathematics had difficulties with some
of the items. Those items on which they did better were the ones that were more
directly related to their own statistical training, and to the content matter that they
were now teaching. It was certain, however, that their grasp of the relevant concepts
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was sufficiently fragile to cause considerable concern over their competence to teach
statistics.

If it was the statistical, rather than mathematical, backgrounds of the statistical
educators that were contributing to their enhanced performance on some of the items,
then we must find out how to provide other groups with equivalent preparation in
appropriate strategies with which to attack probability questions. In fact, it is clear
that there is room for improvement in the training of all groups in this respect.

The lawyers had considerable difficulty with most of the questions, confirming the
inadequacy of their preparation for the increasingly quantitative decision-making
now facing them in their work. If the mathematical education now found in the
National Curriculum (which is all that most lawyers receive) is not a satisfactory
preparation, it is certainly necessary to find and implement remedies. It might be that
some form of quantitative training should be introduced within all legal training
courses. An innovation such as this will be more effective if the methods and
materials relate directly to what research can show us about the nature of lawyers'
existing misconceptions.

The PROBUS group were a less homogeneous group in many respects, and
accordingly they seemed to produce less predictable answers. Their years of
experience in business and the professions had not been sufficient for sound
intuitions of likelihood to emerge. This is not something that we want of tomorrow's
business managers and professionals.

The Glickman framework provides a useful alternative or adjunct to the conventional
error-based classification schemes in the literature. It is indeed an interesting starting
point for developing more generalised and effective teaching strategies. Future
research is needed that will develop and evaluate such strategies in the classroom.
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AN EXPRESSION OF THE IDEA OF SUCCESSIVE REFINEMENT IN
DYNAMIC GEOMETRY ENVIRONMENTS

Orit Hazzan and E. Paul Goldenberg
Education Development Center, Newton, MA

Abstract

In this paper we deal with students' work in Dynamic Geometry Environments
(DGEs). More specifically, we analyze students' thinking from theperspective
of successive refinement: a problem that is non-trivial for its solver tends not
to be solved in one shot, but rather through a sequence of steps, in whicheach
step is an attempt to "improve" on earlier ones. In some cases, steps lead to
deadends, and one must backtrack and look for a new path to the. solution. We
will show how this idea is expressed as students constructa square in a DGE
and as they determine the extent of generality under which a theorem is true.

Introduction

Dynamic Geometry Environments (DGEs) enable one to construct geometrical figures

by specifying certain relationships among their components. A distinguishing feature of
such environments is their "dragging mode," which allows one to manipulate geometric

constructions by dragging various parts (like points, segments, etc.), while preserving

the specified relationships. One can then study the unanticipated invariantsproperties
and relationships that were not explicitly specified, but are consequent to those that
defined the construction.

Most of the research about learning in DGEs focuses on its geometrical aspects,

e.g., understanding of geometrical concepts (Capponi, 1992; Laborde and Laborde,

1995), and an analysis of such environments for learning geometry (Laborde and

StraBer, 1990; Holzl, in press). Other research shows how a DGE may help students

understand related mathematical concepts, like the notion of function (Hazzan and

Goldenberg, in press). In this paper we attempt to show how DGEs enable students to

approach problems through a process of successive refinement.

The idea of successive refinement is widely used in computer science, where people

look for ways to overcome the complexity of certain very large programming tasks.

Leron (1994) describes how learning and teaching with this idea in mind differs from

the traditional approach:
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The standard model of dealing with complexity advocates decomposing a
topic into a linear sequence of tiny "atoms," then proceeding along the
sequence, mastering the atoms one piece at a time. The model of successive
refinement offers a viable alternative for dealing with complexity. One starts
with a simplified version of the phenomenon under study, and refines it
successively to include more and more details, subtleties and precision.
Through the entire process, the student constantly deals with the whole
picture, though it may be vague or imprecise in the intermediate stages.

In this paper we present our ideas around two tasks which we asked 9th and 10th

grade students to deal with. In the first task the students were asked to draw a square in

a DGE. It turns out that this task, which might at first appear quite simple, involves a

number of non-trivial steps for beginners. The students refined their construction in

stages, so that in each step they improved the square, taking into account additional

essential conditions of this geometric shape. The second task was to check the scope of

the hypothesis under which a theorem is true. The discussion was based on the

theorem: The midpoints of a quadrilateral form a parallelogram. When one tests this

theorem in a DGE and drags a vertex of a quadrilateral (as ABCD in the first and

second drawing, left to right, in Figure 1), he or she is likely to encounter four-sided

shapes that were not anticipated at the outset of the experiment (the other two

drawings in Figure 1).

Figure 1: Is ABCD a quadrilateral?

This phenomenon raises questions, including whether these new figures are to be

considered quadrilaterals and, independently of that definitional question, whether the
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theorem holds for these other shapes. Such a task invites an initial formulation of what

is a quadrilateral, an examination of the theorem and of the quadrilateral definition, a

verification of the essential conditions, and perhaps even a refinement of the definition

or theorem.

Our observations confirm Leron's observation that students do not reach complex

targets in one shot, and help to describe the process by which they do reach the target.

In other words, students approached these tasks not with a "top down" plan, but

through an iterative processa sequence of stages in which they reexamine and make

successive refinements to their mathematical ideas.

We believe that the dragging feature that makes DGEs dynamic, strongly influences

students' learning approach in the direction of successive refinement. In both tasks, we

will emphasize how this property of DGEs enables students to rethink, reexamine and

reflect both on their own thinking and both on the mathematics involved. In the first

case the object under the discussion was a real mathematical object - a square; in the

second case it was a meta mathematical object - a definition.

Research background and analysis

The analysis described here is taken from interviews with high school students. Six of

them were not familiar with DGEs before the interviews and dealt during the interview

with the construction of a square; seven have been familiar with such environments and

dealt during the interview with the quadrilaterals definition. For reasons of space

limitation we include here only a few. short excerpts. More excerpts will be presented in

the talk and in a broader paper of the research described here.

Task 1 - What is a square?

On a paper, a square is a square. The situation is different in DGEs, giving vivid

meaning to the idea of what Healy, Hoelzl, Hoyles and Noss (1994) call an

"unmessupable figure." In DGEs, one can create malleable figures. If all configurations

into which the figure can be adjusted retain the originally intended character, we call the

figure "unmessupable." In other words, a sketch that can be dilated or translated or

rotated by dragging the vertices, but that always remains square (or rectangular or
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rhombic or whatever) is an unmessupable square (or rectangle or rhombus or

whatever).

There is more than one way to think about successive refinement in relation to this

task. Students might, for example, sketch a square as four segments attached at their

vertices and then "successively refine" the sketch by adjusting each vertex carefully,

staring hard at the drawing, and then making further adjustments until the picture

looked perfect. It is certainly possible, especially if there is a requirement that the

square not be "level," that students may think at other than a perceptual level and

somehow articulate more clearly for themselves some of the mathematical properties

that are inherent in squareness.

We made a game out of the task of drawing an unmessupable square. If we

succeeded in messing up a construction, students could start a new sketch. Thus, they'd

always eventually "win" through a process of successive refinement. Step by step,

they'd analyze the conditions for squareness, and add one (or more) additional feature

to ensure that squareness. Each step improved the sketch, and also improved the

students' understanding of squareness.

Jill started by drawing a square "by eye"four segments adjusted to look right. Of

course, they could readily be unadjusted, messed up. Then she added the condition that

opposite sides must be parallel. Even though Jill's construction looked like a square, it

behaved like a parallelogram when point A was dragged (Figure 2):

Figure 2: An unmessupable parallelogram
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She recognized the problem and added the constraint that the angles remain fixed at

90°. The resulting invariance was rectangularity (as point C is dragged in Figure 3), but

still not squareness. Finally, she saw that she had to ensure that the four sides remained

equal.

Figure 3: An unmessupable rectangle

Here are some of the mathematical, epistemological and educational thoughts about

this kind of tasks, the spirit of DGEs and the idea of successive refinements:

Such an experiment may lead to a discussion about the idea of invariance in
general, and also provides an opportunity to discuss shapes as an invariant. This
kind of thought experiment would likely seem arbitrary, not to mention difficult
in a static environment.

Such an experiment makes quite salient the hierarchical relationships among
geometrical objects, showing which shape is more general and which is more
specific. As a result of the successive refinements in the process of constructing
the square, it is easy to see that a parallelogram "requires" less conditions then a
square, and hence the squares are a subset of the parallelograms.

The "bugs" in students' initial solutions have a real positive contribution. Just as
Papert (1980) describes in relation to Logo, our students' errors help focus
their attention on what remains to be added to refine their solutions (and mental
constructions, of course).

Task 2 - What is a quadrilateral?

We asked the students to construct a quadrilateral and then connect the midpoints of its

sides. They would assert that the resulting "inner" shape is a parallelogram. We then

asked them to check, by dragging various points or segments, to see if that inner
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parallelogram results for all quadrilaterals, and also to see if it results for anything other

than quadrilaterals. That is, are there monster' shapes whose midpoints, when

connected, still produce a parallelogram? (See examples in figure I.) This question is

raised because these shapes are deformations of the original quadrilateral and because

even for strange shapes, which do not look like a quadrilateral, the inscribed shape is

still a parallelogram.

In this case we see how DGEs enable to reexamine and to restate the formulation of

the quadrilateral definition. It may lead to a new definition of a quadrilateral, to a

refinement of its first definition or to a creation of a new concept, which captures all the

shapes for them the theorem is true. This kind of task is quite difficult to do in a static

environment.

The idea of redefining a concept is similar to the case described in Lakatos (1976)

`Proofs and Refutations' story. In that story a teacher with his class discuss the

question of what is a polyhedron. This question is approached using the process of

finding monsters and barring them by a refinement of the polyhedron definition.

Goldenberg and Cuoco (1996) raise some questions in the same spirit in relation.to the

quadrilateral definition discussed here:

How do [students] handle the fact that moving a single point can...create
"monster quadrilaterals," such as the triangular configuration or the
self-intersecting bowtie? [See Figure 1] Do they seem to fail to notice
these cases altogether, or ignore them as if they do not exist or are a
kind of irrelevancy? Do they think of these as interesting but separate
byproducts of a set of observations about quadrilaterals? Or do students
experience this as conflicting with their previous notions of
"quadrilateral"? If so, do they extend the definition? Define exceptional
cases? Do they resolve the conflict by what Lakatos (1976) calls
"monster-barring"deliberate and careful reworking of all relevant
definitions (in this case, of quadrilateral) for the purpose of rejecting
aberrant or troublesome cases?

In the presentation we will address questions like the above. For example, most of

the students described the self-intersecting bowtie quadrilaterals (See Figure 1) as two

1 The term "monster" comes of course from Lakatos' book Proofs and refutations.
This is a metaphor for instants of mathematical examples which lead to reexamine
definitions or theorems.
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triangles. Two questions are relevant here: What prevents the students from accepting

this shape as a quadrilateral? Why did they prefer to conceive it as two triangles? Here

are some arguments:

Tom: They're not like -- you can't say that -- they're not a theoretical thing because
they're triangles. [...] They're not -- they're like two of them. It's not one object.
[...] It's two. [...] But it still makes a parallelogram.

Arvin: Here it's not [a quadrilateral]. [...] Because it has more than four sides. It's more
-- it's like two triangles.

Such instances of the quadrilateral, in addition to cases where we do not get a

parallelogram, led the students to examine, redefine and refine the quadrilateral

definition.

Conclusion

The ability to solve a problem in the process of successive refinement depends largely

on the environment in which one works. Sfard and Leron (in press) describe the

contribution of the computer and its relationships to problem solving in the process of

successive refinement:

Unlike paper, the computer speaks to you. It responds -- sometimes
angrily! -- to anything you might be doing. [...] Mistakes (or "bugs" as they
are now called) become part of the deal -- they turn into stepping stones for
improved proposals, for more promising conjectures, for further progress.
Half-baked ideas gain legitimacy, since they are now seen as a necessary
first step toward a fully satisfactory solution. Here it is taken for granted
that an answer to a problem can only be obtained by a spiral process of
partial solutions and their successive refinements.

This paper is one in a series of papers in which we are trying to present an

epistemological framework for dealing, working and thinking in DGEs. In relation to

the topic of this paper, the question of whether the successive refinements we see in

students work are learning about the geometry or learning about the software, is still

bothering us. The fact that the software tool does not recognize the attempt to draw a

square the way any human would, and take that to be the intent, plays a role here.

Other questions which we will address in the talk are: Why successive

refinement? Why would it not be better to think everything out logically in advance?

Why is it not enough just to analyze the definition of squareness, which includes all the
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properties that must ultimately be built in? Partial answer comes from our interviewees'

performances which were evidence that having the definitions was not enough. It

allowed them to articulate the nature of the failures -- more than a mere perceptual task

-- when they saw them, but apparently did not allow them to predict the failures in

advance.
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EFFECTIVENESS OF A STRATEGY AS A SOCIOMATHEMATICAL NORM
Patricio G. Herbst'

University of Georgia, U. S. A.

This paper presents 'effectiveness of a strategy' as a plausible example of a sociomathemati-
cal norm emerging from a problem solving session with preservice mathematics teachers.
Effectiveness is used to illustrate the claim that the notion of sociomathematical norms needs
to be further specified in order that it can be clearly differentiated from social norms. Such
specification needs to account for the systemic intentions regarding the mathematics at
stake.

The notion of sociomathematical norms has been characterized as "criteria of values with

regard to mathematical activities" (Voigt, 1995, p. 196) and has been differentiated from

"general classroom social norms that apply to any subject matter area and are not unique to

mathematics [because they focus] on normative aspects of mathematics discussions specific

to students' mathematical activity" (Yackel and Cobb, 1996, p. 460-461). I contend that the

difference between the notions of social and sociomathematical norms needs to be further

specified if they are going to be used differentially. I suggest that this shortcoming is con-

comitant with the absence (in the theory) of mathematics as cultural knowledge: Although

mathematical activity is present as the basis of the differentiation, such presence is token in

the analysis done by the 'emergent theory' team (Cobb and Bauersfeld, 1995) and accounted

to the "subtle influences" (Voigt, 1995, p. 199) of the teacher in the classroom.

This paper intends to contribute to the theoretical debate concerning the use of this construct

by analyzing the development of effectiveness as a socio-mathematical norm in a problem

solving session that was part of a case study with preservice teachershereafter Jack and Jill

(Herbst, Mesa, and Gober, 1996). Jack and Jill were engaged in a problem that required them

to work together in comparing areas under four curves given by their graphs. Graphing cal-

culators were among the available tools.

Lack of consensus and difference: Which is sociomathematical and which is social?

Yackel, Cobb, and Wood (1991) defined social norms and gave as an example "that partners

should reach consensus as they work on the activities" (p. 397). Yackel and Cobb (1996, p.

461ff) identified mathematically different as a sociomathematical norm. The following ex-

I am grateful to Jeremy Kilpatrick for many helpful comments on the original manuscript.
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amples drawn from Jack and Jill's problem solving session suggest that the attribution of

those labels is problematic.

Example 1: Despite Jack's attempt to solve the problem by modeling the equations, Jill's

strategy of drawing blocks of 1 square inch each has been successful to keep them working

together and making progressunlike Jack's approach that had failed in Graph 2. They have

used Jill's strategy for the first three graphs and they are now facing the fourth:

Jill: This is very hard to do [in my way], Jack. There, one whole block, two whole blocks.
This is gonna be 3, 4,... 5, 6 [counting whole squares first and then compensating 2 pieces
for 1 square and three pieces for one square], don't you think?
Jack: 7 [compensating some pieces].
Jill: About 7 and a half maybe [teasing him].... Jack, I'm gonna guess it's B!...There must
be some mathematical way to do this Jack! [teasing, very secure]
Jack: I was trying to do that in the last one, and you didn't let me! [frustrated]
Jill: [laughs] Cause, I don't remember how to do that.

Jill's teasing is a multifunctional statement. Beside its propositional content to which Jack

reacts, it also conveys the message that an answer has been achieved nonetheless. Her use of

mathmatical could well have been replaced by elegant or precise.2 The mathematical dif-

ference of the strategies seems to be acknowledged by both participants. Still, the overall so-

cial norm which indicates that they should work together is the source of Jill's justification

for insisting on her not-so-precise, although efficient, strategy. They both agree that the

strategies bear different relations to mathematics on the basis of a sociomathematical norm

(i.e. difference). However, they disregard it in working the problem on the basis of a social

norm: that they would work together and produce one agreed-upon solution.

Example 2: approach had successfully answered the question posed. The pair had of-

fered a final answer based on Jill's solution. Then they engaged in a conversation with the

interviewer (N); the conversation was smoothly leaving Jill out and focusing on what Jack

had been missing. Then comes the following excerpt:

Jack: I just, I would set the range up on [the, graphing calculator] to be the exact range of
[the interval] and so I'd have this side of the picture here.... I'd use key points....It's still
not exact... but ... it's closer than [Jill's approach]
Jill: No-o-o! [long as in a lament] But my way worked!
Jack: But, I mean, that's...the same idea. I mean,...if you get down to it that's where [hers]
would go to. Jill: What you call that?

2 In an interview immediately after the session Jill was asked about the status of her strategy. She
qualified it as mathematical but less precise than Jack's.
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Jack: If you can make that smaller and smaller, that's the limit ... that ... started what I
was trying to do.
Jill: Riemmann sums [sad, as in a lament. Jack and N are talking in the background.]

By focusing on Jack's approach, the interviewer was pointing at the mathematical difference

between Jack's and Jill's approaches. That context allowed Jack to downplay the agreed-

upon solution. As Jill's reaction suggests, this action went against their consensus. Jack ac-

knowledged her by implying that for all present purposes both solutions were equivalent.

Consensus acted as the sociomathematical norm.

Mathematical and social for who?

The notion of sociomathematical norms is a very useful one. Indeed, the whole problema-

tique of the development of constituted sociomathematical norms is crucial when studying

classroom mathematics. Still, one needs to point out that when one attributes the emergence

of those norms from mathematical activity such attribution is made by an observer (not by

the teacher or the students); an observer who is able to distinguish the mathematics at stake

from the problem at hand. The participants cannot make such distinctions until they are re-

quired to do so by the logic of the practice in which they are involved. In the 'emergent the-

ory' classroom,

[The teacher addressed] an issue which is not often distinguished by young children[:] the
difference betWeen the meaning of a disagreement that is personal and one which arises
from differences in ways of thinking mathematically (Wood, 1996, p. 431).

The example that Yackel and Cobb (1996) provide to illustrate how the teacher intervened to

establish "the expectation that rationales should be mathematical" (p. 469) shows that the

differentiation between the mathematical and the social was not clear for the participants:

The teacher intended to persuade Donna that in the same way as she would not accept that

her name is Mary because her name is Donna, she should not accept that the solution is eight

if she believes it to be six. The episode is not an example of Yackel and Cobb's contention:

From Donna's perspective, the rationale is not mathematical at all; it seems more an occasion

of direct moral instruction.

I don't intend to blame the teacher. To the contrary, the point is that even with such a col-

laborative person, there are sociocultural issues that have to be accounted for, as they matter

for the issue of how norms are constituted. In particular, the existence of mathematics as

culturally shared knowledge (which finds the teacher as an agent in this case) and the exis-
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tence of expectations and ways of functioning associated to the teacher by her socialization

into the school as a system. The teacher is justified (moreover, coerced) in providing the

norm to Donna on the basis of her social responsibility and of her knowledge that it is true in

mathematics. From Donna's perspective, even if in the future she does not agree with what

she does not believe, what a mathematical way of thinking is may become even more prob-

lematic. As a consequence, if the students did not have ways to differentiate personal from

mathematical disagreements, the teacher's action of pointing this difference out can, only

provoke an effect of the opposite direction to the intended.

In fact, if not all that can be attributed to knowledge from the observers' perspective is

within what the participants regard as knowledge, it is likely that at least when accounting

for social interaction one cannot isolate cognition. The observer needs a broader systemic

model that accounts for the relations between power, knowledge, and discursive practices.

(See Wertsch and Rupert, 1993, p. 228ff; Rouse, 1994). If this argument seems plausible, we

can conclude that the quoted distinction between disagreements that are personal and those

that are mathematical is artificial. In fact, taking the sociocultural perspective advocated by

Lerman (1996), one would expect that the unfolding of mathematics as a discourse differen-

tiated from the ordinary discourse of ordinary life would initiate the participants' awareness

of the different nature of those ways of disagreeing.

If a 'clasSroom as a system where shared meanings are prodliced is going to be an inquiry

mathematics classroom, this decision will have to act on the conditions and constraints for

. the differentiation of mathematics as knowledge (that in Vygotskian terms are dual to the dif-

ferentiation of the self and the production of consciousness). It looks like these intentions are

among the subtle influences that Voigt invokes: But, actually, this issue seems to point at a

theoretical black hole that has eliminated from sight the social project of educationnot

quite a subtlety.

It becomes a technical problem for the educator to find the ways in which the activities at

hand and the mathematics at stake can be coordinated so that what the observer recognizes as

sociomathematical norms are seen by the participants as mathematical norms. The theory

needs to acknowledge this basic intentionality of education: "In mathematics education we

are concerned with students acquiring the concepts and language of the community of

mathematicians" (Lerman, 1996, p. 145-146).

3 -60



Effectiveness of a Strategy: A Sociomathematical Norm?

The Jack and Jill Project cannot stand close comparison with the 'emergent theory' team

project, primarily because the former was not a classroom research project. However, some

observations are appropriate for a discussion of sociomathematical norms. The problem in-

volving Jack and Jill was an intentional environment with respect to the kind of knowledge

that they would invest. They were not conditioned, but some of their actions could be pre-

dicted by the characteristics of the situation. The problem was very open but it created con-

ditions for Jack's modeling strategy to be plausible but not easy, and for Jill's block strategy

to be plausible, yet questionable. Solving the problem within the norms of a collaborative

work demanded the negotiation of a common strategy. During that process emerged a norm

that I would call effectiveness and can be traced as follows. After Jill's block strategy pro-

duced a result for the first question, Jack proceeded to involve her in his strategy. Working

together (but on different tasks), they achieved an equation for the first graph. Then comes

this excerpt:

Jack: Okay, this is 1/2 x +1 cubed plus 4.... Easy?
Jill: But look at the second one Jack: All right
Jill: I'm telling you Jack, I've got it figured out. [Jack smiles at her paper. Jill laughs.]
Jill: I already knoW which one.... Don't you think?... [Jack complains inaudibly]
Jill: But that's right!... Don't you think? Or am I wrong? Jack: I don't know
Jill: I figured this whole thing is about 7, but see there's seven whole blocks right there
[referring to Graphs 1 and 2 alternatively. She is saying that Graph 1 has already 7 whole
blocks inside plus the ones that are not completely contained, but Graph 2 even compen-
sating incomplete blocks only adds up to 7.]

That is, the apparent difficulty of applying Jack's strategy to the following graph is con-

trasted with the apparent effectiveness of Jill's strategy to answer all questions. After the

above mentioned exchange, the pair follows Jill's lead with Jack's acceptance that they can

discriminate between the first two graph:

Jack: I'm sure it's right Jill: Do you think? [Tone as in 'Let's talk about it],
Jack: All right... so.... Which one of these? [He points at Graphs 3 and 4.]
Jill: Oh, man! ...This is gonna be x square... This is gonna be a parabola ... quadratic.
Jack: [Drops pencil] Do it with the ruler thing! See if that will work on this!

I take this as an application of the same norm used in the previous excerpt, but reversing the

directionthat is, questioning whether Jill's strategy is correct by testing whether it is effec-

tive in a particular case. After both work on the proposed pair of graphs using Jill's strategy,

the dialogue continues:
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, Jack: All right [Jack goes back to Graphs 1 and 2]
Jack: So which one is bigger? This one or that one [points to Graphs 2 and 4]
Jill: [After looking at the graphs for about 8 seconds,] I don't know.
Jack: All right.... Do you know ... do you have any idea of a [formula] whose graph would
look like...?

The answer achieved by Jill's strategy (comparing Graphs 3 and 4) cannot be integrated with

the previous question (comparing Graphs 1 and 2) so as to sort the four graphs.3 Jack's im-

plicit claim that Jill's strategy was not effective and his explicit invitation to return to his

modeling strategy were based on that impossibility. Jack led the work trying to model Graph

2 which he had correctly understood as a quartic. After several attempts that gave him graphs

that were close but not close enough to satisfy his standards he stared at the problem for a

couple of minutes and said,

Jack: Okay let's doI'm pretty sure this is the biggest one, right? [Pointing at her work].
Jill: Well, that one's the biggest, period.... I think [Jill points at one of the graphs].
Jack: Which one comes next?

As a consequence of the lack of success in achieving an equation within what was for him a

reasonable amount of time, Jack' allowed himself to abandon his own strategy and favor a

new look at Jill's. The norm of effectiveness was molded within the constraints of correct

application of a strategy to a problem and reasonable allocation of time for work. As I noted

earlier, Jill was positive in saying that her way had worked. From an observer's perspective,

she was absolutely right: Her strategy satisfied a norm of effectiveness related to the problem

at hand. My question is, What kind of norm is effectiveness and how does it interact with the

mathematics at stake (not just with the problem at hand)? This question is particularly im-

portant if one admits (as I do), that from a cultural perspective, Jack's strategy is indeed bet-

ter than Jill's.4

A source of a possible answer is found in my interview with Jack alone immediately after the

problem session. These first exchanges confirm Jack's use of a norm of effectiveness:

I: I noticed that when she did this approach with the squares, you kept looking for a for-
mula.

3 The problem had required them to compare first Graphs I and 2, and then Graphs 3 and 4. Eventu-
ally they were required to sort all four graphs.

This claim has to be supported by a more specific description of the strategies that is beyond the
scope of this paper. In particular, Jill never showed that she would reduce the error by refining the
partitions; she relied, instead, on compensating incomplete blocks.
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Jack: Yeah, I don't know about that.... I was just trying to get more, I guess, precise....
[Hers] had worked a lot better than what I thought ...cause I didn't think ... they all looked
so close I thought we would Come up with ... you know like seven blocks in each one....
I: Those blocks were too big for your [taste]?
Jack: Yeah.... Well, I mean, I thought that once she finished it this would come up with

seven and this would come up with seven ... I didn't think she would get eight [or] bigger

differences

Jack expressed a preference for his own strategy, but had submitted to the choice of a strat-

egy for the group solution that fulfilled a norm of effectiveness, which he knew how to ap-

ply. When I tried to get more of how he valued both strategies, he expressed these values in

terms that were less conflated with personal ownership: "You know, mine was the more...

I mean,... I used more math." Later he said: "If I was doing something for a job,... You

know what I'm saying? If I were doing something extremely important ... I'd do it my way."

Effectiveness was a sociomatheniatical norm. Still its validity was regulated by some features

of the context that go beyond the social interaction between Jack and Jill. Jack (a college

student who has had three courses in calculus) saw the need to manipulate effectiveness in

favor of what (he thought) was more mathematical (although what was at stake was sorting

those particular areas). He also saw the need to insist on that preference depending on the

social importance of the task at hand. Within the social importance of the situation in which

Jack was operating, effectiveness had been modified by an allocation of time for work. More

on the characteristics of this interaction was implied by Jack when I asked him how he would

change those problems if he was going to give them to his students:

Jack: I'd probably make it easier, ... you know.... A lot of times you were multiplying by

one half.... I don't think I'd change it much just maybe the equations of the graphs... to
make them soI mean this one [points at Graph 2] was just so hard to find... I would try
to make that one a little easier to find.... Kids like the critical point at one and a half ...
two and a half... and just move it a little bit... would make it a little easier.

In other words, the conditions of the problem had violated Jack's expectations as to what

was legal in that didactical contract: When one poses those kinds of problems one does not

use strange numbers to deceive students. He did not seem to realize that such issue could

compromise some effectiveness-related features of the areas.

The session with Jack and Jill was an environment whose (systemic) intentions as far as

mathematics education is concerned were loosely specified. The researchers' purpose was

never to make it otherwise. My comments above intend to show that such loose specification
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is likely to be connected with the impossibility to decide whether effectiveness as a socio-

mathematical norm refines the social norms or depends on the social norms. They suggest

that a further differentiation of sociomathematical from social norms would depend on sys-

temic specifications of the cultural knowledge that is intended to be used.
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HOW EQUALLY SUITED IS REALISTIC MATHEMATICS EDUCATION

FOR BOYS AND GIRLS? A FIRST EXPLORATION

Marja van den Heuvel-Panhuizen
Freudenthal Institute, Utrecht University, The Netherlands

The results of two successive national assessments of educational achievements in
primary school in The Netherlands placed the gender issue on the research agenda.
These results suggested that girls and boys did not profit equally from the assets of
the new Dutch approach to mathematics education. Therefore, the MOOJ Project, a
study of the gender aspect of Realistic Mathematics Education, was started. This
paper will address the first part of this study. The focus of this part is to provide an
overview of the gender differences in mathematics achievements in The
Netherlands, and to investigate whether there are schools in which the achievements
of girls are at least equal to the achievements of boys. The survey involves data
from approximately 70% of the Dutch primary schools.

1. Introduction

Twenty five years ago, in The Netherlands the first steps were taken towards the

reform of mathematics education, which later became known as "Realistic
Mathematics Education" (RME). Freudenthal and his colleagues of the former
10W01 were the founders of RME. Although still under development, and not yet

entirely implemented in the classroom practice, this reform has left its mark upon

today's primary school mathematics education. More than three-quarters of the
Dutch primary schools now use a mathematics textbook that was inspired to a
greater or lesser degree by this reform movement.

Characteristic of this new approach to mathematics education is the rejection of the

mechanistic, procedure-focused way of teaching in which the learning content is

automatized in meaningless small parts and where the students are offered fixed

solving procedures to be trained by exercises, often to be done individually. RME,

on the contrary, has a more complex and meaningful conceptualization of teaching.

The students, instead of being the receivers of ready-made mathematics, are
considered as active participants in the teaching-learning process, in which they
themselves develop mathematical tools and insights. The basis for this new approach

to mathematics education emerged from Freudenthal's (1971, 1973) idea of
mathematics as a human activity which he connected with the principle of guided

reinvention. This means that, in RME, the own constructions and productions of
students play a central role. As Treffers (1987) indicated in his description of the

r-1
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theoretical framework of RME, the contributions of the students are one of the five
elements that constitute RME curricula. The other elements are the major place of
contextual problems and real-life situations by means of which the students can both
constitute and apply mathematical concepts, the use of models by which the gap
between the informal, context-connected mathematics and the formal mathematics

can be bridged, the interactive character of the teaching process, and the
intertwinement of various learning strands. Aside from the more general idea that
in RME, problem situations should always be imaginable for the students, and as a
consequence, should always fit within the child's world, the aspect of gender has
never been a special topic of investigation within RME.

2. The MOOJ Project

Since 1987, the National Institute of Educational Measurement (CITO) has held

National Assessments of the Educational Achievements (PPON) in Dutch primary

schools. For mathematics this was done in 1987 and in 1992 (see Wijnstra et al.,
1988; Bokhove, Van der Schoot, & Eggen, 19962). One of the surprising results of

these PPON gauges was that, they suggested that girls and boys did not profit equally

from the assets of the new Dutch approach to mathematics education. Both studies

showed namely that there were significant differences between the mathematics

scores of girls and boys, which were almost all in favor of the boys. Moreover, it
turned out that these differences were very stable. No interaction effect was found
between sex and the year of the study on the achievement scores.

These results led at the end of 1995 to the start of the MOOJ Project, a more
thorough investigation into these differences, funded by the Ministry of Education.

The research is conducted by the Freudenthal Institute of Utrecht University and the

Center for the Study of Education and Instruction of the State University of Leiden,
in collaboration with the CITO.

The general goal of the complete research project is to find out which factors are
causing these gender differences, and, eventually, to trace teaching methods which
are especially suitable for girls (Boekaerts, Bokhove, Gravemeijer, & Treffers,

1995). The proposed research project contains three parts. Part I is mainly focused
on the further exploration of the gender differences in mathematics achievements in

Dutch primary schools and on the identification of schools in which the mathematics
achievements of the girls were at least equal to the achievements of the boys. In the
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MOOJ Project these schools are called "girls schools". Schools in which the boys

perform better are called "boys schools". In part II, a deeper exploration will take

place of the influence of school, teacher and classroom practice factors, in

connection with student characteristics, on these differences in mathematics
achievements. This further research will take place in a small selection of the
identified girls schools and boys schools. Part III, finally, is meant for investigating

how the findings of this gender study can be conveyed to the field of education. In

this last part of the study an in-service training project for teachers will be set up.

The first part of the study has been carried out in 1996. The present paper will

report on it.

3. The research questions and the set up of part I of the MOOJ Project

The main question of this first part of the study is whether there are schools in The

Netherlands in which the girls have at least the same level of performance in
mathematics as the boys have. Without such schools the subsequent part of the
research would be senseless, because without such schools it will not be possible to

compare girls school and boys schools. Another goal of this initial part of the study

is to get a better understanding of the gender differences in the Netherlands. How
large are these differences? And, in what respect do the mathematics achievements

differ between the sexes?
To answer these questions, data collected with the CITO final test for primary

school has been used. This CITO test is meant for providing an individual student

score for making a decision about the enrollment at a school for secondary

education. The test is not compulsory and is administered in approximately 70% of

the Dutch schools. This means that yearly, a little bit more than 100,000 grade-six

students take this test. Along with items on mother language and on what is called

"information processing", the test contains 60 items on mathematics, divided in

three parts. The items are presented in a multiple choice format.

For the MOOJ Project, the 1993 through 1995 mathematics data of the CITO final

test for primary school were analyzed on three different levels: the individual
student level, the level of the discrete test items, and the aggregated school level.
The first two analyses were meant for gaining insight into how the mathematics
achievements differed between girls and boys. The third analysis was aimed at the

selection of schools for the second part of the MOOJ Project.
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Cito final test
for primary school

X sd

(%) (%)
X sd
(%) (%)

X sd

(%) (%)
X sd

(%) (%)
X sd

ITO(%)
X sd

(%) (%)
1993

girls boys
1994

girls boys
1995

girls boys
0=50111* n=49411 n=52600 n=52133 n=52835 n=52024

Total score mathematics 65 19 71 18 67 19 73 19 65 20 72 20
(60 test items)

Basic knowledge numbers 67 24 74 22 63 28 71 26 60 28 68 27
Mental arithmetic 66 22 73 21 67 21 73 20 66 22 73 21
Operations 67 24 74 22 63 28 71 26 60 28 68 27
Fractions, percentages, ratios 62 22 69 21 72 22 78 20 64 23 70 22
Measurement, time, money 59 23 67 22 60 22 69 22 65 24 73 23

*The scores in this table only involve the students of which the sex was filled in on the tes page.
In each year this information was lacking for about 2% of the students.

Table I Mathematics achievements of boys and girls on the CITO final test for primary school

PPON 2 (1992) Final-assessment (grade 6)
Differences in corrected scores between boys and girls (b-g)
(* p<.05)

I Basic operations ii*
2 Whole numbers: basic knowledge and understanding 20*
3 Decimal numbers:basic knowledge and understanding 19*
4 Mental arithmeric: addition and subtraction 18*
5 Mental arithmeric: multiplication and division 9*
6 Estimation 24*
7 Written algorithms: addition -2
8 Written algorithms: subtraction -3
9 Written algorithms: multiplication -3
10 Written algorithms: division .-1
11 Written algorithms: applications 7*
12 Fractions: addition and subtraction 13*
13 Fractions: basic knowledge and understanding 6*
14 Fractions: multiplication and division 19*
15 Fractions: applications 19*.
16 Percentage: basic knowledge and understanding 24*
17 Percentage: smart calculation 17*
18 Percentage: applications 18*
19 Ratio: basic knowledge and understanding 22*
20 Ratio: applications 23*
21 Measurement: basic knowledge and understanding 24*
22 Measurement: counting the numbers of units 14*
23 Measurement: caculating the numbers of units 19*
24 Measurement: measurement systems 23*
25 Measurement: applications 25*
26 Calender sand time: applications 17*
27 Money: applications 4
28 Calculator: applications 3
29 Geometry: applications 16*

The scores have been corrected for social background of the
students, the age of the students, the kind of textbook that is
used and the attainment of the kernel curriculum.

Table 2 Gender differences in mathematics achievements found in the second PPON study
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4. The results of the analysis on the student level

The analysis of individual student scores on the CITO final test for primary school

showed that the grade-six boys surpassed the grade-six girls in their mathematics

performance in each year under investigation (see Table 1). In 1993, the boys

answered 71% of the sixty problems correctly, while the girls came up with 65%

correct answers. This 6% difference in the total score for mathematics is between

one-third and a quarter of the standard deviation of the scores. The same results

were found for the total scores in the other years and for the five subscores that are

distinguished within the domain of mathematics. These include: basic knowledge of

numbers; mental arithmetic; operations; fractions, percentages, and ratios;

measurement, time, and money. The gender differences between the subscores were

rather small. This was probably caused by the way in which the problems for the

different mathematics domains have been operationalized in the test.

In this respect the PPON studies' were more revealing. In the second PPON study,

Bokhove, Van der Schoot, & Eggen (1996) found (see Table 2) that the differences

were the highest, in favor of the boys, on the subscales on measurement, ratios,

percentages, and estimation. On the subscales on column arithmetic (written

algorithms) the differences were the less. Here the girls even surpassed the boys,

but not significantly.

5. The results of the analysis on the level of the test items

In order to get a better idea of how the mathematics scores on the CITO final test

for primary school differ between the sexes, an analysis on the level of the discrete

test items was carried out. For each of the test items, the percentage of correct

answers (p-value) was calculated for the boys and the girls separately. This was

done for all the three years under investigation. The differences in p-value (boys

minus girls) ran from 26% through -4%. Thus, there were almost no items on

which the girls performed far better than the boys. The next step in the analysis was

to select the "most extreme" items for the boys and for the girls in each part of the

1993 through 1995 tests. The "most extreme" items for the girls were the items on

which the girls had approximately the same performance level as the boys or scored

a little bit higher than the boys. In each part of the three tests, for both categories

three or four extreme items were selected. This led to a collection of 34 "extreme

boys items" and 36 "extreme girls items". Then followed a qualitative analysis of
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these items. The goal of this analysis was to find differences between these items.
No particular criteria were defined in advance for this analysis. The analysis
procedure can be characterized as repeated reading until certain characteristics
could be identified, followed by a check on the tenability of these characteristics in
other test items.

Eventually, this analysis led to the following gender-specific characteristics of test
items:

The boys perform better than the girls on

problems which ask for daily-life knowledge on numbers and measures
problems in which large numbers with many zeros are used

- problems in which different numbers or different units of measurement are used
problems which have possibilities for "tinkering" with numbers
problems which ask for reasoning backwards

The girls perform equally well as the boys or a little bit better than the boys on
- problems which ask for accuracy

problems of which the text is complex
problems which ask for (reflection on) strategies and not for calculations

- well-known problems which refer to standard procedures
straight forward problems
problems which refer to shopping situations.

Figures 1 and 2 illustrate these gender-specific characteristics of the test items.

The telephone to call the car service is at
the 3.4 km peg.
How many meters is that from the 3.7 peg?

A 0.3m C 30m

B 3 m D 300m

Figure I "Extreme boys item" from
the CITO final test for primary school
(difference in p-value +26%)

78

Jelle likes to buy this camera. He saved
in January f 40.75
in February f 39.20
in March f 75.15 and
in April f 80.95
His father is paying the shortage.
How much has he to pay?

A f 173.45

B f 173.55

C f 233.55

D f 273.45
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6. The results of the analysis on the aggregated school level

By means of the analysis on the aggregated school level girls school and boys
schools. could be identified for part II of the MOOJ Project. This is done by
calculating for each school the average score and the standard deviation for both

sexes separately. The schools with missing data and the schools with less than 10

students, however, were previously removed from the data collection. After the
differences between the average scores were tested by means of the t-test, the
schools were categorized according to their t-value. The extreme categories "girls

score clearly better" and "boys score clearly better" both belong to a t-value that

indicates a difference that is significant at the 5% level. The next categories belong

to less significant differences. It turned out that the different categories are not
equally distributed over the schools. Globally spoken, the schools are split up in two

groups (see Table 3). In nearly one half of the schools the scores of the girls and the

boys are approximately the same. In the other half of the schools the boys surpass

the girls. There is only a very small minority of schools where the opposite is the

case.

Total number of schools who did the Cito final test

Number of schools

1993
5282

1994
5434

1995
5388

Total number of schools 3458 3689 3649
(of which the scores of the boys and the girls were compared) (65%) (68%) (68%)

girls score clearly better 23 1% 28 1% 35 1%
girls score rather better 24 I% 17 0% 18 0%
girls score somewhat better 125 3% 128 3% 137 4%
girls boys 1745 50% 1894 51% 1918 53%
boys score somewhat better 734 21% 754 20% 735 20%
boys score rather better 241 7% 249 7% 244 7%
boys score clearly better 566 16% 619 17% 562 15%

Table 3 Number of Dutch schools in 1993 through 1995
in which the girls perform better, equally or less than the boys

Number of schools

Total number of schools girls 3 years better * 0
(involved in this analysis) girls 2 years better and 1 year equal 9

girls I year better and 2 years equal 97
n = 2134 girls boys 326
* better = "somewhat better',

."rather better" or

boys 1 year better and 2 years equal
boys 2 years better and I year equal

679
609

"clearly better" boys 3 year better 227
others 187

Table 4 Number of Dutch schools with a particular pattern in the mathematics scores of girls and boys
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A further analysis learned that only a small part of the schools belonged to the same
category in three successive years (see Table 4). These schools, however, form the
source from which the schools for part II will be selected.

7. To conclude

The most important findings of the first part of the MOOJ Project are:
In the Netherlands, boys surpass girls on standardized mathematics tests.
The girls do not score lower than the boys in all mathematics domains.

The test items have gender-specific characteristics.

The achievement pattern is not the same for all the schools.

In the next part of the study it will be investigated why in some schools the girls
have the same performance level as the boys, and what can be learned from these
schools for the further development of RME.

Notes
1. Later, this research group is called OW&OC. After Freudenthal's death, in 1990, it is re-named

Freudenthal Institute.
2. Many of the results of this second PPON study were already presented at the 1994 "Panama-

najaarsconferentie" in Noordwijkerhout, a yearly Dutch conference on mathematics education.
3. The PPON studies have been set up for a detailed evaluation of the output of the educational

system. For this purpose an assessment tool is used in which each subscale contains a large
number of open-ended items. Also different from the CITO final test for primary school, a
sampling method was used in which a sampling of students is combined with a sampling of test
items. Because of the lack of complete classes who did all the test items, the PPON datawas not
suited for the selection of schools.
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TEACHER AS AMPLIFIER, TEACHER AS EDITOR:
A METAPHOR BASED ON SOME DYNAMICS IN COMMUNICATION

Dave Hewitt
School of Education, University of Birmingham, UK

In this paper. I discuss some dynamics involved in communication and introduce the

image of a Neutral Zone through which all communication takes place. I discuss
some of the difficulties involved with learning due to the need for a learner to
translate instructions into actions, or transferring from one of the five senses to
another. To reduce the need for such translation. I develop the metaphor of teacher
as amplifier, teacher as editor.

Communication

I gave a demonstration lesson to some students with a number of teachers watching.
In my attempt to explain what I wanted the students to do, 1 became quite flustered.
The teachers observing reported later that they were confused. However, to my
surprise, the students had begun work. As I wandered round, I found that each group
knew exactly what they were doing, yet no group was doing the same as any other,
and none was doing what I had intended. As Donaldson (1986) commented ...the
questions the children were answering were frequently not the questions the

experimenter had asked. (p49).

I couldn't directly give the students what I wanted, in the sense of opening up the top
of their heads and placing that information inside. I had to go through the media of
words, writings, drawings and actions. The students could not open the top of my
head either, and take out the information they needed in order to start work. The only
things available from which to gain information were the words, writings, drawings
and actions I offered. These were on offer for all the students, so why did they not all
do the same? There must be some other dynamic involved in order for different
students to make different decisions about what they were to do. Cobb, Yackel and

Wood (1992) said that ... we contend that students must necessarily construct their
mathematical ways of knowing in any instructional setting whatsoever, including

that of traditional direct instruction. (p28). No matter how clearly, or otherwise, a
teacher may say something, it does not mean that any of it is 'received' by students.

In fact the notion of something being 'received' in this way does not seem
appropriate. Von Glasersfeld (1987) commented:
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Educators share the goal of generating knowledge in their students.
However, from the epistemological perspective I have outlined, it appears
that knowledge is not a transferable commodity and communication not a
conveyance. (p16)

The words, writings, drawings and actions in themselves are hollow. There are no
meanings that come with them. Gattegno has described words as hollow in a number
of his seminars and von Glasersfeld (1987) states that the idea of words as containing
meaning is misguided: This notion of words as containers in which the writer or
speaker "conveys" meaning to readers or listeners is extraordinarily strong and
seems so natural that we are reluctant to question it. Yet, it is a misguided notion.
(p6). Also, St. Augustine (1950) was clear about the fact that words do not convey
any meaning, and wrote the following in the 4th Century:

... we do not learn anything by means of the signs called words. For, as I
have said, we learn the meaning of the word that is, the signification that
is hidden in the sound only after the reality itself which is signified has
been recognized, rather than perceive that reality by means of such
signification. (p174)

In order to develop some meaning with what I offered in the lesson, each student will
have to be active with the material which is on offer. I describe this situation in terms
of a Neutral Zone a zone in which I have placed a number of sounds and images
that each student can then choose to attend. It is a zone in which offerings are placed.
The material with which each person can potentially work is a subset of the offerings
in the zone, and is dependent upon the attention of that person in time. Some
offerings may be available over a period of time, such as the visual sentences and
drawings on a blackboard. Others are available in time, such as speech.

Teacher [showing, talking, etc]

Student [seeing, hearing, etc]

Teacher Student

[showing] [seeing]
[talking] [hearing]

Figure 1: Traditional image of student Figure 2: Dynamics involved in
receiving information. communication through the Neutral

Zone.
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The dynamics of communication are indicated by arrows from each person to the
Neutral Zone (see Figure 2). All arrows have a direction away from each person,
whether that person be a listener or a speaker; a watcher or a demonstrator. The
arrows represent human attention rather than physical entities such as photons of
light or sound waves.

Many expressions within the English language imply that arrows go towards a
person. For example: This quote brings to mind... It brought about... It summoned in
me... This caused me to think that... This is what prompted me to... Papert (1994,
p83) considered the sentence The teacher teaches the child, pointing out that
grammatically the teacher is the active subject and the child is the passive object of
the sentence, whereas in fact it is learning which is the active process. I am
proposing that all arrows go away from each person. The Neutral Zone offers an
image where both teacher and learner are active in their respective roles.

Translation

Supposing a teacher makes the statement: a parallelogram is a four-sided shape
which has two pairs of sides parallel. A student may have meanings for words or
phrases, such as parallel, four-sided, or two-pairs, which are similar to the meanings
held by the teacher. However, there is still some work for the student to see examples
of parallelograms. A parallelogram is a geometric, visual image whereas sentences
are auditory and consist of a series of words which are said over time. I make this
distinction to indicate that although a student may hear, and attach meaning to words,
there is still a translation required to turn those meaningful words into a visual
image. Janvier (1987) referred to the notion of translation: By a translation process,
we mean the psychological processes involved in going from one mode of
representation to another, for example, from an equation to a graph. (p27). I will
extend this notion by considering translation to be any transfer from one of the five
senses to another, whether it be within the same mode of representation or not. For
example, a teacher may draw an example of a landscape and ask a student to copy it.
Even though the student is attempting to draw the same picture, the visual impact of
the picture still has to be changed into physical movements of muscles to produce a
successful drawing. Thus, I would describe such a demonstration or instruction as
requiring a translation from the visual sense to the kinesthetic domain of activating
muscles, even though the same mode of representation - both drawings - is involved.

My usage of translation involves going from one sense to another. Figure 3 gives a
representation of what is involved in a student having to translate from listening to
an explanation, to making an attempt at doing what was explained.
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Teacher

[explaining]

[doing,
Neutral
Zone

Translation 7

. Student

[listening]

Figure 3: Diagram representing the need for translation with a traditional style of
teaching. (The dotted line happens at a later time than the solid lines).

The student has to actively pay attention to what the teacher is saying, but then has to
translate those instructions before they can be in a position to inform their own
actions. This work is, by its nature, private work. As a consequence it is difficult for
the teacher to become aware of what the student is doing in this translation process.

Teacher as amplifier, teacher as editor

I will now consider ways in which a teacher can act in order to try to reduce the need
for translation. Instead of a teacher describing or explaining something. they want a
student to learn, use can be made of what a student has already demonstrated, or
already said. Then the student can reproduce what they have already done or said,
and this does not require translation. Several years ago, I listened to .a teacher of
physical education, Jean Lyttle, talk about how she used to help children who could
not hit a ball with a bat in the game of rounders. She used to put her arms round the
student and hold the student's hands as they held the bat. As the ball was thrown
towards them, she would ensure that the bat hit the ball. Initially, this required her
taking control and moving the student's hands so that the ball was hit. As time went
by, she found she could gradually reduce her own input, until she was able to
withdraw her hands and the student was successful on their own. She talked about
the importance of the student physically experiencing the way their own arms moved
when the bat did hit the ball. This became an experience which the student could
begin to call upon in their next attempts to hit the ball. Successful experience could
be called upon, whereas if the student had been left to try on their own, there were
likely to be only experiences of unsuccessful movements to call upon. Jean's method
is quite different to one based on the notion of either demonstrating how it 'should'
be done, or describing in words what to do. Both of the latter would require
translation, but this is reduced by Jean ensuring that the student gained a personal
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experience of how arms were moved with a successful hit. This experience can be
called upon without the need to translate what someone else is either saying or doing,
since it is already part of the student's own experience.

I will offer two examples within mathematics. The first occurred in a low ability
class of 12-13 year olds which I was teaching. The digits '427051' were written on
the blackboard. We were engaged in an activity of putting a decimal point in a
particular position in order to meet certain requirements: just less than fifty; a bit
more than three hundred; etc. I asked that the decimal point should be placed so that
the digit '1' should be worth one. A girl, Clare, thought that the point should go
before the '1' and wrote '42705.1'. I asked her to say the number in words. Finding
that she was able to do this, I asked her to say it again:

Clare: Forty two thousand, seven hundred and five point one.
DH: Say the words again but don't say anything before the 'five'.
Clare: Five point one.
DH: Now don't say the five.
Clare: Point one.
DH: Is that the same as one?
Clare: No, it's less than one.

Once I knew that Clare was able to say the number name, I wanted her to attend to
the fact that she had said point one and not one. Thus I wanted her to become aware
of what she had just said. A possible obstacle was that there were a number of other
words said in the number-name which were not relevant to this awareness. Thus, I
invited her not to say certain parts, which in turn left the part I wanted her attention
to be with.

Acting as an editor is one way in which I can attempt to affect someone's attention,
and by its nature, the act of editing also amplifies that which is left. Amplifying and
editing are techniques for attempting to shift attention and are thus tools for a teacher
to use. Mason (1989) has talked of a teacher's role in terms of helping students to
shift their attention and the use of split attention where a student does something
and also observes that doing. Here, by acting as editor, I help to shift Clare's
attention onto a part of what she said which offers the opportunity for her to become
aware of her error. This is an example of a linguistic strategy which Pimm (1991) has
discussed: Teachers, in order to teach, need to acquire linguistic strategies... in
order to direct pupil attention to salient aspects of the discourse or indeed the
nature of that discourse while still remaining in 'normal' communication with the
pupil. (p167). Von Glasersfeld (1995) also talks of affecting attention: They
[moments when students realise for themselves that what they are doing makes no
sense] are moments in which the teacher may become a most effective helper, not by
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showing the 'right' way, but by drawing attention to a neglected or counter-
productive factor in the student's procedure. (p189).

My second example involves the developing awareness of a whole class. It comes
from an extract of a video (Open University, 1991) of a lesson I taught on algebra
with a group of 13-14 year olds. Shona was repeating what I had said I did to my
unknown number, and Naome had offered a way in which we could find out what my
number was.

41 Shona: Think of a number, add three, times by two, equals 14.
42 Naome: 14 divided by two, take three.

47 DH ... What is different about what I said and what Naome is saying about
how to work it out?

48 Ben: Turning it around the other way.
49 DH: Turning what around?
50 Ben: The numbers.
51 DH: OK. Can you just say the numbers? Shona.
52 Shona: Think of a number, add three.
53' DH: Right, just the numbers.
54 Shona: Three... two:.. 14.
55 Naome:14... two... three.
56 DH: So that's right is it? OK. Right. Is that right? Uha. And what else is

different? The whole lot again (to Shona).
57 Shona: Think of a number, add three, times two, equals 14.
58 Naome:14 divided by two, take three.
59 DH: What else is different? What else is different? Jo..
60 Jo: Instead of... you got divided and take away instead of add and times.
61 DH: Right, so can you just say the... which one did Shona say?
62 Jo: Add three, times two.
63 DH: OK. So just say the three bit.
64 Shona: Add three.
65 DH: Just say the three bit (to Naome).
66 Naome:Take three.
67 Jo: So it is the opposite.
68 DH: Uha. And what other number... say the other (to Shona).
69 Shona: Times two.
70 Naome:Divide by two.
71 Jo: It's the opposite again.

I helped amplify some aspects of what Naome and Shona were saying, by editing
what they said. This increased the likelihood of the students shifting their attention to
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these parts of what was said. This helped all the students in the class to check the
conjectures which were being suggested, and it also helped them to focus on these
aspects when I continued with different linear equations of this type. By the end of
this lesson, most students in the class were able to solve relatively complex linear
equations without having had any explanation from myself. My role was mainly to
shift their attention to the relevant aspects of what someone had already said.

Summary

Through considering the dynamics involved with communication, and being aware
of the demands and difficulties that the act of translating can put on a learner, I have
developed the notion of a teacher acting as an amplifier/editor, on the material that a
learner has already demonstrated is within their recent experience, thus reducing the
need for the student to translate (see Figure 4). I have also introduced the image of
the Neutral Zone, where all offerings are placed and became material to which
someone may or may not attend. Considering the particular activity of a teacher, the
material can be made use of in an attempt to draw a student's attention to certain
aspects of what has already been said or done.

ETeacher .. [amplifying]
[editing]

Figure 4: Avoiding the need for translation through the use of editing and
amplifying. (The dotted lines happen at a later time to the solid lines, and the

student's dotted line happens after the teacher's dotted line).

The role of teacher as amplifier/editor can also help focus the attention of a whole
class on certain aspects of what has already been said, written, or drawn by someone
in the class. A new awareness can be gained through shifting attention onto aspects
of those things which are already known.
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USING THE COMPUTER TO IMPROVE CONCEPTUAL.
THINKING IN INTEGRATION

Ye Yoon Hong & Mike Thomas
The University of Auckland

New Zealand

It appears that many students try to learn the calculus as a set of discrete processes. In our
research we developed questions to probe understanding of the concepts of integration, and
sought to improve it Using computer-based modules of work. We describe how tertiary
students using spreadsheets and symbolic manipulators exhibited a significant improvement
in proceptual understanding with a tendency to understand in a, concept-oriented manner
rather than as rote processes. In contrast, the control group students, with their traditional
learning of calculus, often experienced no change, showing the same misconceptions in both
pre-test and post-test.

Introduction

Our belief is that many students have experienced difficulties with calculus because
they have relied on memorising rules and procedures and ignored the conceptual
aspects of its objects. This has led many novice calculus students to develop an
instrumental rather than a relational understanding (Skemp, 1976), concentrating on
calculus algorithms and learning 'how to' rather than why. Introductions to the
calculus often depend on students understanding the idea of a limit, but this concept
causes conflict between students' intuitive ideas and the formal definition. There are a
number of conceptual problems related to infinite processes, and logical and
manipulative difficulties which can occur when one is confronted with a complex
definition. Problems such as this lie at the heart of learning calculus concepts. We
have previously described (Thomas & Hong, 1996) the sort of misconceptions which
many students have in calculus. This paper describes the value of computer-based
modules of work for supplementing traditional approaches to integration in a way
which may help to surmount these difficulties.

Background

Processes and Concepts

Since Piaget (1985, p.49) described how "actions or operations become thematised
objects of thought or assimilation" much has been written about the relationship
between processes and concepts in mathematics. Research has emphasised that there
is a conceptual change involved in the conversion of a dynamic process into a static
object. Gray & Tall (1994) have defined the notion of procept as an amalgam of three
things - process, symbol and concept. Thus an integral symbol may evoke both the
process of integration and the concept of integral, with the cognitive combination of
all three being a procept. Much of the symbolism used in mathematics carries the dual
role of process and concept and distinguishing between each usage is clearly
important mathematically.
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Computers in calculus

Recently in calculus teaching there have been attempts to move away from a process-
oriented style of teaching and learning which may have prevented student
understanding of important concepts. Much of the research has sought to use
computer software, such as symbolic manipulators to improve this situation (e.g.
Small & Horsack, 1986; Palmiter, 1991; Barnes, 1994; Hubbard, 1995). Software has
been used to improve understanding of concepts such as limits, in differentiation and
integration (e.g. Tall, 1986; Li & Tall, 1993; Thompson, 1994). The limit is an

.

important example of a procept in the calculus. For example, the symbol t,0im8-av

y
may

represent either the process of getting close to a specific value, or the value of the limit
itself. Furina (1994) studied the methods that students used to calculate limits and
suggested that more than one technique should be used to promote understanding.
Encapsulating both the differentiation and integration processes (which involve limits)
seems to be an essential prerequisite for understanding the fundamental theorem of
calculus. Someone who has the ability to switch his/her focus between the dual roles
of the symbols may be described as a versatile mathematician (Tall & Thomas, 1991).
It is our contention that using computer software in mathematics courses can
encourage the students' understanding of processes, thus facilitating versatility.
Evidence for this was provided by Monaghan (1993) who studied the growth of 16/17
year old students' conceptualisation of real number, limit and infinity over one year.
Students using the symbolic manipulator software Derive were better able to seeing
the limits as objects. The major aim of the research described here was to investigate
student thinking and misconceptions when dealing with integration. A definition of
definite integral (called a Riemann integral) requires an understanding of taking the
limit as n cc. But the fundamental theorem of the calculus linking areas and
antiderivatives is usually introduced before students have encapsulated the concepts
and so a definition of the definite integral based on area and limit concepts is often
quickly discarded and forgotten. So students' may fail to see that estimating areas by
upper or lower Riemann rectangles and letting the number of these rectangles tend to
infinity is a process which leads to an object, the integral. Their desire to leave these
Riemann sums behind is understandable, because they are tedious to calculate by
hand and require the difficult idea of a limit, whereas the antiderivatives involve easier
algorithmic processes. Symbolic and numeric methods can be carried out by symbolic.
manipulators, easily evaluating any number of limits. Hence the possibility arises for
an early focus on the limit as process and concept, but with the computer carrying out
the calculations internally. We agree with Tall (1993), who suggests that the computer
relieves the learner of the tyranny of having to encapsulate the process before
obtaining a sense of the properties of the object. By using software which carries out
the process internally, it may become possible for the learner to explore the properties
of the object produced by the process before, at the same time, or after studying the
process itself. The graphic approach to the calculus using the computer is designed to
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give students an environment in which to construct a network of related ideas. A
computer's symbolic manipulator or spreadsheet software enables students to
experience many possibilities with respect to the relationships between numerical,
graphical and symbolic representations. Working on this basis, Monaghan's (1993),
students began by making hand calculations to compute upper Riemann sums over a
small number of intervals, which were then transferred to a Computer Algebra System
(CAS) and the number of rectangles extended, first to a large finite number and then

to the limit iim E.--
x r3

. He found that the CAS students were better able than
n

traditional students to assign meaning to the terms and to describe how to apply the
concepts and processes.

Method

A questionnaire was designed comprising two types of questions on integration. The
first addressed the standard algorithms which any student of integration could be
expected to know, for example, they were asked to integrate using antidifferentiation
techniques, f (x)dx = F(x) +C. The second introduced novel types of questions which

we developed to . assess deeper understanding of concepts. The questionnaire was
given to 161 first year Auckland university students who had already completed and
passed the introductory calculus paper and were enrolled in the second calculus paper,
which covers Riemann integration. The students were asked to volunteer to take part
in the computer work, which was to be given in addition to the standard lectures. In
the event, only seven students did so and these became an experimental computer
group. Once we knew that we were in the position of having such a small sample we
formed 7 matched pairs using students from the control group, matching them on the
basis of the number of correct answers in section I of the pre-test. Section II was not
used in the matching due to the very low correct response rate from all students The
seven experimental group students investigated the processes of integration (using
modules of work) with the Excel spreadsheet for four one hour sessions, followed by
the Maple symbolic manipulator for two one hour sessions, supplementing the normal
lectures. None of them had had ever used Excel or Maple for mathematics previously.
The aim of these computer tutorials was to try to improve the aspect of the
understanding of the concepts associated with integration by giving the students direct
experience of experimentation with the processes which lead to them. The students
were all given a post-test comprising the same questionnaire, however the control
group had decreased to 100 students in the lecture streams, those leaving being
primarily the weaker students who could no longer cope with the paper. In addition,
following the post-test, all the experimental students and seven matched students from
the control group were individually interviewed by one of the researchers to
investigate further their understanding. During the interviews they were questioned
about their view of integration and their experiences in the tests. The interviews were
recorded and later transcribed by the researcher.
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Results

The ten questions of section I were based on standard text book questions, and
concentrated on a process-oriented approach which students would be familiar with.
The 13 questions of section II were aimed at concepts rather than processes.
However, we linked some questions in sections I & II to see if some students had
developed techniques of algorithms but did not have the corresponding concepts, or
the ability to apply the techniques when solving problems. To accomplish this we
generalised some section I questions to functions which were not explicitly stated but

left as f(x). We also used some other means which precluded any process being
carried out. For example we asked both:
Given that fox2 dx = 9, find .114 (x 1)2dx Given that 13 f (t)dt = 8.6, find f24 fit 1)it

Section 1 Section II

Here the section I question may be answered either by an understanding of the
concept that the translation of the graph leaves the area unchanged or by simply
recalculating the second integral. However, the section II question cannot be answered
by calculation but only through conceptual understanding. The categories of questions
used were as follows: conservation of integral; the maximum values of an integral
function; the definite integral and area; integration and transformations; relationship
between the definite integral of a function that crosses the x-axis and area; summation
using sigma (E) & Riemann sum; Riemann integral; and sketching the integral
function.
Statistical Comparison

We performed a statistical analysis to see if there was any improvement in the aspects
of process-oriented skills (section I) and conceptual understanding (section II)
displayed by the students, and hence in their proceptual thinking. Table 1 gives a
comparison of the proportions of correct answers obtained in sections I and II by the
computer tutorial and non-computer students (using Yates' correction where
appropriate).

Table I: The pre- and post-test proportions of correct answers for
the computer and non-computer groups

Computer
(n=70)

Non-computer
(ni=1540; n11=2002)

p

Pre-test
Section I 0.57 0.44 4.47 <0,05
Section II 0.26 0.20 2.24 n.s.

Post-test
Section I 0.89 0.51 35.1 <0.001
Section II 0.70 0.34 47.8 <0.001

We see from the pre-test results that there was a significant difference between the
two groups in section I but not in section II, enabling us to infer that the starting points
of the two groups were the same with regard to conceptual understanding. At the post-
test, while both groups have made gains, the experimental group's understanding of
the conceptual questions in section II is considerably better than the control group.
These figures, of course need to be carefully considered due to the relatively small
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number of students in the computer group. Table 2 gives the corresponding results of
the two matched groups (using Yates' correction where appropriate). It .can also be
seen that these two groups performed at the same level on the section II questions on
the pre-test even though they were not matched on these.

Table 2: The pre- and post-test proportions of correct answers for the computer
and non-computer matched groups

Computer Non-computer
Pre-test
Section I (n=70) 0.57 0.59 0.03 n.s.
Section II (n =91) 0.26 0.27 0.03 n.s.
Post-test
Section I (n=70) 0.89 0.60 13.5 <0.001
Section II (n=91) 0.70 0.51 7.45 <0.01

These results appear to confirm the significantly better overall post-test performance
of the computer group on both the procedural and the conceptual questions and we
conclude that the addition of the computer work to the lectures had improved both the
process ability and the conceptual understanding of the students.
Riemann sums

Analysing the individual question results in more detail it was pleasing to see that on
an understanding of the concepts of Riemann integral the students who had used the
computer were outperforming those who had not. Table 3 gives the statistical analysis
of the proportions of correct responses for the questions involving Riemann sums
(including Yates' correction).

Table 3. Proportions of students giving correct responses on Riemann sum questions
Computer (n=7)

Section and Question Non- Computer Pre-test Post-test x2 for p
(n=154; 100) correct correct post-test

7.Calculate* -1) Computer 0.71 0.86 2.07 n.s.

Non- Computer 0.53 0.50
18. a) leftsum calculation Computer 0 0.57 8.04 <0.01

given function values Non- Computer 0.14 11

II 5. Limit of rightsum Computer 0 0.57 10.05 <0.01
lefisum is 0 Non-computer 0.08 0.09

II 10. Riemann sum off(x) Computer 0 0.71 3.93 <0.05
increase or decrease
with more intervals?

Non-computer 0.19 0.28

11 12. Match diagram to Computer 0.14 0.71 8.77 <0.01

lof('',.,)'
Non-computer 0.05 0.17

We see that the students who had used the computer performed significantly better on
every question but one. Since these section II questions in particular require an
appreciation of the following ideas:

Upper'and lower Riemann sums both approach the same value in the limit

For a strictly decreasing function the value of the left (upper) sum decreases as the number of
strips increases

Identifying the diagram for left sums when f(x) is negative in an interval
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without being able to verify them by calculation, this is very pleasing. Table 4 records
the same data for the matched pairs of students, and while the same statistical
improvement is not quite shown here there is weak evidence of the improvement
present.

Table 4. Proportions of students giving correct responses on Riemann sum questions for the matched pairs
Computer (n=7)

Section and Question

I7.Calculate 1-{e _010}

1 8. a) leftsum calculation
given function values

11 5. Limit of rightsum
- leftsum is 0

11 10. Riemann sum off(x)
increase or decrease
with more strips?

11 12. Match diagram to

bi,..).A

Non- Computer
(n=154; 100)

Pre-test
correct

Post-test
correct

;(2 for
post-test

Computer 0.71 0.86 1.24 n.s.

Non- Computer 0.57 0.43
Computer 0 0.57 3.15 <0.1 n.s.

Non- Computer 0 0

Computer 0 0.57 3.15 <0.1 n.s.
Non-computer 0 0

Computer 0 0.71 0.29 n.s.
Non-computer 0.14 0.43

Computer 0 0.71 4.98 <0.05
Non-computer . 0 0

While we recognise the limitations of having such a small number of students in the
experimental group, and the difficulty of generalising from this, we have recently
completed two more experiments and now have a much larger group whose progress
we will be able to report on soon.

Answers and interview comments

Some of the answers given by computer students in the post-test showed excellent
understanding compared with those of the matched students. For example, two
students wrote, for question 10 of section II:

b because the actual value off(x) is between rightsum<f(x)<leftsum
b on a strictly decreasing function left endpoints are greater than the actual value. If accuracy
increases then leftpoint will move towards actual value i.e. get smaller

When asked in the interview about the same question, one of the computer students
responded as follows:

Int: In this question, 10 equal sub-intervals were given, if, 50 equal sub-intervals were given,
then, what's your expectation for the approximation to the integral? Will the value be larger
or smaller than the case of 10 equal sub-intervals?
Student: For leftsum, it will be greater, and rightsum could be smaller
Int: For equal sub-intervals, what's the difference between the rightsum and leftsum as
n > co?
Student: zero, zero

Asked in their interviews about the difference between the rightsum and leftsum as
n > Go, where n is the number of intervals, all 7 of the experimental group said that it
was zero. They seem to have grasped the concept of the limit of the Riemann sums
being equal, for an integrable function.

4
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In contrast the matched control students were still unclear on some of the concepts.
For question 5 of section II, one control student answered 'very small and positive',
ignoring the given limit. In his interview he also showed a misconception of Riemann
sum, answering 'smaller' for the question which the value of the width, and 'close to
zero but not zero' for its limit. When asked about the difference between the rightsum
and leftsum, he said 'I don't know'. Another student mistakenly thought that E was
the same as f , his misconception about E becoming clear in the interview:

What's the difference between the E and 5 ? 'No difference'

In addition several control students attempted the calculation of the leftsum using the
`Trapezium rule'. This may be evidence that they are looking to use processes with
which they are farifiliar when confronted by concepts they do not understand.

Comments on the study's value

The students commented in the interviews that the Maple and Excel computer
modules had helped them to understand integration better, six of them mentioning
Riemann sum specifically. The students (4 had English as a second language), when
asked how their understanding had been affected, said:

Excel & Maple are made easier to understand concept of integration to show process of
calculation of integration.
I can see clearer than the between the rightsum and leftsum and the conservation of integral.
Could see the effects of transformations on leftsum etc. values and the graph. When you shift
the interval there was relation to area remained the same.

It appears that the opportunity to investigate integration using the computer had given
valuable insight into the processes underlying integration and this in turn assisted the
students' conceptual understanding.

Discussion

We believe that the evidence presented here confirms when students learned calculus
using the computer in a manner where they could investigate its processes they are
able to tackle successfully the more demanding section II questions, which required
varying degrees of conceptual awareness. In contrast the experiences of the control
students to date have left important gaps in their conceptual understanding. Their
solutions show that they have a tendency to see the integral calculus as a series of
procedures and associated algorithms and have not developed a grasp of some
concepts which would give them versatility of thought. In the light of what we have
seen it appears valuable to design and use curriculum materials, such as those we have
based on the computer, which give an improved cognitive base for a flexible
proceptual understanding of the concepts associated with integration, making it
possible for the student to develop a perception in terms of both process and concept.
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Investigating children's collaborative disConrse and verbal interaction
in solving mathematical problems

E Huang_
Taiwan Provincial Inst. For Elementary School Teachers' Inservice Ed.

Abstract
This research investigated how the verbal interaction in collaborative small

groups affected children's analogical problem solvinglar mathematical word
problems, as well as compared children's verbal interaction behavior and their
confidence in problem solving. In study 1, children who were in the collaborative
small group learning condition outperformed those in individual learning condition

on isomorphic problepi solving. In study 2, children who had been engaged in the
collaborative instruction condition performed significantly better than those in

conventional instruction condition on nonisomophic probleni solving. Children

who had been engaged in the collaborative instruction condition performed more

active verbal interaction behavior, asked more questions and answers.

Theoretical Framework and Objectives of the Research

Current mathematics instruction centers on developing children's problem-

solving abilities and collaborative discourse practices as well as an emphasis on better

questioning skills ( NCTM, 1989). As students engage in collaborative discourse

during problem solving, they are able to express their opinions, articulate their

reasoning process, defend the validity of their solutions in the face of questions and

question peers' ideas. During this process they may clarify, elabbrate, revise and

reorganize their own thinking on the basis of mathematical evidence ( Ball, 1993;

NCTM, 1991; Webb & Farivar, 1994), the building of community and reasoning occur.

This knowledge constructive activity facilitate students to understand the knowledge of

the problem domain ( Hicks, 1994; Hiebert & Wearne, 1993; King, 1994).

Analogical problem solving involved transfer of a relational structure from a

better undtestand problem domain (the source) to another fundamentally similar but

less known prOblem doMain (the target) (Novick & Hmelo, 1994; Vosniadou, 1989).

The target problem is the new problem that is yet to be solved in analogical prOblem

solving tasks. Problem solvers Must understand and notice the correspondence
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between the known problem (source problem) and the target problem, then analogical

transfer. The isomorphism means that the source problem and target problem share the

same structure similarity with identical goal Wildlife, constraints, and problem space.

If , however, the source problem and the target problem are slightly structurally

dissimilar; i.e., the target problem is not isomorphic to the source problem. Research

reveled that the complete mapping occurs when the target problem is isomorphic to the

source problem. Children performed better on isonophic problem solving than

nonisomophic problems solving (e.g.: Reed, 1987). We believed that students

understand the source domain knowledge deeply, then they would analogical transfer

well in solving the nonisomophic problems.

There is considerable theoretical support for the idea that collaborative discourse

enhance children's ability to make sense of mathematical ideas. But does collaborative

small group interaction affect elementary school children's analogical reasoning in

solving mathematical problems? The empirical data is less compelling. Students are

given more challenges to explain and construct their understanding through

collaborative inquiry. In the conventional instruction envirOnnent, students learn and

model the solution from teachers directly, and work individually (Huang, 1996). The

verbal interaction and the questioning skills of students may differ between these two

instruction conditions. Many questions remain unanswered on how these differences

relate to children's self-confidence in problem solving and analogical reasoning

performance. The goal of this research was to fill this gap.

This research comprised two related studies. The first study examined how the

verbal interaction in collaborative small groups affected children's mathematical

problem solving. The purpose of the second study was to compare children's verbal

interaction behavior, their confidence in problem solving and analogical reasoning

problem solving performance. The second study also identified the types of questions

and answers generated during peer interaction from two differenimathematics

instruction conditions. One class was conventional instruction and the other one was a

collaborative learning condition with a stronger problem solving orientation.
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Methods, Techniques and Data Source

In the first study, two general mathematics classes with conventional instruction

of 4th grade students (N=83) (about age 10) were randomly selected from a local

public primary school. This primary school implemented two instruction conditions,

one was general mathematics classes with conventional instniction, and the other was

experimental mathematics classes with collaborative instruction. In the experiment,

subjects were first presented a mathematical word problem as a source problem with

spedific procedures for its solution. Then they were requested to solve another two

tasks (target problems). One task contained an Isomorphic Problem and the other one

was a Nonisomorphic Problem. One class of subjects (N=39) was assigned to small

groups. They were encouraged to have verbal interaction with peers to discuss the

solutions of the source problem. Then they solved the two target problems individually.
_

Students from the other class were assigned to individual learning condition, subjects

(N=44), were asked to read and comprehend the solution of the source problem and

then they solved the two target problems individually. At the same time, all subjects

were requested to rate their confidence level when solving the problems. Subjects from

the two learning conditions were used their previous academic performance ( verbal

and math acheivement) as the control factor. The result of i -test indicated that subjects'

previous academic performances were not significantly different before the experiment,

with t (81)=-..83, p >.05.

Subjects for the second study included 39 4th grade students were chosen

randomly from a collaborative instruction condition. And 41 4th grade students from a

conventional instruction condition. Subjects were from the same primary school as

study 1, but exclusive of the subjects used for Study I . The result of t-test indicated

that subjects' previous academic performances in the two instruction. conditions were

not significantly different before the experiment, with I (78)=1.86, p >.05. Subjects

were assigned to small groups then were requested to complete a set of analogical

tasks. The source problem and target problems were the same as those used in Study 1.

Subjects were encouraged to have verbal interaction with peers and discuss how to
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solve the source problem. Then every subject solved the two target problems

individually, In the verbal interaction period, six research assisstants observed the

small groups. They wrote and recorded the children's verbal protocols, and completed

an evaluation of the children's Verbal Interaction Behavior during discussion.

Students' verbal interaction was coded by three raters. The reliabilities were .77,

p <. 001.

Results and Discussion

For the first study, see Table I , results showed that children who were in the

collaborative small group condition outperformed those in the individual condition

when solving the Isomorphic Problem 00-2.13, p<.05. The difference between the

two conditions was not significant in solving the Nonisomorphic Problem, t(81)=.79,

p> .05. Problem solving performance and children's confidence level when problem

solving was significantly correlated, r=.31, p<.01.

Table 1. Children's problem solving performance for the two learning conditions.

Collaborative learning Individual learning
Learning conditions (N=39) (N=44)

Problem condition IP NP IP NP

MEAN 10.54 6.87 7.09. 5.45
(SD= 7.16) (SD= 7.85) (SD= 7.56) (SD= 8.55)

For the second study, results indicated that different instruction conditions

significantly affected children's verbal interaction behavior, questioning and answering,

and analogical reasoning performance, as well as their confidence level for problem

solving. As Table 2 shows, the contents of the verbal interactions were classified into

six types of questions which contained thirteen question categories. The first tyPe was

Comprehension questions, including: What does... mean? ; Descriptions in the solvers'

own words.; Why is this the reason? ; Flow do you solve this problem? The second

type was Connection questions, which included: Relating new material to prior

knowledge. The third type Was High-level explanations, including: Analyze the
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reasons; Clarify the relations; Propose problem solutions; Propose solution and ask for

support. The fourth type was Low-level explanations, including: Rehearsal of the

answer; Short answer. The fifth type was Critical thinking questions: Noting

strengths and weaknesses, justifying and evaluating ideas. The sixth type was

Irrelevant dialogue. Children in the collaborative instruction condition asked

significantly more question§ (total verbal interaction), more high-level explanations

type questions and more low-level explanations type questions than (hose in the

conventional instruction condition. The results of Chi-square test's were x2 = 37.02,

p<,001; x2 9.48, p<.05; x2 = 7.04, p<.01, respectively. There were no significant

differences in COmprehension questions and Connection and Critical thinking

questions as well as the Irrelevant dialogue. The results of Chi-square tests were x2

4.27, p>.05; x2 .32, p>.05; x2 = .56, p>.05; x2 p>.05, respectively. As

Table 3 shows, the difference. in Verbal Interaction Behavior between these Iwo

instruction conditions was significant, 1(5) 4.52; p.01. Children in the collaborative

instruction condition performed more. active behaviors in discussion with peers, than

those from the conventional instruction condition. Furthermore, children from the

collaborative instruction condition performed better in solving the Nonisomorphic

Problem, and had a higher confidence level of problem solving than those from the

conventional instruction condition, 1(78)=2.04, p,..05, and 1(78)-2.85, p<.01,

respectively. There was no significant difference between the two conditions in solving

the Isomorphic Problem, I(78)-- -.53, p>.05. Children's Verbal Interaction Behavior

was highly correlated with the analogical reasoning when problem solving, r.25,

p<.01.
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Table 2. Question types in children's verbal inleracton in problem solving

Frequency
Collaborative condition Individual condition

Gm:prehension Questions
What does... mean?
Descriptions in solvers' own words

I

36

(62) ( Ill)
0

9
Why is this the reason ? 9 I

How do you solve this problem? 16 0

Connetion Questions ( 1) ( I)
Relating new material to prior knowledge I 1

lligh-level Explanations (151) (92)
Analyze the reasons 16 10

Clarify the relations 46 13

Propose problem solutions 77 63

Propose solution and ask for support 12 6

Low-level Explanations (56) (18)
Rehearsal of the answer 41 7

Short answer 15 11

Critical Thinking Questions (26) (9)
Noting strengths and weaknesses, justifying and evaluating ideas 26 9

Irrelevant Dialogue 52 (52) 29 0 9

Total verbal interaction 348 /59

Table 3. Children's problem solving verbal interaction behavior performance, and confidence of
problem solving in the two mathematical instruction conditions.

Instruction conditions
Collaborative instruction Conventional instruction

(N=39) (N=4I),

Performance IP VII3 Confidence II' NI' VIII Confidence

MEAN 9.87 11.64 27.67 8.69 I0.98 7.56 20.67 7.24
(SD =I 0.03) (SD-8.27) (SD-3.72) (SD-2.25) (SD=8.38) (SD-9.62) (SD---2.16) (S0=2.29)

Findings of the first study indicated that children who were in the collaborative

small groups, demonstrated better analogical reasoning than those who were in the

individual condition on isomorphic problem solving but not on nonisomorphic problem

solving. Children's analogical reasoning was also highly related to their confidence

level for problem solving. From the results, it seems that the collaborative learning
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did help children to learn the source problem and to analogical transfer on the one-to-

one correspondent problem solving. But the children who were from the conventional

instruction condition, they were not used to discuss with peers in general mathematics

class. It is probably that children were linable to perform better questioning and

answering skills, then the knowledge construction might not well enough when

learning the source problem to be activated for solving the nonisoinorphic problem. It

can be round from the results of the second study. The beneilits from collaborative

learning was limited if the learners were unable to have a better discourse with peers.

Findings of the second study reveled that children who were in the collaborative

instruction condition, posed more thought-provoking questions (e.g.: the

comprehension questions ; high-level explanations, and critical thinking questions) to

each other and answered each other's questions on the material being studied. In

constrast, children who were in conventional instruction condition performed less

verbal interaction. behavior. However, more complex knowledge construction and

reasoning is indicated by explanations, justifications and inferences, and the like.

When children engage in the thought-prOvoking questions during learning, their

understanding on the learning tasks is enhanced, which in turn activate the knowledge

to analogical transfer in nonisomophic problem solving. Furihermore, the better

questioning and answering skills which direct to problem-solving enhance solvers'

confidence level for problem solving. it seems clear that elementary' age children can

be cultivated to pose these kinds of questions from collabative instruction condition.

Implications for Instruction

From the present experiments, children's analogical reasoning when problem

solving was significantly influenced by the collaborative learning condition. Children

who learned in collaborative small groups were able to proposed more questions and

answers, and were more actively involved in group discussion. Such interaction may

facilitate knowledge construction, which in turn promotes positive analogical reasoning

performance ( Graesser & Person, 1994). Children from conventional instruction have

fewer opportunities to discuss with peers Their. verbal interaction with peers and
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their questioning skills were poor, and they transferred knowledge poorly on solving

nonisomorphic problems. In the mathematics classroom, certain kinds of instruction

and discourse produce specific learning outcomes. When students participate in

collaborative discourse, they have to concentrate on a deeper level of understanding

and reasoning than they would when working individually ( Schoenfeld, 1989). It is

worth to encourage children to engeged in collaborative discourse, that facilitate them

to propose more questions and answers as well as promotes positive analogical

reasoning performance.
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AN ANALYSIS OF STUDENT TALK IN 'RE-LEARNING' ALGEBRA:

FROM INDIVIDUAL COGNITION TO SOCIAL PRACTICE

Brian Hudson, Susan Elliott and Sylvia Johnson

Sheffield Hallam University

Abstract

In this paper we report on a study with the aim of investigating how a focus an

language and meaning can assist students in reconstructing algebraic knowledge.

The project is set in the context of work with students in Higher Education

who need to develop their understanding ofalgebra if they are to make substantial

progress within their undergraduate studies. The project is based upon a belief //tut

students' difficulties with algebra are language-related. We have collected extensive

data by means of videotaped sessions involving the students talking about their own

understandings of algebra. The students involved were drawn from courses in initial

leacher education and engineering. This paper presents a detailed analysis of the

responses of one student and discusses the ways in which this shy. led our attention as

researchers.from looking at our data from the perspective of individual cognition

towards one informed by social practice theory.

Introduction

The Re-Learning Algebra project grew out of the difficulties many students have with

algebra which have been observed in the course of working in the arena of Academic

Maths Support at Sheffield Hallam University. These students have considerable prior

experience with algebra and many have undergone years of drill and practice. They

have encountered algebra as both an abstract topic in its own right and also within

various contexts. Therefore any additional help offered to such students clearly

needed to take account of previous experience but also needed to have a different

emphasis. An approach which was seen to be successful in practice involved

encouraging interaction using group activities in which the students could share their

understanding and experience. The activities also addressed the use and development

of algebraic language and have previously been reported on in Elliott and Johnson

(1995).
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Related Literature

The literature cited in this section of the paper helped to formulate our thinking and
informed our discussions during the course of this study. Amongst the most relevant
literature was the work of Lesley Booth (1984) and David Pimm ( 995 I. Also of
particular influence has been the work of Anna Sfard and Liora Linchevski (1994) in
relation to their theory of reification. Of particular interest is the way they consider
two `especially crucial transitions': that from the purely operational algebra to the
structural algebra 'of a fixed value' i.e. an unknown and then from there to the
functional algebra of a variable. Carolyn Kieran's (1989) emphasis on the recognition
and use of structure as a major area of difficulty in algebra was also found to very
resonant and in particular the way she highlights the equality relationship between left-
and right-hand expressions of equations as a 'cornerstone' of much work in teaching
algebra. She observes that for students who tend to view the right hand side as the
answer 'the equation is simply not seen as a balance between right and let) sides nor as
a structure that is operated on symmetrically'. The notion of a cognitive gap between
arithmetic and algebra as proposed by Carolyn Kieran and Nicholas Herscovics (1994)
was also found to be.relevant. This can be characterised as 'the student's inability to
operate spontaneously with or on the unknown'.

We found a different emphasis in Abraham Arcavi's (1994) ideas about synibol
sense which seemed closer to our initial starting point for this study. His work is
about describing and discussing behaviours and not about defining and
describing research on students' cognition and ways of learning and there is an
emphasis on sense-making and on recognising meaning. A similar emphasis on
meaning is to be found in the work of Romulo Lins (1994) and Arzarello,
Bazzini, Chiappini (1995) who describe their work as moving towards a socio-
cultural theory and practice. The analysis of algebraic thinking offered by the
latter authors is underpinned by Vygotsky's (1962) ideas of algebraic thought
and language as two intertwined, mutually dependent aspects of the same
process and his stress on the fact that the word's meaning is a linguistic and
intellectual phenomena that evolves in time. The authors identify the importance
of the Conceptual Frame as an organised set of knowledge and possible
behaviours and this notion is seen to be closely linked to that of the Semantic
Fields of Romulo Lins.
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Theoretical framework

Given the initial aim of this study, which was to investigate how a focus on language

and meaning can assist students in reconstructing algebraic knowledge, we have

sought to develop a theoretical framework which takes account of this emphasis on

language and meaning.

A key influence has been the work of Lev Vygotsky ( I 962), underpinning which is a

central assumption that socio-cultural factors are essential in the development of mind.

In discussing the influence of such a perspective, Stephen Lerman (1996) argues that

language is not seen as giving stricture to the already conscious cognising mind; rather

the mind is constituted in discursive practices. Thus the semiotic function becomes the

focus of study, rather than the mental structures (for Piaget).

In exploring the notions of sense and meaning further some useful ideas were drawn

from the field of activity theory. In particular Erik Schultz (1994) offers some
interpretations of sense and meaning when writing about the hermeneutical aspects of

activity theory. He proposes that the purpose or intention of a cultural product is the

meaning and further that meaning is a kind of 'cultural intention' in a supra7individual

fashion. In all cultural products there is an intention to be found, and in finding it, we

interpret the meaning of the product. Sense is the interpretation one makes of the

meaning. We also found the work on activity theory of Kathryn Crawford (1996) to

be relevant. She highlights how activity denotes personal (or group) involvement,

intent and commitment that is not reflected in the usual meanings of the word in

English. She draws attention to the fact that Vygotsky wrote about activity in general

terms to describe the personal and voluntary engagement of people in context the

ways in which they subjectively perceive their needs and the possibilities of a situation

and choose actions to reach personally meaningful goals. In building upon Vygotsky's

work, Leont'ev, Davydov and others made clear distinctions between conscious

actions and relatively unconscious and automated operations. Operations are seen as

habits and automated procedures that are carried without conscious intellectual effort.

Methodology

Data was collected by means of the video recording of a series of one-hour sessions

with four groups of students during March 1995. The students involved were from

courses in Education and Engineering. The groups had two or three sessions each.

A series of tasks was devised which were designed to get the students talking together

about their understanding of algebra. For example the first activity involved

`Algebraic Pairs'. In this activity each group of two students is given a set of cards
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with a pair of algebraic expressions on each. The task is to decide which of the two
expressions are always, sometimes or never equal. Another activity was to ask them
to explain what they understood by mathematical words such as expression, equation,

function, variable etc. The sessions were carried out in a small TV studio.

The initial data analysis involved the three researchers simply viewing the video tapes
and discussing reactions and questions arising. Following the tape transcription this
process was repeated with the transcripts. Our discussions were further informed by
our ongoing reading. We also held two internal university research seminars during
this period.

In this paper we have chosen one particular section of the transcript which we found to
be particularly rich but also very challenging to us to make sense of in terms of the
starting point of our study i.e. how an focus on language and meaning can assist
students in reconstructing their algebraic knowledge.

Data Analysis and Discussion

This particular section of the interaction took place at the end of the first session with
the 2 Year BEd students. They had been working on the Algebraic Pairs activities for
the first part of the session and then had spent the latter part in a discussion of
mathematical terms such as expression, equation, function, variable etc. As the
session was almost complete, the researcher provided the opportunity for any
questions, reactions or general discussion. The result was an extensive and articulate
series of responses from one student in particular - Anthony (AG). Anthony is a mature
student who had previously worked in industry as an engineer.

1. BH OK, I was going to think about further activity but seeing as we've only five minutes left, I

2. think well end. Unless, are there any particular things that struck you as we've been talking, that

3. you want to return to, words which conjure up...

4. AG It's obvious as we start talking about maths, we start talking about functions, some people

5. have got a clearer view, that my image I realise now, when I'm teaching, I tend to opt fix, I like

6. to see it as, that y = some function, it could be a=3b plus something. I keep returning to y =

7. some function of x and if I saw it in a textbook for example that 2(x+3) my automatic reaction

8. would be to write y=(2x+3) before I give it to the children to do. y=2(x+3).

9. BH What would you be thinking of asking them to do next?

10. AG I'd be asking them to multiply the brackets out to give me a y=2x+6 or asking them to

I I. substitute a value of x and tell me what y is because that on its own as a function - 2x+3. I
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12. suppose to me it is just floating about in mid-air with no relationship to anything. It's totally

13 intangible, what is it? what's it for? So if I ask them to multiply that bracket out I got 2x+3

14 before, now I've got 2x+6, still doesn't lead to anything, doesn't mean anything. doesn't tell me

15 what it's from or where it's from so my automatic reaction is to put the y= in Otherwise you've

16 got that floating about and that is a function, then you've got function. To me, what is a function,

17 where does it come from, where does it come from?

18. BH You'd be happy to relate it to y. What would that mean then for you?

19. AG There's a missing number y and a missing. number x and if we put any value in for y, or any

20. value for x ...If we can find a value for y then we can find a value for x and if you get into a

21. quadratic there'd be two answers for y, so actually you're using something to solve a problem.

22. BH Just taking that, say it was y---2x squared plus 6 times something ...You said two values.

23. AG Again, as soon as you get an x squared, I tend to think that it's probably going to be two

24. answers. Depends on ...

25. AG I'm coming from a realistic point of view in that I've got a specific problem of trying to find

26 out what this value of y is and in doing that I've made an equation in order to solve my problem

27 and in trying to solve my problem I might find that there are two values of the N.

28. BH Say we had that? What about if I said y was minus 10?

29. AG Minus 10? Then there might not be a solution to it ... no real solution. No solution to my real

30. world. This idea of no. real solutions you've gone into a hypothetical world. You've gone out of a

31 real life situation. From my experience, in my situation, you've gone out of a real life situation,

32 you're going back to a hypothetical situation. You're going right full back in circles to functions,

33 that's something hypothetical - it's floating about, not related to anything or solving anything. It's

34 not come from any real life situation, it's just a function, it's not related to anything else. I think

35 that's why I have difficulty in seeing where it's coming from.

An initial analysis of this section suggested a number of links with the background

literature and theoretical framework previously outlined. In order to help the reader

make sense of the transcript, it is worth emphasising at the outset that Anthony does

not distinguish between the terms function and expression. In fact he refers to 2(x+3)
as a function rather than as an expression at line 7. In relation to activity theory there
are a number of references to a lack of purpose when dealing with functions. For

example at line 13, Anthony asks 'what is it? what's it for?' and at line 14 says that it

`still doesn't lead to anything' and goes further to say that it `doeSn't mean. anything'.

This statement fits with Erik Schultz's interpretation of meaning as the purpose or
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intention of the cultural product' which in this case is the word 'function'. Anthony's

description also suggests that he is working operationally for much of the time e.g. at

lines 7/8, he says that 'my automatic reaction would be to write y=(2x+3)' and also at

line 15 lie says that 'my automatic reaction would be to put the y= in'. His comments
also suggest a lack of appreciation of the stnictural properties of equations e.g. at lines

10/11 he would 'be asking them (the children) to ... substitute a value of x and tell me

what y is' ThiS suggests a view, consistent with the work of Carolyn Kieran, of 'the

right hand side as the answer'. His comments at line 19 'There's a missing number y

and a missing number x' suggest that he has not made the transition, in Anna Sfard's

terms, from the 'structural' algebra of 'a fixed value' to the 'functional' value of a
`variable'. It seems from Anthony's comments that he sees the purpose of an equation

as being to find a missing number and not to express a relationship. In Carolyn

Kieran's terms, the equality relationship is not fully recognised i.e. the equation as a

balance between right and left hand sides and as a structure to be operated on

symmetrically.

To an extent these observations are typical of many students although they were

surprising to the researchers, as Anthony was seen to be a mathematically capable,

though not strong, student. HoWever much of what Anthony had to say was left

untouched by this analysis and we were left with a sense of the inadequacy of the

various theoretical frames, through which we had viewed our data, to account for what
Anthony had to say. It seemed that there was evidence of resistance to 're-learn'

algebra on Anthony's part and much that was being said was about his sense of

identity and also his view of the nature of mathematics. None of this seemed to have

been addressed in our first readings of the data. As a result of wider discussions with

colleagues we decided to look to social practice theory fora `wide(r) angle lens'

(Robert Dengate and Stephen Lerman, 1995) through which to view our data. In

particular we turned to the work of Jean Lave and Etienne Wenger (199) I ) and that of

Jean Lave (1996).

Jean Lave and Etienne Wenger stress the essentially social character of learning and

propose learning to be an aspect of a process of participation in socially situated

Communities of practice. They discuss the notion of Legitimate Peripheral

Participation (LPP) which describes the particular mode of engagement of a learner in

a new community of practice, whose level of participation is at first legitimately

peripheral in the practice of the expert. The move from peripheral participation to full

participation is seenas a dynamic process, characterised by changing levels of

participation. Writing in 1996, Jean Lave describes the direction of movement as a
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le los and gives the example of 'becoming a respected, practising participant among

other tailors or lawyers, becoming so imbued with the practice that masters become

part of the everyday life of the Alley or the, mosque for other participants and others in

their milt becOme part of their practice'. She proposes that this might tone the basis of

`a reasonable definition of what it means to construct identities in practice .

Returning to the analysis of the transcript, it seems that there is considerable resistance

on Anthony's part to re-construct his view of algebra. His view of a function is that 'it
is totally intangible' (1 13) and 'with no relation to anything' (1 13). It is 'floating
about in mid-air' (1 12), without meaning e.g. 'what is it?' or purpose 'what's it for?' (1

13). It seems that Anthony's view of mathematics is only meaningful if 'you're using

something to solve a problem' (1 21). Having a problem to solve is real e.g. 'I'm

coming from a realistic point of view' (I 25) and equations are simply tools to solve

`my problem' (I 27) e.g. 'I've made an equation to solve my problem' (I 25). In

formulating his views on the nature of mathematics, Anthony also seems to be saying

significant things about his own sense of identity. His background is that of an

engineer working in industry over many years and his path into Higher Education and

teacher training would have been via vocational routes. Anthony seems to be calling

on his previous experience (as expert) in this particular community of practice and also

on his developing expertise in the practice of 'school teacher' to emphasise his identity

as a part of the 'real world' e.g. 'my experience, my situation' (I 3 I ). This contrasts

with his view of the community of practice of mathematicians, as exemplified by the

researcher, who inhabits 'a hypothetical world' (I 30) and who has departed from the

real world e.g. 'you've gone out of a real life situation' (I 31). He stresses his view

that the researcher/mathematician is going nowhere e.g. 'You're going right full back in

circles to functions, that's something hypothetical - that's floating about. not related to

anything or solving anything. It's not come from any real life situation, it's just a

function, it's not related to anything else.' (I 31-35). However he does seem to express

some sympathy and desire for a greater level of participation in the practice of being a

mathematician when he says 'I think that's why I have difficulty in seeing where it's

Coming from.' (I 35) This also seems to reflect his peripheral participation in this

particular community of practice.

It seems that our interest at the outset of this study, in language and meaning, has given

us a picture of some of the ways in which our students are working on re-learning

algebra. However it has also revealed much more - a complex set of phenomena and

questions with which to revisit both our data analysis and also the ongoing

development of our own practice.
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ABSTRACT

Mathematical symbols have significant part in generalization. What seems to be lacking,however,is the

consideration on the difference of role in generalization which algebraic signs and geometric figures play
although Thom(1973,p.207) said "One sees from this comparison how Euclidean geometry is a natural(and

perhaps irreplaceable) intermediate stage between common language and algebraic language." For this
purpose, we first set up a theoretical framework for the analysis of cognitive activities in generalization in
terms of critical consideration on Dorfler's generalization model from the metacognitive viewpoint and
Skemp's director system. We secondly designed two mathematics class which are both problem solving

oriented and normal. One is "Numbers on the Calender" to examine the change of forms in algebraic signs

in generalization. The other is "The Sum of Five Angles in Pentagram (hereafter cited as 'The Pentagram')

to research the change of meanings in geometric figures in generalization. A close observation, comparison,
and analysis of these two teaching practice based on the above framework has shown that there are two types

of generalization: one is the generalization of object, the other is that of method

1 . BACKGROUND FOR RESEARCH

Generalization is so crucial to mathematical thinking, therefore we should pay much attention to
generalization process in mathematics learning. But both process and significance of generalization,
setting products of it aside, seem to have room for consideration and is worthwhile figuring it out
although a lot of effort has been made on this area. It will be useful, to begin with, to sketch out the
work of Drirfler because he devotes his research into the generalization process from a epistemological
viewpoint and proposes his generalization model as shown in Fig.1(1991,p.74).

His generalization model has two main features. One is to involve the constructive abstraction
which extends from system of actions in the starting situation to symbols as objects. This process is based
on actions and the reflections of them. The other is the adequate allocation of symbols as objects in the

generalization process. According to him, symbols in Fig.1 can be of a verbal, iconic, geometric or
algebraic nature (Dorfler,1991,p.71). Needless to say, various representations which DOrfler calls
symbols in Fig.1 play vital roles in mathematical thinking and learning.

Although Dorfler's model provides us with fruitful suggestions, we think there remain still two
main issues to be answered. In other words, his generalization model shows some salient key stages
which form the generalization process. However cognitive activities which promote generalization are
not mentioned sufficiently and those activities are still embedded in lines which connect among these
stages. That goes to the heart of the problem in generalization as process. Consequently we need to
set up the adequate framework for analysis and to examine these cognitive activities on it. This is the
first issue.

The second issue is on variableness in mathematical symbols. This is deeply concerned with
symbols as objects in Fig.1. That goes to the core of problem in generalization as product. We should
classify mathematical symbols into two categories, that is, algebraic signs and geometric figures
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although Dorf ler has another way
of classification. This categorizing
reflects the quality of general
ization in each. Regarding to
categorizing, but not regarding
generalization directly, Skemp
(1987) suggested that the features
of visual system make a excellent
contrast with those of verbal
algebraic system (p.79).

2 . PURPOSES
Our teaching practice was

designed based on Dorfler's
generalization model in Fig.1. Our
main purpose of this attempt was
to examine the generalization
process through a teaching
practice, and then to complement
and elaborate it from cognitive and
symbolic perspective. This study
would contribute to the cognitive
significance of the teaching unit as
well which Wittmann (1984,1995)
thinks great deal of. But this is
not our present concern.

To sum up, the purposes of
this paper are the following:

(1) To set up the .theoretical
framework for the analysis of Fig.1 Dorfler's generalization model (1991,p.74)
cognitive activities which promote the generalization process.

(2) To examine the quality of generalization process by means of comparison between role of
algebraic signs and that of geometric figures in it.

system of actions in the

starting situation

reflection of the

system of actions

symbolizing the elements of

the actions and/or the action

constructive

abstraction

stating invariant

relations

symbolic description

of the invariants

variations of the system of actions

and/or of the actions

extensional generalization

symbols as objects (concrete variables

with object character)

general structure

intensional generalization

extension of the range of reference

extensional generalization

3 . THEORETICAL FRAMEWORK
Dorfler used no more than two words from cognitive terms to explain the generalization process,

that is schema and reflection. He might try to prevent his generalization from psychological discussion
because he might think metacognition was not useful enough to describe the process of generalization.
We think all other cognitive words than above two words to talk about it are concealed in the line
connecting each stage in his model Fig.1. Therefore these two words easily bring us to expand the
notion of metacognition which refers to one's own knowledge concerning one's own cognitive processes
and products or anything related to them(Flavell,1976,p.232). But some explanations will be needed on
metacognition before going there.
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Over the past decade a considerable number of studies such as Garofalo & Lester(1985),
Schoenfeld(1987), Silver(1985) have been made on metacognition in mathematical problem solving,
which exclusively focus on the functions of metacognition as the driving force in presolving problem.
But the generalization would begin substantially after solving problem if consciousness of students are
attracted to the following activities: extracting mathematical relations among phenomena, reflecting on
one's own existing schemata, searching of connections between them, reorganizing or creating those
relations as one new kind of schema, and so on.

Many researchers of metacognition investigated the driving force promoting problem solving
under the condition of presolving problem. Therefore they have examined nothing about postsolving
problem, that is, generalization from the metacognitive perspective. But the generalization could be
said to be one of the most metacognitive problem, which has great deal of significance in both
mathematics and education. Then we should think about the concept of metacognition which integrates

pre and post solving problem consistently. We found out its hint in the director system of Skemp
(cf.1979a,1979b,1987).

We proposed the expanded theoretical framework for metacognition shown in Fig.2(Iwasaki et
al.,1995), which was built by combining of the present theory of metacognition in mathematical problem
solving and Skemp's director system. This framework works to explain the intellectual development
such as postsolving problem which includes the generalization.

Problem
M C

Method

MK MS
A Az

DS
Object Concept

M C : Metacognition
M K : Metacognitive Knowledge

M S : Metacognitive Skill

D S : Director System

Fig.2 The transformation from metacognition to director system

Van Hiele shows the discontinuous development of mathematical recognition. A method should

be re cognized as an object in new cognitive stage. If so, metacognition should be transferred into the

director system of Skemp at the same time.
According to van Hiele and Skemp, a certain method could become an object of thinking in

postsolving problem. It is to share the new situation of thinking with students in a class that
deserves to much attention of mathematics teachinglearning. Even if metacognition has a firm place in
the context of pre solving problem, we should extend it to reflective intelligence to describe the
cognitive process in postsolving problem.

If we consider Fig.2 adequate when examining cognitive activities embedded in the line of Fig.1
where Dikter is silent, we could cite the following functions of deltatwo to reveal them in the
intellectual development metacognitively (Skemp,1979b, pp.218 219). That is:

(a) Formulating our concepts and schemas.
(b) Devising experiments by which to test the productive powers of our schemas.
(c) Revising our schemas as necessary in the light of these (and other) events.
(d) Mental experiments, by which we try to optimise our plans before putting them into action.
(e) Examining our schemas for inconsistencies and false inferences.
(f) Generalizing our concepts and schemas.
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(g) Looking for connections between events and our existing schemas. This is a reflective activity in
which a person is explaining to himself.

(h) Increasing the number of conceptual connections within a schema, as a special case of
(i) Improving and systematizing the knowledge we already have.

The term our in above functions (a) to (i) is worth paying attention because it implies that
metacognitive activities inside ourselves could be shared with students. Therefore we think
generalization could be realized as cognitive activities in classroom situation.

4 . CASE STUDY(1) : The Analysis of the Generalization Process in "Numbers on the Calendar"
In this section, we design a class Numbers on the Calendar for eighth graders in two class hours

periods. The aim of this class is to enable students to get interested in a calendar, find the relations
among numbers on it, and express them in numerical expressions by use of letters.

[ Numbers on the calendar ]
This is a calendar of June in 1995.
Let's consider about it.
(1)We enclose five numbers on this calendar

with the frame 0 . What relations can you
find among these numbers ?

(2)Move this frame freely. How is the relations
you find in problem (1) ?

(3)Changing the shape or location of the frame,
find various relations among numbers on a
calendar.

4

11

18

25

5[6
12 13
19120

26 27

6
1 2 3

7 8 9 10
14 15 16 17
21 22 23 24
28 29 30

In problem (1), the frame E23 in a calendar is fixed. Students find some relations among five
numbers 5,11,12,13,19 by adding, subtracting, and comparing the results of computations through trial
and error. Here we pick up and consider one of the relations, namely, The sum of three numbers on the
vertical direction in the frame is equal to that on the horizontal direction".

Secondary, problem (2) takes in advance students' following question: "How is the relation in other
location of the frame ?". Students spontaneously move the frame ED freely and consider whether the
relations they find in problem (1) are held or not. These activities forms a part of the extensional
generalization in Fig.1. The issue here encourage the actual state of mental activities arising at the
post solving problem (1). In this stage, student's schema about the numerical relations in a calendar is
transferred into more adequate one by these mental activities. Since these are closely concerned with
the schema construction or reconstruction, we think it is a better way to explain these mental activities
by means of the functions of delta two. In the following sketch, each alphabet in the parenthesis [

stands for the function of delta two mentioned previously.
After the extensional generalization, students who prompt by full of curiosity have offered a

question why this relation among numbers is held in any location. This question is quite natural
because this mathematical relation is tentative and personal one. We can explain the mental operations
which support this why as following. The students try to connect logically between one's own existing
schemas or ideas and several facts obtained by moving the frame [ (g),(h) ] , and to formulate the
logical connections as a new kind of schema [ (a) ] . The utterance of why seems to be raised by
these mental activities.

Taking this opportunity, the actual state of activities is transferred into the stage of verification or
testing mathematical relation, in other words, schema testing in a public level. As a result of this thinking
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why, students come to pay much attention to the relations between a central number and other four
numbers in the frame. At that time, students recognize that four numbers except for a central one are
expressed by adding or subtracting 1 or 7 to a central one in the frame. The invariants in the numerical
relation are represented for the number 1 or 7 .

Until this time, a central number has been the invariant in the following form:
(12-1)+12+(12+1)=(12-7)+12+(12+7)

However, it becomes the variant by means of letter n as follows:
(n-1)+n+(n+1)=(n-7)+n+(n+7)

The essence of this mathematical relation is visualized by expressing the invariant for a number. And
it becomes objects of the subsequent operations by symbolizing the variant.

Though the symbolization enables students to express the mathematical relation in a general form,
students offer the second question why. This second why is the question which raise the tentative
mathematical relation to the status of relation proofed logically. To put it another way, as students make
sure that both the sum of numbers on the vertical direction and that on the horizontal are equal to 3n in
any time, they recognize that the previous equation stands for the intention of the mathematical
relation. In this sense, this is the intensional generalization. From the semiotical viewpoint, though the
thinking in earlier stage is in the semantical level, the thinking in this stage is detached from the
original context of a calendar by the introduction of symbol n and is in the syntactical level.

The invariants like 1 and 7 are based on the invariability of actions of arranging seven
numbers on each line in a calendar. It seems that this second question why is supported by the
following mental operations. Those are to formulate one's own schema more exactly by means of
symbols [ (a) , to connect one's existing schema with the facts or relations held in any location

[ (g) , to generalize the tentative relation as the logically proofed one [ (f) .

Finally, problem (3) aims at the extensional generalization which continues to the intensional
generalization. As students change the shape of a frame or the arrangement of numbers on a calendar,
they find new relations in new situations. For example, it is one of those activities to rotate the frame
0 in a 45degree arc. In this stage, the invariants in the earlier stages are transferred into the
variants with the help of what if not ? strategy such as changing the initial conditions.

5 . CASE STUDY(2) : The Analysis of the Generalization Process in "The Pentagram"
In this section, we design a class The Pentagram for eighth graders in 2 class hours period. The

aim of this class is to enable students to find the geometrical features of the pentagram, prove those
features deductively. In problem(1), students connect with five points in two ways. When they
construct the figure like a star in problem (1 b), they name it the pentagram. Since students note on
some similarities between the figure in (1 b) and the star, we can regard the figure as the icon. In

problem (2), students find some features of the pentagram which they construct in (1 b). Although
they find various features, in this paper we focus on the following feature, that is, L A+ L B+ L C+

D+ L E=180 .

Most students measure the sum of five vertical angles by a 'protractor at first. As a result of the
measuring, they propose the tentative assumption that the sum equals to 180 . Next, students draw
several concrete pentagrams and confirm that their assumption would be true by summing up 5 angles.
However, some of them stick to another measuring results. Students who realize the limitation of this
measurement try to prove the anticipation, that is, the equation deductively. This activity is the process

3 109



The Pentagram
(1) Connect the following five points.

(1a) Connect each point with the next one. (1 b) Connect each point with every other point.

(2) Find the features of the pentagram in the above (1 b) .

(3) Explain the reason why your anticipation is true. [ Note: L A, L B, L C, L D, L E are
vertical angles of the pentagram in (1 b) respectively. ]LA+ZB+LC+LD+Z.E= 180°

which extends from system of actions to extensional generalization.

We can explain the mental process which promote these activities described above by functions of
delta two. Firstly, the activity of drawing various concrete pentagrams is raised in order to improve
and organize their assumption [ (g) ] . In fact, they try to draw several pentagrams [ (b) ] , to

measure the sum of angles, and to modify their ideas if necessary [ (c),(e) ] . As a result of this,
they feel sure that their tentative assumption may be true and try to verify and generalize it [ ] .

In problem (3), students logically prove that their anticipation is true. The solution process of this
problem involves symbols as objects in Fig.1. To put it another way, symbols as objects is the boundary
where students the inductive reasoning is transferred into the deductive reasoning. The importance of
symbols as objects is the same as that in Numbers on the Calendar. In this class, we identify four types

of students as follows;
(a)Students insisting that summing up 5 angles which are measured by a protractor is 180 .

(b)Students explaining their result by using the demonstrative noun such as this and that.
(c)Students first explaining the equation in the special case such as the regular pentagram, and after

that they try to prove in the general pentagram.
(d)Students explaining the equation by using alphabetic symbols like A,B,C etc.

In this case, it is essential that students must regard the concrete pentagram as the general one in
order to reason deductively. From this point of view, students in type (a) have not reasoned
deductively yet because they exclusively treat the specific concrete pentagram. On the other hand,
students in type (d) have already reason deductively. In this sense, the pentagram which students in
type (d) treat as the object of thinking is the general one and the symbolic sign because they try to
explain by means of alphabetic sign like A,B,C, etc. The terms which students in the type (b) treat are
restricted to the demonstrative noun such as this and that. We think that they have not reasoned
deductively yet because of their context boundness. In the case of type (c), for example, students say
as the following: As this angle is bigger, that one is smaller. So I think that my anticipation is true even if it

is not a regular pentagram.

6 . DISCUSSION

In section 4 and 5, we design two mathematics classes and give an outline of them. In our sketch
of two classes, we can see cognitive activities embedded in lines in Fig.1 by the functions of delta two
from the expanded matcognitive point of view. We think this attempt contributes to the elaboration of
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the model of generalization process. At the same time, we come to recognize the significant difference
between the roles of symbolization at the generalization in the algebraic situation and that in the
geometric one. As our sketch shows, we can see this difference at symbols as objects in Fig.1. The
prominent phenomenal difference is the following, that is, in Numbers on the Calendar, we can videotape
the symbolization process that students replace the central number in the frame c) by the letter n and
reason deductively by means of it when students go over the boundary symbols as objects. On the other
hand, it is difficult for us to observe or record the corresponding process in The Pentagram. In other
words, we can not identify the general and ideal pentagra1 N in the visual form because the quality of
symbols as objects in the geometric situation is not the same as that in the algebraic one.

If students go over the boundary symbols as objects, some indication of changes might reveal in
students' utterances and drawing. As we mentioned in the section 5, four types of students are
identified by the analysis of these students' utterances and drawing. In The Pentagram, students must
regard the concrete pentagram as the general and ideal one when they reason deductively. However,
we should not overlook that the object of student's thinking is externally same in both pre and
post symbols as objects. And we should note that the difference among four types depends on the
way of viewing the pentagram. Therefore, based on the way of viewing the pentagram, we must set up
the criterion of this categorizing.

Regarding this point, Dorfler(1996) notes on the object and the product of one's own thinking and
calls them the prototype and the protocol respectively. For instance, the concrete pentagram, in the
blackboard or in the paper, as the object of student's thinking is one typical example of the prototype.
On the other hand, the protocol is a record of one's own activities to the prototype. Cognitive process
and its representations such as students' utterances and drawing to prototype are typical examples of
the protocol. The above issue on the way of viewing the pentagram is closely concerned with the
cognitive activity which supports the transformation from the prototype to the protocol. And this
cognitive activity is the expanded metacognition mentioned in the section 3. In this sense, although
the term protocol is the integrated notion of process and product, we should distinguish between
process and product. Consequently, we come to adopt the notion of the expanded metacognition as the
criterion for the analysis of processaspect of the protocol, and Peirce's classification of symbols,
namely, icon, index, and symbolic sign (Yonemori,1981) as the criterion for the analysis of

productaspect of the protocol. From this perspective, the comparison of symbols as objects both in
Numbers on the Calendar and The Pentagram seems to be summarized in Table.l.

7 . BY WAY OF CONCLUSION
Main findings in this paper are the following:

(1) In this paper, we extracted the mental activities, especially metacognitive activities, embedded in
lines which connect with stages of the generalization process as shown in Fig.1. Metacognition here
constructs or reconstructs one's own existing schemas under the condition of postsolving problem and
promotes the generalization. This is new roles of metacognition which has not been mentioned yet.
(2)The close observation, comparison, and analysis of two teaching practice based on the theoretical

framework in this paper leads to the following conclusion that there are two types of generalization: one
is the generalization of oWect in the algebraic situation, the other is that of method in the geometrical
situation. In other words, in Numbers on the Calendar, the object of one's thinking such as the concrete
number is generalized by use of letter n. On the other hand, in The Pentagram, the way of viewing
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itself is generalized. It realizes the change of inference form, that is, from inductive to deductive.
This makes the excellent contrast each other.

Table 1. The Comparison of Symbols as Objects in Numbers on the Calendar and The Pentagram

NNN
Prototype

Protocol

Process (the utterance
raised by the expanded
metacognition)

Product
(numerical expressions)

pre-
Symbols
as Objects

the central
number in 0

Let's sum up three
numbers in both the
horizontal and vertical
direction in 0.

5 +12+19=36,
11+12-F13=36

(Index)

post-
Symbols
as Objects

letter n
Let's replace the
central number in 0 by
letter n.

(n 1) + n +(n + 1 )=
(n 7 ) + n +(n + 7)

(Symbolic sign)

NN Prototype

Protocol

Process (the utterance
raised by the expanded
metacognition)

Product
(figures)

pre
Symbols
as Objects

-41
111,,,,

lik
/

The sum of five vertical
angles equals to 176° in
this pentagram.

The concrete and special
pentagram as an index

post-
Symbols
as Objects

.411
11.9.

v.
I

The sum of five vertical
angles equals to 180°
in every pentagram.

The general and ideal
pentagram as a symbolic
sign
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Making sense of mathematical meaning-making:
the poetic function of language

Margaret James, Phillip Kent and Richard Noss,
University of London

ABSTRACT. In trying to make sense of mathematical meaning-making, sections of
the mathematics education community have increasingly turned to linguistics as a
basis for theorising mathematical discourse. In this paper, we critique the standard
interpretation of (Jakobson's) structural linguistic theory which has been used by
mathematics educators. From the theoretical perspective we outline, based on the
work of Jakobson and Barthes, we re-interpret some examples of mathematical
meaning-making.

Introduction

Recent attempts to make sense of mathematical meaning-making have drawn freely
on the ideas of metaphor and metonymy. Broadly, there are two main strands of
research: one drawing its theoretical basis from the work of Lakoff and Johnson
(1980) on conceptual metaphors and metonymies (e.g. Lakoff and Naliez 1996,
Sfard 1994), and the other from the work of the linguist Jakobson (1956, 1960) on
metaphoric and metonymic relations in 'texts' (e.g. Pimm 1990, Walkerdine 1988).
Here, we concern ourselves with the latter strand of research and critique the
`standard' interpretation of Jakobson's linguistic theory, in particular the

interpretation of 'metaphor' and 'metonymy' which considers the two as
dichotomous.

In the standard interpretation, metonymical relations operate within a discourse
(intra-domain) while metaphorical relations refer to things outside it (inter-domain).
Although this interpretation adequately allows meaning to be thought of as
developed through the interplay of metaphoric and metonymic relations, it is a
partial interpretation of Jakobson. Two crucial features are missing: (1) how the
relations may operate at any level in a text, not just at the high level of inter- and
intra-domain relations; (2) how the relations exist in a dialectic, informing each
other as well as informing together.

We mention here a few theoretical constructs whose meanings we will elaborate in
the paper. In (mathematical) texts there are multiple systems of signification whose
pairwise dependencies we analyse in terms of denotation and connotation.
However, these multiple systems are not a property of the text itself, but of the text
and the reader. Thus we look at how a reader (learner) may come to build a
connoted reading out of the signs of the text. We suggest that a key mechanism for
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this is the poetic function; and the key to the poetic function is the dialectic of
metaphoric and metonymic relations.

Denotation and connotation

Language can signify something other than 'what it says'. For example, if you are
presented with a poem, it does not say anywhere in the text 'this is a poem'.
Nevertheless, you attend to the layout of the text, perhaps the regularity of metre,
perhaps rhyme; the text therefore signifies 'this is a poem'. This is the traditional
understanding of denotation ('what it says') and connotation (`what it does not
say').

Barthes (1967) formulates a general semiotic theory of denotative and connotative
systems. In a semiotic system, signifiers and signifieds are united in the act of
signification into signs. His definition of denoted and connoted rests on a relation
between the two systems, independent of the nature of the signifieds: the signifiers
of the connoted system comprise signs, or collections of signs, in the denoted
system. Thus he reformulates 'saying' and 'not saying' in terms of signifying in
different, but related, systems:

I am a pupil in the second form in a French lycee. I open my Latin grammar,
and I read a sentence, borrowed from Aesop or Phaedrus: quia ego nominor
leo. I stop and think. There is something ambiguous about this statement: on
the one hand, the words in it do have a simple meaning: because my name is
lion. And on the other hand, the sentence is evidently there in order to signify
something else to me. Inasmuch as it is addressed to me, a pupil in the second
form, it tells me clearly: I am a grammatical example meant to illustrate the
rule about the agreement of the predicate (Barthes 1972, pp. 115-6).

The connoted signified (`I am a grammatical example') has here for its signifier a
collection of signs (`because my name is lion') in the denoted system. Barthes
names the 'collection of signs' the meaning, and the signifier the form (ibid, p.
117). In order to create a meaning within the connoted system (the grammar
lesson), the reader has to do two things. First attention must shift away from the
meaning deriving from this sentence about a lion and on to the form. Second, the
reader must seek the signified of the form.

We will take as a first mathematical example of denotation and connotation the case
of some study materials which form part of a common mathematics curriculum in
the UK, the School Mathematics Project (11-16). The writing, and computation, of
products involving decimals is initially motivated as a representation of repeated
addition (SMP 1983a). This becomes problematic when both quantities are non-
integer. SMP introduces this latter case in the context of computing costs where the
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number of items and the cost per unit item are given (SMP 1983b). Before asking
the child to work out the cost of 3.7m of gold braid the text says

When you work out the cost of 3m, you do £2.60 x 3
When you work out the cost of 4m, you do £2.60 x 4 (ibid, p.2).

Students are being asked to return to previous texts and by attending to the form,
construct the connoted sign: 'this is about a multiplicative structure'. A shift in the
site of potential meaning is demanded. In this teaching sequence, the implied role of
the text has shifted from representing multiplication, to the object of attention, itself.
The way such a shifting occurs has been theorised by Jakobson.

Jakobson proposes that language has six functions, each set towards a specific
element of the act of communication (Jakobson 1960, p. 357). For example, the
referential function of language relates to its capacity to refer to some extra-textual
reality. A more than trivial text will rarely fulfil just one function though a
particular function may be dominant. The shift of role of the text to 'object of
attention' is a result of the dominance of the poetiC function. Before we discuss the
poetic function in detail, we need to set out Jakobson's theory of metaphoric and
metonymic relations. His presentation is characteristically condensed and we have
drawn on the elucidations of Lodge (1977) and Hawkes (1977).

Metaphoric and metonymic relations

The workings of metaphoric and metonymic relations are set down by Jakobson in
the following terse paragraph:

The development of a discourse may take place along two semantic lines: one
topic may lead to another through either their similarity or through their
contiguity. The metaphorical way would be more appropriate for the first case
and the metonymic for the second, since they find their most condensed
expression in metaphor and metonymy respectively. (Jakobson 1956, p. 76).

Here, 'topic' and 'development' are to be understood extremely broadly: Jakobson
is proposing that metaphoric and metonymic semantic development can exist at all
levels in the text (ibid, p. 77). 'Topic' may be the text, a sentence, a word, a
combination of words: any discernible 'unit'. Jakobson uses 'metaphoric' for a
relation at any level which is based on similarity, and 'metonymic' where the
relation is based on contiguity; he reserves 'metaphor' and 'metonymy' for the
figures of speech which are the most condensed expressions of such relationships.

A linguistic example of this development 'along two semantic lines', which lies at
the heart of structuralist linguistics, is the syntagmatic/paradigmatic polarity. In the
syntagm (a technical word meaning 'combination of signs')

`the girl sat on the chair'
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the meaning of each word is developed as the sentence is carved out (the
syntagmatic axis). Thus syntagmatic relations hold between the constituent signs
and between the signs and the syntagm, and are therefore relations of contiguity.
Further, each word's meaning is affected by its relation to other words that could
have been chosen (the paradigmatic axis) but were not. Thus paradigmatic relations
are relations of similarity (or dissimilarity, a negation of similarity). Note that
paradigmatic and syntagmatic relations hold between signs in the discourse and not
between signs and some version of a reality 'out in the world'. The meaning of a
sign is developed both by its reference to some version of reality, and by its value:
that is, its paradigmatic and syntagmatic relations to other signs in the discourse.
For example, 'sat' draws meaning from its contiguity with 'on the chair': a
particular way of sitting. It also draws meaning (paradigmatically) from not being
`perched', 'lounged', 'crouched', or even 'spat'.

A mathematical illustration. Pimm has written extensively on 'metaphor' and
`metonymy' at the inter/intra-domain level. For example, he has said that activities
which develop 'symbolic fluency', such as when children chant a times table, are
metonymic; because they focus a child's attention on the "movement 'along the
chain of signifiers'" (Pimm 1990, p. 135). But this ignores the fact that, on a
different level of topics, there are metaphoric relations present, formed by
similarities between the lines of a chante.g. '1 times 2 is 2', '2 times 2 is 4',
etc.in the repetition of signs (`times 2') and the regularity of metre. It is these
metaphoric relations, generating a sense of movement and rhythm, which, at least in
part, cause the text to be metonymic at the level of topics considered by Pimm.

The poetic function in language

The poetic function,. whose set is towards the message itself, operates via
transgressions of the language system: transgressions that make the text 'strange'.
We shall give one example in some detail: the breaking of the
syntagmatic/paradigmatic polarity. As remarked before, this is a fundamental
feature of language in structural linguistic terms and hence can be expected to be a
particularly fruitful site. As we shall outline, the disruption of the polarity shifts
attention to form as signifier and to value as potential signified.

One mode of effecting this transgression is by imposing similarity on the
syntagmatic axis, where ordinarily (in referential texts) contiguity is expected
this is the principle constitutive device of poetry according to Jakobson (1960,
p.358). Rhyme is perhaps the most obvious kind of 'strange' similarity (sounding
alike but semantically unlike). In Barthes' phrase (1967, p. 87), rhyming
`corresponds to a deliberately created tension between the congenial and the
dissimilar, to a kind of structural scandal.' Jakobson (1960, p. 358) lists other
possible strange similarities including, for example, the equalising of word stress
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with word stress. An alternative mode of breaking the polarity is to impose
contiguity on the paradigmatic axis. In the example given by Lodge (1977, p.77),
the syntagm 'ships crossed the sea' can be transformed into 'keels crossed the deep'
producing two metonymies. The non-logical deletions, e.g. deleting 'ships' instead
of 'keels' from the notional syntagm 'the keels of the ships', render the text strange.

Referential reading becomes interrupted and attention is shifted from the (extra-
textual) referent of the sign on to the signs themselves. In poetic texts denoted signs
become connoted signifiers. In the case that we have discussed, this occurred
through disruption of value and thus value may be brought to the reader's attention:
value. becomes a potential site of meaning. The poetic text ceases to be solely a
window onto something else, but invites the reader to attend to its own form. But, it
does not cease being a 'window onto': it depends on the reader's focus. Sites of
potential meanings are multiplied, not exchanged one in favour of another. In
Jakobson's words: 'The supremacy of poetic function over referential function does
not obliterate the reference but makes it ambiguous' (Jakobson 1960, p. 371).

Connoted signs that arose out of transgressions, out of breaking the rules of the
denoted system, become themselves 'institutionalised' for the reader as he or she
develops the connoted system as a site of meaning. In this sense, the new system
may become as familiar, and its signifieds as 'concrete', as the signifieds of the
original denoted system.

Two mathematical examples

Our examples of the SMP text on multiplication, and the chanting of times tables,
have already offered two illustrations of the re-interpretation of mathematical texts.
Those, and the two further examples here, show the potential of our theoretical
ideas for the analysis of mathematical texts. We should emphasise that we are not
claiming to be able to offer a semiotic system of mathematical discourse. We are
proposing interpretations by analogy with examples within literary theory and
linguistics; thus our interpretations can only be pointers towards a more systematic
mathematical analysis.

Example 1

Consider the two mathematical texts

`2 + 3 ='

`2 + 3 = 1 + 4'

It is well known that often, long after a learner is capable of reacting to a text of the
first kind by performing the sum, the second produces bewilderment: the learner
finds it 'wrong' or 'meaningless'. Several authors (e.g. Kieran 1981) have pointed
out two related reasons why children react as they do. Firstly, children interpret the
equals sign as meaning `do the sum'. That is, they have a procedural interpretation
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of the equals sign. Even supposing that the children's interpretation can be shifted
to some notion of equivalence, a second reason remains: they may have a
procedural interpretation of '2 + 3', or any syntagm whose template is 'number-
operation-number'. In this case, '2 + 3' will not be seen as the result '5' but as a
sum which, if performed, would give the result '5'. So, '2 + 3' cannot be the same
as '1 + 4': they are different sums.

In relation to the child's system, the interpretation "`2 + 3' and '1 + 4' both signify
5" is a connoted reading. '2 + 3', a syntagm (recall, a combination of signs) in the
child's system, is a form, a signifier in the connoted system. Gray and Tall (1994)
have written about the 'process-produce ambiguity in mathematical notation, which
for them expresses a cognitive `process- concept' duality, or 'procept'. They posit
that a learner's grasp of this 'notational ambiguity' is central to her success or
failure in mathematics. From our perspective, the question is: how might the child's
entry into the connoted system be facilitated?

One approach may be to tell the child the rules of the connoted system: '1 + 4' is
another name for the number 5. But this ignores that, for the child, '1 + 4' is not an
empty form, it is a syntagm full of meaning. Viewed in this light, the problem is one
of denotation/connotation rather than the more general `ambiguity'; and this
highlights an asymmetry of the two systems for the learner. We cannot hope to
obliterate the child's denoted sign, `sums'; and there is evidence that the 'name for
a number' approach is not successful (Kieran 1981). The problem is much more
difficult: we would need to find ways of building on the child's system, so that she
can appreciate a poetic reading of the text: '2 + 3' is equivalent to '1 + 4' because
the result of the sum '2 + 3' is the same as the result of the sum '1 + 4'. This
reading is a metaphoric relation resting on a metonymy: a sum is like another sum
(metaphoric) because their result (metonymy) is the same. Such a reading is not
self-evident: the metonymy is non-logical. To comprehend the syntagm as signifier,
as formal mathematical discourse would have it, is a matter of enculturation into
this discourse. This will not occur through attention to a single text. Enculturation
requires that the connoted system be built up by the learner through numerous and
diverse activities, with significant attention to poetic readings of texts.

Example 2

Consider the simultaneous equations

x+5(y+1)=0
5y = (5+x)

If the equivalence of these equations is not noticed and a solution is attempted then
an ambiguity concerning equality arises which is very different from the 'process-
product' ambiguity of Example 1: the calculation will end up with something like
`0 = 0'. If attention is focussed on this as a syntagm composed of '0', '=' and '0'
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then the statement is tautologous. Clearly, it is a transgression of the 'rules' of the
denoted system to supply no information. A student could attempt a poetic reading,
focussing on '0 = 0' as a form: as a signifier in the connoted system. But as
signifier, its signified is 'the equations are dependent', a far from obvious
connection. Perhaps the form is recognised, perhaps the signified is known, but it
does not necessarily follow that the sign will be constructed.

Conclusion

In this paper we have briefly outlined a theoretical basis for analysing mathematical
meaning-making which calls into question the dichotomous relationship between
`metaphor' and 'metonymy'. The implications are far from esoteric: the theory
suggests a need to promote connoted reading of texts by learners, and we are
beginning to understand how it may help us to elaborate mathematical meaning-
making in terms of webbingan attempt to explain how a learner struggling with a
new mathematical idea can draw on supportive knowledge from a range of sites,
rather than simply erecting a hierarchy of abstractions (see Noss and Hoyles, 1996).

We are beginning to make sense of the ways in which carefully-designed computer
software can offer learners the means to find more direct entry points into the
`connoted' system, by providing a means for expressing meaning in computational
action. Conceived in this way, the computer is a rather special kind of tool in which
action involves the formal use of language, and where the usual polarities
meaning and precision, informal and formaldo not hold.

We may speculate that there is a link between this work and our current research on
mathematics curriculum design for undergraduate science students. To what extent
must the structure of mathematics be understood in order for it to be used
effectively as a tool in the sciences? What can we say about the changing
relationships between mathematical and scientific epistemologies, and the roles of
new technologies in mediating these relationships? In the area of 'service'
mathematics teaching there is a standard dichotomy that concerns the ways in
which mathematics may be learnt. It can be characterised as 'formal' versus
`informal': one either learns the formal mathematics itself and then 'applies' it to
scientific situations, what we might call a 'metonymic' approach (mathematical
meaning develops within the discourse), or one simply learns to 'use' mathematics
informally in science without attempting a 'formal understanding' of it, what we
might call a 'metaphoric' approach (mathematical meaning develops with reference
to science). We are questioning this dichotomya dichotomy which we speculate
is an applied consequence of the metaphoric/metonymic dichotomy with which we
began.
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Children Learning to Specify Geometrical Relationships
using a Dynamic Geometry Package

Keith Jones

The University of Southampton, United Kingdom

In order to understand the learning taking place when students use a
dynamic geometry package such as Cabri-Geometre, a particular focus
for study needs to be on the learning mediated through employing such a
resource. In this paper 1 describe how one, pair of 12 year old students
begin learning how to specify geometrical relationships in Cabri. I argue
that, while Cabri provides certain elements of the mathematical language
necessary for the articulation of relevant mathematical ideas, significant
aspects must be provided by the teacher.

Introduction
The use of concrete materials such as manipulatives, and tools such as calculators
and computers, to support mathematics learning is reasonably well-established and
widely encouraged. In trying to understand the mathematics learning taking place
when students use such devices, the work of Wertsch (1991), amongst others,
suggests that we need to consider carefully what stands between the learners and the
`knowledge' that they are intended to learn; that is, we need to focus on the learning
mediated through employing such resources. Ohtani (1994), for example, presents
this in the usual triangular form (adapted slightly as Figure 1).

Learner

Mediating
artifact

Mathematics
Figure 1

Dynamic geometry environments (DGEs), such as Cabri- Geometry, are one example
of such mediating artifacts. Such a package allows the user to experience the direct
manipulation of geometrical objects (or, at least, the appearance of such direct
manipulation). Within the computer environment, geometrical objects created on the
screen can be manipulated by means of the mouse (a facility generally referred to as
`dragging'; for further details see Flolz1 in press). What is particular to DGEs is that
when elements of a construction are dragged, all the geometric properties employed
in constructing the figure are preserved. This is because one of the significant
features of a dynamic geometry package is the ability to specify relationships
between geometrical objects (Laborde and Laborde 1995 p 240). In this way, the

3 - 121 129



software provides the learner with a means of expressing mathematical ideas. As
Noss and Hoyles (1996 p 54) argue: "It is this articulation which offers some
purchase on what the learner is thinking, and it is in the process of articulation that a
learner can create mathematics and simultaneously reveal this act of creation to an
observer." Hence when students are using a DGE such as Cabri to tackle
mathematical problems they are involved in both perceiving and specifying
relationships between geometrical objects.

In this paper I focus on the transition from perceiving and specifying geometrical
relationships when students are using Cabri and how this is mediated by the
computer environment. In what follows I describe how one pair of 12 year old
students begin learning how to specify geometrical relationships in Cabri. I argue
that, while Cabri provides certain elements of the mathematical language necessary
for the articulation of relevant mathematical ideas, significant aspects must be
provided by the teacher. The data comes from a longitudinal research project
designed to trace the transition of student conceptions of some chosen geometrical
objects from informal notions towards formal mathematical definitions. I begin with
a brief outline of the theoretical framework with which I will interpret the data.

The Mediation of Learning
One of the central concepts underlining the approach I adopt in this paper is
Wertsch's notion of "individual(s)-acting-with mediated means" (Wertsch 1991 p
12) which is itself based on aspects of the work of Vygotsky and Bakhtin. From
such a perspective there is an intimate relationship between psychological processes
and the sociocultural setting such that all mental processes are considered to be
mediated by communication that is inherently and complexedly situated. In this
model, when we describe human action we can only do so in terms of the mediating
artifact because "action and mediating means are mutually determined" (p 119).

A second central concept is the idea that the move from perceiving to specifying is
at the heart of mathematics learning. In this context, specifying requires the use of
elements of conventional mathematical language. With certain computer
applications; such as Logo, spreadsheets and perhaps DGEs, the computer can
become a special tool for mathematics learning because the actions of learners using
such applications necessarily involves some formal use of mathematical language.
Noss and Hoyles call such a computer environment "autoexpressive" when it
contains elements of mathematical language "to talk about itself' (1996 p 69). For a
DGE such as Cabri, some of the relevant elements of mathematical language (such
as mid-point, bisector, perpendicular, and so on) can be considered to be explicitly
available via the various menu items. Further elements are implicitly contained
within the figure as it is constructed. I will return to this point later in this paper.
Given these considerations, the central question here is how we can describe the
learning of aspects of plane geometry when mediated by a computer application
such as Cabri.
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With the above in mind, particular foci for the presentation and analysis of the
qualitative data from this study are:

how particular geometric figures presented on paper are interpreted by the
students when the aim is to construct them using Cabri
how the figures are constructed; that is how they are specified in terms of
the Cabri menu items
what the response is to the feedback presented by the resulting image on
the screen
how the specification is checked
what form of assistance is sought from the teacher/researcher and what the
response is to interventions

I follow the example of Meira by focusing on how "instructional artifacts and
representational systems are actually used and transformed by students in activity"
(1995 p 103, emphasis in original) rather than simply asking whether the students
learn particular aspects of geometry better by using a tool such as Cabri. This is
because what I am interested in is both what the students learn and how they learn
it.

Description of an Episode
This data comes from a research study in which pairs of students in theii regular
mathematics classroom tackle a series of tasks focusing on the geometrical
properties of quadrilaterals. The pair of students in this extract are 12 year olds who
have used Cabri on four previous occasions, each one lasting almost an hour, the
last time being about four weeks earlier. The class is of above-average attainment in
mathematics and from a UK city comprehensive school whose results in
mathematics at age 16 are at the national average. The mathematics teacher employs
a problem-based approach to teaching mathematics and the students usually work in
pairs or small groups. The class has three 50-minute mathematics lessons per week.
The version of Cabri in use was Cabri I for the PC.

The task the pair of students are undertaking is to construct the following diagram,
Figure 2, using Cabri and hence obtain Figure 3.

Figure 2
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Figure 3

The task then asks the students to "explain why the shape is a square". The students
know that they need to construct the figure in such a way that the figure is invariant
when any basic object used in its construction is dragged. In the words of Healy et
al (1994), the figure must be impossible to "mess up".

After a short discussion the
pair begin by constructing two
interlocking circles, as shown
in Figure 4.

Figure 4

In order to draw the third circle they need to construct its centre. They realise that it
has to be midway in between the centres of the two larger circles. In the extracts
that follow, R and H are the students, I is myself as teacher/researcher.
28 R You want to get that thing in between them, I can't remember what its called now.
29 H Construction is it? No ..
30 R Yes, on Construction, and it is ...
31 H & R Intersection!

(together)

The students attempt to use intersection, but, of course, it is not the correct choice. I
decide to intervene.
39 1 What are you trying to do?
ao R Make a point in between there.
41 I An intersection will only give you the point where two lines cross. But there is
42 something else Which will give you something which is halfway between.
43 R Go under Construction.
44 I Yes, have a look under Construction again.
45 H & R Yeah, Midpoint!
(together)

They create the third circle and check that their construction is correct by dragging
one of the points on their figure.
69 R Yeah, that's it Then we want like a diamond shape inside it.
70 H So we need to ....
71 R Just see if they all stay together first.
72 H OK.
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69 R Pick up by one of the edge point.

70 H & R Yeah, it stays together!
(together)

The next step the students
make is to draw two lines, see
Figure 5, and again check, by
dragging, that their
construction is correct.

Figure 5

They complete their construction by drawing the four line segments forming the
square and once more check, by dragging, that their figure cannot be "messed up".
To construct the figure shown in Figure 2 they "erase" (or, more accurately, hide)
the requisite lines and finish by constructing line segments as diagonals of the
square.

One of the students comments:
167 R A square. Four triangles in it.

168 Or is it a rectangle? Those bits look longer.

169 H They do slightly.

170 R Should I get a ruler?

I intervene by asking them what they can say about the diagonals of the shape.

174 R They are all diagonals.

175 I No, in geometry diagonals are the lines that go from a vertex, from a corner, to

176 another vertex.

177 R Yeah, but so's that, from there to there.

178 I That's a side.
179 R Yeah, but if we were to pick it up like that like that. Then they're diagonals

180 I In mathematics, in geometry, a line that goes like that is called an oblique line.

181 It's not vertical, it's not horizontal. It's oblique.

Following this I prompt them into beginning to explain why the quadrilateral is a
square. For example, I ask them to compare the lengths of the diagonals and how

they intersect.
195 I and what can you say about that line and this line [referring to the diagonals]?

196 H They're the same distance.
197 I They're the same length?
198 H Length, yeah.

199 I OK, so the diagonals are the same length. And what can you say about the way in

200 which they cross?

201 H They cross exactly in the middle.

202 I So you're saying that from there to there is the same as from there to there.

203 H Yeah.

BEST COPY AVAILABLE
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214 I At what angle do they cross?
215 H A right angle.
216 I (to R) Is it a right angle?
217 R No .. yeah.
218 I Yes? So this is a right angle here?
219 R Yeah.

The session finishes with my asking them:
271 I So what sort of shape has got diagonals that are the same, that cross in the middle,
272 so they bisect each other, that cross at 90 degrees, and has got 90 degree corners?
273 What sort of shape is it?
274 H A square.
275 I No other shape is like that?
276 H No.

Analysis and Discussion
The students successfully complete the task, but with particular input from myself as
teacher/researcher. This is not altogether unexpected as, in every attempt to reveal the
mathematical thinking of learners, the balance between exploration and guidance is
always problematic. As Noss and Hoyles explain "This tension is not completely
resolvable. We might be able to engineer situations in which a mathematical way of
thinking is encouraged. But mathematics per se is not discovered by accident" (1996 p
71). What becomes of interest here is the nature of the interventions that were
necessary.

The students begin confidently enough, although it soon transpitts that they have
forgotten the term midpoint. They knoW what they want to specify (the centre for the
third, smaller, circle) but attempt to locate it using intersection, as the drop-down
menu calls it (actually the item locates points of intersection). An intervention is
sufficient to put the students On the right track again.

Lines 69 through 74 shows student R firstly referring to the square to be constructed as
a diamond (presumably due to its orientation; see Hershkowitz 1990 p 82- 86) and
later calling a point on the circumferenCe of a circle an edge point. This latter choice of
terminology is especially interesting as this particular form of point (and there are
several forms of point in Cabri I) is referred to in three different ways on the screen in
this version of Cabri (Cabri I for the PC). From the creation menu, one can construct a
circle using the menu item circle by centre and rad. pt. (the user needs to know,
presumably, that rad. pt. is a shortened version of radius point). The pop-up help
offers the advice "select or create the centre of the circle, then a point on the circle",
while the screen pointer uses the terms "this centre" and "this circle point" when
creating a such a circle. This particular student then invents their own term.

At this point, the students use the drag facility to check that their construction so far
specifies the appropriate geometrical relationships. It does. By lines 167-170 in the
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transcript, student R is referring to the quadrilateral as a square, but queries the screen
image. As I do not think measuring, particularly with a ruler, will resolve the matter I
intervene by asking them to reflect on what they have done (transcript lines 174-276).

In so doing, I have to introduce terminology that does not occur in any menu item in
this version of Cabri. At various times I employ terms such as diagonal, vertex,
oblique, bisect (note that bisector is a Cabri menu item), and right angle.

Finally, the students complete their construction, again checking by dragging that the
construction can not be "messed up". They are convinced that the quadrilateral they
have constructed is a square and they can articulate some of its geometrical properties.

Concluding Remarks
Overall, the episode portrayed here demonstrates that this particular pair of students
had, at their disposal, sufficient technical fluency with Cabri to successfully complete
the required task (albeit with some timely intervention). It was they who devised the
strategy for the construction and consequently it was they who were able to specify
their construction using the facilities offered by this particular dynamic geometry
environment. They did not merely line up relevant objects by eye nor did they start
guessing by randomly opening menus and trying out all the items in some false hope of
hitting on the right one (phenomena observed by Noss et al 1994 and by Jones 1995).

Yet, at the same time, the computer environment alone was insufficient to allow the
students to fully articulate their specification in conventional mathematical language.
For one thing, the menu items can not hope to provide the range of terms required (nor
could they be expected to do so). For another, a full articulation of why the
quadrilateral is a square requires some of those delicate chains of reasoning
characteristic of the finer elements of mathematical proof. The explanation of why the
shape is a square is not simply and freely available within the computer environment. It
needs to be sought out and, as such, it is mediated by the computer environment.

On the other hand, the essence of the explanation is contained implicitly within the
construction. The students' construction of the square is a general representation and
not a copy of a particular concrete object. What is more, the properties of the figure
are derived from definitions within the realm of the Euclidean axiomatic system. The
UK mathematics curriculum expects students at this level (above average 12 year olds)
to begin giving mathematical justification for their generalisations. An objective of the
curriculum then is to develop their ability to use mathematical language effectively in
presenting a convincing reasoned argument. As currently specified, it is only the more
able 14 to 16 year old who are taught to "extend their mathematical reasoning into
understanding and using more rigorous argument, leading to notions of proof' (DFE
1995 p 20). It may be that experiences with a DGE such as Cabri, and tackling
suitable tasks, will help to allow this objective to be realised.

The example provided in this paper shows some aspects of how it is interaction with
more knowledgeable others that ensures that at least some of the explanation available
with the DGE can become accessible to the student learners of mathematics. Hence,
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while Cabri provides certain elements of the mathematical language necessary for the
articulation of relevant mathematical ideas, significant aspects must be provided by the
teacher. This paper has attempted to document at least some of these aspects.
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CHANGE IN MATHEMATICS EDUCATION: RETHINKING

SYSTEMIC PRACTICE

Lena Licdn Khisty

College of Education, University of Illinois at Chicago

Interest in the use of systemic thinking and practice to effect educational change
has coincided with efforts to reform mathematics education consistent with new
visions of what it means to do and know mathematics. The current application of
systemic theory as an approach to change has raised questions about its
effectiveness. This paper reports on findings of a teacher development project and
the issues raised regarding teacher's understanding of new practices. In light of
these findings, other key ideas of systems thinking and practice emerge as being
more relevant and deserving of consideration.

Since the mid-eighties, there has been much interest in applying systemic theory to

educational change (Vinovskis, 1996). Some of the key systems ideas that have been used include

coherence, alignment, and holism. These ideas have been interpreted and operationalized, for

example, as curriculum-drilien reform based on frameworks such as the NCTM Standards

(NCTM, 1989) and as coordinated state policies that provide a coherent restructuring of such

elements as teacher development, assessment, and even governance (O'Day and Smith, 1993).

For the most part the systemic reforms have been structural in nature. However, there is growing

doubt in systemic theory as a useful tool to foster wide-spread change (Scheurich and Fuller,

1995). There is increasing evidence that teaching practice remains untouched by the current

efforts (Grant, Peterson, and Shojgreen-Downer, 1996). By inference, since practice and

outcomes are so closely related, this also suggests that student achievement remains unchanged.

Systemic has had many interpretations (Holzman, 1993). It has been used to refer to the

whole educational system from top to bottom and to the whole system across local schools. Such

variations in definitions of "whole" are reminiscent of confusions children have in understanding

the nature of a "whole" and its fractional parts, where a "whole" can be anything according, to

how one specifically defines it. Nevertheless, systems thinking does offer some key concepts that

are highly relevant to effective change. These will be presented later in this paper. The

discussion will begin with some of the results of a teacher development project. These results

form the context for discussion of systemic. It is from these data that critical issues in educational

change emerged and from which the need to rethink systemic emanates.

The SYSTEM'S Project

As part of a federally-funded three year project (SYSTEM'S, Say Yes to Students and

Teachers in Multilingual Multicultural Mathematics and Science) to enhance teachers' instruction

of mathematics with Latino students in the United States, approximately forty teachers from
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about twelve schools participated in a set of three specially designed courses. The staff

development is described elsewhere (Khisty and Adams, 1996) and only the relevant aspects are

presented here to provide some context to the discussion. The courses were repeated and

staggered so that no more than twenty teachers at a time were in the project with some overlap

among groups of participants. The "courses" were designed to be like laboratories that

emphasized collaboration, investigation, instructional problem-solving, and dialogue. The project

was based on the assumption that by the nature of the target issue (i.e., improvement of

mathematics achievement among Latino students), teachers needed opportunities to thoroughly

integrate knowledge bases from three areas: innovations in pedagogy reflecting constructivist

and sociocultural perspectives, mathematics education, and bilingual/ESL education. The implied

objective was to enhance teachers' ability to handle high complexity and to translate this

complexity into concrete practices. Also, the teachers were extensively engaged in experiences

that stressed meaning-making.

Each year as part of the project's external evaluation, participants were interviewed

regarding, among other things, key issues revolving around their understandings of pedagogical

and content concepts, their sense of their own change, and their own assessments of their

instruction. The teachers also were asked to engage in informal dialogue journal writing as part

of each course. These interviews and journal writings form part of the data for this discussion.

The data were analyzed yearly for patterns that emerged among the teachers' thinking and

understandings.

In addition, the teachers were informally and intermittently interviewed about reform

activities, if any, at their school. Occasional visits were made to schools to observe these

activities and the project staff were sometimes invited to participate in workshops that were part

of these same reform efforts. These observations also form the basis for identifying issues.

Issues of Change

Three issues related to educational change have been selected for discussion. These

emerged from the teachers' interviews and writings and from the observations of school reform

efforts. The first issue has to do with teachers' lack of deeper understandings of key issues,

concepts, and skills found in their own repertoire on teaching and learning. This lack of

substantive understanding did not seem to come from teachers' inability to understand but rather

from their own previous learning experiences that did not emphasize and ensure meaning-making.

As a matter of routine throughout the project and particularly in courses or any other discussions,

if a teacher used a term related to teaching and learning such as "constructivism" or "using
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students' prior knowledge", the teacher was asked in a positive and supportive manner to extend

his/her thinking on the matter by explaining further what the term meant. Teachers were

continuously asked to differentiate the term or idea from others (compare and contrast), to

elaborate with concrete examples, and to explain what it had to do with students' learning. They

also were repeatedly asked to identify and explain a mathematics concept that came up in

teaching episodes. Unfortunately, they always responded with too short, incomplete. or rhetorical

definitions such as "fractions", "adding fractions", "hands-on". The teachers acknowledged how

difficult it was to respond with whole sentences that established relationships (for example, "The

students were putting together quantities that were not whole but which would give answers that

were greater than a whole...."): Consistently, among all the teachers and in every situation

(group discussions, one-on-one talks, journal writings), extended and detailed elaboration was

difficult to produce. One teacher seemed to capture the general situation by noting that "...no

one ever taught me about math concepts....or asked me to explain what I mean much less...what

I think...."

Superficial understanding did not seem to result only from never having to elaborate. It

also seemed to stem from experiences where other's discussions were heavily rhetorical and

where there was little opportunity for clarifying dialogue as what happened in many inservice

workshops. The best and most frequent example of this concerns the idea of parent involvement.

After a district-sponsored staff development workshop on parent involvement, the teachers who

attended it were asked to discuss it with the rest of the project group. Consistently, the five

"workshop" teachers talked about parent involvement as if they truly understood it and as if

everyone shared the same conception. However, after some probing, it became apparent that

their conception conflicted with that of other teachers. More importantly, their conception was

not the same as what is frequently found in the literature. The teachers' assumed conception of

parent involvement was "having parents spend time in classrooms". Their conception did not

include encouraging parents to ask about the child's school work or to ensure the child has a

place to study, nor as taking those steps necessary, such as writing notes telling about upcoming

math units, to keep parents informed.

The second issue to emerge has to do with teachers' difficulty in making connections in

general, and particularly between concepts and procedures, between mathematical concepts and

other subject matter, and between instruction and assessment. In essence, the teachers were not

in the habit of thinking holistically. The difficulty in making cognitive connections also seemed

to get in the way of understanding how children could learn in a holistic manner and how
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multiple learning objectives could be simultaneously developed. In one of the laboratory courses,

the teachers were asked to extensively analyze and discuss a curriculum package that has had

success with second language learners, Finding Out /Descubrimiento, (FOID) (De Avila, Durican,

and Navarrete, 1986). The purpose was for the teachers to have a concrete example of a

carefully crafted model of integrated science, mathematics, and literacy which develops students'

higher order thinking skills, basic skills, and biliteracy. In essence, FOID.is designed so that as

students independently read and comprehend linguistically sensitive task cards, they are engaging

in problem solving and literacy development; and as they carry out the science activity described

on the card, they are using mathematical concepts and, skills even though the mathematics is not

obvious. While the teachers could review and discuss FOID and even try it out in their

classrooms, they found it difficult to replicate the integration of subjects and skills in materials

or learning experiences they developed on their own.

Difficulty in making connections became most obvious as teachers discussed issues of

assessment particularly via standardized tests. They appeared to find little connection between

this "new teaching" and students' ability to do well on the district's yearly tests. The idea that

students' rich and highly frequent experiences with mathematics in varied contexts could produce

positive outcomes on standardized tests, strained their comprehension even though there was

evidence to demonstrate it. It seemed to be very difficult for the teachers to relinquish their belief

that when testing time drew near, it was time to drill on isolated skills. This is a critical issue

since a cursory analysis of sample test items indicate that drilling on skills would not prepare

students to deal with the complex thinking needed to solve the problems.

The third issue has to do with how the teachers are themselves taught. The informal

observations of the reform-oriented inservice activities provided to the teachers reinforces other

work (Lieberman, 1995) that suggests that staff development is too short-term, fragmented, and

didactic to really move teachers in a different direction. These staff development activities and

others that the author has experienced seem to perpetuate the issues noted above. Teachers were

still passive learners even in situations where they were actively engaged in a demonstration.

What was lacking were opportunities for the teachers to engage in purposeful dialogue and

meaning-making with the workshop presenters. In addition, it seemed to be a common practice

among the schools to carry on separate simultaneous workshops for various clusters of teachers

(e.g., the mathematics teachers, the specialists, the bilingual education teachers, etc.).

Consequently, teachers were cut off from engaging with colleagues in collaborative work that

might have encouraged cognitive connections among content areas. The compartmentalization
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of staff development activities was intended to bring teachers closer together; however, this one

act had very different and severe consequences. It, in fact, fostered disconnected "camps": the

mathematics camp, the reading camp, the bilingual camp, etc.

Systemic Reconsidered

The issues described above relate to assumptions about communication and what is meant

and how things are connected and related to one another. While prevailing perceptions of

systemic focus on structural wholes, systemic also refers to a way of thinking (Hutchins, 1996).

Systemic thinking represents a major paradigm shift in how we view the world. It is a shift away

from the traditional view of reductionism or thinking about isolated parts that fit a mechanistic

model. The mathematics learning that we are attempting to reform is based on thinking about

parts and not wholes or connections and relationships. Systemic, therefore, is a philosophy, a

way of thinking, that once adopted permeates all thinking regardless of situations or context. As

a way of thinking, systemic theory offers us a way of understanding and dealing with the issues

noted in the earlier section.

Change requires the change agent to think systemically or holistically. However, since

systems are naturally complex there must be bounded rationality which means narrowing the

scope and setting priorities as to what to address first, but never forgetting that a change in one

part affects all others. In other words, systemic thinking suggests thinking globally but acting

locally. To change learning outcomes we must select to change teaching practice since there is

a clear connection between how and what the teacher instructs and how well and what the student

learns.

Consistent with this perspective, changing teaching practice requires teachers to think

holistically with a keen awareness of relationships. This can not be accomplished through

approaches that reflect thinking in parts as via isolated activities (Cohen and Barnes, 1993).

Recent research in mathematics education has been concerned with what teachers believe about

the teaching and learning of mathematics (e.g., Boufi, 1994; Becker and Pence, 1996), and it

suggests that there is a strong relationship between teachers' beliefs about mathematics and their

practice (Raymond, 1993). However, beliefs are not the same as understanding; nor is

understanding the same as content knowledge. Understanding entails knowing the meaning and

the nature of something, having a mastery of it and being able to discern it wherever it occurs.

Moreover, it is possible to believe something and yet not fully understand it. Consequently,

beliefs, content knowledge, and understandings must go hand-in-hand.

Therefore, changing teaching practice should include preparing teachers to think in terms
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of conceptual meanings and relationships. Another key idea from systems is the notion of

communicative action (Ellis, 1995) which is a process of talking through conflicting perceptions

and agreeing upon a common vision. This process of negotiating and making-meaning, requires

persons to be conscious of their own and other's perceptions and meanings and to not assume

common understandings. It requires that the actors differentiate, analyze, provide examples,

explain graphically and orally, make explicit relationships, and assess new relationships. Such

a process can be used with teachers to develop shared meanings of pedagogical and mathematical

concepts and to instill a mode of looking for relationships (e.g. how theory relates to practice

or concepts to procedures). The process also instills habits of the mind that carry over into

everything from how to instruct students to how to collaborate with colleagues.

Concluding Thoughts

The experiences from a multi-year project working with teachers have raised some critical

questions about the nature of effecting educational change and questions regarding the

appropriateness of prevailing emphases and activities. Evidence from the teachers suggest issues .

of thinking at a deeper level, thinking holistically, and of the role of communication to foster

such thinking, The type of mathematics teaching and learning that we have set forth is complex

(e.g., non-routine problems, integrated curriculum, multiple strategies, and varying classroom

organizations), and consequently, requires both students and teachers to think with greater

complexity. All of this is no small matter. I have suggested that other aspects of systems theory

can be used to guide our thinking about how to change teachers holistically which could affect

change in the whole system.
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AREA INTEGRATION RULES FOR GRADES 4, 6 AND 8 STUDENTS

Gillian Kidman and Tom J. Cooper
Centre for Mathematics and Science Education,

Queensland University of Technology, Kelvin Grove, Australia

This paper investigates grades 4, 6 and 8 students' use of area
integration rules by administering area judgement tasks, using
rectangles of varying areas and perimeters. Information Integration
Theory and functional measurement procedures revealed that students'
responses were determined by both additive (perimeter) and
multiplicative rules. It was found that judgement rules change intra-
individually. There does not appear to be a relation between judgement
rule and Grade level.

Area is one of the essential concepts of mathematics instruction because it is
the most commonly used domain of measurement and the basis for many models used
by teachers and textbook authors to explain computational strategies (Hirstein, Lamb
& Osborn, 1978; Woodward & Byrd, 1983; and Baturo & Nason, 1996). However, it
is a concept that textbooks make little attempt to define, and many (for example,
Blane & Booth, 1989) discuss with the apparent assumption that students already
understand it. In particular, textbooks aimed at the Year 8 level of schooling in
Queensland appear to limit their approach to the concept of area to two ways: a
combination of basic pre-formula exercises, statements of formulae and exercises
using the formulae (e.g., Blane & Booth, 1989; Duffy & Murty, 1988); and directly
into statements of formulae and exercises using the formulae (e.g., Clark, Clark,
Burza & Conway, 1988; Priddle & Davies, 1989).

This apparent lack of definition and emphasis on formulae seems to be
attributing, in part, to well documented misconceptions of the concepts ofarea in both
primary and secondary school aged students (Kidman & Cooper, 1996a; Outhred &
Mitchelmore, 1996; Clements & Ellerton, 1995; Bell, Costello & Kuchemann, 1983;
Bell, Hughes, & Rogers, 1975). As the research of Hirstein (1981) and Hirstein,
Lamb and Osborne (1978), for example, has shown, one of the major misconceptions
is confusion between area and perimeter. In particular, as Kidman and Cooper
(1996b) found, students have difficulty with the process of obtaining a shapes'
measurements, determining which dimensions to consider and how to integrate these
dimensions when calculating either area or perimeter. Attributing to this
misconception is the possible inadequate knowledge of area by teachers. Research on
student teachers (Baturo & Nason, 1996; Simon & Blume, 1994) has revealed similar
inadequacies. The student teachers show very little conceptual understanding of the
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relationship between area and side length. They are able to apply procedural
formulae, but they confuse area and perimeter and use linear rather than square units.

The Information Integration Theory (IIT) method and functional measurement
technique of Anderson and Cuneo (1978) has been widely used to identify the rules
applied by students to integrate dimension information. As argued by Kidman &
Cooper (1996a) and Wolf (1995), IIT and cognitive algebra offer an excellent
opportunity to explain the process of area concept development in children. IIT
places importance on problems of stimulus integration and multiple causation.
According to IIT, "all behaviours reflect a blend of stimuli, and a response is the
consolidated resultant of multiple causal forces" (Kidman and Cooper, 1996b, p.
340). The methodological counterpart of IIT, called functional measurement, allows
diagnosis in simple algebraic terms, "... of the rules which govern integration of
information about perceived stimuli." (Wolf, 1995, p. 49-50).

Recent studies have employed IIT to investigate students' perceptual
judgement of area (Wolf, 1995; Schlottman & Anderson, 1994; Lautrey, Mullet &
Paques, 1989; and Silverman & Paskewitz, 1988). In these studies, students have
been provided with different rectangular shapes and asked to place their area on a
linear scale. The general consensus of these studies is that students' judgements of
area obeyed two-dimensional rules. At some stage between the age of 5 and 12, a
child is expected to make the transition from an additive integration rule to the
normative multiplicative integration rule. It appears from these studies that this stage
is about 8 years old. At this age, the students were in a transitional stage between the

additive and multiplicative rules.
This paper describes an investigation to determine the judgement rules used by

students in Grades 4, 6 and 8 in a private college in Queensland and reports on
student responses to experiments to explore how the students integrated length and
width dimensions to judge area of rectangular or near rectangular shapes. The

purposes of the investigation were to:

(1) identify the way in which students integrate stimuli to determine area; and

(2) determine if integration rules change intra-individually.

The experiments was based on the body of literature and the functional
measurement methodology stemming from the work of Anderson and Cuneo (1978).

The study

The study used a multi-method design where the quantitative methodology of
functional measurement was combined with the qualitative methodology of semi-
structured clinical interview.
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Participants. The sample consisted of 36 children, 12 students from each of
the three grade levels, with equal numbers of boys and girls, and a range of
mathematical abilities, one third each of below average, average, and above average,
from each grade.

Instruments. The instruments used were three experiments and an interview.
The first experiment contained 16 rectangular wooden pieces painted to represent
chocolate and with dimensions corresponding to the factorial combinations of 3, 6, 9,
and 12 cm. The pieces were to be presented to students who would be asked to judge
the area of the rectangular pieces in relation to two end anchors and the previous
pieces they had judged. To obtain measures of the students' area judgements, the
students were provided with a 19 point scale with two end points. Two special pieces
of dimensions 2.7 x 2.7 cm, and 15.8 x 15.8 cm were used as end anchors.

The second experiment used 16 rectangular pieces identical in dimensions to
the first experiment, but with a rectangular corner 'bitten' off producing a figure of
equal perimeter, but less area. The dimensions of the 'bitten' off corner were all one
third of the width and one third of the height of the rectangular stimulus. The third
experiment again used 16 rectangular pieces identical to the first experiment, but this
time they had a semi-circular 'bite' out of one side producing a figure with less area
but greater perimeter. The 'bite' was centred along one dimension with the radius of
the 'bite' one third of the length of the shortest dimension.

The interview was short and semi-structured and asked each student to describe
the method they used to rate each piece. They were quized as to whether they were
aware of any changes they had made to their method over the course of the three
interviews. Diagrams of identified methods were sought, from the children. At the
conclusion of the interview, the students understanding of both area and perimeter
was discussed, and the student was then asked to identify if he/she had employed
either or both of these concepts, to rate the chocolate pieces.

Procedure. Each experiment was completed with each student. The students
were withdrawn from their class and the three experiments and the interview were
administered in a separate room. The experiments and the interview were videotaped.
The interview followed the third experiment. It took no longer than 30 minutes.

For each experiment, the students were first familiarised with the end anchors
which were presented as corresponding to the end points of the scale. The scale had
a smiling face at one end and a frowning face at the other. The small end anchor was
presented as a piece of chocolate that people would be unhappy to receive while the
large end anchor was presented as a piece people would be happy to receive. The
students were then asked to judge how happy someone would be to receive each of
the 16 pieces if they were chocolate to eat. The pieces, each of equal thickness, were
presented individually, and judgement was expressed on a 19-point response scale
(see Anderson & Cuneo, 1978, for more details). The presentation of the chocolates
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was randomised, and a practice phase preceded the test phase. The students judged
three replications of the chocolate stimuli in each experiment.

Analysis. The experiments were analysed using Anderson and Cuneo's (1978)
functional measurement methodology. The idea behind functional measurement is to
use algebraic rules as the base and frame for psychological scaling. These rules
provide the breakdown of the observed response into its functional components, as
represented by the scale values and weights of the various pieces of information
(Anderson & Cuneo, 1978). This is used to identify the kind of rules underlying the
judgements students make when provided with different rectangular shapes and asked
to judge their areas on a rating scale. The scale positions for the rectangles (which are
specific combinations of height and width) are represented graphically and then
subjected to an analysis of variance. Conclusions regarding the kind of rule
underlying the judgements are determined from the shape of the graphical plot, and
the significance or nonsignificance of the main and interaction effects (Anderson,
1981).

The graphical plot of the responses is against the length of one of the
dimensions of the rectangles. Thus, if the plot is an arrangement of parallel lines or
parallel curves, the students' judgements are considered to be additively based, that is,
they are tending to perceive area of a rectangle in terms of the sum of its dimensions.
If the plot is fan shaped (expanding lines or curves), the students' judgements are
considered to be multiplicative, that is, the students are tending to see area of a
rectangle in terms of the product of its dimensions. Figure 1 presents hypothetical
curves for these rules. If the plot lines or curves intersect, then an inference with
regard to additivity or multiplicativity may not be possible.

Additive Rule - parallel
lines or curves

12

10

4

M00024:04*

o I 1

3 6 9

Height

0 9
0 12

Multiplicative Rule - expanding
lines or curves

20

MeJ

2

0

3 6 9

Height

12

6-- 9
0-12

Figure 1

ypothetical plots for additive and multiplicative based judgements
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Factorial plots were drawn for each student for each experiment, as well as a
group plot for each of the three grade levels. The plots were then compared to the
hypothetical plots shown in Figure 1. On the basis of this comparison, additive or
multiplicative integration rules were assigned to that student for that experiment.

The interviews were transcribed into protocols and the students' statements
compared with their experiment results in an endeavour to provide a second option
for explaining students' responses. The results of this part of the study are not
provided in this paper.

Student responses to the experiments

Understanding the instrument. All students appeared to understand the
judgement they were required to make in terms of being happy or unhappy with
pieces of chocolate in relation to the end anchors and previous pieces of chocolate.
They appeared able to express their judgement unambiguously using the 19 point
scale. The understanding of the response scale was checked by having the student
point to specific sections of the scale (for example, a section depicting a little bit of
sadness), as well as making a verbal statement about the section being pointed to (for
example, "I would be a little bit sad").

The most important procedural detail concerned the establishment of the frame
of reference, "The rating of any one stimulus is always relative to what other stimuli
are being rated" (Anderson, 1980, p. 9). The students appeared to understand the end
anchors in terms of their being a standard device for setting up the frame of reference.
For the students, they were noticeably more extreme, higher or lower, than the
rectangles used in the experiments. The students were able to see the end anchors as
tieing down the end responses. All the students' responses to the chocolate stimuli
came from the interior of the scale. There were no end effects.

Scale positions. Each child's scale positions were analysed with the functional
measurement methodology. Table 1 shows the integration rules used by the children,
as well as the grouped rules for the three grade levels (Gr4, Gr6 and Gr8) and the
three experiments (El, E2 and E3). The symbol ? is used to denote an intersection of
the plot curves or lines, X the multiplicative rule, and + the additive rule. TOT gives
the total number of multiplicative and additive students in each grade.

In the majority of cases the resulting plots were obviously additive with clear
plots of parallel lines or curves, or multiplicative with clear plots of expanding curves
or lines. In cases where the curves intersected (for example, the curve for a width of 6
cm crossed the curve for a width of 9 cm), the general shape of the plot was recorded,
but a `?' was also recorded indicating a 'questionable' rule usage. It was not possible
to determine a judgement rule for Ben, a Grade 4 student, doing Experiment 1. This
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particular plot had four intersecting locations and no obvious parallel curves or
diverging lines.

Table 1

Grade 4, 6 and 8 students' integration rules for area

Gr 4 El E2 E3 Gr 6 El E2 E3 Gr 8 El E2 E3
Jem + x x Di + + x. Key x x x

John x + Mark x x x Carol + + +

Cass + + + Rhea + + + Brook + + +
Alice x x x Jenny x x + Elle + + +

Cathy x x x Peter x x +? Ellen x x? +

Kim x x x? Wade x x x Kelly +? x +

Jack +? + x Jodi +? x x Jay x x +?
Ben ? +? +? Sam +? x + Matt x x +

Stacy + + +? Angie +? x x Mick x x x

Tony + + + Sean + + + Sue + x

May + x x? Anne x +? + Phil x x +

Tom + x x Jose x x + Marg + + x

Ave x + x Ave x x x Ave + x x

TOT x=4
+=7

x=6
+=6

x=7
+=5

TOT x=6
+=6

x=8
+=4

x=5
+=7

TOT x=6
+=6

x=7
+=5

x=5
+=7

The differences between the grades was not as obvious as could be expected.
The perception of area of rectangle being related to the sum of the rectangles'
dimensions is fairly constant across the grades. The group of Grade 8 students tested
do not seem to have progressed much beyond the Grade 4 or Grade 6 level. However,
there were two interesting small changes. The first was the increase in
multiplicativity in the Grade 4 results from experiment 1 to experiment 3. The second
was the increase in multiplicativity from experiment 1 to experiment 2 across all
Grades; and, except for the Grade 4 students, the decrease in multiplicativity from
experiments 1 and 2 to experiment 3.

It is evident that judgement rules do change intra-individually. Ten students
used an additive rule initially in experiment 1, but had altered this to a multiplicative
rule by the conclusion of experiment 3. Surprisingly, 9 students did the reverse.
They started using a multiplicative rule but changed to an additive rule in either the
second or third experiment. Similar to the distribution of additivity and
multiplicativity across the Grades, the changes in integration rule intra-individually
(within students) was also fairly constant across the grades with the number of
students constant in their rule in each Grade remaining between 4 and 6 across the
three Grades.
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Discussion and conclusions

If the plot of the students' scale positions approximates parallel lines or curves,
this reflects a perception of area where doubling the lengths of the sides of the
rectangle is seen as doubling the area. This in turn reflects a perception that the
relation between area of a rectangle and the dimensions of the rectangle is additive.
Thus, this perception can be considered as a confusion between area and perimeter for
rectangles. It has been denoted as the Area = Height + Width integration rule. In
contrast, a plot which approximates a fan shape reflects a perception that doubling the
sides more than doubles the area of the rectangle. This is seen as a correct perception
and denoted as the Area = Height X Width integration rule. Plots with lines crossing
indicate a very poor conception of area as this means that the student has judged a
rectangle with smaller dimensions as having a larger area than a rectangle with larger
dimensions.

This study has, therefore, supported the findings of Hirstein (1981) and
Hirstein, Lamb and Osborne (1978) that there is confusion between area and
perimeter. Around 50% of students from all Grades and in all experiments exhibited
judgements that showed they were using the perimeter rule to determine area.

Experiments 2 and 3 were performed to see if modifications to the rectangle
would effect integration rules used by students. The removal of a rectangular corner
was found to reduce students use of the perimeter rule while the removal of a
semicircular piece from an edge did not.

The question is why? It could be argued that a rectangular piece out of a corner
of a rectangle gives the effect of adding two more sides and thus the student tends to
look at the amount of surface rather than the length and width. It could also be argued
that the removal of the semicircular piece from a side has a lesser effect on how the
rectangle is perceived than the removal of a corner, and that the addition of a
semicircle to the factors that have to be taken into account in making area judgements
adds weight to an additive focus on length. However, the reasons for students use of
perimeter in the three experiments will have to wait until the interviews are analysed
in relation to these experiments.

Over 50% of the students (22 out of 36) changed their integration rules across
experiments. Once again the question is why? There appears to be no pattern in the
changes: from additive to multiplicative, from multiplicative to additive, and
sometimes in both directions. There appears to be no relation to Grade level. Hence,
once again, the best hope for reasons is the relation between the experiment responses
and the interview statements.
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TEACHERS' PEDAGOGICAL CONTENT KNOWLEDGE OF

MULTIPLICATION AND DIVISION OF RATIONAL NUMBERS'
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Seminar Hakibbutzim-College of Education, Tel Aviv

ABSTRACT: The main aims of this paper were to evaluate prospective and
inservice teachers' knowledge of common difficulties that children experience with
multiplication and division word problems involving rational numbers, and their
possible sources. Most prospective teachers exhibited dull knowledge of these two
aspects of pedagogical content knowledge. Most inservice teachers were aware of
students' common incorrect responses, but not of their possible sources. We
suggest that direct instruction related to students' common ways of thinking could
enhance both prospective and inservice teachers' pedagogical content knowledge.

Pedagogical Content Knowledge (PCK) is widely recognized as one of the most
significant aspects of teachers' professional knowledge. A major component of
PCK is "the understanding of how particular topics, principles, strategies and the
like in specific subject areas are comprehended or typically misconstrued"
(Shulman, 1986). This component of PCK depends on research on conceptions and
misconceptions of students in specific domains.

In mathematics education, one area that has received attention is that of students'
conceptual development of multiplication and division. Studies have consistently
shown that students have difficulties in selecting the operations needed to solve
multiplication and division word problems involving rational numbers (for an
extensive review see Greer, 1992). Many children, adolescents, and even adults
make systematic mistakes such as changing the role of the divisor and the dividend
when solving a division word problem in which the correct solution should have
had a divisor greater than the dividend. Researchers have theorized about the
sources of these difficulties (e.g., Fischbein, Deri, Nello, & Marino, 1985).

A related question that comes to mind is the extent to which prospective and
inservice teachers are aware of students' most common incorrect responses. This
issue is of great theoretical and practical importance as teachers' knowledge of
students' conceptions and misconceptions can seriously influence the nature of their
instruction (Fenemma, Carpenter, Franke, Levi, Jacobs, & Empson, 1996). This
paper describes a part of a project aimed at evaluating prospective and inservice
teachers' PCK of rational numbers. Here we shall relate only to one aspect of this
knowledge, namely prospective and in-service teachers' knowledge of children's

The authors would like to thank the Binational Israel-United States Science
Foundation(#92-00276) whose support made this work possible. The ideas presented
here are those of the authors and no endorsement of BSF should be inferred.
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difficulties with multiplication and division word problems involving rational
numbers and their possible sources. We are interested in two main issues:
(1) Are prospective and inservice teachers aware of common difficulties that

children experience with multiplication and division word problems involving
rational numbers? (knowing that)
(2) To what do they attribute them? (knowing why)

Our evaluation is based on the extensive body of knowledge on children's
understanding of multiplication and division word problems involving rational
numbers.

Methodology
Sample. Sixty-seven prospective teachers and 46 inservice teachers participated in
this study. Thirty-seven of the prospective teachers were in their first year in a
four-year teacher education program at an Israeli State Teachers' College, and 30
were in their third year in the same program. The inservice teachers participated in
a special two-year program: "Expert Teachers Program" (ETP) aimed at creating
a community of leading elementary school mathematics teachers in Israel. Thirty of
these inservice teachers were in their first year and 16 were in their second year of
this program.

In Israel, the topic of rational numbers is mainly taught in grades 5 and 6. Most
of the inservice teachers were practicing teachers in these grade levels (20 out of
the 30 teachers in the first of the progiam, and 11 out of the 16 in the second year).
The rest were teachers who taught in other grades, mostly in grades 1,2, and 3.

Instruments. Two types of research instruments were used: A Diagnostic
Questionnaire (DQ) and semi-structured interviews. In this paper we shall report
only on the following item from the DQ:

For each of the following word problems: (a) write an expression that will solve
the problem (do not compute the expression); (b) write common, incorrect
responses, and (c) describe possible sources of these incorrect responses

1. One kilogram of tomatoes costs 3-
2

shekels. What is the cost of 3 kilogram of
4

tomatoes?

2. A car uses
10
! liters of gasoline per each kilometer. How much gasoline is needed for 9

kilometers?
3. There are 320 calories in one kilogram of cucumbers. How many calories are there in

1

kilogram?

4. Four friends bought altogether -/ kilogram of chocolate and shared it equally. How
much chocolate did each person get?

5. A five meter long stick was divided into 15 equal sticks. What is the length of each
stick?
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6. Four kilograms of cheese were packed in packages of 711 kilogram each. How many

packages were filled with this amount of cheese?
7. A bottle can holds liters of water. I liter of water was poured into this bottle. What

part of the bottle is filled with water?
8. A group of girl-scouts walked 15 kilometers in 5 hours. How many kilometers, on

average, they passed in an hour?
9. 4 kilograms of meat costs 30 shekels. What is the cost of one kilogram of meat

5

Although our main concern was to explore prospective and in-service teachers'
PCK of rational numbers, the participant teachers' Subject Matter Knowledge
(SMK) of this topic was assessed as well, as teachers' PCK should be examined in
light of their personal mathematical knowledge of the task under discussion.

Procedure. The DQ was administered to the subjects in two sessions of 90
minutes each, during mathematics method courses. As mentioned previously, all
inservice teachers who participated in this study were enrolled in the ETP. It is
worth noting that this program included the specific course: "Students' Conceptions
of Rational Numbers". This course deals with students' ways of thinking about
rational numbers. The course was given in the second semester of the first year
and thus the inservice teachers enrolled in the second year of the program had taken
this course before answering the DQ while those in the first year of this program
had not.

Results

Prospective and Inservice Teachers' SMK. Table 1 shows that most inservice
teachers provided correct expressions for the multiplication and division word
problems (93% of correct responses, on average). The percentages of correct
responses given by the prospective teachers were lower (69% on average).
Differences between prospective and inservice teachers were especially observed on
three word problems. The most difficult one for both populations was problem 7
(77% and 19% correct responses among inservice and prospective teachers, on
average, respectively). Two problems, 3 and 9, were relatively easy for inservice
teachers but difficult for prospective teachers.

Much like in other studies that examined prospective and inservice teachers'
incorrect responses to multiplication and division word problems, our data reveal
that prospective and inservice teachers' incorrect responses were similar to those
mistakes reported in the literature as made by students (e.g., Ball, 1990; Tirosh,
Graber, & Glover, 1989).

Prospective and Inservice Teachers' PCK. As shown in Table 1, some prospective
and inservice teachers incorrectly respond to several word problems. Obviously,
the analysis of teachers' PCK should take account of teachers' own solutions to each
word problem. Since most prospective and inservice teachers' correctly answered
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most word problems, our analysis here will mainly relate, for each problem, only
to those who provided correct answers to this problem.

Table 1 - Distribution (in %) of correct teachers' responses to word
problems (by class)

Prob. No. inservice
teachers:
2nd year

inservice
teachers:
1st year

prospect
teachers:
3rd year

prospect
teachers:
1st year

N=16 N=30 N=30 N=37
1 93 94 80 84

2 93 97 83 86

3 93 97 50 70

4 93 97 60 81

5 93 97 97 94

6 86 97 77 81

7 81 73 3 35

8 93 94 77 89

9 93 94 30 57

Average 94 93 62 76

General Average 93 69

For most word problems, each teacher came up with mostly one (or no) typical
incorrect student responses. An exception was word problem 4. Eighteen
participants listed two different, common incorrect students' responses.

Table 2 describes prospective and inservice teachers' responses to the request to
write common incorrect responses to each word problem. The second column of
this table describes students' common incorrect responses to seven out of the nine
word problems, as reported in the mathematics education literature on children's
ways of thinking about multiplication and division word problems involving
rational numbers. According to the literature, word problems 2 and 8 are usually
solved correctly by students and adults.

Table 2 shows substantial differences between prospective teachers and inservice
teachers in their knowledge of common incorrect responses to multiplication and
division word problems (31% and 80% , on average, respectively). The most
prominent differences were observed on word problem 7. Seventy-seven percent
and 61% of the inservice teachers in the first and second year, respectively, listed
common incorrect student responses to this word problem while only 15% of
prospective teachers on the first year and no prospective teachers on the third year
did so.
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Table 2 - Distribution (in %) of teachers' knowledge of common students'
incorrect responses (by class)

Prob. mistakes mentioned inservice inservice prospect prospect
No. in literature teachers: teachers: teachers: teachers:

2nd year 1st year 3rd year 1st year
N=16 N=30 N=30 N=37

1 subtraction, DIM* 53 53 37 42
3 DIM 93 93 33 11

4 subtraction, MID** 93 89 67 57
DID***, 1

5 subtraction, DID
impossible

94 89 21 54

6 subtraction, MID,
DID

92 79 56 40

7 subtraction, MID 61 77 15
9 MID 67 90 5

Average 79 81 31 32
General Average 80 31

* DIM = division instead of multiplication
** MID = multiplication instead of division
* * * DID = changed the roles of the dividend and the divisor

As stated previously, the two classes of inservice teachers included teachers who
taught in grades 5 and 6 (the grades in which the topic of rational numbers is taught
in Israel) and teachers who taught in other classes. We assumed that the actual
teaching of this topic provides teachers with many opportunities to observe
students' common difficulties, making such teachers more knowledgeable about
such mistakes. Table 3 shows that, indeed, 87% of the inservice teachers who
taught in grades 5 and 6, on average, suggested students' common mistakes, while
70%, on average, of those who did not teach these grades, mentioned such mistakes.
No substantial differences in awareness of common mistakes were observed
between first and second year inservice teachers who taught in grades 5 and 6.
Yet, the differences between first and second year inservice teachers who did not
teach in these grades were substantial.

A closer scrutiny of Table 3, which relates separately to first and second year
inservice teachers, reveals that among the first year teachers, the differences in
awareness of common students' mistakes between those who teach in grades 5 and 6
and those who do not, are substantial. However, no differences in awareness of
common mistakes were observed between second year inservice teachers who teach
grades 5 and 6 and those who do not.
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Table 3 - Distribution (in %) of teachers' knowledge of common students' incorrect
responses (by experience)

Prob.
No.

mistakes mentioned
in research

Inservice teachers
teaching grades 5,6
1st year 2nd year
N=20 N=11

Inservice teachers not
teaching grades 5,6
1st year 2nd year
N=10 N=5

1 subtraction, DIM 73 50 11 60

3 DIM 100 100 60 100

4 MID, DID, 1 80 100 68 100

5 subtraction,
impossible, DID

100 100 67 80

6 MID, DID 89 90 56 100

7 subtraction, MID 75 70 84 70

9 MID 93 75 60 67

Average 89 84 58 82

General Average 87 70

Teachers' Knowledge of Possible Sources of Students' Incorrect Responses. In part
c of this item, the participants were asked to describe possible sources of each of the
mistakes they listed in response to part b of this same item (see Table 4). Four types
of possible sources of common students' incorrect responses were mentioned:
Intuitively-based sources (e.g., "Children believe that division makes smaller. In the
word problem that deals with buying tomatoes (Problem 1), they know that three
quarters of a kilogram costs less than one kilogram, and therefore they incorrectly
divide"); algorithmically-based mistakes (e.g., "It is easier to multiply by a fraction
than to divide by it"); The nature of fractions ("Children have difficulties with
fractions. They know how to cope with integers but not with fractions"); and
general reasons for lack of success in solving word problems (e.g., "Problems in
reading comprehension").

Table 4 shows that only few prospective teachers listed possible sources of
students' common incorrect responses to the various word problems. Among the
inservice teachers, more sources of students' common incorrect responses were
mentioned by the teachers enrolled in the second year of the ETP program than by
those enrolled in the first year. Most of the prospective and inservice teachers who
mentioned possible sources of students' incorrect responses, related to intuitively-
based sources or to the specific nature of fractions. It is noteworthy that all the
possible sources mentioned by the teachers indeed affect students' mathematical
performance in solving multiplication and division word problems. Yet no teacher
directly related to the possible effects of the primitive models of these operations on
students' ways of thinking.
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Table 4 - Distribution ( in numbers) of teachers' responses to sources for students'
common incorrect responses (by class)

correct
response

incorrect
response

sources inservice
teachers:
2nd year
N=16

inservice
teachers:
1st year
N=30

prospect
teachers:
3rd year
N=30

prospect
teachers:
1st year
N=37

3 1 DIM intuitive 7 4 3 1

7 2 fractions 1 5 4

general 1 1

1 4
MID [DID] intuitive 2 [10] 4 [8] [6] 2 [5]

4 algorithmic 1 4 [1]

fractions 1 [1]

general 1 [1] 2 [1]

5:15 subtract. intuitive 1

impossible intuitive 1 1

DID intuitive 11 13 4

fractions 5 6 2

general 1

1 3 MID intuitive
4.3 fractions 2 8

general 1

320 DIM intuitive 6 6

fractions 1 5 1

general 3 1

30 :1 MID intuitive 1 1

5 fractions 2 3

general 3 4

Final Comments

In this paper, we describe some initial findings regarding prospective and
inservice teachers' knowledge of children's ways of thinking about multiplication
and division word problems involving rational numbers. Our data showed that the
majority of prospective and inservice teachers provided correct expressions for the
multiplication and division word problems. Some teachers who gave incorrect
responses to the word problems also listed the correct expression as incorrect
students responses. It is reasonable to assume that prospective and inservice teachers
who incorrectly solved the word problems and offered correct responses as
examples of incorrect students' reactions would consider such responses as
incorrect in a classroom setting.

In respect to teachers' PCK, we assumed that actual teaching of multiplication
and division word problems involving rational numbers strengthens teachers'
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knowledge of students' common incorrect responses in this topic and their possible
sources. Our data reveal that most experienced teachers were familar with
students' incorrect responses to multiplication and division word problems
involving rational numbers. Teachers who had no experience teaching in these
grade levels but participated in the course: "Students' Conceptions of Rational
Numbers", also exhibited profound knowledge of such students' ways of thinking,
while those who did not participate in this course did not. Thus, it seems that
knowledge about common ways of thinking among students could be acquired not
only through teaching experience but also by participation in specific courses on
that subject.

Our paper also discussed prospective and inservice teachers' understanding of
the possible sources of specific students' reactions; i.e., knowing why (Even &
Tirosh, 1995). The data indicate that this knowledge was insufficiently developed
among both prospective and inservice teachers. Most subjects, in both populations,
were unable to provide any sources for the common incorrect responses they
themselves listed. By and large, this paper shows that prospective and inservice
teachers do not by themselves develop a solid PCK of students' conceptions of
multiplication and division involving rational numbers. In light of these findings it
seems that teacher education should devote more efforts to develop ways of
increasing elementary school prospective and inservice teachers' knowledge
concerning possible sources of students' incorrect responses to multiplication and
division word problems and possible ways of taking them into account in
instruction.
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GENDER DIFFERENCES IN ALGEBRAIC PROBLEM
SOLVING: THE ROLE OF AFFECTIVE FACTORS

Saraswathi Kota Mike Thomas
The University of Auckland

New Zealand

There has been much discussion in the literature about the existence and nature of gendei-
differences in mathematical petfonnance. In this paper we describe a research study in
which we measured seven affective variables simultaneously with students' algebraic
problem solving ability. Evidence is presented to show that there is a gender based gradient
effect in the way the affective factors change in early adolescence which corresponds to a
change in the problem solving performance of boys and girls. The effect seems to result in a
lowering of mathematical outcomes for girls but an improvement for boys.

Introduction
The adolescent years constitute a period of great change for secondary school
students. A number of studies have attempted to understand gender differences for
the learning of, and achievement in, mathematics during this period. The
importance of gaining this knowledge has been described by Tartre and Fennema
(1995, pp. 199-200):

Gender differences related to mathematics pose complex but urgent questions. Important
among them are - what factors are related to mathematics achievement for boys and girls
and do these relationships change during the critical period of adolescence?

Numerous studies, covering many countries, cited by Brandon et al. (1987) and
lately by Sayers (1994) have noted gender differences favouring either boys or
girls. Research during the last decade revealed that by the end of high school boys
outperform girls on mathematics achievement as noted by Skaalvik and Rankin
(1994) who hypothesised that either these differences were occurring in late
adolescence or were diminishing.

Affective factors

A number of studies have examined the reasons for these differences. Possible
explanations provided include biologic, sociocultural and sex stereotyping (Brandon
et al, 1987; Fennema et al., 1985; Meece et al., 1982 and Leder, 1992). A growing
body of literature is establishing the importance of affective variables in students'
learning and achievement in mathematics. For example, Reyes (1984) has shown
self-concept, anxiety and perceived usefulness as some of the affective factors that
influence learning of mathematics. Self-concept, which changes with age and gender
(see Marsh, 1989; Meece et al., 1982; Hattie, 1992), is a reflection of how one sees
oneself, and findings consistently show that mathematical self-concept is related to
mathematics performance (Marsh et al., 1991). Self-perception, the belief system
that includes judgements about one's ability has also been shown to affect
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motivation and anxiety (Skaalvik and Rankin, 1995, p. 165), based on the dynamic
equilibrium model of Marsh, they predicted:

...student domain specific self-perceptions (math self-concept, self- perceived aptitude and
self-perceived ability to learn), which are assumed to be based on external and internal
comparisons affect intrinsic motivation, effort and anxiety and are affected by academic
achievement.

Affective factors and problem solving

Mathematical problem solving can be seen as a result of the interaction of several
closely related, independent categories of factors, such as knowledge acquisition,
utilisation, beliefs, affects and socio-cultural contexts (Lester, 1994; Boekaerts et
al., 1995). Some researchers have hypothesised that attitudes towards mathematics
contribute to gender differences in mathematics problem solving (Fennema and
Sherman, 1976; Brush, 1985). If such differences between genders are primarily
environmentally induced, then it is important to investigate the environmental
influences on the intellect and their operational procedure. Since the affective
domain is the likely interface for the environment and intellect of the human brain
it becomes necessary to monitor changes in these factors and their influence on
learning. The aim of this present study was to consider changes in affective factors
concurrently with an evaluation of student problem solving ability in algebra,
analysing any gender differences and the possible reasons for them.

Method
Subjects

The data for the present study was collected from 345 form 3 and 4 students of ages
about between 13 15 years, from 8 secondary schools in the Auckland region of
New Zealand. Both single-sex and co-educational schools were represented in the
study. Each school reported that they were following the 1992 New Zealand
curriculum published by the Ministry of Education. One class of average ability
students from each school was randomly selected to form the subject group. The
students were taught by specialised mathematics teachers.

Instruments

Each individual student in the study was given two questionnaires and these were
given during regular mathematics classes in the first half of the academic year
1996, before the algebra syllabus was taught for the year. These questionnaires are
currently being repeated at the end of the academic year. The first measured seven
affective factors using self-descriptive questions in a 5-point Likert format. The
second measured algebraic problem solving ability. The details of the tests used are:

Self-concept: The mathematical self-concept scale of 27 items developed by
Gourgey (1982) was used to measure mathematical self-concept. The internal
consistency reliability of the scale is 0.96 and Gourgey stated that the analysis of the
scale provided support for its validity and reliability.
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Interest: The scale developed by Mitchell (1993) and used in his subsequent
research was used to measure the level of interest in mathematics. The internal
consistency coefficient for the independent subscales used ranges from 0.77 to
0.93

Anxiety: The anxiety component of the Skaalvik and Rankin (1995) scale was used
to measure the students' mathematical anxiety. There are 8 items in this scale and
the Cronbach alpha for this scale was reported as 0.90 for a similar subject group.

Self-perceptions: The self-perception constructs were measured by using Skaalvik
and Rankin's (1995) three-item scale for each of self-perceived ability and self-
perceived aptitude. The internal consistency reliability coefficients are 0.8 for
12/13 years and 0.83 for 15/16 years.

Usefulness of mathematics: The usefulness of mathematics scale of Fennema &
Sherman (1976) served to measure the individual student attribute about the
usefulness of mathematics.

Mathematics Intrinsic motivation: Of the two types of motivation, intrinsic and
extrinsic, we considered that the intrinsic factor was likely to be more consistent
and reliable since it originates from the subject. This factor was measured using
the English translation of the instrument developed by Skaalvik and Rankin (1995).

Enjoyment of Mathematics: Students enjoyment levels were measured using the
instrument from Aiken's attitude scale as modified by Watson (1983). The internal
consistency reliability coefficient was found by Aiken to be 0.95, using secondary
school students.

Problem Solving ability: An algebra test-consisting of five basic word problems was
constructed from the problems used in the three algebra tests which we had piloted
(Thomas and Kota, 1996). The problems were constructed based on the objectives
for levels 2 to 5 of the New Zealand mathematics curriculum guidelines, published
by the Ministry of Education. It was intended that factors like word order,
situation, language and difficulty in carrying out numerical operations would not be
obstacles in the process of solving the problems successfully. The type of problems
used in the test were:

1. The number of girls in a school is 41 less than the number of boys. The total
number of students in the school is 1539. How many girls are there in the
school?

2. To hire the Pizza House for birthday party costs a basic rate of $70.00 plus
$3.50 per person. If the total bill is $346.50, how many people attended the
party?

3. Tickets for the school play cost $2 for children and $4 for adults. 500 tickets
were sold for $1,640. How many children's tickets were sold and how many
adult tickets were sold?
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4. The Auckland city council wishes to create flower beds, surrounding them
with hexagonal paving slabs according to the pattern shown below.

Complete the table below to find the number of paving slabs needed for 8 and
100 flower beds. Write an algebraic equation to find the number of paving
slabs, N, needed to surround F flower beds.

Number of flower beds 1 2 3 4 8 100 F

Number of paving stones 6 10 14 18

5. A wooden fence is made by placing 3 planks between 2 posts as shown in the
figure. (A picture was given). Complete the table to find the number of planks
needed for fences of 5 posts; 100 posts and S posts. Write an algebraic equation
to find the number of planks L in a fence S posts long.

Number of posts 2 3 4 5 100 S

Number of planks 3 6 9

Results
Table 1 shows the statistical analysis of the mean scores on each of the affective
factor scales and the algebra test for all the form 3 and form 4 students.

Table 1: Means and standard deviations for all form 3 and form 4 students
Form 3(n =177)
Mean SD

Form 4(n =168)
Mean SD

Self Concept 91.70 15.56 87.71 15.56 5.66
Interest 68.74 10.77 66.22 11.74 4.29
Anxiety 26.86 4.17 25.77 4.19 5.79
Enjoyment 37.47 8.55 35.34 7.81 5.78
Self Perception 21.13 3.56 20.85 4.41 0.40
Usefulness 45.96 8.22 47.11 7.83 1.63

Motivation 44.91 10.27 44.59 10.04 0.10

Algebra 12.04 5.47 16.65 5.48 57.37

Whilst these means are for different groups of students (we are currently following
the students through to get longitudinal data) they are from the same population in
each case, and so it is still of interest that the mean scores of all the affective factors
decreased from form 3 to form 4, with the exception of the usefulness of
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mathematics, and this decrease was significant (F>3.92, p<0.05) for self-concept,
interest, anxiety and enjoyment. There was also a significant increase in the algebra
problem solving abilities, as one would hope. However when the data were analysed
taking gender into account, the results obtained were those shown in table 2. We see
that in form 3 the mean scores of the girls were higher than the boys in almost all
the affective factors, with the exception of mathematics self-perception and
enjoyment. However, by form 4 all the mean scores of affective factors for the
boys' are higher than those of the girls. These form 4 differences are significant
(p<0.05) for anxiety, self-perception, and enjoyment and nearly so for interest, but
none of the differences between girls and boys was significant in form 3. Looking
at the algebra problem solving scores, the girls scored significantly higher than the
boys in form 3 and although higher in form 4, the difference is no longer
significant.

Table 2: Means and standard deviations of form 3 and form 4 boys' and girls' affective factors
and algebra score

Form 3
Girls(n=101) Boys (n=76)
mean SD mean SD F

Form 4
Girls (115) Boys (n=53)

Mean SD Mean SD

Self Concept 92.57 14.51 90.36 16.83 0.88 87.03 14.83 87.51 20.91 0.03
Interest 68.89 10.57 68.26 11.27 0.14 64.55 13.70 68.60 10.02 3.72
Anxiety 27.04 4.33 26.53 4.00 0.65 25.04 4.81 26.86 3.95 5.82
Enjoyment 36.67 8.61 37.93 9.38 0.86 33.63 7.47 39.23 7.23 20.79
Self 21.02 3.57 21.21 3.61 0.11 20.22 5.34 21.83 2.49 4.39
Perception
Usefulness 46.09 8.01 45.80 8.34 0.05 46.61 8.38 48.40 6.45 1.89
Motivation 45.04 10.25 44.78 10.34 0.04 44.23 10.47 45.70 9.02 0.76

Algebra 13.56 5.73 10.07 5.17 17.57 17.02 5.64 16.03 5.19 1.15

However it was when we analysed the changes in the affective factors and problem
solving abilities from form 3 to 4 (see table. 3) to obtain some insight into the
nature of changes for each gender, both in magnitude and direction, that an
interesting pattern emerged.

Table 3: A gender based comparison of change from form 3 to form 4
Girls Boys

Form 3
(n=101)

Mean SD

Form 4
(n=115)

Mean SD F

Form 3
(n=76)

Mean SD

Form 4
(n=53)

Mean SD F

Self Concept 92.57 14.51 87.04 14.83 7.65 90.36 16.83 87.51 20.91 0.73
Interest 68.89 10.57 64.55 13.70 6.66 6826 11.27 68.60 10.02 0.03
Anxiety 27.04 4.33 25.04 4.81 10.16 26.53 4.00 26.87 3.95 0.23
Enjoyment 36.67 8.61 33.63 7.47 7.75 37.93 9.38 39.23 7.23 0.71
Self 21.02 3.57 20.22 5.34 1.63 21.21 3.61 21.83 2.49 1.22
Perception
Usefulness 46.09 8.01 46.61 8.38 0.21 45.80 8.34 48.40 6.45 3.61
Motivation 45.04 10.25 44.24 10.47 0.32 44.78 10.34 45.70 9.02 0.30

Algebra 13.56 5.73 17.02 5.64 19.86 10.07 5.17 16.04 5.19 41.61
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The mean scores for the boys increased in almost all the affective factors, except
mathematics self-concept, whereas the mean scores of the girls show a decline in all
the affective factors. The increases for the boys were not significant, but the girls
declined significantly (p<0.05) on four of the factors: self concept; interest; anxiety;
and enjoyment. At first sight the significant (p<0.05) decrease in anxiety levels for
girls might seem desirable, but we have previously found a positive correlation, for
girls, (Thomas & Kota, 1996) between anxiety and problem solving performance.
The effect of the changes in the factors is shown, we believe, by the way that
although the mean problem solving score of the girls increased from form 3 to 4, it
did so by significantly less than that of the boys.

13

(i)

14 Age 13 14

Girls

Age

Figure I: The gradient effect of differing rates of change of affective factors for boys and girls

It appears that the rate of increase in the girls' performance is decreasing, while
that of the boys is increasing. One possible reason for this is the effect of the
greater rate of negative changes in girls' attitudes to mathematics and their view of
themselves relative to it, compared with the boys. This gradient effect in the
affective factors may be seen in figure 1, where we have pictured what is
apparently happening to the changing affective factors of girls and boys from about
age 14 years to 15 years.

Where the factors are decreasing (part (i)) the boys tend to decrease at a slower
rate, and where they are increasing (part (ii)) the boys do so at a faster rate. These
greater rates of change are then exactly mirrored by algebraic problem solving
performance and we postulate that there is a causative link between them. The
result is that even though girls often seem to start ahead of boys in both the levels
of their attitudes to themselves and mathematics, and indeed their actual
performance level, they are eventually overtaken by the boys. In order to improve
this situation it seems imperative to discover what is behind these changes in the
way girls view both themselves and mathematics, and seek to put in place strategies
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for preventing any relative decline. It will be interesting to see if the changes we
have described here are also presented when we analyse the longitudinal data we
have recently obtained from following the same students from age 14 to age 15
years.
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STUDENTS' REPRESENTATIONS OF FRACTIONS
IN A REGULAR ELEMENTARY SCHOOL

MATHEMATICS CLASSROOM

Masataka Koyama
Hiroshima University, Japan

The study reported in this paper investigates students' representations of fractions in a
regular elementary school mathematics classroom where students' construction of
mathematical knowledge is emphasized in the process of teaching and learning
mathematics based on a constructive approach. This paper focuses on an analysis of
students' representations of fractions as they work on the fraction comparison tasks
and justify their solutions in a collective classroom activity. The importance of settinga
problematic situation and encouraging students to make various representations for
their meaningful learning mathematics is exemplified. Some implications for teacher's
activity and school mathematics curriculum are also suggested.

Theoretical Background of the Study
The study reported in this paper makes a part of our research project on establishing a
theory for planning and practicing mathematics class that enables students to actively
construct mathematical knowledge. Nakahara (1993) has proposed a so-called
"constructive approach" and established the lesson process model in the constructive
approach that consists of such five steps of teaching and learning activities as being
conscious, being operational, being mediate, being reflective, and making agreement.
From a different perspective, Koyama (1996) has analyzed an elementary school
mathematics class in Japan and showed that the process of teaching and learning
mathematics in the classroom actually developed in the line with the horizontal axis, i.e.
three learning stages of the intuitive, reflective, and analytical that are set up in the
"two-axes process model" of understanding mathematics (Koyama, 1992).

Purpose and Method of the Study
As a result of the Rational Number Projects (Carpenter, Fennema, and Romberg, 1993),
it is shown that representations, translations among them, and transformations within
them play several important roles in mathematical learning and problem solving. Lesh,
Post, and Behr (1987) notes that "the term representations here is interpreted in a naive
and restricted sense as external (and therefore observable) embodiments of students'
internal conceptualizations although this external /internal dichotomy is artificial" (p.
33). Moreover, as Goldin and Passantino (1996) notes, students' external
representations of mathematical ideas permit us to conjecture or infer their internal
representations and conceptual understanding of the ideas concerned.
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On the other hand, it has been difficult for students to understand fractions as
mathematical ideas and construct meanings of fractions (cf. Lesh, Behr, and Post,
1987; Post, Cramer, Behr, Lesh, and Harel, 1993; Watanabe, Reynolds, and Lo, 1995;
Goldin and Passantino, 1996). Post, Cramer, Behr, Lesh, and Harel (1993) especially
criticizes the instructional emphasis on developing procedural skill for fraction and the
divorce of operations from their meanings, and suggests us as follows: "Fraction order
and equivalence ideas are fundamentally important concepts. They form the
framework for understanding fractions and decimals as quantities that can be operated
on in meaningful ways" (p. 340).

We have the accumulated important information on students' representations and
conceptions of fractions by means of performance tests, task-based interviews, or a
combination of them (cf. Carpenter, Fennema, and Romberg, 1993; Goldin and
Passantino, 1996). We, however, do not have enough information on students'
representations of fractions that they make and use to understand fractions and
construct meanings of fractions in a regular school mathematics classroom. Therefore,
the study reported in this paper focuses on an analysis of students' representations of
fractions as they work on the fraction comparison tasks and justify their solutions in a
collective classroom activity (cf. McClain and Cobb, 1996).

The sample episode discussed and data of students' representations analyzed in this
paper are taken from a fifth-grade classroom in which the teacher, Mr. Miyamoto, has
participated as a collaborating member of our research project on the constructive
approach. The study reported in this paper is not such an experiment study that enables
us to make valid generalizations for neither a wider population nor students in other
countries, but should be regarded as one of our investigative case studies in Japan. It,
however, may contribute to gain more information on students' representations of
fractions in a collective classroom activity, and exemplify the importance of setting a
problematic situation and encouraging students to make various representations for
their meaningful learning and construction of mathematics concerned.

A Regular Elementary School Mathematics Classroom
The classroom focused on in this paper is a fifth-grade (11 years old) classroom at the
national elementary school attached to Hiroshima University in Hiroshima City, Japan.
The 37 students (19 boys and 18 girls) in the classroom are heterogeneous in the same
way as a typical classroom organization in Japanese elementary schools, but their
average mathematical ability is higher than that of other students in the local and public
schools. The teacher in the classroom, Mr. Miyamoto, has participated as a
collaborating member of our research project on the constructive approach. He is an
experienced and highly motivated teacher, and has a relatively deep understanding of
both elementary school mathematics and his students.
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In Japan the Course of Study as a national curriculum identifies the objectives and
typical sequence of topics in elementary school mathematics, and teachers teach their
students mathematics usually with a series of mathematics textbooks approved by the
Ministry of Education as suitable textbooks. Therefore we should see the outline of the
typical sequence of topics related to fraction. According to the current Course of Study
(Ministry of Education, 1989), the typical sequence of topics related to fraction begins
with an introduction of fractions as quantities, a basic relationship between fraction and
decimal (1/10=0.1), and addition and subtraction with two simple fractions with a
common denominator at the third grade, and then moves on as follows: fraction
equivalence (e.g. 1/2=2/4), fraction order (e.g. 1/5<3/5, 5/7>2/7) with a number line,
and addition and subtraction with two fractions with a common denominator at the
fourth grade; more general fraction equivalence (e.g. 2/3=4/6, 12/16=3/4), the meaning
and procedure of both reduction of a fraction to the lowest terms and reduction of
fractions to a common denominator, fraction order (e.g. 2/3>5/9, 4/9<5/6), addition and
subtraction with two fractions with different denominators, fractions as operations
involving two quantities (e.g. 2+3=2/3), relationships between fraction and decimal
(0.1=1/10, 0.01=1/100), and fractions as ratios at the fifth grade; multiplication and
division with fractions at the sixth grade (the last grade in elementary school).

Setting a Problematic Situation
Against this curricular background, I and the teacher, Mr. Miyamoto, elaborated the
lesson plan for his students in a fifth-grade classroom. The intention of the plan was to
modify the sequence of topics related to fraction, before introducing formal procedures
of reduction, by carefully setting a problematic situation in which students might be
conscious of and actively work on the fraction comparison tasks. In order to see
students' ideas and internal representations, we also decided to ask students justify their
solutions by encouraging them to make and use various (external) representations of
fractions and any mathematical knowledge that they had constructed.

The classroom episode described in this paper is taken from the first two lessons of
successive five lessons on fractions in the Mr. Miyamoto's fifth-grade classrnom in
November, 1996. We decided to use three different fractions in written mathematical
symbols, 4/5, 3/5, and 3/4 for setting a problematic situation at the beginning of the first
lesson. These fractions were carefully chosen and might be presented to students not at
the same time but one by one in the above order, with due consideration of the
followings. The students had learned the simple fraction equivalence and order such as
1/2=2/4, 1/5<3/5, and 5/7>2/7 at the fourth grade. We expected that students could
easily compare two fractions with a common denominator or numerator, 4/5 vs. 3/5
and 3/5 vs. 3/4, and that they might be challenged to compare two fractions 4/5 vs. 3/4.
In fact, according to the scheme of difficulty levels (Lesh, Behr, and Post, 1987, pp. 50-
51), the comparison of fractions 4/5 vs. 3/4 belongs to the most difficult level 3B, while
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the both comparisons of fractions such as 4/5 vs. 3/5 and 3/5 vs. 3/4 belong to the
easiest level 1. Moreover, we chose the fraction pair as 4/5 and 3/4, because in the pair
numerator and denominator are both one unit away from one, and because these
fractions are easily transformed to decimals. This choice of fractions, we expected,
might allow students to compare and represent fractions in various and different ways.

The process of teaching and learning in the classroom actually developed as follows. In
the following protocol of the lesson, sign Tn and sign Sn mean a nth teacher's utterance
and a nth student's utterance respectively.

At first, the teacher wrote the symbol 4/5 down on a blackboard and asked "What
studies can you do?". A student answered "It (4/5) means four out of five candies".
Then, the teacher wrote another symbol 3/5 next to 4/5 and asked the same question
again. At that time, many students wanted to do computation with these fractions.
When the teacher wrote the third fraction symbol 3/4 next to 3/5 on a blackboard, some
students shifted their attention to comparing those fractions as follows.

T3: Now, we have three fractions. What studies can you do?
S6: Order those fractions according to size!
S7: We want to compare fractions by changing denominator and /or numerator,

for example, of four-fifths.
As expected, students answered such fraction comparison questions as 4/5 vs. 3/5 and
3/5 vs. 3/4 with, for example, the following relevant justifications.
S8: Four-fifths is larger than three-fifths. Because three-fifths means three pieces if

you divide one into five pieces, while four-fifths means four pieces i f you divide one
into five pieces.

S9: Three-fourths is larger than three-fifths. Because three-fourths means three
pieces i f you divide one into four pieces, three-fifths means three pieces if you
divide one into five pieces, and the size of one piece if you divide one into four
pieces is larger.

T10: Now, please anyone say the learning task for this lesson.
S11: Let's investigate which is larger, four-fifths (415) or three-fourths (3/4)!
S12: Let's investigate which is larger when the difference between denominator

and numerator is one!
S13: I want to make a supplement to S11. Let's compare fractions with different

denominators!
S14: We need to investigate how much larger as well as which is larger.
T1 1: I want to ask you justify your solutions of this learning task in more than three

different ways.
Through the above extracted discussion, students and the teacher in this classroom
posed the main learning task: investigating which fraction 4/5 or 3/4 is larger and how
much larger, and justifying own solutions in more than three different ways. This
mutually agreed task shows us that our choice of three different fractions 4/5, 3/5, and
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3/4 and presentation of these fractions to students not at the same time but one by one
effectively functioned for setting the problematic situation where students could be
conscious of the learning task to be challenged.

Students' Representations of Fractions
The students individually had worked on the task for about 15 minutes. During
students' individual work, the teacher had circulated among students, helping some
students with their works and noting down some students' typical and different ways of
justification. Finally he asked each of five students present one of their ways of
justification on a large white paper and put it on a blackboard. In this section, we will
focus on students' representations of fractions that students made, used, and wrote or
drew on their work-sheets as they worked on the fraction comparison task and justified
their solutions. The term "representations" here is interpreted as the external and
belongs to the five distinct types of representation systems (Lesh, Post, and Behr, 1 987,
p. 34). We will also focus on students' explanations and discussions among students.

Decimal Type: This representation type is characterized as transforming fractions to
decimals (Figure 1). 12 out of 37 students made this type of representation.

S15: I transform these two fractions to

decimals. Four-fifths is 0.8 and
three-fourths is 0.75. When I

Transform 4/5 to a decimal, 4 =5. = 0.8

Transform 3/4 to a decimal, 3+4 = 0.75
Because 0.8 is larger than 0.75, 4/5 is larger.

compare these two decimals, 0.8 is Figure 1. Decimal Type

larger than 0.75 by 0.05. So, four-fifths is larger than three-fourths byone- twentieth.
T13: Do you agree with S15?
S16: I do not understand why 4/5 is transformed to 4+5.
S17: Because four-fifths means four pieces i f you divide one into five pieces and

5 +4 was larger than one, I think, 4+5 is right.
T14: S17 made an additional explanation to S15.
S18. If we take 112 as an example, we can transform it to a decimal by 1 +2 X1,

that is I +denominator Xnumerator.
T15: Do you agree with S18? Any comment?
S19: Because 4/5 means four pieces if you divide one into five pieces, 1 +5 is 0.2,

and four pieces of 0.2, 0.2 X4, is 0.8. So, I think 0.8 is right.
This type is possible because that the students in this classroom had already learned
decimals and that both fractions 4/5 and 3/4 are relatively easy for students to transform
to decimals. But, as S16 posed a question, the reason of why 4/5 can be transformed to

4+5 had not yet learned formally in this classroom. Nevertheless, S17, S18, and S19
tried eagerly to explain in their own ways by using the constructed knowledge.
Remainder Type: This representation type is characterized as noticing that smaller
remainder means the subtracted is larger (Figure 2). 3 out of 37 students made this type.
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1 4/5 =1/5 1 3/4 =1/4
The smaller remainder means the fact that the subtracted is closer to 1.
When I compare 1/5 with 1/4, 1/5 is smaller. So, 4/5 is closer to 1.

Figure 2. Remainder Type

S20: Ifind out remainders, 1 415 is 115 and 1 314 is 114. Because the smaller
remainder means the fact that the subtracted is closer to one, and 1/5 is smaller
than 114, so, 415 is larger than 314.

S21: Iwant to make an additional explanation. Because in case of four-fifths we
divide one as a whole into five pieces, here I think one as a whole means five-fifths.

S23: Ihave a comment on the explanation ofS20 about remainder. I consider it in the
case of "which is closer to ten, eight or seven?". Because 10 8=2, 10 7=3, and
that eight is closer to ten in which the remainder is smaller, the idea of S20 is right.

When this type of representation was explained, many students admired it as a fine one.
Although the possibility of using this idea depends on fractions to be compared and
this type of representation is not enough to know how much larger, we might say that
three students who made this type have a good number sense and relevant meanings of
fractions as a result of their learning experiences.
Line-Segment Picture Type: This representation type is characterized as drawing a
line-segment picture (Figure 3). 19 out of 37 students made this type of representation.

4/5 1 I I I I

3/4 I" ' "' I I 4 1 I

The least common multiple of 5 and 4 is 20.
20±5=4,4X4=16. 20±4=5,3X5=15. 16/20 15/20 =1/20.

Figure 3. Line-Segment Picture Type

S24: I draw this picture. The dotted line in the picture shows that four-fifths is
larger than three-fourths and the difference between them. I use the least
common multiple of five and four, that is twenty, to change denominators
to the common. Because four-fifths is equal to sixteen-twentieths and
three-fourths is equal to fifteen-twentieths, the difference is one-twentieth.

In this type, there was a variety of students' representation. For example, some students
represented these two fractions by the line-segment picture of 10 units or 20 units
length with or without written language explanations. It, however, should be noted that
all students who made a line-segment picture drew two equal length line-segments to
represent the whole. Moreover, some students began noticing the similarity and
difference between the decimal type and the line-segment type as follows.
S27: I think that the ideas of S15 (Figure 1) and S24 (Figure 3) are similar except

for the difference between decimal and fraction.
S28: The unit in case of S15 is 0.1, and the unit in case of S24 is 1120.

Thin - Rectangle Picture Type: This representation type is characterized as drawing a
thin-rectangle picture (Figure 4). 28 out of 37 students made this type of representation.
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4/5

3/4
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4 X4= 16
3 X5 = 15
4/5 is larger by 1/20.

Figure 4. Thin-Rectangle Picture Type

S29: Idraw this picture. Because the least common multiple of two denominators five
and four is twenty, I divide sections into more small sections. In case of four-fifths,

I divide each section into four small sections, and I get 4 X4, that is 16, small
sections. In case of three-fourths, I divide each section into five small sections, and
I get 3 X5, that is 15, small sections. Because 16 15=1, it means that four-fifths is
larger than three fourths by one-twentieth.

There was also a variety of students' representation in this type and we can see same
examples and point out same things as the mentioned above in case of the line-segment
picture type except for difference between thin-rectangles and line-segments. When
S29 was explained, S30 pointed out similarity and difference between the line-segment
picture type and the thin-rectangle picture type as follows.

S30: This idea ofS29 (Figure 4) and that of S24 (Figure 3) are the same. We note the
difference between them only in their pictures. One is line segments and another is
thin rectangles.

Equivalent Fraction Type: This representation type is characterized as making
equivalent fractions (Figure 5). 31 out of 37 students made this type of representation.

4/5 = 8/10 = 12/15 = 16/20. 3/4 = 6/8 = 9/12 = 12/16 = 15/20.
16/20 15/20 = 1/20

Figure 5. Equivalent Fraction Type

S31: I find out fractions that are equal to each of four-fifths and three-fourths like this
(Figure 5). The difference is one-twentieth because that four-fifths is equal to
sixteen-twentieths and three-fourths is equal to fifteen-twentieths.

S32: I do not understand. Why do you multiply same number, for example two,
to both denominator and numerator?

S33: Because the size of a whole is fixed. I will show you it by this picture.
4/5

8/10 1100111milmrnmlimEONNIONINIiiI
This type was most popular in this classroom and often used with the line-segment
picture or thin-rectangle picture type. The reason of the fact is that the students had
learned simple fraction equivalence at the fourth grade and the least common multiple
of two natural numbers before this lesson at the fifth grade, and that it is included in the
learning task in this lesson to know how much larger. Therefore, if the teacher had not
asked students justify their solutions in more than three different ways, students'
representations might have converged at this type and their active discussion nor
meaningful learning might have not occurred.
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Conclusion
The study reported in this paper exemplifies the importance of setting a problematic
situation in which students are able to be conscious of their own tasks and encouraging
students to make various representations for their meaningful learning mathematics.
Especially in case of learning fractions at the fifth grade, the choice of different
fractions (4/5, 3/5, 3/4) and the presentation of these fractions one by one effectively
functioned for setting such a situation. The teacher's activity of encouraging and
allowing his students to make, explain, discuss their various representations (Decimal
Type, Line-Segment Picture Type, Thin-Rectangle Type, Equivalent Fraction Type,
etc.) played an important role for their meaningful learning of fractions. This study also
suggests, at least for school mathematics curriculum in Japan, the possibility of
changing the sequence of topics related to fraction that is identified in the curriculum
by carefully setting a problematic situation in which students might be conscious of
and actively work on the fraction comparison tasks, before introducing formal
procedures of reduction of fraction(s).
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Number Instantations as Mediators in Solving Word Problems
Bilha Kutscher The David Yellin Teachers College, Israel
Liora Linchevski Hebrew University of Jerusalem, Israel

Abstract
In this paper, we present a model for solving word problems procedurally. The
approach is based on reification theory and is an extension of a model researched in
the past for constructing algebraic expressions from verbal. expressions. This
approach was case studied among average eighth graders at the beginning of the
school year. Cognitive processes underlying these translations were explored. It was
observed that multiplicative algebraic expressions appear to undergo reification, while
the reification of additive algebraic expressions is delayed. When using this model,
some common translation errors are avoided.
Many researchers (Chaiklin 1989; Clement, Lochhead & Monk, 1981; Lochhead &
Mestre, 1988; Reed et al, 1994; Sutherland & Rojano, 1993) have studied the
difficulties encountered when translating from the written language to the language of
mathematics. Lochhead and Mestre (1988) and MacGregor and Stacey (1993), among
others, studied the reversal error which occurs when two magnitudes are compared.
Cortes (1995), documented errors of identifying and writing the relationships between
the magnitudes in the word problem. MacGregor and Stacey .(1996) found that, in
simple word problems, students experienced little difficulty in the actual understanding
of the relationships involved; their difficulty was in knowing how to use algebraic
notation to express these relationships and integrate- them into an equation. Some
researchers (e.g. Rojano & Sutherland, 1993; Kutscher, 1996) have used intermediate
numerical expressions to generate algebraic ones. These translation methods were used
for creating algebraic expressions (e.g.10+4x) and functional relationships (e.g.
x+5=y). However, these methods were not applied in the context of translating word
problems into equations. The purpose of this study was to apply these ideas in the
context of translating word problems into equations. Cognitive processes underlying
these translations were investigated within the framework of reification theory.

The theoretical framework
Our method is based on theories which suggest that, initially, most mathematical
concepts are grasped as computational processes (Gray&Tall, 1994; Sfard, 1991; Sfard
& Linchevski, 1994). These operational perspectives gradually develop into structural
conceptions. For example, 5:6 is first grasped as a 'doing process', even when it is

written as -5- and then `reified', or perceived structurally, also as a number. Similarly,
6

expressions using variables, undergo this process: `x-2' may be first perceived
operationally as the subtraction of 2 from x, while later on a structural perspective
emerges. By then, this expression might be also seen as a mathematical object which
may serve as a factor in a product (e.g. 5(x-2)), as a function, unknown number and
the like (Sfard & Linchevski, 1994). The students should eventually acquire a sense of

*When we write 'algebraic expression' in this paper, we refer to expressions like 2x+4 as opposed to 2x+4=3,
which we refer to as an algebraic equation
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duality of these expressions, namely, that these symbols should sometimes be
understood operationally, other times structurally, depending on the context.

The study
Background: A table-filling method based on reification theory proved to be helpful
in translating verbal expressions into algebraic expressions, especially for the average
students (Kutscher, 1996). In the present study the above mentioned method for
generating algebraic expressions is extended and developed into a process of
translating word problems into algebraic equations, through a mediation process of
number instantations.
Preliminary considerations: Table I is an example of how the solution of a word
problem could be approached in our operational modeling method.

Table I
Danny bought 3 basketballs and 12 T-shirts for his basketball team and paid a total of $243. A ball costs $6 more than a T-
shirt. What is the price of a ball and of a T-shirt?

A: Price of a
ball

B: Price of a
shirt

C: Cost of 3 balls D: Cost of 12 T-
shirts

E: Total paid F:Is it

$2437

10 10-6 4 3.10 3° 1200-6) 48 3.10+12.(10-6) 78 no
14 14-6 8 3.14 " 12.(14.6) % 3.14 +12.(14-6) "8 no

.

x x-6 3x 12.(x-6) 3x+12(x-6)
The equal on: 3x + 12(x -6) =243

Table Il
A: Price of a

ball
B: Price of a

shirt
C: Cost of 3 balls D: Cost of 12

T-shirts
E: Total paid F: Is it

$243?
10 10-6=4 3.10=30 12.4=48 30+48 no
14. 14-6=8 3.14=42 12.8=96 42+96 no

x

.

x-6
.

32:
.

I2.(x-6)
.

3x+12(x-6)
.

When we initially wrote the guidelines for this operational model, we had expected the
students to generalize vertically (from top to bottom) in each column of the table. We
did not want to write the intermediate results (e.g. 10-6=4) but only the numerical
strings (10-6), in order to expose the algebraic structure of the expressions which
would lead to generalization (x-6). On the other hand the intermediate calculations
were needed in order to check whether the specific number instantation led to the
correct solution of the problem. It was decided that these intermediate results would be
written above the numerical string, ready for use in calculations in the appropriate
stages (Table I, columns D& E). The idea was that the students would pose a number
for one of the magnitudes, thereafter filling in the rest of the row. They would get a
feel for the relationships between the magnitudes of the problem, would understand the
procedure for getting from one magnitude to another, while grounded in numbers.
They would learn to check their proposed number instantations against the constraints
of the problem (Table I, columns E&F). This was expected to make the problem more
meaningful for them. After a few trials of number instantations, the student would then
generalize the arithmetical expressions to algebraic expressions. The equation which
evolved would be anticipatory, where the student would anticipate that the total paid,
represented by 3x+12(x-6), would be equal to $243. Thus, initially the format for
solving a word problem looked like that displayed in Table I. After piloting this model,
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we found that writing complex "procedural" numerical strings such as 3.10 +12(10 -6)
did not always promote ueneralization: on the contrary, it often distracted the students'
attention from the generalization. Apparently there were just too many details. On the
other hand the students, after evaluating the numerical strings, wrote them down
spontaneously as numerical "equations" (10-6=4, Table (I, column B). They much
preferred using the number equivalent, rather than the numerical string, in later stages
of constructing the expressions towards generalization (columns D&E). Most
importantly, the use of "results" (4) rather than the expression (10-6), did not hinder
the students from generalizing correctly to the desired algebraic expressions which
would culminate in the required equation. When the students generalized these more
complex expressions, they were not solely generalizing vertically, but using a
spontaneous combination of both vertical and "horizontal" generalization. For
example, in Table 11 column E, they generalized the additive structure vertically, but
the actual terms seem to have been generalized from the earlier columns (columns
C&D). Consequently, we decided that the "simpler" type of table (as in Table II)
would be presented for the students' problem solving.
Design of the study
Five students, assessed as average mathematics students by their mathematics teacher,
were chosen to participate in this study. At the time, the students were at the beginning
of the eighth gade. These students all learned in a public school, whose student
population reflected the composition of the middle-class district wherein the school
was located. These students had completed one semester of basic algebra and were
thus acquainted with solution of first-degree linear equations, collecting like terms and
the like. They had had no experience in translating any verbal expressions into any
algebraic expression. Each student was tutored individually. The first session was
devoted to a brief review of basic algebraic terms. The rest of the sessions dealt with
problem solving. The learning sessions were audio-taped and transcribed, to allow a
closer observation and analysis of the student's reasoning.

Results
Results - Review session:
During the brief review of basic algebraic terms, and the meanings of concepts such as
sum, difference, variables and the laws governing the operations involved
(commutative, associative etc.) there were indications that the students' thinking
processes were still oscillating between the operational and the structural. For
example, Inbal was presented with the following table:

Sum Difference Product Quotient
worked example 3 2 3+2 3-2 3.2 3:2

Inbal's solution 8_4 844 84 8-4 8:4
worked example b 3 b+3 b-3 t3 b:3

(R represents the researcher)
R: What is b?
I: Any number?
R: Is also h+3 any number?

Yes.

I?: Is b+3 the sum of b crud 3?
I: No.
I?: Why?
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I: Because you don't know what it is.
The teacher now points to the -numerical expressions which had been written, correctly, by
lnbal herself. The researcher continued:
R: Is 8+4 the sum4 8 and 4?
I: No.
I?: So what is the sum?
I: 1,
I?: And what is 8±4?
1: This is the exercise to get to the sum.
Thus on the one hand she sees b+3 as a number in itself, a structural perception; on the
other hand b+3 cannot be the sum - a sum (product, quotient, etc.) has to be the
"answer" of an exercise. Similarly, Inbal did not agree that 8:4 was the quotient of 8
and 4. The researcher continued:
I?: Are you familiar With the fraction line as an alternative way of writing a quotient?
I: Yes.
I?: And if we were to write 5:6 with a fraction line?

(She wri tes) 5
6

R: Is 5 the quotient of 5 and 6?
6

I: (Hesitantly) Depends how you look at it, as an exercise or a result.
According to above mentioned theories (Gray & Tall, 1994: Sfard, 1991; Sfard &

Linchevski, 1994), numbers are first seen as processes and then reified to objects. Thus

is first the process of division and then the quotient itself. Seemingly the physical,
6
external appearance, is also a factor that assists in the reification of the number. As

mentioned above, in similar contexts, "8+4" may not be seen as a number, whereas 5
6

would be. Our observation is that most students are able to perceive numerical
multiplicative expressions structurally, without losing the operational aspect of this
expression. In the case of an additive nwnerical expression, there seems to be a major
cognitive obstacle for the student in perceiving it structurally. This phenomenon was
initially observed in the review session and appeared again very distinctly during the
problem solving sessions. An expression of the type "6x" seemed to be more easily
conceptualized as a number than an expression such as "x+7". It seems that
multiplicative expressions undergo reification, whereas the reification of additive
expressions is delayed. A possible explanation in the case of multiplicative expressions
is that 'manipulation' of x6 or 6x to 6x assists in the evolving of the structural aspect
of the expression. More evidence of this phenomenon will be brought later on.
Results - Problem solving sessions:

In the problem solving sessions the students learned through the guidance of the
teacher to create the table themselves. They very quickly gave up looking for the
solution of the word problem through improving their choice of number instantations.

Their choice of number instantations became almost arbitrary, since they
spontaneously understood that the function of the numbers was to expose the algebraic
structure of the expressions to be generalized. At the same time the students felt the
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need to "execute" all number strings (Table Ill a&b, columns B&C), even though they
knew that the aim was the procedure, not the result. The evaluation of the numerical
strings did have merit, however, since the students got accustomed to checking their
results against the constraints of the problem.

Very soon after being introduced to problem solving via table-filling, the students
felt the cumbersomeness of the repetetiveness of calculations, and wanted to relinquish
number instantations. They tried to skip number instantations entirely, to directly
express the magnitudes algebraically and to integrate these expressions into an
equation. This algebraic modeling of the equation was many times at the expense of
writing a correct equation. They were then guided back to the procedural table-filling
model which usually led to the correct equation and solution.

The students tried to cut corners in other ways which often resulted in erroneous
equation formulation. Table III illustrates Shabi's solution to the following word
problem:

Table III
A student bought arithmetic and Hebrew notebooks. The number of arithmetic notebOoks he boughtwas 8 less than the
Hebrew notebooks. How many notebooks of each type did he buy if we know that the total number he bought was 42'?

A: Number of arithmetic notebooks B: Number of Hebrew notebooks C: Total number of
notebooks

2 10 12
x-8 x x-8=42

Shabi first substituted 10 in column B, he mentally subtracted 8 and wrote 2 in column
A, and then wrote 12, the total number of books, in column C. He correctly
generalized the first two algebraic expressions, writing x, x-8 (Table III, columns
A&B). He initially thought that writing the numerical expressions for arriving at each
number was redundant. Shabi did not write the procedure, only the "result", for the
total number of notebooks (Table III, column C). There was no obvious pattern for him
to base the vertical and horizontal generalization and thus he did not generalize
correctly. As, a result he wrote the incorrect equation, x-8=42 in column C. The latter
error, writing an additive algebraic expression as the left-hand-side of an equation
when the sum of more terms is called for, is suggestive of known errors which occur
in similar two-stage additive arithmetic word problems (Abedel Haleq, 1986).
Although this error did not occur at the stage of number instantations, there appeared
to be an initial regression at the stage of formulation of algebraic equations. This error
occurred at least once for every student when they did not apply the table-filling
method fully. Another place for cutting corners was the number of instantations
necessary before representing the unknown numbers with variables. Through trial-and-
error they found that at least two number instantations were necessary for them to be
aware of the patterns in the numerical strings. They learned that the procedures for
arriving at the numbers, rather than the numbers themselves, were the key to successful
generalization. An error which was avoided throughout the operational modeling
problem solving sessions, was the reversal error, reconfirming results found in
Kutscher (1996).

In sum, through the procedural table-filling model, the students learned that number
instantations indeed led to successful equation formulation. Expressing the
relationships between the numerical magnitudes enabled them to generalize, vertically,
to the algebraic expressions. These expressions then served as intermediate results to
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be integrated, via vertical and horizontal generalization, into the required equation.
Ingrained in our problem solving method was constant checking against the constraints
of the problem involved. This assisted the students in detecting errors, and
consequently enabled them to arrive at a correct and full solution of the word problem
at hand. The students learned to enjoy problem solving since they were not frustrated
by continual failures, but rather were generally adept and successful in their problem
solving endeavors.
Reification of multiplicative versus additive expressions - some examples:
The main purpose of this study was to investigate our procedural model in the context
of word problems. However, already during the review session, the phenomenon of
multiplicative versus additive expressions was observed, both in the context of
numbers and in the context of literal symbols. This phenomenon continued to be
observed during problem solving sessions. Our procedural table-filling method seemed
to solve most of the difficulties encountered in the formulation of equations from word
problems. However, the cognitive obstacle posed by the additive expression (as
opposed to the multiplicative expression) emerged frequently, and appeared to demand
considerable cognitive effort to overcome it. The following examples are illustrations
of some of these problems. Table IV shows two examples worked by the students in
the first stages of learning to solve word problems.

Table IVa
Example of reification of multiplicative term:
The sum of two numbers is 80, the second number is
5 times as large as the first number. Find the numbers.

Table IVb
Example of non-reification of additive term
The sum of two numbers is 97. One number is
31 less than the other. Find the numbers.

A: Number 1 B: Number 11 C: Sum of two
numbers

A: Number 1 B: Number III C: Sum of
numbers

8 8.4=32 32+8=40 n° 6 6-31= -25 6+(-25)=(-19)

60 60.4=240 240+60=300 00 3 3-31= -28 3+(-28)=(-25)

x x4-=4x 4x+x=80 x x-31

The first example (Table IVa) illustrates how Yaron extended the reification of
multiplicative numerical strings (column B) to an algebraic expression. He expressed
x.4 as 4x even though he had learned that 4x was no different from x.4; the change
was but cosmetic. Perhaps this cosmetic difference enabled him to relate to the duality
of the expression: 4x would represent the structural aspect, x.4 the procedural. The
second example (Table IVb), illustrates the cognitive obstacle when an additive
expression could not be so easily reified. Maytal, had no trouble filling the table.
When she had written "x-31" (column B), she stopped in her tracks. Her difficulty is
exposed in the following exchange:
R: Why are you hesitating?
Mr A result is needed here (in the cell where "x-31" is written) and then to add it.
R: (Teacher points to Table IVb, column C) Could you have, instead of the sum of 3 and -28
(column C), written 3 plus 3 minus 31?
M: Yes
R: Then do you think that it is possible, similarly, to write number II? Can you look at "x-31"
as a number in itself: as an algebraic expression which is actually the second number?
M: No
R: If the first number were 61 could you write (in column C) instead of "61+30",
"61+(61-31)"?

Ms Yes
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R: x is a number, then can you look at x-3 as number? Difficult? Then it is impossible?
And f we would put x-31 in brackets ?...(the teacher writes x+(x-31)) What do you think?
M: That it is impossible to solve it like this.
R: .... Now I have written an equation (the teacher writes x+(x-31)=97). What does this tell
you?
M: Mat the first number and the second number come out to 97.
R: This, we can write?
M: Yes

At this stage, the sum "x+(x-31)" had no meaning for Maytal since it could not be
"worked out". However, when this sum was anticipated to "come out to 97", the
procedural aspect of the expression was exposed resolving Maytal's cognitive conflict.
This resolution is clearly seen in the next, similarly structured, word problem which
Maytal solved.

Table V
The sum of two numbers is 53. One number is greater by 7 than the other. Find the numbers.

A: Number I B: Number III C: Sum of two numbers
8 84-7=15 8+15=23
5 5+7=12 5+12=17
x x+7 x+(x+7)

R: (Referring to the above table) ...And what does this actually say to you? What is this
"x+(x+7)"?
M: The sum of two numbers, x is the first number and x+7 is the second.
R: And what is the sum of these two numbers?
M: We shall soon see.

She proceeded to write down x+(x+7)=53 and solve the equation. This suggests that
Maytal perceives each, separate, number structurally but the sum of the numbers she
does not - in her eyes it is yet to be found out.

Initially, all the students faced the same dilemma - how to reify an additive
expression to a number. One student resolved her problem by inserting brackets: she
named "x+7" as (x+7). Apparently the brackets helped her see x+7 as a unit, a single
number. Another student wrote in the appropriate cell (last row of column B)
x+7=x+7, apparently helping himself understand the duality of the situation, that the
outcome is the same as the procedure. Eventually all the students were able to use the
additive expressions structurally as terms in other additive, or multiplicative algebraic
expressions. Inbal had supposedly already understood, from previous examples, that an
additive expression may be perceived as both the procedure and the result.
Nevertheless, she appeared to regress (Table VI, column B), though she rallied faster
than Maytal:

Table VI
A student bought arithmetic and Hebrew notebooks. The number of arithmetic notebooks he bought was 8 less than the
Hebrew notebooks. How many notebooks of each type did he buy if we know that the total number he bought was 427

A: Number of Hebrew notebooks B: Number of arithmetic notebooks C: Sum of two types
20 20-8=12 20+12=32
30 30-8=22 22+30=52
x x-8=

Inbal, working the solution out loud, says "x-8, 1 cannot know" (what it is equal to -
Table VI, column B). As a result, she could not find the sum of the two unknown
numbers (x+x-8). She was then shown that 20+12 (Table VI, column C) could be
replaced with 20+20-8. She immediately generalized this expression and arrivedat the
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correct equation. Apparently, Inbal could see x-8 as a number, but the fact that it did
not have a "result" initially stumped her.

Discussion and conclusion
This study presented a model for solving problems mediated by number .instantations.
The operational approach allowed the students to correctly identify the relationships
between the magnitudes while grounded in numbers and to generalize, thereafter, to
the appropriate algebraic expressions. Correct integration of the obtained algebraic
expressions into equations proved to be generally successful. Thus, it seems that this
method has solved those difficulties noted by MacGregor and Stacey (1996) and
Cortes (1995); the students were both able to recognize and write correctly the
relationships between the magnitudes, and to formulate the relevant equation. Our
model builds on the students' ability of understanding and expressing of the
relationships between magnitudes while grounded in numbers. The numerical pattern
which emerges leads the students to the stage of generalization, resulting in a
meaningful algebraic equation.

An interesting phenomenon was -observed in translating additive, as oppoSed to
multiplicative, expressions. This was found in all contexts of the tutoring sessions: in
translating to numerical strings, to algebraic expressions and to algebraic equations.
While the multiplicative expressions was perceived both operationally and structurally
by the students, the acquisition of the structural perspective of the additive expressions
was much more difficult.

Further study is necessary to examine whether the students will eventually be able
to translate correctly without the mediation of this method.
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THE MATHEMATICAL KNOWLEDGE AND SKILLS
OF CYPRIOT PUPILS ENTERING PRIMARY SCHOOL:

Implications for the development of policy on baseline assessment

KYRIAKIDES LEONIDAS
Nicosia, Pedagogical Institute of Cyprus

ABSTRACT

This paper presents findings of research investigating the skills and knowledge in
Mathematics of Cypriot pupils entering primary school. A performance test, which was
designed in order to assess skills and knowledge in Mathematics identified in the
Curriculum of Pre-Primary Education of Cyprus, was administered to a representative
sample of pupils of Year I (n=835). Teachers were asked to complete a report for each
pupil. Moreover, questionnaires were administered to teachers to identify their
perceptions about baseline assessment. The most important findings were the following.
First, the skills included in the curriculum were differentiated into those, which more
than 75% of pupils entering primary schools had achieved and those, which more than
30% of pupils entering primary school had not achieved. Second, a correlation was
identified between findings gathered from the performance test and from teachers'
assessment of pupils' skills in Mathematics. Third, teachers considered baseline
assessment as an essential part of teaching but they had not attempted to assess their
pupils when they entered the primary school. Fifth, they also considered the
performance test as a useful tool for baseline assessment. Implications for the
development of a national policy on baseline assessment are drawn.

I) Introduction
The last decade has witnessed a growing recognition of the need for significant changes
in educational assessment practices. An important factor contributing to the need for
assessment reform involves the relationship between teaching and assessment (Shepard
1989). The assessment process is nowadays seen as an integral part of the educational
process. Broadfoot (1986) argues that the curriculum policies of most European
countries have promoted a move from summative to formative assessment. Desforges
(1989) suggests that formative assessment produces information about what children
know and what they do not know in order to help teachers decide how to identify and
meet children's learning needs and how to use their teaching time and their resources.
An important implication of the identification of learning needs is that decisions about
the next learning steps follow from it. A teaching plan, which is organised in such a
way, might help teachers to plan class and individual programmes of work according to
the different performance level of the pupils.

In Cyprus in 1994, a reform programme was introduced in primary schools which was
concerned with content, pedagogy and assessment. Until recently assessment was a
neglected issue. This reform can be seen as the first systematic attempt of the Ministry
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of Education to establish the base upon which assessment policy in Cyprus could be
developed. However, the Ministry of Education has not provided guidance for teachers
on how to assess pupils entering the primary school, and there were no instruments
which could be used to assess pupils entering the primary school. According to
Blatchford and Cline (1992) there are four reasons for which all school systems must
have a strategy for finding out about pupils on entry: establishing a basis for measuring
future progress, getting a picture of the new intake, getting a profile of the new entrant,
and identifying children who may have difficulties in school. This paper is an attempt
to present the findings of research investigating the skills and knowledge in
Mathematics of Cypriot pupils entering the primary school. A strong priority is given
to making use of the initial school-entry record for formative purposes. Thus, the model
for baseline assessment which is suggested should not be seen as an attempt to evaluate
schools by adopting the business technique of value-added assessment. Since children
of similar age are not at the same level and do not progress at the same rate, the main
purpose of this model is to help teachers to use the results from baseline assessment in
order to organise their teaching programme.The information gathered from each child
is expected to be used to match the skills or content of a task to the level of the child.

II) Methodology

Research data were collected by using two different ways of assessment (external
assessment and teachers' assessment). A performance test was designed in order to
assess knowledge and skills in Mathematics identified in the Cyprus' Pre-Primary
Curriculum. Pupils were asked to complete at least two different tasks related to the
purposes of teaching Mathematics at first year pupils. Moreover, teachers were asked to
complete a report for each pupil indicating whether the child had acquired these skills.
Teachers could also respond by indicating that they were not sure as to whether their
pupils had acquired a skill. A pilot study was conducted in October 1995. Minor
amendments were made in the performance test and in the content of teacher's report in
the light of the findings derived from the pilot study. The final versions of the
performance test and teacher's report were administered to a representative sample of
pupils of Year 1 in October 1996 (n=835). The stratified technique was used for the
selection of the sample of pupils. Information about the performance of each pupil was
given to his/her teacher in order to use it for formative purposes. Questionnaires were
then administered to teachers to identify teachers' perceptions about baseline
assessment as well as to find out how they had used the information gathered from the
performance test and what their opinions were about using this performance test to
assess first year pupils. Semi-structured interviews were, also, conducted with eight
teachers in order to test the validity of the findings gathered from the questionnaire.

III) Findings
This section is divided into two parts. The first part deals with the knowledge and skills
of pupils in Mathematics as they have been measured by the performance test and
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reported by teachers. The second part deals with teachers' responses to the
questionnaire and is an attempt to identify teachers' perceptions of baseline assessment.

A) Pupils knowledge and skills in Mathematics
It is, first of all, important to indicate that pupils who took place in the research had
similar characteristics with all the Cypriot pupils who enter primary school in 1996.
Comparisons of figures for all Cypriot first year pupils during the school year 1996-97
(Ministry of Education 1996) of their sex, their age and size of their classes, with the
characteristics of the sample were made. No statistically significant difference was
identified between each of the above characteristics of the research sample and the
population. It is also important to indicate that almost all of them (91%) live with their
parents and had the opportunity to attend nursery school during the previous school
year.

A.1) Findings from the performance test
The figures in Table 1 are based on the information derived from pupils' response to
the performance test. Percentages of pupils who successfully completed each task of
the test and those who did not complete it are shown in Table 1.

Table 1: Percentages of Cypriot pupils who successfully completed the tasks of
the performance test related to the following aims of teaching Mathematics and
those who did not complete the tasks.

Aims of Mathematics
(Pupils are able to)

% of pupils who
succeeded not succeeded

1 Compare two objects and find
a) the tallest 86.5 13.5
b) the heaviest 77.5 22.5
c) the widest 78.8 21.2

2 Compare three sets of objects and find the
set which has more objects than the other
two

83.5 16.5

3 Understand concepts describing the place
of an object (e.g. in, out, under)

79.5 20.5

4 Count up to 5 79.5 20.5
5 Count up to 10 72.5 27.5
6 Read numbers up to 5 61.5 33.5
7 Read numbers up to 10 58.5 41.5
8 Write numbers up to 5 60.0 40.0
9 Write numbers up to 10 56.5 43.5
10 Recognise shapes:

a) Circles 92.5 07.5
b) Squares 88.5 11.5
c) Triangles 71.5 t28.5
d) Straight line 96.5 03.5

11 Draw shapes:
a) Circles 92.5 07.5
b) Squares 88.5 11.5
c) Triangles 71.5 28.5
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12

13

14

15

16

17
18
19
20

d) Straight line
Name shapes:
a) Circles
b) Squares
c) Triangles
d) Straight line
Recognise colours:
a) Red
b) Blue
c) Yellow
d) Green
Name colours:
a) Red
b) Blue
c) Yellow
d) Green
Measure the length of a line by using non-
standard metric units
Measure the length of a line by using
metric units (e.g. ruler)
Match objects and pictures
Classify objects by using one criterion
Recognise patterns
Complete patterns

92.5 07.5

89.5 10.5
84.5 15.5
68.5 21.5
92.5 07.5

91.5 08.5
90.5 09.5
79.5 20.5
77.5 21.5

91.5 08.5
89.5 10.5
79.5 20.5
76.8 23.2
79.5 20.5

50.5 49.5

86.5 13.5
73.5 26.5
48.5 51.5
46.5 53.5

The following observations arise from Table 1. First, more than 75% of the pupi s
entering primary school were familiar with the meaning of the first mathematical
concepts (items 1 - 3) and more than 85% recognised the colours. Second, the pupils
had a relatively good background in Geometry since almost all of them recognised and
drew shapes. However, 5% of the pupils who recognised and drew shapes did not know
their names. Moreover, the percentage of pupils who recognised, drew and named the
triangle, is smaller than the percentages of pupils who recognised, drew and named the
circle or the straight line. It is, also, important to indicate that less than half of them
(48%) could distinguish a rectangle from a square. Third, most of the pupils had some
experiences with numbers. Counting is a skill which most of the pupils (75%) seem to
have. They had, however, some difficulties in writing and reading numbers. Fourth,
almost 80% of them were able to measure the length of a line by using non standard
metric units but much fewer were able to measure the length of a line by using metric
units. This difficulty seems to arise from the fact that they did not know how to use the
ruler. Fifth, although the majority of pupils entering the primary school seems to have
some experience with classifying objects, more than 30% of them were not able to
identify similar objects or to classify a set of objects into two categories. Moreover,
pupils seem to face difficulties in recognising and completing patterns and this may be
due to the fact that they had not been involved in such activities either at home or at
pre-primary school.
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Finally, it was possible to differentiate the skills included in the Mathematics
curriculum into two categories. The first category includes the skills which more than
75% of the pupils entering primary schools in Cyprus had achieved. Some of the skills
of this category are presented below. Pupils are able to:

a) compare two objects and find the tallest, or the heaviest, or the widest
b) count, read and write numbers up to, at least, 5
c) recognise, draw and name circles, squares and straight lines
d) discriminate between colours and name the red and blue colour
e) match similar objects and pictures

The second category includes all those skills which more than 30% of the pupils had
not achieved. Some of them are listed below. Pupils are not able to:

a) recognise, draw and name triangles and distinguish a square from a
rectangle

b) measure the length of a line by using metric units
c) recognise and complete patterns

% of
30

pupils25

15

10

5-
0

Graph 1: Percentage of pupils who achieved purposes of
Maths

II
I

111
I

M
I

up to 2 3 to 5 6 to 8 9 to 1 1 12 to 14 15 to 17 18 to 20

Number of purposes achieved by pupils

Graph 1 shows the number of the above 20 aims of Mathematics '(Table 1) which had
been achieved by pupils entering primary school. The following observations arise
from graph 1. First, 20% of the pupils had not achieved more than 5 purposes. On the
other hand, 33% of the pupils had achieved more than 15 purposes. Thus, the
distribution, given above, is not a normal one since there are two relatively big groups
of pupils at the two extremes of the distribution. The one group consisted of those
pupils who achieved most of the purposes whereas the other consisted of pupils who
had almost achieved none. Thus, there were significant differences between the skills in
Mathematics of these two groups of pupils and these should be taken into account by
teachers in order to organise their teaching according to their pupils' needs. Second, the
great majority of pupils (60%) had achieved more than half of the above aims of
teaching Mathematics. It can, therefore, be claimed that most of the school entrants in
Cyprus had a relatively good mathematical background. This argument is also
supported by the fact that the mode of the above distribution is represented by the
group of pupils who achieved more than half of the purpose (i.e. 12 to 14 purposes).
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A.2) Findings from teachers' report

Correlations were identified between findings gathered from the performance test and
findings from teachers' assessment of pupils skills in Mathematics (p<.001). However,
more than 25% of teachers were not able to say whether their pupils had acquired the
following skills in Mathematics:

a) measure a straight line by using metric units,
b) recognise and complete a pattern
c) discriminate rectangles from squares

As a consequence, no correlation was identified between teachers' assessment and
findings of performance test about the above skills. It is also important to indicate that
teachers' report included some aspects of pupils' life which could not be assessed by
the performance test. Thus, the findings gathered from teachers' report revealed that
most of their pupils had positive attitudes not only towards the school (78%) but also
towards Mathematics (69%). It was also found that more than 60% of the pupils could
use, scissors and other materials in order to do a practical activity but they could not
work on an activity in co-operation with another pupil. However, more than 25% of
teachers were not able to say whether their pupils are able to work in an activity
without asking them. Finally, almost all the teachers (92%) revealed that they had not
attempted to systematically assess their pupils when they entered the primary school.
Thus, more than half of them mentioned that when they had to complete the report for
their pupils' abilities in mathematics, they found out that they did not know what their
pupils knew and hence tried to identify not only their pupils' skills in mathematics but
also important aspects of their life (e.g. family and health situation, whether the child
has school friends, how she/he feels when she/he comes to school).

B) Teachers' perceptions of baseline assessment

One item of the questionnaire administered to teachers asked them to rank the four
purposes of baseline assessment, mentioned above, according to their importance.
Kendall coefficient of concordance (W1=.76, Z=6.2, V1=4.0, V2 =714, p<.005) shows
that Cypriot teachers agreed among themselves in their ranking of the relative
importance of the purposes of assessment. Moreover, formative assessment was
considered as the most important by almost all the teachers. It is also of interest to
emphasise the low rating given to summative purposes of assessment and to the
purpose related to the value-added assessment. As far as the purpose related to the
summative assessment is concerned, almost all the teachers (95%) saw it as either the
least or the second least important purpose. Similarly, 87% saw the purpose concerned
with the value-added assessment as the least or the second least important purpose.

The following findings arise from teachers' response to items of the questionnaire
concerned with the implementation of policy on baseline assessment in Mathematics.
First, the great majority of teachers (85%) considered baseline assessment as an
essential part of teaching. They argued that baseline assessment could help teachers to
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prepare their programmes more effectively. Second, the great majority of teachers
(72%) thought that information gathered from baseline assessment should not be used
for labelling children or for early identification of pupils with learning needs since
most pupils develop their skills rapidly at this age. Third, more than half of them (64%)
considered the performance test as a useful tool for identifying pupils' skills and
knowledge when they enter the primary school. However, almost all of them (82%)
revealed that it would not be easy for them to use this test since they did not have
enough teaching time.

IV) Discussion: Implications of findings for the development of policy on
baseline assessment in Mathematics

The evidence presented above can be discussed in terms of its implications for the
development of assessment policy in Cyprus. First, it is important to examine policy on
baseline assessment in terms of policy on classroom organisation. The fact that
significant differences among the skills and knowledge of school entrants have been
identified supports both the importance of baseline assessment for formative purposes
and that spending most of teaching time working as a whole class, as is the case in
Cyprus (Kyriakides 1996), is not an appropriate way of teaching Mathematics to first
year pupils. The fact that some school entrants had either achieved most of the aims of
teaching Mathematics or had not achieved any one of them, implies that it is not
possible to organise teaching Mathematics without taking into account the different
Mathematical background of school entrants. Baseline assessment provides teachers
with information which help them to respond to the learning needs of each pupil. Thus,
the development of policy on baseline assessment may also encourage Cypriot teachers
to give more thought to the best way to respond to individual learning needs. Second,
almost all the Cypriot teachers revealed that they did not systematically assess their
pupils when they entered the school. Thus, their teaching plans are not based on what
their pupils know. Moreover, almost all the teachers who were interviewed revealed
that they covered topics in Mathematics which, as they found later, most of their pupils
had acquired in Pre-Primary school. Thus, developing a policy on baseline assessment
in Mathematics may help teachers to cover the first year curriculum in Mathematics
which previous research has shown they considered as overloaded (Kyriakides 1994).

Third, Cypriot teachers perceived formative purposes of baseline assessment as more
important than the purpose related to the "value-added" assessment or the summative
purpose of assessment. This is in line with the argument of Torrance (1986) that
teachers consider formative assessment as the most important purpose of assessment.
Cypriot teachers would welcome the development of an assessment policy which
promoted the formative purposes of baseline assessment, but would be less inclined to
support one emphasising summative purposes. Thus, the debate on developing a policy
on baseline assessment may not be restricted to workload but raise fundamental issues
of educational ideology. Most systems of baseline assessment have strengths and
weaknesses, and few meet all possible requirements without being excessively
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unwieldly (Tyler 1984). Policy makers in Cyprus must be clear about the objectives for
policy on baseline assessment. Teachers suggest that the answer to this question lies on
the fact that information provided should be of genuine assistance in determining the
appropriate action to be taken in assisting each pupil's development. They do not
believe that policy makers should see policy on baseline assessment as an attempt to
produce a fairer method of evaluating the work of a school than using outcome data
alone. It can, therefore, be claimed that this study does not only reveal the need for
developing a policy on baseline assessment but also that this policy should be focused
on teachers' perceptions of purposes of baseline assessment since the transformation of
curriculum reform into practice depends partly on their perceptions. What is needed is
to identify and build upon teachers' perceptions and encourage them to promote
curriculum policy at the school level in order to assess their pupils and organise their
teaching according to the needs of their school entrants.
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SOME ISSUES IN USING MAYBERRY'S TEST TO
IDENTIFY VAN HIELE LEVELS

Christine Lawrie and John Pegg
University of New England, Armidale, Australia

In the early 80s Mayberry (1981) developed a diagnostic instrument to be used to
assess the van Hie le levels of pre-service teachers. The test which was carried out in
an interview situation, was designed to examine seven geometric concepts. There has
been no reported attempt to (i) replicate this work in some alternative format, or (ii)
analyse the validity of the test questions. To address these issues, a detailed testing
and interview program of 60 first year primary-teacher trainees was undertaken at
the University of New England. This paper presents a summary of results of the test,
relating the levels to the students' geometric background, and considers one aspect of
the findings of this study, the potential for certain aspects of Mayberry's work to lead
to an incorrect assessment of a student's level of understanding in geometry.

The ability to instruct students at their level of understanding is dependent, in part,
on the teacher being able to assess students' levels of understanding. In order to
make this assessment, there needs to be available a reliable diagnostic instrument.
In the early 80s Mayberry (1981) in her work with pre-service primary teachers,
developed such a diagnostic instrument that could be used in an interview situation.
While her work has been used as a basis for other research projects (e.g., Denis,
1987), there appears to have been no critical evaluation of the questions used.
Before presenting the results of the study and addressing the issue of test validity, a
brief background to the important ideas underpinning her work is presented.

Background
The van Hiele Theory
In the 1950s, Pierre van Hiele and Dina van Hiele-Geldof completed companion
PhDs which had evolved from the difficulties they had experienced as teachers of
Geometry in secondary schools. Whereas Dina van Hiele-Geldof explored the
teaching phases necessary in order to assist students to move from one level of
understanding to the next, Pierre van Hiele's work developed the theory involving
five levels of insight. A brief description of the first four van Hiele levels, ones
commonly displayed by secondary students and most relevant to this study, is given:

Level 1 Perception is visual only. A figure is seen as a total entity and as a specific
shape. Properties play no explicit part in the recognition of the shape.

Level 2 The figure is now identified by its geometric properties rather than by its
overall shape. However, the properties are seen in isolation.
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Level 3 The significance of the properties is seen. Properties are ordered logically
and relationships between the properties are recognised.

Level 4 Logical reasoning is developed. Geometric proofs are constructed with
meaning. Necessary and sufficient conditions are used with understanding.

The van Hie les saw their levels as forming a hierarchy of growth. A student can only
achieve understanding at a level if he/she has mastered the previous level(s) They
also saw (i) the levels as discontinuous, i.e., students do not move through the levels
smoothly, (ii) the need for a student to reach a 'crisis of thinking' before proceeding
to a new level (iii) students at different levels speaking a 'different language' and
having a different mental organisation.

Mayberry's Research
JoAnne Mayberry's study (1981) investigated, in part, whether the van Hie le level, at
which a student is functioning in geometry, can be discerned. To carry out this
investigation, Mayberry created a diagnostic instrument consisting of 62 items (many
of them containing separate question parts) designed to the operational definition of
each of the levels. The items covered seven geometric concepts, namely, square,
right triangle, isosceles triangle, circle, parallel line, congruency, and similarity.
These concepts all occur in the elementary curriculum in the USA. A matrix/grid
was used to develop questions by level and concept so that the questions would have
parallel forms. One or more questions were developed for each cell in the grid.
Experts in the fields of mathematics and mathematics education, among them Pierre
van Hie le, were asked to validate the items by judging whether the items satisfied
certain criteria (Mayberry, 1981, p. 52). The final form of the diagnostic instrument
was then used in an interview situation to investigate the understandings of 19 pre-
service elementary education students at Georgia College, Milledgeville, Georgia.

Design
In order to consider Mayberry's work in an Australian context, a detailed study of the
geometric understanding of 60 first-year primary-teacher trainees was carried out at
the University of New England. The study aimed, in part, to provide a written test
based on the Mayberry interview schedule. Follow-up interviews were conducted
with students to validate the levels of thinking as determined in the written test.
Conversion of the Mayberry items to a written test involved some modification of the
wording to ensure that the intention of each question was clear. A preliminary study
validated the reliability of the written questions. Level 5 items were omitted, hence
the written test assessed van Hie le Levels 1 to 4 (Mayberry items 1 to 57).
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Results
Every endeavour was taken to replicate Mayberry's evaluation of responses. Her
thesis was examined in depth to ascertain her expectations in the responses to the
items. However, this was not possible for every item, there being occasions,
particularly for the Level 3 and Level 4 items, when insufficient information was to
be found in the Mayberry writings. The results of the assessment of the students'
levels of understanding are summarised below in Table 1, whilst Table 2 shows the
comparable results for the Mayberry subjects. When students failed to identify
concepts their result was recorded as No Level. To facilitate comparisons, all results
are given as percentages, with the horizontal sums in both tables being 100%.

Table 1
Highest level reached by the Australian students for each concept (% of sample)

Concept No Level Level 1 Level 2 Level 3 Level 4
Square 0 3 84 7 7
Right Triangle 3 19 55 19 3
Isosceles Triangle 7 27 43 20 3
Circle 0 13 19 52 16
Parallel Lines 0 17 80 0 3
Congruency 0 32 35 3 29
Similarity 0 43 40' 10 7

Table 2
Highest level reached by the Mayberry students for each concept (% of sample)

Concept No Level Level 1 Level 2 Level 3 Level 4
Square 0 11 32 26 32
Right triangle 26 21 21 16 16
Isosceles triangle 26 16 11 26 21
Circle 5 11 16 21 47
Parallel lines 26 16 16 37 5
Congruency 0 21 32 21 26
Similarity 5 42 5 21 26

The results show that, for both studies, the majority of students were assessed as
having no greater than Level 2 understanding, i.e., they were comfortable recognising
concepts, and listing the associated properties, but did not understand the
relationships between the properties.

In Australia, most of the mathematics courses offered in senior secondary schools
have an integrated syllabus, the geometry segment of which appears generally to be
designed for Level 3 and Level 4 instruction. For example, notes on the content of
the plane geometry segment of appropriate NSW state mathematics syllabuses
includes the development of the understanding of notions of proof, and of the ability

3 186

BEST COPY AVAILABLE



to provide solutions to deductive exercises which rely, for example, on the
application of congruency relationships in non-prompted situations and necessary and
sufficient conditions, i.e., typical Level 4 competency. In the USA, mathematics is
commonly studied in High Schools (Years 9/10 to Year 12), as separate optional
courses, e.g., algebra, calculus, geometry. Mayberry's examination of high school
geometry textbooks (1983, p.68) showed that "Level 3 thought appears to be needed
to begin the course and that Level 4 thought should be developed during the course."
In Mayberry's study, 68% of the subjects had taken geometry as a course in High
School, and 32% had not. This is similar to the composition of the Australian sample
in which 64% of students had completed a senior secondary mathematics course,
which included a formal or recognised geometry segment, 23.5% of students had
completed a senior secondary mathematics course, which did not contain a formal
geometry segment, and 12.5% of students had not completed any senior secondary
mathematics. Table 3 compares the van Hiele level achieved with the type of
geometric background of the students in the Australian sample.

Table 3
Relationship between the Australian students' geometric backgrounds and their most

common van Hiele working level (% of sample)

Geometric Background
van Hie le
Level 1

van Hide
Level 2

van Hie le
Level 3

van Hie le
Level 4

Senior geometry 0 63 14 23
Senior maths but no geometry 8 92 0 0
No senior maths 43 43 14 0

It is significant that 63% of the students who had completed a course in which.the
instruction is assumed to be at van Hiele Level 3 and 4, could not display overall
understanding of Level 3 knowledge in their responses. Further, the students who
had completed a senior mathematics course but without a geometry strand had all
been exposed to an extensive geometry course in the junior secondary school in
which the instruction was addressed at least to Level 3.

Identified Problems
When collating results in the Australian study, inconsistencies in the assignment of
van Hiele levels for some students emerged. Overall there were 19 (7.8%) response
pattern errors. This meant that a number of students showed up as not validating the
level hierarchy. Interviews did not appear to clarify these inconsistencies. On
analysis of the results by concept and by level, it was considered that certain aspects
of the Mayberry items had the potential to lead to incorrect assessment of a student's
level of understanding. In particular, four main features were found to account for
major problems to the test validity. They were:
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1. incorrect assignation of a level to certain items;
2. unequal treatment of concepts across levels;
3. uneven distribution of questions across levels; and,
4. unbalanced distribution of question focus within levels.

Discussion
Feature 1 (Incorrect assignation of a level to certain items)
Some items did not appear to be consistent with the level for which they had been
designed. This was identified when large differences were exhibited by students on
questions supposedly at the same level. It is possible that some teaching effect or
rote learning may have influenced these results but this was not confirmed by
interview. An example of this phenomenon can be demonstrated by examining and
comparing Item 56 and Item 55, two of the twelve items which Mayberry designed to
test Level 4.

Item 56 Item 55
These circles with

centres 0 and P

intersect at M and N.

Prove:

A OMP E A ONP.

In this figure AB and CB

are the same length.

AD and CD are the same

C length.
Will LA and LC be
the same size?

Why or why not?

In Item 56, triangles OMP and ONP are clearly delineated. The solution requires
identification of three equal pairs of corresponding sides to prove congruency of the
triangles. By contrast, Item 55 can be solved by a number of different techniques.
One solution to the problem involves the use of congruent triangles. To do this, a
decision is needed concerning a suitable construction, i.e., join BD, which will
produce the required pair of triangles, (triangles ABD and CBD). The proof of
congruency of these triangles then becomes an instrument used within the solution of
the problem. In the Australian study, of the nine students who answered Item 56
correctly, only four were also correct for Item 55. No student was incorrect for Item
56 yet correct for Item 55.

The spontaneous recognition of the need to construct triangles before undertaking
congruency requires a deeper overview of the power of congruency. This problem
begs the question: Is the ability to give a proof of congruency working at Level 4, or
only at Level 3? Van Hie le summarises from his dissertation that a student has
reached Level 3 thinking "if, on the strength of general congruence theorems, he
(she) is able to deduce the equality of angles or linear segments of specific figures"
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(1957, p. 239). The very real difference between using the idea when it is apparent
and recognising the need to use the idea in a visually unprompted situation is
highlighted by the,comparison of performances for these two Mayberry items.

Feature 2 (Unequal treatment of concepts across levels)
The seven concepts used in Mayberry's work do not appear to be treated in an equal
manner. Investigation of the results across all the concepts reveals that either the
students in both USA and Australia had achieved a much greater understanding of the
concept circles, or else the items designed for that concept were not true to level
descriptions. To explore this issue, two items, Item 35 and Item 52, are examined.

Item 35
This figure is a circle with centre 0.

Would the following be:

a) certain b) possible c) impossible

Give reasons for your answer.

I) OB = OA 2) OD = OA 3) 20B = AD 4) AD = EC

Item 52

Figure C is a circle.

0 is the centre.

According to Mayberry, a student answering Item 35 needs to be working at Level 3
in order to answer each of the four parts of the question correctly. It could be argued
that the correct answering of the first three parts of the question requires Level 2
knowledge of the properties of a radius, namely, that all radii are of equal length, and
that the diameter is equal in length to two radii. Further, there are strong visual clues
to support the correct answers. In comparison, the fourth part of this item requires
the understanding that a chord, passing through the centre of a circle, is the longest
possible chord of a circle, i.e., Level 3 understanding of the relational properties of
the diameter.

Mayberry lists Item 52 as requiring Level 4 reasoning for a student to provide the
correct solution. A solution of this item requires the identification of equal radii, OA
and OB, as equal sides of triangle AOB. It is considered this solution incorporates
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the use of the relating of properties in a simple one-step deduction process, i.e., Level
3 thinking.

This focus on one concept at the expense of others raises clear questions about the
allocation of levels within this concept. Compounding this problem is the difficulty
of considering the growth of student understanding about aspects of a circle.
Properties and the relationships of properties of circles at Levels 2 and 3 are not as
clear as in the case of quadrilaterals. Further, there is no evidence in van Hie le's
writings to provide guidance for the development of circle concepts. The difficulties
became obvious when students in the Australian sample were able to score much
higher on circle questions than on other concepts. This could not be rationalised in
terms of greater experience or familiarity with circles.

Feature 3 (Uneven distribution of questions across levels)
The test items are not evenly distributed throughout the cells of the matrix/grid. This
results in an imbalance between levels within a concept, and has the potential to lead
to response-pattern errors. This can best be illustrated through the comparison of
criteria requirements for Levels 2 and 3. In her design, Mayberry has allocated
between three and seven items per concept to test for Level 3, however, she has
allocated only one or two items to test for Level 2. Five concepts, right triangle,
isosceles triangle, parallel line, similarity and congruency, are tested by a single item
at Level 2. For example, the most obvious case concerns the concept isosceles
triangle. Whereas seven separate items (Items 28 to 32, 42 and 49) test at Level 3,
only a single item (Item 18) determines whether or not a student displays mastery at
Level 2. Thus the criteria for attaining Level 2 in isosceles triangle is a perfect score.

Item 18.
What can you tell me about the sides of an isosceles triangle?
What can you tell me about the angles of an isosceles triangle?

Should a student have misunderstood the thrust of this single item, answering, for
example, "there are three", or "the angles sum to 180 degrees", or have incorrectly
answered "they are all less than 90 degrees" (an answer commonly resulting from
frequent exposure to acute-angled triangles), he/she is deemed not to have shown
mastery at that level. Often such students can still display mastery of Level 3 items.

Feature 4 (Unbalanced distribution of question focus within levels)
In the Mayberry scoring, it would appear that a subject can be adversely affected
through the lack of exposure to a particular aspect of a form of reasoning. In the
testing of the square at Level 3, the notion that a square is also a rectangle accounts
for three of the nine possible scores, (Items 9a, 25b and 42d). Criteria for this level is
a score of six out of nine, hence, a lack of exposure to the above notion means that a
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student must score correctly for all other questions in order to register success at
Level 3. Should.a student not have been exposed to, for example, class inclusion, a
Level 3 concept, the Mayberry scoring could assess that student as having mastery
only of Level 2. Pegg (1992, p.24) in his investigation of recent research into
properties of levels, summarises:

It is not sufficient to say that a student is not at Level 3 if he/she
does not believe a square is a rectangle. Class inclusion is not
simply a part of a natural mathematical development. It is linked
very closely to a teaching/learning process. It depends upon
what has been established as properties. ...The main feature of
Level 3 should not, in my view, be the acceptance of class
inclusion but the willingness, ability and the perceived need to
discuss the issue.

Overall these four features proved to be very important. When the analysis was
repeated, taking each feature into account, there was an 68% reduction in the number
of error patterns. This meant all but four students' understanding was able to be
reconciled. Interestingly, these four students (six error patterns) all exhibited a
partial Level 3 understanding and were able to present one acceptable Level 4
response, which satisfied Mayberry's criterion. It is most likely that if Feature 3 had
been addressed, i.e., more Level 4 items, these error patterns would not have
occurred.

Conclusion
This analysis not only gives us a clearer perspective about the Mayberry test and the
results it generates, but it also allows further insight into the van Hie le Theory. In
particular, it provides further empirical evidence about the robust nature of the levels
and about what it means to understand at a certain level.

References
Board of Senior School Studies. (1982). Mathematics Syllabus, 3 Unit and 2 Unit Courses, Year

11 and Year 12. Sydney: NSW Department of Education.
Denis, L. P. (1987). Relationships between stage of cognitive development and van Hide level of

geometric thought among Puerto Rican adolescents. Doctoral dissertation, Fordham
University. University microfilms no. DA8715795.

Mayberry, J. W. (1981). An Investigation of the van Hide Levels of Geometric Thought in
Undergraduate Preservicel'eachers. Doctoral dissertation, University of Georgia.
University microfilms no. 8123078.

Mayberry, J. W. (1983) The van Hide levels of geometric thought in undergraduate preservice
teachers, Journal for Research in Mathematics Education, 14 (1), 58-69.

Pegg, J. E. (1992). Students' Understanding of Geometry: Theoretical Perspectives. In B
Southwell, B. Perry, K. Owens (Eds), Space The First and Final Frontier (pp.18-36).
Sydney: Mathematics Education Research Group of Australasia.

van Hiele, P. MI (1957). The problem of insight in connection with school children's insight into
the subject-matter of geometry (Summary of doctoral dissertation, University of Utrecht) In
D. Fuys, D. Geddes, and R. Tischler (Eds and Trans.) English translation of selected
writings of Dina van Hiele-Geldof and Pierre van Hiele (pp.237-241). New York:
Brooklyn College, C.U.N.Y.

van Hide, P. M. (1986). Structure and Insight. Florida: Academic Press, Inc.

3 191

BEST COPY AVAILABLE



Defining and Understanding Symmetry

Roza Leikin, Abraham Berman, Orit Zaslaysky

Technion - Israel Institute of Technology

Haifa, Israel 32000

We propose a definition of Symmetry, which captures the many
different aspects of this important concept related to, the K -12
mathematics curriculum. Two main types of symmetry are
discussed: Geometric Symmetry and Role Symmetry. An
investigation of mathematics in-service teachers' understanding
of symmetry was conducted in light of this definition, focusing
on these two types of symmetry. The findings point to a close
connection between the proposed definition and the ways
teachers justify whether a given object is symmetrical.

The importance of symmetry in mathematics is well recognized (Alperin, 1978;
Browder & MacLane, 1978; Sonin, 1987; Weyl, 1952). Symmetry has an aesthetic
value as well as an interdisciplinary nature (Weyl, 1952; Darvas et. al., 1995). It is a
powerful tool in solving mathematical problems (Dreyfus & Eisenberg, 1990; Polya,
1973, 1981; Schoenfeld, 1985). Although symmetry is a broad mathematical concept,
it is treated in secondary school as a collection of disconnected cases. Teachers do not
"think symmetry" and do not use symmetrical considerations in problem solving
(Dreyfus & Eisenberg, 1990). Moreover, they often present different definitions for
special cases of symmetry, each capturing only some of the various aspects of the
concept.

The study reported in this paper is part of a larger study, the purpose of which is to
enhance the understanding, the appreciation, and the use of symmetry by mathematics
teachers (Leikin, 1997).

What is Symmetry?

We first turn to a comprehensive look at symmetry underlying our study. There are
several different approaches to the definition of Symmetry, depending on the
perspective taken. According to Lowrey (1989), ... the symmetry concept is a basic
principle that is useful to explain relationships between aspects of mathematics and
physical, biological, and other natural phenomena." (p. 485, ibid.). Lowrey claims that the
meaning of symmetry is not precisely defined, not even within the mathematics discipline.

Mathematicians treat symmetry in various ways: As a property of an object, as a
correspondence between objects, or as a special kind of transformation. In teaching
mathematics, teachers and textbooks usually distinguish between symmetry in geometry and
symmetry in other branches of mathematics, and even in geometry they deal separately with
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different transformations (reflection, rotation, and translation) neglecting to point out the
underlying common feature of all these transformations (Eccles, 1972; Fehr, Fey & Hill,
1973; Skopets, 1990; Yaglom, 1962). In algebra and calculus symmetry is defined
differently for different kinds of objects (e.g., functions, systems of equations,
matrices, groups) (Polya, 1981, 1973; Dreyfus & Eisenberg, 1990). Thus, no
wonder symmetry is often viewed as a collection of disconnected concepts.

According to Rosen (1995): Symmetry is immunity to a possible change (p.2, ibid.).
This is a broad definition that captures the essence of symmetry and applies for each
and every instance of symmetry. However, it is much too broad and general for
school mathematics. The unifying approach to the definition of symmetry in
mathematics that we suggest, is similar to what Rosen (1995) does for symmetry in
science. We look at the immunity of a property of a mathematical object with respect
to a possible change. This possible change corresponds to a transformation that can
be applied to the object. Thus, symmetry has to do with three elements: an object, its
property and a transformation, as proposed in the following DEFINITION:

SYMMETRY is a TRIPLE consisting of an OBJECT, a
specific PROPERTY of the object, and a
TRANSFORMATION satisfying the following conditions:
i) The transformation is not the identity;
ii) The object belongs to the domain of the transformation;
iii) Application of the transformation to the object does not

change the object's property.

As examples of the proposed definition, we discuss two main types of symmetry:
Geometric Symmetry - if the object in the triple is a geometric figure, and Role
Symmetry - if the transformation is a permutation.

Geometric Symmetry

Symmetry Transformations Examples of Symmetrical Objects

A Reflection (with respect to a line) " An isosceles trapezoid

A graph of a function y= F-- al +b

Central Symmetry (= A Reflection with
respect to a point = Rotation by 1801

x
A parallelogram

A graph of a function y = (x a)3 +b

/ ../

A Rotation A polygon built on an equilateral
triangle, adding three congruent
triangles

Translation ./4,.......), A graph of a periodic function

Figure 1: Examples of different types of Geometric Symmetry

Figure 1 presents examples of different kinds of Geometric Symmetry. In all of these
cases the property that does not change is the location of the geometric figure.
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Figure 2 presents a number of examples of the different types of Role Symmetry.

Role Symmetry
Type of Role

Symmetry
Symmetry

Transformations
Examples of Symmetrical Objects

Algebraic Role
Symmetry

Permutation of
Variables

Certain algebraic expressions, e.g.: a+b;

Certain functions, e.g.: y=8/x;

Certain systems of equations, e.g.:

{3x+2y+z= 30
x + 3y + 2z = 30 (Polya, 1981).
2x+y+3z= 30

Logical Role
Symmetry

Permutation of
Variables

Symmetrical relations, e.g.: AaB, F'--G, ajib

Geometric Role
Symmetry

Permutation of
a Triangle's

Sides

Isosceles triangle:

Figure 2: Examples of the two different types of Symmetry of Roles.

What teachers consider symmetrical

The study was designed in order to answer the following research questions:

1. What is the relationship between the type of symmetry of a given object, and the
ability of teachers to identify it as a symmetrical object?

2. What is the relationship between the representation of a given object, and the ability
of the teachers to identify it as a sygunetrical object?

3. How do teachers explain that a mathematical object is symmetrical?

4. What typical mistakes do teachers tend to make when determining whether an
object is symmetrical?

In order to answer the above questions, a questionnaire was constructed and
administered to 36 secondary mathematics teachers. The questionnaire consisted of 34

. mathematical objects:For each object the teachers were asked to determine whether it
is symmetrical and to justify their answer. The objects included in the questionnaire
varied according to their representation and their type of symmetry. All the objects in
the questionnaire were clivid6d into, four categories according to their type of
symmetry:

An asymmetrical object,"
An algebraically symmetrical object;
A geometrically symmetrical object;
An object which is both algebraically and geometrically symmetrical.
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The set of objects in the questionnaire included: geometric figures, functions,
equations, systems of equations and algebraic expressions.

Findings

As mentioned above, each teacher was asked to respond to 34 items. Thus, there were
1224 expected responses. In fact, 1174 responses were actually received. Each
response was analyzed with respect to several criteria and coded accordingly.

Correctness of responses

The first level of analysis was done according to the correctness of the statement
(regarding whether the object was symmetrical), and according to the correctness of
the justification that was provided. Thus, the answers were first classified into three

categories with respect to the statement: Correct, partly correct, and incorrect.
Then, they were classified with respect to the justification into four categories:
Correct, partly correct, incorrect, and unclear. In order to be able to analyze
connections between items of the questionnaire, each response was scored.

Figure 3 depicts to distribution of responses according to correctness of the statement
and according to the correctness of the justification.

Total number of possible
answers: 1224

Correct'
Sta tone nt

,
/ 7.) . .3 7"o (922),(

I
Correct

justification

49% (559)

48%
'(589)

Received answers

95.9% (1174)

Partly Correct
Statement

3.1% (38)

Partly correct
justification

No Answer

4.1% (50)

Incorrect
Statement

17.5% (214)

Unclear
justification

Incorrect
justification

2.4% (31) 5°/0i (73) 16.5% (202)

1.4% 1 1% 1%1 0.6% 9 °;ID '1- 1% 676;

(IS) (13) (S4) (13) (7) .'(110)0 (11) (HI)

No justification

Figure 3. Distribution of the answers according to the degree of correctness.
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Explanations justifying why an object is symmetrical

The second level of analysis was done for the 589 fully correct answers. The purpose
of this analysis was to characterize the nature of correct justifications (see Research
Question 3)

Three types of explanations were identified:

I. Explanations referring exclusively to the symmetry of the object - these
explanations explicitly state the fact that the object in question is known as
symmetrical in at least one of its representations.

Example:

(x 5)2 + (y + 3)2 = 9
Yes, it is symmetrical: This is an equation of a circle and any
circle is a symmetrical figure

2. Explanations referring to the symmetry transformation of the object - these
explanations either explicitly refer to at least one symmetry transformation that can
be applied to the object, or implicitly refer to the transformation by indicating the
type of symmetry of the object.

Exam les:

(x - 5)2 + (y + 3)2 9

f2x+y=8
tx+2y=8

Yes, it is symmetrical: A reflection can be applied.

Yes, it is symmetrical: The variables can be switched

3. Explanations referring to the property of the object that does not change undera
certain transformation - these explanations specify certain features of the object
which do not change when applying a transformation.

Exainple:

j2x+y=8
x +2y =8

Yes, it is symmetrical: The permutation of variables does not
change the solution.

This example can be seen as an extension of the previous one. Here, in addition to
the transformation (i.e., the permutation) that is referred to, the invariant property
(i.e., the solution) is also specified.

The findings related to the type of correct explanations differ according to the type of
symmetry of the objects. Thus, in order to prove that an object is' geometrically
symmetrical, in most of the cases (84%) the teachers referred only to a symmetry
transformation without noting the invariant property of the object. However, when
justifying that an object is algebraically symmetrical in most of the cases (71%) an
explicit connection was made to the relevant property of the object.

In many cases, when teachers justified why an object is algebraically symmetrical they
did it intuitively. This tendency was identified from video-taped discussions which
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were condOcted with the teachers after the questionnaires were collected. Some
teachers used the term "Role Symmetry", arguing that "...it seems natural, because
what makes the symmetry of the object is the use of variables with identical roles".

Analysis of teachers' mistakes

The third level of analysis focused on the identification and classification of mistakes
made by the teachers. Most of the mistakes were connected to the definition of
symmetry. According to Smith, diSessa & Roschelle (1993), mistakes connected to
the definition of a given concept can be divided into two types: mistakes caused by
basic misunderstandings of the notion of a definition, or mistakes caused by a
misunderstanding of a specific definition of a concept. Some of the findings fall into
two similar categories respectively: Mistakes which have to do with the general notion
of a definition, and mistakes, which have to do with the specific definition of
symmetry.

Misunderstanding of the symmetry concept

In order to analyze teachers' mistakes in identifying symmetrical objects, their
incorrect explanations were carefully analyzed. All incorrect and partly correct
explanations were divided into the following four main categories:

1. Mistakes resulting from the way teachers relate to the object. There are certain sets
of objects for which teachers (wrongly) either consider any of their elements to be
not-symmetrical or consider symmetry not applicable to any of their elements.

Example:

a 2 +b 2 +ab No, it is not symmetrical: This is an algebraic expression.

2. Mistakes resulting from the way teachers relate to a transformation. A
transformation is considered to be a symmetry transformation for certain Object
without checking whether there is an invariant property of the object with respect to
this transformation.

Example:/ Yes, it is symmetrical: According to the reflection with respect to
the diagonal.

3. Mistakes resulting from the way teachers relate to a certain property of the object.
Some properties are (wrongly) considered necessary for symmetry to exist, thus, 'if
they do not exist in an object the object is considered not syrnnietrical.

Example:

y = x3 x 2
No, it is not symmetrical: The function is not odd and not even.

4. Incomplete interpretation of data. There were cases in which teachers did not make
use of implicit information which could be derived from the given object.
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Logical mistakes

Logical mistakes are often related to misunderstandings of the notion of a definition.
The first type of logical mistakes that teachers made can be attributed to the fact that
in order to prove that a given object is symmetrical, the teachers used a necessary, but
insufficient condition. In other words, the teachers did not take into account that the
condition used to define a concept should be both necessary and sufficient for all
objects exemplifying the concept. Responses in which teachers used a necessary but
insufficient condition in order to prove that an object is symmetrical, were classified as
logical mistakes, which point to basic misunderstanding of the notion of a definition.
A second type of logical mistakes has to do with the fact that the definition of a
symmetrical object is an existential definition. An object is symmetrical if there exists
a symmetry transformation of the object. Therefore, in order to prove that an object is
not symmetrical, it is necessary to prove that any transformation is not a symmetry
transformation of the object. Instead, teachers seemed to think that a number of
examples of transformations, which are not symmetry transformations of the given
object, constitutes a valid justification that the object is not symmetrical.
Conclusion

The type of symmetry of a given object and its representation seem to effect the
success in determining whether an object is symmetrical. In general, teachers did not
tend to explicitly refer to the invariant property of symmetry. All the cases in which
they referred to the invariant property were algebraically symmetrical objects
represented symbolically. In addition, geometric figures were easier to identify as
symmetrical.

Summary and Discussion

It is interesting to point out that none of the responses, both correct and incorrect,
explicitly referred to all three components of the proposed definition of symmetry.
Most of the responses referred to only one component. Thus, each of the three
categories of correct explanations, as well as those of the incorrect explanations,
which were derived from the written responses, relates to one of the three components
of our definition of symmetry: to the object (cat. 1), to the transformation (cat. 2) or to
the invariant property (cat. 3). In some cases it was possible to respond correctly
without referring to all three components. However, there were cases in which it was
necessary to consider more than one component of the definition. For example, when
justifying that a circle is a symmetrical object, some teachers correctly referred to the
reflection as its symmetry transformation, but neglected to consider the invariant
property (i.e., the location of the object). A similar response was incorrect when
applied to a parallelogram. Although a parallelogram is a symmetrical object, its
symmetry transformation is rotation and not reflection. Those who argued that a
reflection with respect to the diagonal is its symmetry transformation did not make
sure that there exists an invariant property under the proposed transformation.
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It is suggested that the proposed definition, which includes all three Components,
could serve as a guideline for thinking about symmetry, and consequently, for
correctly determining whether an object is symmetrical.
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THE PSYCHOLOGY OF MATHEMATICS TEACHERS' LEARNING: IN
SEARCH OF THEORY

Stephen Lerman
South Bank University, London, UK

Abstract The research literature on teachers' learning of mathematics
and mathematics education often employs terms such as 'teacher change'
or 'teacher development' rather than learning. I argue that this is due in
large part to rather vague theories of adult learning, dominated as we are
by psychological theories of children's learning. Two small-scale
research studies are presented in which pre-service and in-service
teachers were set a learning activity which brought their naive theories
into contact with 'scientific' theories in areas of their own interest. These
studies are used to highlight the main issue raised in this paper, that we
must pay more attention to theory.

Introduction
In studying children's learning of mathematics the dominant academic framework
upon which researchers draw (Apple, 1995), and the particular perspective of PME
of course, is a psychological one. Traditionally, Piagetian theories of cognitive
development have been adopted and adapted; more recently Vygotskian theories
have been co-opted. Other frameworks are available (Lerman, 1996), including
sociological, anthropological, psycho-analytic and post-structuralist and these
frameworks are represented increasingly in proceedings of PME (Evans &
Tsatsaroni, 1993; Pimm, 1994; Brown, 1994).

In studying pre-service and in-service teachers much of the research emphasis has
been on how to describe and analyse teachers' beliefs about mathematics and
mathematics teaching, how to analyse and describe teachers' actions in the
classroom, and the possible connections between the two. A recurring problem for
such research is the apparent mismatch between teachers' stated beliefs and their
actions as observed by another. Hoyles (1992) explains this in terms of situated
beliefs, that they are "dialectical constructions, products of activity, context and
culture" (p. 280). Lerman (1994a) argues similarly, suggesting that there is a
confusion between different practices in much descriptive research on teachers'
beliefs and actions in which the research tool, be it questionnaire, interview,
observation schedule or others, frames the discourse and hen& the outcome.

Study has also been made of the connections between teachers' knowledge of
mathematics and their knowledge of pedagogy (Shulman, 1986; Even, Tirosh &
Markovits, 1996): Ponte (1994) provides one orientation of research on teachers,
that of increasingly more elaborate descriptive frameworks. He suggests that a
concern with teachers' beliefs and conceptions has been predominant and he offers a
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more interactive perspective incorporating teachers' images and their rules of
practice.
In studying teachers' learning of mathematics and of mathematics education
researchers in PME have often been more vague or perhaps more eclectic in their
choice of academic discourse. This may be largely because constructivist theories
of cognitive development are concerned with children and children's learning and
there is no language for life-long learning available. The empirically identifiable
euphemism 'teacher change' is often used in place of learning, which does not
engage with the need to elaborate a theoretical perspective on learning. Becker' &
Pence (1996) found that changes in teachers' beliefs accompany change in classroom
practice (p. 115). Of course change is easier to identify when specific pedagogic
goals such as those of the US reform of mathematics teaching are set out by an
establishment, more difficult when the goals arise from the interests and concerns
of individual teachers (Lerman and Scott-Hodgetts, 1991). The problems of
associating beliefs and practices as pointed out by Hoyles (1992) and Lerman (1994)

are of relevance here too.

Even et al (1996) measure change by teachers' self-reports, and those of
supervisors, principals and fellow teachers. They are more specific than most
concerning teachers' learning. "Our findings indicate that when asked to respond to
specific suggestions made by students, teachers are pushed to articulate their own
understanding. Thus, in turn, they provide teacher educators with an opportunity
to study adult learners' cognitive processes and conceptions." (p. 128)

In this paper I will discuss briefly the theories that are available to describe
mathematics teachers' learning. I have suggested that theories are often lacking but
are needed if the research that is presented is to be good research and of use in
mathematics teacher education programmes. Research on teachers is used to inform
teacher education programmes, although the step from description to prescription

requires justification. Without an explicit theory of learning this step can be
confused and even incoherent.

I will then present some data from two studies, one of mathematics teachers'
learning of issues in mathematics education and the other of pre-service teachers'
learning of mathematics, in order to highlight the theme of this paper.

Theories of teachers' learning
Where explicit attention is paid to teachers' learning reflective practice is often
indicated as the stimulus which can lead to learning (e.g. Lerman & Scott-Hodgetts,
1991; Mousley 1992). What is not evident in these accounts is the process of
cognitive, cultural or social development which is understood to characterise
teachers' learning. Reflection on one's own actions presumes a dialogical
interaction in which a second voice observes and criticises. In order to lead to
learning it would seem that this must be more than the ongoing observation of one's
own actions through which one may recognise a satisfactory or unsatisfactory
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outcome of an action. An unexpected event, a novel response or question from a
student for example, may lead to a question but the learning that is hinted at in the
literature on reflective practice assumes a second discursive position within the
individual which answers the question. Lerman (1994b) suggests that another
critical voice must come from another source, such as peers or literature.

For the most part constructivism is seen as a theory of learning and knowing and
appropriate teaching is understood as that which encourages rich constructions by
students. Simon (1995), however, sets out a description of constructivist teaching in
terms of teachers' hypotheses about children conceptual development which are then
tested by further interactions. Simon's work suggests that student teachers and
practising teachers learn about teaching through the same process of equilibration as
children's learning.

Bruner (1986) has contrasted a propositional mode and a narrative mode of
knowing. Researchers draw on this approach in examining mathematics teachers'
theories and practices (Burton, 1996) although the move to a theory of learning in a
narrative frame is not immediately clear.

Learning about teaching mathematics can also be seen as apprenticeship into a
community of practice (Lave & Wenger, 1991). In many ways it may be more
appropriate to conceive of learning about teaching as better described in terms of
legitimate peripheral participation than learning mathematics in the school
classroom. After all children do not choose to go to school, as people do to a large
extent when participating in employment practices such as teaching; thus goals and
needs are quite different. It is also perhaps inappropriate to describe the practice of
school mathematics as leading to school children moving from the periphery to the
centre of participation, and becoming the 'masters' whereas it can be applied to
learning about teaching.

Activity theory offers a framework that has been used extensively to study teachers'
learning. In an attempt to engage student teachers, in the final year of their course,
with their still unchallenged assumptions about the role of the teacher, Crawford &
Deer (1993) devised an activity in which the students had to work in groups to
develop a programme of mathematics which was centred on the children's
environment, rather than a prescribed syllabus. The students found this very hard
and experienced: "initial ecstasy, shock of recognition, crisis, realism and
commitment" (p. 116). The outcome was at least a recognition by the students of
having a wider range of skills upon which to draw and in many cases new-found
confidence in their ability to create "a very different learning environment ... from
the one that they had experienced themselves" (p. 118). Elsewhere Crawford
writes:

The course was designed to create a "zone of proximal development" for student
teachers as a way of expanding their knowledge of the dialectic process of
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teaching and learning through conscious experience of the process. They were
engaged in a learning activity. (Crawford, 1994 p. 6)

Each of these perspectives potentially offers a suitable theoretical framework for
learning within which to structure research on mathematics teacher education. The
main theoretical argument of this paper is that researchers' choices of
theoretical frameworks for teachers' learning are affected by all sorts
of factors, including personal commitments to particular theories, what
has served the researcher well, etc. Those choices should be made
explicit in research and the research methodologies used and results
claimed justified within those frameworks. The research described here
draws on activity theory. I choose the work of Vygotsky and followers because, in
my view, it comprises at least three important factors: first it offers a coherent
single framework for learning throughout life that applies to young children and
equally to mature adults; second it attempts to integrate affect and cognition in
focusing on meaning as its unit of analysis; and thirdly it offers a method for
rooting knowledge and action in socio-historical-cultural settings. The classroom is
a complex site of political and social influences, socio-cultural interactions and
multiple positionings involving class, gender, ethnicity, teacher-student relations
etc. in which power and knowledge are situated. Vygotsky's psychological theories
enable the researcher to accommodate these elements into the analysis.

The study
Two small-scale research studies were carried out in October/November 1996. The
first study was with a group of pre-service primary teachers in their first year of
the course, during a mathematics class. The aim of the unit is for students to study
mathematics at their own level. They are required by UK law to have a minimum
qualification in mathematics of a grade C pass at the national examinations at age 16
(or the equivalent). These students have a slightly higher level of certification and
have chosen to make a special study of mathematics, but in general their
mathematical knowledge and confidence are still not very high. They are all
mature students. The second study was with a group of experienced teachers
beginning a taught master's degree in mathematics education. The aim of their first
unit is to examine psychological and sociological theories of teaching and learning
mathematics. Some are secondary mathematics teachers, others are primary
teachers with a particular interest in mathematics, and all have taken some course in
educational studies, although possibly many years in the past.

The aim of the research_ was to engage students in their zone of proximal
development (zpd) and to draw on their personal goals and needs. In order to focus
on the latter the research was designed to confront individual interests in the
students' learning. Following the approach of Crawford & Deer (1993) both
groups of students were asked to identify areas of study which they wished to learn
about but 'felt that they knew very little. In the first group this was to be a topic in
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mathematics and in the second an issue of teaching and learning. They were then
given a period of two weeks in which to prepare a short presentation for their
colleagues on that topic. The presentation was not part of the formal assessment for
either group. The intention of the presentation task was to provide a learning
activity in which the students would be 'forced' to contrast their naive notions of
their area of study with the literature they had to read to prepare the presentation,
which offered 'scientific' notions. The research was concerned with the process the
students were going through in their learning and its effects on them. Thus they
were asked to keep a diary of their reactions to being given the task, their feelings
during their reading and preparing the presentation, their feelings during the
presentation and in particular their reflections after the presentation. The students'
writings offer authentic and coherent accounts of their experience and feelings. In
my view this was the most, perhaps the only, appropriate research method.
Learning in the zpd is usually examined in the context of peers working together
and slightly less frequently in the context of the teacher and students working
together. This research was designed to examine learning in the zpd for each
individual student in interaction with texts of their own choosing.

If the students had accepted the task but ultimately come to feel that they had been
unable to learn enough to make a presentation this would have made the research
hypotheses invalid. It would have suggested that the activity was not a successful
learning activity perhaps because the forced choice did not put students into their
zpd or perhaps because texts may not function in the same way as peers or a teacher
for learning in the zpd. It would not, however, have made the Vygotskian
perspective and activity theory invalid for this researcher.

I will present here some extracts from the students' writings and this will be
followed by an analysis of their learning and of the research.

Pre-service primary teachers mathematics
A. (matrices) I have done them during my school times but I never understood
anything... Had I known that I have ... to come back to lecture it to others I
wouldn't have mentioned that' I have difficulties... I still don't understand. What do
I do now? I'm beginning to understand... I have to ... do a few examples and see if
I can understand more... After presenting the seminar I thought it wasn't as bad as I
thought it was going to be. (emphasis in original)

P. (calculus) When I was asked to carry out this mission I was not happy to say the
least... Both books required a good knowledge of Algebra, which 1 am a bit rusty
on at the moment... At this stage I began to feel frustrated and pressured... The
basis of the calculus began to become apparent to me so I commenced writing some
notes on Functions... I believe that if I had teamed up with another member of the
group I would have got further.

S. (bearings) I can work through problems but I do not understand why. I feel
really angry about this and the way I have been taught. How much more of
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mathematics do I not understand?... I felt happy that it was over but disappointed I
could not explain it all. I will be looking into history for my own benefit. I really
learnt a lot from this about how you should fully understand something before
teaching it.

In-service master's issues in mathematics education
J. (family influences) It is always interesting to be faced with things you do not
know... After having prepared that subject and presented it to the rest of the group
I felt that some things were missing. Things I had not thought about before.

E. (language and mathematics) At first I felt quite helpless and inadequate. How on
earth was I supposed to find answers to a question which I was asking precisely
because I found it difficult to answer?... Some background reading helped give me
confidence - I felt like I had some 'official' back-up... Once I had rephrased my
question and got thinking, reading and writing, I actually enjoyed the task.. The
enormous complexity of the psychology behind my question struck me, as well as
the impossibility of ever knowing that the question has been answered.

Analysis
The sessions during which the learning activity was set began with a review, in the
first case of topics in mathematics that the students wanted to learn and in the
second of issues in teaching and learning. They were then set the task. The students
in both contexts demonstrated a certain initial shock and reluctance to engage with
the task. As is evident from their comments they had no warning that I would come
back to them with the topics they had proposed. Whilst, this was rather hard on
them, I explained that this was by way of an experiment and we would discuss the
outcome of the experiment together afterwards. In all cases the students appear to
have found a way to overcome the obstacle that their chosen topic had presented and
to have been able to offer an appropriate presentation. In the first case the students
were revisiting mathematical topics that they had encountered before, at school, and
had failed to reach a position in which they felt comfortable with their knowledge
and understanding of the topic. The task was perhaps particularly successful for
them in that they all felt that they had learnt from their preparations and.now felt
that they understood their topics much better than before. I believe this to be a
result of the learning activity which included as an essential element the
requirement to make a public presentation to their colleagues, a requirement which
they had accepted although it was not an assessed part of the course. In both cases
the choice of topic had been made by the students from their own interests and goals
and this too was an important feature of their subsequent engagement and success.
Student comments suggest that it may be interesting to give them the opportunity on
a future occasion to make paired presentations if they wish, although the topics
chosen would have to be of common interest. The whole activity put them into
their zpd, leading to each of them confronting their naive notions and partial
understandings with written knowledge from texts. The problem that Crawford &
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Deer (1993) were facing was that students in initial teacher education programmes
students often fail to confront their naive notions of teaching mathematics. They
suggest that despite writing good theoretical essays on teaching and learning during
the course the students often begin teaching in the same way that they would have
without attending the course. I am not claiming here that the students learnt things
that they might not learn in other ways; I want instead to illustrate the fruitful
outcome of this learning activity.

The research method assumes that students choosing topics which they had stated
that they wanted to learn about would engage them in their zpd. Whilst this
requires further justification the outcome suggests this assumption is correct, given
the theoretical framework. There seems no doubt that learning had taken place for
each person, according to their written accounts. Informal subsequent discussion
revealed that in many cases they felt pleased that they had been able to learn
something difficult, alone, from a textbook.

Ending
I have attempted to make explicit the theory of learning which I have chosen and to
set the research method and analysis within it. The more general concern of this
paper is that mathematics teacher education research needs to make explicit its
theoretical framework, whatever that is.
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On the Difficulties met by Pupils in Learning Direct Plane Isometries (*)

Nicolina A. MALARA
Department of Mathematics
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We report some results of a research of didactical innovation on direct plane isometries, realized
using the computer, focusing on some difficulties met by pupils. The hypothesis of the research
was that the dynamic visualization of the action of a geometrical transformation on various
figures, not necessarily convex or limited, and on sets of loose points, can lead the pupils to: a)
construct the appropriate mental images for overcoming well known difficulties met by them in
realizing the correspondent of figures according to a certain isometry; b) achieve the meaning of
invariant and unite element in a transformation and arrive at the concept of this as a
correspondence between points of the plane. The research has evidenciated that, even if resorting
to the visualizations on the computer has allowed the pupils to achieve a good interiorisation of
the vision of classes of figures united by translation or rotation, several of them met conflicts in
representing the correspondent of a translation of a right line according to a vector parallel to it
or in realizing the correspondence of a certain couple of figures, such as a circle and an a right
line tangent to it, according to particular translations or rotations. Moreover, as to the extension
of the transformation to the whole plain, several pupils showed the persitence of a local vision .

Introduction
Geometrical transformations have been inserted in the syllabuses of many countries in the sixties,
with a view which reflects the structuralist ideas of that time. But the historical and cultural reasons
of this choice are very little known among the teachers and, consequently, this topic is considered
by the most part of them as foreign to geometry and often its teaching is reduced to a flat and
shorter transmission of the proposals of the textbook (Malara, 1991). For overcoming this
situation we have faced with and for the teachers of our research group the problem of the
teaching of geometrical transformations and realized various experimental researches framed in
organic way in a project for the teaching of geometry for pupils aged 11-14 (Malara 1994,
Pincella and Malara 1995, laderosa and Malara 1994, 1995).
The researches on the side of the learning of plane isometrics are few (Hart 1981, Nasser et. al.
1995, Gallou-Domiel 1987, Jaime and Gutierrez 1989, Bartolini Bussi and Mariotti 1996), many
of these regard only the axial symmetry and are not centered on the difficulties met by the pupils.
As to this last point the study of reference remains the classical one led by Hart (1981), but in it
only the difficulties met by the pupils in the construction of the correspondent of a little flag
according to particular axial symmetries or rotations are considered. Few or nothing is known as
to the ability of the pupils in coordinating the construction of the correspondents of couple of
figures, with (or not) some elements in common.
In some more recent researches the positive influence of the computer for the learning of
geometrical transformations is stressed (see for instance Clement and Batista, 1992) and our
research put itself in this stream. It concerns some results, from the point of view of the difficulties
met by the pupils, of a wide and in progress research of didactical innovation on the plane
isometries, centered on the visualization through the computer (reserch sketched in Malara
1995b). The results were obtained from a sample of two classes (teacher Rosa laderosa), involving
45 pupils aged 12-13, for a period of three mounths.
In the research, analysing behaviour, answers and productions of the pupils, we investigate on the
following hypotheses:

* Work supported by MURST and CNR (contract n. 96.00191.CT01)
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whether visualising through the computer the effects on various figures of the different
isometric transformations promotes the formation of appropriate mental images and can help
the pupils overcome well-known difficulties, so that a more correct conceptualization can be
produced;

- whether leading the pupils to observe the things that change or keep on many classes of
figures, not necessarily limited (polygons, circles, poligonals lines and straight lines) in
different positions, lead the pupils to understand the concept of invariant and to see a figure
transformed in itself by a certain isometry as a privileged figure in comparison with the others
as to this transformation;
whether and to what extent it is possible to overcome the concept of transformation as action
on a figure passing to the concept of transformation as correspondence among all the points
of the plane.

These hypotheses were induced from the consideration that a didactical itinerary of static type,
that is based only on the images reproduced on the textbook, strengthens the pupils' tendency to
conceiving a transformation only as action on close figures or, still more, on the outline of such
figures with which the pupils identify the same figure. This way the idea of the extension of a
transformation to not limited figures (straight lines, strips or other analogous parts of the plane)
and of the contemporary action on all the points of the plane escapes to the pupils.
On the other side, using the computer for giving a dynamic vision of the transformation, even if
initially the aspect of "phisical movement" is privileged, enables the pupils to grasp more easily
and to elaborate in the most autonomous way possible the aspects which characterize each type
of isometry and the concept of invariant. In particular, it is possible to visualize and favour the
conceptualization of unite point and unite figure.
In the following paragraphs we trace the main steps of the didactical intervention in classroom for
direct plane isometrics and the role of the computer, then we describe some of the worksheets on
which the pupils have worked and we analyse in details the difficulties met by the pupils for each
of them, finally we briefly sketch the general results of our research evidenciating some of its
problematic aspects.
The classroom didactical itinerary for each of the isometrics can be synthetized as follows:

moments of visualization through the computer;
collection of observations and previsions made by the pupils;

- use of worksheets aiming at the construction of concepts and at the evidenciation of possible
conflicts between mental images and concepts involved (worksheets elaborated considering the
didactical knots and learning difficulties foreseen in an a-priori analysis);
collective discussion for analyzing with the pupils the results of their work and recovering
mistakes and difficulties through the socialization of the cognitions;

- use of worksheets for verifying the interiorization of the activities of visualization, discussion
and reflection made (worksheets created on the basis of the emerged difficulties).

An important cultural and didactical choice in this itinerary has been that of the releasing, in the
proposed activities, from the metric aspect and from the cartesian reference. We have privileged
the use of white sheets and the contraction by straightedge and compasses, also for reflecting on
the construction of figures with such tools or with the computer. We have presented, in the
following order, translations, rotations and axial symmetries.
The leitmotiv, in the planning and in the developement of the didactical itinerary on the
isometrics, has been the association between translation and rotation for analogy between the
moving along a straight line and the moving along a circumference. Such analogy has been
reinforced also by highlighting, thanks to the visualization, the association between elements
united by translation, such as the straigth lines parallel to the vector of translation, and elements
united by rotation, such as the circumferences concentrical to the centre of rotation.
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3. The worksheets
Here we limit ourselves to describing six worksheets, two specifically devoted to translation, two to
rotation and two to both of them.
The two worksheets concerning translation place themselves in a central phase of the didactical
itinerary relative to this transformation. In the first one, a couple of little flags corresponding for
translation is shown in four different positions. In each of the situations proposed, the little flags
are partially superimposed along a side. The pupils are asked to individuate the vector of
translation for which the second flag results translated as to the first and then, after they lengthen
the couples of correspondent sides through colour pencils (using different colours for each side),
they have to express what they think is going to happen for the correspondent couples of straight
lines. The objectives of this worksheet regard the control of the conceptualization of the free
vector of translation, on which they have already worked, the passage of the observation from
segments (limited) to the straight lines of belonging (unlimited) and the intuition of the existence,
in a translation, of united straight lines with the same direction of the vector. The foreseen
difficulties regard the representation of the vector of translation (applied or free), the inability to
distinguish between segments and straight lines of belonging and to recognize the parallelism in
the case of superimposed straight lines.
In the second worksheet it is asked, in four different cases, to translate according to a certain
vector a given straight line of which two points are evidenciated. Two of the considered cases
concern the position of the straight line, respectively horizontal and oblique, the other two
concern the direction of the vector as to that of the straight line, respectively parallel and non-
parallel. Objective of the worksheet is to verify whether the activities of visualization through the
computer, aimed at the pupils' grasping the fact that the straight lines having the direction of the
vector of translation are transformed into themselses by the translation, have brought to such a
conceptualization in the pupils. The foreseen difficulties concern the possible conflict between the
direction of the vector of translation and the direction of the straight line during the realization of
the translation of the straight line and the conceptualization of the fact that a point of the straight
line is carried to a point of the same line in the case of the vector parallel to it and also of the
sliding of the straight line on itself.
The two worksheets devoted to rotation are posed in the initial phase of the itinerary on this
transformation, after a first visualization through the computer of the effects of various rotations
on little flags and other limited figures. In both worksheets the visualization through the computer
of a little triangular flag is represented, and of the result of its rotation about a point outside it. In
the representation are evidenciated four privileged points of the two little flags, constituting the
foot and the vertices of the triangle, moreover both feet of the little flags appear connected to the
centre of rotation.
The third worksheet shows the outline.of an arc of circumference joining a vertex of the triangle
with its correspondent, whereas the fourth -more complex to be read- shows all the arcs of
circumference joining respectively the four privileged points with their correspondent and the
pairs of radiums joining the corresponding points with the centre of rotation. Aims of the third
worksheet are the guided recognition of the characteristic elements of a rotation in a plane and a
preliminary inquiry on the pupils'ability of spotting out by themselves some invariant elements.
The fourth worksheet is more specifically aimed at the explicitation of the procedure followed in
order to rotate a figure on the plane, at the observation of the invariance of the angle individuated
by the radiums linking pairs of corresponding points with the centre of rotation. The main
difficulty quite consists in recognising the invariance of the angle of rotation as opposed to the
variance of the subtendent arc (typical mistake is to consider the width of the angle as dependent
on the length of the segments representing the halflines which delimitate it, see for instance
Krainer 1991). There is the further difficulty of coordination between the global vision of the
figure and the various parts of it, because of the highlighted points.
The remaining worksheets belong to a final test on the two isometrics.
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The fifth and the sixth are very complex (from a conceptual and a representative point of view).
In the fifth we present six situations: four dedicated to the straight line and two to the circle.
Precisely, given a straight line of which no point is indicated, it is asked to make: a) its translation
as to a vector eiter non-parallel or parallel to it; b) its rotation of 90° clockwise either about a
point of its, or about a point outside it; given a circle it is asked to carry out its rotation of 90°
clockwise either about its centre, or about a point outside it. The aim is to verify whether the
difficulties previously highlighted have been overcome, such as to imagine the translated of a
straight line in the case of a vector parallel to it, or the construction of the rotated of a line or of a
circle. Such worksheet presents various difficulties connected to the absence of privileged points
on the line and on the circle, to the construction of the correspondent of a point as to a 90°
clockwise rotation and to imagining the effects on the figures of a rotation about a centre outside
them. These worksheets have been also conceived for facilitating the pupils to face the sixth
worksheet, separating the difficulties that it presents.
In fact the sixth worksheet is absolutely the most delicate. It shows a figure built from a circle and
a straight line tangential to it (the point of tangence is evidenciated). Two cases are presented: in
the first it is asked to realize the translation of the figure according to a vector parallel to the
tangential line, in the second the request was to realize the 90° clockwise rotation of the same
figure about the centre of the circle. In both cases it was also asked to find out the possible united
points, straight lines or circumferences and eventually, the comparison between the two situations.
The aim of the worksheet is to verify the ability of seeing the transformation of compound, not-
limited figures, of recognizing in the various cases united elements, analogies and differences, to
inquire into the conceptualizations promoted by computer visualization (such as the invariance of
sheaves of straight lines individuated by a given straight line and of stripes of plane or families of
circumferences concentric to a given one, and of circles). The difficulties presented by this
worksheet are manifold and at various levels; there is the difficulty of: a) imagining and building
the result of the transformation of a single element of the figure (point, straight line,
circumference) in the two transformations; b) coordinating the various elements transformed
either in the case of translation or in the case of rotation, for example realize that in order to
individuate the transformed figure in the assigned rotation it is enough to find out the result of
the transformation of the point of tangence, whereas in the case of the given translation it is
enough to individuate the result of the translation of the centre of the circle; c) seeing the tangent
line as a united figure in the case of the translation and, which is more difficult, also all the
straight lines parallel to it; d) conceive the circumference and all those concentric to it as united
figures in the rotation about its centre; e) recognize the centre of rotation as the unique united
point in the rotation. The request of comparison between the two situations compelled then the
metacognitive control on what was learnt.
Beyond the specific difficulties there are also difficulties of general nature such as those
originating from the use of instruments (straightedge and compasses) and those linked to the
necessity of expressing observations and considerations.

Difficulties detected in the pupils
The worksheets we have described, allowed us to focus on the learning difficulties, some of which
had not been foreseen in an a-priori analysis. For reasons of room here we limit ourselves to
describing the main difficulties detected.
As regards specifically translation, we report some productions of the pupils testifying:

Table 1 the difficulties to visualize the vector which generates the translation acting on the flag
as indicated in the worksheet and its action on other elements which are not represented on the
figure. In particular we can observe some conflicts between the direction of the translation and
the one of the flagpole (see fig.la), the inability to represent the right lenght of the vector of
translation (see fig.lb) and the inability to extend the result of the translation to the whole line
to which a segment belongs (see also fig.1c);
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Table 1

fig.la

Examples of difficulties in recognizing vectors of translations
and correspondent elements in a translation
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Examples of difficulties in translating straight lines
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Table 2 the difficulties to realize the correspondent to a given straight line according to an
assigned vector (see fig.2a), specially in the case of parallelism between the vector of
translation and to the direction.of the line (see fig.2b) and the inability to represent the
correspondent of the straight line after the construction of the correspondents of two its points
(see fig.3b).

In general we can say that in the various stages of the study, the following aspects have emerged in
the pupils:
- the inability of seeing the action of a translation from a segment to the straight line to which the

segment belongs;
the difficulty of spotting out and representing the free vector of a translation from the vector
applied and of conceiving in abstracion, given a vector, the translation associated to it;

- the inability of traslaring a straight line (as we have seen several productions testify the evident
and lasting conflict between the direction of the vector of the translation and that of the straight
lines on which it acts);

- the difficulty of conceiving the simultaneous shift of position of the different points of the
plane (it has emerged in particular through another worksheet, conveived for testing the ability
to visualize correctly the action of a translation in a situation of distraction, where the pupils had
to realize the translation of a square, not in a privileged configuration, according to a vector
equipollent to an its side: some pupils have evidenciated a conflict between "point and position
of a point", saying united a point "because it overlaps to the correspondent").

Concerning rotation, at the beginning of the study we faced in many pupils the typical wrong
association of the width of the angle of rotation to the length of the arcs connecting couples of
correspondent points or better to the length of the radiums of such arcs, which did not allow them
to seize the invariance of the angle itself.

Table 3
Examples of difficulties in turning circles or straight lines
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Another typical difficulty linked to rotation, which makes the pupils interpret the effect on a
figure of a rotation according to a point outside it as the result of the composition of a rotation
about a privileged point of it and of an opportune translation, was overcome by many pupils:
thanks to the visualization on computer it was possible to induce in the pupils the mental image of
a figure rotated about a centre external to it.
There is however the persistence of the difficulty, assigned a couple of figures corresponding for
rotation, of individuating the centre of rotation when it is not in privileged position to them. In
some productions we found the prevalence, in the pupils, of visualizations rather than the
constructions with ruler and compasses they had learned: the pupils traced all the arcs connecting
certain points of the figure with their correspondents and then proceeded by intuition to the
individuation of the centre of rotation as the point to which the different radiums of the arcs must
converge.
The productions of the pupils on the last two worksheets, concerning either translation or rotation,
are extremely interesting. Some productions regarding the fifth worksheet (see table 3) show
evident difficulties, even after repeated experiences of visualization: we observed a decrease in the
quality of the pupils' performance when they were asked, given a vector, to traslate a given straight
line on which no point was evidenciated, or to rotate a circle through 90° about its centre or about
a point outside.
However the most difficulties appear in reference to the sixth worksheet where the pupils had to
control the simultaneous action of a traslation or rotation on a circle- straight line couple: we have
observed that only the thirty percent of the pupils have answered correctly.

Table 4
Examples of difficulties in turning and translating a cirle and a straight line tangent to it
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In table 4 are reported some protocols, through which it is possible to observe the conflict
generated in the pupils in facing either translation or rotation, even if most mistakes happen with
reference to the rotation. We have to underline that, on applying the rotation, none of the pupils
recognises that the centre of rotation is an united point in the transformation.

Brief conclusive remarks
Before finishing we wish to underline that, in spite of the difficulties detected, in general the resort
to the visualizations at the computer has allowed the pupils to achieve a good interiorisation of the
vision of classes of figures united by translation or rotation and to gain the concept of united
figure as to a given isometry, which is essential for giving sense to the study of the problem of
characterizing - of a given figure - the isometrics as to which it is united. Moreover, in the
majority of the pupils a good conceptualisation of trasformations as correspondences has
appeared, despite the sequenciality of constructing figures in the visualisation suggested, which we
thought might hinder the conception of the simultaneity of the act of transformation on the
figures themselves. Problematic has instead been the extention of the transformation to the whole
plain, due in our opinion to - beyond the limits of the tool of representation - the persistence in
several pupils of a local vision of the facts observed, which would extend according to the cases
considered but always far from being global, difficult to achieve owing possibly to the unripeness,
at this level of schooling, even of the concepts of straight line and plane.
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THE DIALECTIC RELATIONSHIPS BETWEEN JUDGMENTAL SITUATIONS OF
VISUAL ESTIMATION AND PROPORTIONAL REASONING.
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In the following paper we describe a sequence of episodes in which subjects in
different ages were involved in judgment of visual estimation of discrete
quantities. The analysis of these episodes seems to demonstrate two opposing
trends: In the first, situations of visual estimation judgment seem to push young
children, (8 to 10 years old) towards proportional reasoning. In the second, the
same situations may push subjects (10-11 years old children, student-teachers
and teachers) away from a mathematical proportional reasoning towards what
might be called "situational reasoning".

Introduction
Estimation is a compound subject involving conceptual components: (i) the

recognition that approximate numbers, quantities or measurements are used and that
an estimate in itself is an approximation, (ii) the recognition that the appropriateness
of an estimate depends on the context and on the desired accuracy, and (iii) the
acceptance of multiple values as estimates and multiple processes for obtaining
estimates as legitimate (Sowder, 1988). These different processes are due to the type
of the estimation involved as well as to the estimator him/herself. Another compound
issue that is an integral part of estimation takes place when two or more estimates are
given and one has to judge whether one estimate is better than the other. For
example, the following is one such task, involving computational estimation (Sowder
and Markovits, 1990):

"If 34 x 86 is estimated as 30 x 86, then the exact answer is 2924 and the estimate
is 2580. The difference between these two numbers is 344. If 496 x 86 is estimated
as 500 x 86, the exact answer is 42,565, the estimate is 43,000 and the difference is
again 344. Which of these would you choose: (a) the first estimate is better; (b)
they are the same; (c) the second estimate is better." (p. 326).

Mathematical judgment in such situations is based on the ability to see the above
differences as relative errors, meaning that the second estimate is better, since 344
out off 42,565 is a smaller error than 344 out off 2580. The understanding and the
ability to use relative errors depend of course on the ability to incorporate
proportional reasoning.
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Here one may ask two questions: (i) What is the influence that the context of an
estimation judgment task might have on understanding and use of proportional
reasoning? (ii) In what ways subjects make use of proportional reasoning in
estimation judgment tasks?

We use visual estimation of discrete quantities as a context for investigating the
above questions. In a previous study (Hershkowitz and Markovits, 1994; Markovits
and Hershkowitz in press), we started our investigations with 3rd graders (stage 1),
here we describe the second and third stages of our research on situations of visual
estimation judgment. In all three stages we presented subjects, via interviews, with a
series of visual estimation judgment tasks. Some of the judgment tasks are shown
below:

1) Noa and Gal were shown this dot picture
for a short period of time and asked how many
dots they saw. We know that there are 20
dots in the picture but the children, of course,
didn't know it. Noa said that there are 24
dots. Gal said 26 dots. Did one of them give a
better answer than the other or were both
answers equally good?

2) A picture. with 30 dots, was shown to Noa
and Gal. Gal said that there are.34 dots, Noa
said 26. Same question as 1.

3) Two dot pictures were shown to Noa; 20 in
picture 1 (P1) and 50 in picture 2 (P2). Noa
said 25 dots in P1 and 55 in P2. Was one of
the answers better than the other, or were both
answers equally good?

4) Two dot pictures were shown to Gal; 10
dots in P1 and 30 in P2. Gal said 15 in P1 and
40 in P2. Same question as in 3.

P1

PI

5) Two dot pictures were shown to Noa; 10 in p,
P1 and 100 in P2. Noa said that there are 11
in PI and 102 in P2. Same question as in 3.

7) Two dot pictures were shown to Gal; 10 in p

P1 and 1000 in P2. Gal said 11 for PI and
1001 for P2. Same question as in 3.
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Most of the above judgment situations, are proportional reasoning situations
of comparison type. The situational elements of our proportional reasoning
situations, have well-distinguished characteristics:

Each ratio in the proportion expresses two different variables (the estimate or the
error and the quantity to be estimated) which have the same measure (number of
dots) and unit (dot);

The absolute error calculation is an additive one. This may cause a delay in the
development of the child's multiplicative reasoning;

The size of the quantities involved (We use "A" and "C" to denote the estimates
for P1 and P2 , "B" and "D" for the quantity to be estimated in P1 and P2
respectively.) are quite big, while in many classical situations the numbers are
small;

The two quantities to be estimated are of different order of magnitude (ranging
from 5 to 1000 dots), while in the popular research situations, such as the
example of Mr. Short and Mr. Tall (Karplus et al., 1974), the numerical values of
the variable are of the same order;

The quantities are discrete, which means that there is no absolute error less than
one. etc;

In addition, in our case the two ratios to be compared differ dramatically one
from the other, in contrast to ratios involved in classical proportional tasks. This
characteristic may emphasize the need to make the comparison between the ratios,
rather than the comparison between one variable only, because the subjects may
see and feel that 1 out of 10 is really different from 1 outof 1000.

In the following we briefly describe results and conclusions from stage 1 and move
to describe the results of stage 2 and 3. At the end we discuss the main trends govern
the three stages.

Stage I: Towards proportional thinking via judgment of visual
estimation

In this stage we first presented twelve third grade students, via interviews, with
several visual estimation tasks, and then with a series of the above visual estimation
judgment tasks and a few more. We found that all children in this group, except one,
started from a pure additive judgment. But, half of them were pushed by the visual
component which is integrated with all the above characteristics of the judgment
situations, towards qualitative proportional reasoning. These children apply
considerations of easy/difficult in their judgment situations, which are quite natural
when the quantities became quite big and on different scales. The easy/difficult
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considerations led them to see the error in relation to the quantity to be estimate,
rather then as absolute difference.

We therefore decided to trace the development of one child (Amir) over a period of
three years to see if and how his thinking processes progress in proportional
situations of judgment in visual estimation.

Stage II: A longitudinal case study of the development of judgment
reasoning

Amir was interviewed five times from the age of eight to the age of eleven. In
each interview Amir was first presented with several visual estimation tasks, and then
with a series of visual estimation judgment tasks. In the following we present in brief
the development of Amir's reasoning over three years.

First interview - age of eight, second grade.

During the entire interview Amir showed an "additive" behavior. For example, in
where A=11, B=10, C=101 and D=100, he said that both answers are the same. The
interviewer raised the issue of easy/difficult, but Amir was captured by the
mathematical fact that 1=1. He answered that "she missed by the difference of 1 in both
cases", to the interviewer's question "from how nzany dots did she miss by I in each
case?"

Second interview - age of eight and a half, third grade.

Amir started to use arguments of easy/difficult. He did not use the phrase
"difference" anymore, but rather the phrase "out of". He argued that more dots in
the quantity to be estimated means more difficult" and hence a better answer. He
systematically based his responses on the above idea and said, for example (when
presented with the same .task as in the first interview), that P2 is better even if the
estimate (C) would be 105, 120 and even 150. Only when we continued to what he
considered as very extreme cases he started to consider also the relationships
between the error and the quantity to be estimated, and said: "In the case of 200, PI
is better, because 200 is already 100 too much."

Third interview age of nine, third grade.

Amir continued to use easy/difficult arguments. On the whole, he continued to think
that more dots means more difficult, thus P2 is better. But he used also mathematical
proportion for the first time. For example, in the task where A=11, B=10, C=120
and D=100, Amir said that:

"PI is better. She missed by I. In P2 she missed by 20, and it is too much. It is 1/5
of the number of dots, of a hundred, although in P2 there are more dots."

We continued to change quantities, and Amir gave his judgment for each new
situation. Sometimes he moved to easy/difficult consideration. He also added that:
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"there is a certain point for which one answer is better than the other, a certain
point that makes sense."

Fourth interview - age of ten, fourth grade.

Amir exhibited proportional reasoning. To overcome the difficulty in comparing two
fractions (ratios), Amir calculated the value of what he called the "certain point"
which is actually finding a value for C (the forth value in a proportion) that makes
the two ratios equal. Then he compared this value to the number given as C in the
situation. He was able to use this type of calculation in all the judgment tasks we
presented to him. For example in the task where A= 6, B=5, C=110 and D=100,
Amir calculated the "certain point" - 120, saying that if C is less than 120, P2 is
better, but if C is more than 120, then P1 is better. But then he added:

"On a second thought, P2 is better, because P1 is out of 5. You can have one
thought, for example, you can multiply and divide, but you can have a second
thought that P2 is better, because it is out of 100."

From this interview it is clear that Amir is able to judge the situation using
proportion, but it seems that he is not sure whether it is appropriate to use
proportional calculations in the situation presented to him, or easy/difficult
considerations.

Fifth interview age of eleven, fifth grade.
Amir demonstrated quantitative proportional reasoning in each of the situations
presented to him. He immediately calculated the "certain point" without even being
asked. But, again he expressed the dualism of the two parallel lines of reasoning;
The mathematical line, in which one is supposed to calculate, and the situational line.
Amir used the same way of calculation as in the fourth interview. He performed the
calculations quickly and was very confident.. When asked what about 10 dots in P1
where the child said 11, and 100 dots in P2 where the child said 105, the following
conversation took place:

Amir: If he would have said 110, both answers would be the same. But still, P2
is much more difficult, there are more dots, the quantity is much larger.
Actually, there is a theory based on calculations, that says that if there are 110
and II, it is the same. But there are exceptions; even if he would say 150, it
would be great. .From the mathematical point of view, it is equal. But the eye
cannot get the 100 dots, so it is not exactly the same.
Interviewer: What is the mistake he could do in P2?
Amir:A very large one, a few tens. Even more than 50.
Interviewer: And what about the mathematical calculation?
Amir: The mathematical calculation does not always apply because the eye is
not mathematics. If he was allowed to look at P2 ten times longer than he was
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allowed for P1, than the mathematics would work. There is mathematics and
there is reality, unless you allow a different amount of time.
Interviewer: Isn't it that the mathematics has to be taken into account?
Amir: I am not going to explain to you in detail how the eye processes
information. But when the eye gets the dots it is difficult to calculate what the
number is at the same time. The larger the number, the more difficult it is to
understand this number. But this does not work according to mathematics. Our
body is not managed by mathematics.

Over the three year course of the study it was possible to observe two changes in
Amir. First of all, it is clear that his thinking has changed with time with respect to
the judgment situations. His original thinking classified as additive reasoning,
progressed to complete proportional reasoning with time. This was a gradual process
whose stages could be traced by the interviews. In addition, Amir's attitude to
mathematics and numbers has also changed. In the first interview, the given numbers
overcame reality. Amir agreed that P2 was more difficult, but the mathematical fact
that 1 = 1 , was much stronger. In the last interview, Amir claimed that mathematics
does not always work, and his situational or "real world" considerations overcame
mathematics considerations.

Stage III: Proportional reasoning considerations and/or situational
considerations in the adults' judgment of visual estimation

In order to deepen our study of judgment situations in the context of visual
estimation, we gave a series of such tasks to adults. Ten groups went through this
activity. The participants in each group were in service and pre service teachers. The
tasks were presented one at a time to the above groups and the participants were
asked to write down their answers.

From observing the teachers' work and the analysis of their responses, it became
pretty clear that in each group there were two different approaches. The first
approach consisted of using proportional reasoning and hence proportional
calculations only. The second approach consisted of using proportional calculations
up to a certain point, and then abandoning them in favor of situational considerations.
These teachers used proportional reasoning when the four different quantities were
small and with the same order of magnitude. When the two ratios were of different
order of magnitude, they moved towards situational reasoning. This change of
strategy was followed by many debates concerning the way they should answer. They
asked for more time and it was clear that they were bothered by these tasks. The
questionnaire sessions were always followed by a very heated debate among the
teachers having different approaches.

As an example we bring here a group of ten pre service and in service teachers.
Six teachers calculated the relative errors in all tasks, and relied on these
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proportional calculations to decide which answer is better. The other four, used
relative error calculations when the numbers of dots in both pictures were close, but
used considerations of easy/difficult when the numbers were far apart. For example,
one of the teachers, when presented with 5 dots in the first picture where the child
said 6 and 100 dots in the second picture where the child said 130, said:

"Now the child has an error of 30% in picture 2, but I still think that although
the error is big, since there are so many dots it is much more difficult than to say
6 for 5 dots, which is an error of 20%. That's why the answer for P2 is better."

This teacher continued to use this argument in the task with 10 dots in the first
picture where the child said 11, and 1000 dots in the second picture where the child
said 1500 but it seemed that she debated the issue with herself:

"Even though the relative error in P2 is much bigger than the error in P1, one
should not consider the relative errors only. In my opinion, this is true especially
when one has to deal with such small numbers as 10, and such big numbers as
1000. That's why it is difficult for me to decide which answer is better. But I still
think that the student who was able to estimate the number of dots in the second
picture to be around 1000, gave a better answer."

Immediately after they turned in their questionnaires, the teachers started to
argue whether one should use mathematical calculations, or other considerations
should be taken into account. The ones that were pro calculations said that since in P2
there are more dots, one is allowed to be off by more dots, while in P1 only by one
dot. The others said that one needs others considerations here, not the mathematical
ones, since the eye is involved, and you can easily see 5 dots, but the eye cannot
capture 100 dots. During this discussion one of the teachers who used calculations
was convinced to move to the "opponents" group. But the argument did not end,
when the class ended. The teachers continued to argue, trying to convince each other.

Concluding remark
According to Piagetian theory (Inhelder & Piaget, 1958), Amir, in his last

interview (the second stage of the study), and teachers (the third stage of the study)
were in the last stage of proportional reasoning, the formal operational stage. We
saw that at the same time that they could act mathematically, they were bothered by
situational considerations, especially when the quantities were far apart. These were
considerations of visual nature which in Amir's words belong to the ways in which
"the eye processes information", since it takes longer to evaluate pictures with many
dots. Amir is intuitively expressing well established research on human perception
(Folk et al, 1988). Thus, Amir as well as the teachers have reached the point, in
which they had developed a "criteria by which to judge which of the perspectives is
appropriate in a given situation" (Lamon, 1993). Although this study is not a
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longitudinal one (except the three years of Amir), it gives some indications of 'a
developmental process.
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AN ANALYSIS OF THE TEACHER'S ROLE IN GUIDING THE
EVOLUTION OF SOCIOMATHEMATICAL NORMS

Kay McClain Paul Cobb
Vanderbilt University

The analysis reported in this paper documents the teacher's proactive role in
guiding the development of sociomathematical norms. In particular, we will first
document how the emergence of the sociomathematical norm of what counts as a
different mathematical solution made possible the negotiation of what counts as a
sophisticated mathematical solution. We will then document the evolution of what
counts as an easy, simple, or clear mathematical contribution from the norms of
different and sophisticated mathematical solutions. In the analysis we will also take
account of the teacher's learning that occurred as she participated in the negotiations
of the sociomathematical norms. The analysis was informed by and builds on
Yackel and Cobb's (1996) discussions of sociomathematical norms.

Current American reform efforts aimed at improving students' mathematics
education typically characterize the teacher's role as that of a facilitator of learning
(National Council of Teachers of Mathematics, 1989, 1991). In such accounts, the
teacher is seen to actively guide the development of classroom mathematical
practices and individual students' mathematical activity (Cobb, Boufi, McClain, &
Whitenack, in press). However, the facilitator metaphor can be interpreted as
characterizing the teacher's role in passive terms. In such interpretations, teaching
is portrayed in terms of what the teacher does not do when compared with
traditional instructional practices. Smith (1996) points out that in the current era of
reform, delineating inappropriate teaching practices leads to a sense of loss of
efficacy for teachers. Instead, he argues that research needs to offer proactive
alternatives that frame a positive vision of reform classrooms. The proactive
actions of teachers who view teaching as a problem-solving activity during which
they modify their knowledge, instructional practices, and beliefs to resolve
situations that they find problematic or surprising in the course of their practice
contribute to efforts aimed at improving classroom practice. It therefore seems
essential to understand how such teachers proactively support their students'
mathematical development.

The purpose of this paper is to document one teacher's role in guiding the
development of sociomathematical norms which engendered the mathematical
beliefs and values advocated in American reform documents. As a result, this paper
should contribute to our understanding of what reform teachers actually do, to
support their students' mathematical learning. In the course of the analysis, we will
document the process by which the sociomathematical norms evolved in one
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classroom. In particular, we will first describe how the emergence of the
sociomathematical norm of what counts as a different mathematical solution made
possible the negotiation of what counts as a sophisticated mathematical solution. We
will then document the evolution of what counts as an easy, simple, or clear
mathematical contribution from the norms of different and sophisticated
mathematical solutions.

The analysis in this paper will build on Yackel and Cobb's (1996) discussion of
sociomathematical norms and extends it in two ways that make this paper
significant. First, whereas Yackel and Cobb documented the development of
sociomathematical norms in a post hoc analysis, this paper focuses on a classroom in
which the teacher consciously attempted to guide the development of
sociomathematical norms and thus influence her students' beliefs and values about
what it means to know and do mathematics. Second, whereas Yackel and Cobb
(1996) identified particular sociomathematical norms, we document the process by
which one sociomathematical norm emerged from another in the course of a
classroom teaching experiment. Thus, whereas Yackel and Cobb highlighted a
phenomenon they considered significant, we analyze the process by which a teacher
proactively supported the development of sociomathematical norms.

The sample episodes discussed in this paper are taken from a first-grade
classroom with six and seven year old students in which the teacher participated as a
collaborating member of a research and development team during a four-month
teaching experiment. In the following sections of this paper, we first provide
background information about the teacher and her classroom and describe the data
corpus. We then document the teacher's proactive role in initiating and guiding the

evolution of sociomathematical norms.
Ms. Smith's Classroom

The majority of the eleven girls and seven boys in Ms. Smith's first-grade
classroom were from middle or upper middle class American backgrounds. There
were no minority students in the classroom, although a small percentage attended
the school. Ms. Smith's classroom is of particular interest because an analysis of
videorecorded interviews conducted with all students at the beginning and end of
the teaching experiment indicated that their mathematical development was
substantial. Students who, at the beginning of the year, did not have a way to begin
to solve the most elementary kinds of story problems posed with numbers of five or
less had, by mid-year, developed relatively sophisticated mental computation
strategies for solving a wide range of problems posed with one- and two-digit
numbers.

The teacher, Ms. Smith, was a highly motivated and very dedicated teacher in
her fourth year in the classroom. She had attempted to reform her practice prior to
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our collaboration and voiced frustration with traditional American mathematics
textbooks. Although she valued students' ability to communicate, explain, and
justify, she indicated that she had previously found it difficult to enact an
instructional approach that both met her students' needs and enabled her to achieve
her own pedagogical agenda. When we began working with Ms. Smith, it soon
became apparent that she continually reflected on and assessed both the instructional
activities she used and her own practice. Ms. Smith was seeking guidance with her
reform efforts; we were seeking a teacher with whom to collaborate in a
developmental or transformational research project.

Data Corpus
Data collected during the four-month teaching experiment consist of daily

videotape recordings of 53 mathematics lessons from two cameras. Additional
documentation consists of copies of all the students' written work, daily field notes
that summarize classroom events, notes from daily debriefing sessions held with
Ms. Smith, and videotaped clinical interviews conducted with each student in
September, December and January. A method described by Cobb and Whitenack
(1996) for conducting longitudinal analyses of videotape sessions guided the
analysis. This method is consistent with Glaser and Strauss' (1967) constant
comparative methods for conducting ethnographic studies. It involves constantly
comparing data as they are analyzed with conjectures and speculations generated
thus far in the data analysis. As issues arise while viewing classroom
videorecordings, they are documented and clarified through a process of conjecture
and refutation.

Sociomathematical Norms
Mathematical Difference

From the beginning of the school year, Ms. Smith encouraged students to offer
different mathematical solutions during whole class discussions. However, she and
the students did not initially appear to have an agreed-upon understanding of what
was a difference that made a mathematical difference. Further, as Ms. Smith
accepted all the students' contributions, the classroom discussions consisted of a
sequence of disjoint and sometimes repetitive explanations. From our perspective
as observers, there was little reason for students to listen to each others'
explanations, and many seemed to be inattentive. After focusing on both the
students' activity and the nature of the discussions while viewing classroom
videorecordings, Ms. Smith developed a reason and motivation to proactively guide
the negotiation of the norm of mathematical difference.

The first occasion when Ms. Smith intervened occurred on September 27. The
task involved Ms. Smith showing an arrangement of chips on the overhead
projector for two or three seconds and asking the students to tell how many they
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saw and to explain how they saw them. In one instance, she showed a row of three
chips and a row of two chips beneath. Two students explained that they had seen
five as three and two. A third explained he had seen five as four and one. Ms.
Smith then asked for a different solution.
Jane: I saw three plus two 'cause.. .
T: (interrupts) Okay, that's the same. . . we've had three plus two. Thanks a

lot. We're getting some of the same ways. We're getting some. . . you're
telling me some of the ways we've already seen. If you are sure you have
another way now I don't mean another way to go 1, 2, 3, 4, (points to the
chips). I don't mean just another way to count but if you grouped them in
another way or you saw them in another way that's what will help us
(emphasis added).

In this exchange, Ms. Smith attempted to justify why Jane's solution did not count as
different. In doing so, she distinguished between counting and grouping solutions
and tried to clarify that different for her meant grouping the chips in a different
way but not counting them in a different order. We should stress that although Ms.
Smith was extremely directive in this initial exchange, criteria for what counted as
different soon became a topic of genuine negotiation. In addition, we note that Ms.
Smith appeared to articulate for herself as well as for students what counted as
different as she participated in this negotiation process.

As the semester progressed and the norm of mathematical difference became
established, students began to actively think about ways of generating solutions that
counted as different. This is illustrated by an episode that occurred on October 20
where a single ten-frame was used to pose problems on the overhead projector.
The ten-frame was described to the students as a pumpkin crate and counters were
placed in some of the squares to represent designated pumpkins packed in the crate.
Ms. Smith showed a single ten-frame on the overhead for two or three seconds with
five chips arran!ed in rows of three and two (see Fi!ure 1).

Figure 1 Ten-frame wi h five chi .s.

She then asked students to explain how many pumpkins it would take to fill the
crate. After Kitty had explained that she saw five as groups of three and two, Dan
made the following contribution:
Dan: Um, the way I saw was, I saw four things and another one and I know,

okay, five plus five makes ten. .

T: Okay.
Dan: I had the same theory as Kitty. . .
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T: Okay.
Dan: . . . but I did it a different way.
Here Dan both indicated the similarities between his and Kitty's solutions, and
justified why his solution was different. In doing so, he was able to judge for
himself what was a difference that counted as a mathematical difference in this
classroom. In exchanges such as this, the students both acknowledged their
obligation to share only different solutions and contributed to the negotiation of the
meaning of different in a range of task settings.

Ms. Smith and the students established a basis for communication as they
developed a taken-as-shared understanding of mathematical difference. Classroom
discussions no longer consisted of a sequence of independent contributions, but
instead explanations tended to build on or make reference to others. As a
consequence, the students had a reason to actively participate by attempting to
understand others' explanations. Further, they became able to judge whether a
contribution counted as different as they participated in the negotiation process.
This made it possible for them to act as increasingly autonomous members of the
classroom community. This devolution of responsibility was pedagogically
significant as it constituted a change in the way Ms. Smith perceived her role and
that of her students.
Sophisticated Solutions

We have seen that the distinction between counting and grouping solutions
emerged relatively early in the school year and became a part of the vocabulary of
the classroom. The various counting methods identified by researchers did not
count as different in this classroom. Instead, counting was viewed as one way to
solve a task that was distinguished from a range of different grouping methods. In
the course of classroom discussions, Ms. Smith began to indicate that she
particularly valued grouping solutions. Eventually, grouping solutions came to be
viewed not only as different but also as more sophisticated than counting solutions.
Thus, a distinction initially made while negotiating what counted as different
subsequently served as a basis for the negotiation of what counted as a sophisticated
solution.

As an illustration, consider an episode that occurred on January 10 in which Ms.
Smith posed the following task: Eight cookies are in the cookie jar and I add nine
more. How many cookies are there now?
Jon: See I started with nine and then added the eight.
T: You started with the nine and then you added eight? Did you count up to

eight, is that what you did?
Jon: By fours.
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T: Okay. Thank you. Jon said he did it by counting. Did someone else figure
it out a different way? Bob?

Ms. Smith indicated that counting was a legitimate way to solve the task. Crucially,
however, she did not redescribe or notate Jon's solution whereas she did so when
each of the other seven students who made contributions in this episode explained
thinking strategy or grouping solutions. As an aside, we should stress that Ms.
Smith ensured that all students continued to participate by actively soliciting
counting solutions from those who she judged were not yet capable of generating
thinking strategy solutions. Nonetheless, in treating the two types of solutions
differentially, her acts of redescription indicated that grouping solutions were
particularly valued.

The emergence of the norm for what counted as a sophisticated solution
demonstrates the evolving nature of classroom discourse and offers a counter
argument to a belief in a pre-determined set of acceptable responses. This norm
had not been discussed by the research team nor had the teacher planned to
explicitly encourage grouping solutions in this way. It instead reflected the
teacher's understandings of the students' activity in relation to the tasks posed. The
establishment of this norm was pedagogically significant in that it enabled students'
problem solving efforts to have a sense of directionality. The manner in which Ms.
Smith proactively supported its emergence appeared to contribute to her
effectiveness in supporting her students' mathematical development. By January,
most students used thinking strategies flexibly to solve a range of tasks.
Easy, Simple, or Clear Solutions

As was the case with the negotiation of the norm of sophisticated mathematical
explanations and solutions, the norm of an easy way to solve tasks also evolved
from the prior negotiation of different solutions. Easy and sophisticated designated
characteristics of the various solutions that were judged as different. In addition,
the notion of a sophisticated or an easy solution also made possible the further
elaboration of the norm of mathematical difference. Easy or simple was initially
constituted as a characteristic of an arrangement or pattern of items and indicated
that it was possible to see how many there were almost immediately without
counting. Later, it evolved into a means of discriminating between different types
of grouping solutions. Thus, as was the case with sophisticated solutions, the norm
of what counted as an easy solution built on the distinction between counting and
grouping solutions.

We have already noted that one initial type of instructional activity involved Ms.
Smith using an overhead projector to briefly show students arrangements of chips.
Later, the students were first shown an organized arrangement (e.g., a domino five
pattern) and then a random arrangement containing the same number of chips.
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Although the students offered different ways of determining how many they saw,
the focus of the discussion soon shifted toward deciding which of the two
arrangements was easier to see and why. Most agreed that the organized
arrangement was easier because they could readily determine how many chips there
were by grouping (e.g., five seen immediately as four and one). It therefore
appeared to be taken-as-shared that an organized arrangement was much easier than
one that was just "scattered around." Ms. Smith summarized the discussion as
follows:
T: An easy way means a way where you don't have to count. Where you

don't have to count by ones to find how many. It means you could see a
group and you would know how many without counting.

It is important to note that this distinction between easy and hard arose as the
students attempted to solve the tasks by grouping. This reflection on their prior
activity provided students with the opportunity to not only clarify their
understanding of easy in the particular task situation, but to also further elaborate
their understanding of different. In doing so, it made it possible for them to not
only discriminate between easy and hard patterns, but later to create their own
patterns and have the language in which to adequately justify their judgments.

As the semester progressed, easy evolved from a characteristic of tasks into a
characteristic of solutions. Ms. Smith could then explicitly evoke it as a criterion of
what was valued. Students for their part began to reflect on the explanations of
others and judge for themselves whether or not they qualified as easy. This can be
seen in an incident that occurred on December 3. Ms. Smith posed the task: There
is fourteen cents in the purse. You spend seven cents. How much is left? Kitty had
solved the task using the arithmetic rack' starting with two rows of seven (see
Figure 2).

Figure 2. Arithmetic rack showing' Figure 3. Arithmetic rack after Kitty has
fourteen cents. taken away seven cents.

She then removed four from one collection of seven and three from the other,
leaving three and four respectively (see Figure 3). After she finished, Teri
suggested:
Teri: I think I know a way that might be a little easier for Kitty.
T: You think so?
Teri: We know that seven plus seven equals fourteen because we have seven on

the top and seven on bottom and (points to rack configured as in Figure 2).

The arithmetic rack is a device composed of two parallel rods. Each rod holds ten beads, five red and
five white. Students used the arithmetic rack extensively during the teaching experiment.
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. . It might be easier if we just moved one of the sevens on the top or the
bottom (points to each group separately).

T: You mean move a whole group of seven altogether?
Teri: (Nods in agreement looking at Kitty.)
At this point, easier had come to mean easy to comprehend or understand given that
there are different ways of grouping. For Teri and most of the students, moving
one group of seven was easier than partitioning each of the two collections of seven.
We would argue that her ability to make judgments of this type developed as she
participated in the interactive constitution of the sociomathematical norms of
different, sophisticated, and easy. As a consequence, she could act as an
autonomous member of the classroom community.

Conclusion
Throughout this paper, we have attempted to document the evolution of

sociomathematical norms in Ms. Smith's classroom. These sociomathematical
norms emerged as Ms. Smith reflected on and refined her practice in collaboration
with the research team. They were not predetermined criteria introduced into the
classroom from outside but were continually re-negotiated in the course of
classroom interactions. As students participated in this process, they learned to
make judgments about their own and others' solutions. The negotiation of the
sociomathematical norms of what counts as different, sophisticated and easy
solutions constituted the social situation in which the students developed the beliefs
and values that constituted their mathematical dispositions.
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ABSTRACT

This paper illustrates the practice of algebra teaching and learning as observed
in a middle-school classroom. Using a framework of analysis that takes activity
as the basic unit, I present a fine-grained study of one videotape segment in order
to characterize: (I) how traditionally rooted classroom processes are involved in
the transmission of mathematical knowledge; and (2) how teachers and students
negotiate the meaning of the mathematical objects (concepts and representations)
made available in the classroom.

INTRODUCTION

Issues of learning and teaching mathematical concepts and representations have been
traditionally studied within a cognitivist and formalist framework (Putnam, Lampert, and
Peterson, 1990). From this perspective, cognitive processes are viewed as pure forms while
the environment is factored out as variables only tangentially related to cognitive events.
Recent advances in theories of situated knowledge, however, have suggested that the study of
cognition ought to reconsider the role of sociocultural contexts and social life in the
emergence and evolution of cognitive processes (e.g., Lave, 1988; Lave and Wenger, 1991;
Saxe, 1991; Brown, Collins, and Duguid, 1989). According to this perspective, mathematical
concepts and representations are constructed and communicated within specific sociocultural
practices, while evolve in settings structured by social interactions and material resources.

In mathematics education, this situated approach has raised important questions
concerning psychological and didactic principles (Schoenfeld, 1989a; Lampert, 1990; Voigt,
1992, 1993; Lave, Smith and Butler, 1988; Resnick, 1989; NCTM, 1989; Greeno, 1989).
Much current research on classroom processes have considered these advances, and a
renewed body of challenging findings has been put forth. Cobb, Gravemeijer, Yackel,
McClain and Whitenack (in press), Voigt (1993), and Arcavi, Meira, Smith and Cassel (in
press) have done extensive analyses of the mathematics classroom culture. These authors
emphasize the study of negotiation of meanings in the classroom. Their works bring forth a
tension between mathematical conventions and formalisms, and the lively deconstruction and
reconstruction of mathematical meanings during classroom activities.

In order to characterize the processes involved with the negotiation of meanings in the
mathematics classroom, I discuss below three interrelated themes: (1) individuals'
participation in multiple practices; (2) the premises of communication constructed through
the cultural history of specific social groups; and (3) the conditions of negotiation and the
existing routines of action within specific activities. These analytical themes will then guide
the empirical study presented later in this paper.
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Individuals' participation in multiple practices. In an investigation of children's discursive
practices in several contexts, Walkerdine (1988) observed a nursery teacher as she used the
story of Golden Locks and the Three Bears as a way to contextualize and facilitate the study
of relational terms such as big, small, bigger, smaller etc. During the lesson, however, the
children tended to react negatively to questions such as "Is daddy bear bigger than mummy
bear?," even though they could make correct size comparisons in many other tasks in the
same lesson, during clinical interviews, and at home. Walkerdine argued that although in the
school task the bear-family from the story was intended to instantiate size differences only,
the occurrence of relational terms at home was strongly associated with mothers' control of
their children's behavior (e.g., in regulating food consumption). The author concluded that
those terms embodied for the children unequivalent relations of power within their own
families, and which were brought to bear during the classroom activity. By transforming a
story about size relations (from an instructional perspective) into one about family
relationships, the children developed a cultural interpretation of the bear-narrative. This
cultural reading resulted from the children's participation in multiple and shifting practices,
and their performance in the classroom could not be accounted for solely in terms of
knowledge about size relations. In this sense, analyzing the readings produced by students in
the classroom should also involve perceiving them as members of interrelated practices,
including but not limited to the mathematics classroom.

Premises of communication. Voigt (1993) argued that the classroom activity gives rise to
mathematical themes, or "networks of meanings taken-to-be-shared." (p. 12) Accordingly,
Saljo and Wyndhamn (1990) suggested that what becomes a theme in the mathematics
classroom is related to historically situated ways of doing, behaving, and communicating in
the school setting. Their research shows how expectations developed in the classroom form
premises of communication that will constrain and support teachers' and students' activity. In
order to evaluate their claims, Saljo and Wyndhamn asked 8th and 9th graders to use a table
of postal prices (reprinted in this page) to find the cost of mailing a letter weighing 120g. The

frequency of strategy choice among the students (whether they
just read off the table or calculated an answer) in two situations
(the question was given during a math lesson or a lesson on
social studies) revealed that most students in the mathematics
class (74.5%) attempted to calculate an answer (e.g., using
proportion rules or adding prices), whereas most students in the
social studies class (65.9%) simply read the correct answer
($7.50) from the table (a more efficient and adequate approach

to this problem). Saljo and Wyndhamn discussed these results in terms of premises for
communication, or expectations constructed on the basis of the everyday channels of
discourse open for teachers and students in the institutional space of schooling. They argued

that "the actions of individuals become subordinated to the "premises for communication' that

people assume to be relevant for [any] particular context." (p. 3) This adds to Voigt's (1993)

concept of mathematical themes as niches of action that belong to a specific activity structure

and share the same general motive, such as becoming "familiar with the mathematical

rationality in the long run." (p. 9)

Maximum
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Conditions of negotiation and existing routines of action. Accounting for the production
of meanings in school mathematical activity also involves looking at the microculture of
specific classrooms, its existing routines and the conditions for negotiating meanings.
According to Voigt (1993), "the microculture makes the meanings in the particular
interactions understandable, while at the same time, the microculture exists in and through
these very interactions." (p. 17) In Arcavi, Meira, Smith and Kessel (in press), we analyzed
the teaching activity of Alan Schoenfeld in one version of his well known problem solving
course at the University of California at Berkeley. That investigation revealed that the gradual
emergence of the classroom as "a microcosm of the mathematical culture" (Schoenfeld,
1989b) depends on a well negotiated system of meanings where the teacher may have a
predominant role in establishing "who talks, when, and how" through actions such as
discarding or postponing the students' contributions to classroom discourse.

Questions about participation in practices, communication, routines of action, and more
generally about the negotiation of meanings in particular settings, have been explored in my
research through detailed analyses of episodes from one eighth grade classroom, observed
and videotaped during one semester. The videotaped data consist of classroOm activities,
including the teacher's presentation of content, whole group discussions and small group
interactions. In this paper, I will present one illustrative example of the analysis carried out,
focusing on how teacher and students handle algebraic representations and procedures in a
"traditional" eight-grade classroom. The term traditional is used here to indicate didactic
practices based on route learning and rhetorical presentation of content. Of course, this does
not mean the absence of negotiation when the production of meaning is at stake; as the study
itself attempts to illustrate.

THE ANALYSIS

The sample study presented below discusses the emergence of mathematical
representations in classroom activity and illustrates how teachers and students in a traditional
classroom attempt to negotiate the meaning of algebraic models and procedures for verbal
problems. Additionally, the episode shows the influential nature of representational activity in
mathematics, and the problems that arise when the meaning of specific representations are
assumed as shared at times when they are in fact idiosyncratic creations of individual problem
solvers.

The episode involves the activity of a teacher and his students while they correct a take-
home set of problems on algebraic systems. The problem chosen to be discussed in a whole
group activity is stated in the worksheet as follows [Notice that the distance between the
corresponding sides of the rectangles 3m is represented in the diagram, but absent in the
text of the problem]:

A public park has a rectangular shape, as in the figure. If
the gardened area is 2640m2, and the park's total area is
3300m2, what are the park's dimensions?

3m_>
3m1

3m

3mt
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Called to the board to display her solution, a student (Dan) drew a diagram as the one below.
Notice that the student's first representation at the board transformed the worksheet diagram

in two ways: it produced a figural split of
the givens (the rectangles for the garden

y garden 3 + y + 3 total and total areas of the park), and included
the beginnings of a process of
mathematization that uses literals for the
dimension of various sides (e.g., the height

of the larger rectangle is now represented as "3+y+3"). Because the student was not
representing the problem but parts of its solution, and the geometrical referent of "3+y+3" is
unclear (the distances between the sides of the garden and the park 3m were omitted), her
diagram was not readily accepted by the teacher. As she had just drawn the diagram on the
board, the teacher approached her and asked about the meaning of the expression "3+y+3":
"This, what is it?". The student gestured on the diagram at the board, indicating the sides of
the bigger rectangle and said: "The size of the sides". The teacher replied with agreement
("Okay, nice!"), but did not pass this information on to the class. The student proceeded
writing an algebraic system as below:

f x.y = 2640
(3+y+3)(3+x+3)=3300

Soon after this algebraic formulation has been displayed; the students begun to raise
questions about the meaning of the expression "3+y+3":

SI*- Why 3 plus... 3 plus y plus 3? (Pointing to the diagram on the board.)
52- [Why is it 3 plus/
T- Can't you see the diagram there (in the worksheet)?
S3- Can you make it two x plus y? (This could mean, for example, 2(x + y), which may be

related to the garden's perimeter.)
T- Can you check it out with the diagram there (in the worksheet)?

The teacher assumed Dan's representation of the problem as obvious and, in replying to
the students' plea for explanations, simply directed them to the original diagram in the
worksheet (recall that the teacher himself did not promptly understand the drawing on the
board). After some confusion and inaudible overtalk, Dan resumed her work and developed
the procedure to solve the system of equations. A few minutes later, the teacher interrupted
and called the students' attention to follow Dan's activity: "Is everything okay?" Several
students replied negatively to the teacher's question, saying in chorus that they were
"understanding nothing". The teacher's remedial explanations at this point focused on the
algebraic procedure of substitution used to solve the system of equations. The student at the
board helped out, adding surprised that "this is the kind of system we have been solving for a
month!" While some students expressed understanding of the procedure, others returned to a
version of the question that caused the original confusion.

* With the exception of the student at the board (Dan), all other students will be referred to as
S (plus a number to indicate different individuals); 1' is the teacher.
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84- What is 3 plus x plus 3? What is that?!
T- Didn't you understand what the x means?
84- What is 3 plus x plus 3?
S5- No, 3 plus y plus 3!
S4- 3 plus y plus 3.
T- Give me the diagram there (in the worksheet).

S4 gave a copy of the worksheet to the teacher, as he gathered a few students around a
desk to answer the question. His explanations were not captured by the camera, and they were
presented only to a group of four children at the back of the class. In all, three episodes such
as the ones above emerged during the activity involving this problem, none of which seemed
to be resolved in any explicit way, or made available to the class as a whole. Although the
teacher himself was not clear at the very beginning about the representation proposed by Dan,
he made no explicit attempt to discuss its meaning with the students, restraining his action to
lecture about the algebraic rules that allowed Dan to manipulate the system of equations.

At this point, we can identify certain mismatches of objectives and communicative
resources that emerged in the interaction between the students and the teacher. These
mismatches produce regularities in the negotiation process (such as local support to specific
students), which might not depend overtly on rational argumentation. In the cases reported
above, such mismatches did not favor enhanced understanding of the mathematics on the part
of the students. Nevertheless, it served to establish the interaction routines that guide
mathematical activity and discourse in this classroom.

It is important to notice that, as mathematical objects, the meanings of "x" and "y" were
never explicitly discussed with the students until nearly the end of the episode when values
for these unknowns were calculated through the system of equations (x=44 and y=60). Even
then, the focus, was not on the expression that generated the students' questions ("what's
3+y+3?"), but on the meaning of "x.y" (that appeared in the system of equations but not in
the drawings at the board):

T- What is she finding? What is she determining when she solves this (pointing the system of
equations)?... What's x and y? (No reply from students)... (Notice that, in the system of
equations, "x" and "y" do not appear isolated but as, for instance, factors in a
multiplication --"x.y') What are they (x and y) representing? The rectangle, let's go back
to the geometry (pointing to drawings on the board).

S6- The side.
Dan- Oh god, not the side. X times... The height times the side/
T- The base.
86- X times y.
T- What is x times y representing?
SSS- The area.

From the perspective developed in this paper, we can identify communicative enclaves
that guide the selection of what mathematical objects are elected .for discussion and the
production of arguments. In this regard, the teacher had a prominent role in electing certain
objects and not others (e.g., the meaning of "x", or "x.y", but not of "3+y+3"). At the same
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time, the process of negotiating the meanings of these objects involved the students'
individual attempts to voice their concerns, even when they elected objects that were
underrepresented in the teacher's discourse. Of course, this created a tension that seems
unresolved in traditional classrooms where students' voices are neglected (Confrey, 1995).

At the end of this episode, with Dan having arrived at values for x and y (which do not
answer the original question about the park's dimensions because these unknowns refers to
sides of the garden!), one would think the task was over and the representation displayed on
the board was no longer an issue. However, the problem remained until the very end of this
session, as illustrated by the following dialogue:

T- Is there any question? (7' begins to move on to the following problem in the worksheet.)
S8- Wait, wait, I have... What is that, x+6, y+6? (Expressions that resulted from the

simplification of the original expressions "3+x+3" and "3+y+3", written in the system
of equations.)

T- (To S8) Here (pointing to the rectangle marked "total" on the board), it's x (the base) plus
6 (gesturing on the rectangle, indicating equivalent dimensions on both sides; notice that
the teacher does not use the correct figure --the garden-- to indicate the sum, possibly
causing confusion on the part of the student).

S8- Plus 6?
T- Yes (goes to the student's desk, and gestures over his worksheet).
S8- Ah! Now I understand.

There are many instances in the videos analyzed where the uncertainty of mathematical
objects is not resolved, causing teacher and students to speak of the meaning of sometimes
completely different referents. As Voigt (1993), I suggest that what is seen by teachers and
students in the "same" situation is ultimately ambiguous, not readily transparent, and only
partially accountable within the classroom. In the episodes above, we can identify a clash of
goals emerging from different participants, but also the involvement of teacher and students
in an activity where ambiguity is gradually resolved (mainly discard621) though a process of
negotiation (mostly implicit) inherent to mathematical teaching and learning.

DISCUSSION AND FINAL REMARKS

Achieving transparency and managing ambiguities in the classroom are complex
processes which requires the consideration of multiple viewpoints. As Voigt (1993) put it,
"the process of mathematization taken for granted by the experts become problematic when
the empirical phenomena are interpreted by subjects whose thinking is not so disciplined by
the regulations of a specific classroom culture." (p. 6) Ascribing meaning to mathematical
objects involves (beyond pure rational inferences) co-constructing the transparency and
collectively dealing with the ambiguities of those objects. For instance, teacher and students
in this specific classroom were negotiating over how representations might relate to problem
solving, what objects were to be elected in this process, and more generally what types of
discursive contributions may be valued. I have suggested elsewhere (Arcavi, Meira, Smith
and Kessel, in press) a model of mathematics teaching that takes into account the multiple
practices involved in the production of mathematical knowledge, the types of communication
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inherent in each of the practices, and the structure of actions that will allow sustained
negotiation of meanings in the classroom. (Sec diagram below.)

Professional Community Classroom Community

Doing Mathematics Teaching mathematics

is modeled in consists of ----i

Reflective presenting Rhetorical presenting

consists of

Modeling of Students'
problem solving contributions

builds toward 1

Classroom
mathematics doing

The model shows at the top level two loci of activity representing a contrast between
school and professional mathematics. While the later is characterized by doing mathematics,
we think of the former as a Complex structure where presenting mathematics is only a
generalized description of what actually happens. In classroom practice, two styles may
emerge: reflection and transmission. The reflective mode is constituted by (1) teachers'
modeling of discuss patterns and actions selected as inherent features of activities in the
mathematical community, and (2) students' contributions to classroom activities. The
modeling activities brings to the classroom an idealization of what it means to do
mathematics as a participant in the professional community. Modeling activities can emerge
in the classroom through (1) patterns of discourse (e.g., metacognitive questions through
which the students learn to decide what is mathematically acceptable), and (2) performances,
through which the teacher acts out particular forms of behaving (e.g., as a knowledgeable
member of the mathematical community, as a traditional teacher etc.) The transmission mode
appears to be an inherent and pervasive feature of classroom life, even in non-traditional
approaches where the reflective mode is sometimes laboriously planned and presented to
allow only certain kinds of developments to emerge at appropriate moments. Together,
reflection and transmission as constructed by the teacher are the basis for creating in the
classroom a microcosm of mathematical culture (Schoenfeld, 1989b), represented in the
figure above as "school math doing."

Different mathematics classrooms emphasize distinct aspects referred to in the model. In
the classroom analyzed in this paper, for example, rhetorical presenting seems to be the main
aspect of teaching. However, the teacher is also presenting a mode of problem solving that
relates to his own previous experiences as a member of a specific mathematical practice (of
professional math educators), in addition to his conceptions about what learning is about.
From this perspective, doing mathematics in the classroom (even traditional ones) always
bring together the teacher's and students' attempts to coordinate their multiple viewpoints,
"even if the participants do not explicitly argue from different points of view" (Voigt, 1993,
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p. 10). This process always involves building and negotiating specific forms of activity and
communication, and thus the negotiation of the meaning of specific mathematical objects.
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THE USE OF THE GRAPHING CALCULATOR IN SOLVING PROBLEMS ON FUNCTIONS

Vilma-Maria Mesa

University of Georgia, Athens, Georgia

ABSTRACT

This paper reports some findings of a study that involved eight students majoring in
mathematics education at the University of Georgia. The students worked in pairs and
solved two problems that asked for functions that matched some criteria. The students
were allowed to use the graphing calculator in one problem but not in the other. The
students required more time when the graphing calculator was used. The protocol
analysis showed that there were differences in uses of the graphing calculator when it
was available, depending on the type of problem. If the problem related to previous
knowledge, the students assigned the graphing calculator a verification role; if the
problem did not relate to previous knowledge, the students assigned the graphing
calculator an exploration role.

INTRODUCTION

Graphing calculators appeared in mathematics classrooms rather recently. Detractors
of the tool claim that the use of graphing calculators can deprive students of learning
basic computational skills that are important for their understanding of mathematical
concepts. Those who favor graphing - calculator use see it as a tool that frees students from
tedious calculation and lets them focus on more interesting activities, such as exploring,
conjecturing, searching, and concludingactivities that have been recognized as critical
for gaining a deeper understanding of mathematical concepts (NCTM, 1989). In relation
to problem solving and the role of technology, several researchers agree that more
important than developing proficiency in solving specific types of problems is
encouraging mathematical reasoning and investigation and establishing appropriate ways
to think mathematically. The technology needs to be seen as "a tool for problem posing
and problem solving [and not as] a tool created to 'teach' links between symbol systems
[because] such use can inhibit other kind of understanding" (Williams, 1993, p. 321).

As a cognitive tool, the calculator helps not only to reinforce established modes of
thinking, but also to support cognitive growth and change on the part of the user
(Ruthven, 1992, pp. 94-95). In a recent study, Dick (1996) has pointed out the
capabilities of the zooming option of the graphing calculator for understanding the
"holes" in graphs of functions (y = (x2 - 1)/(x - 1)), the local linearity of functions (sin x,
very near the origin), and the behavior of slope fields. Other studies that have analyzed
the impact of the graphing calculator in the classroom highlight the importance of using
the tool not as an add-on element but inside a redefined curriculum. The research
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program developed by the "una empresa docente" group in Colombia as part of the
PLACEM' project studied the effects of the introduction of the graphing calculator in the
classroom on different aspects of instruction.' The group, for which the more valuable
result was the dynamic process between being teachers, curriculum developers and
researchers, produced more than 100 problems in different formatstables, construction
of objects, analysis of families of functions, word problems, and investigationsand
centered a pre-calculus course on the solving of one to three of these problems in each
class period.3 One of the main results of the study in Colombia was to expose the
mathematical, pedagogical, and cognitive complexity that these problems have, and to
show that the micro levelthe level at which the teacher and the students interact in the
construction of the mathematical knowledge through the' implementation of a curriculum
design (Carulla & Gomez, 1996, p. 161)still needs to be 'split' to understand what
happens at the student's level in relation to the graphing calculator and to the
mathematical knowledge. The question remains open as to the student's interaction with
the graphing calculator and how it relates to the process of solving a problem. In this
paper I report some results from a study (Mesa, 1996) addressing that question.

Loci for Research
In any situation involving optional calculator use, there is, on the one hand, a teacher

who wants to work with some mathematical content for which he or she has to choose a
task and a format. On the other hand, there is a group of students who are given the task
and who may use the graphing calculator. The mathematical content and the type of task
determine the type of questions and conjectures a student may formulate during the
problem-solving session. They also define the teacher's predictions of what the students'
performance, possible conjectures, and use of the graphing calculator would be. The
questions the students ask during the problem-solving session may require the teacher's
intervention. The predictions that he or she made (or did not make) will determine the
type of help that the teacher will give the students. In this process there are some key
points that can be examined (see numbered boxes in Figure 1):

1. Once the mathematical content and the task have been selected, one locus for
research is the predictions that the teacher can make about the performance of a
student, the conjectures he or she is going to pose, and the expected uses of the
graphing calculator. According to the content and the type of the tasks proposed,

I PLACEM Project, Proyecto Latinoamericano de Calculadoras en Educacidn Matemotica [Latin
American Project of Calculators in Mathematics Education] has been coordinated by Patrick Scott,
University of New Mexico, and supported by Texas Instruments. The participant countriesare Argentina,
Brazil, Chile, Colombia, Mexico, Costa Rica, USA, and Venezuela.
2 See Carulla & G6mez, 1996; Mesa & Gomez, 1996; and Valero & Gomez, 1996.
3 See Gomez, P., Mesa, V., Carulla, C., Gomez, C., & Valero, P., 1996.
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some differences in these three aspects can be established. An analysis of the
teacher's reasons for using specific content is also pertinent.

2. During the process of solving the task, another locus is the type of help the

students require from the teacher or from the graphing calculator, the type of
questions they ask related to the problem, and the conjectures they pose during the

solution process.
3. Once the task is finished, the students' and teacher's performance serve as

material for contrasting the teacher's predictions and the students' performance.

Before the
session

During the
session

Mathematical Content
and Type of Task

After the
session

(1)
Teacher's Predictions of
a. Students' Performance
b. Possible Conjectures
c. Use of the Graphing Calculator

Type of Questions (2)
Type of Help

Conjectures

V

Students' Performance Teacher's Performance
(3)

Dotted lines between arrowheads can be interpreted as a dependence relation; the
continuous line indicates a source of information for making comparisons.

Figure 1. Diagram of problem-solving session with graphing calculator.

In the study reported here I took the role of the teacher for the processes of analyzing

the task and of making predictions related to the situation. I assumed the role of

researcher during and after the problem-solving session. Acting as a researcher, I took`the

teacher's predictions as a script for guiding the students in their process. My interest was

in what the students did. I was not interested in setting or analyzing learning objectives.

The study involved college students majoring in mathematics education working in pairs

solving two problems in which they had to find functions that matched some criteria. This

paper reports the findings in relation to the following question:
What roles does the graphing calculator play in the problem-solving activities?

a. Do students spend more time when allowed to use the graphing calculator than

otherwise?
b. Is the graphing calculator used more in episodes of exploration than in episodes of

implementation or verification?
Answering the question demanded the use of the time in minutes that the students spent

on the problem and on each episode in problem solving as a necessary variable for
analysis. The type of problem and availability of the graphing calculator were the other

variables relevant for making a comparison.
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METHOD

Four groups each of two undergraduate students majoring in mathematics education
at the University of Georgia worked the two problems shown in Figure 2..4 Two sets of
tasks were prepared. In the first set the graphing calculator was allowed for solving the
second problem but not for the first. In the second the graphing calculator was allowed
for the first but not for the second. Two different groups solved each set. Before the
session, the teacher made predictions of students' performance in relation to possible
strategies for solving the problems and possible difficulties. Predictions about possible
conjectures and uses of the graphing calculator were also made. A set of hints was
produced for overcoming the difficulties. The students were asked to work in pairs to
make prominent their decision-making processes. Each group worked alone:5 the
researcher monitored the activity and was ready to give the prepared hints when the
students were stuck or asked for help. Once the students finished, a short interview was
conducted asking the students about the problems and the use of the graphing calculator.
The sessions were recorded and videotaped. Each session was transcribed. The product
and process variables achievement of the solution to each problem, the heuristic
processes and algorithms used, and the difficulties the students encountered in the process
(Kulm, 1984, p. 2)were made explicit. A framework for analyzing the transcriptions of
the students' problem-solving session was adapted from the work of Schoenfeld (1985)
and Artzt and Armour-Thomas (1990) and used to parse the protocols into episodes of
different types: Read, Analyze, Explore, Plan, Implement, Plan and Implement, Verify,
and New Information and Local Assessment. In this paper I report only the results
obtained from the protocol analysis.
Problem 1: There are two functions, f(x) = (x h)2 + k and g(x) = alx - bl + c such that the solution to the
inequality f(x) g(x) is the interval [2, 5]. What are the functions?

Problem 2. Give one expression for each of the functions shown:

20 20

15

10

-3 -2 -I

01

Chosen from a larger set of nine problems that were tried out in three different classes.

5 The students in each group had been working together at least two months.
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10

Figure 2: Problems so ved by the students.

RESULTS

Table 1 shows the time in minutes each group spent working on each problem. The
underlined number corresponds to the session when the graphing calculator was
available. Observe that when the students had the graphing calculator, they required more
timein one case twice as muchthan the time needed when the graphing calculator was
not available.
Table 1: Time in Minutes Used to Solve Each Problem by Each Group.

Group Problem 1 Problem 2 Total Time
1 14.1 39.3 53.4

2 34.0 21.1 55.1

3 16.3 25.6 41.9
4 26.9 22.3 49.2

Figure 3 shows, by episode type, the total time in minutes in which the graphing
calculator was used in Problem 1, and immediately below, the same information for
Problem 2. Each bar represents the sum of the time allocated to each type of episode by
each pair of groups. Note that the graphing calculator was not used much to solve
Problem 1 (21% of the time). In this problem the students did not use the graphing
calculator in Analyze or Plan episodes, but used it a little during in the Plan and
Implement episode (11%). Observe that the graphing calculator was also not used
extensively in the Explore episodes (0.8%). In this problem, a large amount of time was
devoted to episodes on Plan and Implement (65%) in comparison to Analyze or Explore
episodes. Local Assessments and New Information were done without graphing
calculator. In Problem 2 the graphing calculator was used longer (73%) than in Problem
1. Also there were no Plan or Implement episodes that occurred separately. The Local
Assessment and New Information episodes did not involve the graphing calculator,
whereas Explore episodes were done more than the half of the total time with it (54%).
Note that when the Analyze and the Plan and Implement episodes took more time (60%
more, and more than 300%, respectively) in Problem 2.
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Time in minutes 25
Problem 1

20

15

10

. .0
Read Analyze Explore Plan Implement Plan- Verify Local Ane,ncment

New Information

Time in minutes 40

30

20

10

Problem 2

Implement

1111
Read Analyze Explore Plan Implement Plan- Verify

Implement Local Assessment

New Information

Without Graphing Calculator 0 With Graphing Calculator

Figure 3: Time spent on each type of episode in Problems 1 and 2, with and without the graphing
calculator.

CONCLUSIONS

What probably influenced the time allocation the most was the students' familiarity
with the problem, its content, and the procedures involved. The problems were not
recognized by the students as. 'standard' problems of high school mathematics. The
students were more easily engaged in solutions for Problem 1, where the general
expressions of the functions were known and the conditions were more familiar. Problem
2 was more difficult for them. The skills needed to solve this problem according to my
predictions were in every case beyond their previous knowledge. The hints were totally
associated with one specific plan of solution (to find the roots for writing a factored
expression using those roots). When given these hints, the students invariably
incorporated them into their own solution (translation and dilation) before attempting a
radical change in their plan. This phenomenon might be interpreted as a concrete example
of what Suydam said in 1982 referring to four-function calculators:

Calculators are an effective aid in problem solving ... when the problems to be
solved are within the scope of the child's ability to solve them using paper and
pencil. (cited by Hedren, 1985, p. 163)

The students were unable to assess the relevance of the given hints because the
content of the hints was unfamiliar to them. As a consequence, the need to incorporate
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the hints into their solutions added time to their exploratory processes. It is important,
nevertheless, to remark that the hints helped them solve Problem 2. The students' greater
or lesser familiarity with the content and procedures related to the problems may also
explain why in Problem 1 there were almost no exploratory processes. Instead, the
students were engaged in producing the solution following their planned steps, and so
they used the graphing calculator mainly for verification, as a back-up for their work.

Another interpretation has to do with subjects' experience with the graphing
calculator. The problems they solved belonged to a curriculum that incorporated the
graphing calculator as an everyday tool. To give the students these problems to solve is,
in some sense, like "dropping" a graphing calculator into the classroom, thinking that that
action will be enough to foster students' problem-solving skills. The claim is then that a
similar experience in which the participants had been exposed to these types of problems
would certainly yield different results.

This study provided some evidence related to the way in which problems are posed. It
seems to support the claim that if the problem relates to something the students have seen
before, they will be willing to ascribe a verification role to the graphing calculator. In this
study the graphing calculator proved to be crucial for letting students detect a mismatch.
When the students engaged in finding the mistake, the graphing calculator offered them a
handy tool for checking an alternative to fix it. If the graphing calculator had not been
present, the students might have missed the opportunity to appreciate the problem from
another perspective.

We need to let the students play more with the graphing calculator, to learn its
potential and its shortcomings so they can gain confidence with it. We need to provide
problems that can be solved either with or without a graphing calculator but such that if
the graphing calculator is used, the students can pursue different approaches, do more
exploration, and make more generalizations. The problems have to provide an
environment where exploration is important, but then we, as teachers, need to provide
limits to that exploration. The use of the graphing calculator needs to go hand in hand
with the teaching of skills in making consistent and systematic explorations.

In the cases in which the students in this study knew how to solve the problem by
paper and pencil, they assigned the graphing calculator a verification role. When they did
not, they assigned it an exploration role. Whether this phenomenon implies that the
graphing calculator is a more effective aid for problem solving in the first case and a less
effective tool for problem solving in the second case, I cannot say, for the answer to this
question again reliesuntil research helps us find an answeron what we consider
important in teaching problem solving. As of now, the resolution of the issue has to do
with our own view of what is valuable in learning and in mathematics.
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A Hierarchy of Students' Formulation of an Explanation
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Abstract: The research was a cross-sectional study in Hong Kong. 33 students
(aged 12-18) were interviewed. A hierarchy of students formulation of an
explanation was developed by contrasting their responses to an interview task
with reference to the SOLO taxonomy. While describing the characteristics in
different levels, results also suggested that the levels needed not represent
developmental levels. Instead, analysis indicated the key factors towards a
higher level was the ability to formulate explaining/proving and versatile and
proceptual thinking.

Introduction

The quest for an explanation is an attempt to find a rationale which may
or may not be reduced to a deductive proof (Sierpinska, 1994). The degree of
elaboration of an explanation depends on individuals. Reid (1995)
distinguishes between formulated and unformulated proving to explain.
Formulation describes "the degree to which the proof is thought-of and
thought-out" and is related to the articulation and hidden assumptions while
proving (p.137). Developing from these ideas, this paper will elaborate the
nature of students' formulation by constrasting their responses in a context
probing their understanding of the distributive law. In addition, the SOLO
taxonomy (Biggs and Collis, 1982, 1991), which has been useful in
categorizing observed learning outcomes (e.g., Pegg and Coady, 1993), was
used in classifying the students' explanations.

In brevity, the concrete-symbolic mode in the model proposed by Biggs
and Collis concerns the use of second order symbol system and responses are
linked closely with the students' experiences. In particular, the algebra tasks in
the current research probed students working in this mode. The formal mode
concerns the use of abstract constructs and works in this mode go beyond
empirical observations to various possibilities and alternatives. Moreover,
students responses can further be classified as the prestructural, unistructural,
multistructural, relational or extended abstract levels. For details of the
taxonomy, readers may refer to the works of Biggs and Collis (1982, 1991) and
that of Pegg and Coady (1993).
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The Research

The distributive law was chosen to be the focus in the present research
because that the rule has a pattern commonly found in students' errors, and that
it is an algebraic rule used very frequently, thus play a significant role in the
empowerment of meaningful algebraic manipulations throughout secondary
school mathematics. Consequently, it provides opportunities for designing
instruments to differentiate students' thinking.

The results reported here was taken from a cross-sectional study
investigating the students' algebraic thinking throughout the secondary
schooling in Hong Kong (Mok, 1996). 33 students (aged 12-18) were
interviewed. The interview tasks were deliberately open to allow students to
give a range of responses. Each interview last for about 30 to 45 minutes and
audio-recorded. Analysis of the verbatim transcripts' began by a stage of open
coding, in which codes, such as "removing brackets", were freely used to
indicate students' strategies and characteristics of the responses. At the same
time, a SOLO classification was given. In addition, a summary account for
each interview was written in order to capture a holistic picture of the student's
performance. Afterwards, the codes were further analyzed by looking for
similarity/difference and hierarchical relationships, and this created a stage of
conceptualization and an evolution of progressive focusing frameworks.

As here is no space for the full report of the research, discussion will
focus on a particular interview task (see figure 1). The "a0(0110=a0bIlla0c"
expression consists of two variations: the operations represented in the two
squares and the numerical values represented by the letters. The student's
answer thus depended on how they took the two relevant clues into
consideration. By comparing how the students formulated their explanations
and matching their responses with the SOLO taxonomy, a hierarchy was
developed. The levels are illustrated with examples in what follows.

Figure 1. The interview task

If a, b, c stand for any numbers, and stand for any of the operations +,
x and ÷, when will a(bc)=abac be true?

always never
sometimes when
Reasons:

I The interviews were in Cantonese, i.e., the students' mother tongue, and all the excerpts in
this paper are translations.
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The hierarchy of students' formulation of an explanation

The first level (prestructural) refers to cases in which students do not
really engage in the task.

HoHang's answer was "sometimes". On probing, he said that he had not
thought of the correct cases. His reason for the "sometimes"-answer was that
the operations could be different. Therefore, he did not really engage himself in
the task.

HoHang [secondary-2, 13 years old]

HoHang: Yeah. Like this. Here, the squares represent different [operations].

HoHang: [I] don't know the symbol inside the bracket, so [it] may be sometimes
correct and sometimes wrong.

The second level (unistructural) refers to responses which uses only one
relevant aspect. The explanations are usually in the form of recalling familiar
procedures or rules. They are brief suggesting quick closure and may be
inconsistent.

MeiKuen's answer was again "sometimes". She first said that when the
white square was multiplication and the black square was addition, the
statement was correct for most numbers, then changed her mind and said that
the statement was always correct. And when the white square was division, it
was sometimes correct and depended on the value of letters. She only
considered the cases when the white square was multiplication or division and
the black square was addition or subtraction, that is, she gave four cases all
together. When asked why she did not consider the cases in which the white
square was addition or subtraction, she stated some rules about operations and
brackets which was not relevant.

MeiKuen [secondary-4, 15 years old]

MeiKuen: That is, multiplication and addition, or multiplication and subtraCtion, er,
are correct. If division and subtraction, or division, addition, then sometimes
allowed, sometimes not allowed. You put the numbers, er, whether the number
can divide or not [may mean divisible]. Or that is, minus, afterwards divide and
the number is not the same.

MeiKuen: Because, that is, for mathematics, addition, subtraction, multiplication,
division. Unless you see a statement. That is, without bracket. Then you should
multiply and divide first. If you, the black square, black inside the bracket. Then
you, if the statement, how to say? That is, if the statement, multiplication and
division inside, even without the bracket, also calculate the multiplication and
division first.

The third level (unistructural /multistructural) refers to cases in which
the student attempts to elaborate (e.g., in terms of alternative representations)
but explanations tend to short and straight-forward.
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Wing Kit's answer was "sometimes". He attempted to justify his answer
by giving both correct and sometimes cases. He tried three cases before he said
"sometimes". He emphasized that he "calculated" as he rewrote equations in
their equivalent forms to check whether they were correct (see figure 2).

Wing Kit [secondary-2, 13 years old]

Wing Kit: [explaining his written work.] Because, er, I first put it. Er, the white square
represented multiplication, the black square represented addition. Then [I]
calculated and obtained that the final answers [which] were the same. The two.
Er. Calculated. [I] changed the white square to division. The black square
changed to minus. Then the two were calculated and were not the same. Lastly, I
calculated. The white square was addition and the black square was
multiplication, the answers were also not the same. Therefore, I ticked
sometimes.

Figure 2 Wing Kit's written work (secondary-2)

ax(b+c)=axb+axc
ab + ac = ab + ac

a÷(bc).a+ba÷c
a a a

bc b c

a+(bxc)=a+bxa+c
a + bc = (a + b) x (a + c)

a + bc = a2 +ac + ab + bc

The same strategy was appliedby ManYee who gave a specific format of
proving an identity (see figure 3).

[Insert figure 3]

The fourth level (relational) refers to explaining coherently in terms of
relevant clues, i.e., the operations and variables in this case. Besides
identifying the distributive law in appropriate situations, students can also
treat rejected cases as open sentences and identify the valid domains.

For example, from ChungHang's written work (see figure 4), it appeared
that he had anticipated that the wrong cases might be correct due to the
variation of variables. In particular, he paid special attention to cases when
a=0. In probing, believed that he could not exhaust all variations. However, he
had given sufficient evidence to support his "sometimes" answer.

[Insert figure 4]

Another student, PuiPui wrote "0+(0+0)=0+0+0+0" and
"2+(2+2)=2+2+2+2", and mentioned "a+(b+c)=a+b+a+c" would not be
correct for numbers like "3, 4, 5, 6, 7."

PuiPui [secondary-1, 12 years old]
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PuiPui: [referring to "a+(b+c)=a+b+a+c".] If zero, then correct. If other numbers,
then not correct.

PuiPui: Because, em,.. Think of 2. Then OK. If 2 is not OK, usually other numbers
are not OK.

PuiPui: That is, the first one. The addition. If a, b, c become 2, [it is] not correct.
Usually the numbers also not correct. Those like 3, 4, 5, 6, 7. [i.e., it is also not
correct for the other numbers, such as 3, 4, 5, 6, 7.]

Figure 3 ManYee's written work (secondary-4, 15 years old)

=+, = 0= x,= x
L.H.S.= a +(bc) L.H.S.= a x(b xc)

= a +bc =abc

R.H.S.= a +ba+c R.H.S.=axbxaxc
=b+c =a2 xbxc

L.H.S.= R.H.S

0= x,= + 0= x,=
L.H.S.= a(b+c) L.H.S.=a(bc)

ab =abac=
c R.H.S.=abaxc

R.H.S.= a xb+a xc L.H.S.= R.H.S
ab=
ac
b

c
R.H.S

= xl÷, =
L.H.S.=a +(bc)

ac
R.H.S.=a + b= a ÷c

a _a
b c

a(TT)
a

bc
L.H.S.= R:H.S

The fifth level (extended abstract) involves an attempt to prove. At this
level, students formulate hypothetical situations, then proceed to justify
through a chain of coherent arguments. Via this step of hypothesizing, students
no longer rely solely on observed cases. Therefore, their responses extended
to the formal mode and are classified as extended abstract.
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An example set off from the assumptions about the variables and
proceeded by considering the variation of operations.

HiuFung [secondary-6, 18 years old]

HiuFung: I try to see, if b and c are equal to zero, will there be another case? If b
equals zero.... If b equals zero, If b equals zero. a is times, I first assume the
white square is times or divide, then ..work.. if b is zero , that means a times c or
a divided by c. If b equal zero, the left-hand-side ... a tithes c, the right-hand-
side... the white square cannot be divide. Because a is divided by b. If b is zero,
then a divided by zero, does not exist, is infinity. So the white square cannot be
division. That is proved. [i.e., If b is zero, then the white square cannot be
division. See figure 5]

Figure 4 ChungHang's written work (secondary-4, 15 years old)

a+(b+c)=a+b+a+c

ax(b+c)=axb+axc

a+(b+c)=a+b+a+c

a(b+c)=ab+ac
a+(b+c)=a+b+a+c

a(b+c)=ab+ac
a+(b+c)=a+b+a+c

a(bc)=abac

a=0

x a#0

x

x

x

4 a=0

x

a=0

Figure 5 HiuFung's written work (secondary-6)

If b=0, =x / + [crossed out + later],

+ / [crossed out later]

LHS ac RHS alo +

0 + ac

Discussion

The nature of the responses depended on how the students thought an
explanation should constitute. As described by Mason et al. (1982) in the
book, "Thinking Mathematically", there are three levels for the process of
verification, namely, convince oneself, convince a friend and convince an
enemy. Tall (1991) further argues that the third level of convincing an enemy
gets closest to the notion of proof because the argument is intended to be
scrutinized and tested, and also the move from elementary to advanced
mathematical thinking involires a significant transition from convincing to
proving. The more experienced the individual in logical thinking, the more
likely they will be to see the need for a more refined argument and attempt to
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give one. Therefore, progression is not only exemplified by the production of a
refined argument but also by the awareness of the need for a refined argument.
If students thought that an explanation was simply recalling facts/rules (e.g.,
MeiKuen) or carrying out routine manipulations to check whether identical
expressions could be obtained (e.g., Wing Kit), then they would not be likely to
give high level explanations. And also they might leave out some relevant
clues due to their hidden assumptions. However, some explanations will be
well articulated when students gain fluency in handling symbolic works. For
example, Man Yee gave a better articulated answer as she had a standard format
in verifying identity.

Besides articulation via fluent symbolic work, the examples of higher
level responses demonstrated a global/holistic grasp of the context of the
question or "versatile thinking" (Tall and Thomas, 1991). While seeing that the
distributive pattern should not be applied to cases like "a+(b+c)=a+b+a+c",
students could expand their explanations by treating the statement as an open
sentence, the truth of which depended on the values of a, b and c. In this case,
they connected the varying factors in "a0(bIllc)=a0bNa0c" (i.e., the
operations and variables) coherently and gave a relational responses (e.g.,
PuiPui and ChungHang). Furthermore, there is a conflict between the idea of
an open sentence and a deeply rooted conviction that "a+(b+c)#a+b+a+c". The
conflict exists due to an ambiguity of mathematical symbols which happens
throughout mathematics. To handle such ambiguity or accommodate the
conflicting ideas, one needs "proceptual thinking" (Gray and Tall, 1994).

When students are fully aware of the impact of the variables and
operations on th validity of "a12(bc)=a0bIlaElc", they may pose a range of
different cases which need further verifying or proving. In this case, students'
responses may then be classified as extended abstract.

To conclude, the aforementioned showed that the SOLO taxonomy has
been useful to line up the structure of students' explanations. However, it is
important to note that the unistructural-multistructural-relational hierarchy is
not necessary an equivalent of the developmental cycle. There is an obvious
mismatch between the school years and the level of responses. Although
students' response may vary a lot within the same school year and the examples
may not be representative of the entire population, the mismatch suggests that
the lower level examples are not necessary precedence of the higher level ones.
On the other hand, by contrasting the different levels of formulation, students'
versatile and proceptual thinking are deemed to be important features in
progression. The discrimination illuminates how students may formulate an
explanation. Their formulation may be a result of their learning experience
under the teacher's expectation in the course of instruction. This may be
particularly true in Hong Kong where reception learning is the typically
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preferred model and students do not expect the opportunity to articulate their
mathematical thoughts (Wong, 1993). Such setting is at the other polar
extreme of the collaborative model which has been receiving increasing
attention. The latter puts emphasis on students' collaboration and discussion,
which naturally provides more opportunities for students to formulate their
explanations in different contexts. How the different learning settings will
elevate students' formulation of explanations will be a very worthy research
question for future work.
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The role of writing to foster pupils' learning
about area
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Introduction
In this paper, some findings from a study of seventh grade pupils' writing in solving
problems about area are discussed. The purpose of the paper is to illustrate how journal
writing can be used in mathematical classrooms to monitor pupils' thinking and
learning about mathematical concepts, and, if needed, to orient them towards re-
conceptualisation.

The fundamental principle from which our work starts is that "concepts can be
abstracted and shaped only by the acting subject's reflection upon an experimental
situation and the mental operations it provokes" (Glasersfeld, 1995, p. 188). From this
radical constructivist perspective, teaching cannot be seen as 'the traffic of knowledge',
but rather a way 'to foster the art of learning'.

We consider such a perspective as being compatible with a phenomenolgical
standpoint, similar to the one that appears in Marton and Neuman (1990), according to
which both "knowledge is constituted through the internal relation between the knower
(object) and the known (object)" and "all mental acts are directed towards something,
something beyond themselves" (p. 63). In other words, we see learning as a
constructive as well as an interactive activity.

Thus, two ingredients were seen as essential in attempting to promote learning. The
first ingredient was pupils' journal writing'. The second feature concerned the
development and implementation of 12 significant learning activities related to the
concept of area. The tasks intended to be within pupils' "zone of proximal
development" (Vygotsky, 1978) provided and used various modes of representation
about area that were likely to help pupils grasp such a concept . Here, given to space
limitations, the focus is only on the first aspect, on locating particulars of the experience
and on attempting to explain the relationship between pupils' reactions to writing and
events.

Why journal writing?
Following the work of Vygotsky (1976), mathematics education researchers have
become increasingly aware, in the last decade or so, of the importance of language in
the process of mathematics teaching and learning. Thus, in 1988, at the ICME, in
Budapest, a discussion group was launched to study issues and problems concerning
the reconciliation of communication in mathematics within a radical constructivist
paradigm (Steffe and Wood, 1990). And, in 1996, the central topic of the NCTM
Yearbook (Elliot and Kenney, 1996) was, exactly, Communication in Mathematics.

One of the main focus of research in this field has been on the role of dialogue and
discussion within small group interactions (e.g. Wood and Yackel, 1990; Pirie, 1991;
Hoy les, Sutherland and Healy, 1991). Other researchers have highlighted some of the
complexities and ambiguities that pupils find in the language used in mathematics
classrooms, both in the language of teachers and in textbooks (for some ambiguous
English words used commonly in school mathematics, see, for example, Durkin and
Shire, 1991). This is a specially important issue, one that, we speculate, many teachers
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are not aware of. As Glasersfeld suggests, "because language, by and large, works
well in everyday situations; there is the tacit assumption that it must also work in the
classroom" (p. 182), but this is not necessarily the case. How can teachers, then, have
access to the pupils' interpretations of the classroom discourse? And how can they keep
track of each individual's interpretations?

A further issue that has deserved some attention relates to Pimm's (1991) suggestion
that "externalising thought through spoken or written language can provide greater
access to one's own (as well for others) thoughts, thus aiding the crucial process of
reflection" (p. 23). It is relevant that Pimm (1991) speaks explicitly of written
language. Indeed, writing is, perhaps, a more challenging journey to foster
communication than other forms of building discourses in mathematics classrooms.

Meanwhile, there has also been a growing interest in investigating the use of writing to
learn mathematics (and science). Some accounts of how writing has been used and of
benefits it brings to learners is to be found, for example, in Connolly and Vilardi
(1989).

A brief look at research findings indicates that expressive writing activities (as opposed
to transactional ones) and, in particular, journal writing can have a significant impact on
learners' cognition and meta-cognition. Specifically, as Powell and Lopez's (1989)
case study suggests, pupils (and students) with poor mathematical ability and who are
anxious about mathematics are likely to feel more confident in their problem-solving
abilities and "understand the material better" as a result of journal writing. This is, of
course, a very important aspect, and points to an area of research that deserves to be
continued and further developed.

Method
The experience we describe in this paper aimed at examining the following questions

What are pupils' attitudes and reactions to journal writing in mathematics
classrooms?
What is the nature of pupils' conceptual knowledge about area, as inferred from
their writing?
Does journal writing contributes to improve pupils' mathematical communication
and knowledge about area?

The experience took place in a seventh-grade class (13 to 14-year-olds) in a public
secondary school of Oporto area, in Portugal, throughout the 1995/96 academic year.
The class consisted of 21 pupils, 16 girls and eight boys, all of them of very poor
academic ability in the various subjects (and, in particular, in matherriatics). Indeed, in
the previous academic year, all of them had failed to attain the minimum standards
necessary to get a pass to the eighth grade. In turn, the teacher was a woman in her
early thirties with ten years of teaching experience, who volunteered to take part in the

study.

The experience main phase, during which we observed more closely three pupils while
attempting to solve the 12 mathematical activities about area, occurred in April/May
1996. The reasons for selecting these three pupils are in accordance with the basic
tenets of the phenomenographic (Marton and Neuman, 1990) approach to research
which is more easily reconcilable with a phenomenological standpoint. Underlying
such an approach is the idea that "whatever phenomena people encounter, there seems
to be a limited number of qualitatively different ways in which those phenomena are
seen, experienced, or conceptualised" (Marton and Neuman, 1990, p. 64).

In addition to our observations; data included pupils' journal entries, as well as their
answers to a written attitude questionnaire (adapted from a previous study)
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administered at the end of the experience. In order to evaluate pupils' writing, we
categorised the statements they made into four main categories: mathematical.
communication, mathematical representations, errors and misconceptions.

Furthermore, in order to assess the potential role of writing in learning, we
distinguished the four interrelated metacognitive aspects of distancing, conflict,
scaffolding and monitoring, which were used by Hoyles, Sutherland and Healy (1991)
as a working framework to analyse pairs of children's discussion while doing
mathematics in a computer environment.

Getting started
The problem with journal writing within the context of mathematics classrooms is,
perhaps, that it is an alien activity to both mathematics teachers and pupils. One should,
therefore, to devise some strategies to assure that this becomes a normal practice in
such a class.

Thus, earlier in the academic year, we explained to the pupils that we were conducting a
research study, for which they were required to write in their mathematics lessons, and
we distributed to each of them a notebook with sheets of loose-leaf paper which were to
be used for that purpose. The pupils were made aware that these notebooks (which
were called journals) were to be collected by the teacher, but that they were not to be
evaluated. The teacher, indeed, would make appropriate comments on their answers,
but they were just meant to assist and extend a pupil's response rather than being
judgmental

According to our plan, during the first phase of the study, the pupils were to write only
once a week, with the first ten minutes of the class being devoted to this task. To start
pupils writing, early in the academic year, we asked them to write a word or a statement
that they would associate with mathematics. Our second writing assignment consisted
of asking pupils to write a paragraph or two that explained the reason why a solution
given to a simple mathematical problem was wrong.

The pupils' initial reactions were almost discouraging. They experienced considerable
difficulties with these assignments, falling short in giving a proper answer to the
questions posed and using imprecise vocabulary.

The situation became even more critical when they were asked to solve a problem and
explain their solution. The pupils did not understand what constitutes an explanation or
explained things very confusingly. Even with the help of the teacher's typical

comments "It seems that you thought well, but we cannot figure out what you want to
say with..." or "Would you mind to explain better your idea" things did not get any
better.

We realised that pupils, probably, would need a set of step-by-step procedures to be
able to write about their thinking while attempting to solve the problems. Kenyon's
(1989) Writing is Probleni Solving gave us a clue.. Indeed, it seemed reasonable to
speculate that if writing is problem solving, then techniques that have been compiled for
solving mathematical problems might be used with success throughout the writing
process.

We thus adapted Mason, Burton, and Stacey's (1982) model of mathematical problem
solving into a four-stage heuristic process (stuck, attack,check, and reflect) to solve a
problem From the sixth writing session onwards, the sheet in which pupils were to
solve a given problem was divided into four parts, each of them corresponding to one
of the four stages of that model. The idea, as it was explained to the pupils the first time
this method was used, was that they would write as if they were thinking out aloud as
they worked on solving the problems.
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Problems with the pupils' writing, naturally, were not overcome overnight. For
example, in most cases, pupils were not able to write anything under the 'check' and
'reflect' headings. By the end of the first academic term, only two girls were coming
close to what we called expressive writing.

But as the second term progressed, we could see improvements in the great majority of
pupils' writing. Our strategy had made an impact on them. Their writing had improved
considerably, as well as their ability to share their thoughts with us. We were then ready to
start our main study.

Some research findings
In this section, we focus on three examples of pupils' (two girls and one boy) reactions
to journal writing that illuminate different ways in which the different learners interacted
with the same activities.

The first example: Catherine
Like most of the pupils in the class, Catherine's previous school record in mathematics
looks bleak. Equally bleak is her record in language arts. At the beginning of the study,
Catherine was not at ease with putting her thoughts on paper. As she got acquainted
with the method proposed, however, Catherine learnt to use it to improve her ability to
communicate mathematically, and, most importantly, to detect and correct her own
errors and misconceptions.

For Catherine, like for many children, mathematics constituted an alien world designed
by and for some people with a special kind of mind. Her experience with writing a
journal served to build a bridge between her own world and the mathematics world.
Writing allowed Catherine to dissociate mathematics from painful self-exposure.

Here are her comments, at the end of the study:

To be alone and to be able to reason on my own made me feel secure, to think
by myself. It helped not only with my maths, but also in my personal life and in
the other subjects. I feel more secure, more confident, I feel much better. It was
good to have gone through this experience. I learned that you may be creative in
maths.

Perhaps, for the first time, she could feel herself a participant in the maths lessons
activities.

Catherine did have some ideas for solving the mathematical problems, but in order to
embark on them she needed the reassurance of the teacher. For this reason, at the
beginning of the study, she spent much of her time trying to get as much of the
teacher's presence and attention as possible.

What is most interesting about Catherine is that in the course of writing about
mathematical problems, she was grappling with issues that have nothing to do with
mathematics. She used the opportunity as a canvas for personal expression, as the
following excerpt illustrates:

If the boy builds a big fence, the dog will like it. If the boy builds a small fence,
then the dog is going to feel bored because he does not have space to run
around. But what is important is that the dog may feel happy, because he feels
that there is somebody who cares for him.

These comments were related to a problem, involving the concepts of area and
perimeter, suggested in the NCTM (1991), which was proposed just before the main
phase of the study.
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Catherine's reply astounds us. She thought of the boy and his dog as real identities.
Her answer is reminiscent of the kind of the difficulties pupils have often with word
problems. They cannot draw the line between understanding a 'real life' problem in a
way that is appropriate for a maths classroom.

Throughout the main phase of the study, there is something else notable about the way
Catherine used her journal. What was different was not just the product, but the way in
which she used it. Here, she was using it as a helper, something that she resorts on
when she faces any difficulty with a problem proposed. She checks out what she had
written before, as well as the remarks made by the teacher. In so doing, she collects
evidence for past mistakes and uses them to avoid to making them again. The journal
turns into a 'scaffold' , replacing more and more the role of the teacher, and, indeed,
becoming almost a part of herself.

The following excerpts are taken from her reflections with regard to the Activity 8 and
the Activity 10, respectively: "I learned from previous problems that the area of two
figures may be the same, but that their perimeter may be different", and "In the latter
problems, we saw that two figures can have different perimeters and the same area, and
now we see that the perimeter can be the same and the areas can be different".

Here, we see how Catherine uses writing to distance herself from her actions in a way
that indicates not only that she understood the given problems, but also that she able to
make generalisations.

The second example: Mary
Mary is artistic and introspective. She illustrates the case of a pupil who soon adapted
herself to write in the context of mathematics lessons, and enjoyed writing her journal.
Language arts and writing were probably something that she was fond of, and so, from
the very first day, she was meticulous in writing her journal.

Her manner of writing the journal was disciplined and methodical. Her journal is
marked by her interest in language. Like in the case of Catherine, the journal
represented for Mary a long-waited chance to test her mathematical ability, and, most
importantly, seemed to have helped her to do better in the subject.

At the end of the study, she writes:

I enjoyed writing the journal very much, I think it was a way of learning
mathematics, it was fun. But the most important was to feel more confident in
my ability. To have self-confidence is very good.

Five months later, at the beginning of the current academic year, in expressing (once
more) a word or statement that she would associate to mathematics, she reiterates this
kind of feeling:

Journal of mathematics. I chose these words because last year I loved that kind
of work. With it, I developed my mathematical language, both oral and written
language. I began to enjoy more the maths lessons and to feel more confident in
my ability to do maths. That is why I chose those words.

For Mary, journal writing mediated a transformation of her relationship with
mathematics. Her involvement with writing gave her a sense of accomplishment at
being able to find her way around. In contrast to Catherine, in order to solve the
mathematical problems, she would not ask for the teacher's attention. She might have
to spend considerably more time than her classmates, but she would prefer to do things
on her own. For example, in one of the sessions, she spent almost the whole time in
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trying to solve the first part of an activity with a tangram. Having succeeded, made her
to feeling in control. Mary was delighted, and, it was only then that she called the
teacher to show her work. Reflecting on this experience, she writes: "1 was thinking
that I would not be able to make it right, it took a lot of time, but I got it. I enjoyed it".

Writing about her mathematical activities appeared to have been liberating for Mary. It
allowed her to stop thinking of having it right or wrong, and to start thinking of fixing
it. Her fixing, however, worked only in a limited way and, sometimes, did not work at
all. For example, with regard to one of earlier activities about area, Mary wrote:

I think that the two figures have the same area. Fig 1 has a C shape, and so has
a cut inside and another outside, and Fig 2 has only a cut outside. I think they
have the same area. But I am going to see if this is right. I am going to use a
ruler to measure the perimeters of the two figures.

In this episode, one can see that Mary's mathematical language is not precise.
Moreover, it is noteworthy that Mary writes about what she is going to do to check her
intuition, in a way which suggests that she is monitoring her own actions.

After measuring with the ruler, she distances herself from the action and rejects her
conjecture: "Now that I have measured I have the proof that the areas are very
different". Mary is impressionistic, but she does not trust her impressions. She lets her
impressions change as new ideas turn up, but, in so doing, it seems there is very little
cognitive conflict.

In the following session, on solving the following activity, she realises that she had
made a mistake. She writes: "Last session,. I compared the perimeters of the figures
rather than their areas. At the beginning, I was right, the figures seemed to have the
same area, but afterwards I got it wrong".

However, Mary's realisation of her mistake was not fundamental. At a later stage, an
analogous situation emerged, and Mary got it wrong again: "The two figures have very
different shapes, then they must have different areas". Afterwards, she realises her
mistake again. This time, she worked out an abstracted formulated rule: "two figures
can have very different shapes and have the same area".

In the following activities, she constantly uses this belief: "I know now that two figures
can have different shapes and have the same area". Her mathematical learning had
taken a leap forward.

The third example: Paul
From the beginning, Paul did not care too much about the task of writing. Journal
writing was something that he had to do, but that he obviously did not enjoy.
Throughout the study initial stage, Paul was not able to uncover his thinking, nor
develop any further mathematical communicative skills. Moreover, he had trouble with
spelling. This was, perhaps, an important reason to avoid writing.

Unlike Catherine and Mary, Paul's reaction and attitudes to writing the journal, even
during the initial phase of the main study, were far from favourable. For example, in
one of the earlier activities, the teacher asked him to state the procedures that helped him
to solve the problem. Paul limited to give very vague explanations. As the teacher
compelled him to describe his thoughts, Paul ended up by writing something of the
type "because I was wrong and I did not know what was to be done". Moreover,
almost without exception, Paul was not interested in reading the teacher's comments to
his previous writings either.

Like both Catherine and Mary, Paul's mathematical ability was far from satisfactory,
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but he appeared to be more confident than them. When given a problem, he
immediately attempted to solve it, being impatient in getting the work done as soon as
possible.

It was a little surprising for us to read, at the end of the study, his comments:

I liked writing the journal very much, because it had got nice problems to solve
and because these journal also teach us how to learn and reason. 1 also liked
because in spite of the fact that the problems were a little bit difficult, we had to
think and ended up by solving them. 1 learned that I was able to reason. 1 think
that the journal helped us to learn, if we want we are able to think for ourselves.

These words deserve two commentaries. The first comment relates to the fact that Paul,
after using I, slips and introduces we. This reinforces the idea that he could not identify
himself with the thinking agent, the person who wrote the journal.

Second, there seems to be an apparent inconsistency between our previous reference to
Paul's reactions to journal writing and his final comment about the task. At first, we
interpreted his words as expressing that he enjoyed the mathematical activities rather
than the task of journal writing. In retrospect, our interpretation of the situation has
evolved. It is possible that a number of small internal changes have taken place within
Paul which were not observable at all. Then, at a certain moment, very late in the study,
these "small steps of internal reorganisation" (Glasersfeld, 1995) became apparent to
Paul himself,.though they might have remained hidden to us.

It is likely, then, that, by the end of the study, Paul's attitude to writing had undergone
a modest change. It also seems that journal writing (and the mathematical activities
designed) did bring about qualitative advancements in his knowledge about area.

In the past, in his previous experiences with mathematics, Paul had learnt it as a ready
made subject and, to a certain extent, to apply, without understanding, ready made
algorithms. In regard to area, for example, he had a learnt the formula length times
width, and this had become his constant way of calculating area.

When Paul is asked to compare the area of two figures, he started by saying that "the
two figures had the same area because if I multiply the length by the width, I will find
the same area". The teacher writes as a comment: "Do you think that the two figures are
rectangles?", to which Paul answers: "One of the figures resembles a C, whereas the
other is like an ice-cream cup, but both of them have the same length and the same
width". Paul fails to understand the whole idea of the teacher's remark, and reiterates
his strategy to calculate area.

In the following activity, however, he sees the same figures tiled with 'small' triangles.
The most efficient way of comparing the areas of the two figures becomes that of
counting the number of 'small' triangles included in each figure, and this is what Paul
does. In his analysis, he could detect immediately a new way of finding the area,
discovering, at the same time, his previous misconception: "As a matter of fact, 1 was
wrong because the reason why [the figures] have the same area is that if 1 count the
triangles that are represented inside the figures then he number is 14 for each figure".

Here, we see how the activity provoked Paul to make the transition to a different
conceptualisation of area, and how writing highlights this reconceptualisation. Writing
served a monitoring function in helping Paul to reflect upon his misunderstanding of
thesituation.

Another misconception of Paul (and of most pupils in the study) was that figures that
have the same are have the same length. In the second part of the Activity 7, in which
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pupils had to represent two different figures with the seven pieces of a tangram, Paul
wrote "if we could build the two figures with the 7 pieces, it is because they have the
same area, the 7 pieces tiled each of the two figures. They are going to have the same
perimeter".

On attempting to confirm his conjecture with a ruler, however, he discovered that the
two figures had a different perimeter. He writes then: '7 was wrong, I thought that if
the two figures had the saute area then they would have the same length. It is weird, but
it is like that". This episode highlights Paul's conflict between two different
perceptions. At this stage, however, Paul does not appeared to have undergone further
conceptual development. In the following activity, in which pupils were confronted
with two different figures with the same area, Paul finds himself confused: "Things are
not as easy as I thought".

At a later stage, he seems to have finally come to understand the concepts of area and
length, and to distinguish between them. Not only is he no more perceiving area and
length uniquely in terms of formulas, but also, he had learned that area and shape are
two unrelated concepts. For example, on being asked to compare the area of two
different figures, he writes: "the two figures are very different, and so they should not
have the .same area. I an going to see which is the area of each one. I will have to count
the 'small' squares that tile each figure". This was the first occasion in the teaching
experiment that Paul monitored his acts. Spontaneously so doing was an
accommodation of that latter fact. This accommodation was a permanent change as was
confirmed in the next activities.

Concluding remarks
The descriptions given above provide insight into parts of what we think was a
successful experience to get pupils writing in a mathematics classroom. They present
some evidence that supports the idea that writing can be a window into pupils' thinking
and that it can contribute to foster their learning of mathematics. Furthermore, these
descriptions also provide examples of the most common errors pupils make about area
and misconceptions they have about the concept.

One does not know how pupils abstract such misconceptions from their mathematical
experiences, but, surely, it is not something that they learn explicitly. Some authors
have already suggested that mixing up area and perimeter of plane figures is formed
from the fact that pupils' learning of these concepts takes place almost simultaneously.
Given that both are determined in terms of linear measurements (and of the same linear
measurements in the case of rectangles), they might to come to see them as
indistinguishable.

The second most common misconception concerns the lack of a relationship between
area and perimeter. For most pupils in the study, figures with the same perimeter have
the same area and reciprocally. It seems that this kind of misconception takes longer to
disappear than the previous one. This is probably so because it involves a relationship
(or rather, the lack of it) between two different concepts.

Of course, we are not claiming that writing is a panacea for all the problems pupils have
with mathematics. First of all, as we suggested at the beginning, we see writing and
instructional tasks inextricably intertwined. Our intuitive feeling is that writing without
appropriate mathematical tasks would be certainly a less effective and valuable activity
than it proved to be here.

Secondly, we cannot forget that, in spite of our efforts, two of the boys in the class did
not feel motivated to write their journals at all and felt even reluctant to do so. We can
argue that old habits die slowly and that writing in mathematics has naturally the same
limits and drawbacks of any innovative programme. Had the initial period of getting
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ABSTRACT

Our study deals with the learning process of the concept of area in 12-13 year-
olds (pupils in "cinquieme", i.e. 2nd year in secondary school in France) ; we
particularly focused our attention on the way pupils learn how to understand the
relationships between lengths and areas, how to coordinate these relationships when
learning area formulas and how to distinguish area from perimeter when solving
problems. In order to analyze this process, we studied a set of situations based on
the concept of area of two-dimensional surfaces, in accordance with the conceptual
field theory, and we simultaneously developed a classroom didactic engineering
work.

1. INTRODUCTION

The object of this paper is the conception of the notion of area in two-
dimensional surfaces and the development of a learning process in 12 to 13 year-
olds (pupils in "cinquieme", i.e. 2nd year in secondary school in France). Pupils of
that age have already gained some knowledge of the concept of area in school but
they seldom understand the relationship between geometrical and numerical
frameworks.

When analyzing previous studies - (Balacheff, 1988), (Douady and Perrin-
Glorian, 1989), (Hart,1981), (Heraud 1989), (Hirstein and al., 1978), (Moreira
Baltar and Comiti, 1993), (Nunes and al. 1993), (Tiemey and al 1990), (Vinh Bang
and Lunzer, 1965) we noted that learning difficulties linked with the ability to
distinguish area from perimeter are numerous and persistent.

Douady and Perrin-Glorian (1989) showed that : "presenting the concept of
area as a magnitude can help pupils establish the necessary relationship between
both frameworks (geometrical and numerical)" ; they also conjectured about the
necessity of taking the dynamical aspect into account when teaching the concept of
area, particularly as far as the distinction between area and perimeter is concerned.

However very few studies have dealt with the subject of formulas for common
surfaces. In elementary school, pupils see and use area formulas but the focus is on
the change of units and the use of formulas as a means of calculation rather than on
the geometrical aspect or magnitude aspect. Moreover, the French national
assessments show significant differences in success rates depending on whether a
simple calculation task or the geometrical framework is involved. The fact that
some pupils lack geometrical knowledge or are unable to articulate the frameworks
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is not surprising since areas are dealt with either from a numerical or geometrical
point of view without any relationship being established between the two.

This is why we decided to approach the concept of area as a magnitude and to
focus our engineering work on the distinction between area and perimeter of planar
regions, learning and using area and perimeter formulas for common surfaces, and
the consequences of taking into account the dynamical aspect.

As regards distinction between area and perimeter, our engineering work has
been organized around three objectives : make pupils able to

have the area correspond to the inside of a figure (two-dimensional
magnitude) and the perimeter correspond to its boundary (one-dimensional
magnitude) ;

- get to know the formulas for finding areas and perimeters in association with
work in the geometrical field to avoid any confusion when calculating ;

- have the area vary while keeping the same perimeter, modify the perimeter
while keeping the same area ; have the area and perimeter vary in opposite

direction.

Learning how to distinguish between area and perimeter from these three
points of view both depends on and participates in the building of each of the
concepts involved. However some distinctions are to be made to better understand
the learning process. Our previous studies (Moreira Baltar, 1996) have shown that
the knowledge required to distinguish between area and perimeter will vary
according to the kind of figures involved. We therefore decided to work on three
separate cases : irregular figures, rectangles and parallelograms.

Teaching sequences (concerning the acquisition and use of formulas and the
introduction of the dynamical aspect) were conceived and carried out to put the
following hypotheses to the test :

H1 : Studying area and perimeter formulas for common figures together with
their geometrical invariants will help build the notion of area as a two-dimensional

magnitude.

H2 : Taking into account, in teaching, situations involving a dynamical element

will help study the geometrical invariants which keep an area constant and will
therefore help acquire some knowledge in relation to lengths and areas.

2. THEORETICAL SCOPE AND METHODOLOGY

In order to test our hypotheses, we studied a set of situations involving the
concept of area of planar regions and simultaneously developed a classroom
didactic engineering work.

Thanks to the analysis of situations carried out in the light of the theory of the
conceptual fields (Vergnaud, 1990), we were able to :

establish a relationship between the basic aspects of the learning process of
the concept of area and the building of the concept of area in general ;
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- take into account the role of the various types of situation that can be
encountered during the learning process of the concept of area at school ;

- make pertinent decisions aimed at encouraging or stopping some procedures
in the course of the learning process.

Didactic engineering as defined by Artigue (1988 : 282) was developed in
order to :

- check whether taking into account the various knowledge at stake and
separately considering the three kinds of figures (irregular figures, rectangles and
parallelograms) make it possible to overcome some of the difficulties in learning
how to distinguish area from perimeter ;

- study the building conditions of the knowledge required to link area formulas
with geometrical invariants ;

- spot recurrent mistakes.

The preliminary analysis of the set of situations helped to determine the
knowledge required for the devolution of the successive situations, which justified
the linking of the situations suggested in the scope of our didactic engineering
work. The organization of teaching sequences as presented in our study also brings
additional material to help analyzing questions related to the construction of the
concept of area in children at school.

3. DIDACTIC ENGINEERING

Teaching sequences were carried out in a class ( "cinquieme") of a school in the
Grenoble region. The whole experiment, carried out between March 13th and June
1st 1995 represented some 30 hours of work with the class.

We will explain in our oral presentation how each didactic engineering step is
justified in relation to our hypotheses and in relation to the didactic "milieu"
(Brousseau,' 1986) we wanted to create to favor the devolution (Brousseau, 1986) of
each stage to the pupils.

The situations related to distinguishing area from perimeter are transverse to
our organization in stages.

Stages 1 to 3, involving work with pen and paper, favored the static point of
view whereas stage 4, involving work with the Cabri-geometre software favored
the dynamic point of view.

The main objective of the work with pen and paper was to produce the
elements necessary to the understanding of the formulas for finding the areas of
rectangles, parallelograms and triangles (geometrical and numerical frameworks in
interaction) and to make these formulas available in measurement situations. The
aim of the dynamic work with the software was to study the area and perimeter
formulas in relation to the geometrical invariants.

To be able to appraise the progress of the pupils' knowledge, we introduced
two types of assessment tests. We first organized a "pre-test" prior to the teaching
sequences in order to assess the pupils' initial knowledge about the notion of area of

9
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plane surfaces. The pupils' worksheets were gathered up and studied at the end of
each sequence. A test was then administered between the paper-pen and the "Cabri-
geometre" stages. The aim of this test was to check that pupils had acquired the
knowledge and procedures taught in preliminary activities ; that they had acquired
the formulas for finding the area and perimeter of common figures and knew how
to use them, as a means of calculation, when dealing with problems of measurement

of area and perimeter.
Evolution of the pupils' knowledge was assessed in the course of the dynamic

work with the software, from the data collected during this work : recordings,
journals, remarks by observers...

(Distinction
between area
and perimeter

Irregular
Figures

Rectangles

Parallelograms

Table recapitulating didactic engineering work

4. CASE STUDY : MEHDI AND KADDA

Stage 1 : Preliminary work
(prior to teaching area and
perimeter formulas)

Stage 2 : Teaching of formulas
for finding the area and
perimeter of common figures

Stage 3 : Calculation of area
by application of formulas
and additive properties

Stage 4 : Formulas and
geometrical invariants

4.1 Pre-test

During the pre-test, Mehdi's approach was characterized by his resorting to a
numerical conception of the area. For him, the area is a number which can be

obtained, either by calculation (theorem-in-action TC3) or by counting squares
(theorem-in-action TC2). Geometrical aspects are ignored in his answers.
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Kadda stated that the area is "what is inside the figure", which we will relate to
theorem-in-action TCI - according to which the area is the space occupied by the
figure - in association with geometrical conceptions. At the same time, when
solving problems, he considered as. the area either the boundary (problems of
comparison for instance) or the number of squares required to tile the area
(comparison of tilable areas on squared paper) or the number obtained by
calculating a product (comparison of rectangles with parallelograms, measurement
of areas, production of a rectangle with the same area as a parallelogram).

Mehdi and Kadda either proceeded from a numerical or geometrical point of
view but did not establish any pertinent relations between both frameworks.

During the pre-test, Kadda was able to adequately use the concept of perimeter
as the measure of the boundary of the figure and as a length (he always expressed
units in centimeters). However he was not able to topologically distinguish the area
from the perimeter : he compared boundaries to classify areas ; he did not give any
area units when answering measurement questions ; while measuring the area of a
complex figure, he changed units to move from a result in centimeters to square
centimeters as if centimeters and square centimeters belonged to the same type of
units.

Moreover, as regards the area of common figures :
comparison of areas and perimeters of rectangles and parallelograms : for

Mehdi, a rectangle and a parallelogram with equal sides have equal areas ; Kadda
calculated and compared the numbers he had obtained.

- calculation of the area of a parallelogram : Mehdi used the cut-and-paste
method and calculated the area of the rectangle he had obtained ; Kadda multiplied
all the measures indicated on the figure (lengths of the sides and of a height).

Another important aspect in Mehdi's and Kedda's pre-tests was the influence of
implicit rules being part of the didactic contract (Brousseau, 1986). For Mehdi, the
area is always a number obtained by tiling or calculating : he used the formulas he
knew or invented formulas in order to get back to situations he was familiar with
(e.g. when comparing the areas of irregular figures, he dealt with the problem as if
all areas could be calculated as those of rectangles). For Kadda, areas are calculated
by multiplying and all measures indicated on the figures are to be used.

4.2 Test

All along the preparation stage between pre-test and test paper, Mehdi and
Kadda worked in pair. Their answers in the test paper showed that, contrary to
what they did in the pre-test :

- they were now able to work both in the numerical and geometrical
frameworks and could pass.from one to the other ;

they now knew the formulas for finding the areas of a rectangle and a
parallelogram and knew how to use them.

However, we noted that Mehdi still had some difficulties with the invariance of
the area of a parallelogram whatever base was chosen and also that his knowledge
of the formula for finding the area of a triangle was shaky : he properly used the
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formula with the help of a drawing but without drawing he multiplied the base by
the height (and did not divide by two). For both Mehdi and Kadda we noticed the
apparition of a new theorem-in-action, which was not favored by the questions in
the pre-test : "the perimeter of the union of two separate areas is the sum of the
perimeters of each area". It seems that the property of additivity in areas has been
transposed to perimeters.

When analyzing the pre-tests, we had noticed a great influence of the didactic
contract on Mehdi's behavior. This hypothesis was comforted by his answers in the
test. In the question about the measurement of areas on squared paper for instance,
he kept using subtraction procedures even if tiling was possible. Therefore, by
analyzing Mehdi's procedures we can get elements to study the evolution of the
didactic contract concerning the notion of area between the moment when the pre-
test was taken and that when the test was taken.

4.3. Cabri-geometre environment
Kadda and Mehdi worked together in the Cabri-geometre environment. Their

procedures comforted the persistence of two false theorems-in-action : 1) area and
perimeter vary accordingly ; 2) a parallelogram and a rectangle with equal sides
have equal areas.

It was still possible to trace these theorems in these pupils' work although they
knew the formula for finding the area of a parallelogram and knew how to use it in
computation situations. Moreover they did not spontaneously resort to this formula.
This comforts our hypothesis that the move from using the formula as a means of
calculation (measurement) to using it in other situations (comparison and
production) is not automatic.

At the same time, we were also able to observe first signs of the use of
formulas as functions of two variables in their justification of variation situations.
We could trace the beginning of the construction of a dependence relationship
between the invariance of the area and the invariance of the base and height (while
sliding one side on its line segment) and the variation of the area according to that
of the height (fixed base - rotation about a vertex).

The analysis of their answers confirmed that the questioning of false theorems-
in-action and the first step towards a functional use of the formula had been favored
by the dynamical point of view and the use of the Cabri-geometre software.

5. GLOBAL RESULTS

The analysis of the global results shows an improvement in the knowledge of
the pupils as evidenced in the tables below. The first table concerns the availability
of basic knowledge (tiling, cutting and pasting, addition and subtraction of areas) ;
the second one concerns the acquisition of formulas for finding the area of
parallelograms and triangles and their use as a calculation means.
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Basic knowledge concerning areas pre-test test
Solid 8 14
Being developed 7 8
None 7 0
Total 22 22

Formulas (calculation means) pre-test (22) test (22)
right right mistake in reading the figure

triangle 0 12
parallelogram 5 12 3

Generally speaking we can relate this improvement to the teaching
organization.

Each stage was conceived so as to involve the building of the knowledge
required for the devolution of the following step. The pupils' results show that :

preliminary activities made it possible for them to acquire the procedures
required for the understanding of area formulas for common figures.

- the paper-pen stage made it possible for them to acquire the knowledge
required for the devolution of dynamical situations.

Resorting to situations where the dynamical aspect was involved favored the
questioning of 'false theorems-in-action concerning relationships between area and
perimeter of parallelograms. It also favored a widened use of formulas not only in
calculation but also in measurement situations.

The analysis of the global results highlighted some sources of difficulties such
as the notion of base and height in parallelograms and triangles.

The ranking of the various uses of formulas was not as obvious as we had
expected. Although the knowledge of the formula and its availability in calculation
situations is necessarily prior toits use in comparison situations it appeared that a
pupil can be able to use formulas in the latter and fail in the former if his/her
knowledge of base and height is shaky enough to prevent him/her from identifying
the measures necessary for calculation with a complex figure. Further research on
these notions will therefore be necessary.
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STUDY OF THE CONSTRUCTIVE APPROACH IN MATHEMATICS EDUCATION:

TYPES'OFCONSTRUCTIVE INTERACTIONS AND REQUIREMENTS

FOR THE REALIZATION OF EFFECTIVE INTERACTIONS

TADAO NAKAHARA

FACULTY OF EDUCATION HIROSHIMA UNIVERSITY

( ABSTRACT )

This paper focuses on the interactions in the process of "developing from

opposition into agreement" with the aim of elucidating their aspects based
on the actual mathematics classes.The first section presents four types of
constructive interactions on the basis of the teaching practice.The second
section symbolizes major processes of the constructive interactions, and
discusses requirements for the realization of effective interactions.

(). INTRODUCTION

The aim of this study is to establish a theory for planning and practicing mathematics

class that enables children to actively construct mathematical knowledge. For this aim,

the author (Nakahara, 1992) has proposed an approach that is entitled the "Constructive

Approach" based on the following five principles.

CAI:Children acquire mathematical knowledge by constructions of their own.

CA2.Basically,children construct and acquire mathematical knowledge in the process of

being conscious, operational, mediative, reflective and making agreement.

CA3.In the process in which children are constructing mathematical knowledge, opera-

tional activity and reflective thinking play major roles.

CA4.Children construct, criticize and refine mathematical knowledge through constructive

interaction with other Children or with their teacher and then agree that it is

viable knowledge.

CA5.1hile children are constructing mathematical knowledge, five modes of representation,

i.e. realistic representation, manipulative representation, illustrative represen-

tation, linguistic representation and symbolic representation play important roles.

In the constructivism-based learning and teaching, social interactions in a class play

an extremely important role. So, many researchers have studied them (Cobb,Yackel & Wood,

1992, Cobb & Bauersfeld,1995 etc.). The author calls them "constructive interactions"

based on his understanding that they are interactions for the children to construct

their knowledge in a class, and has been studying their aspects,fundamental functions

and requirements for their realization (Nakahara, 1992).

This paper should be regarded as a sequel, and focuses on the interactions in the process

of"developing from opposition into agreement"with the aim of elucidating their mechanism
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based on the actual teaching practice. It further aims to derive factors for generating

effective constructive interactions in the teaching.

The first section presents: four types of constructive interactions in the process of

transition from opposition toward agreement, on the basis of the teaching practice

grounded on constructive approach that has been performed by the teachers of author's

study group. The second section symbolizes major processes of the constructive interac-

tions, and discusses requirements and factors for the realization of effective interac-

tions.

1. TYPES OF CONSTRUCTIVE INTERACTIONS

As a result Of study of the cases of constructive interactions in the process of devel-

oping from opposition into agreement so far experienced in the practical study, the

interactions are classified into four types:

(1) "From opposition toward decreased opposition type"

< Case 1 > Calculation style for addition by writing 18

1) Problem: Devise a method of calculating the following(Fig.1): +,1 3

2) Initial response:

A: Start calculating from the digit of units. (27 pupils) Fig.l

B: Start calculating from the digit of tens. (11 pupils)

3) Constructive interaction 1 8 1 8

Cl: If you add the digit of tens at first, you get a result +1 3 -* +1 3

as shown on the right. The answer obtained is 211. This

tells that the method is not right (Fig.2).

2

Fig.2

2 1 1

C2: If you do it like this, you get 31.

C3: If you start calculating from the number of tens, 1 8 1 8 1 8

you have to erase and rewrite a number. That will +1 3 =* +1 3 =* + 1 3

take time especially in examination. You'd better 2

make it faster (Fig.3).

X 1

Fig.3

3 1

T1: Then, I'll show you the method in which you 1 8 1 8 1 8

do not have to erase any number (Fig.4) . 4-2 1 3 -* A-211 3 =* A-2, 1 3

C4: No, that isn't good enough. 1 3 1

4) Concluding response: Fig.4

A: Start calculating from the digit of units. (33 pupils)

B; Start calculating from the digit of tens. (5 pupils)

In this case, opiniOns are initially separated into A and B and mutually opposed among

the children. After constructive interactions, six pupils changed their method from B to

A, but there are five pupils 'still supporting B. Therefore, this type is characterized

as the interaction of "From opposition toward decreased opposition type" ( or simply

"Decreased Opposition Type"). This type, hereinafter, is represented as "A-B toward A-b".

This type tends to appear in cases where various methods or ideas exist leading to the
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solution.

(2) "From opposition toward agreement" type

< Case 2 > Linear expression

1) Problem:

Understand the linear expression, which is defined as an expression represented by the

sum of character x multiplied by a certain number and a number.

Is the expression "30 4x" a linear expression ?

3) Constructive interaction

Cl: (B) "30 4x" is not a linear expression.

C2: (A) "30 4x" is a linear expression, because it may also be represented by

"30 + (-4x)".

C3: "30 4x" is not a linear expression, while "30 + (-4x)" is a linear expression.

Subsequently, discussions were made about the statement that "30 + (-4x)" is a linear

expression and the interpretation of the initially presented definition of the linear

expression, and then finally it was agreed that the "30 4x" is a linear expression.

In this case 2, the children's views had been split and mutually opposed, and through

constructive interactions, agreement was made for A. Therefore, this case may be charac-

terized by the interaction of "From opposition toward agreement type". This type is

represented as "A-B toward A".This type tends to be observed when erroneous solutions or

ideas are included.

(3) "From opposition toward integral development type"

< Case 3 > Mean velocity

1)Problem: (See Fig.5)

John walks every day from his home 'in town K to the school in town H. Yesterday, he

walked at the speed of 5 kilometers an hour to the point J which situated midway

between his home and the school, and at 10 kilometers for the remaining half of the

distance to the school. And today, as usual, he hopes to depart his home at the same

time as he did yesterday, and to arrive at the school also at the same time.He,however,

plans to walk from his home to the school at a

constant speed instead of increasing speed midway.

At what speed should he walk to school todaY ?

2) Initial response:

A: (solution assuming the distance as 40 kilometers)

20 --5 =4 20+10=2 40 / 6 = 6

B: (5 + 10) / 2 = 7.5

3) Constructive interaction

Cl: Assuming the distance as 40 kilometers, the required time with B is represented as

(40 / 7.5) which does not agree with 6 hours which is obtained by the method A.

That indicates B is not right.

C2: You cannot deny it. In some cases, 7.5 may be right...

K J H

Fig.5
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C3: The ratio of speeds of 5 to 10 translates into 1 to 2. When the distance is the

same, ratio of elapsed times is reversed to 2 to 1.

C4: Then, the time required for covering this part is 2 hours and 1 hour for that part,

which gives an equation of a total distance 5x2 + 10x1 = X x 3 . Dividing both

side by 3 gives the speed valueX of 6 %.

C5: A peculiar view !

C6: A is assuming a constant distance, while B a constant time. If the distance is

constant, time will vary because speed is different. This indicates B is not right.

C7: This may be corrected.

C8: I assumed this distance as 20 kilometers and this as 10 kilometers. Since the speed

of 5 kilometers an hour was made for two hours, this may be put as 5 + 5. And since

this part is covered at the speed of 10 kilometers an hour, the distance is covered

by a single hour. Then, the solution may be obtained by (5 + 5 + 10) / 3 (C).

While, in the constructive interactions in case 3, the idea B was rejected and criticized,

the idea was modified by developing the idea A. The finally devised idea C may be consi-

dered the integration and development of both ideas created by developing the idea A and

by modifying B. Therefore, this type of constructive interaction may be characterized as

"From opposition toward integral development type" ( or simply "Integral Development

Type"), which is represented by "A-B toward Bp ".BA° indicates modification of idea B

through acceptance of idea A.

This type tends to appear in cases where erroneous methods and ideas

are modified and developed by integrating them with other thoughts.

(4) "From opposition toward extensive development type"

< Case 4 > Making quadrilaterals using right-angle manipulation. sheets

"The right-angle manipulation sheets" are learning tools which are made

of overhead projector transparencies with a right-angle pattern drawn Fig.6

with marker as shown in Fig.6.

By using two of these shee6 in mutually opposed direction, the following quadrilaterals

are produced. Translation and rotation of these sheets will highlight the interrelations

among these four quadrilaterals

t=i
Fig.7 Quadrilateral Fig.8 Rectangle Fig.9 Square Fig.I0 Rite

In this class, the idea of translation that generates a group of similar rectangles was

presented by the children. Through the idea, the idea of translation that generates a

group of similar squares was derived, and subsequently derived was the incorrect idea of

translation_ that intends to generate a group of similar kite shapes, and finaly its idea

has been modified into the correct idea through discussions.
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The children gradually expanded and modified the original idea to develop it. For that

reason, this constructive interaction is characterized as the "From opposition toward

extensive development type" (or simply "Extensive Development Type"), which is denoted

as " A-B toward A ° ".

This type appears in cases where an idea is being expanded while correcting and develop-

ing erroneous methods and ideas.

2. MECHANISM OF CONSTRUCTIVE INTERACTION

The following discussions try to elucidate the mechanism of above-mentioned constructive

interactions, and to extract factors for effective interactions.

(1) Symbolization of constructive interactions

At first, in order to study the mechanism of the constructive interactions, major

processes of those interactions are to be symbolized. For the purpose of this section,

each of different

identified by Al,

--X:

X:

X4-4Y:

X' :

X° :

ideas are given its own character such

A2 etc.

Negation of X

Criticism of X

Support of X

Opposition between

Further, the following

ideas X and Y or

Interaction between ideas X and Y

Modification of Idea X

Idea X or X' corrected and agreed upon

symbols

as A, B etc., similar ideas are

are used:

Case 1 is to be discussed at first. In this case, the two ideas

are mutually opposed:

A : Start calculating from the digit of units.

B : Start calculating from the digit of tens.

Cl, C3, and C4 in case 1 were criticism of B. Refutations to Interactions in Case 1

them were made to support B. Through all those processes,

supporters of A increased while those of B decreased. Hence,

the major process is represented as shown in Fig.11.

In case 2, the following two ideas were confronted:

--A : 30 -4x" is not a linear expression.

A : "30-4x" is a linear expression, because it may be

. rewritten as "30 + (-40x)".

Afterwards, a compromised idea C3 ( half-supporting and half-

criticizing A,which is represented by"+A -A") was presented,

which caused the development of discussions leading to the

agreement with A. Hence, the process may be represented as. Fig.12 Symbolization of

shown in Fig.12.

In the constructive interactions of case 3, following two ideas

A 4*

B H +B

A

Fig.11 Symbolization of
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are opposed:

A: 40 / 6 = 6

B : (5+10) /2=7.5

Among various opinions and views including criticisms of B,

refutations thereto and defending views, opinions correcting B

were presented finally leading to the following solution that

developed the idea A.

BA° : (5+5+10) /3

Major part of the process may be represented as shown in Fig.

13. The idea A is of course accepted.

In case 4, as mentioned earlier, induced by the translation

that generates a group of similar rectangles and squares (re-

presented by a symbol Al), the similar translation was devised

for kite shapes. Rowever,the initial translation was erroneous

(this is represented as A2). The idea was criticized (-A2),and

modified to the idea of "moving while maintaining the right

and left equal" (A2'), and finally the right method of moving

( A2° ) was agreed upon. Therefore, major part of the process

is represented by Fig.14.

(2) Factors for realizing constructive interactions

Subsequently, let us extract .the factors for the success of

constructive interactions in.the transition from opposition

toward agreement observed in, cases 1-4 based on the above-

mentioned symbolization. The author has studied general

requirements for the realization of constructive interactions,

and identified the following requirements in two categories Fig.14 Symbolization of

(Nakahara,1992) :those concerned with children ,and those Interactions in Case 4

with the teacher.

< Requirements concerned with children >

Each, individual child has his or her own knowledge and ideas.

C-2. Each individual child is capable of presenting his or her ideas, and of hearing

presentations by others.

C-3. The learning group receives presentations of any kind.

C-4. Each individual child is open-minded and has intellectual honesty.

< Requirements concerned with teacher >

T-1. The teacher has been providing the teaching meeting requirements C-1 through C-4.

T-2. The teacher is capable of planning and implementing the classes in which children

can construct knowledge and ideas on their own.

T-3. The teacher is capable of organizing children's knowledge and ideas.

T-4. The teacher is capable of generating separation and opposition of views among

B
1

A

BA

BA°

Fig.13 Symbolization

Interactions in Case

of

3

A 1

A 2 A 2

1

A 2'

1

A 2 °
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children and of leading them to discussions.

In classes as shown in cases 1 through 4, all requirements shown above were basically

met, which may be considered a common factor that enabled the successful constructive

interactions as shown before. Furthermore, from the phases of-symbolized interactions,

two common factors may be pointed out in cases 1 through 4.

One is:

CD Mutually opposing ideas were presented.

Above-mentioned cases may be different from each other, such as opposing ideas were A and

B in a case, and A and --A in another. However, as understood from Figures 11 through 14,

clearly opposing views were presented in any of the cases,and they were suggested by ch-

ildren,which is considered the factor that generated vibrant constructive interactions.

In didactics, a teacher's teaching activity called "negational questioning" has been

studied in Japan (Yoshimoto,1981 etc.),It is a teacher's action that negatively jostles

children's superficial and flat interpretation of teaching materials, to cause contradic-

tions in children's minds, thus leading them to recognition of higher quality.The above-

mentioned opposition functioned as such "negational questioning",and they were presented

by the children, which played a significant role beyond the negational questioning.

The other common factor is:

CD Before reaching the agreement, mediating ideas were generated.

The routes from opposition leading to agreement are versatile, and the mechanism compli-

cated. None of them goes directly toward the agreement, but includes turns and twists

with detours and stops on the way. It should be noted, however,that the idea to be agreed

upon never appeared suddenly nor directly in any of the cases Instead, mediating ideas

toward it continued to arise one after another. Typical or decisive mediating idea for

each of the cases is as shown below.The parts shown inEl in above-mentioned symbolized

figures indicate that those ideas took place in the process.

Case 1: That will take time. You'd better make it faster.

Case 2: "30 + (-4x)" is a linear expression.

Case 3: Ratio of elapsed times is reversed to 2 to 1.

Case 4: Moving while maintaining the right and left equal

Then, what are the factors for CD and CD having taken place? In addition to the above-

stated general requirements, the following points may be pointed out.

<Factors for mutually opposing ideas having taken place >

CD-1 Contents of the problem was suited to the children's level of thinking.

CD-2 Contents of the problem inherently included opposing factors.

CD-3 Free ideas and thoughts of the children were affirmatively received.

CD-4 Agreement or non-agreement was required with respect to others' ideas.

<Factors for mediating ideas having arisen>

CD-1 Reasons for aireement or non agreement were stated.

' 02 -2 Surviving capability was discussed in terms of consistency, rationality, and
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REAL WORLD KNOWLEDGE
AND MATHEMATICAL KNOWLEDGE

Pear la Nesher University of Haifa
Sara Hershkovitz - Centre for Educational Technology

480 children of primary schools solved 6 non-standard problems
with different number of constrain. Their solutions and drawings
demonstrated real world considerations.

Introduction

Recent research reports emphasize the importance of exposing children
to non-standard problems. The problems are non-standard in the sense
that the solver has to take into consideration real world constraints, such
as: balloons cannot be cut into pieces and still remain balloons, or one
cannot order half a bus, etc. ( Reusser, 1996, Wyndham & Saljo, 1996,
Verschaffel et al., 1994)). These reports are very important in stressing
that we all expect the knowledge of mathematics to be applied properly,
and that the way we now teach mathematics at schools sometimes
violates it (Greer, 1996, Nesher, 1980).

Greer (1996) suggests that when children ignore their real world
knowledge, this is not because of a cognitive deficit, but rather because
of the "didactical contract" of schools, or because children understand
well the special "language game" of math word problems in school
(Greer, 1996, Nehser, 1980).

There is , however, another aspect that should concern math educators.
When students are confronted with non-standard problems, and do notice
the realistic constraints, how do they cope with them mathematically?
What are the mathematical tools that they bring with them for modeling
under such conditions? How do they cope with mathematization of non-
standard problems? Unfortunately, we lack this part of the story. We
have plenty of evidence of students' unreasonable replies in non-
stereotyped situations, but we have much less documentation about their
actual performance in modeling such situations.

We report here a study of children attempting to solve non-standard
problems while we are controlling the degree of constraints appearing in
the problems. The attempt was to document how children, who take into
account the real world constraints, behave from the mathematization
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functionality.

. CD-3 Representational modes were utilized. (Cases 1 and 2 involved symbolic represen-

tation, case 3 illustrative representation,and case 4 manipulative representation.)

CD-4 Efforts were made to utilize ideas that contained problems and-errors.

CD-5 Discussions were made patiently.

The points shown above suggest means for the teacher to devise in order to realize the

constructive interactions leading from opposition toward agreement.

3. CONCLUSION

In this paper, four types of constructive. interactions for the transition from the

opposition toward agreement have been presented based on the analyses through practices

of teaching. Subsequently discussed have been two characteristics that are common to

constructive interactions. They are critical factors for the constructive interactions

having worked effectively. For that reason, requirements and factors for realizing the

constructive interactions have been summarized including the above-shown factors.

In General, realizing the constructive interactions leading from opposition toward

agreement enables the following points:

(a) Construction of knowledge by individual child on his or her own

(b) Creation of classes that help understand mutually

(c) Construction of concepts, and enhanced/evolved understanding of meanings

(d) Nurturing mathematical constructive capability

To realize-the above significance, it should be hoped that requirements and factors for

realizing the constructive interactions, that have been summarized in this paper, are

effectively utilized.
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point of view. How do they work systematically, in situations that are
becoming less and less constrained, which is in many cases the real life
situation.

Non-standard problems are multifaced.Usually when people speak about
non-standard word problems, they might be thinking of:
a) Problems to which the child was not exposed to at school.
b) Problems with many solutions.
c) Problems that require attention to real world knowledge and
constraints.

For example, the following well studied problem:
Carl has five friends and George has six friends. Carl and George decide to
give a party together. They invite all their friends. All friends are present. How
many friends are there at the party?
(Nelissen, 1987, taken from Reusser, 1996)

The party problem has each of the above three characteristics. Not only it
is not given usually at school, we also want the child to notice that there
are several possible replies, and also, real life knowledge should inform
the child that Carl and George might have some common friends. This
particular problem is phrased in an ambiguous manner in regard to
whether Carl and George themselves are to be counted, but this can be
clarified.
The main issue from the mathematical point of view is that the solver
should move from the domain of adding two disjoint sets (where the +
sign is applicable) to the domain of uniting two sets, not necessarily
disjoint. Thus, the solver has to hesitate about the correct mathematical
model. Should we tell him in math lessons the difference between the
above two models, or do we leave it to him to invent it?

Do we also want him to approach all the possibilities in the above
situation in a systematic manner, through a methodical inquiry? Is this
also part of our mathematical goals? These were the questions we bore in
mind in planning our study.

The experiment

In order to understand children's ways of modeling non-standard
problems, we constructed a set of problems all derived from the same
context, but differing in their level of openness (or constraints). Though
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the first problem (P1) could be regarded as a standard algebra problem, it
was given to elementary school children, grades 4 to 6, who are
unfamiliar with the language of algebra, and for whom it was a non-
standard arithmetic problem. There were six problems graded from P1
which has just one solution to P6 the most open with an infinite number
of solutions.

The general context for all six problems was: ordering pizzas for
children in a summer camp.

Problem P1:
For a dinner in a summer camp some large pizzas and some small pizzas
were ordered. Altogether 17 pizzas. Each large pizza was divided among
four children, and each small pizza was divided between two children. There
were 40 children in the camp. How many large and how many small pizzas
were ordered?

Problem P2:
For a dinner in a summer camp 17 pizzas were ordered. Some were large,
and others were small. Each large pizza was divided among four children,
and each small pizza was divided between two children. How many children
were in the camp, and how many pizzas of each kind were ordered?

Take note that problem P2 does not mention how many children are in
the camp and leaves it open for many solutions, as long as the child
observes the constraint of 17 pizzas altogether and how theyare divided.
The six experimental problems differ in the number of constraints given
the children and as a result in, the amount of possible correct solutions.
Table 1 details the characteristics of the six problems in the experiment:

Table 1
Description of the Six Experimental Problems

P1 P2'.' pa .: P4 :P5 'iP6

Numberiof piZzas 17 17 17

Large. piZzas.'.

Small pizzas
DiVision'of large pizza 4 4 4

Division of small' pizza 2 2 2

Number children 40 40 40
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The above problem set was given to 480 children of grades 4, 5 and 6,
from 15 schools of heterogeneous population. The problems were
distributed randomly among the children, each child solving just one
problem.

The problems were solved by each child individually. In each problem,
when appropriate, the children were instructed to find different
possibilities for solution. The full instructions were:
a) To draw the story described in the text .
b) To explain in detail the line of thinking, either verbally, by
mathematical sentences, or by drawing.
c) To write how would they explain their solution to another friend.

Findings:

We report here two aspects of their performance: their actual solution
and their visual presentation.

The Solutions:

Table 2 presents the distribution of solvers among. the 6 problems and
their ability to cope with this tipe of problem. By 'coping' we mean,
children who understood the task and offered all kinds of solutions,
though not necessarily the complete solutions.

Table 2
Number of Solvers for Each Problem

PI P2 P3 P4_ -P5 P6
,

N 114 84 91 75 74 42

coped with the 66 66 76 47 57 36
problein. 58% 79% 84% 63% 77% 86%
Could, riot cope with: 48 18 15 28 17 6
the problem - 42% 21% 16% 37% 23% 14%

As can be seen from Table 2, most children could cope with the situation
and offered some solutions. We were mainly interested in the way
children cope with non-standard problems that have different degrees of
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constraints. In analyzing the solutions we relied on their explicit verbal
explanations and used the following four categories:

1. Could not cope with the situation.
2. Gave one correct solution.
3. Gave several correct solutions.
4. Gave a systematic solution, exhausting all possibilities.

Table 3 presents the distribution of the above four categories for each of
the problems, P1 to P6.

Table 3
Distribution of the Four Solutions Categories among P1 to P6

(in percentage)

P1 P2 P3 P4 P5 P6
could not cope 42 21 16 37 23 14
One correct solution 66 47 51 29 39 21
several correct solutions na*) 17 24 15 17 15

Systematic na*) 2 1 4 1

*) "n " means, not relevant to this problem.

As can be seen from Table 3, most children could offer at least one
solution, although they were requested to give several solutions. Some
20% of the children offered several solutions. However, only a few
children of this age demonstrated a systematic method of inquiry.

The Drawings

The drawings were very informative regarding the children's modes of
thinking. Our analysis of the drawings was for all children whether they
could or could not cope with the situation.

In analyzings the drawing we employed the following categories:

1. No drawing at all.
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2. Schematic drawing to support their thinking.

J' /J

fa2,d 1/343 2
VA 8

I/A1 8 = 3a.

3. A full drawing of all parts to be counted.

Goe
(CD CD ccICI

t/c -6 14 x

ADC 0 00 CDfDcDo

69EDEPE9

4. Drawing of the "real situation"as described.

Li /c.1

.2.

N14 -.42 x2=11
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Table 4 presents the distribution of the children's drawings among the
four categories.

Table 4
Distribution of Drawings (in percentage)

P1 P2 P3 P4 P5 P6

No drawing 15 23 14 23 23 2

Schematic drawings 20 24 34 24 26 40
Drawing for counting 57 45 46 44 38 52

Drawing "real situation" 13 8 5 11 15 21

As can be seen from Table 4 the different degrees of constraints,
apparent in problems P I to P6, did not yield different patterns in the
categories of drawings.

We would add an observation which may be important, andwe are still
looking into it while analyzing our data:

The most advanced solutions from the mathematical point of view were
accompanied by no drawings at all, or by schematic drawings. The
children who drew for counting also exhibited less advanced ( from the
mathematical point of view) solutions. Most children who drew the "real
situation" were among the children who could not offer any solution at
all. This was one of the most impressive findings and one that calls for
further elaboration.

Conclusions and Discussion

From the part of the study reported here, we learned that young children
in primary grades are able to cope with non-standard problems with
various degrees of constraints.

The children did bring many real life considerations into their solutions.
Where information was missing, many of them did not think of all
theoretical possibilities, or even about some possibilities, but rather
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employed their every day knowledge to supplement the missing
information. For example, when the number of pizza portions was
unknown, they assumed, without hesitation, the normal dividing of pizza
in Israel (they divided large ones into 8 pieces and small ones into 4).
They assumed that some children would get more than others (as they
probably know from their experience), Sometimes they dealt with
different flavors of the pizzas, etc., adding, more pieces to each child.
In short, we think that they brought into the solutions so much of their
everyday knowledge that we could observe some tension between the
abstract thinking about all possibilities and their everyday knowledge.
This was especially conspicuous in their drawings. Solving the problem
more elegantly from the mathematical modeling standpoint, came
together with a more abstract drawing, rather than a more realistic
drawing.

We suspect, without probing it as yet, that the reason so many children
gave only one solution, although we asked for several solutions, can be
attributed to the fact that in real life one orders just one order, and once
they gave one possibility, it was unrealistic for them to superficially add
other possibilities. Thus, in this context we could not expect to have a
real inquiry of all possible theoretical solutions. We plan to replicate the
study with different contexts, where probing all possibilities is a
realistic demand and to report on it at the conference.
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IMMEDIATE AND SEQUENTIAL EXPERIENCES OF NUMBERS
Dagmar Neuman

Goteborg University, Department of Education and Educational Research

The motive of the study presented here was to promote change in the way that primary
school children who were unable to learn even the simplest numerical skills within the 1-
10 range experienced numbers. It was related to a more large-scale project conducted by
researchers representing different research approaches: phenomenography as well as
Vygotskyan approaches and based on theories of early number sense indicating that
children who experience numbers in an integral and immediate way, as 'structured',
develop a sense of numbers, in which 'number facts' become an integrated part, while
sequential experiences of 'unstructured' numbers lead children into a 'blind alley'. It
utilised computer games which, when related to auxiliary stimuli, gave low achievers
experiences of structured numbers and knowledge of number facts.

Introduction
The study presented here was related to a project called IDM (Interactive Didactical
Milieus), which was concerned with the development of computer games (Lindstrom &
Ekeblad, 1989, Neuman, 1990, Ekeblad, 1996). One of its motives was to help primary
school students who were unable to learn the so called 'number facts', experience
numbers in a manner that would result in a better sense of number perception. The project
was based on the phenomenographic approach, which considers human consciousness to
be a relationship between the individual and the world created through experiences
(Marton and Neuman, 1996) and on the theories of Vygotsky (1978), according to which
consciousness has a social origin and is mediated through the 'tools' i.e., the words and
signs used in personal interaction. The word 'interactive' in IDM, signifies a triangular
interaction between child, computer and teacher.

The study described here also made use of theories related to a phenomenographic study
of how 105 7-year old Swedish school beginners perceived numbers (Neuman, 1987).

The School Beginner Study and a Study of Pupils with Difficulties in Mathematics
In the study concerning primary school students two ways of perceiving numbers were
distinguished:

structured ways where a number presented in a word problem was experienced in
'an integral and immediate way;
unstructured ways where such a number was experienced as 'a manifold' of
elements and perceived through estimation, or sequentially through counting, often
with fingers used for keeping track (`double- counting').

Before the study concerning the school beginners began, a pilot study had been carried out
attempting to map differences between pupils who experienced difficulties in mathematics
and pupils who did not (Neuman, 1987). In this study 59 pupils aged 8 13 were
interviewed and given simple addition and subtraction problems (within the numerical
range of 1-20) to solve. Thirty one of these pupils were receiving special education in
mathematics. These students seemed to percieve numbers as unstructured and could
barely solve any of the tasks in the study (not even within the range 1-10) without
'double counting'. Conversely, their 28 class-mates seemed to experience the numbers as
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structured. They solved the problems immediately, and chose freely from a wide range of
mental calculation strategies.

Gray and Tall (1994) reported similar observations from their research on differences
between strategies used by 72 pupils aged 7-12, 1/3 of them low achievers and 1/3 high
achievers. They denote the techniques used by the low achievers as 'procedural' and the
ones used by the high achievers as 'proceptual'. Pupils displaying procedural behaviour
almost always solved problems with the help of counting strategies, in the way I would
interpret as related to an experience of unstructured numbers. Pupils with proceptual
behaviour, on the other hand, mostly answered with 'known' or 'derived' facts, in the way
I would have seen as related to the experience of structured numbers.

At 7 years of age all pupils those displaying proceptual thinking, as well as those
displaying procedural behaviour knew only a few 'number facts' within the numerical
range of 1-10, Grey et al. pointed out. Yet contrary to pupils exhibiting procedural
behaviour, those displaying proceptual thinking used the facts they already knew to help
them derive new facts. To solve the problem 3 + 4, for example, they could think '7, since
3 + 3 = 6' or '7, since 2 + 5 = 7'. In this way all the facts within the range of 1-10
gradually became known by them, and they could then use these facts to deriv,e facts
within higher number ranges. Their procedures seemed to be gradually encapsulated into
procepts, i. e. into objects possible to use in new and more complex processes.

As Grey and Tall emphasise, it is not correct to refer to low achievers as 'slow learners'.
Their problem is not that they learn more slowly than other pupils, but that they use
qualitatively different techniques, which forces them into a 'cul de sac'.

The Design of the Computer Games
For a procedure to be encapsulated into an object or a number children must abandon
the sequential behaviour related to counting strategies. To do that, we assumed, they must
receive concrete experiences of how numbers can be perceived as 'structured' in integral,
immediate ways. The 7-year old school beginners in my study illustrated that they were
able to experience numbers as structured in three ways, using as aids either:

A multiple of 2, 3 or 4' (to which one single unit could be added or subtracted)
Example: '3 + 4 = 7 since 3 + 3 = 6' or 'since 4 + 4 = 8'.

'An undivided 5' (as the first part of the number, structuring the larger part of the
number as well as the whole number). Example: 9 7 = and 2 + = 9 were
experienced as (5 + 2) + 2 (later as 7 + 2), from which 7 or two could be separated, or
as (the hand plus 2 fingers) + 2 fingers (with the two last fingers put aside)

'A known number combination which could be transformed'. Example: '4 + 6 = 10,
since 5 + 5 = 10', or 'the 5 + 5 fingers on the two hands with one thumb moved from
one hand to the other'.

Concrete situations where children perceived 'numbers with an undivided five' and where
they 'transformed number combinations' had been identified, when children formed
'finger numbers' to represent a number in a word problem. The notion 'finger number'
(subsequently referred to as 'fn') was used by Neuman (1987) to signify fingers put up in
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a row beginning with one hand and ending on a finger of the second hand. The 'fn' for 8,
thus, began with the one hand and ended on the middle finger of the next hand.

Concrete actions through which children obtain experiences of numbers as 'doubles +/
one' however, were difficult to observe in the interview study. One assumption was that
ideas of this kind can be formed when children play dice or domino games. Yet, the
structured ways of perceiving numbers most suited to computer games were the ones
related to 'doubles'. Experiences related to 'fn:s' were thought to be as much of a tactile-
kinesthetic as of a visual nature, and 'fn:s' drawn on the screen were not considered to
provide the children with the same 'body-anchored' experience of numbers they got when
they used their own fingers. In variations of the games we still decided to draw pictures of
'fn:s', but then in order to use them as a substitute for the digits required for the response.
Our intention in using 'fn:s' in this way was to give the children an opportunity to identify
isomorphic structures, such as between a pattern of a 5-group plus a 2-group, and a 'fn'
constituted by the hand plus two fingers. Freudenthal (1983) regarded children's identi-
fication of isomorphic structures to be important in their development of number sense.

The groupings of the flowers, sweets, etc., that appeared on the screen in the games were
done in a lot of different ways, two of them shown in figure 1. It was possible to begin
with small numbers, and to gradually extend the number range.

In the lower part
of the screen
rewards of some
kind, e. g., sweets
or flowers,
appeared
each time a
correct answer
had been given Examples of pattern variations in one of the games. fig.]

The patterns were flashed on the screen for only a few seconds. This short time exposure
was thought to make the tasks exceed the children's present capabilities. According to
Vygotsky (1978) two principles are of importance to researchers wanting to use an
'experimental-developmental method' (p 61).1 Firstly, children should not be able to solve
the problems in the experiment by using existing skills. Secondly, a neutral object should
be introduced as an 'auxiliary stimuli' (p 71). We could say, according to Vygotsky, that
`when difficulties arise, neutral stimuli take on the function of a sign and from that point
on the operation's structure assumes a totally different character' (p 74). However, in the
beginning we did not find any ideas of auxiliary stimuli suitable for the games.

Trying Out the Games

In a first 'trial-run' of the games we also became aware of the fact that the short amount of
time that the patterns appeared on the screen rarely made the tasks exceed the pupils'
capabilities, at least not initially, when the numbers in question were small. The children
saw the patterns as two sets, each of them holding a number of elements, small enough to

Vygotsky (1978) illustrated that this method first introduced by Werner (1948) provides an approach to dynamic
analyses, with the aim of studying not only a final effect, but processes in their entire structure.

sfeti
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subitize. Their 'natural imagery' (Vygotsky, 1978, p39) thus made the visualised objects
as easily countable on the screen as they were when they appeared concretely.

In a study with five pre-schoolers, 5-6 years old, an attempt was made to solve this
problem. The study was carried out by the designer of the programs, Eva Ekeblad, and
myself. The children played one at a time the games during two approximately 30

minute sessions using variations where digits were replaced by 'fn:s'. The sessions were
tape-recorded and transcribed and notes were taken of the children's behaviour. As
expected, the children counted the visualised patterns pointing on the screen with their
fingers. When they had done this for a while however, we told them that the screen would
become smeary from all this pointing, and asked them to count in other ways.

Since the person running the experiment was expected to interact and to solve the
problems 'in conjunction' with the children working with them in a way which, as
Vygotsky (1978) says, 'is not differentiated with respect to the roles played by the child
and his helper' (p 29) we immediately intervened when the child became confused,
posing questions of the kind (for example, if a 3 + 3 pattern had just appeared): 'Did you
see how many flowers there were in the top?' When the child answered 'Three', we would
continue: 'Then you might perhaps want to put up three fingers to help you remember
that.' If the child held up three fingers, but not the 'fn' for three, we said: 'Yes, good, three
fingers, but it might be easier for you in this game to put three fingers on the desk in the
way the three fingers are held up on the screen.' The child would change the configuration
of fingers and we continued questioning: 'Did you also see how many there were in the
bottom?' When the child again answered 'three', then, 'why not put up three more fingers?',
we would suggest. If the child then held up three fingers on the other hand and began to
count, we again pointed out that it might be easier to put down the fingers in the way they
appeared on the screen, i. e. 'with no gap' between the 3 + 3 fingers. The children extended
three fingers to the three on the table and were happy to see the 3 + 3 pattern transformed
into the finger group they used to call 'six': one hand and the thumb of the other hand.

Four of these five children recognised all 'finger numbers' without counting. The fifth
child, however, was not aware that her hand had five fingers, when she first put up the 'fn'
for five. Yet as the games went on she learned all her `fn:s'. Table 1 illustrates what the
children knew at the beginning and at the end of the two game playing sessions.

Table I. Number of children. knowing 'fn:s' and patterns on the screen at start and end of the sessions

All Tns' The 5-patterns The 3+3-pattem The 5+1- 5+2- 5 + 3- and 5 + 4-patterns
Beginning
End

4
5

4
5

2 1

3 4
1

3
1 1

2 I

Four Boys with Mathematical Difficulties Play the Games
These ideas were then used in a more extensive study of four primary graders, all of them
boys, who were taking part in special education courses in mathematics. These boys had
great difficulties in learning the 'number facts' that children are expected to learn during
the primary grades. A special education teacher Mrs Young (all names are factious)
promised to play the games with the boys for 15-20 minutes sessions at a time, once or
twice a week during the seven weeks left before the summer vacation.
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In the first session Mrs Young and I met the boys individually and let them try the games,
which they liked very much indeed. We had chosen the version where 'fn:s' replaced the
digits, so there was nothing reminding them of the 'school mathematics' they hated so.
This first session was tape recorded and transcribed, and notes were taken of the boys'
behaviour in order to make an account of their knowledge at the beginning of the
experiment.

Before the games were started I told the boys that as in all games these games had
rules. The two rules they had to remember were: 1) pointing to the screen was not
allowed, and 2) those who wanted to use their own fingers had to put them up as the 'fn:s'
pictured on the screen. The boys were then asked to put up some 'fn:s' I pointed to. We
discussed and tested concretely how a number of fingers, six fingers for example, could
be put up in several ways e. g. as three fingers on each hand or as two on one hand and
four on the other. 'Yet, the pictures of finger groups in the games' we explained, 'are
called 'fn:s', not just fingers, because they are all formed in the same way: beginning with
the left little finger and then extended one finger at a time'.

Then we started the games. If the boys needed help I and later Mrs Young talked with
them in the same way that I had earlier talked with the pre-schoolers. The four boys
understood the rules rather quickly and could then play the games unassisted.

At the end of the 7th week, a tape-recorded and transcribed evaluation of the experiment
was done. Yet before this final evaluation is described, I will make a brief account of the
pre-evaluation carried out during the first session, of how each boy behaved in the
beginning of this session, and of how their behaviour changed towards its end.

The First Session
At the beginning of this first session two of the four children, Andy(11) 2 and Brent(12),
already knew all their 'fn:s', and one, Sam(8), knew all his 'fn:s' except the one
representing 8. The fourth boy, A1(8), however, knew only the 'fn' for five.' All the boys
could also recognise patterns on the screen that represented numbers less than five. The
five pattern formed as a dice pattern, was also known by all the boys, except Al.

Andy, an 11 Year Old Third-grader
Initially, Andy forgot about the rule to not to put up fingers in any other way than as 'fn's.
He tried three fingers on one hand and two on the other to represent a 3 + 2 pattern on the
screen, and began to count. He was then reminded of the rule, changed the pattern and
said, astonished and happy, 'Five!', without any counting, discovering that he got the
hand'. This immediate and satisfactory recognition of a known 'fn' appeared again, when
he later formed larger 'fn:s'.

During this first session, however, Andy never managed to directly recognise '5 + some
number' patterns when they flashed on the screen, in spite of the fact that they were
isomorphic to the 'fn:s'. He continually needed to represent even these simpler patterns
with his own fingers, before he could mark the correct 'fn' on the screen.

= The digits within. brackets refer to the children's ages.
= Children rarely put up 'fn:s. for one, two and three spontaneously. These f:ns had to be
shown to all pupils.
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Brent, a 12 Year Old Fourth-grader
Brent initially forgot the rule about not pointing at the screen and started to count the 2 + 3
objects he visualised before I reminded him of the rules. He then took unifix cubes, put
them up in a 2 + 3 pattern and counted, before he marked the 'fn' for 5 on the screen. The
next time it was '2 + 3' that appeared, and when once again he reached for the unifix
cubes, I suggested that he replace them with the 'fn' for 2 extended by 3 fingers. He did
that, saw the hand and cried out 'Five!', astonished and relieved, and then proceeded to
mark the correct symbol.

After that Brent put up his hand directly when he saw patterns for five. Yet, initially he
exactly as Andy always put up his own fingers before he could mark any of thein:s' on
the 'screen. Later on in the game however, we observed on two occasions that he directly
recognised the 5 + 2 and 5 + 3 patterns without first using his own fingers. His behaviour
illustrated how he began to feel more and more sure of himself and more contented with
this feeling.

Sam, an 8 Year Old First-grader'
Sam was the boy who did not know the 'fn' for eight without counting and he was
annoyed to have to count the fingers every time the 'fn' he formed for a pattern ended on
the middle finger of the second hand. Conversely, when he saw 4 and 3 on the screen, had
put up the 'fn' for four, and then had extended it with three fingers, he smiled and said:
'Seven!' After this first occasion he immediately recognised 4 and 3 (and also 5 and 2) as
7 without any concrete use of fingers. The pattern showing 3 threes and one single was
difficult for him to construct as a 'fn', but when it was done he immediately recognised the
'fn' as 10. The next time this pattern appeared he immediately said 'ten'. Yet, he explained
that he had seen 'six in the left hand top and one in the right hand bottom' of the screen.
Thus, he had to put up the In' for ten and analyze the number of threes he could find in it,
and then we again showed the10-pattern on the screen and let him see and analyze that.

Al, an 8 Year Old First-grader
Al was the boy who only knew the 'fn' for five. At the start of the experiment he had to
count the fingers for all other 'fn:s'. This made the games difficult for him. So, initially,
we let him use a variant where there was no limitation on the time that the patterns could
be observed and he was allowed to count on the screen. Yet, I tried to draw his attention to
the fact that the objects formed groups, and asked him to tell me about the number in each
group before he began to count. He immediately said '4 + 1' for the dice pattern and '3 +
2' for the other 5-patterns. The numbers in the subsets were small enough to be subitized.
Yet, since he did not know any 'number facts', he still had to count in order to carry out
the addition of 4 + 1 or 2 + 3.

After he had played the first part of one game in this way, we introduced the 'flashing'
variant, and the dice pattern for five appeared. He said '4 and 1', and after being
informed of the two rules then put up the 'fn' for four and extended it with one finger.
He was very happy to see that this pattern was 'the hand', which he called 'five'. Yet,
except for 'the hand', he initially had to count all the 'fn:s' he held up.

In Sweden children begin school in August of the year they turn 7. This was the second term of Sam's school year.
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After some time had passed however, we saw that he did not count his 'fn:s' any more.
He said 'Six' directly when he had put up 'the hand + one finger' for the patterns 5 + 1 or 3
+ 3, and 'Seven', when he had put up 'the hand + two fingers'. Towards the end of the
session he did not even need to put up any fingers for the patterns 2 + 3, 5 + 1, and 5 + 2,
but immediately recognised them when they flashed on the screen.

The Final Evaluation Seven Weeks Later
In the final evaluation seven weeks later we met again with the four boys individually. At
this point all of them knew all of the 'fn:s', but none had to use them any more. They now
recognised all the patterns on the screen immediately and could also, with great assurance,
describe the composition of the patterns long after they had disappeared. When marking
the 'fn' 5 + 2 for 7, for example, they could correctly explain that they had seen 3 + 4
objects, and when they had marked the 'fn' 5 + 3 for 8, that they had seen 4 + 4. When the
games were finished, Mrs Young asked the boys to explain different ways in which
numbers could appear. All the boys gave several examples of how numbers could be
compound,for example, that 3 + 5 makes 8, but that 8 also can be 4 + 4, 2 + 6 or 1 + 7.
They could also illustrate with 'fn:s' how transformations between number combinations
could be done.

The boys' teachers met us when the evaluation was finished. All of them assured us that
something seemed to have happened to these boys during the last weeks, that a change
had taken place. Their self esteem was better and they were not nervous in the way they
had been earlier.

Conclusion
According to phenomenographic assumptions our consciousness consists of relations
created between the individual and the world through experiences. What people experience
in a given situation depends on what they have earlier experienced in similar situations.

When the four boys started to play the games, their earlier experiences prompted them to
act i.e., to count. Through the games, however, they garnered experience which
obstructed the immediate impulse to count and instead prompted them to first think about
how to re-group the patterns into a structure which made the numbers well known or
easily learned by them. In the final evaluation not even this prompt to think and to 're-
structure' patterns seemed to be consciously experienced by the boys. Now the
procedures had been encapsulated into objects in the form of known sums.

The 'auxiliary stimuli' the children's own `fn:s' became naturally introduced as a
result of our decision to solve the problems in 'conjunction' with the children. They
provided new perceptual experience experience in how to immediately grasp numbers
by transforming them into numbers with a '5' structure.

Discussion
The hand seems to represent a natural number-area, Werner (1973) states, adding that his
research indicated 'a definite relationship between the ability to articulate the fingers and
the early development of number concept' (p 296). He also refers to Werner and Strauss
(in Werner, 1973, p 297) who reported on the relationship between difficulties in grasping
optical configurations constructed of discrete elements, e. g., dots, and deficiencies in the
development of number concepts. Pupils who have not developed more , advanced
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methods for conceiving and dealing with optical numerical forms are not able to deal with
abstract number-concepts either, Werner concludes, referring to Brownell (in Werner,
1973, p 297).

The ability to experience the sum of an addition the addition of 3 + 4, for example as
a 'number fact' or sum, seems to require the encapsulation of two procedures. First, the
numbers within each addend 3 and 4 in the example must have been encapsulated into
(subitized as) two immediately experienced objects. Secondly, to make an encapsulation
possible of the two added numbers (3 + 4) i. e. to make it possible to experience their
sum as related to one single symbol (7) without counting the number combination must
be re-structured, given a structure common to all numbers (in the example [3 + 2] + 2).

In our culture we have chosen to structure numbers with the help of tens and multiples of
tens. Yet to begin with, the most important thing is to give the smaller numbers outside
the subitizing range, but within the basic number range of 1-10, such a common
structure. If sums within this number range are not automatized and experienced as
objects, possible to divide up into two parts in all possible ways, they can not be used as
thought tools in more complex addition and subtraction, for instance over 10-borders.

Once we began to picture our fingers as 'Roman numerals' these basic numbers gained a
common semi decimal structure. In a similar way the children in the study presented here
re-grouped all the different patterns appearing on the computer screen and provided them
with a semi-decimal structure. The auxiliary stimuli in the form of `fn:s' made this
possible. Auxiliary stimuli can, as Vygotsky says, take on the function of a sign, when
difficulties arise. And those signs can make the operation's structure assume a totally
different character.
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MICROANALYSIS OF THE WAYS OF USING SIMPLER PROBLEMS
IN MATHEMATICAL PROBLEM SOLVING

Kazuhiko NUNOKAWA, Joetsu University of Education

The aim of this paper is to examine how solvers use solutions of simpler
problems to explore original problems. According to analysis of data by two
problem solvers, it will be stated that; (i) solutions of simpler problems can
suggest some aspects to which solvers should pay attention in exploring an
original problem situation, and can support importance of some elements in
the situation; (ii) it is an important factor in using solutions of simpler
problems to explore original situations and get information about it ; (iii)
although solvers' making-sense of solutions of simpler problems plays a
crucial role, inappropriate making-sense does not need to lead to failure and
can promote solvers' activities.

1. Introduction
It is widely recognized as a strategy to use similar and simpler problems in solving
mathematical problems. Yokoyama (1991) found, however, that teaching of this
strategy did not have so much effect on children as teaching of other strategies such
as guess-and-check, making-lists, and working-backward. While Schoenfeld (1985)
showed that students could use solutions of simpler problems effectively in solving
original ones, Tsukahara (1991) reported students' difficulty in using those
solutions.

Such research did not focus on processes themselves in which students
investigate original problems taking advantage of solutions of their simpler
versions. This paper will attempt to examine these processes as such by analyzing
the protocols of the actual mathematical problem solving, to understand roles of
simpler problems better.

2. Gathering Data and the Outlines of the Solutions
2.1 Gathering Data
The problem solving processes of two solvers (call them the subjects S and T in the
rest of this paper) will be treated in this paper. Each of these solvers participated in
the problem solving experiments consisting of nine sessions. Both of them were
graduate school students studying mathematics education, and S is the same person
as the subject in Nunokawa (1994b). What will be analyzed here are the data of the
third session of each experiment. In this session, the following problem was tackled;

Prove that if a, b, and care positive real numbers, then
a +b +c

aabbcc a (abc) 3

(Klamkin, 1988, p. 5).

The subjects were asked to solve this in the think-aloud fashion. The whole solving
processes and interviews were recorded by ATR and VTR. The transcriptions of
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these records, answer sheets written by the solvers, and memos taken by the
experimenter are used for analysis (for detail, see Nunokawa (1994b)).

2. 2 The Outline of the S's Solving Process
(i) He transformed the right-side of the inequality to be proved, and got
aal3abl3acl3bal3bbl3bc13cal3cbl3cc13. Then he took the logarithms of the both-sides and
multiplied them by 3 to get 3aloga+3blogb +3clogc and (a+b+c)loga+ (a+b+c)logb
+(a+b+c)logc, respectively. He introduced the condition a>b>c >0 by himself,
saying "since it does not lose generality." Here, he mentioned 3a-(a+b+c) >0 and
3c-(a+b+c) <0, but said that he could not decide whether the rest (i.e.3b-(a+b+c))
was positive or negative. Saying "I would try to subtract [(a+b+c) from 3a, and so
on]," he wrote 2a-(b+c), 2b-(a+c), and 2c-(a+b) , and added the mark
"0 "(indicating 'OK') to the first one, " x "('not OK') to the second and third ones.

(ii) He examined 0.5 0.5 saying "Does the greater-less relation reverses at 1?" Then
he drew a graph of y =xX. Based on the fact that the minimum of y=xx was (e-1)6-1,
he estimated the left-side as aabb cc ) e- 1 =e-36-1, saying "it cannot be
less than this." After that, he began to search for an alternative approach.

(iii) Saying "I'd try another idea," he examined the one-letter and two-letter cases
of the given inequality. He took the logarithms of the both sides of cPbb-a(ab)(a+0/2,
and subtracted its right-side from the left-side. After transforming it into
(a-b)loga+(b-a)logb, and into (a-b)(loga-logb), he noted that the two-letter case
had been proved because (a-b) and (loga-logb) had the same sign.

(iv) Adopting "the same policy," he wrote 3a loga+3blogb+3clogc-(a+b+c){loga
+logb+ logc} and transformed this into (2a-(b+c))loga +(2b-(a+c))logb+
(2c-(a+b))logc. He transformed 2a-(b+c),26-(a+c), and 2c-(a+b) into a+a-b-c,
b-a+b-c, and c-a-b+c respectively, and examined them. During this examination,
he marked the sign "+" on the first expression, "?" on the second, and "-" on the
third.

(v) He transformed a+a-b-c, b-a+b-c, and c-a-b+c into a+(a-b-c), b-(a-b+c),
and c-(a+b-c) respectively. Then he tried another transformations like
a+a-b-c=(a-c)+(a-b), b-a+b-c=(b-c)- (a-b), c-a-b+c=-(a-c)-(b-c), and said
"How about this combination?" After that, he transformed the expression obtained
at the stage (iv) into {(a-c)+ (a-b)}loga+ {(b-c)-(a-b)}logb+{-(a-c)-(b-c)}logc,
then into (a- c) {loga- logc } +(b -c) {logb -logc} +(a -b) {loga- logb }. He added "&)"
to this expression and said "so, this is positive." The solver closed this solving
process by himself, which took 43 minutes.

2. 3 The Outline of the T's Solving Process
(i) After trying some numbers for a, b, c and checking whether the given inequality
held, he listed up several ideas for a proof, and mentioned the idea to find C which
satisfied A z C z B (here, A and B may refer to the left-side and right-side of the
inequality respectively). Then he began to prove the two-letter case of the
inequality. After he tried to apply the relation between arithmetic and geometric
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means and examined a graph of y=ax , he began to consider the difference between
the left-side and right-side in the two-letter case. He consequently proved it by
transforming this difference into a (a+b)/2b(a+02((a/ b)(a-b)/2

(ii) Returning to the three-letter case, he tried to apply the result of the two-letter
case. to a part of the given inequality, bbcc. Since a a can be seen as
a(a+b+c)I3a(2a-b-c)/3, he attempted to search for a satisfying a(2a-b-0/3(bc)a and
(bc)a+(b+c)I2 (bc)(a+b+c)13 (Indeed, if such a were found, he could have showed
aabbcc- da+b+013 (bc)a (bc)(b+c)12(abc)(a+b+013, which proved the given
inequality). However, he gave up this search.

(iii) He tried to show (aabbcc)/(abc)(a+b+03 z1. This time, he searched for a which
satisfied a(2a-b-0/3>(bc)a and ba+b-(a+b+c)13ca+c-(a+b+c)/31. He derived the
condition a(b+a-2c)/3 from the latter requirement. Then he focused on one letter
b to reduce the complexity, and searched for a which satisfied
a (2a-b2c)13c (2c-a-b)I3>b a and ba+b-(ai-b+c)/31.

(iv) He wrote new expressions saying "That may be what I wanted," and reached the
following; (a I c)(a-013{a(a-b)13 I 01-013}bbb(a+b+c)13. He looked for a satisfying

(a / c)(a-013{c(a-b)13 I c(b-013}b" and babbb(a+b+c)/3 (Finding such a is not
necessary for the solution in fact). But he could not find such a, partly because of
the mistakes in his calculation. The solving process, which took 101 minutes, was
closed by the intervention of the researcher.

3. Impact of the Solutions of the Simpler Problems
3.1 Impacts Observed in the S's Solution
Here will be analyzed two stages, (iv) and (v), of the S's solution, which were
directly related to his proof of the given inequality. Some activities in these stages
are similar to or corresponding to the activities done before tackling the two-letter
case. In spite of those similarities, however, there are differences between the
activities before and after tackling the two-letter case. I would explore impact of the
solution of the two-letter case on the solving process for the original problem, by
considering such differences.

(1) Taking the logarithms of the both sides of the inequality had been done even
before he tackled the two-letter case. But, in the stage (ii), he rejected the ideas of
considering the difference between the cubes of the both sides and of considering
aabb / (abc)(a+b+03, because these ideas were essentially the same as taking the
logarithms. That is, he was not confident of the effectiveness of taking the
logarithms. After he had proved the two letter-case, he immediately began to take
the logarithms of the both sides of the three-letter case again and did not change this
direction. This implies that the solution of the simpler problem had shown the
validity of the idea of taking the logarithms of the both sides.

(2) The way of investigating the expressions such as 3a-(a+b+c) and 2a-(b+c) had
changed after tackling the two-letter case. At the stage (i), his attention was paid
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only to whether each expression was positive or negative, and was not paid to
relations among those expressions. He added the sign "0 " to positive expressions
and "x " to negative ones and said "This can't make it go well." He seemed to
assume that loga was positive, and try to show that the difference between the left-
side and right-side of the given inequality was positive based on the following facts;
(a) both of loga and 2a(b+c) were positive and their product was also positive; (b)
similar facts worked for logb(2b(a+c)) and logc(2c(a+b)); (c) the difference
between the left-side and right-side was expressed as the sum of these three terms.

At the stages (iv) and (v), he treated such expressions in the context of
"exchange [the letters] and factorize it well, " and so investigated them relating
them to each other. This attempt was clearly observed in his behavior that, after
transforming some expressions into a+(abc), b(ab+c), c(a+bc) at (v), he
pointed to three a's of (abc), (ab+c), and (a+bc) with his finger saying "a's
are arranged well, but others are not." This idea occurred naturally, in the two-
letter case, during transforming the expressions, because, in the two-letter case,
(ab) and (ba) had occurred and it was easier to see their relation. So his attention
to the relation among the expressions can be considered an impact of the solution of
the simpler problem.

(3) The idea of gathering common factors, in relating to (2), was observed only
after his solution of two-letter case. Before that, he tried to transform the
difference between the left-side and right-side of the given inequality (after taking
their logarithms) into a certain sum of positive terms. Emphasis was put on
determining whether each appearing term was positive or negative. After the two-
letter case, by contrary, he intended to factorize that difference, and emphasis was
put on finding common factors in different terms. Although he investigated the
same difference before and after the two-letter case, what he tried to find or
construct in it had changed. His new intention can be seen an impact of the solution
of the two-letter case.

(4) His attention to certain forms of expressions, e.g. (ab) and (ac), can be also
considered an impact of the solution of the simpler problem. When he made a
transformation like a+abc= (ac)+(ab), he said "So, I can use a very analogy
with this." This transformation was done, however, without a sufficient prospect of
a final solution, since he said "What can I get by approaching in such a way?"
during this transformation. Only after he wrote (a c) {loga logc }+ (b c) {logb
logc}+ as the transformation proceeded, he said "I've got it." This suggests that his
previous utterance about utility of an analogy meant that he could then begin a
transformation similar to the two-letter case. In other words, the transformation
like a+abc = (a c) +(a b) was justified not because it could produce a proof of the
given inequality, but because it could make it easier to relate the original and
simpler problems and make it possible to proceed a transformation similar to the
two-letter case. The solution of the simpler problem had presented a context where
the factors that would play an essential role in the later activities could be supported
when they occurred.
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3.2 Impacts Observed in the T's Solution
Although the subject T did not reach a complete proof, he obtained the following
expression during his solving process;

_a-b
a+b+c

(a) ) 3 a 3 b 3b . N.
c

Dividing the both sides of this by b(af-b+c)/3 and transforming the left-side can lead
to a proof of the given inequality. Thus, this (*) means the considerable progress of
T's solving process, and so the part of obtaining this would be analyzed here.

At the stage (iii), when T tried to find a such that a (2a-b-0/3c (2c-a-b)I3b a

and b a+b'-(a+b+c)I3 z1, he said "Doing this breaks the attempt." But when he
transformed the left-side of the former condition to a{(a-b)+(a-01/3c{(c-6) +(c-b)}3,
he said "No, it doesn't break." He wrote newly {a (a-b+11-013b b }/c {(c1-0+(a-c))/3
b (a+b+013 saying "That may be what I wanted" and transformed the left-side of this
expression into (a / c){(a-c)+(a--0113bb , which includes his mistakes. Correcting the
mistakes in the exponents, he reached the expression (*). He said "Doing this breaks
the attempt" in writing a (2a-b-c)/3c (2c-a-b)I3, but he said "It doesn't break" when
he modified it into a {(a- b) +(a- c) }/3c {(c- a) +(c -b) }/3 . This suggests that transforming
the exponent (2a- b -c) /3 into {(a-b)+(a-c)}13 was a clue to the expression (*).

Since he immediately proceeded to (a / c){(a-c)+(a-0113 saying "That may be
what I wanted," he might say "It doesn't break" with such a transformation in his
mind. Taking account of the fact that he had proved the two-letter case by making
the form like (a / b)(a-b)/2 and that that form of expressions had never appeared
elsewhere, it can be said that the solution of the two-letter case might show the
possibility and validity of the transformation into that form. Just before the end of
the process, he pointed to c(a-b)13, c(b-013, b(b-013, b(a-b)13, which appeared as a
result of a certain transformation, and said "They seem similar to..." This can also
be considered to show his orientation to a similar transformation.

3

4. Importance of Exploration of the Original Problem Situation
As shown in the previous section, in the cases of the both subjects, the
transformation of 2a-b-c into (a-b)+(a-c) and other similar ones were the
important clues to the progresses of their solving processes. This appearing form
(a-b), a difference of two letters, is certainly easy to be found in solving simpler
problem. In fact, in the S's solving activities, this element of (a-b) was naturally
generated by taking logarithms of the both sides of the two-letter case and ordering
them with respect to loga and logb. In the T's solution, the terms a(a -b) /2 and
b(b-a)/2 appeared through factorization of aabb - (ab)(a4-b)/2 by the common factors
daf-b)12 and b(a+b)I2 and they had the forms (a-b) and (b-a) in their exponents.
The transformations could be furthered, in the processes of the both subjects, by
interpreting this (b-a) as -(a-b). In this sense, the solution of the simper problem
can be considered to have shown the validity of such forms of expressions.
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Such forms as (ab) can be appear in the three-letter case only when some
expressions like 2abc and a+abc are transformed appropriately. But the
solution of the simpler case cannot give information about those appropriate
transformations. Analyzing S's and T's processes with respect to this point, it can be
noted that activities with such transformations had been done in other contexts.

The subject T subtracted (a+b+c)I3 from (b+c)I2 in order to check which
was bigger, in the context of finding an appropriate a at the stage (ii), and tried to
determine whether the numerator b+c-2a of their difference was positive or
negative. In doing that, he transformed it into (ba)+(ca) and said that it was
absolutely negative. The transformation necessary for the activities at the later
stages did appear here. His utterance that (ba)+(ca) was absolutely negative might
be supported by the fact that (ba)<0 and (ca)<O, which implies his attention to
these differences of the pairs of two letters. In the earlier part of (iii), he calculated
the difference of the exponents {(2a b c)/3 } {(a+b- 2c)/3} to get (ab)+(cb), and
checked which of (ab) and (bc) was bigger. He had invented the transformation
which would become necessary later, in his attempt to determine which exponent
was bigger.

The subject S checked whether 3a(a+b+c) or2abc was positive or
negative at the stage (i), before tackling the simpler problem. At the stage (iv)
(after solving the simpler problem), he searched for the common factors to
factorize in the three-letter case and checked whether some expressions were
positive or negative because, in the two-letter case, interpreting the negative term
(ba) as (ab) made a factorization possible;

S (37:33): This is...at least...this [ a+a -b -c ] is positive, this [ b-a+b-c ] is undecided, this

[c-a-bi ] is also undecided, ah, this [ c-a-b+c ] is negative...

It can be said that, in doing this, he made the differences of two letters and
determined whether each expression was positive or negative based on positiveness
or negativeness of those differences, just as T did. That is, S had paid attention to
the form of differences of two letters in the context of checking whether some
expressions were positive or negative.

Here, the expressions 2abc and a+abc were generated through
operations on the problem situation, i.e. the given inequality, and can be regarded
as new elements of this situation. So, the fact that they could be transformed into
(ab)+(ac) etc. is new information about the problem situation. The above .

discussion in this section can be restated as follows; the information about the
problem situation obtained by the activities which were not directly related tathe.
final solution, played a critical role in applying the solution of the simpler problem
to search for a solution of the original problem. This coincides with the discussions
of some researchers (Terada, 1991; Tsukahara, 1991) that applying solutions of
simpler problems requires understanding of original problems.

Indeed, in the S's solving process, the solution of the two-letter case provided
him with the idea of factorization essential to the final solution. But the final
solution of the original problem was not constructed by translating the solution of
the two-letter case into the three-letter case. What he aimed at first according to the
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two-letter-case solution was the organization of the situation in the form of
(expressions of used letters without log)x (expressions of used letters with log). This
is reflected in that he made at stage (v) a+(abc), b(ab+c), and c(a+bc), all of
which included similar forms like (a*b*c) (* is + or ). On the other hand, the
organization in the final solution was the sum of the terms in the form of
(difference between two letters)x (expressions of two letters with log). The latter
form of organization was not found by examining various ways of organization
referring to the two-letter-case solution (i.e. giving new senses to the two-letter-
case solution), but by aiming at the former organization, investigating the relations
among expressions without log, paying attention to differences between two letters
like (ab), and transforming expressions based on those differences. In other
words, it was found by his exploration of the problem situation aiming at the
former organization. His report in the interview supports this;

But during separating the letters, I noted there were two a's, like a minus a minus c, so
combine a and this, another one...Since there are two, so try to separate them, separate them
further. I must have another ac elsewhere, so I've done that, then it worked well.

This utterance implies that the transformation into (a c) was continued based on a
characteristic of the problem situation that two a's existed in one term and on an
attempt to treat them separately and combine them to other letters, rather than on
an effort to make the form of (ac) or (bc) because the term (ab) became the
common factor in the two-letter case. The final organization of the problem
situation seems a result of such transformation. That is, the solution of the original
problem was not attained by, in the original problem situation, searching elements
which were needed to solve the simpler problem (see Polya, 1973, p. 111). During
his activities with an attempt to make correspondence of the original problem with
the simpler, he found new unexpected elements in the original situation, and
importance of these elements was supported by the solution of the simpler problem.
Organizing the original situation based on those elements, as a result, a structure of
the situation different from the expected one occurred and it led to the solution of
the original problem.

5. Utility of Simpler Problems and Giving Senses
To sum up the above discussion, according to the examples analyzed here,
contributions of the solution of the simpler problem are suggesting some aspects to
which solvers should pay attention in exploring the original problem situation and
supporting importance of some elements in the situation (which may be obtained
through activities not directly related to the final solution), rather than presenting
the very procedure for the solution or the results available for it.

While the importance of selecting appropriate simpler problems has been
emphasized in the previous research (e.g. Polya, 1973, pp. 52-53; Schoenfeld, 1985,
pp. 84-96), little attention has been paid to how solvers use solutions of simpler
problems to tackle the original problems. The above analysis shows, however, that
it is not always simple to use those solutions to tackle the original problems. One of
its reasons may be that it is a solvers' role to make sense of the solution of the
simpler problem and decide how to apply that sense-making to the original problem
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situation. It is difficult to decide which may be better to make sense of the S's two-
letter-case solution as (expression of the used letters without log) x (expression of
the used letters with log) or as (the difference of the two letters) x (the difference of
logs of the letters), referring only to the solution of the two-letter case. Like as
utility of diagrams (Nunokawa, 1994a), senses given by the solvers are important
factors in utility of simpler problems.

The above analysis also shows that failure of making-sense dose not
necessarily mean the failure of using simpler problems. Even making-sense which
was inappropriate to the final solution promoted exploring the problem situation
and made it possible for the solvers to generate new information. If an appropriate
making-sense cannot be determined uniquely, in using solutions of simpler
problems, it seems important not only to translate procedures or results of simpler
problems to original problems, but also to continue to explore the problem situation
following information obtained by tentative senses of the simpler-case solutions.

6. Concluding Remarks
In this paper, the actual problem solving processes were analyzed and one aspect of
the utility of simpler problems, that is, how solutions of the simpler problems can
indirectly promote the solvers' exploration of the problem situation, was found.
Taking account of this aspect, we can introduce "Using Simpler Problems" strategy,
in the problem solving strategy instruction, in a little different way. The point
emphasized in the introduction may be what kind of exploration can be continued
according to solutions of simpler problems.

While using simpler problems can change solver's structures of a problem
situation (Nunokawa, 1994b) in above-mentioned ways, making these simpler
problems may be influenced by the solver's structure at that time. Interactions
between used simpler problems and solver's structures are to be investigated in
future research.

1. This research is partly supported by Grant-in-Aid for Scientific Research (No. 08780146),
Minister of Education, Science, Sports and Culture of Japan. The statements in this paper,
however, does not necessarily reflect views of the Ministry.
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PUPILS' PERCEPTION OF PATTERN IN RELATION TO SHAPE

Jean Orton, University of Leeds, U.K.

This paper reports on some aspects of a study of pattern perception conducted with
pupils aged 9 to 16. Tests were administered to explore the possible relationship
between pattern recognition and general ability. Issues related to the mental
manipulation of 2-D shapes were also considered. The relative difficulty of
transformations was investigated together with the influence of frames of reference.
Developmental stages have been suggested in terms of the test items.

Introduction

Any study of pattern in relation to shape ought to start from a clear idea of what is
meant by pattern. Providing a definition is not easy. Grunbaum and Shephard (1986),
claim that they have been unable to find one that is satisfactory. The patterns of fabrics
or wallpapers would suggest that the idea of repetition is important but to Sawyer
(1963) pattern "is any kind of regularity that can be recognised by the mind" and the
word 'pattern' is also used to refer to "a configuration consisting of several elements
that somehow belong together" (Zusne, 1970, in Reed, 1973).. This variety of ideas
about pattern led to a broad view being adopted in this study. Pattern was not seen as
confined to repeating patterns but included ideas about shape recognition, congruence
and symmetry. The aim was to investigate how easily pupils 'see' patterns and the
main instrument was a pattern recognition test.

The recognition of congruent shapes in different orientations involves some form of
mental transformation but is the image that is transformed propositional or pictorial?
For example, in recognising two different rotations of a triangle as congruent does a
pupil's mental activity use a set of propositions (expressing the properties of each
triangle) or has one triangle been mentally rotated to match the other? Those who
accept the idea of a mental (pictorial) image refer to a close relationship between
imagery and perception. Clements (1982) gives a good summary of theories
supporting and opposing visual (pictOrial) images and Cooper (1990) provides more
recent evidence in support of mental representations of 3-D objects. Solano and
Presmeg (1995) focus on the relationship among images rather than mental
manipulation in their work on visualisation. Krutetskii's distinction between different
types of mathematical mind (Krutetskii, 1979), however, suggests that the thinking of
some pupils (`analytic' types) may be without pictures or entirely non-visual. The
present study sought enlightenment on whether (and, if so, how) pupils use pictorial
images in the context of pattern recognition.

Work by the APU (1980) and Kuchemann (1980) indicate children's difficulties with
reflection in an oblique mirror line and the CSMS results (Hart, 1981) point to further
difficulty in rotating a shape. Chipman and Mendelson (1979) tested children's
sensitivity to different types of visual structure and suggested the chronological order
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double symmetry, vertical symmetry, horizontal symmetry, diagonal symmetry and
rotational symmetry and this largely agrees with cross-cultural studies in pattern
perception (Bentley, 1977 in Deregowski, 1980). Bryant (1974) suggests that a
perceptual framework like the side of a page can help children distinguish between a
vertical and an oblique line. The influence of a frame of reference featured in some of
the pattern questions.

The Research Study

The pattern recognition test was conducted with nearly 300 pupils aged 9 to 16, taken
from Years 5, 7, 9 and 11 (i.e.ages 9/10, 11/12, 13/14, and 15/16). Additional
information was obtained from individual interviews conducted with 12 of the pupils.
Each pupil was also given the AH4 Test of General Ability.

Values of Pearson's product moment correlation coefficient, r, were calculated for the
AH4 test totals and the pattern recognition totals and are shown in Table 1. The

Boys Girls
n r p n r p

Y5 44 0.60 <0.001 36 0.53 <0.01
Y7 47 0.70 <0.001 39 0.87 <0.001
Y9 51 0.37 <0.01 37 0.26
Yl 1 27 0.44 <0.05 23 0.20

Table 1 - Correlation between Pattern Recognition and General Ability

correlation coefficients for Y7 were very highly significant and in general the results
mostly show correlation. The relationship between general ability and recognition of
pattern, however, did not seem to be a simple one. Scatter diagrams showed that there
was more correlation in the lower half of the ability range than the upper and, although
correlation was generally evident over the whole ability range, the results suggest that
it might not be detected in a setted class.

In Question 6(d) (Figure 1)

interviews revealed that some
pupils assumed that only one
shape was required so the
scores were perhaps not as
meaningful as had been hoped.
Another problem for the pupils
was deciding whether reflection
was allowed. Finally during
individual interviews an attempt
was made to time the pupils as
they wrote down their answers
and there was some evidence
that the length of time
decreased with age.

6(d) DD
Da

Which triangles could be cut out and

placed on top of the triangle W?

3 305

Figure 1

31.3



4(a)
back of flag

/
The flag has a small
triangle stitched onto
the back and the front.

back of flag

4(b)

The flag has a small
figure stitched to the
back and the front.

4(c)

front of flag

The flag is moved.

Draw in the triangle.

front of flag

The flag is moved.

Draw in the figure.

The hammer has been
moved to 3 different
positions but the hammer's
head has come off.

Figure 2

For each position draw in the
hammer head.
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Question 4 (Figure 2) was designed to explore the possible influence of a frame of
reference when transforming a shape. Analysis of the results had to take account of
the fact that the drawings of the backs of the flags allowed ambiguity of interpretation
with the transformed flags. For example, in (a) one transformed flag is either a
reflection of the front of the flag in a horizontal axis or a rotation of the back of the
flag, and the other could be either a reflection of the back of the flag in a diagonal axis
or a rotation of the front of the flag. Individual interviews revealed that some pupils
completed 4(a) and 4(b) using the outline of the flags as a frame of reference and filled
in the triangles and figures in relation to the top and bottom of the flag perhaps without
any mental transformation. being involved. Indeed many of the pupils physically
moved the answer paper round to align the flagpoles with the 'vertical' of the desktop.
Table 2 shows the percentage of the total marks available scored by pupils in each part
of the question at the different age levels.

Age Yr. 4(a) 4(b) 4(c)
9/10 Y5 71.3 45.6 46.3
11/12 Y7 87.8 73.3 63.6
13/14 Y9 92.6 86.4 74.6
15/16 Yl 1 89.0 90.0 76.0

Table 2 - Results for Question 4

Question 4(a) was generally found to be easier than 4(b). The asymmetrical figure of
4(b) required more consideration of direction, and caused difficulty especially with
younger pupils. Older pupils seemed to make more errors with 4(c) than with the
other parts. No frame of reference was available in this part and the orientation of the
handle was often ignored and all the transformations taken as rotations. It had been
anticipated that the horizontal reflection would be found easier than rotation but this
was not found to be so in either 4(c) or in 4(a). The presence of a frame of reference
seems to remove the demand for visualisation and enables pupils to transform a shape
by applying certain rules.

Question 7 (see Figure 3) was amongst
the hardest questions on the pattern
recognition test and involved the
recognition of rotation. D was the most
common response. Perhaps some pupils
thought the question involved shape
matching and matched the first shape
with D. One Y5 pupil, when
interviewed, explained it differently:
"because that's where it starts again.
The three shapes form the pattern and .
then it starts again, so D."

7.

Which of the shapes given below
would continue the pattern above?
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Individual interviews revealed that children were very good at seeing a different
pattern from the one intended, as this explanation for the choice of C in question 7
reveals:

"The three shapes are like ducks. It must be C because it's not like a duck. It
has an extra line."

It was also clear from the interviews that some children recognised the rotation but still
gave a 'wrong' answer.

It had been hoped that Question 10 (Figure 4) would be a fruitful question for
comparing the difficulty of mental transformations. Each part of the question starts
with a model shape which is transformed.

10(a) C is to

10(b) 9 is to

10(c) L is to

10(d) T is to

10(e) 71) is to

10(f)
is to

as R is to R

1

er
2

cc
3 4

9
5

as S is to 2 N S of

1 2 3 4 5

as d is to d D P c)

1 2 3 4 5

as is to
XXAY

1 2 3 4 5

as is to i c;'
1 2 3 4 5

as 1- is to
-T 7- 1_ I rs

1 2 3 4 5

10(g) p is to as r is to

\>/
1 3 4 5

Figure 4.
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Table 3 shows the mean scores for each part of the question at the different age levels.

a b c d e f g
Ref.

1

Rot.
IK 90°

Rot.
A 45°

Ref. Ref./ Rot.
180°

Ref./
Y5 0.70 0.31 0.43 0.40 0.04 0.33 0.48
Y7 0.76 0.52 0.65 0.53 0.07 0.47 0.70
Y9 0.97 0.63 0.86 0.69 0.08 0.69 0.75
Yl 1 _0.96 0.64 0.90 0.58 0.00 0.62 0.72

Table 3 - Results for Question 10

Clearly (a) which involves reflection in a vertical axis was the easiest and (e), a
reflection in a diagonal was the most difficult. Part (g) was also a reflection in a
diagonal but this was generally found no more difficult than other parts [with the
exception of (a)]. The difference between (e) and (g) was that in (e) the orientation of
the shape to be transformed was different from the orientation of the model shape. It
was no longer possible to use the orientation of a significant line of the transformed
model shape as a guide (or frame of reference) in choosing the answer. An analysis of
error responses revealed that 3 and 4 were the most popular choices for (e), supporting
this hypothesis.

Parts (c), (f) and (g) all have a vertical line of the shape to be transformed matching the
orientation of a line in the model shape, enabling the answer to be selected partly using
this line as a frame of reference. It is possible that some pupils used this method
without any mental transformation. The method would give 3 as a clear answer for
(c), would give 2 or 3 for (g) but would only eliminate 5 for (f). Certainly the popular
choice of the wrong answer 3 for (g) would support this and it could help to explain
why (c), a rotation question, was not found as difficult as expected and why (0 was
found more difficult. Pupils' explanations during individual interviews give added
support; for example:

"That one's swapped around to that position so F will swap around too."
It had been expected that (d), a reflection in the horizontal might be an easy question
(see Chipman and Mendelson, 1979) but this was not the case. The most popular
wrong answer was 3 suggesting recognition that reflection in the horizontal was
required but inaccuracy in the mental transformation. The relative complexity of the
shape may well have had some effect too. Part (b), a rotation, was not expected to be
easy and this was true particularly for younger pupils. It is possible that pupils
imagined a vertical line through the S to compare:with the example ("standing upright,
moving onto its side" as one pupil explained it) or that rotation was recognised but
inaccurately performed. The most common error 2 would be expected in both cases.
Pupil explanations revealed that reflection in a diagonal line, parts (e) and (g), was not
generally recognised. The transformation was seen as a combination of turning over
and rotating:
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"Gone round and then over"; "Move round and then flip over"; "Turn and
then tilt"; "Reflection in what would be the x-axis and then gone anti-clockwise
a bit"

From that point of view (e) becomes an unreasonable question. The size of rotation is
considered important and none of the options shows the correct angle of rotation.
Whether the pupils' explanations are a result of a transformation involved in their
thinking is not clear.
Individual interviews revealed variation not only in understanding but also in mastery
of mathematical language (see also Orton, 1993).

Mean scores were calculated, for the ten questions in the pattern recognition test, for
each age group. Questions 5 and 6, were similar questions and taken together. Mean
totals were also computed (see Table 4).

Q. 1 2 3 4 5+6 7 8 9 10 Total
Y5 4.53 1.56 1.56 3.73 14.04 0.3 0.59 0.3 2.68 29.25
Y7 4.66 1.71 1.70 5.13 14.68 0.56 0.60 0.44 3.70 33.12
Y9 4.83 1.91 1.92 5.82 16.56 0.68 0.70 0.55 4.63 37.58
Y1 1 4.84 1:82 1.94 5.86 13.46 0.64 0.58 0.56 4.42 34.12

Table 4 - Mean scores for the pattern recognition test

The mean totals show some clearly increasing values with age and these increases are
significant except between Y9 and Yl l (where a large number of less able girls in the
Y11 sample appear to have affected the results).

Three developmental stages are suggested in terms of the items of the pattern
recognition test. Their content includes:

Stage 1: Copying a shape; detection of embedded pictures; simple completion of
pattern; matching picture shapes; recognition of reflection in a 'vertical' axis; simple
rotation and reflection completion tasks with a frame of reference.
Stage 2: Matching of embedded shapes; matching of simple geometric shapes in
different orientations; more complex rotation and reflection tasks with a frame of
reference.
Stage 3: Matching of more complex shapes in different orientations; more complex
completion of pattern tasks including rotation; recognition of most reflection and
rotation.

Conclusions
There seems to be a clear body of pattern recognition 'knowledge' established by
age 9/10 (Stage 1, above) of which teachers should take advantage.
Individual interviews showed that pupils often recognise pattern but lack the
vocabulary to fully explain what they perceive.
Rotational symmetry may not always be more difficult than reflective symmetry
(compare Chipman and Mendelson, 1975). The angle of rotation and complexity of
the shape are important additional factors.
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It was not always clear from pupils' responses what mental transformations had
taken place.
There was considerable evidence of a frame of reference being used to simplify a
transformation.
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EARLY REPRESENTATIONS OF TILING AREAS

Kay Owens, University of Western Sydney Macarthur

Lynne Outhred, Macquarie University, Sydney

Students' early area concepts were investigated by an analysis of responses to a
worksheet of items that involved visualising the tiling of given figures with different-
shaped tiles. Students aged 7 to 10 attempted the items on three occasions. About
half the students had difficulty; some who participated in spatial activities after the
first occasion seemed to be more successful in determining the number of tiles.
Students who drew the tilings were more successful on the trapezia items but drew
too many tiles for larger shapes; some took account of limitations of their own
drawings. An analysis of students' drawings suggested that there was development
from beginning tiling from the sides and corners to an awareness of having no gaps,
regular patterns, alignment of tiles, and consistency of tile size.

Introduction

Learning to count involves more than just reciting number words in the correct
order. Similarly, an adequate understanding of area is expected to involve several
ideas which students may gain from early experiences. If teachers are to overcome
the commonly reported problem of students calculating areas without really knowing
what they are calculating then we need a better appreciation of young students'
understanding of area; some aspects are discussed in this research report.

Owens (1993b) found that students in Years 2 and 4 at school did not
spontaneously refer to area when asked what was the same about all the different
pentomino shapes and they also had difficulty in estimating the number of small
triangles needed to cover the larger ones (Figure 1).

I ITangram triangles Pattern-block triangles Pentominoes
Figure 1. Shapes made during spatial activities.

Observations of pre-school children covering squares, rectangles, and triangles
with smaller cut-out shapes have shown that students vary in their ability to choose
shapes, in their persistence, and in their turning and flipping tactics (Mansfield &
Scott, 1990). The most difficult shape to cover was an equilateral triangle with a
point facing down. Familiarity with the shape to be covered seemed to be important.
In a study by Wheatley and Cobb (1990), students were asked to cover a square
selecting from a square, several triangles, and a parallelogram. Some students chose
just the parallelogram. Wheatley and Cobb considered that this approach suggested
students were matching lengths but students may have chosen the shape that
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appeared to be largest. Other responses involved leaving gaps, especially on the
sides, and overlapping pieces or the sides of the square.

Practice in tiling with blocks may not help an understanding of area as the
materials may structure the tessellation (Doig, Cheeseman, & Lindsey, 1995;
Outhred, 1994). The use of paper squares gave information about children's
inadequate understandings of area as they were likely to leave gaps or overlap the
paper tiles (Doig, Cheeseman, & Lindsey, 1995) It seems to be important that
concrete experiences of covering areas also engage students' visual imagery and
analysis and involve student-student and student-teacher interaction about the ideas
needing development if mathematical concepts are to emerge (Hart & Sinkinson,
1988; Owens, 1993a).

Drawing may be one way of linking experiences with concrete materials to
students' mental models of tessellations..Outhred (1994) found that many students
had difficulties drawing tilings of squares, particularly for rectangles with large
dimensions. Some students' drawings suggested that they did not understand what
features of arrays were important to construct tessellations of squares. Owens
(1992a) also found students had difficulties imagining tilings of squares, rectangles,
and triangles. There were similarities between drawings produced by students in the
studies undertaken by Owens and Outhred that warranted a further investigation of
the data collected by Owens. These data comprised responses to items in which
students were required to visualise tessellations of units for different figures.

Research Questions

The investigation into students' early development of the concept of area
proceeded with the following questions:

1. How difficult do students find different tiling items?
2. What are the effects of (a) prior attempts at the items and (b) prior attempts

plus a series of concrete spatial problem-solving activities on students' responses?
3. What are the characteristics of students' spontaneous drawings and what are

the changes to these drawings over three attempts?
4. What are the effects of spontaneously drawing on students' responses?

Method

Tiling Items
The tiling items were developed as part of the test Thinking about 2D Shapes

(Owens, 1992a). Students were introduced to the tiling items by the teacher
discussing the idea of covering shapes with tiles without cutting or overlapping,
illustrating with large cardboard cut-outs. Students then tried a practice example.
Two different forms of the worksheet were used. Form S is shown in Figure 2; the
same items were presented in a different order on the other form. A score of one was
given for answering correctly whether the shape could be made with the given tile. A
score of two was given if the student also gave the correct number of tiles.
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The instructions for the worksheet items were as follows:
Suppose you had some tiles like the shape that is under the face. Without cutting or
overlapping, could you lit them together to make the shape.

Circle Yes or No.

If Yes write the number of tiles you need.

4111%
1 Yes _or No 2. Yes or No

3. Yes ___ or No 4 Yes _or No

5. Yes _or No 6. Yes or No

7. Yes or No 8. Yes or No

Figure 2. Reduced copy of A4 coloured worksheet on tiling (Form S).

Sample'and Procedure
Each form of the test Thinking about 2D Shapes was attempted by two hundred

students in Years 2 and 4 (aged 7 to 10) in five multicultural schools in Sydney
(Owens, 1992a) in order to assess item difficulty and fit on an underlying trait.

Over 170 of these students in four of the schools participated in a further study of
the effect of spatial activities on students' spatial thinking (Owens, 1992b). As part
of this study, students attempted the worksheet of tiling items as part of the test on
three occasions over a three-month period. The students were matched on school,'
year, class, and initial test scores and randomly allocated to either a group of non-
participants or participants (either working individually or in small groups) in a
series of spatial problem-solving activities based on tangrams, pattern blocks,
pentominoes, and matchstick designs (Owens, 1995). These activities were not
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specifically designed to train students to answer the tiling items, nor were students
given feedback on the correct answers for the items.

Method of Analysis
The research questions were answered in turn by the following analyses of data:

1. A Rasch analysis (Andrich, 1988) of all items of the test was used to analyse the
level of difficulty of the items. The percentages of participants and non-participants
giving different responses to the items were examined. Eighteen students (nine in
each Year across the ability range) were interviewed immediately after they
completed the worksheet and the information from this immediate recall of how they
were thinking illuminated the data from students' responses to the worksheet items.

2. The differences in percentages of participants and non-participants giving
different responses to the items on the first and last attempts were used to show the
effects of the worksheet plus spatial activities.

3. The drawings of all 62 students who drew (21 on more than one attempt) were
considered for similarities and differences between students and over time.

4. The effect of drawing was investigated by comparing the results on each item at
the last attempt for those who spontaneously drew and those who did not.

Results

1. The Rasch analysis of all test items indicated that all the items were testing the
underlying trait called 2D Spatial Thinking except Item 8, the C shaped item. This
item was technically the hardest but some students said in interview or showed in
drawings that the figure could be made with the tiles even though they were aware
that the tiles would overlap. The order of increasing difficulty was: 1 & 6, 2, 7, 3 &
4, 5, 8 (Owens, 1992a). Differences between the two forms may be due to proximity
of tile to figure and previous items attempted. On the last attempt, students found
three staggered squares (Item 1) and a right-angled triangle in a turned position (6) to
be easy; 83% and 80% of students respectively gave the correct number of tiles.

The items of particular interest are the other items requiring tessellations. The
students' results for initial and final testing on these items are shown in Table 1. The
percentages of incorrect responses indicate that the use of triangular tiles are found
to be more difficult than the use of rectangular (including square) tiles, particularly
when the shape to be covered was not triangular. On the first attempt, more than half
the students thought the uncommon shapes, the trapezia, could not be made by
tessellating the tiling unit and less than a third could give the correct number of tiles.

Although many students seemed to realise that the square, the non-square
rectangle, and the equilateral triangle could be made by tessellating the unit, many
students were unable to visualise and work out how many units would fit. For both
the equilateral triangle and the square, many students wrote 3 or 5 tiles; for the
rectangle, common answers were 8 and 9 but larger answers were also given
suggesting some students disregarded size, especially if they tried to draw the tiling.



Table 1
Percentages of Students giving Different Responses on First and last Attempts
Item Group

Tile & Figure
Incorrect Response`No'
First Last Difference

Incorrect Number of Tiles

First Last Difference
Correct Number of Tiles

First Last Difference
2 P 30 21 -9 42 39 -3 29 40 //

NP 20 17 -3 44 38 -6 37 45 8

3 P 45 35 -10 27 32 5 28 32 4L4 NP 42 36 -6 35 36 1 23 29 6

4 P 52 36 -16 19 16 -3 28 48 20
AZ) NP 48 49 1 17 17 0 36 34 -2

5 P 57 53 -4 15 17 2 27 30 3
NP 56 50 -6 17 19 2 27 31 4

_J

70

P 33 26 -7 28 25 -3 39 48 9
NP 35 21 -14 21 37 16 44 42 -2

Note: P 130 students who participated in a series of spatial activities.
NP 42 students who did not participate in the series of spatial activities.

2. Overall, students' responses to the items seemed to improve with experience on
the test (Table 1). Students who participated in the spatial activities improved
slightly more than the non-participants, especially for Items 4 and 7, as indicated by
the percentage differences in students giving the correct number of tiles. One reason
that participants improved in giving the number of equilateral triangles for the
trapezium might be their making of pattern-block shapes and enlargements
(including an equilateral triangle and isosceles trapezium). In the interviews, several
students who had been involved in the activities spontaneously noted that they had
made the isosceles trapezium from equilateral triangles in class. The improvement in
the use of square units for a rectangle might be associated with the test itself which
included items involving designs made from squares. The spatial activities
encouraged students to visualise grids of squares during the pentomino and
matchstick-design activities and to build rectangles with squares from the pattern-
block sets. Students had right-angled triangles in the tangram sets and most made a
square, but they did not have enough triangles to make a trapezium; this may be a
reason for the small improvement in Item 5. The activities used concrete materials
and only some students drew copies of their designs whereas the worksheet required
visualisation, some students using drawing.

The improvement in responses by participants is supported by the larger study
(Owens, 1992b, 1993b) which showed that participants did improve significantly
more on the delayed posttest (Thinking about 2D Shapes) than non-participants when
pretest scores were taken into account as a covariate.
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3. Students' drawings showed the following approaches: tiling around sides,
filling from a corner, drawing individual tiles in rows (often sloping or getting
smaller), representing rows by lines but marking off individual tiles (like a grid), and
maintaining good size (see Figure 3 and Owens & Outhred, 1996). Outhred's (1994)
study identified similar response categories for rectangular items. There was
reasonable consistency in the way students drew on each occasion. Three case
studies (Figure 3) are representative and show the development from individual tiles
to rows and patterns The size of tiles improved in some instances and the use of
mental imagery increased with incomplete drawing or pointing. Drawing difficulties
led to uncertainties (e.g., Student 3).
Comments
Student 1 (Year 2)
First Attempt

Does not attempt rectangle
Individual tiles

Second Attempt
Attempts rectangle
Joins triangles
Notes triangle at top
Counts incorrectly for square

Third Attempt
Slopes squares from bottom
Rows of triangles
Relies on diagram

Student 2 (Year 2)
First Attempt

Points out squares
Rows of triangles
Trouble with size of

equilateral triangle
Second Attempt

Draws grid for rectangle
Good size for

equilateral triangle
Third Attempt

Needs only draw part of grid
Good equilateral triangles
No need to draw right-angled

triangles

Student 3 (Year 4)
First Attempt

Reasonable size,
individual but good line

Uses point for triangle
Halves square

Second Attempt
Concerned about gap
Imagines but uneasy
about drawing triangles

Third Attempt
Concerned about gap
Hesitates with triangles

Figure 3. Examples of drawing over the three occasions.

No
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4. The results presented in Table 2 indicate that drawing the tessellation seemed to
make little difference to correct responses, except for Items 4 and 5 (the trapezia) for
which students who drew seemed to be more successful. For larger items, students
drew too many tiles. More students solved the problem mentally than drew solutions.

Table 2
Percentage of Responses (with Drawing or with No Drawing) on Last Attempt
Item Number of Incorrect Incorrect Correct

Responses Response "No" (%) Number of Number of
Tiles (%) Tiles (%)

2

3
4

4 A6
5 L h

7 0 0

ND -No
Drawing

D-
Drawing

ND D ND D ND D

148 32 20 19 38 41 42 41

154 27 38 22 31 48 31 30

154 18 43 11 14 15 44 67

159 20 56 25 18 15 26 60

157 23 27 4 27 61 46 35

Conclusion

The development of the concept of area is complex and this study has provided
insights into components of the area concept that make it so difficult for young
students. This study suggests that students' responses were influenced by their
cognisance of the following: (a) tile size, gaps, and overlaps; (b) features of tiles
such as type of angle or part that matches the figure; (c) the relevant pattern for
tessellating, and alignment of tiles, (d) the row and column structure of rectangles,
and (e) the limitations of their own drawings. It seems, from this study, that students
first consider covering an area with tiles by filling in from the sides and corners.
Gradually they become more systematic by drawing in rows and more aware of
features such as size and alignment of tiles.

Activities have the potential to improve area concepts. The use ofnon-square units
in activities would highlight the importance of covering without gaps or overlap.
Making tessellations with tiles of various shapes and drawing tessellations should
assist students to recognise composite units and the patterns of lines and grids
formed by tiling. Similar results have been found by Wheatley and Reynolds (1996)
in considering students abstraction of units. The use of drawing to develop area
concepts would seem worthwhile because drawings can be used to develop
abstractions. However, drawing difficulties need to be discussed in order to prevent
students thinking that shapes cannot be tessellated because of poor drawing skills.
Students need investigative learning experiences that will engage them in noting
features of shapes, in analysing tiling patterns, and in assessing their drawings
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adequately. Such experiences will promote understanding of key attributes of
tessellations, that is the units are all the same size and are aligned in a regular
pattern. For area concepts, students have to consider units, composite units such as
rows, and fractional units. Structured materials (tiles) might reduce non-investigative
area tasks to counting tasks. There seems to be a need for greater emphasis on
students who are learning about area to be able to transform shapes to other
orientations, recognise and partition shapes, and identify key features of shapes, for
example, matching parts such as right angles or lengths.
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WHAT CAN BE DONE TO OVERCOME THE MULTIPLICATIVE REVERSAL ERROR?

Duncan Paw ley and Martin Cooper

University of New South Wales, Sydney

Two studies are reported in this paper. The first investigates the rate of incidence
of the multiplicative-reversal error among Australian high-school teachers and finds
patterns similar to those found in the USA for teachers with "math" and "non-math"
backgrounds. The second is an experimental study in which three different "worked
example" methods were used in an attempt to reduce the incidence of the error
among grade 8 and grade 9 Australian students. While all three methods, taken
together, proved superior to "conventional" (the control), the "no-checking" method
was the only method that was alone superior to the control condition.

BACKGROUND

The "multiplicative-reversal phenomenon" is an error commonly made in the process
of translation of sentences into equations, or equations into sentences. The error is
made in cases where two variables are related to each other such that one is a
multiple of the other (eg x = 2y).

The classical "students and professors" problem (Kaput & Clement, 1979; Clement,
Lochhead & Monk, 1981) has the following form: "Write an equation for the
following statement: 'There are six times as many students as professors at this
university.' Use S for the number of students and P for the number of professors."
With this problem, 37% of 1st year engineering students gave incorrect answers, 2/3
of the errors being reversals; for students doing a college algebra course but studying
non-science majors, the error rate was 57% (Clement, Lochhead & Monk, 1981).

Whereas this problem tests equation formation, the "assemblers and solderers"
problem [see Study 1, Item 2] tests equation interpretation. Using this problem,
Lochhead (1980) fOund that 12% of physical-sciences unversity staff and 53% of
"other" staff were incorrect, with 28% and 60% of high-school teachers incorrect.
Using the same problem with MBA students, Cooper (1984) found that 31% of the
"science/technology" graduates and 63% of the graduates in "other" areas exhibited
reversal. In a study of final-year secondary-teacher trainees, (Cooper, 1986b) found
that 27% of math/science teacher trainees and 48% of trainees for other subjects
reversed in equation interpretation. For high-school students, the proportion of
reversals for grade 9 was 80% on equation interpretation, falling with each extra year
to 59% in grade 12, while for equation formation it was 92% for grade 9 falling to
73% for grade 12 (Cooper, 1986b).

The incidence of the multiplicative-reversal error is thus very high, even among
graduates in the physical sciences. This points to the difficulty of translating
between words and equations, and the fact that many people do not learn the skills
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needed for this process of translation. Many writers (Lochhead, 1980; Rosnick &
Clement, 1980; Clement, Lochhead & Monk, 1981) suggest that greater emphasis
should be placed on developing translation skills.

Early studies suggested that the error is due to one of two factors: "word-order
matching" or "syntactic translation" consisting of a left-to-right process of replacing
the words with mathematical symbols (Rosnick & Clement, 1980; Clement,
Lochhead & Monk; 1981; Wollman 1983), and "set matching" or "static compari-
son", consisting of matching a "set" of six students with a "set" of one professor,
saying "six students for every professor" and then representing the set of six students
by the expression 6S, using the equals sign as meaning "for every" or "is associated
with", and using P to represent the "set" of one professor so arriving at the
reversed equation 6S=P. This would involve misconceptions about the use of
letters in equations, and the use and meaning of the equals sign (Rosnick & Clement,
1980; Rosnick, 1981; Clement, Lochhead & Monk, 1981; Wollman,1983). The
letters S and P are used as labels, suggesting that there is a "units or labels frame"
and a "numerical variables equation frame" that may be retrieved from memory,
each appropriate for different uses, the problem of reversal arising when the labels
frame is inappropriately applied when the variables frame should be used (Davis,
1980). Cooper (1986a), however, found that replacing the letters S and P with x
and y did not help, but that the inclusion of a multiplication sign between the
numeral and the letter standing for the number of objects (eg, 6 and P) did reduce
the proportion of reversals (Cooper, 1986a).

MacGregor and Stacey (1993) set out to "test the sufficiency of the published
explanations" by designing test items to "eliminate the possibility of translation
errors from all known causes", and found that, even with all these causes eliminated,
there was still a high percentage of reversal errors. The suggestion that syntactic
trans-lation is a common procedure was therefore not supported by the results. The
theory put forward by MacGregor and Stacey is that, in the process' of understanding
the text, students construct a mental model in which both the quantities are viewed
simultaneously. In the translation process, this information is accessed in a random
order, not necessarily the order in which it occurred in the original sentence. They
suggest that the reversal error occurs in the attempt to represent on paper these
cogni-tive models of compared unequal quantities, and suggest that these models do
not conform to algebraic notation because they do not centre around the concept of
equal-ity. They point out that even though this model is not correctly translated into
alge-braic notation, it may be adequate as a basis for reasoning and making
inferences. Seeger (1990) found that students had actually comprehended the
meaning and were able to solve problems, even though they were unable to use
algebraic forms.

Crowley, Thomas and Tall (1994) explored the differences between proceptual
thinkers (having a flexible use of symbolism in algebra) and procedural thinkers
(who try to give the expressions a process meaning); these two approaches result in a
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different order for the symbols in an equation. They found that the proportion of
errors in translation from words to equation was greater for procedural thinkers.

Bloedy-Vinner (1995) found evidence for the previously suggested explanations of
the reversal error, but also for a new explanation. She introduced the concept of the
"analgebraic mode of thinking" (Bloedy-Vinner, 1994) and argued that translation
errors occur when students attempt to translate natural-language predicates or
relations which do not exist in algebraic language by erroneously enriching "their"
algebraic language. Thus, by what they write they attempt to convey a "meaning"
that makes sense to them, but does not conform to the normal mathematical meaning
of the symbols. She suggests that "in 6S the origin S and the image 6S are
conceived as one entity, the number of students, which is changing and becoming six
times larger. This leads to the interpretation of 6S as the predicate 'S is six times
larger' ". More evidence for this mode of thinking is provided in Bloedy-Vinner
(1996). She concluded that errors were due to failure in three skill components:
analysis of the problem and domain related knowledge, knowledge of algebraic
language, and management of the solution.

What can be done to counter the error?

Rosnick and Clement (1980) tried different teaching strategies in taped interviews
with nine students who had initially reversed in the students and professors problem.
They followed this with a written teaching unit for six other students enrolled in a
calculus course for engineers, scientists and mathematics majors. Their conclusion
was that "though students' behavior for the most part was changed, their con-
ceptual understanding of equation and variable remained.... unchanged ". Cooper
(1984a), however, found with MBA students, of whom 49% initially made the
reversal error, that by teaching about proportion and a constant of proportionality,
and reference to problems, only about 4% reversed afterwards.

Davis (1980, p 192) suggested that an instructional program should make sure that
the students "are aware of the likelihood of an incorrect choice, and form the habit of
checking to see if they have in fact chosen correctly". Wollman (1983) notes that
"experienced individuals consciously check their results" (p 170), and concludes that
the inclusion of a check that the equation produced is correct is the "crucial step
from a pedagogical point of view". In a further study, Wollman (1983)
demonstrated the beneficial effect of including an explicit checking question in a set
of items.

In summary, it appears that two approaches could possibly reduce the tendency to
Make the error. One is to pay far more attention to actually teaching students how to
translate from sentences to equations and vice versa, ensuring a better understanding
of algebraic language than appears to be common, as shown by studies to date. The
other is explicitly to teach methods of checking until these become as automatic as
the other aspects of problem solution, since conscious checking seems to be
necessary even for experienced mathematicians.
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STUDY I Teachers

Responses of high-school teachers to one equation-formation item and one equation-
interpretation item were examined, with the expectation that the results would follow
patterns similar to those obtained by Lochhead (1980) for high-school teachers and
university faculty, Cooper (I 984a) for MBA students and Cooper, (1986b) for
teacher trainees in which a smaller proportion of reversal errors was made by those
trained in "scientific" disciplines than those trained in other disciplines.

The items were as follows:

1. For every Packard machine in a particular office, there are four Canon machines.
Using the letter P to represent the number of Packard machines in the office, and
the letter C to represent the number of Canon machines, write a simple equation
corresponding to the above statement (Cooper, 1984).

2. Write one sentence in English that gives the same information as the following
equation: A=7S. The letter A represents the number of assemblers in a factory;
S is the number of solderers in the factory (Lochhead, 1980).

For consistency with the classification adopted by Lochhead (1980), biology and
geology were counted as "non-mathematical" rather than as "math/science" subjects
(mathematics, science and computing studies), since Lochhead's classification was
labelled "physical sciences". In this analysis, non-reversal errors were disregarded,
and an a priori comparison was made between the number correct and the number
reversing for "non-mathematics" and "math/science" in both the equation-formation
and equation-interpretation tasks (see summary in Table 1).

equation formation equation interpretation

non-math math/science non-math math/science

sample size 37 16 44 16
proportion reversing 0.676 0.250 0.591 0.188
difference of proportions 0.426 0.403

Table 1. Summary of proportions reversing

In each case, a large-sample normal approximation of the Fisher exact test was used.
The values of the test statistic were z=2.860 (equation formation) and z=2.762
(equation interpretation). Both are significant at the 0.05 level on a one-tailed test,
supporting the expectation that "non-math" teachers would tend to reverse more than
"math/science" teachers. For the equation-interpretation task, the results were
similar to those obtained by Lochhead (1980) using the same task with US teachers:

Australia: math/science/computing 23.5% incorrect others 59.1% incorrect
USA: physical sciences 27.8% incorrect others 59.8% incorrect
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Wollman (1983) found that a proportion of those with the correct answer had
initially reversed and then self-corrected. For the equation-formation task in the
present study, three of the 12 correct in the math/science group and two of the 12
correct in the non-science group had initially reversed and then self-corrected. For
the equation-interpretation task, one of the 13 correct in the math/science group and

five of the 18 correct in the non-science group exhibited spontaneous self-correction.
This indicates that teaching a checking method would probably have positive results.

STUDY 2 - High School Students

In the second study, multiplicative-reversal differences were examined among four
ability-matched groups of 293 grade 8 and grade 9 students: a control group and
three experimental groups. Each of the experimental groups was given worked
examples of translation tasks but differed in that the "no-checking" group was
taught no checking method, the "comparison" group was taught to check by asking
which quantity is larger in the sentence and in the equation and to make sure they are
the same, and the "substitution" group was taught to check by substituting
numbers for the variables in the sentence and then to use these numbers in the
equation, and make sure the equation then "works". It was expected that the
proportion reversing in the experimental groups, would be smaller than in the

control group, for which introductory material identical to that for the experimental
groups was followed by word problems to solve which avoided comparison of
quantities, so they were not practising problems that were likely to produce reversal.
These problems were taken directly from the textbook used by grade 8 students.

A post-treatment test, identical to that administered to the teachers in Study 1, was
administered at the end of the treatment. The proportion reversing in each group are
shown for each ability level and for each type of task in Table 2.

control
experimental

equ-check compare substitute average

equation formation
grade 8 lower 1.00 0.68 0.91 0.65 0.75

grade 8 higher 0.90 0.45 0.65 0.55 0.55

grade 9 lower 0.93 0.60 0.81 0.81 0.74

grade 9 higher 0.94 0.53 0.29 0.65 0.49

equation interpretatipn
grade 8 lower 0.83 0.63 0.90 0.65 0.73

grade 8 higher 0.90 0.59 0.48 0.65 0.57

grade 9 lower 0.87 0.67 0.75 0.67 0.70

grade 9 higher 0.88 0.29 0.47 0.41 0.39

Table 2. Proportions of students reversing
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These results were first analyzed to test the expectation that, at each level, the control
group would make a greater proportion of reversal errors than the experimental
groups combined. In this context, the proportions reversing were with reference to
those who presented reversed or correct answers, "other" errors being disregarded.
For each ability level, a priori tests of comparison were carried out between the
control-group proportion and the average of the proportions for the three
experimental groups in both the equation-formation and equation-interpretation
tasks, using the test of homogeneity of binomial proportions (Marascuilo &
McSweeney, 1967). Table 3 shows the value of X2 for each task-level
combination.

grade 8 lower
grade 8 higher
grade 9 lower
grade 9 higher

*p<0.05

equation formation equation interpretation

X2 X2

10.64* 0.63
14.71* 13.05*
3.82 1.32

26.29* 11.54*

Table 3. A priori comparisons between control-group mean and
average of experimental-group means

For equation formation, the grade 8 higher, grade 8 lower and grade 9 higher ability
levels showed significant differences between the control-group proportion and the
mean of the three experimental group proportions, but for the grade 9 lower ability
level the difference just failed to reach significance [X2 =3.82, critical value =3.84].

For equation interpretation, both higher-ability levels showed significant differences
between the control group and the mean of the three experimental groups, but the
differences were not significant for either lower-ability level, although there was a
trend in the expected direction.

A priori tests werecarried out for each ability level, comparing control-group and
"no-checking" group proportions for both the equation-formation and equation-
interpretation tasks, using in each case a large-sample normal approximation to the
Fisher exact test. For the equation-formation task, the proportion reversing in the
"no-checking" group proportions is significantly smaller than that in the control
group for each ability level [see Table 4], as expected. For the equation-
interpretation task, the expectation was supported only at the higher-ability levels,
although the results for both lower-ability levels indicate a trend in the expected
direction. These results have the same pattern as those given in Tables 2 and 3.
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grade 8 lower
grade 8 higher
grade 9 lower
grade 9 higher

*p<0.05

equation formation equation interpretation

difference in
proportions

z difference in z
proportions

0.33 2.47* 0.20 1.29

0.45 3.06* 0.31 2.28*
0.36 2.18* 0.19 1.09
0.41 2.72* 0.57 3.26*

Table 4. Results of a priori comparisons of control-group and
"no-checking"-group proportions, using large-
sample approximations of Fisher's exact test

Exploratory, post hoc tests were carried out for each ability level, comparing the
control-group proportion and each of the "comparison" and "substitution" group
proportions on both equation formation and equation interpretation, again using tests
of homogeneity of binomial proportions (Marascuilo & McSweeney, 1967). There
were significant differences from the control-group only for grade 8 lower
"substitution"-group and grade 9 higher "comparison"-group for equation formation,
and grade 8 higher "comparison"- and grade 9 higher "substitution"-group for
equation interpretation. There were no significant differences between different
experimental-group proportions at any level .

Conclusions

In the initial study, which examined the responses of high-school teachers to
equation-formation and equation-interpretation item, the results were similar to those
obtained by Lochhead (1980) for high-school teachers and university faculty, Cooper
(1984a) for MBA students and Cooper, (1986b) for teacher trainees, in that persons
with, a math-science background tended to reverse less (bin still substantially) than
those with a "non-math" background. In common with Wollman (1983), it was
found that a proportion of those with the correct answer had exhibited spontaneous
self-correction.

In the experimental study with grade 8 and grade 9 students, the three experimental
"worked example" methods ("no-checking", "comparison" and "substitution") were
generally found to result in a significantly smaller proportion of reversals than the
"conventional" method, although this result did not extend to lower-ability students
in the case of equation interpretation, for whom there was a trend in the expected
direction. Taken singly, only the "no-checking" method produced a significantly
better result than the "conventional" method, while no consistent difference among
the methods was apparent. This result demonstrates the effectiveness of worked
examples in leading to an understanding of the translation process.
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